Sample records for oxygen in-depth evolution

  1. Physics and Size in Biological Systems.

    ERIC Educational Resources Information Center

    Barnes, George

    1989-01-01

    Described is the subject of biological scaling for physics teachers including examples and in-depth reading. Topics are elements of scaling, terminal velocities, Lilliputian and Brobdingnagian, brain evolution, dolphin echolocation, surface tension, gravity change, food and oxygen, and seeing. Ten references on physics and size, and ten questions…

  2. Metabolic costs imposed by hydrostatic pressure constrain bathymetric range in the lithodid crab Lithodes maja.

    PubMed

    Brown, Alastair; Thatje, Sven; Morris, James P; Oliphant, Andrew; Morgan, Elizabeth A; Hauton, Chris; Jones, Daniel O B; Pond, David W

    2017-11-01

    The changing climate is shifting the distributions of marine species, yet the potential for shifts in depth distributions is virtually unexplored. Hydrostatic pressure is proposed to contribute to a physiological bottleneck constraining depth range extension in shallow-water taxa. However, bathymetric limitation by hydrostatic pressure remains undemonstrated, and the mechanism limiting hyperbaric tolerance remains hypothetical. Here, we assess the effects of hydrostatic pressure in the lithodid crab Lithodes maja (bathymetric range 4-790 m depth, approximately equivalent to 0.1 to 7.9 MPa hydrostatic pressure). Heart rate decreased with increasing hydrostatic pressure, and was significantly lower at ≥10.0 MPa than at 0.1 MPa. Oxygen consumption increased with increasing hydrostatic pressure to 12.5 MPa, before decreasing as hydrostatic pressure increased to 20.0 MPa; oxygen consumption was significantly higher at 7.5-17.5 MPa than at 0.1 MPa. Increases in expression of genes associated with neurotransmission, metabolism and stress were observed between 7.5 and 12.5 MPa. We suggest that hyperbaric tolerance in L maja may be oxygen-limited by hyperbaric effects on heart rate and metabolic rate, but that L maja 's bathymetric range is limited by metabolic costs imposed by the effects of high hydrostatic pressure. These results advocate including hydrostatic pressure in a complex model of environmental tolerance, where energy limitation constrains biogeographic range, and facilitate the incorporation of hydrostatic pressure into the broader metabolic framework for ecology and evolution. Such an approach is crucial for accurately projecting biogeographic responses to changing climate, and for understanding the ecology and evolution of life at depth. © 2017. Published by The Company of Biologists Ltd.

  3. Suppression of self-organized surface nanopatterning on GaSb/InAs multilayers induced by low energy oxygen ion bombardment by using simultaneously sample rotation and oxygen flooding

    NASA Astrophysics Data System (ADS)

    Beainy, Georges; Cerba, Tiphaine; Bassani, Franck; Martin, Mickaël; Baron, Thierry; Barnes, Jean-Paul

    2018-05-01

    Time of flight secondary ion mass spectrometry (ToF-SIMS) is a well-adapted analytical method for the chemical characterization of concentration profiles in layered or multilayered materials. However, under ion beam bombardment, initially smooth material surface becomes morphologically unstable. This leads to abnormal secondary ion yields and depth profile distortions. In this contribution, we explore the surface topography and roughening evolution induced by O2+ ion bombardment on GaSb/InAs multilayers. We demonstrate the formation of nanodots and ripples patterning according to the ion beam energy. Since the latter are undesirable for ToF-SIMS analysis, we managed to totally stop their growth by using simultaneously sample rotation and oxygen flooding. This unprecedented coupling between these two latter mechanisms leads to a significant enhancement in depth profiles resolution.

  4. Oxygen evolution reaction in nanoconfined carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Ying; Lu, Xuefeng; Li, Yunfang; Zhang, Xueqing

    2018-05-01

    Improving oxygen electrochemistry through nanoscopic confinement has recently been highlighted as a promising strategy. In-depth understanding the role of confinement is therefore required. In this study, we simulate the oxygen evolution reaction (OER) on iron oxide nanoclusters under confinement of (7,7) and (8,8) armchair carbon nanotubes (CNTs). The free energies of the four proton coupled electron transfer (PCET) steps and the OER overpotentials are calculated. The Fe4O6 nanocluster confined in (7,7) CNT is found to be the most active for OER among the systems considered in this work. This leads to an increase in catalytic efficiency of OER compared to the hematite (110) surface, which was reported recently as an active surface towards OER. The calculated results show that the OER overpotential depends strongly on the magnetic properties of the iron oxide nanocluster. These findings are helpful for experimental design of efficient catalyst for water splitting applications.

  5. Depth probing of the hydride formation process in thin Pd films by combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy.

    PubMed

    Wickman, Björn; Fredriksson, Mattias; Feng, Ligang; Lindahl, Niklas; Hagberg, Johan; Langhammer, Christoph

    2015-07-15

    We demonstrate a flexible combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy setup to gain insight into the depth evolution of electrochemical hydride and oxide formation in Pd films with thicknesses of 20 and 100 nm. The thicknesses of our model systems are chosen such that the films are thinner or significantly thicker than the optical skin depth of Pd to create two distinctly different situations. Low power white light is irradiated on the sample and analyzed in three different configurations; transmittance through, and, reflectance from the front and the back side of the film. The obtained optical sensitivities correspond to fractions of a monolayer of adsorbed or absorbed hydrogen (H) and oxygen (O) on Pd. Moreover, a combined simultaneous readout obtained from the different optical measurement configurations provides mechanistic insights into the depth-evolution of the studied hydrogenation and oxidation processes.

  6. Oxygen Issue in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Elmhamdi, A.

    2011-06-01

    We study the spectroscopic properties of a selected sample of 26 events within Core Collapse Supernovae (CCSNe) family. Special attention is paid to the nebular oxygen forbidden line [OI] 6300, 6364 Å doublet. We analyze the line flux ratio F6300/F6364 and infer information about the optical depth evolution, densities, volume-filling factors in the oxygen emitting zones. The line luminosity is measured for the sample events and its evolution is discussed on the basis of the bolometric light curve properties in type II and in type Ib-c SNe. The luminosities are then translated into oxygen abundances using two different methods. The results are combined with the determined 56Ni masses and compared with theoretical models by means of the [O/Fe] vs. Mms diagram. Two distinguishable and continuous populations, corresponding to Ib-c and type II SNe, are found. The higher mass nature of the ejecta in type II objects is also imprinted in the [CaII] 7291, 7324Å to [OI] 6300, 6364Å luminosity ratios. Our results may be used as input parameters for theoretical models studying the chemical enrichment of galaxies.

  7. Hydrologic Regulation of Plant Rooting Depth and Vice Versa

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Miguez-Macho, G.

    2017-12-01

    How deep plant roots go and why may hold the answer to several questions regarding the co-evolution of terrestrial life and its environment. In this talk we explore how plant rooting depth responds to the hydrologic plumbing system in the soil/regolith/bedrocks, and vice versa. Through analyzing 2200 root observations of >1000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients, we found strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to groundwater capillary fringe. We explore the global significance of this framework using an inverse model, and the implications to the coevolution of deep roots and the CZ in the Early-Mid Devonian when plants colonized the upland environments.

  8. The importance of conceptual models in the reactive transport simulation of oxygen ingress in sparsely fractured crystalline rock.

    PubMed

    Macquarrie, K T B; Mayer, K U; Jin, B; Spiessl, S M

    2010-03-01

    Redox evolution in sparsely fractured crystalline rocks is a key, and largely unresolved, issue when assessing the geochemical suitability of deep geological repositories for nuclear waste. Redox zonation created by the influx of oxygenated waters has previously been simulated using reactive transport models that have incorporated a variety of processes, resulting in predictions for the depth of oxygen penetration that may vary greatly. An assessment and direct comparison of the various underlying conceptual models are therefore needed. In this work a reactive transport model that considers multiple processes in an integrated manner is used to investigate the ingress of oxygen for both single fracture and fracture zone scenarios. It is shown that the depth of dissolved oxygen migration is greatly influenced by the a priori assumptions that are made in the conceptual models. For example, the ability of oxygen to access and react with minerals in the rock matrix may be of paramount importance for single fracture conceptual models. For fracture zone systems, the abundance and reactivity of minerals within the fractures and thin matrix slabs between the fractures appear to provide key controls on O(2) attenuation. The findings point to the need for improved understanding of the coupling between the key transport-reaction feedbacks to determine which conceptual models are most suitable and to provide guidance for which parameters should be targeted in field and laboratory investigations. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Identification of vacancy-oxygen complexes in oxygen-implanted silicon probed with slow positrons

    NASA Astrophysics Data System (ADS)

    Fujinami, M.; Miyagoe, T.; Sawada, T.; Suzuki, R.; Ohdaira, T.; Akahane, T.

    2004-04-01

    Defects and their annealing behavior for low (2×1015/cm2) and high (1.7×1018/cm2) doses of 180 keV oxygen-implanted silicon have been investigated by the coincidence Doppler broadening (CDB) and lifetime measurements in variable-energy positron annihilation spectroscopy. In the low-dose sample, divacancies are induced throughout the entire implantation region. In the vacancy-oxygen coexisting region (300-500 nm depths), by raising the annealing temperature to 600 °C, vacancy-oxygen VxOy complexes with one vacant site are formed and, simultaneously, the migration of oxygen begins to takes place. In the vacancy-rich region (-200 nm depths), the evolution of simple vacancy clusters to V4 is mainly observed below 600 °C. From CDB and lifetime measurements, it has been proven that after annealing at 800 °C, the VxOy complexes are formed throughout the implanted region and they contain four vacant sites and a high ratio of y to x. On the other hand, high-dose implantation at 550 °C produces the VxOy complexes with a lifetime of a 430 ps in the near-surface region (less than 200 nm deep) and annealing at 1100 °C leads to the highest ratio of y to x. These complexes cannot be annealed out even by annealing at 1350 °C, and their structure is found to be very similar to that for the electron-irradiated amorphous SiO2.

  10. Oxygen minimum zone: An important oceanographic habitat for deep-diving northern elephant seals, Mirounga angustirostris.

    PubMed

    Naito, Yasuhiko; Costa, Daniel P; Adachi, Taiki; Robinson, Patrick W; Peterson, Sarah H; Mitani, Yoko; Takahashi, Akinori

    2017-08-01

    Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota-poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging. Here, we assessed the feeding rate of 14 female northern elephant seals determined by jaw motion events (JME) and dive cycle time to examine how feeding rates varied with dive depth, particularly in the OMZ. We also obtained video footage from seal-mounted videos to understand their feeding in the OMZ. While the diel vertical migration pattern was apparent for most depths of the JME, some very deep dives, beyond the normal diel depth ranges, occurred episodically during daylight hours. The midmesopelagic zone was the main foraging zone for all seals. Larger seals tended to show smaller numbers of JME and lower feeding rates than smaller seals during migration, suggesting that larger seals tended to feed on larger prey to satisfy their metabolic needs. Larger seals also dived frequently to the deep OMZ, possibly because of a greater diving ability than smaller seals, suggesting their dependency on food in the deeper depth zones. Video observations showed that seals encountered the rarely reported ragfish ( Icosteus aenigmaticus ) in the depths of the OMZ, which failed to show an escape response from the seals, suggesting that low oxygen concentrations might reduce prey mobility. Less mobile prey in OMZ would enhance the efficiency of foraging in this zone, especially for large seals that can dive deeper and longer. We suggest that the OMZ plays an important role in structuring the mesopelagic ecosystem and for the survival and evolution of elephant seals.

  11. Desulfurization kinetics of molten copper by gas bubbling

    NASA Astrophysics Data System (ADS)

    Fukunaka, Y.; Nishikawa, K.; Sohn, H. S.; Asaki, Z.

    1991-02-01

    Molten copper with 0.74 wt pct sulfur content was desulfurized at 1523 K by bubbling Ar-O2 gas through a submerged nozzle. The reaction rate was significantly influenced not only by the oxygen partial pressure but also by the gas flow rate. Little evolution of SO2 gas was observed in the initial 10 seconds of the oxidation; however, this was followed by a period of high evolution rate of SO2 gas. The partial pressure of SO2 gas decreased with further progress of the desulfurization. The effect of the immersion depth of the submerged nozzle was negligible. The overall reaction is decomposed to two elementary reactions: the desulfurization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of sulfur and oxygen contents in the melt and the SO2 partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model combined with the reported thermodynamic data of these reactions. Based on the present model, it was anticipated that the oxidation rate around a single gas bubble was mainly determined by the rate of gas-phase mass transfer, but all oxygen gas blown into the melt was virtually consumed to the desulfurization and dissolution reactions before it escaped from the melt surface.

  12. The effect of light:dark cycles of medium frequency on photosynthesis by Chlorella vulgaris and the implications for waste stabilisation pond design and performance.

    PubMed

    Ratchford, I A J; Fallowfield, H J

    2003-01-01

    The effect of light/dark (L:D) cycle times on the recovery from photoinhibition of green micro-alga Chlorella vulgaris (CCAP211/11c) and the cyanobacterium Synechococcus (CCAP1479/5) was investigated using an irradiated, temperature controlled oxygen electrode. The onset of photoinhibition in both organisms occurred at irradiances > 300 micromol m(-2)s(-1) at temperatures >15 degrees C. Light/dark cycle times were controlled independently using a relay timer and shutter placed between the quartz iodide light source and the oxygen electrode chamber. Oxygen evolution decreased rapidly when cells were continuously irradiated at 300, 500 and 750 micromol m(-2)s(-1). However, Chlorella cells irradiated at 300, 500 and 750 micromol m(-2)s(-1)on a L:D cycle of 60s:20s, 30s:60s and 60s: 120s respectively, maintained a constant rate of oxygen evolution over a 24 h incubation period. Exposure time to a given incident irradiance rather than the total light dose received appeared to determine the effect of light/dark cycle times on photosynthesis. A relationship was established between L:D ratio required to maintain constant oxygen production and incident photon flux density. The results suggest that the adverse effects of high irradiances on algae near the surface of a stratified waste stabilisation pond might be ameliorated by controlled mixing of algal cells through the depth of the pond.

  13. 3D mapping and simulation of Geneva Lake environmental data

    NASA Astrophysics Data System (ADS)

    Villard, Roch; Maignan, Michel; Kanevski, Mikhail; Rapin, Francois; Klein, Audrey

    2010-05-01

    The Geneva Lake is the biggest alpine and subalpine lake in central Europe. The depth of this lake is 309 meters and its total volume of water is 89 billions m3. It takes, on average, around twelve years so that waters of the lake are completely brewed. Furthermore the Geneva lake waters are rich in dissolved substances as carbonate, sulfate. The quantity of particles in suspension in the lake, which mainly arrived from the Rhône, is nowadays around height million of tones. The International Commission for the Leman Lake (CIPEL) works about the improvement of the quality of this lake since 1962. In the present study three dimensional environmental data (temperature, oxygen and nitrate) which cover the period from 1954 to 2008, for a total of 27'500 cases are investigated. We are interested to study the evolution of the temperature of the lake because there is an impact on the reproduction of fishes and also because the winter brewing of the water makes the re-oxygenation of deep-water. In order that biological balance is maintained in a lake, there must be enough oxygen in the water. Moreover, we work on nitrate distribution and evolution because contributions in fertilizers cause eutrophication of lake. The data are very numerous when we consider the time series, some of them with more than 300 occurrences, but there are between 2 and 15 data available for spatial cartography. The basic methodology used for the analysis, mapping and simulations of 3D patterns of environmental data is based on geostatistical predictions (family of kriging models) and conditional stochastic simulations. Spatial and temporal variability, 3D monitoring networks changing over time, make this study challenging. An important problem is also to make interpolation/simulations over a long period of time, like ten years. One way used to overcome this problem, consists in using a weighted average of ten variograms during this period. 3D mapping was carried out using environment data for several depths. Applying all data comprehensive analysis both in space and in time was performed. The evolution of the distribution of environmental parameters and their difference in space between two periods and also several times series were studied. Furthermore with the analysis of temporal measurements depending on spatial coordinates (x, y, z) the trends, periodicity, and seasonal variation or cycles were evaluated. First results demonstrate no global warming in such environment. However certain currents and their evolution in the lake were identified. Then, we can see the movement of cold and hot waters in the lake during time and in space. A main question posed by ecologists is: is there any global warming of the lake? According to the results based on date 1954-1980, no global warming either of the "Small Lake" (Geneva) or the whole lake was put into evidence. However the temperatures of the different parts of the lake vary from one year to another year with significant differences of warming, respectively cooling of different areas and at different depths. The graphical representations of time series of temperature at one location for different depths show clearly the annual rhythm and also other frequencies (11 years). The historical well known "cold years" are well identified. At some years, one can observe an inversion of temperature when the cold water in the depth comes upwards to the surface. Spatial patterns are also found for the nitrate content in water. The future developments deal with multivariate analysis and simulations of environmental and pollution data in the lake.

  14. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  15. Long-term development of hypolimnetic oxygen depletion rates in the large Lake Constance.

    PubMed

    Rhodes, Justin; Hetzenauer, Harald; Frassl, Marieke A; Rothhaupt, Karl-Otto; Rinke, Karsten

    2017-09-01

    This study investigates over 30 years of dissolved oxygen dynamics in the deep interior of Lake Constance (max. depth: 250 m). This lake supplies approximately four million people with drinking water and has undergone strong re-oligotrophication over the past decades. We calculated depth-specific annual oxygen depletion rates (ODRs) during the period of stratification and found that 50% of the observed variability in ODR was already explained by a simple separation into a sediment- and volume-related oxygen consumption. Adding a linear factor for water depth further improved the model indicating that oxygen depletion increased substantially along the depth. Two other factors turned out to significantly influence ODR: total phosphorus as a proxy for the lake's trophic state and mean oxygen concentration in the respective depth layer. Our analysis points to the importance of nutrient reductions as effective management measures to improve and protect the oxygen status of such large and deep lakes.

  16. Comparison of the Atomic Oxygen Erosion Depth and Cone Height of Various Materials at Hyperthermal Energy

    NASA Technical Reports Server (NTRS)

    Waters, Deborah L.; Banks, Bruce A.; Thorson, Stephen D.; deGroh, Kim, K.; Miller, Sharon K.

    2007-01-01

    Atomic oxygen readily reacts with most spacecraft polymer materials exposed to the low Earth orbital (LEO) environment. If the atomic oxygen arrival comes from a fixed angle of impact, the resulting erosion will foster the development of a change in surface morphology as material thickness decreases. Hydrocarbon and halopolymer materials, as well as graphite, are easily oxidized and textured by directed atomic oxygen in LEO at energies of approx.4.5 eV. What has been curious is that the ratio of cone height to erosion depth is quite different for different materials. The formation of cones under fixed direction atomic oxygen attack may contribute to a reduction in material tensile strength in excess of that which would occur if the cone height to erosion depth ratio was very low because of greater opportunities for crack initiation. In an effort to understand how material composition affects the ratio of cone height to erosion depth, an experimental investigation was conducted on 18 different materials exposed to a hyperthermal energy directed atomic oxygen source (approx.70 eV). The materials were first salt-sprayed to provide microscopic local areas that would be protected from atomic oxygen. This allowed erosion depth measurements to be made by scanning microscopy inspection. The polymers were then exposed to atomic oxygen produced by an end Hall ion source that was operated on pure oxygen. Samples were exposed to an atomic oxygen effective fluence of 1.0x10(exp 20) atoms/sq cm based on Kapton H polyimide erosion. The average erosion depth and average cone height were determined using field emission scanning electron microscopy (FESEM). The experimental ratio of average cone height to erosion depth is compared to polymer composition and other properties.

  17. On the subduction of oxygenated surface water in submesoscale cold filaments off Peru.

    NASA Astrophysics Data System (ADS)

    Thomsen, Soeren; Kanzow, Torsten; Colas, Francois; Echevin, Vincent; Krahmann, Gerd

    2015-04-01

    The Peruvian upwelling regime is characterized by pronounced submesoscale variability including filaments and sharp density fronts. Submesoscale frontal processes can drive large vertical velocities and enhance vertical tracer fluxes in the upper ocean. The associated high temporal and spatial variability poses a large challenge to observational approaches targeting submesoscale processes. In this study the role of submesoscale processes for both the ventilation of the near-coastal oxygen minimum zone off Peru and the physical-biogeochemical coupling at these scales is investigated. For our study we use satellite based sea surface temperature measurements in combination with multiple high-resolution glider observations of temperature, salinity, oxygen and chlorophyll fluorescence carried out in January and February 2013 off Peru near 14°S during active upwelling. Additionally, high-resolution regional ocean circulation model outputs (ROMS) are analysed. At the beginning of our observations a previously upwelled, productive and highly oxygenated body of water is found within the mixed layer. Subsequently, a cold filament forms and the waters are moved offshore. After the decay of the filament and the relaxation of the upwelling front, the oxygen enriched surface water is found within the previously less oxygenated thermocline suggesting the occurrence of frontal subduction. A numerical model simulation is used to analyse the evolution of passive tracers and Lagrangian floats within several upwelling filaments, whose vertical structure and hydrographic properties agree well with the observations. The simulated temporal evolution of the tracers and floats support our interpretation that the subduction of previously upwelled water indeed occurs within cold filaments off Peru. Filaments are common features within eastern boundary upwelling systems, which all encompass large oxygen minimum zones. However, most state of-the-art large and regional scale physical-biogeochemical ocean models do not resolve submesoscale filaments and the associated downward transport of oxygen and other solutes. Even if the observed subduction event only reaches into the still oxygenated thermocline the associated ventilation mechanism likely influences the shape and depth of the upper boundary of oxygen minimum zones, which would probably be even shallower without this process.

  18. Toward a New Capability for Upper Atmospheric Research using Atomic Oxygen Lidar

    NASA Astrophysics Data System (ADS)

    Clemmons, J. H.; Steinvurzel, P.; Mu, X.; Beck, S. M.; Lotshaw, W. T.; Rose, T. S.; Hecht, J. H.; Westberg, K. R.; Larsen, M. F.; Chu, X.; Fritts, D. C.

    2017-12-01

    Progress on development of a lidar system for probing the upper atmosphere based on atomic oxygen resonance is presented and discussed. The promise of a fully-developed atomic oxygen lidar system, which must be based in space to measure the upper atmosphere, for yielding comprehensive new insights is discussed in terms of its potential to deliver global, height-resolved measurements of winds, temperature, and density at a high cadence. An overview of the system is given, and its measurement principles are described, including its use of 1) a two-photon transition to keep the optical depth low; 2) laser tuning to provide the Doppler information needed to measure winds; and 3) laser tuning to provide a Boltzmann temperature measurement. The current development status is presented with a focus on what has been done to demonstrate capability in the laboratory and its evolution to a funded sounding rocket investigation designed to make measurements of three-dimensional turbulence in the upper mesosphere and lower thermosphere.

  19. Numerical Solution of a 3-D Advection-Dispersion Model for Dissolved Oxygen Distribution in Facultative Ponds

    NASA Astrophysics Data System (ADS)

    Sunarsih; Sasongko, Dwi P.; Sutrisno

    2018-02-01

    This paper describes a mathematical model for the dissolved oxygen distribution in the plane of a facultative pond with a certain depth. The purpose of this paper is to determine the variation of dissolved oxygen concentration in facultative ponds. The 3-dimensional advection-diffusion equation is solved using the finite difference method Forward Time Central Space (FTCS). Numerical results show that the aerator greatly affects the occurrence of oxygen concentration variations in the facultative pond in the certain depth. The concentration of dissolved oxygen decreases as the depth of the pond increases.

  20. Paleobiological perspectives on early eukaryotic evolution.

    PubMed

    Knoll, Andrew H

    2014-01-01

    Eukaryotic organisms radiated in Proterozoic oceans with oxygenated surface waters, but, commonly, anoxia at depth. Exceptionally preserved fossils of red algae favor crown group emergence more than 1200 million years ago, but older (up to 1600-1800 million years) microfossils could record stem group eukaryotes. Major eukaryotic diversification ~800 million years ago is documented by the increase in the taxonomic richness of complex, organic-walled microfossils, including simple coenocytic and multicellular forms, as well as widespread tests comparable to those of extant testate amoebae and simple foraminiferans and diverse scales comparable to organic and siliceous scales formed today by protists in several clades. Mid-Neoproterozoic establishment or expansion of eukaryophagy provides a possible mechanism for accelerating eukaryotic diversification long after the origin of the domain. Protists continued to diversify along with animals in the more pervasively oxygenated oceans of the Phanerozoic Eon.

  1. Fish Ecology and Evolution in the World's Oxygen Minimum Zones and Implications of Ocean Deoxygenation.

    PubMed

    Gallo, N D; Levin, L A

    Oxygen minimum zones (OMZs) and oxygen limited zones (OLZs) are important oceanographic features in the Pacific, Atlantic, and Indian Ocean, and are characterized by hypoxic conditions that are physiologically challenging for demersal fish. Thickness, depth of the upper boundary, minimum oxygen levels, local temperatures, and diurnal, seasonal, and interannual oxycline variability differ regionally, with the thickest and shallowest OMZs occurring in the subtropics and tropics. Although most fish are not hypoxia-tolerant, at least 77 demersal fish species from 16 orders have evolved physiological, behavioural, and morphological adaptations that allow them to live under the severely hypoxic, hypercapnic, and at times sulphidic conditions found in OMZs. Tolerance to OMZ conditions has evolved multiple times in multiple groups with no single fish family or genus exploiting all OMZs globally. Severely hypoxic conditions in OMZs lead to decreased demersal fish diversity, but fish density trends are variable and dependent on region-specific thresholds. Some OMZ-adapted fish species are more hypoxia-tolerant than most megafaunal invertebrates and are present even when most invertebrates are excluded. Expansions and contractions of OMZs in the past have affected fish evolution and diversity. Current patterns of ocean warming are leading to ocean deoxygenation, causing the expansion and shoaling of OMZs, which is expected to decrease demersal fish diversity and alter trophic pathways on affected margins. Habitat compression is expected for hypoxia-intolerant species, causing increased susceptibility to overfishing for fisheries species. Demersal fisheries are likely to be negatively impacted overall by the expansion of OMZs in a warming world. © 2016 Elsevier Ltd. All rights reserved.

  2. Benthic Marine Cyanobacterial Mat Ecosystems: Biogeochemistry and Biomarkers

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Cyanobacterial mats are complete ecosystems that can include processes of primary production, diagenesis and lithification. Light sustains oxygenic photosynthesis, which in turn provides energy, organic matter and oxygen to the community. Due to both absorption and scattering phenomena, incident light is transformed with depth in the mat, both in intensity and spectral composition. Mobile photo synthesizers optimize their position with respect to this light gradient. When photosynthesis ceases at night, the upper layers of the mat become reduced and sulfidic. Counteracting gradients of oxygen and sulfide combine to provide daily-contrasting environments separated on a scale of a few mm. The functional complexity of mats, coupled with the highly proximal and ordered spatial arrangement of biota, offers the potential for a staggering number of interactions. At a minimum, the products of each functional group of microorganisms affect the other groups both positively and negatively. For example, cyanobacteria generate organic matter (potential substrates) but also oxygen (a toxin for many anaerobes). Anaerobic activity recycles nutrients to the photosynthesizers but also generates potentially toxic sulfide. The combination of benefits and hazards of light, oxygen and sulfide promotes the allocation of the various essential mat processes between light and dark periods, and to various depths in the mat. Observations of mats have produced numerous surprises. For example, obligately anaerobic processes can occur in the presence of abundant oxygen, highly reduced gases are produced in the presence of abundant sulfate, meiofauna thrive at high sulfide concentrations, and the mats' constituent populations respond to environmental changes in complex ways. While photosynthetic bacteria dominate the biomass and productivity of the mat, nonphotosynthetic, anaerobic processes constitute the ultimate biological filter on the ecosystem's emergent biosignatures, including those sedimentary textures, organic compounds, and minerals that enter the fossil record. The ability of cyanobacterial mats to channel abundant solar energy into the creation and maintenance of complex structures and processes has created a multitude of consequences, both for sedimentation and for the early evolution of our biosphere.

  3. Can Foraging Ecology Drive the Evolution of Body Size in a Diving Endotherm?

    PubMed Central

    Cook, Timothée R.; Lescroël, Amélie; Cherel, Yves; Kato, Akiko; Bost, Charles-André

    2013-01-01

    Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes. PMID:23409169

  4. Can foraging ecology drive the evolution of body size in a diving endotherm?

    PubMed

    Cook, Timothée R; Lescroël, Amélie; Cherel, Yves; Kato, Akiko; Bost, Charles-André

    2013-01-01

    Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.

  5. Oxygen evolution from olivine M n1 -xMxP O4 (M =Fe ,Ni,Al,Mg) delithiated cathode materials

    NASA Astrophysics Data System (ADS)

    Snydacker, David H.; Wolverton, C.

    2017-01-01

    Olivine LiMnP O4 is a promising cathode material for Li-ion batteries. One drawback of this material is the propensity of its delithiated phase, MnP O4 , to evolve oxygen gas above approximately 200 °C. During thermal runaway of cells, this oxygen gas can burn the electrolyte and other cell components and thereby jeopardize safety. Partial substitution of Mn with M =Fe , Ni, Al, or Mg has been used to improve the lithium intercalation kinetics of L ixMnP O4 ; however, the effect of these substitutions on oxygen evolution is not fully documented. In this paper, we calculate phase diagrams and oxygen evolution diagrams for these M n1 -xMxP O4 delithiated cathode materials. To generate the phase diagrams, we use subregular solid-solution models and fit the energetic parameters of these models to density functional theory calculations of special quasirandom structures. The resulting thermodynamic models describe the effect of mixing on the initial temperature of oxygen evolution and on the cumulative amount of oxygen evolution at elevated temperatures. We find that addition of Fe increases the initial temperature and decreases the cumulative amount of oxygen evolution. M n0.5F e0.5P O4 exhibits an initial temperature 50 °C higher than MnP O4 and releases 70% less oxygen gas at 300 °C. Al is insoluble in MnP O4 , so addition of Al has no affect on the initial temperature. However, Al addition does slightly decrease the amount of oxygen evolution due to an inactive AlP O4 component. Mg and Ni both decrease the initial temperature of oxygen evolution, and therefore may worsen the safety of MnP O4 .

  6. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution.

    PubMed

    Tung, Ching-Wei; Hsu, Ying-Ya; Shen, Yen-Ping; Zheng, Yixin; Chan, Ting-Shan; Sheu, Hwo-Shuenn; Cheng, Yuan-Chung; Chen, Hao Ming

    2015-08-28

    Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer.

  7. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  8. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  9. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  10. Paleobiological Perspectives on Early Eukaryotic Evolution

    PubMed Central

    Knoll, Andrew H.

    2014-01-01

    Eukaryotic organisms radiated in Proterozoic oceans with oxygenated surface waters, but, commonly, anoxia at depth. Exceptionally preserved fossils of red algae favor crown group emergence more than 1200 million years ago, but older (up to 1600–1800 million years) microfossils could record stem group eukaryotes. Major eukaryotic diversification ∼800 million years ago is documented by the increase in the taxonomic richness of complex, organic-walled microfossils, including simple coenocytic and multicellular forms, as well as widespread tests comparable to those of extant testate amoebae and simple foraminiferans and diverse scales comparable to organic and siliceous scales formed today by protists in several clades. Mid-Neoproterozoic establishment or expansion of eukaryophagy provides a possible mechanism for accelerating eukaryotic diversification long after the origin of the domain. Protists continued to diversify along with animals in the more pervasively oxygenated oceans of the Phanerozoic Eon. PMID:24384569

  11. Oxygen isotopes in garnet and accessory minerals to constrain fluids in subducted crust

    NASA Astrophysics Data System (ADS)

    Rubatto, Daniela; Gauthiez-Putallaz, Laure; Regis, Daniele; Rosa Scicchitano, Maria; Vho, Alice; Williams, Morgan

    2017-04-01

    Fluids are considered a fundamental agent for chemical exchanges between different rock types in the subduction system. Constraints on the sources and pathways of subduction fluids thus provide crucial information to reconstruct subduction processes. Garnet and U-Pb accessory minerals constitute some of the most robust and ubiquitous minerals in subducted crust and can preserve multiple growth zones that track the metamorphic evolution of the sample they are hosted in. Microbeam investigation of the chemical (major and trace elements) and isotopic composition (oxygen and U-Pb) of garnet and accessory minerals is used to track significant fluid-rock interaction at different stages of the subduction system. This approach requires consideration of the diffusivity of oxygen isotopes particularly in garnet, which has been investigated experimentally. The nature of the protolith and ocean floor alteration is preserved in relict accessory phases within eclogites that have been fully modified at HP conditions (e.g. Monviso and Dora Maira units in the Western Alps). Minerals in the lawsonite-blueschists of the Tavsanli zone in Turkey record pervasive fluid exchange between mafic and sedimentary blocks at the early stage of subduction. High pressure shear zones and lithological boundaries show evidence of intense fluid metasomatism at depth along discontinuities in Monviso and Corsica. In the UHP oceanic crust of the Zermatt-Saas Zone, garnet oxygen isotopes and tourmaline boron isotopes indicate multistage fluid infiltration during prograde metamorphism. Localized exchanges of aqueous fluids are also observed in the subducted continental crust of the Sesia-Lanzo Zone. In most cases analyses of distinct mineral zones enable identification of multiple pulses of fluids during the rock evolution.

  12. Productivity Estimation of Hypersaline Microbial Mat Communities - Diurnal Cycles of Dissolved Oxygen

    NASA Astrophysics Data System (ADS)

    Less, G.; Cohen, Y.; Luz, B.; Lazar, B.

    2002-05-01

    Hypersaline microbial mat communities (MMC) are the modern equivalents of the Archean stromatolities, the first photosynthetic organisms on Earth. An estimate of their oxygen production rate is important to the understanding of oxygen evolution on Earth ca. 2 b.y.b.p. Here we use the diurnal cycle of dissolved oxygen, O2/Ar ratio and the isotopic composition of dissolved oxygen to calculate net and gross primary productivity of MMC growing in a large scale (80 m2) experimental pan. The pan is inoculated with MMC taken from the Solar Lake, Sinai, Egypt and filled with 90\\permil evaporated Red Sea water brine up to a depth of ca. 0.25 m. It is equipped with computerized flow through system that is programmed to pump pan water at selected time intervals into a sampling cell fitted with dissolved oxygen, pH, conductivity and temperature sensors connected to a datalogger. Manual brine samples were taken for calibrating the sensors, mass spectrometric analyses and for measurements of additional relevant parameters. Dissolved oxygen concentrations fluctuate during the diurnal cycle being highly supersaturated except for the end of the night. The O2 curve varies seasonally and has a typical "shark fin" shape due to the MMC metabolic response to the shape of the diurnal light curve. The dissolved oxygen data were fitted to a smooth curve that its time derivative (dO2 /dt) is defined as: Z dO2 /dt=GP-R-k(O2(meas)- O2(sat)) where z is the depth (m); GP and R are the MMC gross production and respiration (mol m-2 d-1), respectively; k is the gas exchange coefficient (m d-1); O2(meas) and O2(sat) (mol L-1) are the measured and equilibrium dissolved oxygen concentrations, respectively. The high resolution sampling of the automated system produces O2 curves that enable the calculation of smooth and reliable time derivatives. The calculations yield net production values that vary between 1,000 10-6 to -100 10-6 mol O2 m-2 h-1 and day respiration rates between 60 10-6 to 30 10-6 mol O2 m-2 h-1 in summer and winter, respectively. Independent estimate of the gross productivity and respiration is provided by the oxygen isotopic measurements.

  13. Isolation Of PS II Nanoparticles And Oxygen Evolution Studies In Synechococcus Spp. PCC 7942 Under Heavy Metal Stress

    NASA Astrophysics Data System (ADS)

    Ahmad, Iffat Zareen; Sundaram, Shanthy; Tripathi, Ashutosh; Soumya, K. K.

    2009-06-01

    The effect of heavy metals was seen on the oxygen evolution pattern of a unicellular, non-heterocystous cyanobacterial strain of Synechococcus spp. PCC 7942. It was grown in a BG-11 medium supplemented with heavy metals, namely, nickel, copper, cadmium and mercury. Final concentrations of the heavy metal solution used in the culture were 0.1, 0.4 and 1 μM. All the experiments were performed in the exponential phase of the culture. Oxygen-evolving photosystem II (PS II) particles were purified from Synechococcus spp. PCC 7942 by a single-step Ni2+-affinity column chromatography after solubilization of thylakoid membranes with sucrose monolaurate. Oxygen evolution was measured with Clark type oxygen electrode fitted with a circulating water jacket. The light on the surface of the vessel was 10 w/m2. The cultures were incubated in light for 15 minutes prior to the measurement of oxygen evolution. Oxygen evolution was measured in assay mixture containing phosphate buffer (pH-7.5, 0.1 M) in the presence of potassium ferricyanide as the electron acceptor. The preparation from the control showed a high oxygen-evolving activity of 2, 300-2, 500 pmol O2 (mg Chl)-1 h-1 while the activity was decreased in the cultures grown with heavy metals. The inhibition of oxygen evolution shown by the organism in the presence of different metals was in the order Hg>Ni>Cd>Cu. Such heavy metal resistant strains will find application in the construction of PS II- based biosensors for the monitoring of pollutants.

  14. Quantitative secondary ion mass spectrometric analysis of secondary ion polarity in GaN films implanted with oxygen

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Minako; Sakaguchi, Isao; Adachi, Yutaka; Ohashi, Naoki

    2016-10-01

    Quantitative analyses of N and O ions in GaN thin films implanted with oxygen ions (16O+) were conducted by secondary ion mass spectrometry (SIMS). Positive (CsM+) and negative secondary ions extracted by Cs+ primary ion bombardment were analyzed for oxygen quantitative analysis. The oxygen depth profiles were obtained using two types of primary ion beams: a Gaussian-type beam and a broad spot beam. The oxygen peak concentrations in GaN samples were from 3.2 × 1019 to 7.0 × 1021 atoms/cm3. The depth profiles show equivalent depth resolutions in the two analyses. The intensity of negative oxygen ions was approximately two orders of magnitude higher than that of positive ions. In contrast, the O/N intensity ratio measured using CsM+ molecular ions was close to the calculated atomic density ratio, indicating that the SIMS depth profiling using CsM+ ions is much more effective for the measurements of O and N ions in heavy O-implanted GaN than that using negative ions.

  15. Effect of micro-oxygenation and wood type on the phenolic composition and color of an aged red wine.

    PubMed

    Sánchez-Iglesias, Montserrat; González-Sanjosé, Ma Luisa; Pérez-Magariño, Silvia; Ortega-Heras, Miriam; González-Huerta, Carlos

    2009-12-23

    Many studies have recently been published focused on the effects of micro-oxygenation on the quality of wines, its application modes, and doses, etc. However, there are still few scientific papers on how previously micro-oxygenated wines perform during storage or barrel aging. This study focused on the evolution of the phenolic composition, especially of anthocyanins, and color, together with astringency and tannins, during micro-oxygenation before barrel aging. In addition, to evaluate whether wine evolution during aging depends on barrel type, wines were aged in four different oak barrel types. Tempranillo wines, some micro-oxygenated before malolactic fermentation and others not, were aged for 12 months in American, French, Central European, and Spanish oak, following wine evolution during that period. The study was carried out for two consecutive vintages. Results showed that all wines evolved similarly; therefore, the micro-oxygenation treatment neither accelerated nor delayed the typical changes of aging. Slightly different evolutions were detected according to the barrel wood type, whether or not the wine was micro-oxygenated. The varied evolutions must therefore be associated with the differences from each oak type (structure, grain and density, composition, etc.).

  16. Oxygen and Early Animal Evolution

    NASA Astrophysics Data System (ADS)

    Xiao, S.

    2012-12-01

    It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.

  17. Electronic Modulation of Electrocatalytically Active Center of Cu7S4 Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction.

    PubMed

    Li, Qun; Wang, Xianfu; Tang, Kai; Wang, Mengfan; Wang, Chao; Yan, Chenglin

    2017-12-26

    Cu-based electrocatalysts have seldom been studied for water oxidation because of their inferior activity and poor stability regardless of their low cost and environmentally benign nature. Therefore, exploring an efficient way to improve the activity of Cu-based electrocatalysts is very important for their practical application. Modifying electronic structure of the electrocatalytically active center of electrocatalysts by metal doping to favor the electron transfer between catalyst active sites and electrode is an important approach to optimize hydrogen and oxygen species adsorption energy, thus leading to the enhanced intrinsic electrocatalytic activity. Herein, Co-doped Cu 7 S 4 nanodisks were synthesized and investigated as highly efficient electrocatalyst for oxygen evolution reaction (OER) due to the optimized electronic structure of the active center. Density-functional theory (DFT) calculations reveal that Co-engineered Cu 7 S 4 could accelerate electron transfer between Co and Cu sites, thus decrease the energy barriers of intermediates and products during OER, which are crucial for enhanced catalytic properties. As expected, Co-engineered Cu 7 S 4 nanodisks exhibit a low overpotential of 270 mV to achieve current density of 10 mA cm -2 as well as decreased Tafel slope and enhanced turnover frequencies as compared to bare Cu 7 S 4 . This discovery not only provides low-cost and efficient Cu-based electrocatalyst by Co doping, but also exhibits an in-depth insight into the mechanism of the enhanced OER properties.

  18. In situ/Operando studies of electrocatalysts using hard X-ray spectroscopy

    DOE PAGES

    Lassalle-Kaiser, Benedikt; Gul, Sheraz; Kern, Jan; ...

    2017-05-02

    This review focuses on the use of X-ray absorption and emission spectroscopy techniques using hard X-rays to study electrocatalysts under in situ/operando conditions. The importance and the versatility of methods in the study of electrodes in contact with the electrolytes are described, when they are being cycled through the catalytic potentials during the progress of the oxygen-evolution, oxygen reduction and hydrogen evolution reactions. The catalytic oxygen evolution reaction is illustrated with examples using three oxides, Co, Ni and Mn, and two sulfides, Mo and Co. These are used as examples for the hydrogen evolution reaction. A bimetallic, bifunctional oxygen evolvingmore » and oxygen reducing Ni/Mn oxide is also presented. The various advantages and constraints in the use of these techniques and the future outlook are discussed.« less

  19. Oxygen and Biological Evolution.

    ERIC Educational Resources Information Center

    Baugh, Mark A.

    1990-01-01

    Discussed is the evolution of aerobic organisms from anaerobic organisms and the accompanying biochemistry that developed to motivate and enable this evolution. Uses of oxygen by aerobic organisms are described. (CW)

  20. Upwelling and isolation in oxygen-depleted anticyclonic modewater eddies and implications for nitrate cycling

    NASA Astrophysics Data System (ADS)

    Karstensen, Johannes; Schütte, Florian; Pietri, Alice; Krahmann, Gerd; Fiedler, Björn; Grundle, Damian; Hauss, Helena; Körtzinger, Arne; Löscher, Carolin R.; Testor, Pierre; Vieira, Nuno; Visbeck, Martin

    2017-04-01

    The temporal evolution of the physical and biogeochemical structure of an oxygen-depleted anticyclonic modewater eddy is investigated over a 2-month period using high-resolution glider and ship data. A weakly stratified eddy core (squared buoyancy frequency N2 ˜ 0.1 × 10-4 s-2) at shallow depth is identified with a horizontal extent of about 70 km and bounded by maxima in N2. The upper N2 maximum (3-5 × 10-4 s-2) coincides with the mixed layer base and the lower N2 maximum (0.4 × 10-4 s-2) is found at about 200 m depth in the eddy centre. The eddy core shows a constant slope in temperature/salinity (T/S) characteristic over the 2 months, but an erosion of the core progressively narrows down the T/S range. The eddy minimal oxygen concentrations decreased by about 5 µmol kg-1 in 2 months, confirming earlier estimates of oxygen consumption rates in these eddies. Separating the mesoscale and perturbation flow components reveals oscillating velocity finestructure ( ˜ 0.1 m s-1) underneath the eddy and at its flanks. The velocity finestructure is organized in layers that align with layers in properties (salinity, temperature) but mostly cross through surfaces of constant density. The largest magnitude in velocity finestructure is seen between the surface and 140 m just outside the maximum mesoscale flow but also in a layer underneath the eddy centre, between 250 and 450 m. For both regions a cyclonic rotation of the velocity finestructure with depth suggests the vertical propagation of near-inertial wave (NIW) energy. Modification of the planetary vorticity by anticyclonic (eddy core) and cyclonic (eddy periphery) relative vorticity is most likely impacting the NIW energy propagation. Below the low oxygen core salt-finger type double diffusive layers are found that align with the velocity finestructure. Apparent oxygen utilization (AOU) versus dissolved inorganic nitrate (NO3-) ratios are about twice as high (16) in the eddy core compared to surrounding waters (8.1). A large NO3- deficit of 4 to 6 µmol kg-1 is determined, rendering denitrification an unlikely explanation. Here it is hypothesized that the differences in local recycling of nitrogen and oxygen, as a result of the eddy dynamics, cause the shift in the AOU : NO3- ratio. High NO3- and low oxygen waters are eroded by mixing from the eddy core and entrain into the mixed layer. The nitrogen is reintroduced into the core by gravitational settling of particulate matter out of the euphotic zone. The low oxygen water equilibrates in the mixed layer by air-sea gas exchange and does not participate in the gravitational sinking. Finally we propose a mesoscale-submesoscale interaction concept where wind energy, mediated via NIWs, drives nutrient supply to the euphotic zone and drives extraordinary blooms in anticyclonic mode-water eddies.

  1. Impact of oxygen diffusion on superconductivity in YBa2Cu3O7 -δ thin films studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Reiner, M.; Gigl, T.; Jany, R.; Hammerl, G.; Hugenschmidt, C.

    2018-04-01

    The oxygen deficiency δ in YBa2Cu3O7 -δ (YBCO) plays a crucial role for affecting high-temperature superconductivity. We apply (coincident) Doppler broadening spectroscopy of the electron-positron annihilation line to study in situ the temperature dependence of the oxygen concentration and its depth profile in single crystalline YBCO film grown on SrTiO3 (STO) substrates. The oxygen diffusion during tempering is found to lead to a distinct depth dependence of δ , which is not accessible using x-ray diffraction. A steady state reached within a few minutes is defined by both, the oxygen exchange at the surface and at the interface to the STO substrate. Moreover, we reveal the depth-dependent critical temperature Tc in the as prepared and tempered YBCO film.

  2. Petrologically-based Electrical Profiles vs. Geophysical Observations through the Upper Mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Gaillard, F.; Massuyeau, M.; Sifre, D.; Tarits, P.

    2013-12-01

    Mineralogical transformations in the up-welling mantle play a critical role on the dynamics of mass and heat transfers at mid-ocean-ridgeS. The melting event producing ridge basalts occur at 60 km depth below the ridge axis, but because of small amounts of H2O and CO2 in the source region of MOR-basalts, incipient melting can initiate at much greater depth. Such incipient melts concentrate incompatible elements, and are particularly rich in volatile species. These juices evolve from carbonatites, carbonated basalts, to CO2-H2O-rich basalts as recently exposed by petrological surveys; the passage from carbonate to silicate melts is a complex pathway that is strongly non-linear. This picture has recently been complicated further by studies showing that oxygen increasingly partitions into garnet as pressure increases; this implies that incipient melting may be prevented at depth exceeding 200 km because not enough oxygen is available in the system to stabilize carbonate melts. The aim of this work is twofold: - We modelled the complex pathway of mantle melting in presence of C-O-H volatiles by adjusting the thermodynamic properties of mixing in the multi-component C-O-H-melt system. This allows us to calculate the change in melt composition vs. depth following any sortS of adiabat. - We modelled the continuous change in electrical properties from carbonatites, carbonated basalts, to CO2-H2O-rich basalts. We then successfully converted this petrological evolution along a ridge adiabat into electrical conductivity vs. depth signal. The discussion that follows is about comparison of this petrologically-based conductivity profile with the recent profiles obtained by inversion of the long-period electromagnetic signals from the East-Pacific-Rise. These geophysically-based profiles reveal the electrical conductivity structure down to 400 km depth and they show some intriguing highly conductive sections. We will discuss heterogeneity in electrical conductivity of the upper mantle underneath the ridge in terms of melting processes. Our prime conclusion is that the redox melting process, universally predicted by petrological models, might not be universal and that incipient melting can extend down to the transition zone.

  3. Decoding magma plumbing and geochemical evolution beneath the Lastarria volcanic complex (Northern Chile)-Evidence for multiple magma storage regions

    NASA Astrophysics Data System (ADS)

    Stechern, André; Just, Tobias; Holtz, François; Blume-Oeste, Magdalena; Namur, Olivier

    2017-05-01

    The petrology of quaternary andesites and dacites from Lastarria volcano was investigated to reconstruct the magma plumbing and storage conditions beneath the volcano. The mineral phase compositions and whole-rock major and trace element compositions were used to constrain temperature, pressure and possible mechanisms for magma differentiation. The applied thermobarometric models include two-pyroxene thermobarometry, plagioclase-melt thermometry, amphibole composition thermobarometry, and Fe-Ti oxide thermo-oxybarometry. The overall temperature estimation is in the range 840 °C to 1060 °C. Calculated oxygen fugacity ranges between NNO to NNO + 1. Results of the geo-barometric calculations reveal multiple magma storage regions, with a distinct storage level in the uppermost crust ( 6.5-8 km depth), a broad zone at mid-crustal levels ( 10-18 km depth), and a likely deeper zone at intermediate to lower crustal levels (> 20 km depth). The highest temperatures in the range 940-1040 °C are recorded in minerals stored in the mid-crustal levels ( 10-18 km depth). The whole-rock compositions clearly indicate that magma mixing is the main parameter controlling the general differentiation trends. Complex zoning patterns and textures in the plagioclase phenocrysts confirm reheating and remobilization processes due to magma replenishment.

  4. Evolution of System Safety at NASA as Related to Defense-in-Depth

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon

    2015-01-01

    Presentation given at the Defense-in-Depth Inter-Agency Workshop on August 26, 2015 in Rockville, MD by Homayoon Dezfuli. The presentation addresses the evolution of system safety at NASA as related to Defense-in-Depth.

  5. Methods and Systems for Characterization of an Anomaly Using Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M. (Inventor)

    2013-01-01

    A method for characterizing an anomaly in a material comprises (a) extracting contrast data; (b) measuring a contrast evolution; (c) filtering the contrast evolution; (d) measuring a peak amplitude of the contrast evolution; (d) determining a diameter and a depth of the anomaly, and (e) repeating the step of determining the diameter and the depth of the anomaly until a change in the estimate of the depth is less than a set value. The step of determining the diameter and the depth of the anomaly comprises estimating the depth using a diameter constant C.sub.D equal to one for the first iteration of determining the diameter and the depth; estimating the diameter; and comparing the estimate of the depth of the anomaly after each iteration of estimating to the prior estimate of the depth to calculate the change in the estimate of the depth of the anomaly.

  6. In Situ Characterization of Ni and Ni/Fe Thin Film Electrodes for Oxygen Evolution in Alkaline Media by a Raman-Coupled Scanning Electrochemical Microscope Setup.

    PubMed

    Steimecke, Matthias; Seiffarth, Gerda; Bron, Michael

    2017-10-17

    We present a spectroelectrochemical setup, in which Raman microscopy is combined with scanning electrochemical microscopy (SECM) in order to provide both spectroscopic and electrochemical information on the very same location of an electrode at the same time. The setup is applied to a subject of high academic and practical interest, namely, the oxygen evolution reaction at Ni and Ni/Fe electrodes. It comprises a transparent substrate electrode, onto which Ni and Ni/Fe thin films are deposited. An ultramicroelectrode (UME) is placed closely above the substrate to obtain electrochemical information, while a Raman microscope probes the same sample spot from below. To obtain information on oxygen evolution activity and structural changes, increasingly positive potentials from 0.1 up to 0.7 V vs Hg|HgO|1 M KOH were applied to the Ni/Fe-electrodes in 0.1 M KOH solution. Evolved oxygen is detected by reduction at a Pt UME, allowing for the determination of onset potentials, while the substrate current, which is recorded in parallel, is due to both overlapping oxygen evolution and the oxidation of Ni(OH) 2 to NiOOH. An optimum of 15% Fe in Ni/Fe films with respect to oxygen evolution activity was determined. At the same time, the potential-dependent formation of γ-NiOOH characterized by the Raman double band at 475 and 557 cm -1 allows for the conclusion that a certain amount of disorder introduced by Fe atoms is necessary to obtain high oxygen evolution reaction (OER) activity.

  7. Oxygen vacancy induced structural evolution of SrFeO3 -x epitaxial thin film from brownmillerite to perovskite

    NASA Astrophysics Data System (ADS)

    Roh, Seulki; Lee, Seokbae; Lee, Myounghoon; Seo, Yu-Seong; Khare, Amit; Yoo, Taesup; Woo, Sungmin; Choi, Woo Seok; Hwang, Jungseek; Glamazda, A.; Choi, K.-Y.

    2018-02-01

    We investigated SrFeO3 -x thin films on a SrTiO3 (001) substrate prepared via pulsed laser epitaxy using an optical spectroscopy technique. The oxygen vacancy level (x ) was controlled by post-annealing processes at different oxygen partial pressures. We achieved a brownmillerite (BM) structure at x =0.5 and observed the evolution of the crystal structure from BM into perovskite (PV) as the oxygen concentration increased. We observed the evolution of infrared-active phonons with respect to the oxygen concentration, which was closely related to the structural evolution observed via x-ray diffraction. We identified the phonons using the shell-model calculation. Furthermore, we studied temperature-dependent behaviors of the phonon modes of three representative samples: PV and two BMs (BMoop and BMip) with different orientations of the oxygen vacancy channel. In the BMoop sample, we observed a phonon mode, which exhibited an unusual redshift with decreasing temperature; this behavior may have been due to the apical oxygen instability in the FeO6 octahedron. Our results provide important information regarding the ionic conduction mechanism in SrFeO3 -x material systems.

  8. Habitat Parameters for Oxygen Minimum Zone Copepods from the Eastern Tropical North Pacific

    NASA Astrophysics Data System (ADS)

    Wishner, K. F.; Outram, D.; Grassian, B.

    2016-02-01

    Oxygen minimum zones (OMZs) affect zooplankton distributions and may be expanding in worldwide spatial and vertical extent from climate change. We studied zooplankton (especially copepod) distributions in the Eastern Tropical North Pacific (ETNP) OMZ, using day-night vertically-stratified MOCNESS tows (0-1000m). Habitat parameters (temperature, oxygen, depth) were defined for abundant copepod species and groups. Zooplankton layers, with a unique suite of species, occurred at upper and lower OMZ oxyclines. At the mesopelagic lower oxycline, there was a layer with a characteristic species assemblage and a sharp 10X biomass increase compared to nearby depths. The lower oxycline layer occurred within a narrow very low oxygen concentration (2µM). At two stations with different OMZ vertical extents, the lower oxycline layer depth changed with OMZ thickness, remaining at the same oxygen concentration but different temperature. Life history habitat (diapause depth, temperature) of the copepod Eucalanus inermis was also affected. In the upper water column at the two stations, large diel vertical migrators (fish, euphausiids) descended to taxon-specific daytime depths in the mid OMZ, regardless of oxygen level, but copepod species distributions showed more variability and sensitivity to habitat parameters. We predict that, with moderate OMZ expansion, the lower oxycline community will likely shift depth, thus re-distributing midwater biomass, species, and processes. In the upper water column, large vertical migrator distributions may be less affected, while smaller taxa (copepods) will likely be sensitive to habitat changes. At some point, the ability to withstand these changes may be exceeded for particular taxa, with consequences for assemblages, trophic webs, and export. In keeping with the session theme, we hope to compare our oceanic findings with others' results from coastal hypoxic situations.

  9. Reduced oxygenation at intermediate depths of the southwest Pacific during the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Durand, Axel; Chase, Zanna; Noble, Taryn L.; Bostock, Helen; Jaccard, Samuel L.; Townsend, Ashley T.; Bindoff, Nathaniel L.; Neil, Helen; Jacobsen, Geraldine

    2018-06-01

    To investigate changes in oxygenation at intermediate depths in the southwest Pacific between the Last Glacial Maximum (LGM) and the Holocene, redox sensitive elements uranium and rhenium were measured in 12 sediment cores located on the Campbell and Challenger plateaux offshore from New Zealand. The core sites are currently bathed by Subantarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW) and Upper Circumpolar Deep Water (UCDW). The sedimentary distributions of authigenic uranium and rhenium reveal reduced oxygen content at intermediate depths (800-1500 m) during the LGM compared to the Holocene. In contrast, data from deeper waters (≥1500 m) indicate higher oxygen content during the LGM compared to the Holocene. These data, together with variations in benthic foraminiferal δ13C, are consistent with a shallower AAIW-UCDW boundary over the Campbell Plateau during the LGM. Whilst AAIW continued to bathe the intermediate depths (≤1500 m) of the Challenger Plateau during the LGM, the data suggest that the AAIW at these core sites contained less oxygen compared to the Holocene. These results are at odds with the general notion that AAIW was better oxygenated and expanded deeper during the LGM due to stronger westerlies and colder temperatures. These findings may be explained by an important change in AAIW formation and circulation.

  10. High surface area LaMnO3 nanoparticles enhancing electrochemical catalytic activity for rechargeable lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Li, Chuanhua; Yu, Zhiyong; Liu, Hanxing; Chen, Kang

    2018-02-01

    To improve sluggish kinetics of ORR and OER (oxygen reduction and evolution reaction) on the air electrode, the high surface area LaMnO3 nanoparticle catalysts were synthesized by sol-gel method. The specific surface area of as-synthesized pure phase LaMnO3 nanoparticles is 21.21 m2 g-1. The onset potential of high surface area LaMnO3 in alkaline solution is -0.0202 V which is comparable to commercial Pt/C. When the assembled high surface area LaMnO3-based lithium-air batteries were measured at 100 mA g-1, the initial discharge specific capacity could reach 6851.9 mA h g-1(carbon). In addition, lithium-oxygen batteries including high surface area LaMnO3 catalysts could be cycled for 52 cycles at 200 mA g-1 under a limited discharge-charge depth of 500 mA h gcarbon-1.

  11. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China).

    PubMed

    Zhang, Yunlin; Wu, Zhixu; Liu, Mingliang; He, Jianbo; Shi, Kun; Zhou, Yongqiang; Wang, Mingzhu; Liu, Xiaohan

    2015-05-15

    From January 2010 to March 2014, detailed depth profiles of water temperature, dissolved oxygen (DO), and chromophoric dissolved organic matter (CDOM) were collected at three sites in Lake Qiandaohu, a large, deep subtropical reservoir in China. Additionally, we assessed the changes in DO stratification over the past 61 years (1953-2013) based on our empirical models and long-term air temperature and transparency data. The DO concentration never fell below 2 mg/L, the critical value for anoxia, and the DO depth profiles were closely linked to the water temperature depth profiles. In the stable stratification period in summer and autumn, the significant increase in CDOM in the metalimnion explained the decrease in DO due to the oxygen consumed by CDOM. Well-developed oxygen stratification was detected at the three sites in spring, summer and autumn and was associated with thermal stratification. Oxycline depth was significantly negatively correlated with daily air temperature and thermocline thickness but significantly positively correlated with thermocline depth during the stratification weakness period (July-February). However, there were no significant correlations among these parameters during the stratification formation period (March-June). The increase of 1.67 °C in yearly average daily air temperature between 1980 and 2013 and the decrease of 0.78 m in Secchi disk depth caused a decrease of 1.65 m and 2.78 m in oxycline depth, respectively, facilitating oxygen stratification and decreasing water quality. Therefore, climate warming has had a substantial effect on water quality through changing the DO regime in Lake Qiandaohu. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Fire feedbacks over geological time and the evolution of atmospheric oxygen concentration

    NASA Astrophysics Data System (ADS)

    Mills, B.; Belcher, C.; Lenton, T. M.

    2017-12-01

    During the 4.5 billion year history of the Earth, the concentration of oxygen in the atmosphere has risen from trace levels to today's 21%. Yet over the last 400 million years, O2 concentration appears to have remained within a relatively narrow range (around 15% - 30%), despite dramatic changes in the nature of global biogeochemical cycling. This stability has been crucial for continued animal evolution, and is thought to have arisen through feedbacks between oxygen, wildfire and plant productivity: the strong oxygen- dependence of fire initiation and spread means that global photosynthetic primary productivity is suppressed when oxygen levels are high, and enhanced when levels are low. We present biogeochemical modelling of the long term carbon and oxygen cycles, which aims to capture the operation of the wildfire feedback alongside other key processes. We find that wildfire can effectively stabilize long term oxygen concentrations, but that the nature of this feedback has changed as plant evolution has provided different fuels. Specifically, the evolution of early angiosperms during the Cretaceous period provided new understory fuels that more easily facilitated crown and canopy fires. Adding these dynamics to our model produces a more stable system over long timescales, and the model predicts that oxygen concentration has declined towards the present day - a prediction that is supported by other independent estimates.

  13. Dredge-up and Envelope Burning in Intermediate-Mass Giants of Very Low Metallicity

    NASA Astrophysics Data System (ADS)

    Herwig, Falk

    2004-04-01

    The evolution of intermediate-mass stars at very low metallicity during their final thermal pulse asymptotic giant branch (AGB) phase is studied in detail. As representative examples, models with initial masses of 4 and 5Msolar and with a metallicity of Z=0.0001 ([Fe/H]~-2.3) are discussed. The one-dimensional stellar structure and evolution model includes time- and depth-dependent overshooting motivated by hydrodynamic simulations, as well as a full nuclear network and time-dependent mixing. Particular attention is given to high time and space resolution to avoid numerical artifacts related to third dredge-up and hot bottom burning predictions. The model calculations predict very efficient third dredge-up that mixes the envelope with the entire intershell layer or a large fraction thereof and in some cases penetrates into the C/O core below the He shell. In all cases primary oxygen is mixed into the envelope. The models predict efficient envelope burning during the interpulse phase. Depending on the envelope-burning temperature, oxygen is destroyed to varying degrees. The combined effect of dredge-up and envelope burning does not lead to any significant oxygen depletion in any of the cases considered in this study. The large dredge-up efficiency in our model is closely related to the particular properties of the H shell during the dredge-up phase in low-metallicity very metal-poor stars, which is followed here over many thermal pulses. During the dredge-up phase, the temperature just below the convective boundary is large enough for protons to burn vigorously when they are brought into the C-rich environment below the convection boundary by the time- and depth-dependent overshooting. H-burning luminosities of 105 to ~2×106Lsolar are generated. C, and to lesser degree O, is transformed into N in this dredge-up overshooting layer and enters the envelope. The global effect on the CNO abundance is similar to that of hot bottom burning. If the overshoot efficiency is larger, then dredge-up H burning causes a further increase in the dredge-up efficiency. After some thermal pulses, the dredge-up proceeds through the He shell and into the CO core beneath. Then neutrons may not be released from 13C in radiative conditions during the interpulse phase because of the scarcity of α-particles for the 13C(α,n)16O reactions. Conditions for the s-process are discussed qualitatively. The abundance evolution of H, He, C, N, O, and Na is described. Finally, the model predictions for sodium and oxygen are compared with observed abundances. The notion that massive AGB stars are the origin of the O-Na abundance anticorrelation in globular cluster giants is not consistent with the model predictions of this study. The abundance of the C-rich extremely metal-poor binaries LP 625-44, CS 29497-030, and HE 0024-2523 is discussed.

  14. Investigation of the electrocatalytic oxygen reduction and evolution reactions in lithium–oxygen batteries

    DOE PAGES

    Zheng, Dong; Zhang, Xuran; Qu, Deyu; ...

    2015-04-21

    Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O 2/O 2 •- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O 2 reduction reaction is from mass diffusion. Li 2O 2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O 2 2- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings revealmore » an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.« less

  15. Water Quality and optical properties of Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.; McIntire, C.D.; Buktenica, M.W.; Girdner, Scott

    2007-01-01

    We examine observations of key limnological properties (primarily temperature, salinity, and dissolved oxygen), measured over a 14-year period in Crater Lake, Oregon, and discuss variability in the hypolimnion on time scales of days to a decade. During some years (e.g., 1994a??1995), higher-than-average wintertime deep convection and ventilation led to the removal of significant amounts of heat and salt from the hypolimnion, while dissolved oxygen concentrations increase. In other years, such as the winter of 1996a??1997, heat and salt concentrations increase throughout the year and dissolved oxygen levels drop, indicating conditions were dominated by the background geothermal inputs and dissolved oxygen consumption by bacteria (i.e., minimal deep convection). Over the entire 14 year period, no statistically significant trend was observed in the annual hypolimnetic heat and salt content. Measurements from several thermistors moored in the hypolimnion provide new insight into the time and space scales of the deep convection events. For some events, cool water intrusions are observed sequentially, from shallower depths to deeper depths, suggesting vertical mixing or advection from above. For other events, the cooling is observed first at the deepest sensors, suggesting a thin, cold water pulse that flows along the bottom and mixes more slowly upwards into the basin. In both cases, the source waters must originate from the epilimnion. Conditions during a strong ventilation year (1994a??1995) and a weak ventilation year (1996a??1997) were compared. The results suggest the major difference between these 2 years was the evolution of the stratification in the epilimnion during the first few weeks of reverse stratification such that thermobaric instabilities were easier to form during 1995 thana?#1997. Thus, the details of surface cooling and wind-driven mixing during the early stages ofa?#reverse stratification may determine the neta?#amount of ventilation possible during a particular year.

  16. Oxidative stress, redox stress or redox success?

    PubMed

    Gutteridge, John M C; Halliwell, Barry

    2018-05-09

    The first life forms evolved in a highly reducing environment. This reduced state is still carried by cells today, which makes the concept of "reductive stress" somewhat redundant. When oxygen became abundant on the Earth, due to the evolution of photosynthesis, life forms had to adapt or become extinct. Living organisms did adapt, proliferated and an explosion of new life forms resulted, using reactive oxygen species (ROS) to drive their evolution. Adaptation to oxygen and its reduction intermediates necessitated the simultaneous evolution of select antioxidant defences, carefully regulated to allow ROS to perform their major roles. Clearly this "oxidative stress" did not cause a major problem to the evolution of complex life forms. Why not? Iron and oxygen share a close relationship in aerobic evolution. Iron is used in proteins to transport oxygen, promote electron transfers, and catalyse chemical reactions. In all of these functions, iron is carefully sequestered within proteins and restricted from reacting with ROS, this sequestration being one of our major antioxidant defences. Iron was abundant to life forms before the appearance of oxygen. However, oxygen caused its oxidative precipitation from solution and thereby decreased its bioavailability and thus the risk of iron-dependent oxidative damage. Micro-organisms had to adapt and develop strategies involving siderophores to acquire iron from the environment and eventually their host. This battle for iron between bacteria and animal hosts continues today, and is a much greater daily threat to our survival than "oxidative stress" and "redox stress". Copyright © 2018. Published by Elsevier Inc.

  17. Indications for the past redox environments in deep groundwaters from the isotopic composition of carbon and oxygen in fracture calcite, Olkiluoto, SW Finland.

    PubMed

    Sahlstedt, Elina; Karhu, Juha A; Pitkanen, Petteri

    2010-09-01

    In paleohydrogeological studies, the geochemical and isotope geochemical composition of fracture calcites can be utilised to gain information about the evolution of the composition of deep groundwaters in crystalline bedrock. The aim of our study was to investigate the latest hydrogeochemical evolution of groundwaters in the crystalline bedrock at Olkiluoto, which is the planned site for deep geological disposal of spent nuclear fuel. Samples were collected from drill cores intercepting water-conducting fractures at the upper ~500 m of the bedrock. The latest fracture calcite generations were identified using optical microscopy and electron microprobe. They occur as thin ~10-200 μm crusts or small euhedral crystals on open fracture surfaces. These latest calcite fillings were carefully sampled and analysed for the isotopic composition on carbon and oxygen. In addition, fluid inclusion homogenisation temperatures were determined on selected calcite samples. Fluid inclusion data indicated a low temperature of formation for the latest fracture calcite fillings. The δ(18)O values of calcite in these fracture fillings vary only slightly, from-7.3 to-11.5 ‰ (Vienna Pee Dee Belemnite, VPDB), whereas the δ(13)C values fluctuate widely, from-30 to+31 ‰ (VPDB). The δ(13)C values of latest calcite fillings show a systematic pattern with depth, with high and variable δ(13)C values below 50 m. The high δ(13)C values indicate active methanogenesis during the formation of the latest calcite fillings. In contrast, the present-day methanic redox environment is restricted to depths below 200-300 m. It is possible that the shift in the redox environment at Olkiluoto has occurred during infiltration of SO2-(4)-rich marine waters, the latest of such events being the infiltration of brackish waters of the Littorina Sea stage of the Baltic Sea at ~8000-3000 BP.

  18. Depth perception: the need to report ocean biogeochemical rates as functions of temperature, not depth

    NASA Astrophysics Data System (ADS)

    Brewer, Peter G.; Peltzer, Edward T.

    2017-08-01

    For over 50 years, ocean scientists have oddly represented ocean oxygen consumption rates as a function of depth but not temperature in most biogeochemical models. This unique tradition or tactic inhibits useful discussion of climate change impacts, where specific and fundamental temperature-dependent terms are required. Tracer-based determinations of oxygen consumption rates in the deep sea are nearly universally reported as a function of depth in spite of their well-known microbial basis. In recent work, we have shown that a carefully determined profile of oxygen consumption rates in the Sargasso Sea can be well represented by a classical Arrhenius function with an activation energy of 86.5 kJ mol-1, leading to a Q10 of 3.63. This indicates that for 2°C warming, we will have a 29% increase in ocean oxygen consumption rates, and for 3°C warming, a 47% increase, potentially leading to large-scale ocean hypoxia should a sufficient amount of organic matter be available to microbes. Here, we show that the same principles apply to a worldwide collation of tracer-based oxygen consumption rate data and that some 95% of ocean oxygen consumption is driven by temperature, not depth, and thus will have a strong climate dependence. The Arrhenius/Eyring equations are no simple panacea and they require a non-equilibrium steady state to exist. Where transient events are in progress, this stricture is not obeyed and we show one such possible example. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  19. Oxygen depth profiling by resonant RBS in NiTi after plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Mändl, S.; Lindner, J. K. N.

    2006-08-01

    NiTi exhibits super-elastic as well as shape-memory properties, which results in a large potential application field in biomedical technology. Using oxygen ion implantation at elevated temperatures, it is possible to improve the biocompatibility. Resonant Rutherford backscattering spectroscopy (RRBS) is used to investigate the oxygen depth profile obtained after oxygen plasma immersion ion implantation (PIII) at 25 kV and 400-600 °C. At all temperatures, a layered structure consisting of TiO2/Ni3Ti/NiTi was found with sharp interfaces while no discernible content of oxygen inside Ni3Ti or nickel in TiO2 was found. These data are compatible with a titanium diffusion from the bulk towards the implanted oxygen.

  20. Carbonates before Skeletons: A Database Approach

    NASA Astrophysics Data System (ADS)

    Bergmann, K.; Cantine, M.; Knoll, A. H.

    2017-12-01

    Carbonate minerals have precipitated from seawater for the last 3.8 billion years, but where and how they precipitate has changed through geologic time. The earliest carbonates precipitated on the seafloor as crystal fans until ocean oxygenation, coupled with aerobic microbial respiration, made the sediment-water interface caustic for carbonate sedimentation (Bergmann et al., 2013; Higgins et al., 2009). The locus of carbonate precipitation and the dominant carbonate sediments can be used as a high-resolution proxy, in both space and time, for oxygenation and seawater chemistry. Geobiologists have successfully used large datasets to track fluctuations in Earth's chemical and biological cycles. Few geobiologists, however, have studied Earth history by compiling a high-resolution database of global carbonate sedimentation. We have built such an archive: a dataset of Earth's 3.8 billion to 500 million years old carbonate rocks, which are our best proxy for carbonate sedimentation in deep time. The Catalogue of Carbonate Sedimentology and Stratigraphy (C2S2) currently contains 144 formations, digitized at the meter scale and classified by environment of deposition. Lithofacies details are recorded for each platform, including a range of microbial fabrics, mineralogy, depositional environmental, age and location. C2S2, a temporal-spatial compilation of trends in sediments and fossils, represents a research tool not previously available to geobiologists. With C2S2 we can, for example, track global trends in bioturbation depth, microbial morphotypes and habitat. We can also pinpoint the depth-dependent timing of oxygenation and the transition from anaerobic to aerobic respiration at the seafloor. C2S2 tracks dolomitization through time which can be correlated with other proxies for changing seawater chemistry. Applying C2S2 to ecologic questions will allow us to better understand the habitats critical to evolution.

  1. Buoyancy under Control: Underwater Locomotor Performance in a Deep Diving Seabird Suggests Respiratory Strategies for Reducing Foraging Effort

    PubMed Central

    Cook, Timothée R.; Kato, Akiko; Tanaka, Hideji; Ropert-Coudert, Yan; Bost, Charles-André

    2010-01-01

    Background Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag) and report locomotor adjustments to the change of buoyancy with depth. Methodology/Principal Findings Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with. Conclusions/Significance Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants - as in other families of diving seabirds - of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control. PMID:20352122

  2. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones II: Blood-oxygen binding

    NASA Astrophysics Data System (ADS)

    Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.

  3. Depth profiles of oxygen precipitates in nitride-coated silicon wafers subjected to rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Voronkov, V. V.; Falster, R.; Kim, TaeHyeong; Park, SoonSung; Torack, T.

    2013-07-01

    Silicon wafers, coated with a silicon nitride layer and subjected to high temperature Rapid Thermal Annealing (RTA) in Ar, show—upon a subsequent two-step precipitation anneal cycle (such as 800 °C + 1000 °C)—peculiar depth profiles of oxygen precipitate densities. Some profiles are sharply peaked near the wafer surface, sometimes with a zero bulk density. Other profiles are uniform in depth. The maximum density is always the same. These profiles are well reproduced by simulations assuming that precipitation starts from a uniformly distributed small oxide plates originated from RTA step and composed of oxygen atoms and vacancies ("VO2 plates"). During the first step of the precipitation anneal, an oxide layer propagates around this core plate by a process of oxygen attachment, meaning that an oxygen-only ring-shaped plate emerges around the original plate. These rings, depending on their size, then either dissolve or grow during the second part of the anneal leading to a rich variety of density profiles.

  4. Novel catalysts and photoelectrochemical system for solar fuel production

    NASA Astrophysics Data System (ADS)

    Zhang, Yan

    Solar fuel production from abundant raw chemicals such as CO2 and water is highly desired as a clean renewable energy solution for the future. Developing photoelectrochemical cells is viewed as a promising approach to realize this energy conversion and storage process. Efficient and robust oxygen evolution catalyst made from non-precious materials remains a major challenge for such a system. This thesis basically consists of three parts of work, including studies on enhancing the photocatalytic oxygen evolution activity of cobalt-based spinel nanoparticles by manganese3+ substitution, in situ formation of cobalt oxide nanocubanes as highly active catalyst for photocatalytic oxygen evolution reaction, and development of a photoanode-driven photoelectrochemical cell for CO2 reduction with water. The first part of this thesis work devotes efforts in the development and study on cobalt and other transition metal oxide based oxygen evolution catalyst. Photocatalytic oxygen evolution is a critical step for solar fuel production from abundant sources. It poses a significant challenge because it requires an efficient catalyst to bridge the one-electron photon capture process with the four-electron oxygen reaction. Among all the metal oxides, Co3O4 spinel exhibits a high activity as an oxygen evolution catalyst. The results of this work demonstrate that the photocatalytic oxygen evolution activity of Co3O4 spinel can be further enhanced by substituting Co with Mn in the spinel structure. Using a facile hydrothermal approach, Co3O4 spinel nanoparticles as well as Mn-substituted and Ni-substituted Co3O4 spinel nanoparticles with a typical particle size of 5-7 nm were successfully synthesized. The morphology and crystal structures of the as-synthesized nanoparticle catalysts have been carefully examined using various structural characterization techniques, including powder x-ray diffraction (PXRD), transmission electron microscope (TEM), gas adsorption, and x-ray absorption spectroscopy (XAS). The photocatalytic activities of as-made nanoparticles were investigated using a well-studied visible light driven [Ru(bpy)3]2+-persulfate system. In both Clark electrode and reactor/gas chromatography (GC) systems, Mn-substituted Co3O 4 nanoparticles exhibited the highest turnover frequency (TOF) among all the three kinds of catalysts. The data presented in this paper suggest that the photocatalytic oxygen evolution activity of Co3O 4 spinel catalyst can be further enhanced by Mn3+ substitution at the octahedral sites. The second part of this piece of work was carried out to further investigate cobalt oxide based photocatalytic oxygen evolution catalyst. A new strategy was developed to synthesize nonsupported cobalt oxide nanocubanes through an in situ phase transformation mechanism using a layered Co(OH)(OCH3) precursor. Under sonication, the precursor was exfoliated and transformed into cobalt oxide nanocubanes in the presence of NaHCO 3-Na2SiF6 buffer solution. The resulting cobalt catalyst with an average particle size less than 2 nm exhibited a turnover frequency of 0.0023 per second per cobalt in photocatalytic oxygen evolution reaction. X-ray absorption results suggested that a unique nanocubane structure, where 13 cobalt atoms fully coordinated with oxygen atoms and hydroxide groups in an octahedral arrangement to form 8 Co4O4 cubanes, may be responsible for the exceptionally high oxygen evolution catalysis activity. This thesis work is completed with the development of a photoanode-driven photoelectrochemical cell for CO2 reduction. A NiOx decorated Si photoanode and nanoporous Ag cathode were employed. With an external bias of 2.0 V, a current density at cathode of 10 mA/cm2 and Faradaic efficiency of 70% for CO2 to CO was achieved. Compared to a normal electrochemical cell, the photoelectrochemical cell saves 0.4 V electrical energy by absorbing photo-energy. In addition, post-test photoanodes were carefully characterized by SEM, XAS, and XPS analysis.

  5. CONTINUOUS, AUTOMATED AND SIMULTANEOUS MEASUREMENT OF OXYGEN UPTAKE AND CARBON DIOXIDE EVOLUTION IN BIOLOGICAL SYSTEMS

    EPA Science Inventory

    Commercial respirometers are capable of continuously and automatically measuring oxygen uptake in bioreactors. A method for continuously and automatically measuring carbon dioxide evolution can be retrofitted to commercial respirometers. Continuous and automatic measurements of...

  6. Effect of silicate and phosphate additives on the kinetics of the oxygen evolution reaction in valve-regulated lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Vinod, M. P.; Vijayamohanan, K.; Joshi, S. N.

    Effect of sodium silicate and phosphoric acid additives on the kinetics of oxygen evolution on PbO 2 electrodes in sulfuric acid has been studied in gelled and flooded electrolytes with relevance to valve-regulated lead/acid batteries. A comparison of the open-circuit potential versus time transients, with and without these additives, indicates that the additives suppress self-discharge of the electrodes. Tafel polarization studies also suggest that the addition of phosphoric acid attenuates the rate of oxygen evolution reaction. These findings have been supported with cyclic voltammetric data.

  7. Quantitative imaging of tumor vasculature using multispectral optoacoustic tomography (MSOT)

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Michal R.; Quiros-Gonzalez, Isabel; Joseph, James; Bohndiek, Sarah E.

    2017-03-01

    The ability to evaluate tumor oxygenation in the clinic could indicate prognosis and enable treatment monitoring, since oxygen deficient cancer cells are often more resistant to chemotherapy and radiotherapy. MultiSpectral Optoacoustic Tomography (MSOT) is a hybrid technique combining the high contrast of optical imaging with spatial resolution and penetration depth similar to ultrasound. We hypothesized that MSOT could reveal both tumor vascular density and function based on modulation of blood oxygenation. We performed MSOT on nude mice (n=8) bearing subcutaneous xenograft PC3 tumors using an inVision 256 (iThera Medical). The mice were maintained under inhalation anesthesia during imaging and respired oxygen content was modified from 21% to 100% and back. After imaging, Hoechst 33348 was injected to indicate vascular perfusion and permeability. Tumors were then extracted for histopathological analysis and fluorescence microscopy. The acquired data was analyzed to extract a bulk measurement of blood oxygenation (SO2MSOT) from the whole tumor using different approaches. The tumors were also automatically segmented into 5 regions to investigate the effect of depth on SO2MSOT. Baseline SO2MSOT values at 21% and 100% oxygen breathing showed no relationship with ex vivo measures of vascular density or function, while the change in SO2MSOT showed a strong negative correlation to Hoechst intensity (r=- 0.92, p=0.0016). Tumor voxels responding to oxygen challenge were spatially heterogeneous. We observed a significant drop in SO2 MSOT value with tumor depth following a switch of respiratory gas from air to oxygen (0.323+/-0.017 vs. 0.11+/-0.05, p=0.009 between 0 and 1.5mm depth), but no such effect for air breathing (0.265+/-0.013 vs. 0.19+/-0.04, p=0.14 between 0 and 1.5mm depth). Our results indicate that in subcutaneous prostate tumors, baseline SO2MSOT levels do not correlate to tumor vascular density or function while the magnitude of the response to oxygen challenge provides insight into these parameters. Future work will include validation using in vivo imaging and protocol optimization for clinical application.

  8. Three-Dimensional Distribution of Larval Fish Habitats in the Shallow Oxygen Minimum Zone in the Eastern Tropical Pacific Ocean off Mexico

    NASA Astrophysics Data System (ADS)

    Davies, S.; Sanchez Velasco, L.; Beier, E.; Godinez, V. M.; Barton, E. D.; Tamayo, A.

    2016-02-01

    Three-dimensional distribution of larval fish habitats was analyzed, from the upper limit of the shallow oxygen minimum zone ( 0.2 mL/L) to the sea surface, in the eastern tropical Pacific Ocean off Mexico in February 2010.The upper limit rises from 250 m depth in the entrance of the Gulf of California to 80 m depth off Cabo Corrientes. Three larval fish habitats were defined statistically: (i) a Gulf of California habitat dominated by Anchoa spp. larvae (epipelagic species), constrained to the oxygenated surface layer (>3.5 mL/L) in and above the thermocline ( 60 m depth), and separated by a salinity front from the Tropical Pacific habitat; (ii) a Tropical Pacific habitat, dominated by Vinciguerria lucetia larvae (mesopelagic species), located throughout the sampled water column, but with the highest abundance in the oxygenated upper layer above the thermocline; (iii) an Oxygen Minimum habitat defined mostly below the thermocline in hypoxic (<1 mL/L; 70 m depth) and anoxic (<0.2 mL/L; 80 m depth) water off Cabo Corrientes. This subsurface hypoxic habitat had the highest species richness and larval abundance, with dominance of Bregmaceros bathymaster, an endemic neritic pelagic species; which was an unexpected result. This maybe associated with the shoaling of the upper limit of the shallow oxygen minimum zone near the coast, a result of the strong costal upwelling detected by the Bakun Index. In this region of strong and semi-continuous coastal upwelling in the eastern tropical Pacific off Mexico, the shallow hypoxic water does not have dramatic effects on the total larval fish abundance but appears to affect species composition.

  9. Topical dissolved oxygen penetrates skin: model and method.

    PubMed

    Roe, David F; Gibbins, Bruce L; Ladizinsky, Daniel A

    2010-03-01

    It has been commonly perceived that skin receives its oxygen supply from the internal circulation. However, recent investigations have shown that a significant amount of oxygen may enter skin from the external overlying surface. A method has been developed for measuring the transcutaneous penetration of human skin by oxygen as described herein. This method was used to determine both the depth and magnitude of penetration of skin by topically applied oxygen. An apparatus consisting of human skin samples interposed between a topical oxygen source and a fluid filled chamber that registered changes in dissolved oxygen. Viable human skin samples of variable thicknesses with and without epidermis were used to evaluate the depth and magnitude of oxygen penetration from either topical dissolved oxygen (TDO) or topical gaseous oxygen (TGO) devices. This model effectively demonstrates transcutaneous penetration of topically applied oxygen. Topically applied dissolved oxygen penetrates through >700 microm of human skin. Topically applied oxygen penetrates better though dermis than epidermis, and TDO devices deliver oxygen more effectively than TGO devices. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. Depth perception: the need to report ocean biogeochemical rates as functions of temperature, not depth.

    PubMed

    Brewer, Peter G; Peltzer, Edward T

    2017-09-13

    For over 50 years, ocean scientists have oddly represented ocean oxygen consumption rates as a function of depth but not temperature in most biogeochemical models. This unique tradition or tactic inhibits useful discussion of climate change impacts, where specific and fundamental temperature-dependent terms are required. Tracer-based determinations of oxygen consumption rates in the deep sea are nearly universally reported as a function of depth in spite of their well-known microbial basis. In recent work, we have shown that a carefully determined profile of oxygen consumption rates in the Sargasso Sea can be well represented by a classical Arrhenius function with an activation energy of 86.5 kJ mol -1 , leading to a Q 10 of 3.63. This indicates that for 2°C warming, we will have a 29% increase in ocean oxygen consumption rates, and for 3°C warming, a 47% increase, potentially leading to large-scale ocean hypoxia should a sufficient amount of organic matter be available to microbes. Here, we show that the same principles apply to a worldwide collation of tracer-based oxygen consumption rate data and that some 95% of ocean oxygen consumption is driven by temperature, not depth, and thus will have a strong climate dependence. The Arrhenius/Eyring equations are no simple panacea and they require a non-equilibrium steady state to exist. Where transient events are in progress, this stricture is not obeyed and we show one such possible example.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  11. Effect Of Oxidation On Chromium Leaching And Redox Capacity Of Slag-Containing Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almond, P. M.; Stefanko, D. B.; Langton, C. A.

    2013-03-01

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO 4 - in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases [Shuh, et al., 1994, Shuh, et al., 2000, Shuh, et al., 2003]. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O 4 -, which is very soluble. Consequently the rate of technetium oxidation front advancementmore » into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate was used as a non-radioactive surrogate for pertechnetate in simulated waste form samples. Depth discrete subsamples were cut from material exposed to Savannah River Site (SRS) field cured conditions. The subsamples were prepared and analyzed for both reduction capacity and chromium leachability. Results from field-cured samples indicate that the depth at which leachable chromium was detected advanced further into the sample exposed for 302 days compared to the sample exposed to air for 118 days (at least 50 mm compared to at least 20 mm). Data for only two exposure time intervals is currently available. Data for additional exposure times are required to develop an equation for the oxidation front progression. Reduction capacity measurements (per the Angus-Glasser method, which is a measurement of the ability of a material to chemically reduce Ce(IV) to Ce(III) in solution) performed on depth discrete samples could not be correlated with the amount of chromium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium (i.e., effective Cr oxidation front). Exposure to oxygen (air or oxygen dissolved in water) results in the release of chromium through oxidation of Cr(III) to highly soluble chromate, Cr(VI). Residual reduction capacity in the oxidized region of the test samples indicates that the remaining reduction capacity is not effective in re-reducing Cr(VI) in the presence of oxygen. Consequently, this method for determining reduction capacity may not be a good indicator of the effective contaminant oxidation rate in a relatively porous solid (40 to 60 volume percent porosity). The chromium extracted in depth discrete samples ranged from a maximum of about 5.8 % at about 5 mm (118 day exposure) to about 4 % at about 10 mm (302 day exposure). The use of reduction capacity as an indicator of long-term performance requires further investigation. The carbonation front was also estimated to have advanced to at least 28 mm in 302 days based on visual observation of gas evolution during acid addition during the reduction capacity measurements. Depth discrete sampling of materials exposed to realistic conditions in combination with short term leaching of crushed samples has potential for advancing the understanding of factors influencing performance and will support conceptual model development.« less

  12. Dissolved oxygen as a constraint on daytime deep scattering layer depth in the southern California current ecosystem

    NASA Astrophysics Data System (ADS)

    Netburn, Amanda N.; Anthony Koslow, J.

    2015-10-01

    Climate change-induced ocean deoxygenation is expected to exacerbate hypoxic conditions in mesopelagic waters off the coast of southern California, with potentially deleterious effects for the resident fauna. In order to understand the possible impacts that the oxygen minimum zone expansion will have on these animals, we investigated the response of the depth of the deep scattering layer (i.e., upper and lower boundaries) to natural variations in midwater oxygen concentrations, light levels, and temperature over time and space in the southern California Current Ecosystem. We found that the depth of the lower boundary of the deep scattering layer (DSL) is most strongly correlated with dissolved oxygen concentration, and irradiance and oxygen concentration are the key variables determining the upper boundary. Based on our correlations and published estimates of annual rates of change to irradiance level and hypoxic boundary, we estimated the corresponding annual rate of change of DSL depths. If past trends continue, the upper boundary is expected to shoal at a faster rate than the lower boundary, effectively widening the DSL under climate change scenarios. These results have important implications for the future of pelagic ecosystems, as a change to the distribution of mesopelagic animals could affect pelagic food webs as well as biogeochemical cycles.

  13. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes

    NASA Astrophysics Data System (ADS)

    Zhang, Kan; Zhu, Xiangkun; Wood, Rachel A.; Shi, Yao; Gao, Zhaofu; Poulton, Simon W.

    2018-05-01

    The Mesoproterozoic era (1,600-1,000 million years ago (Ma)) has long been considered a period of relative environmental stasis, with persistently low levels of atmospheric oxygen. There remains much uncertainty, however, over the evolution of ocean chemistry during this period, which may have been of profound significance for the early evolution of eukaryotic life. Here we present rare earth element, iron-speciation and inorganic carbon isotope data to investigate the redox evolution of the 1,600-1,550 Ma Yanliao Basin, North China Craton. These data confirm that the ocean at the start of the Mesoproterozoic was dominantly anoxic and ferruginous. Significantly, however, we find evidence for a progressive oxygenation event starting at 1,570 Ma, immediately prior to the occurrence of complex multicellular eukaryotes in shelf areas of the Yanliao Basin. Our study thus demonstrates that oxygenation of the Mesoproterozoic environment was far more dynamic and intense than previously envisaged, and establishes an important link between rising oxygen and the emerging record of diverse, multicellular eukaryotic life in the early Mesoproterozoic.

  14. Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Panizza, Marco

    Electrochemical oxidation is a promising method for the treatment of wastewaters containing organic compounds. As a general rule, the electrochemical incineration of organics at a given electrode can take place at satisfactory rates and without electrode deactivation only at high anodic potentials in the region of the water discharge due to the participation of the intermediates of oxygen evolution. The nature of the electrode material strongly influences both the selectivity and the efficiency of the process. In particular, anodes with low oxygen evolution overpotential (i.e., good catalysts for oxygen evolution reactions), such as graphite, IrO2, RuO2, and Pt only permit the partial oxidation of organics, while anodes with high oxygen evolution overpotential (i.e., anodes that are poor catalysts for oxygen evolution reactions), such as SnO2, PbO2, and boron-doped diamond (BDD) favor the complete oxidation of organics to CO2 and so are ideal electrodes for wastewater treatment.However, the application of SnO2 and PbO2 anodes may be limited by their short service life and the risk of lead contamination, while BDD electrodes exhibit good chemical and electrochemical stability, a long life, and a wide potential window for water discharge, and are thus promising anodes for industrial-scale wastewater treatment.

  15. Chasing Neoproterozoic Atmospheric Oxygen Ghosts

    NASA Astrophysics Data System (ADS)

    Bjerrum, C. J.; Canfield, D. E.; Dahl, T. W.

    2016-12-01

    Increasing atmospheric oxygen has been considered a necessary condition for the evolution of animal life for over half a century. While direct proxies for atmospheric oxygen are difficult to obtain, a number of indirect proxies have been giving us a ghost image of rising atmospheric oxygen at the close of the Precambrian. In this context, redox sensitive elements and isotopes represent the hallmark for a significant reduction in anoxic areas of the world ocean, implicating a significant rise of atmospheric oxygen during the Neoproterozoic. Here, we test to what degree redox sensitive elements in ancient marine sediments are proxies of atmospheric oxygen. We model the redox-chemical evolution of the shelf seas and ocean using a combination of 3D high resolution shelf sea models and a simpler global ocean biogeochemical model including climate weathering feedbacks, a free sea level and parameterized icecaps. We find that ecosystem evolution would have resulted in reorganization of the nutrient and redox balance of the shelf-ocean system causing a significant increase in oxygenated areas that permitted a boosting of trace metal concentrations in the remaining anoxic areas. While this reorganization takes place there is limited net change in the modelled atmospheric oxygen, warning us against interpreting changing trace metal concentrations and isotopes as reflecting a rise in atmospheric oxygen.

  16. Morphological responses of macrobenthic polychaetes to low oxygen on the Oman continental slope, NW Arabian Sea

    NASA Astrophysics Data System (ADS)

    Lamont, Peter A.; Gage, John D.

    2000-01-01

    Morphological adaptation to low dissolved oxygen consisting of enlarged respiratory surface area is described in polychaete species belonging to the family Spionidae from the Oman margin where the oxygen minimum zone impinges on the continental slope. Similar adaptation is suggested for species in the family Cossuridae. Such morphological adaptation apparently has not been previously recorded among polychaetes living in hypoxic conditions. The response consists of enlargement in size and branching of the branchiae relative to similar species living in normal levels of dissolved oxygen. Specimens were examined in benthic samples from different depths along a transect through the oxygen minimum zone. There was a highly significant trend shown to increasing respiratory area relative to body size in two undescribed spionid species with decreasing depth and oxygen within the OMZ. Yet the size and number of branchiae are often used as taxonomic characters. These within-species differences in size and number of branchiae may be a direct response by the phenotype to intensity of hypoxia. The alternative explanations are that they either reflect a pattern of differential post-settlement selection among a highly variable genotype, or represent early genetic differentiation among depth-isolated sub-populations.

  17. Hydrogen peroxide and the evolution of oxygenic photosynthesis

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Hartman, H.

    1991-01-01

    Possible pathways for the evolution of oxygenic photosynthesis in the early reducing atmosphere of the earth are discussed. It is suggested that the abiotic production of atmospheric oxidants could have provided a mechanism by which locally oxidizing conditions were sustained within spatially confined habitats thus removing the available reductants and forcing photosynthetic organisms to utilize water (rather than ferrous or sulfide ions) as the electron donor. It is argued that atmospheric H2O2 played the key role in inducing oxygenic photosynthesis, because, as peroxide concentrations local environments increased, primitive organisms would not only be faced with a loss of a reductant, but would be also forced to develop a biochemical apparatus (such as catalase) that would protect them against the products of oxygenic photosynthesis. This scenario allows for the early evolution of oxygenic photosynthesis at the time when global conditions were still anaerobic.

  18. Organic carbon accumulation and preservation in surface sediments on the Peru margin

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Laarkamp, K.

    1998-01-01

    Concentrations and characteristics of organic matter in surface sediments deposited under an intense oxygen-minimum zone on the Peru margin were studied in samples from deck-deployed box cores and push cores acquired by submersible on two transects spanning depths of 75 to 1000 m at 12??and 13.5??S. The source of organic matter to the seafloor in these areas is almost entirely marine material as confirmed by the narrow range of ??13C of organic carbon obtained in the present study (-20.3 to -21.6???; PDB) and the lack of any relationship between pyrolysis hydrogen index and carbon isotope composition. Organic carbon contents are highest (up to 16%) on the slope at depths between 75 and 350 m in sediments deposited under intermediate water masses with low dissolved oxygen concentrations (< 5 ??mol/kg). Even at these low concentrations of dissolved oxygen, however, the surface sediments that were recovered from these depths are dominantly unlaminated. Strong currents (up to 30 cm/s) associated with the poleward-flowing Peru Undercurrent were measured at depths between 160 and 300 m on both transects. The seafloor in this range of water depths is characterized by bedforms stabilized by bacterial mats, extensive authigenic mineral crusts, and (or) thick organic flocs. Constant advection of dissolved oxygen, although in low concentrations, active resuspension of surficial organic matter, activity of organisms, and transport of fine-grained sediment to and from more oxygenated zones all contribute to greater degradation and poorer initial preservation of organic matter than might be expected under oxygen-deficient conditions. Dissolved-oxygen concentrations ultimately may be the dominant affect on organic matter characteristics, but reworking of fine-grained sediment and organic matter by strong bottom currents and redeposition on the seafloor in areas of lower energy also exert important controls on organic carbon concentration and degree of oxidation in this region.

  19. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ward, Lewis M.; Kirschvink, Joseph L.; Fischer, Woodward W.

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis—autotrophic growth by splitting water with sunlight—by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  20. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis.

    PubMed

    Ward, Lewis M; Kirschvink, Joseph L; Fischer, Woodward W

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis-autotrophic growth by splitting water with sunlight-by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  1. A Sensitive Technique Using Atomic Force Microscopy to Measure the Low Earth Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne M.; Youngstrom, Erica E.; Kaminski, Carolyn; Fine, Elizabeth S.; Marx, Laura M.

    2001-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen erosion of polymers occurs in LEO and is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data is rare and very costly, short-term exposures such as on the shuttle are often relied upon for atomic oxygen erosion determination. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, the atomic oxygen fluence is often so small that mass loss measurements can not produce acceptable uncertainties. Therefore, a recession measurement technique has been developed using selective protection of polymer samples, combined with postflight atomic force microscopy (AFM) analysis, to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences. This paper discusses the procedures used for this recession depth technique along with relevant characterization issues. In particular, a polymer is salt-sprayed prior to flight, then the salt is washed off postflight and AFM is used to determine the erosion depth from the protected plateau. A small sample was salt-sprayed for AFM erosion depth analysis and flown as part of the Limited Duration Candidate Exposure (LDCE-4,-5) shuttle flight experiment on STS-51. This sample was used to study issues such as use of contact versus non-contact mode imaging for determining recession depth measurements. Error analyses were conducted and the percent probable error in the erosion yield when obtained by the mass loss and recession depth techniques has been compared. The recession depth technique is planned to be used to determine the erosion yield of 42 different polymers in the shuttle flight experiment PEACE (Polymer Erosion And Contamination Experiment) planned to fly in 2002 or 2003.

  2. The structural and electrical evolution of graphene by oxygen plasma-induced disorder.

    PubMed

    Kim, Dong Chul; Jeon, Dae-Young; Chung, Hyun-Jong; Woo, YunSung; Shin, Jai Kwang; Seo, Sunae

    2009-09-16

    Evolution of a single graphene layer with disorder generated by remote oxygen plasma irradiation is investigated using atomic force microscopy, Raman spectroscopy and electrical measurement. Gradual changes of surface morphology from planar graphene to isolated granular structure associated with a decrease of transconductance are accounted for by two-dimensional percolative conduction by disorder and the oxygen plasma-induced doping effect. The corresponding evolution of Raman spectra of graphene shows several peculiarities such as a sudden appearance of a saturated D peak followed by a linear decrease in its intensity, a relatively inert characteristic of a D' peak and a monotonic increase of a G peak position as the exposure time to oxygen plasma increases. These are discussed in terms of a disorder-induced change of Raman spectra in the graphite system.

  3. Equivalent air depth: fact or fiction.

    PubMed

    Berghage, T E; McCraken, T M

    1979-12-01

    In mixed-gas diving theory, the equivalent air depth (EAD) concept suggests that oxygen does not contribute to the total tissue gas tension and can therefore be disregarded in calculations of the decompression process. The validity of this assumption has been experimentally tested by exposing 365 rats to various partial pressures of oxygen for various lengths of time. If the EAD assumption is correct, under a constant exposure pressure each incremental change in the oxygen partial pressure would produce a corresponding incremental change in pressure reduction tolerance. Results of this study suggest that the EAD concept does not adequately describe the decompression advantages obtained from breathing elevated oxygen partial pressures. The authors suggest that the effects of breathing oxygen vary in a nonlinear fashion across the range from anoxia to oxygen toxicity, and that a simple inert gas replacement concept is no longer tenable.

  4. Future intrusion of oxygenated glacial meltwaters into the Fennoscandian shield: a possibility to consider in performance assessments for nuclear-waste disposal sites?: Chapter 6

    USGS Publications Warehouse

    Glynn, Pierre

    2008-01-01

    Provost et al. (1998) and Glynn and Voss (1999; also published in Glynn et al., 1999) considered the possibility that during future glaciations, oxygenated glacial meltwaters from two- to three-kilometer thick ice sheets could potentially intrude to the 500 m depth of planned nuclear-waste repositories. This possibility has been of concern because of potential negative effects on the stability of the repository engineered environment, and because of the potential mobilization of radionuclides should the oxygenated waters come into contact with the radioactive waste. The above reports argued that given the current state of knowledge, it was hard to discount the possibility that oxygenated waters could penetrate to repository level depth. The reports also suggested that oxidizing conditions might be present in the fractured rock environment for significant amounts of time, on the order of thousands to tens of thousands of years. In some earlier reports, Swedish and Finnish governmental agencies in charge of nuclear-waste disposal had considered the possibility that oxygenated meltwaters might intrude to the repository depth (SKI: 1992; Martinerie et al, 1992; Ahonen and Vieno, 1994). Subsequent to the publication of Provost et al. (1998), Glynn et al. (1999) and Glynn and Voss (1999), the Swedish Nuclear Fuel and Waste Handling Company (SKB) commissioned efforts to examine more thoroughly the possibilities that oxygenated meltwaters might occur under ice-sheet conditions and intrude to the repository depth.

  5. Rechargeable aqueous lithium-air batteries with an auxiliary electrode for the oxygen evolution

    NASA Astrophysics Data System (ADS)

    Sunahiro, S.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N.

    2014-09-01

    A rechargeable aqueous lithium-air cell with a third auxiliary electrode for the oxygen evolution reaction was developed. The cell consists of a lithium metal anode, a lithium conducting solid electrolyte of Li1+x+yAlx(Ti,Ge)2-xSiyP3-yO12, a carbon black oxygen reduction air electrode, a RuO2 oxygen evolution electrode, and a saturated aqueous solution of LiOH with 10 M LiCl. The cell was successfully operated for several cycles at 0.64 mA cm-2 and 25 °C under air, where the capacity of air electrode was 2000 mAh gcathod-1. The cell performance was degraded gradually by cycling under open air. The degradation was reduced under CO2-free air and pure oxygen. The specific energy density was calculated to be 810 Wh kg-1 from the weight of water, lithium, oxygen, and carbon in the air electrode.

  6. Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Hou, Lili; Zhang, Min; Guan, Zhongjie; Li, Qiuye; Yang, Jianjun

    2018-01-01

    The surface and bulk oxygen vacancy have a prominent effect on the photocatalytic performance of TiO2. In this study, TiO2 possessing different types and concentration of oxygen vacancies were prepared by annealing nanotube titanic acid (NTA) at various temperatures in air or vacuum atmosphere. TiO2 with the unitary bulk single-electron-trapped oxygen vacancies (SETOVs) formed when NTA were calcined in air. Whereas, TiO2 with both bulk and surface oxygen vacancies were obtained when NTA were annealed in vacuum. The series of TiO2 with different oxygen vacancies were systematically characterized by TEM, XRD, PL, XPS, ESR, and TGA. The PL and ESR analysis verified that surface oxygen vacancies and more bulk oxygen vacancies could form in vacuum atmosphere. Surface oxygen vacancies can trap electron and hinder the recombination of photo-generated charges, while bulk SETOVs act as the recombination center. The surface or bulk oxygen vacancies attributed different roles on the photo-absorbance and activity, leading that the sample of NTA-A400 displayed higher hydrogen evolution rate under UV light, whereas NTA-V400 displayed higher hydrogen evolution rate under visible light because bulk SETOVs can improve visible light absorption because sub-band formed by bulk SETOVs prompted the secondary transition of electron excited.

  7. Oxygen transfer in a full-depth biological aerated filter.

    PubMed

    Stenstrom, Michael K; Rosso, Diego; Melcer, Henryk; Appleton, Ron; Occiano, Victor; Langworthy, Alan; Wong, Pete

    2008-07-01

    The City of San Diego, California, evaluated the performance capabilities of biological aerated filters (BAFs) at the Point Loma Wastewater Treatment Plant. The City conducted a 1-year pilot-plant evaluation of BAF technology supplied by two BAF manufacturers. This paper reports on the first independent oxygen-transfer test of BAFs at full depth using the offgas method. The tests showed process-water oxygen-transfer efficiencies of 1.6 to 5.8%/m (0.5 to 1.8%/ft) and 3.9 to 7.9%/m (1.2 to 2.4%/ft) for the two different pilot plants, at their nominal design conditions. Mass balances using chemical oxygen demand and dissolved organic carbon corroborated the transfer rates. Rates are higher than expected from fine-pore diffusers for similar process conditions and depths and clean-water conditions for the same column and are mostly attributed to extended bubble retention time resulting from interactions with the media and biofilm.

  8. The surface sulfur doping induced enhanced performance of cobalt catalysts in oxygen evolution reactions.

    PubMed

    Al-Mamun, Mohammad; Zhu, Zhengju; Yin, Huajie; Su, Xintai; Zhang, Haimin; Liu, Porun; Yang, Huagui; Wang, Dan; Tang, Zhiyong; Wang, Yun; Zhao, Huijun

    2016-08-04

    A novel surface sulfur (S) doped cobalt (Co) catalyst for the oxygen evolution reaction (OER) is theoretically designed through the optimisation of the electronic structure of highly reactive surface atoms which is also validated by electrocatalytic OER experiments.

  9. Defect engineering in atomically-thin bismuth oxychloride towards photocatalytic oxygen evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Jun; Chen, Chao; Yang, Shi -Ze

    Photocatalytic solar energy conversion is a clean technology for producing renewable energy sources, but its efficiency is greatly hindered by the kinetically sluggish oxygen evolution reaction. Herein, confined defects in atomically-thin BiOCl nanosheets were created to serve as a remarkable platform to explore the relationship between defects and photocatalytic activity. Surface defects can be clearly observed on atomically-thin BiOCl nanosheets from scanning transmission electron microscopy images. Theoretical/experimental results suggest that defect engineering increased states of density and narrowed the band gap. With combined effects from defect induced shortened hole migratory paths and creation of coordination-unsaturated active atoms with dangling bonds,more » defect-rich BiOCl nanosheets displayed 3 and 8 times higher photocatalytic activity towards oxygen evolution compared with atomically-thin BiOCl nanosheets and bulk BiOCl, respectively. As a result, this successful application of defect engineering will pave a new pathway for improving photocatalytic oxygen evolution activity of other materials.« less

  10. Defect engineering in atomically-thin bismuth oxychloride towards photocatalytic oxygen evolution

    DOE PAGES

    Di, Jun; Chen, Chao; Yang, Shi -Ze; ...

    2017-06-26

    Photocatalytic solar energy conversion is a clean technology for producing renewable energy sources, but its efficiency is greatly hindered by the kinetically sluggish oxygen evolution reaction. Herein, confined defects in atomically-thin BiOCl nanosheets were created to serve as a remarkable platform to explore the relationship between defects and photocatalytic activity. Surface defects can be clearly observed on atomically-thin BiOCl nanosheets from scanning transmission electron microscopy images. Theoretical/experimental results suggest that defect engineering increased states of density and narrowed the band gap. With combined effects from defect induced shortened hole migratory paths and creation of coordination-unsaturated active atoms with dangling bonds,more » defect-rich BiOCl nanosheets displayed 3 and 8 times higher photocatalytic activity towards oxygen evolution compared with atomically-thin BiOCl nanosheets and bulk BiOCl, respectively. As a result, this successful application of defect engineering will pave a new pathway for improving photocatalytic oxygen evolution activity of other materials.« less

  11. High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Ruquan; Liu, Yuanyue; Peng, Zhiwei

    2017-01-18

    The development of catalytic materials for the hydrogen oxidation, hydrogen evolution, oxygen reduction or oxygen evolution reactions with high reaction rates and low overpotentials are key goals for the development of renewable energy. We report here Ru(0) nanoclusters supported on nitrogen-doped graphene as high-performance multifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), showing activities similar to that of commercial Pt/C in alkaline solution. For HER performance in alkaline media, sample Ru/NG-750 reaches 10 mA cm-2 at an overpotential of 8 mV with a Tafel slope of 30 mV dec-1. The high HER performance in alkalinemore » solution is advantageous because most catalysts for ORR and oxygen evolution reaction (OER) also prefer alkaline solution environment whereas degrade in acidic electrolytes. For ORR performance, Ru/NG effectively catalyzes the conversion of O2 into OH- via a 4e process at a current density comparable to that of Pt/C. The unusual catalytic activities of Ru(0) nanoclusters reported here are important discoveries for the advancement of renewable energy conversion reactions.« less

  12. Sufficient oxygen for animal respiration 1,400 million years ago

    PubMed Central

    Zhang, Shuichang; Wang, Xiaomei; Wang, Huajian; Bjerrum, Christian J.; Hammarlund, Emma U.; Costa, M. Mafalda; Connelly, James N.; Zhang, Baomin; Su, Jin; Canfield, Donald E.

    2016-01-01

    The Mesoproterozoic Eon [1,600–1,000 million years ago (Ma)] is emerging as a key interval in Earth history, with a unique geochemical history that might have influenced the course of biological evolution on Earth. Indeed, although this time interval is rather poorly understood, recent chromium isotope results suggest that atmospheric oxygen levels were <0.1% of present levels, sufficiently low to have inhibited the evolution of animal life. In contrast, using a different approach, we explore the distribution and enrichments of redox-sensitive trace metals in the 1,400 Ma sediments of Unit 3 of the Xiamaling Formation, North China Block. Patterns of trace metal enrichments reveal oxygenated bottom waters during deposition of the sediments, and biomarker results demonstrate the presence of green sulfur bacteria in the water column. Thus, we document an ancient oxygen minimum zone. We develop a simple, yet comprehensive, model of marine carbon−oxygen cycle dynamics to show that our geochemical results are consistent with atmospheric oxygen levels >4% of present-day levels. Therefore, in contrast to previous suggestions, we show that there was sufficient oxygen to fuel animal respiration long before the evolution of animals themselves. PMID:26729865

  13. Polymer Electrolyte Membranes for Water Photo-Electrolysis

    PubMed Central

    Aricò, Antonino S.; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-01-01

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion® 115) and quaternary ammonium-based (Fumatech® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion®-based cell when just TiO2 anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion. PMID:28468242

  14. Polymer Electrolyte Membranes for Water Photo-Electrolysis.

    PubMed

    Aricò, Antonino S; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-04-29

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion ® 115) and quaternary ammonium-based (Fumatech ® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion ® -based cell when just TiO₂ anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion.

  15. Rise of Earth's atmospheric oxygen controlled by efficient subduction of organic carbon

    NASA Astrophysics Data System (ADS)

    Duncan, Megan S.; Dasgupta, Rajdeep

    2017-04-01

    The net flux of carbon between the Earth's interior and exterior, which is critical for redox evolution and planetary habitability, relies heavily on the extent of carbon subduction. While the fate of carbonates during subduction has been studied, little is known about how organic carbon is transferred from the Earth's surface to the interior, although organic carbon sequestration is related to sources of oxygen in the surface environment. Here we use high pressure-temperature experiments to determine the capacity of rhyolitic melts to carry carbon under graphite-saturated conditions in a subducting slab, and thus to constrain the subduction efficiency of organic carbon, the remnants of life, through time. We use our experimental data and a thermodynamic model of CO2 dissolution in slab melts to quantify organic carbon mobility as a function of slab parameters. We show that the subduction of graphitized organic carbon, and the graphite and diamond formed by reduction of carbonates with depth, remained efficient even in ancient, hotter subduction zones where oxidized carbon subduction probably remained limited. We suggest that immobilization of organic carbon in subduction zones and deep sequestration in the mantle facilitated the rise (~103-5 fold) and maintenance of atmospheric oxygen since the Palaeoproterozoic and is causally linked to the Great Oxidation Event. Our modelling shows that episodic recycling of organic carbon before the Great Oxidation Event may also explain occasional whiffs of atmospheric oxygen observed in the Archaean.

  16. Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir

    NASA Astrophysics Data System (ADS)

    Husson, Jon M.; Peters, Shanan E.

    2017-02-01

    Atmospheric oxygen concentration has increased over Earth history, from ∼0 before 2.5 billion years ago to its present-day concentration of 21%. The initial rise in pO2 approximately 2.3 billion years ago required oxygenic photosynthesis, but the evolution of this key metabolic pathway was not sufficient to propel atmospheric oxygen to modern levels, which were not sustained until approximately two billion years later. The protracted lag between the origin of oxygenic photosynthesis and abundant O2 in the surface environment has many implications for the evolution of animals, but the reasons for the delay remain unknown. Here we show that the history of sediment accumulation on continental crust covaries with the history of atmospheric oxygen concentration. A forward model based on the empirical record of net organic carbon burial and oxidative weathering of the crust predicts two significant rises in pO2 separated by three comparatively stable plateaus, a pattern that reproduces major biological transitions and proxy-based pO2 records. These results suggest that the two-phased oxygenation of Earth's surface environment, and the long delays between the origin of life, the evolution of metazoans, and their subsequent diversification during the Cambrian Explosion, was caused by step-wise shifts in the ability of the continents to accumulate and store sedimentary organic carbon. The geodynamic mechanisms that promote and inhibit sediment accumulation on continental crust have, therefore, exerted a first-order control on the evolution of Earth's life and environment.

  17. Carbon supported MnO2-CoFe2O4 with enhanced electrocatalytic activity for oxygen reduction and oxygen evolution

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Qing; Hu, Tianjun; Zhang, Limin; Deng, Youquan

    2017-05-01

    The catalyst MnO2-CoFe2O4/C was firstly synthesized via a two-step process and applied as a bifunctional electrocatalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media. The composite exhibits better bifunctional activity than CoFe2O4/C and MnO2/C. Moreover, superior durability and high methanol tolerance in alkaline media outperforms the commercial Pt/C electrocatalyst, which signifying its excellent potential for applications in metal-air batteries and alkaline fuel cells.

  18. Structure and function of isozymes: Evolutionary aspects and role of oxygen in eucaryotic organisms

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.

    1985-01-01

    Oxygen is not only one of the most abundant elements on the Earth, but it is also one of the most important elements for life. In terms of composition, the feature of the atmosphere that most distinguishes Earth from other planets is the presence of abundant amounts of oxygen. The first forms of life may have been similar to present day anaerobic bacteria such as clostridium. The relationship between prokaryotes and eukaryotes, if any, has been a topic of much speculation. With only a few exceptions eukaryotes are oxygen-utilizing organisms. This research eukaryotes or eukaryotic biochemical processes requiring oxygen, could have arisen quite early in evolution and utilized the small quantities of photocatalytically produced oxygen which are thought to have been present on the Earth prior to the evolution of massive amounts of photosynthetically-produced oxygen.

  19. Hyperosmotic Agents and Antibiotics Affect Dissolved Oxygen and pH Concentration Gradients in Staphylococcus aureus Biofilms

    PubMed Central

    Kiamco, Mia Mae; Atci, Erhan

    2017-01-01

    ABSTRACT Biofilms on wound surfaces are treated topically with hyperosmotic agents, such as medical-grade honey and cadexomer iodine; in some cases, these treatments are combined with antibiotics. Tissue repair requires oxygen, and a low pH is conducive to oxygen release from red blood cells and epithelialization. We investigated the variation of dissolved oxygen concentration and pH with biofilm depth and the variation in oxygen consumption rates when biofilms are challenged with medical-grade honey or cadexomer iodine combined with vancomycin or ciprofloxacin. Dissolved oxygen and pH depth profiles in Staphylococcus aureus biofilms were measured using microelectrodes. The presence of cadexomer iodine with vancomycin or ciprofloxacin on the surface of the biofilm permitted a measurable concentration of oxygen at greater biofilm depths (101.6 ± 27.3 μm, P = 0.02; and 155.5 ± 27.9 μm, P = 0.016, respectively) than in untreated controls (30.1 μm). Decreases in pH of ∼0.6 and ∼0.4 units were observed in biofilms challenged with medical-grade honey alone and combined with ciprofloxacin, respectively (P < 0.001 and 0.01, respectively); the number of bacteria recovered from biofilms was significantly reduced (1.26 log) by treatment with cadexomer iodine and ciprofloxacin (P = 0.002) compared to the untreated control. Combining cadexomer iodine and ciprofloxacin improved dissolved oxygen concentration and penetration depth into the biofilm, while medical-grade honey was associated with a lower pH; not all treatments established a bactericidal effect in the time frame used in the experiments. IMPORTANCE Reports about using hyperosmotic agents and antibiotics against wound biofilms focus mostly on killing bacteria, but the results of these treatments should additionally be considered in the context of how they affect physiologically important parameters, such as oxygen concentration and pH. We confirmed that the combination of a hyperosmotic agent and an antibiotic results in greater dissolved oxygen and reduced pH within an S. aureus biofilm. PMID:28062458

  20. Hyperosmotic Agents and Antibiotics Affect Dissolved Oxygen and pH Concentration Gradients in Staphylococcus aureus Biofilms.

    PubMed

    Kiamco, Mia Mae; Atci, Erhan; Mohamed, Abdelrhman; Call, Douglas R; Beyenal, Haluk

    2017-03-15

    Biofilms on wound surfaces are treated topically with hyperosmotic agents, such as medical-grade honey and cadexomer iodine; in some cases, these treatments are combined with antibiotics. Tissue repair requires oxygen, and a low pH is conducive to oxygen release from red blood cells and epithelialization. We investigated the variation of dissolved oxygen concentration and pH with biofilm depth and the variation in oxygen consumption rates when biofilms are challenged with medical-grade honey or cadexomer iodine combined with vancomycin or ciprofloxacin. Dissolved oxygen and pH depth profiles in Staphylococcus aureus biofilms were measured using microelectrodes. The presence of cadexomer iodine with vancomycin or ciprofloxacin on the surface of the biofilm permitted a measurable concentration of oxygen at greater biofilm depths (101.6 ± 27.3 μm, P = 0.02; and 155.5 ± 27.9 μm, P = 0.016, respectively) than in untreated controls (30.1 μm). Decreases in pH of ∼0.6 and ∼0.4 units were observed in biofilms challenged with medical-grade honey alone and combined with ciprofloxacin, respectively ( P < 0.001 and 0.01, respectively); the number of bacteria recovered from biofilms was significantly reduced (1.26 log) by treatment with cadexomer iodine and ciprofloxacin ( P = 0.002) compared to the untreated control. Combining cadexomer iodine and ciprofloxacin improved dissolved oxygen concentration and penetration depth into the biofilm, while medical-grade honey was associated with a lower pH; not all treatments established a bactericidal effect in the time frame used in the experiments. IMPORTANCE Reports about using hyperosmotic agents and antibiotics against wound biofilms focus mostly on killing bacteria, but the results of these treatments should additionally be considered in the context of how they affect physiologically important parameters, such as oxygen concentration and pH. We confirmed that the combination of a hyperosmotic agent and an antibiotic results in greater dissolved oxygen and reduced pH within an S. aureus biofilm. Copyright © 2017 American Society for Microbiology.

  1. Understanding Differences in the Nitrogen Cycle in Low-Oxygen Zones in the Eastern Tropical North Pacific

    NASA Astrophysics Data System (ADS)

    Wood, C.; Travis, N. M.; Forbes, M. S.; Casciotti, K. L.

    2016-12-01

    Hypoxic and anoxic zones are found in oceans worldwide. These zones can be caused by warm water "caps" that trap colder water underneath the warm water so the cold water cannot replenish its oxygen. Processes such as global warming and eutrophication can also contribute to such oxygen-depleted zones. Thus, it is important to study these zones to investigate and reveal the impact humans have on ecosystems worldwide so we can fix the problems we have caused. The Eastern Tropical North Pacific (ETNP), off the southwestern coast of Mexico, contains a natural-oxygen deficient zone. On a research cruise to the ETNP in April 2016, incubations were conducted to measure the rates of nitrification in the upper water column (upper 100 m) at three stations. Incubations were conducted in light and dark bottles spiked with 15N-containing nitrite. In this study, nitrite concentration in incubation starting points was analyzed. For each point, four depths of increasing depth (they varied depending on the station) were analyzed, and for each depth there were three samples. For each sample five absorbance measurements were averaged to calculate nitrite concentration against known standards. Concentrations of nitrite were found to increase moving into the oxygen deficient zone. The nitrite peaks at the coastal stations were at shallower depths than the peak at the centermost station in the low-oxygen zone. At the centermost station within the oxygen-deficient region, the nitrite concentration at the primary peak was 1.6µM, which was the highest point out of all the stations. This nitrite concentration data will be expanded to all stations where 15N addition incubation experiments were performed. In the future, these time-zero data will be combined with time-24 data to calculate nitrite oxidation rates based on 15N isotope analysis. Measuring nitrite oxidation rates will help us further understand processes structuring nitrite accumulation in the ETNP low-oxygen zone.

  2. Water-quality assessment of part of the Upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality along a flow system in the Twin Cities metropolitan area, Minnesota, 1997-98

    USGS Publications Warehouse

    Andrews, William J.; Stark, James R.; Fong, Alison L.; Fallon, James D.

    2005-01-01

    Although land use had substantial effects on ground-water quality, the distribution of contaminants in the aquifer also is affected by complex combinations of factors and processes that include sources of natural and anthropogenic contaminants, three-dimensional advective flow, physical and hydrologic settings, age and evolution of ground water, and transformation of chemical compounds along the flow system. Compounds such as nitrate and dissolved oxygen were greatest in water samples from the upgradient end of the flow system and near the water table. Specific conductance and dissolved solids increased along the flow system and with depth due to increase in residence time in the flow system and dissolution of aquifer materials.

  3. Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems

    PubMed Central

    2018-01-01

    Visible light-driven water splitting using cheap and robust photocatalysts is one of the most exciting ways to produce clean and renewable energy for future generations. Cutting edge research within the field focuses on so-called “Z-scheme” systems, which are inspired by the photosystem II–photosystem I (PSII/PSI) coupling from natural photosynthesis. A Z-scheme system comprises two photocatalysts and generates two sets of charge carriers, splitting water into its constituent parts, hydrogen and oxygen, at separate locations. This is not only more efficient than using a single photocatalyst, but practically it could also be safer. Researchers within the field are constantly aiming to bring systems toward industrial level efficiencies by maximizing light absorption of the materials, engineering more stable redox couples, and also searching for new hydrogen and oxygen evolution cocatalysts. This review provides an in-depth survey of relevant Z-schemes from past to present, with particular focus on mechanistic breakthroughs, and highlights current state of the art systems which are at the forefront of the field. PMID:29676566

  4. Spatial photosensitizer fluorescence emission predictive analysis for photodynamic therapy monitoring applied to a skin disease

    NASA Astrophysics Data System (ADS)

    Salas-García, Irene; Fanjul-Vélez, Félix; Arce-Diego, José Luis

    2012-03-01

    The development of Photodynamic Therapy (PDT) predictive models has become a valuable tool for an optimal treatment planning, monitoring and dosimetry adjustment. A few attempts have achieved a quite complete characterization of the complex photochemical and photophysical processes involved, even taking into account superficial fluorescence in the target tissue. The present work is devoted to the application of a predictive PDT model to obtain fluorescence tomography information during PDT when applied to a skin disease. The model takes into account the optical radiation distribution, a non-homogeneous topical photosensitizer distribution, the time dependent photochemical interaction and the photosensitizer fluorescence emission. The results show the spatial evolution of the photosensitizer fluorescence emission and the amount of singlet oxygen produced during PDT. The depth dependent photosensitizer fluorescence emission obtained is essential to estimate the spatial photosensitizer concentration and its degradation due to photobleaching. As a consequence the proposed approach could be used to predict the photosensitizer fluorescence tomographic measurements during PDT. The singlet oxygen prediction could also be employed as a valuable tool to predict the short term treatment outcome.

  5. Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems.

    PubMed

    Wang, Yiou; Suzuki, Hajime; Xie, Jijia; Tomita, Osamu; Martin, David James; Higashi, Masanobu; Kong, Dan; Abe, Ryu; Tang, Junwang

    2018-05-23

    Visible light-driven water splitting using cheap and robust photocatalysts is one of the most exciting ways to produce clean and renewable energy for future generations. Cutting edge research within the field focuses on so-called "Z-scheme" systems, which are inspired by the photosystem II-photosystem I (PSII/PSI) coupling from natural photosynthesis. A Z-scheme system comprises two photocatalysts and generates two sets of charge carriers, splitting water into its constituent parts, hydrogen and oxygen, at separate locations. This is not only more efficient than using a single photocatalyst, but practically it could also be safer. Researchers within the field are constantly aiming to bring systems toward industrial level efficiencies by maximizing light absorption of the materials, engineering more stable redox couples, and also searching for new hydrogen and oxygen evolution cocatalysts. This review provides an in-depth survey of relevant Z-schemes from past to present, with particular focus on mechanistic breakthroughs, and highlights current state of the art systems which are at the forefront of the field.

  6. Driving the Oxygen Evolution Reaction by Nonlinear Cooperativity in Bimetallic Coordination Catalysts.

    PubMed

    Wurster, Benjamin; Grumelli, Doris; Hötger, Diana; Gutzler, Rico; Kern, Klaus

    2016-03-23

    Developing efficient catalysts for electrolysis, in particular for the oxygen evolution in the anodic half cell reaction, is an important challenge in energy conversion technologies. By taking inspiration from the catalytic properties of single-atom catalysts and metallo-proteins, we exploit the potential of metal-organic networks as electrocatalysts in the oxygen evolution reaction (OER). A dramatic enhancement of the catalytic activity toward the production of oxygen by nearly 2 orders of magnitude is demonstrated for novel heterobimetallic organic catalysts compared to metallo-porphyrins. Using a supramolecular approach we deliberately place single iron and cobalt atoms in either of two different coordination environments and observe a highly nonlinear increase in the catalytic activity depending on the coordination spheres of Fe and Co. Catalysis sets in at about 300 mV overpotential with high turnover frequencies that outperform other metal-organic catalysts like the prototypical hangman porphyrins.

  7. Water Splitting via Decoupled Photocatalytic Water Oxidation and Electrochemical Proton Reduction Mediated by Electron-Coupled-Proton Buffer.

    PubMed

    Li, Fei; Yu, Fengshou; Du, Jian; Wang, Yong; Zhu, Yong; Li, Xiaona; Sun, Licheng

    2017-10-18

    Water splitting mediated by electron-coupled-proton buffer (ECPB) provides an efficient way to avoid gas mixing by separating oxygen evolution from hydrogen evolution in space and time. Though electrochemical and photoelectrochemcial water oxidation have been incorporated in such a two-step water splitting system, alternative ways to reduce the cost and energy input for decoupling two half-reactions are desired. Herein, we show the feasibility of photocatalytic oxygen evolution in a powder system with BiVO 4 as a photocatalyst and polyoxometalate H 3 PMo 12 O 40 as an electron and proton acceptor. The resulting reaction mixture was allowed to be directly used for the subsequent hydrogen evolution with the reduced H 3 PMo 12 O 40 as electron and proton donors. Our system exhibits excellent stability in repeated oxygen and hydrogen evolution, which brings considerable convenience to decoupled water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile.

    PubMed

    Parris, Darren J; Ganesh, Sangita; Edgcomb, Virginia P; DeLong, Edward F; Stewart, Frank J

    2014-01-01

    Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2-1.6 μm, >1.6 μm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 μm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2-1.6 μm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40-70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2-1.6 μm fraction was dominated (11-99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 μm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion.

  9. Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile

    PubMed Central

    Parris, Darren J.; Ganesh, Sangita; Edgcomb, Virginia P.; DeLong, Edward F.; Stewart, Frank J.

    2014-01-01

    Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2–1.6 μm, >1.6 μm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 μm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2–1.6 μm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40–70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2–1.6 μm fraction was dominated (11–99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 μm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion. PMID:25389417

  10. A TiO2/FeMnP Core/Shell Nanorod Array Photoanode for Efficient Photoelectrochemical Oxygen Evolution.

    PubMed

    Schipper, Desmond E; Zhao, Zhenhuan; Leitner, Andrew P; Xie, Lixin; Qin, Fan; Alam, Md Kamrul; Chen, Shuo; Wang, Dezhi; Ren, Zhifeng; Wang, Zhiming; Bao, Jiming; Whitmire, Kenton H

    2017-04-25

    A variety of catalysts have recently been developed for electrocatalytic oxygen evolution, but very few of them can be readily integrated with semiconducting light absorbers for photoelectrochemical or photocatalytic water splitting. Here, we demonstrate an efficient core/shell photoanode with a highly active oxygen evolution electrocatalyst shell (FeMnP) and semiconductor core (rutile TiO 2 ) for photoelectrochemical oxygen evolution reaction. Metal-organic chemical vapor deposition from a single-source precursor was used to ensure good contact between the FeMnP and the TiO 2 . The TiO 2 /FeMnP core/shell photoanode reaches the theoretical photocurrent density for rutile TiO 2 of 1.8 mA cm -2 at 1.23 V vs reversible hydrogen electrode under simulated 100 mW cm -2 (1 sun) irradiation. The dramatic enhancement is a result of the synergistic effects of the high oxygen evolution reaction activity of FeMnP (delivering an overpotential of 300 mV with a Tafel slope of 65 mV dec -1 in 1 M KOH) and the conductive interlayer between the surface active sites and semiconductor core which boosts the interfacial charge transfer and photocarrier collection. The facile fabrication of the TiO 2 /FeMnP core/shell nanorod array photoanode offers a compelling strategy for preparing highly efficient photoelectrochemical solar energy conversion devices.

  11. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs.

    PubMed

    Barts, Nicholas; Greenway, Ryan; Passow, Courtney N; Arias-Rodriguez, Lenin; Kelley, Joanna L; Tobler, Michael

    2018-04-01

    Hydrogen sulfide (H 2 S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H 2 S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H 2 S-along with related lineages from non-sulfidic environments-to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H 2 S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H 2 S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H 2 S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H 2 S-rich environments are not necessarily repeatable across replicated lineages.

  12. A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf

    NASA Astrophysics Data System (ADS)

    Giammichele, N.; Charpinet, S.; Fontaine, G.; Brassard, P.; Green, E. M.; Van Grootel, V.; Bergeron, P.; Zong, W.; Dupret, M.-A.

    2018-02-01

    White-dwarf stars are the end product of stellar evolution for most stars in the Universe. Their interiors bear the imprint of fundamental mechanisms that occur during stellar evolution. Moreover, they are important chronometers for dating galactic stellar populations, and their mergers with other white dwarfs now appear to be responsible for producing the type Ia supernovae that are used as standard cosmological candles. However, the internal structure of white-dwarf stars—in particular their oxygen content and the stratification of their cores—is still poorly known, because of remaining uncertainties in the physics involved in stellar modelling codes. Here we report a measurement of the radial chemical stratification (of oxygen, carbon and helium) in the hydrogen-deficient white-dwarf star KIC08626021 (J192904.6+444708), independently of stellar-evolution calculations. We use archival data coupled with asteroseismic sounding techniques to determine the internal constitution of this star. We find that the oxygen content and extent of its core exceed the predictions of existing models of stellar evolution. The central homogeneous core has a mass of 0.45 solar masses, and is composed of about 86 per cent oxygen by mass. These values are respectively 40 per cent and 15 per cent greater than those expected from typical white-dwarf models. These findings challenge present theories of stellar evolution and their constitutive physics, and open up an avenue for calibrating white-dwarf cosmochronology.

  13. A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf.

    PubMed

    Giammichele, N; Charpinet, S; Fontaine, G; Brassard, P; Green, E M; Van Grootel, V; Bergeron, P; Zong, W; Dupret, M-A

    2018-02-01

    White-dwarf stars are the end product of stellar evolution for most stars in the Universe. Their interiors bear the imprint of fundamental mechanisms that occur during stellar evolution. Moreover, they are important chronometers for dating galactic stellar populations, and their mergers with other white dwarfs now appear to be responsible for producing the type Ia supernovae that are used as standard cosmological candles. However, the internal structure of white-dwarf stars-in particular their oxygen content and the stratification of their cores-is still poorly known, because of remaining uncertainties in the physics involved in stellar modelling codes. Here we report a measurement of the radial chemical stratification (of oxygen, carbon and helium) in the hydrogen-deficient white-dwarf star KIC08626021 (J192904.6+444708), independently of stellar-evolution calculations. We use archival data coupled with asteroseismic sounding techniques to determine the internal constitution of this star. We find that the oxygen content and extent of its core exceed the predictions of existing models of stellar evolution. The central homogeneous core has a mass of 0.45 solar masses, and is composed of about 86 per cent oxygen by mass. These values are respectively 40 per cent and 15 per cent greater than those expected from typical white-dwarf models. These findings challenge present theories of stellar evolution and their constitutive physics, and open up an avenue for calibrating white-dwarf cosmochronology.

  14. Promiscuous anaerobes: new and unconventional metabolism in methanogenic archaea.

    PubMed

    Grochowski, Laura L; White, Robert H

    2008-03-01

    The development of an oxygenated atmosphere on earth resulted in the polarization of life into two major groups, those that could live in the presence of oxygen and those that could not-the aerobes and the anaerobes. The evolution of aerobes from the earliest anaerobic prokaryotes resulted in a variety of metabolic adaptations. Many of these adaptations center on the need to sustain oxygen-sensitive reactions and cofactors to function in the new oxygen-containing atmosphere. Still other metabolic pathways that were not sensitive to oxygen also diverged. This is likely due to the physical separation of the organisms, based on their ability to live in the presence of oxygen, which allowed for the independent evolution of the pathways. Through the study of metabolic pathways in anaerobes and comparison to the more established pathways from aerobes, insight into metabolic evolution can be gained. This, in turn, can allow for extra- polation to those metabolic pathways occurring in the Last Universal Common Ancestor (LUCA). Some of the unique and uncanonical metabolic pathways that have been identified in the archaea with emphasis on the biochemistry of an obligate anaerobic methanogen, Methanocaldococcus jannaschii are reviewed.

  15. How does oxygen rise drive evolution? Clues from oxygen-dependent biosynthesis of nuclear receptor ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Ying-Ying; Kong, De-Xin; Qin, Tao

    2010-01-08

    It is well known that oxygen rise greatly facilitated biological evolution. However, the underlying mechanisms remain elusive. Recently, Raymond and Segre revealed that molecular oxygen allows 1000 more metabolic reactions than can occur in anoxic conditions. From the novel metabolites produced in aerobic metabolism, we serendipitously found that some of the metabolites are signaling molecules that target nuclear receptors. Since nuclear signaling systems are indispensable to superior organisms, we speculated that aerobic metabolism may facilitate biological evolution through promoting the establishment of nuclear signaling systems. This hypothesis is validated by the observation that most (97.5%) nuclear receptor ligands are producedmore » by aerobic metabolism, which is further explained in terms of the chemical criteria (appropriate volume and rather high hydrophobicity) of nuclear receptor ligands that aerobic metabolites are more ready than anaerobic counterparts to satisfy these criteria.« less

  16. Calcium manganese(IV) oxides: biomimetic and efficient catalysts for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Pashaei, Babak; Nayeri, Sara

    2012-04-28

    CaMnO(3) and Ca(2)Mn(3)O(8) were synthesized and characterized by SEM, XRD, FTIR and BET. Both oxides showed oxygen evolution activity in the presence of oxone, cerium(IV) ammonium nitrate and H(2)O(2). Oxygen evolution from water during irradiation with visible light (λ > 400 nm) was also observed upon adding these manganese oxides to an aqueous solution containing tris(2,2'-bipyridyl) ruthenium(II), as photosensitizer, and chloro pentaammine cobalt(III) chloride, as electron acceptor, in an acetate buffer. The amounts of dissolved manganese and calcium from CaMnO(3) and Ca(2)Mn(3)O(8) in the oxygen evolving reactions were reported and compared with other (calcium) manganese oxides. Proposed mechanisms of oxygen evolution and proposed roles for the calcium ions are also considered. This journal is © The Royal Society of Chemistry 2012

  17. Scales and sources of pH and dissolved oxygen variability in a shallow, upwelling-driven ecosystem

    NASA Astrophysics Data System (ADS)

    Tanner, C. A.; Martz, T.; Levin, L. A.

    2011-12-01

    In the coastal zone extreme variability in carbonate chemistry and oxygen is driven by fluctuations in temperature, salinity, air-sea gas exchange, mixing processes, and biology. This variability appears to be magnified in upwelling-driven ecosystems where low oxygen and low pH waters intrude into shallow depths. The oxygen and carbon chemistry signal can be further confounded by highly productive ecosystems such as kelp beds where photosynthesis and respiration consume and release significant amounts of dissolved inorganic carbon and oxygen. This variability poses a challenge for scientists assessing the impacts of climate change on nearshore ecosystems. We deployed physical & biogeochemical sensors in order to observe these processes in situ. The "SeapHOx" instruments used in this study consist of a modified Honeywell Durafet° ISFET pH sensor, an Aanderra Optode Oxygen sensor, and a SBE-37 conductivity, temperature, pressure sensor. The instruments were deployed on and around the La Jolla Kelp Forest at a variety of depths. Our goals were to (a) characterize the link between pH and oxygen and identify the magnitude of pH and oxygen variability over a range of intra-annual time scales and (b) investigate spatial patterns of pH and oxygen variability associated with depth, proximity to shore, and presence of kelp. Results thus far reveal a strong relationship between oxygen and pH. Temporal variability is greatest at the semidiurnal frequency where pH (at 7 m) can range up to 0.3 units and oxygen can change 50% over 6 h. Diurnal variability is a combination of the diurnal tidal component and diel cycles of production and respiration. Event-scale dynamics associated with upwelling can maintain pH and oxygen below 7.8 units and 200 μmol kg-1, respectively, for multiple days. Frequent current reversals drive changes in the observed oxygen and pH variability. When alongshore currents are flowing southward, driven by upwelling-favorable winds, the magnitude of semidiurnal pH variability increases 5-fold relative to the magnitude of change during northward alongshore. Applying an empirically-determined alkalinity relationship, we conclude that changes in the carbonate chemistry parameters are largely driven by changes in total carbon. On small spatial scales, cross-shore differences exist in mean oxygen and pH but differences in alongshore mean oxygen and pH at a given depth appears to be negligible. Cross-shore differences can equate to a 0.05 pH unit decrease and 25 μmol kg-1 oxygen decrease over 1 km at a given depth. Strong spatial variability in pH and oxygen conditions exist over vertical gradients in the kelp forest, with mean pH at the surface (7m) being 0.2 pH units greater than at the bottom (17m) and mean oxygen being 104 μmol kg-1 greater. The observed range of pH (7.55-8.22) observed in this shallow environment during the course of a year is greater than open ocean predictions for a global mean pH reduction of 0.2-0.3 units predicted by the year 2100. These results suggest that organisms on exposed upwelling coasts may be adapted to a range of pH conditions and highlight the need for scientists to consider biological response to varying scales of pH change in order to develop more realistic predictions of the impacts of climate change for the coastal zone.

  18. The role of biology in planetary evolution: cyanobacterial primary production in low‐oxygen Proterozoic oceans

    PubMed Central

    Bryant, Donald A.; Macalady, Jennifer L.

    2016-01-01

    Summary Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well‐preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane‐derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O 2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co‐occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low‐oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic photosynthesis, including the activity of metabolically versatile cyanobacteria, played an important role in delaying the oxygenation of Earth's surface ocean during the Proterozoic Eon. PMID:26549614

  19. Reproductive patterns in demersal crustaceans from the upper boundary of the OMZ off north-central Chile

    NASA Astrophysics Data System (ADS)

    Gallardo, María de los Ángeles; González López, Andrés E.; Ramos, Marcel; Mujica, Armando; Muñoz, Praxedes; Sellanes, Javier; Yannicelli, Beatriz

    2017-06-01

    Pleuroncodes monodon (Crustacea: Munididae) supports one of the main trawling fisheries over the continental shelf off Chile between 25°S and 37°S within the upper boundary of the oxygen minimum zone (OMZ). Although the reproductive cycle of P. monodon has been described, the relationship between this key biological process and the variability of the OMZ has not been comprehensibly addressed neither for P. monodon nor for other OMZ resident species. In this study a set of 14 quasi-monthly oceanographic cruises carried out between June 2010 and November 2011 were conducted over the continental shelf off Coquimbo (30°S) to investigate the temporal variability of: i) dissolved oxygen concentration, temperature and chlorophyll-a at relevant depths ii) the presence and proportion of occurrence of P. monodon ovigerous females and juveniles from benthic trawls; iii) the presence of different stage larvae in the plankton, and iv) similar biological data for other species from the OMZ and shallower depths crustaceans. During summer months oxygen levels and bottom temperature were lower than in winter, while chlorophyll-a concentration was maximum in summer coinciding with an active (but not maximum) upwelling season. P. monodon maximum egg carrying occurred in winter during periods of increased oxygenation. Egg carrying females were never found at depths where oxygen concentration was below 0.5 ml L-1, while over 50% of the autumn and spring cohorts of juveniles occurred at oxygen concentrations below that level. The depth range occupied by ovigerous females was more restricted than the rest of the population and their depth of occurrence followed the variability of the upper OMZ. The larval release period of OMZ resident species extends over late winter and spring, and its main peak precedes that of coastal species (spring) and the spring-summer chlorophyll-a maximum. We propose that for OMZ resident species, brood carrying during warmer and more oxygenated conditions in the adult benthic environment, might favor embryonic development, so OMZ seasonal variability could be acting as a selective pressure to synchronize reproductive periods.

  20. "The Evolution of Photosynthesis and the Transition from an Anaerobic to an Aerobic World"

    NASA Technical Reports Server (NTRS)

    Blankenship, Robert E.

    2005-01-01

    This project was focused on elucidating the evolution of photosynthesis, in particular the evolutionary developments that preceded and accompanied the transition from anoxygenic to oxygenic photosynthesis. Development of this process has clearly been of central importance to evolution of life on Earth. Photosynthesis is the mechanism that ultimately provides for the energy needs of most surface-dwelling organisms. Eukaryotic organisms are absolutely dependent on the molecular oxygen that has been produced by oxygenic photosynthesis. In this project we have employed a multidisciplinary approach to understand some of the processes that took place during the evolution of photosynthesis. In this project, we made excellent progress in the overall area of understanding the origin and evolution of photosynthesis. Particular progress has been made on several more specific research questions, including the molecular evolutionary analysis of photosynthetic components and biosynthetic pathways (2,3, 5, 7, 10), as well as biochemical characterization of electron transfer proteins related to photosynthesis and active oxygen protection (4,6,9). Finally, several review and commentary papers have been published (1, 8, 1 1). A total of twelve publications arose out of this grant, references to which are given below. Some specific areas of progress are highlighted and discussed in more detail.

  1. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. But, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. We show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O 2 batteries. The heme’s oxygen binding capability facilitates battery recharge by accepting and releasingmore » dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. Our study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage.« less

  2. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    PubMed Central

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; Li, Jinyang; Schwab, Mark J.; Brudvig, Gary W.; Taylor, André D.

    2016-01-01

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage. PMID:27759005

  3. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    DOE PAGES

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; ...

    2016-10-19

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. But, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. We show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O 2 batteries. The heme’s oxygen binding capability facilitates battery recharge by accepting and releasingmore » dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. Our study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage.« less

  4. Measurement of changes in blood oxygenation using Multispectral Optoacoustic Tomography (MSOT) allows assessment of tumor development

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Michal R.; Quiros-Gonzalez, Isabel; Joseph, James; Bohndiek, Sarah E.

    2016-03-01

    The ability to evaluate tumor oxygenation in the clinic could indicate prognosis and enable treatment monitoring, since oxygen deficient cancer cells are more resistant to chemotherapy and radiotherapy. MultiSpectral Optoacoustic Tomography (MSOT) is a hybrid technique combining the high contrast of optical imaging with the spatial resolution and penetration depth similar to ultrasound. We aim to demonstrate that MSOT can be used to monitor the development of tumor vasculature. To establish the relationship between MSOT derived imaging biomarkers and biological changes during tumor development, we performed MSOT on nude mice (n=10) bearing subcutaneous xenograft U87 glioblastoma tumors using a small animal optoacoustic tomography system. The mice were maintained under inhalation anesthesia during imaging and respired oxygen content was modified between 21% and 100%. The measurements from early (week 4) and late (week 7) stages of tumor development were compared. To further explore the functionality of the blood vessels, we examined the evolution of changes in the abundance of oxy- and deoxyhemoglobin in the tumors in response to a gas challenge. We found that the kinetics of the change in oxygen saturation (SO2) were significantly different between small tumors and the healthy blood vessels in nearby normal tissue (p=0.0054). Furthermore, we showed that there was a significant difference in the kinetics of the gas challenge between small and large tumors (p=0.0015). We also found that the tumor SO2 was significantly correlated (p=0.0057) with the tumor necrotic fraction as assessed by H&E staining in histology. In the future, this approach may be of use in the clinic as a method for tumor staging and assessment of treatment response.

  5. Biogeochemical Modeling of the Second Rise of Oxygen

    NASA Astrophysics Data System (ADS)

    Smith, M. L.; Catling, D.; Claire, M.; Zahnle, K.

    2014-03-01

    The rise of atmospheric oxygen set the tempo for the evolution of complex life on Earth. Oxygen levels are thought to have increased in two broad steps: one step occurred in the Archean ~ 2.45 Ga (the Great Oxidation Event or GOE), and another step occured in the Neoproterozoic ~750-580 Ma (the Neoprotoerozoic Oxygenation Event or NOE). During the NOE, oxygen levels increased from ~1-10% of the present atmospheric level (PAL) (Holland, 2006), to ~15% PAL in the late Neoproterozoic, to ~100% PAL later in the Phanerozoic. Complex life requires O2, so this transition allowed complex life to evolve. We seek to understand what caused the NOE. To explore causes for the NOE, we build upon the biogeochemical model of Claire et al. (2006), which calculates the redox evolution of the atmosphere, ocean, biosphere, and crust in the Archean through to the early Proterozoic. In this model, the balance between oxygenconsuming and oyxgen-producing fluxes evolves over time such that at ~2.4 Ga, the rapidly acting sources of oxygen outweigh the rapidly-acting sinks. Or, in other words, at ~2.4 Ga, the flux of oxygen from organic carbon burial exceeds the sinks of oxygen from reaction with reduced volcanic and metamoprphic gases. The model is able to drive oxygen levels to 1-10% PAL in the Proterozoic; however, the evolving redox fluxes in the model cannot explain how oxygen levels pushed above 1-10% in the late Proterozoic. The authors suggest that perhaps another buffer, such as sulfur, is needed to describe Proterozoic and Phanerozoic redox evolution. Geologic proxies show that in the Proterozoic, up to 10% of the deep ocean may have been sulfidic. With this ocean chemistry, the global sulfur cycle would have worked differently than it does today. Because the sulfur and oxygen cycles interact, the oxygen concentration could have permanently changed due to an evolving sulfur cycle (in combination with evolving redox fluxes associated with other parts of the oxygen cycle and carbon cycles). To determine how fluxes of sulfur, carbon, and oxygen define oxygen levels before, during, and after the NOE, we add a sulfur cycle to the biogeochemical model of Claire et al. (2006). Understanding processes that impact the evolution of atmospheric oxygen on Earth is key to diagnosing the habitability of other planets because it is possible that other planets undergo a similar evolution. If a sulfidic deep ocean was instrumental in driving oxygen levels to modern values, then it would be valuable to remotely detect a sulfide-rich ocean on another planet. One such remotely-detectable signature could be the color of a sulfide-rich ocean. For example, Gallardo and Espinoza (2008) have hypothesized that a sulfidic ocean may be have been blacker in color. Even if a sulfidic ocean is not key to oxygenation, detecting a planet in transition--that is, a planet with intermediate levels of oxygen co-existing with higher levels of reduced gases - would be important for diagnosing habitability.

  6. The biosphere as a driver of global atmospheric change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    The effects of the biosphere on the evolution of atmospheric oxygen and ozone, and the consequences of that development for global atmospheric change, are discussed. Attention is given to the impact of oxygen and ozone on atmospheric photolysis rates, the effect of oxygen on the biogenic production of nitrous oxide and nitric oxide, and the effects of the evolution of atmospheric oxygen on fires and biomass burning. The influence of the latter on atmospheric processes, particularly the production of methane, carbon dioxide, and carbon monoxide, is considered.

  7. Coping with cyclic oxygen availability: evolutionary aspects.

    PubMed

    Flück, Martin; Webster, Keith A; Graham, Jeffrey; Giomi, Folco; Gerlach, Frank; Schmitz, Anke

    2007-10-01

    Both the gradual rise in atmospheric oxygen over the Proterozoic Eon as well as episodic fluctuations in oxygen over several million-year time spans during the Phanerozoic Era, have arguably exerted strong selective forces on cellular and organismic respiratory specialization and evolution. The rise in atmospheric oxygen, some 2 billion years after the origin of life, dramatically altered cell biology and set the stage for the appearance of multicelluar life forms in the Vendian (Ediacaran) Period of the Neoproterozoic Era. Over much of the Paleozoic, the level of oxygen in the atmosphere was near the present atmospheric level (21%). In the Late Paleozoic, however, there were extended times during which the level of atmospheric oxygen was either markedly lower or markedly higher than 21%. That these Paleozoic shifts in atmospheric oxygen affected the biota is suggested by the correlations between: (1) Reduced oxygen and the occurrences of extinctions, a lowered biodiversity and shifts in phyletic succession, and (2) During hyperoxia, the corresponding occurrence of phenomena such as arthropod gigantism, the origin of insect flight, and the evolution of vertebrate terrestriality. Basic similarities in features of adaptation to hyopoxia, manifest in living organisms at levels ranging from genetic and cellular to physiological and behavioral, suggest the common and early origin of a suite of adaptive mechanisms responsive to fluctuations in ambient oxygen. Comparative integrative approaches addressing the molecular bases of phenotypic adjustments to cyclic oxygen fluctuation provide broad insight into the incremental steps leading to the early evolution of homeostatic respiratory mechanisms and to the specialization of organismic respiratory function.

  8. Oxygen fugacity of gases and rocks from Momotombo Volcano, Nicaragua: Application to volcanological monitoring

    NASA Astrophysics Data System (ADS)

    Benhamou, G.; Allard, P.; Sabroux, J. C.; Vitter, G.; Dajlevic, D.; Creusot, A.

    1988-12-01

    The oxygen fugacity (fO2) and the fO2 versus T°C relationship of high-temperature (600°-860°C) gas emissions from Momotombo volcano, Nicaragua, was determined from both field electrochemical measurements (electrolytic cell assembly) and thermodynamic computations on gas samples collected between 1978 and 1985. It was then compared with the intrinsic fO2 of fresh and altered lavas from the last eruption (1905), as measured between 500° and 1100°C in laboratory. The electrochemical results show that the oxygen fugacity of Momotombo fumaroles, at equivalent temperature, is much higher than that of the fresh 1905 lava (˜FMQ buffer) and closer to that of their altered wall rocks (˜FMQ buffer). The equilibrium O2 fugacities calculated from the chemistry of gas samples confirm this pattern. However, they suggest that the gas mixtures preserve the (variable) memory of a higher thermal equilibrium achieved at depth, under temperature and fO2 conditions of up to 1050°C and 10-9.0 atm, respectively, which correspond to the cross over between the fO2-T gas and lava trends. These data thus support the idea that Momotombo volcanic gases, released in a period of increasing activity, escape from a shallow magma body before suffering a variable oxidation during their ascent through both unbuffered cooling and reactions with environmental fluids and rocks. This late oxidation is weaker at central fumaroles than at peripherical ones. While between 1978 and 1985 the temperature of the hottest fumarole increased from 750° to 865°-900°C, the equilibrium fO2 of the gas decreased by nearly one order of magnitude (at comparable equilibrium temperature). Such an evolution presumably reflects an increasing connection between the surface exhalations and the magma degassing at depth along with time. This work underlines the possibility of monitoring the processes of magma ascent and gas-magma separation within a volcano before an eruption by continuously recording the changes of both oxygen fugacity and temperature in hot fumaroles.

  9. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain

    PubMed Central

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2016-01-01

    Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later evolution of the oxygen-binding hemerythrin domain in both prokaryotes and eukaryotes led to a wide variety of functions, ranging from protection against oxidative damage in anaerobic and microaerophilic organisms, to oxygen supplying to particular enzymes and pathways in aerobic and facultative species. PMID:27336621

  10. Recreational technical diving part 1: an introduction to technical diving methods and activities.

    PubMed

    Mitchell, Simon J; Doolette, David J

    2013-06-01

    Technical divers use gases other than air and advanced equipment configurations to conduct dives that are deeper and/or longer than typical recreational air dives. The use of oxygen-nitrogen (nitrox) mixes with oxygen fractions higher than air results in longer no-decompression limits for shallow diving, and faster decompression from deeper dives. For depths beyond the air-diving range, technical divers mix helium, a light non-narcotic gas, with nitrogen and oxygen to produce 'trimix'. These blends are tailored to the depth of intended use with a fraction of oxygen calculated to produce an inspired oxygen partial pressure unlikely to cause cerebral oxygen toxicity and a nitrogen fraction calculated to produce a tolerable degree of nitrogen narcosis. A typical deep technical dive will involve the use of trimix at the target depth with changes to gases containing more oxygen and less inert gas during the decompression. Open-circuit scuba may be used to carry and utilise such gases, but this is very wasteful of expensive helium. There is increasing use of closed-circuit 'rebreather' devices. These recycle expired gas and potentially limit gas consumption to a small amount of inert gas to maintain the volume of the breathing circuit during descent and the amount of oxygen metabolised by the diver. This paper reviews the basic approach to planning and execution of dives using these methods to better inform physicians of the physical demands and risks.

  11. In situ major and trace element analysis of amphiboles in quartz monzodiorite porphyry from the Tonglvshan Cu-Fe (Au) deposit, Hubei Province, China: insights into magma evolution and related mineralization

    NASA Astrophysics Data System (ADS)

    Duan, Deng-Fei; Jiang, Shao-Yong

    2017-05-01

    The Tonglvshan deposit is the largest Cu-Fe (Au) skarn deposit in the Edong district, which is located in the westernmost part of the Middle and Lower Yangtze River metallogenic belt, China. In this study, we performed a detailed in situ analysis of major and trace elements in amphiboles from the ore-related Tonglvshan quartz monzodiorite porphyry using electron microprobe (EMPA) analysis and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Two distinct populations of amphiboles, which can be distinguished by their aluminum content, are found in the quartz monzodiorite porphyry. The low-aluminum (Low-Al) amphiboles are subhedral or anhedral and formed at 46.3-73.5 MPa and 713-763 °C. In contrast, the high-aluminum (High-Al) amphiboles are euhedral and formed at 88-165 MPa and 778-854 °C. Some euhedral amphiboles are partially or completely replaced by Low-Al amphibole. The compositions of parental melts in equilibrium with the High-Al amphibole ( Melt 1) and Low-Al amphibole ( Melt 2) were computed by applying solid/liquid partition coefficients. This modeling shows that magma in equilibrium with High-Al amphibole ( Melt 1) underwent 40% fractional crystallization of amphibole, plagioclase and apatite at a depth of 5 km to evolve to magma in equilibrium with Low-Al amphibole ( Melt 2). Copper enrichment occurred in the magma after undergoing fractional crystallization. The magma had a high oxygen fugacity, increasing from NNO + 1 ( Melt 1) through NNO + 2 to HM ( Melt 2), which could have prevented the loss of Cu (and possibly Au) to sulfide minerals during crystallization. Finally, the evolved magma intruded to shallower depths, where it presumably exsolved aqueous ore-forming fluids. Therefore, the large Cu-Fe-Au reserves of the Tonglvshan deposit can likely be attributed to a combination of controlling factors, including high oxygen fugacity, fractional crystallization, fluid exsolution, and a shallow emplacement depth.

  12. Oxygen and Carbon Dioxide Fluxes from Barley Shoots Depend on Nitrate Assimilation 1

    PubMed Central

    Bloom, Arnold J.; Caldwell, Richard M.; Finazzo, John; Warner, Robert L.; Weissbart, Joseph

    1989-01-01

    A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport. PMID:16667024

  13. Biogeochemistry of a submerged groundwater seep ecosystem in Lake Huron near karst region of Alpena, MI

    NASA Astrophysics Data System (ADS)

    Kinsman-Costello, L. E.; Dick, G.; Sheik, C.; Burton, G. A.; Sheldon, N. D.

    2015-12-01

    Submerged groundwater seeps in Lake Huron establish ecosystems with distinctive geochemical conditions. In the Middle Island Sinkhole (MIS), a 23-m deep seep, groundwater seepage establishes low O2 (< 4 mg L-1), high sulfate (6 mM) conditions, in which a purple cyanobacteria-dominated mat thrives. The mat is capable of anoxygenic photosynthesis, oxygenic photosynthesis, and chemosynthesis. Within the top 3 cm of the mat-water interface, hydrogen sulfide concentrations increase to 1-7 mM. Little is known about the structure and function of microbes within organic-rich, high-sulfide sediments beneath the mat. Using pore water and sediment geochemical characterization along with microbial community analysis, we elucidated relationships between microbial community structure and ecosystem function along vertical gradients. In sediment pore waters, biologically reactive solutes (SO42-, NH4+, PO43-, and CH4) displayed steep vertical gradients, reflecting biological and geochemical functioning. In contrast, more conservative ions (Ca+2, Mg+2, Na+, and Cl-), did not change significantly with depth in MIS sediments, indicating groundwater influence in the sediment profile. MIS sediments contained more organic matter than typical Lake Huron sediments, and were generally higher in nutrients, metals, and sulfur (acid volatile sulfide). Using the Illumina MiSeq platform we detected 14,127 unique operational taxonomic units across sediment and surface mat samples. Microbial community composition in the MIS was distinctly different from non-groundwater affected areas at similar depth nearby in Lake Huron (ANOSIM, R= 0.74, p=0.002). MIS sediment communities were more diverse that MIS surface mat communities and changed with depth into sediments. MIS sediment community composition was related to several geochemical variables, including organic matter and multiple indicators of phosphorus availability. Elucidating the structure and function of microbial consortia in MIS, a highly unique and environmentally vulnerable ecosystem, provides a rare opportunity to understand relationships between microbial species and their environment and may provide insights into the evolution of life under ancient low-oxygen, high-sulfur conditions.

  14. Effect of oxygen concentration in ZDP containing oils on surface composition and wear

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Ferrante, J.

    1983-01-01

    A pin-on-disk wear study was performed with the lubricants dibutyl sebacate (DBS) and mineral oil (MO) with and without 1 weight percent zinc-dialkyl-dithiophospatee (ZDP) as an additive. The pin was annealed pure iron and the disk was M-2 tool steel. The selected load and speed guaranteed boundary lubrication. The ambient atmospheric oxygen concentration in an oxygen-nitrogen mixture was varied from 0 percent to 20 percent in order to examine its relationship to ZDP effectiveness. Auger electron spectroscopy combined with argon ion bombardment (depth profiling) was used to determine surface elemental composition on the pin when tested in DBS with and without ZDP. The ambient atmosphere was found to cause large variations in wear rate and surface composition. With MO, ZDP reduced wear under all conditions, but had little advantage over oxides formed at 20 percent oxygen atmosphere. With DBS, ZDP reduced wear at 0 percent oxygen, but gave varied results at other oxygen concentrations. Depth profiling revealed sulfuide formation at 0 percent oxygen and probably sulfates at 20 percent oxygen. The results are significant because varied oxygen concentrations can occur under actual lubricating conditions in practical machinery.

  15. Microbial diversity from chlorophyll maximum, oxygen minimum and bottom zones in the southwestern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Medina-Silva, Renata; de Oliveira, Rafael R.; Pivel, Maria A. G.; Borges, Luiz G. A.; Simão, Taiz L. L.; Pereira, Leandro M.; Trindade, Fernanda J.; Augustin, Adolpho H.; Valdez, Fernanda P.; Eizirik, Eduardo; Utz, Laura R. P.; Groposo, Claudia; Miller, Dennis J.; Viana, Adriano R.; Ketzer, João M. M.; Giongo, Adriana

    2018-02-01

    Conspicuous physicochemical vertical stratification in the deep sea is one of the main forces driving microbial diversity in the oceans. Oxygen and sunlight availability are key factors promoting microbial diversity throughout the water column. Ocean currents also play a major role in the physicochemical stratification, carrying oxygen down to deeper zones as well as moving deeper water masses up towards shallower depths. Water samples within a 50-km radius in a pockmark location of the southwestern Atlantic Ocean were collected and the prokaryotic communities from different water depths - chlorophyll maximum, oxygen minimum and deep-sea bottom (down to 1355 m) - were described. At phylum level, Proteobacteria were the most frequent in all water depths, Cyanobacteria were statistically more frequent in chlorophyll maximum zone, while Thaumarchaeota were significantly more abundant in both oxygen minimum and bottom waters. The most frequent microorganism in the chlorophyll maximum and oxygen minimum zones was a Pelagibacteraceae operational taxonomic unit (OTU). At the bottom, the most abundant genus was the archaeon Nitrosopumilus. Beta diversity analysis of the 16S rRNA gene sequencing data uncovered in this study shows high spatial heterogeneity among water zones communities. Our data brings important contribution for the characterisation of oceanic microbial diversity, as it consists of the first description of prokaryotic communities occurring in different oceanic water zones in the southwestern Atlantic Ocean.

  16. Effects of climate events driven hydrodynamics on dissolved oxygen in a subtropical deep reservoir in Taiwan.

    PubMed

    Fan, Cheng-Wei; Kao, Shuh-Ji

    2008-04-15

    The seasonal concentrations of dissolved oxygen in a subtropical deep reservoir were studied over a period of one year. The study site was the Feitsui Reservoir in Taiwan. It is a dam-constructed reservoir with a surface area of 10.24 km(2) and a mean depth of 39.6 m, with a maximum depth of 113.5 m near the dam. It was found that certain weather and climate events, such as typhoons in summer and autumn, as well as cold fronts in winter, can deliver oxygen-rich water, and consequently have strong impacts on the dissolved oxygen level. The typhoon turbidity currents and winter density currents played important roles in supplying oxygen to the middle and bottom water, respectively. The whole process can be understood by the hydrodynamics driven by weather and climate events. This work provides the primary results of dissolved oxygen in a subtropical deep reservoir, and the knowledge is useful in understanding water quality in subtropical regions.

  17. Locomotion and behavior of Humboldt squid, Dosidicus gigas, in relation to natural hypoxia in the Gulf of California, Mexico.

    PubMed

    Gilly, William F; Zeidberg, Louis D; Booth, J Ashley T; Stewart, Julia S; Marshall, Greg; Abernathy, Kyler; Bell, Lauren E

    2012-09-15

    We studied the locomotion and behavior of Dosidicus gigas using pop-up archival transmitting (PAT) tags to record environmental parameters (depth, temperature and light) and an animal-borne video package (AVP) to log these parameters plus acceleration along three axes and record forward-directed video under natural lighting. A basic cycle of locomotor behavior in D. gigas involves an active climb of a few meters followed by a passive (with respect to jetting) downward glide carried out in a fins-first direction. Temporal summation of such climb-and-glide events underlies a rich assortment of vertical movements that can reach vertical velocities of 3 m s(-1). In contrast to such rapid movements, D. gigas spends more than 80% of total time gliding at a vertical velocity of essentially zero (53% at 0±0.05 m s(-1)) or sinking very slowly (28% at -0.05 to -0.15 m s(-1)). The vertical distribution of squid was compared with physical features of the local water column (temperature, oxygen and light). Oxygen concentrations of ≤20 μmol kg(-1), characteristic of the midwater oxygen minimum zone (OMZ), can influence the daytime depth of squid, but this depends on location and season, and squid can 'decouple' from this environmental feature. Light is also an important factor in determining daytime depth, and temperature can limit nighttime depth. Vertical velocities were compared over specific depth ranges characterized by large differences in dissolved oxygen. Velocities were generally reduced under OMZ conditions, with faster jetting being most strongly affected. These data are discussed in terms of increased efficiency of climb-and-glide swimming and the potential for foraging at hypoxic depths.

  18. Asymmetric 3d Electronic Structure for Enhanced Oxygen Evolution Catalysis.

    PubMed

    Liu, Yang; Yin, Shibin; Shen, Pei Kang

    2018-06-27

    The oxygen evolution reaction (OER) is an essential process for renewable energy, and designing a bifunctional oxygen electrocatalyst with high catalytic performance plays a significant role. In this work, FeS, Ni 3 S 2 , Fe 5 Ni 4 S 8 , and N, O, S-doped meshy carbon base were successfully synthesized. The sample containing Fe 5 Ni 4 S 8 exhibited excellent OER performance. The density functional theory calculations indicate that the partial density of states for 3d electrons (3d-PDOS) of Fe and Ni atoms are changed from monometallic sulfide to bimetallic sulfide at the sulfur vacancy. The asymmetric 3d electronic structure optimizes the 3d-PDOS of Fe and Ni atoms, and leads to an enhanced OER activity. This work provides a new strategy to prepare a low-cost electrocatalyst for oxygen evolution with high-efficiency.

  19. The effects of changing climate on faunal depth distributions determine winners and losers.

    PubMed

    Brown, Alastair; Thatje, Sven

    2015-01-01

    Changing climate is predicted to impact all depths of the global oceans, yet projections of range shifts in marine faunal distributions in response to changing climate seldom evaluate potential shifts in depth distribution. Marine ectotherms' thermal tolerance is limited by their ability to maintain aerobic metabolism (oxygen- and capacity-limited tolerance), and is functionally associated with their hypoxia tolerance. Shallow-water (<200 m depth) marine invertebrates and fishes demonstrate limited tolerance of increasing hydrostatic pressure (pressure exerted by the overlying mass of water), and hyperbaric (increased pressure) tolerance is proposed to depend on the ability to maintain aerobic metabolism, too. Here, we report significant correlation between the hypoxia thresholds and the hyperbaric thresholds of taxonomic groups of shallow-water fauna, suggesting that pressure tolerance is indeed oxygen limited. Consequently, it appears that the combined effects of temperature, pressure and oxygen concentration constrain the fundamental ecological niches (FENs) of marine invertebrates and fishes. Including depth in a conceptual model of oxygen- and capacity-limited FENs' responses to ocean warming and deoxygenation confirms previous predictions made based solely on consideration of the latitudinal effects of ocean warming (e.g. Cheung et al., 2009), that polar taxa are most vulnerable to the effects of climate change, with Arctic fauna experiencing the greatest FEN contraction. In contrast, the inclusion of depth in the conceptual model reveals for the first time that temperate fauna as well as tropical fauna may experience substantial FEN expansion with ocean warming and deoxygenation, rather than FEN maintenance or contraction suggested by solely considering latitudinal range shifts. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  20. Buoyancy of gas-filled bladders at great depth

    NASA Astrophysics Data System (ADS)

    Priede, Imants G.

    2018-02-01

    At high hydrostatic pressures exceeding 20 MPa or 200 bar, equivalent to depths exceeding ca.2000 m, the behaviour of gases deviates significantly from the predictions of standard equations such as Boyle's Law, the Ideal Gas Law and Van der Waals equation. The predictions of these equations are compared with experimental data for nitrogen, oxygen and air at 0 °C and 15 °C, at pressures up to 1100 bar (110 MPa) equivalent to full ocean depth of ca. 11000 m. Owing to reduced compressibility of gases at high pressures, gas-filled bladders at full ocean depth have a density of 847 kg m-3 for Oxygen, 622 kg m-3 for Nitrogen and 660 kg m-3 for air providing potentially useful buoyancy comparable with that available from man-made materials. This helps explain why some of the deepest-living fishes at ca. 7000 m depth (700 bar or 70 MPa) have gas-filled swim bladders. A table is provided of the density and buoyancy of oxygen, nitrogen and air at 0 °C and 15 °C from 100 to 1100 bar.

  1. Hemodynamic monitoring in different cortical layers with a single fiber optical system

    NASA Astrophysics Data System (ADS)

    Yu, Linhui; Noor, M. Sohail; Kiss, Zelma H. T.; Murari, Kartikeya

    2018-02-01

    Functional monitoring of highly-localized deep brain structures is of great interest. However, due to light scattering, optical methods have limited depth penetration or can only measure from a large volume. In this research, we demonstrate continuous measurement of hemodynamics in different cortical layers in response to thalamic deep brain stimulation (DBS) using a single fiber optical system. A 200-μm-core-diameter multimode fiber is used to deliver and collect light from tissue. The fiber probe can be stereotaxically implanted into the brain region of interest at any depth to measure the di use reflectance spectra from a tissue volume of 0.02-0.03 mm3 near the fiber tip. Oxygenation is then extracted from the reflectance spectra using an algorithm based on Monte Carlo simulations. Measurements were performed on the surface (cortical layer I) and at 1.5 mm depth (cortical layer VI) of the motor cortex in anesthetized rats with thalamic DBS. Preliminary results revealed the oxygenation changes in response to DBS. Moreover, the baseline as well as the stimulus-evoked change in oxygenation were different at the two depths of cortex.

  2. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries.

    PubMed

    Cao, Ruiguo; Walter, Eric D; Xu, Wu; Nasybulin, Eduard N; Bhattacharya, Priyanka; Bowden, Mark E; Engelhard, Mark H; Zhang, Ji-Guang

    2014-09-01

    A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium-oxygen (Li-O2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of the ORR/OER reactions in nonaqueous Li-O2 batteries by using electron paramagnetic resonance (EPR) spectroscopy, using 5,5-dimethyl-pyrroline N-oxide as a spin trap. The study provides direct verification of the formation of the superoxide radical anion (O2(˙-)) as an intermediate in the ORR during the discharge process, while no O2(˙-) was detected in the OER during the charge process. These findings provide insight into, and an understanding of, the fundamental reaction mechanisms involving oxygen and guide the further development of this field. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Spectra of Earth-like Planets through Geological Evolution around FGKM Stars

    NASA Astrophysics Data System (ADS)

    Rugheimer, S.; Kaltenegger, L.

    2018-02-01

    Future observations of terrestrial exoplanet atmospheres will occur for planets at different stages of geological evolution. We expect to observe a wide variety of atmospheres and planets with alternative evolutionary paths, with some planets resembling Earth at different epochs. For an Earth-like atmospheric time trajectory, we simulate planets from the prebiotic to the current atmosphere based on geological data. We use a stellar grid F0V to M8V ({T}{eff}=7000–2400 K) to model four geological epochs of Earth's history corresponding to a prebiotic world (3.9 Ga), the rise of oxygen at 2.0 Ga and at 0.8 Ga, and the modern Earth. We show the VIS–IR spectral features, with a focus on biosignatures through geological time for this grid of Sun-like host stars and the effect of clouds on their spectra. We find that the observability of biosignature gases reduces with increasing cloud cover and increases with planetary age. The observability of the visible O2 feature for lower concentrations will partly depend on clouds, which, while slightly reducing the feature, increase the overall reflectivity, and thus the detectable flux of a planet. The depth of the IR ozone feature contributes substantially to the opacity at lower oxygen concentrations, especially for the high near-UV stellar environments around F stars. Our results are a grid of model spectra for atmospheres representative of Earth's geological history to inform future observations and instrument design and are available online at http://carlsaganinstitute.org/data/.

  4. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities

    PubMed Central

    Lu, Xunyu; Zhao, Chuan

    2015-01-01

    Large-scale industrial application of electrolytic splitting of water has called for the development of oxygen evolution electrodes that are inexpensive, robust and can deliver large current density (>500 mA cm−2) at low applied potentials. Here we show that an efficient oxygen electrode can be developed by electrodepositing amorphous mesoporous nickel–iron composite nanosheets directly onto macroporous nickel foam substrates. The as-prepared oxygen electrode exhibits high catalytic activity towards water oxidation in alkaline solutions, which only requires an overpotential of 200 mV to initiate the reaction, and is capable of delivering current densities of 500 and 1,000 mA cm−2 at overpotentials of 240 and 270 mV, respectively. The electrode also shows prolonged stability against bulk water electrolysis at large current. Collectively, the as-prepared three-dimensional structured electrode is the most efficient oxygen evolution electrode in alkaline electrolytes reported to the best of our knowledge, and can potentially be applied for industrial scale water electrolysis. PMID:25776015

  5. An Assembled Nanocomplex for Improving both Therapeutic Efficiency and Treatment Depth in Photodynamic Therapy.

    PubMed

    Cao, Hongqian; Wang, Lei; Yang, Yang; Li, Juan; Qi, Yanfei; Li, Yue; Li, Ying; Wang, Hao; Li, Junbai

    2018-06-25

    Photodynamic therapy (PDT) shows unique selectivity and irreversible destruction toward treated tissues or cells, but still has several problems in clinical practice. One is limited therapeutic efficiency, which is attributed to hypoxia in tumor sites. Another is the limited treatment depth because traditional photosensitizes are excited by short wavelength light (<700 nm). An assembled nano-complex system composed of oxygen donor, two-photon absorption (TPA) species, and photosensitizer (PS) was synthesized to address both problems. The photosensitizer is excited indirectly by two-photon laser through intraparticle FRET mechanism for improving treatment depth. The oxygen donor, hemoglobin, can supply extra oxygen into tumor location through targeting effect for enhanced PDT efficiency. The mechanism and PDT effect were verified through both in vitro and in vivo experiments. The simple system is promising to promote two-photon PDT for clinical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Aerobic metabolism underlies complexity and capacity

    PubMed Central

    Koch, Lauren G; Britton, Steven L

    2008-01-01

    The evolution of biological complexity beyond single-celled organisms was linked temporally with the development of an oxygen atmosphere. Functionally, this linkage can be attributed to oxygen ranking high in both abundance and electronegativity amongst the stable elements of the universe. That is, reduction of oxygen provides for close to the largest possible transfer of energy for each electron transfer reaction. This suggests the general hypothesis that the steep thermodynamic gradient of an oxygen environment was permissive for the development of multicellular complexity. A corollary of this hypothesis is that aerobic metabolism underwrites complex biological function mechanistically at all levels of organization. The strong contemporary functional association of aerobic metabolism with both physical capacity and health is presumably a product of the integral role of oxygen in our evolutionary history. Here we provide arguments from thermodynamics, evolution, metabolic network analysis, clinical observations and animal models that are in accord with the centrality of oxygen in biology. PMID:17947307

  7. Co-regulation of Primary Mouse Hepatocyte Viability and Function by Oxygen and Matrix

    PubMed Central

    Buck, Lorenna D.; Inman, S. Walker; Rusyn, Ivan; Griffith, Linda G.

    2014-01-01

    Although oxygen and extracellular matrix cues both influence differentiation state and metabolic function of primary rat and human hepatocytes, relatively little is known about how these factors together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of pericellular oxygen tension on hepatocellular function, we employed 2 methods of altering oxygen concentration in the local cellular microenvironment of cells cultured in the presence or absence of an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic) and measured the local oxygen concentrations in the pericellular environment using custom-designed oxygen microprobes. From these measurements of oxygen concentrations, we derived values of oxygen consumption rates under a spectrum of environmental contexts, thus providing the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and matrix microenvironment were found to synergistically regulate hepatocellular survival and function as assessed using quantitative image analysis for cells stained with vital dyes, and assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological oxygen concentration, and this effect was mitigated at still greater supra-physiological concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study underscores the importance of carefully controlling cell density, medium depth and gas phase oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent hepatocellular function are profound. PMID:24222008

  8. Early oxygenation of the terrestrial environment during the Mesoproterozoic.

    PubMed

    Parnell, John; Boyce, Adrian J; Mark, Darren; Bowden, Stephen; Spinks, Sam

    2010-11-11

    Geochemical data from ancient sedimentary successions provide evidence for the progressive evolution of Earth's atmosphere and oceans. Key stages in increasing oxygenation are postulated for the Palaeoproterozoic era (∼2.3 billion years ago, Gyr ago) and the late Proterozoic eon (about 0.8 Gyr ago), with the latter implicated in the subsequent metazoan evolutionary expansion. In support of this rise in oxygen concentrations, a large database shows a marked change in the bacterially mediated fractionation of seawater sulphate to sulphide of Δ(34)S < 25‰ before 1 Gyr to ≥50‰ after 0.64 Gyr. This change in Δ(34)S has been interpreted to represent the evolution from single-step bacterial sulphate reduction to a combination of bacterial sulphate reduction and sulphide oxidation, largely bacterially mediated. This evolution is seen as marking the rise in atmospheric oxygen concentrations and the evolution of non-photosynthetic sulphide-oxidizing bacteria. Here we report Δ(34)S values exceeding 50‰ from a terrestrial Mesoproterozoic (1.18 Gyr old) succession in Scotland, a time period that is at present poorly characterized. This level of fractionation implies disproportionation in the sulphur cycle, probably involving sulphide-oxidizing bacteria, that is not evident from Δ(34)S data in the marine record. Disproportionation in both red beds and lacustrine black shales at our study site suggests that the Mesoproterozoic terrestrial environment was sufficiently oxygenated to support a biota that was adapted to an oxygen-rich atmosphere, but had also penetrated into subsurface sediment.

  9. Stability of carbon electrodes for aqueous lithium-air secondary batteries

    NASA Astrophysics Data System (ADS)

    Ohkuma, Hirokazu; Uechi, Ichiro; Matsui, Masaki; Takeda, Yasuo; Yamamoto, Osamu; Imanishi, Nobuyuki

    2014-01-01

    The air electrode performance of various carbon materials, such as Ketjen black (KB), acetylene black (AB and AB-S), Vulcan XC-72R (VX), and vapor grown carbon fiber (VGCF) with and without La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) catalyst were examined in an aqueous solution of saturated LiOH with 10 M LiCl in the current density range 0.2-2.0 mA cm-2. The best performance for oxygen reduction and evolution reactions was observed for the KB electrode, which has the highest surface area among the carbon materials examined. A steady over-potential of 0.2 V was obtained for the oxygen reduction reaction using the KB electrode without the catalyst, while the over-potential was 0.15 V for KB with the LSCF catalyst at 2.0 mA cm-2. The over-potentials for the oxygen evolution reaction were slightly higher than those for the oxygen reduction reaction, and gradually increased with the polarization period. Analysis of the gas in the cell after polarization above 0.4 V revealed the evolution of a small amount of CO during the oxygen evolution reaction by the decomposition of carbon in the electrode. The amount of CO evolved was significantly decreased by the addition of LSCF to the carbon electrode.

  10. Occurrence and formation kinetics of pyranomalvidin-procyanidin dimer pigment in Merlot red wine: impact of acidity and oxygen concentrations.

    PubMed

    Pechamat, Laurent; Zeng, Liming; Jourdes, Michael; Ghidossi, Rémy; Teissedre, Pierre-Louis

    2014-02-19

    Once released from red grape skins, anthocyanins undergo various chemical reactions leading to the formation of more stable pigments such as pyranoanthocyanin, as well as other derivatives. Among these pigments, pyranoanthocyanins linked directly to flavanol dimers have been detected and identified in aged Port wine but not in dry red wine. These pigments are very important with regard to the wine color evolution since they are involved in wine color evolution and stabilization. During this investigation, the occurrence in dry red wine of two pyranomalvidin-procyanidin dimer has been established by low and high resolution HPLC-UV-MS analysis. Moreover, the impact of acidity and oxygen levels on their formation in red wine has been estimated. After four months of evolution, the results showed that, for the same pH, the quantity of this pigment was correlated with oxygen concentrations. Moreover, for the same quantity of oxygen, the concentration of this pigment was related to the acidity level.

  11. Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro.

    PubMed

    Li, Weitao; Huang, Dong; Zhang, Yan; Liu, Yangyang; Gu, Yueqing; Qian, Zhiyu

    2016-09-01

    Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.

  12. Environmental TEM study of electron beam induced electro-chemistry of Pr₀̣₆₄Ca₀̣₃₆MnO₃ catalysts for oxygen evolution

    DOE PAGES

    Mildner, Stephanie; Beleggia, Marco; Mierwaldt, Daniel; ...

    2015-03-12

    Environmental Transmission Electron Microscopy (ETEM) studies offer great potential for gathering atomic scale information on the electronic state of electrodes in contact with reactants but also pose big challenges due to the impact of the high energy electron beam. In this article, we present an ETEM study of a Pr₀̣₆₄Ca₀̣₃₆MnO₃ (PCMO) thin film electro-catalyst for water splitting and oxygen evolution in contact with water vapor. We show by means of off-axis electron holography and electrostatic modeling that the electron beam gives rise to a positive electric sample potential due to secondary electron emission. The value of the electric potential dependsmore » on the primary electron flux, the sample -conductivity and grounding, and gas properties. We present evidence that two observed electro-chemical reactions are driven by a beam induced electrostatic potential of the order of a volt. The first reaction is an anodic electrochemical oxidation reaction of oxygen depleted amorphous PCMO which results in recrystallization of the perovskite structure. The second reaction is oxygen evolution which can be detected by the oxidation of a silane additive and formation of SiO 2–x at catalytically active surfaces. Recently published in-situ XANES observation of subsurface oxygen vacancy formation during oxygen evolution at a positive potential [³²] is confirmed in this work. The quantification of beam induced potentials is an important step for future controlled electro-chemical experiments in an ETEM.« less

  13. Raman spectra of Hg-based superconductors: Effect of oxygen defects

    NASA Astrophysics Data System (ADS)

    Zhou, Xingjiang; Cardona, M.; Chu, C. W.; Lin, Q. M.; Loureiro, S. M.; Marezio, M.

    1996-09-01

    Polarized micro-Raman scattering measurements have been performed on the five members of the HgBa2Can-1CunO2n+2+δ (n=1, 2, 3, 4, and 5) high-Tc superconductor family. A systematic evolution of the spectrum, which mainly involves oxygen-related phonons around 590, 570, 540, and 470 cm-1, with an increasing number of CuO2 layers, has been observed. Local laser annealing measurements clearly demonstrate that all these phonons are closely related to interstitial oxygen in the HgOδ planes. The origin of the spectrum evolution with the number of CuO2 layers lies in the variation of interstitial oxygen content.

  14. Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping

    2017-03-01

    Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co0.54Fe0.46OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co0.54Fe0.46OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.

  15. Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application.

    PubMed

    Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping

    2017-03-08

    Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co 0.54 Fe 0.46 OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co 0.54 Fe 0.46 OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.

  16. Structure Evolution of Graphene Oxide during Thermally Driven Phase Transformation: Is the Oxygen Content Really Preserved?

    PubMed Central

    Sun, Pengzhan; Wang, Yanlei; Liu, He; Wang, Kunlin; Wu, Dehai; Xu, Zhiping; Zhu, Hongwei

    2014-01-01

    A mild annealing procedure was recently proposed for the scalable enhancement of graphene oxide (GO) properties with the oxygen content preserved, which was demonstrated to be attributed to the thermally driven phase separation. In this work, the structure evolution of GO with mild annealing is closely investigated. It reveals that in addition to phase separation, the transformation of oxygen functionalities also occurs, which leads to the slight reduction of GO membranes and furthers the enhancement of GO properties. These results are further supported by the density functional theory based calculations. The results also show that the amount of chemically bonded oxygen atoms on graphene decreases gradually and we propose that the strongly physisorbed oxygen species constrained in the holes and vacancies on GO lattice might be responsible for the preserved oxygen content during the mild annealing procedure. The present experimental results and calculations indicate that both the diffusion and transformation of oxygen functional groups might play important roles in the scalable enhancement of GO properties. PMID:25372142

  17. Kinetic Coupling of Water Splitting and Photoreforming on SrTiO 3 -Based Photocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanwald, Kai E.; Berto, Tobias F.; Jentys, Andreas

    Coupling the anodic half-reactions of overall water splitting and oxygenate photoreforming (i.e., proton reduction and oxygenate oxidations) on Al-doped SrTiO3 decorated with a co-catalyst enables efficient photocatalytic H2 generation along with oxygenate conversion without accumulating undesired intermediates such as formaldehyde. The net H2-evolution rates result from the interplay between water oxidation, oxygenate oxidation, and the back-reaction of H2 and O2 to water. When the latter pathway is quantitatively suppressed (e.g., on RhCrOx co-catalyst or in excess of oxygenated hydrocarbons), the initial H2-evolution rates are independent of the oxygenate nature and concentration. This is a consequence of the reduction equivalents formore » H2-evolution provided by water oxidation compensating changes in the rates of oxygenate conversion. Thus, under conditions of suppressed back-reaction, water and oxygenate oxidations have equal quantum efficiencies. The selectivities to water and oxygenate oxidation depend on oxygenate nature and concentration. Transformations mediated by indirect hole transfer dominate as a result of the water oxidation at the anode and the associated intermediates generated in O2-evolution catalysis (e.g. ·OH, ·O and ·OOH). On the undecorated semiconductor, the O2 produced during overall water splitting is reductively activated to participate in glycerol oxidation without consuming evolved H2. Acknowledgements The authors would like to thank ESRF in Grenoble, France, for providing beam time at the ID26 station for XAFS experiments. K.E.S. gratefully acknowledges financial support by the Fond der Chemischen Industrie (FCI). J.A.L. and O.Y.G. acknowledge support for his contribution by the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. The authors thank Xaver Hecht for BET measurements, Martin Neukamm for SEM and AAS measurements and Dr. Udishnu Sanyal for TEM imaging. Christine Schwarz is acknowledged for technical assistance in NMR experiments.« less

  18. Froude Number is the Single Most Important Hydraulic Parameter for Salmonid Spawning Habitat.

    NASA Astrophysics Data System (ADS)

    Gillies, E.; Moir, H. J.

    2015-12-01

    Many gravel-bed rivers exhibit historic straightening or embanking, reducing river complexity and the available habitat for key species such as salmon. A defensible method for predicting salmonid spawning habitat is an important tool for anyone engaged in assessing a river restoration. Most empirical methods to predict spawning habitat use lookup tables of depth, velocity and substrate. However, natural site selection is different: salmon must pick a location where they can successfully build a redd, and where eggs have a sufficient survival rate. Also, using dimensional variables, such as depth and velocity, is problematic: spawning occurs in rivers of differing size, depth and velocity range. Non-dimensional variables have proven useful in other branches of fluid dynamics, and instream habitat is no different. Empirical river data has a high correlation between observed salmon redds and Froude number, without insight into why. Here we present a physics based model of spawning and bedform evolution, which shows that Froude number is indeed a rational choice for characterizing the bedform, substrate, and flow necessary for spawning. It is familiar for Froude to characterize surface waves, but Froude also characterizes longitudinal bedform in a mobile bed river. We postulate that these bedforms and their hydraulics perform two roles in salmonid spawning: allowing transport of clasts during redd building, and oxygenating eggs. We present an example of this Froude number and substrate based habitat characterization on a Scottish river for which we have detailed topography at several stages during river restoration and subsequent evolution of natural processes. We show changes to the channel Froude regime as a result of natural process and validate habitat predictions against redds observed during 2014 and 2015 spawning seasons, also relating this data to the Froude regime in other, nearby, rivers. We discuss the use of the Froude spectrum in providing an indicator of salmonid spawning and the success of river restoration.

  19. Porous yolk-shell microspheres as N-doped carbon matrix for motivating the oxygen reduction activity of oxygen evolution oriented materials.

    PubMed

    Zhou, Jinqiu; Wang, Mengfan; Qian, Tao; Liu, Sisi; Cao, Xuecheng; Yang, Tingzhou; Yang, Ruizhi; Yan, Chenglin

    2017-09-08

    It is highly challenging to explore high-performance bi-functional oxygen electrode catalysts for their practical application in next-generation energy storage and conversion devices. In this work, we synthesize hierarchical N-doped carbon microspheres with porous yolk-shell structure (NCYS) as a metal-free electrocatalyst toward efficient oxygen reduction through a template-free route. The enhanced oxygen reduction performances in both alkaline and acid media profit well from the porous yolk-shell structure as well as abundant nitrogen functional groups. Furthermore, such yolk-shell microspheres can be used as precursor materials to motivate the oxygen reduction activity of oxygen evolution oriented materials to obtain a desirable bi-functional electrocatalyst. To verify its practical utility, Zn-air battery tests are conducted and exhibit satisfactory performance, indicating that this constructed concept for preparation of bi-functional catalyst will afford a promising strategy for exploring novel metal-air battery electrocatalysts.

  20. Porous yolk-shell microspheres as N-doped carbon matrix for motivating the oxygen reduction activity of oxygen evolution oriented materials

    NASA Astrophysics Data System (ADS)

    Zhou, Jinqiu; Wang, Mengfan; Qian, Tao; Liu, Sisi; Cao, Xuecheng; Yang, Tingzhou; Yang, Ruizhi; Yan, Chenglin

    2017-09-01

    It is highly challenging to explore high-performance bi-functional oxygen electrode catalysts for their practical application in next-generation energy storage and conversion devices. In this work, we synthesize hierarchical N-doped carbon microspheres with porous yolk-shell structure (NCYS) as a metal-free electrocatalyst toward efficient oxygen reduction through a template-free route. The enhanced oxygen reduction performances in both alkaline and acid media profit well from the porous yolk-shell structure as well as abundant nitrogen functional groups. Furthermore, such yolk-shell microspheres can be used as precursor materials to motivate the oxygen reduction activity of oxygen evolution oriented materials to obtain a desirable bi-functional electrocatalyst. To verify its practical utility, Zn-air battery tests are conducted and exhibit satisfactory performance, indicating that this constructed concept for preparation of bi-functional catalyst will afford a promising strategy for exploring novel metal-air battery electrocatalysts.

  1. Atomically monodisperse nickel nanoclusters as highly active electrocatalysts for water oxidation

    NASA Astrophysics Data System (ADS)

    Joya, Khurram S.; Sinatra, Lutfan; Abdulhalim, Lina G.; Joshi, Chakra P.; Hedhili, M. N.; Bakr, Osman M.; Hussain, Irshad

    2016-05-01

    Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 which initiate oxygen evolution at an amazingly low overpotential of ~1.51 V (vs. RHE; η ~ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm-2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec-1 is observed using Ni4(PET)8. These results are comparable to the state-of-the-art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm-2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation.Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 which initiate oxygen evolution at an amazingly low overpotential of ~1.51 V (vs. RHE; η ~ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm-2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec-1 is observed using Ni4(PET)8. These results are comparable to the state-of-the-art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm-2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation. Electronic supplementary information (ESI) available: CCDC 1419754 and 1419731. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6nr00709k

  2. Deconvoluting lung evolution: from phenotypes to gene regulatory networks

    PubMed Central

    Torday, John S.; Rehan, Virender K.; Hicks, James W.; Wang, Tobias; Maina, John; Weibel, Ewald R.; Hsia, Connie C.W.; Sommer, Ralf J.; Perry, Steven F.

    2007-01-01

    Speakers in this symposium presented examples of respiratory regulation that broadly illustrate principles of evolution from whole organ to genes. The swim bladder and lungs of aquatic and terrestrial organisms arose independently from a common primordial “respiratory pharynx” but not from each other. Pathways of lung evolution are similar between crocodiles and birds but a low compliance of mammalian lung may have driven the development of the diaphragm to permit lung inflation during inspiration. To meet the high oxygen demands of flight, bird lungs have evolved separate gas exchange and pump components to achieve unidirectional ventilation and minimize dead space. The process of “screening” (removal of oxygen from inspired air prior to entering the terminal units) reduces effective alveolar oxygen tension and potentially explains why nonathletic large mammals possess greater pulmonary diffusing capacities than required by their oxygen consumption. The “primitive” central admixture of oxygenated and deoxygenated blood in the incompletely divided reptilian heart is actually co-regulated with other autonomic cardiopulmonary responses to provide flexible control of arterial oxygen tension independent of ventilation as well as a unique mechanism for adjusting metabolic rate. Some of the most ancient oxygen-sensing molecules, i.e., hypoxia-inducible factor-1alpha and erythropoietin, are up-regulated during mammalian lung development and growth under apparently normoxic conditions, suggesting functional evolution. Normal alveolarization requires pleiotropic growth factors acting via highly conserved cell–cell signal transduction, e.g., parathyroid hormone-related protein transducing at least partly through the Wingless/int pathway. The latter regulates morphogenesis from nematode to mammal. If there is commonality among these diverse respiratory processes, it is that all levels of organization, from molecular signaling to structure to function, co-evolve progressively, and optimize an existing gas-exchange framework. PMID:20607138

  3. Distinctive aspects of the evolution of galactic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yar-Mukhamedov, D., E-mail: danial.su@gmail.com

    2016-11-15

    We perform an in-depth analysis of the evolution of galactic magnetic fields within a semi-analytic galaxy formation and evolution framework, determine various distinctive aspects of the evolution process, and obtain analytic solutions for a wide range of possible evolution scenarios.

  4. Bottom trawling and oxygen minimum zone influences on continental slope benthic community structure off Vancouver Island (NE Pacific)

    NASA Astrophysics Data System (ADS)

    De Leo, Fabio C.; Gauthier, Maéva; Nephin, Jessica; Mihály, Steven; Juniper, S. Kim

    2017-03-01

    Understanding responses of benthic ecosystems to cumulative impacts of natural stressors, long-term ocean change and increasing resource exploitation is an emerging area of interest for marine ecologists and environmental managers. Few, if any, studies have quantitatively addressed cumulative effects in the deep sea. We report here on a study from the continental slope off Vancouver Island (Canada) in the northeast Pacific Ocean, where the Oxygen Minimum Zone impinges on seabed habitats that are subjected to widespread bottom trawling, primarily by the fishery for thornyhead (Sebastolobus ssp.). We examined how the benthic megafauna in this area was influenced by varying levels of dissolved oxygen and trawling activity, along a depth gradient that was also likely to shape community composition. Continuous video and sonar records from two ROV surveys (50 linear km total; depth range 300-1400 m) respectively provided data on faunal attributes (composition, abundance and diversity) and the frequency of trawl door marks on the seabed. Faunal and trawl data were compiled in a geo-referenced database along with corresponding dissolved oxygen data, and pooled into 500 m segments for statistical analysis. Trawl mark occurrence peaked between 500 and 1100 m, corresponding to areas of slope subjected to hypoxia (<1.4 ml l-1) and severe hypoxia (<0.5 ml l-1). A combined total of 266,251 megafauna organisms from 87 taxa were enumerated in the two transects. Significant megafaunal assemblages according to depth, trawling intensity and bottom water dissolved oxygen concentration were identified by PERMANOVA analyses, with characterizing taxa identified for all three factors. Depth, dissolved oxygen and trawl mark density accounted for 21% to 52% of the variability in benthic community structure according to multiple regression (DISTLM) models. Species richness was highest at intermediate depths and in areas subject to intermediate levels of trawling, and higher under hypoxia than under severe hypoxia. These statistically significant trends demonstrate that the structuring influences of bottom trawling on deep-sea benthic communities can be observed even where communities are being shaped by strong environmental gradients.

  5. Seasonal oxygen isotopic variations in living planktonic foraminifera off Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D.F.; Be, A.W.H.; Fairbanks, R.G.

    1979-10-26

    Seasonal variations in the oxygen-18/oxygen-16 ratio of calcite shells of living planktonic foraminifera in the Sargasso Sea off Bermuda are a direct function of surface water temperature. Seasonal occurrence as well as depth habitat are determining factors in the oxygen isotopic composition of planktonic foraminifera. These relationships may be used to determine the seasonal temperature contrast of oceans in the past.

  6. Measuring vertical oxygen profiles in the hyporheic zone using planar optodes

    NASA Astrophysics Data System (ADS)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2012-04-01

    On of the key parameters, controlling biogeochemical reactions in the hyporheic zone (HZ) is the distribution of oxygen. A reliable measurement of the vertical oxygen distribution is an important tool to understand the dynamic fluctuations of the aerobic zone within the HZ. With repeated measurements of continuous profiles, mixing of surface water and groundwater as well as the consumption of oxygen can be evaluated. We present a novel approach for the in situ measurements of vertical oxygen distribution in the riverbed using a planar optode. The luminescence based optode measurement enables a non invasive measurement without consumption of oxygen, no creation of preferential flow paths and only minimal disturbance of the flow field. Possible atmospheric contamination by pumping pore water into a vessel can be avoided and the readings are independent of flow velocity. A self manufactured planar optode is wrapped around an acrylic tube and installed in the riverbed. The measurement is performed by vertically moving a profiler-piston inside the acrylic tube. The piston holds a robust polymer optical fibre which emits a modulated light signal through the acrylic glass to the optode-foil and transmits the induced luminescence signal back to a commercially available trace oxygen meter. Temperature compensation is accomplished using a depth-oriented temperature probe nearby and processing the raw data within a Matlab script. Robust and unbiased oxygen profiles are obtained by averaging multiple consecutive measurements. To ensure a constant velocity of the profiler for replicating the exact measuring depths, an electric motor device is used. First results at our test site show a variable oxygen profile down to 40 cm depth which is strongly influenced by stream level and upwelling groundwater conditions. The measured oxygen profiles will serve as input parameter for a 3D solute transport and chemical reaction subsurface model of the HZ.

  7. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.

    PubMed

    Hamilton, Trinity L; Bryant, Donald A; Macalady, Jennifer L

    2016-02-01

    Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well-preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane-derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co-occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low-oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic photosynthesis, including the activity of metabolically versatile cyanobacteria, played an important role in delaying the oxygenation of Earth's surface ocean during the Proterozoic Eon. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Role of Short-Range Chemical Ordering in (GaN) 1–x (ZnO) x for Photodriven Oxygen Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dennis P.; Neuefeind, Joerg C.; Koczkur, Kallum M.

    (GaN)1–x(ZnO)x (GZNO) is capable of visible-light driven water splitting, but its bandgap at x ≤ 0.15 (>2.7 eV) results in poor visible-light absorption. Unfortunately, methods to narrow its bandgap by incorporating higher ZnO concentrations are accompanied by extensive Urbach tailing near the absorption-edge, which is indicative of structural disorder or chemical inhomogeneities. We evaluated whether this disorder is intrinsic to the bond-length distribution in GZNO or is a result of defects introduced from the loss of Zn during nitridation. Here, the synthesis of GZNO derived from layered double hydroxide (LDH) precursors is described which minimizes Zn loss and chemical inhomogeneitiesmore » and enhances visible-light absorption. The average and local atomic structures of LDH-derived GZNO were investigated using X-ray and neutron scattering and are correlated with their oxygen evolution rates. An isotope-contrasted neutron-scattering experiment was conducted in conjunction with reverse Monte Carlo (RMC) simulations. We showed that a bond-valence bias in the RMC refinements reproduces the short-range ordering (SRO) observed in structure refinements using isotope-contrasted neutron data. The findings suggest that positional disorder of cation–anion pairs in GZNO partially arises from SRO and influences local bond relaxations. Furthermore, particle-based oxygen evolution reactions (OERs) in AgNO3 solution reveal that the crystallite size of GZNO correlates more than positional disorder with oxygen evolution rate. These findings illustrate the importance of examining the local structure of multinary photocatalysts to identify dominant factors in particulate-based photodriven oxygen evolution.« less

  9. Determination of Ground-Laboratory to In-Space Effective Atomic Oxygen Fluence for DC 93?500 Silicone

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Ma, David

    2004-01-01

    The objective of this research was to calibrate the ground-to-space effective atomic oxygen fluence for DC 93-500 silicone in a thermal energy electron cyclotron resonance (ECR) oxygen plasma facility. Silicones, commonly used spacecraft materials, do not chemically erode with atomic oxygen attack like other organic materials but form an oxidized hardened silicate surface layer. Therefore, the effective atomic oxygen fluence in a ground test facility should not be determined based on mass loss measurements, as they are with organic polymers. A technique has been developed at the Glenn Research Center to determine the equivalent amount of atomic oxygen exposure in an ECR ground test facility to produce the same degree of atomic oxygen damage as in space. The approach used was to compare changes in the surface hardness of ground test (ECR) exposed DC 93-500 silicone with DC 93-500 exposed to low Earth orbit (LEO) atomic oxygen as part of a shuttle flight experiment. The ground to in-space effective atomic oxygen fluence correlation was determined based on the fluence in the ECR source that produced the same hardness for the fluence in-space. Nanomechanical hardness versus contact depth measurements were obtained for five ECR exposed DC 93-500 samples (ECR exposed for 18 to 40 hrs, corresponding to Kapton effective fluences of 4.2 x 10(exp 20) to 9.4 x 10(exp 20) atoms/sq cm, respectively) and for space exposed DC 93-500 from the Evaluation of Oxygen Interactions with Materials III (EOIM III) shuttle flight experiment, exposed to LEO atomic oxygen for 2.3 x 10(exp 20) atoms/sq cm. Pristine controls were also evaluated. A ground-to-space correlation value was determined based on correlation values for four contact depths (150, 200, 250, and 300 nm), which represent the near surface depth data. The results indicate that the Kapton effective atomic oxygen fluence in the ECR facility needs to be 2.64 times higher than in LEO to replicate equivalent exposure damage in the ground test silicone as occurred in the space exposed silicone.

  10. Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2015-07-01

    We combine pulsed photothermal radiometry (PPTR) depth profiling with diffuse reflectance spectroscopy (DRS) measurements for a comprehensive analysis of bruise evolution in vivo. While PPTR enables extraction of detailed depth distribution and concentration profiles of selected absorbers (e.g. melanin, hemoglobin), DRS provides information in a wide range of visible wavelengths and thus offers an additional insight into dynamics of the hemoglobin degradation products. Combining the two approaches enables us to quantitatively characterize bruise evolution dynamics. Our results indicate temporal variations of the bruise evolution parameters in the course of bruise self-healing process. The obtained parameter values and trends represent a basis for a future development of an objective technique for bruise age determination.

  11. Shallow-Water Nitrox Diving, the NASA Experience

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Daniel T.

    2009-01-01

    NASA s Neutral Buoyancy Laboratory (NBL) contains a 6.2 million gallon, 12-meter deep pool where astronauts prepare for space missions involving space walks (extravehicular activity EVA). Training is conducted in a space suit (extravehicular mobility unit EMU) pressurized to 4.0 - 4.3 PSI for up to 6.5 hours while breathing a 46% NITROX mix. Since the facility opened in 1997, over 30,000 hours of suited training has been completed with no occurrence of decompression sickness (DCS) or oxygen toxicity. This study examines the last 5 years of astronaut suited training runs. All suited runs are computer monitored and data is recorded in the Environmental Control System (ECS) database. Astronaut training runs from 2004 - 2008 were reviewed and specific data including total run time, maximum depth and average depth were analyzed. One hundred twenty seven astronauts and cosmonauts completed 2,231 training runs totaling 12,880 exposure hours. Data was available for 96% of the runs. It was revealed that the suit configuration produces a maximum equivalent air depth of 7 meters, essentially eliminating the risk of DCS. Based on average run depth and time, approximately 17% of the training runs exceeded the NOAA oxygen maximum single exposure limits, with no resulting oxygen toxicity. The NBL suited training protocols are safe and time tested. Consideration should be given to reevaluate the NOAA oxygen exposure limits for PO2 levels at or below 1 ATA.

  12. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, A.E.; Elders, W.A.

    1981-01-01

    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.

  13. Stability of a Cu0.7Co2.3O4 electrode during the oxygen evolution reaction for alkaline anion-exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Kang, Kyoung Eun; Kim, Chi Ho; Lee, Myung Sup; Jung, Chang Wook; Kim, Yang Do; Lee, Jae Ho

    2018-01-01

    The electrode materials for oxygen evolution, especially non-platinum group metal oxides, have attracted increasing attention. Among the spinel-type transition metal oxides, Cu0.7Co2.3O4 powders were evaluated as a potential replacement for expensive dimensionally stabilized anode materials. Cu0.7Co2.3O4 powder for use as an electrode material for oxygen evolution in an alkaline anion-exchange membrane water electrolyzer was prepared using a thermal decomposition method. The Cu0.7Co2.3O4 powders heat-treated at 250 °C exhibited the same X-ray diffraction patterns without any secondary phases as the Co3O4 spinel structure did. The Cu0.7Co2.3O4 powders heat-treated at 250 °C for 30 minutes showed the smallest mean particle size of approximately 376 nm with the powders having a homogeneous shape and size distribution. The fine powders with a relatively homogeneous size distribution showed a higher current density during the oxygen evolution reaction. The lifetime of the Cu0.7Co2.3O4 electrode was relatively long at a low current density, but was quickly shortened due to physical detachment of the Cu0.7Co2.3O4 powders as the current density was increased. This study showed that the efficiency and the stability of Cu0.7Co2.3O4 powders during the oxygen evolution reaction were related directly to the active electrode area.

  14. Nitric Oxide Accumulation: The Evolutionary Trigger for Phytopathogenesis

    PubMed Central

    Santana, Margarida M.; Gonzalez, Juan M.; Cruz, Cristina

    2017-01-01

    Many publications highlight the importance of nitric oxide (NO) in plant–bacteria interactions, either in the promotion of health and plant growth or in pathogenesis. However, the role of NO in the signaling between bacteria and plants and in the fate of their interaction, as well as the reconstruction of their interactive evolution, remains largely unknown. Despite the complexity of the evolution of life on Earth, we explore the hypothesis that denitrification and aerobic respiration were responsible for local NO accumulation, which triggered primordial antagonistic biotic interactions, namely the first phytopathogenic interactions. N-oxides, including NO, could globally accumulate via lightning synthesis in the early anoxic ocean and constitute pools for the evolution of denitrification, considered an early step of the biological nitrogen cycle. Interestingly, a common evolution may be proposed for components of denitrification and aerobic respiration pathways, namely for NO and oxygen reductases, a theory compatible with the presence of low amounts of oxygen before the great oxygenation event (GOE), which was generated by Cyanobacteria. During GOE, the increase in oxygen caused the decrease of Earth’s temperature and the consequent increase of oxygen dissolution and availability, making aerobic respiration an increasingly dominant trait of the expanding mesophilic lifestyle. Horizontal gene transfer was certainly important in the joint expansion of mesophily and aerobic respiration. First denitrification steps lead to NO formation through nitrite reductase activity, and NO may further accumulate when oxygen binds NO reductase, resulting in denitrification blockage. The consequent transient NO surplus in an oxic niche could have been a key factor for a successful outcome of an early denitrifying prokaryote able to scavenge oxygen by NO/oxygen reductase or by an independent heterotrophic aerobic respiration pathway. In fact, NO surplus could result in toxicity causing “the first disease” in oxygen-producing Cyanobacteria. We inspected in bacteria the presence of sequences similar to the NO-producing nitrite reductase nirS gene of Thermus thermophilus, an extreme thermophilic aerobe of the Thermus/Deinococcus group, which constitutes an ancient lineage related to Cyanobacteria. In silico analysis revealed the relationship between the presence of nirS genes and phytopathogenicity in Gram-negative bacteria. PMID:29067010

  15. Elucidating the alkaline oxygen evolution reaction mechanism on platinum

    DOE PAGES

    Favaro, M.; Valero-Vidal, C.; Eichhorn, J.; ...

    2017-03-07

    Understanding the interplay between surface chemistry, electronic structure, and reaction mechanism of the catalyst at the electrified solid/liquid interface will enable the design of more efficient materials systems for sustainable energy production. The substantial progress in operando characterization, particularly using synchrotron based X-ray spectroscopies, provides the unprecedented opportunity to uncover surface chemical and structural transformations under various (electro)chemical reaction environments. In this work, we study a polycrystalline platinum surface under oxygen evolution conditions in an alkaline electrolyte by means of ambient pressure X-ray photoelectron spectroscopy performed at the electrified solid/liquid interface. We elucidate previously inaccessible aspects of the surface chemistrymore » and structure as a function of the applied potential, allowing us to propose a reaction mechanism for oxygen evolution on a platinum electrode in alkaline solutions.« less

  16. Lyman-alpha observations of Comet West /1975n/

    NASA Technical Reports Server (NTRS)

    Opal, C. B.; Carruthers, G. R.

    1977-01-01

    The rate of hydrogen production of Comet West is studied through rocket observation of solar Lyman-alpha radiation resonantly scattered by the escaping hydrogen atoms. Two sets of Lyman-alpha exposure sequences are used to obtain computer-smoothed brightness contour (isophote) maps covering a density range of 100:1. A simple radial outflow model is applied to the contour maps to determine the rate of hydrogen production (3.2 by 10 to the 30th power atoms/sec.) Discrepancies between the observed shape of the outer isophotes and predicted models may be explained by optical depth effects, or by the presence of small pieces of the comet's nucleus distributed along the orbit. Hydrogen, carbon, and oxygen production for Comet West and Comet Kohoutek are compared; differences may be accounted for by variations in the composition or evolution of the two comets.

  17. Co-regulation of primary mouse hepatocyte viability and function by oxygen and matrix.

    PubMed

    Buck, Lorenna D; Inman, S Walker; Rusyn, Ivan; Griffith, Linda G

    2014-05-01

    Although oxygen and extracellular matrix cues both influence differentiation state and metabolic function of primary rat and human hepatocytes, relatively little is known about how these factors together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of pericellular oxygen tension on hepatocellular function, we employed two methods of altering oxygen concentration in the local cellular microenvironment of cells cultured in the presence or absence of an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic) and measured the local oxygen concentrations in the pericellular environment using custom-designed oxygen microprobes. From these measurements of oxygen concentrations, we derived values of oxygen consumption rates under a spectrum of environmental contexts, thus providing the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and matrix microenvironment were found to synergistically regulate hepatocellular survival and function as assessed using quantitative image analysis for cells stained with vital dyes, and assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological oxygen concentration, and this effect was mitigated at still greater supra-physiological concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study underscores the importance of carefully controlling cell density, medium depth, and gas phase oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent hepatocellular function are profound. © 2014 Wiley Periodicals, Inc.

  18. A Sixteen-year Decline in Dissolved Oxygen in the Central California Current.

    PubMed

    Ren, Alice S; Chai, Fei; Xue, Huijie; Anderson, David M; Chavez, Francisco P

    2018-05-08

    A potential consequence of climate change is global decrease in dissolved oxygen at depth in the oceans due to changes in the balance of ventilation, mixing, respiration, and photosynthesis. We present hydrographic cruise observations of declining dissolved oxygen collected along CalCOFI Line 66.7 (Line 67) off of Monterey Bay, in the Central California Current region, and investigate likely mechanisms. Between 1998 and 2013, dissolved oxygen decreased at the mean rate of 1.92 µmol kg -1 year -1 on σ θ 26.6-26.8 kg m -3 isopycnals (250-400 m), translating to a 40% decline from initial concentrations. Two cores of elevated dissolved oxygen decline at 130 and 240 km from shore, which we suggest are a California Undercurrent and a California Current signal respectively, occurred on σ θ ranges of 26.0-26.8 kg m -3 (100-400 m). A box model suggests that small annual changes in dissolved oxygen in source regions are sufficient to be the primary driver of the mid-depth declines. Variation in dissolved oxygen at the bottom of the surface mixed layer suggests that there is also a signal of increased local remineralization.

  19. Oxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and sulfidic spring.

    PubMed

    de Beer, Dirk; Weber, Miriam; Chennu, Arjun; Hamilton, Trinity; Lott, Christian; Macalady, Jennifer; M Klatt, Judith

    2017-03-01

    Oxygenic and anoxygenic photosynthesis were studied with microsensors in microbial mats found at 9-10 m depth in anoxic and sulfidic water in Little Salt Spring (Florida, USA). The lake sediments were covered with a 1-2 mm thick red mat dominated by filamentous Cyanobacteria, below which Green Sulfur Bacteria (GSB, Chlorobiaceae) were highly abundant. Within 4 mm inside the mats, the incident radiation was attenuated to undetectable levels. In situ microsensor data showed both oxygenic photosynthesis in the red surface layer and light-induced sulfide dynamics up to 1 cm depth. Anoxygenic photosynthesis occurred during all daylight hours, with complete sulfide depletion around midday. Oxygenic photosynthesis was limited to 4 h per day, due to sulfide inhibition in the early morning and late afternoon. Laboratory measurements on retrieved samples showed that oxygenic photosynthesis was fully but reversibly inhibited by sulfide. In patches Fe(III) alleviated the inhibition of oxygenic photosynthesis by sulfide. GSB were resistant to oxygen and showed a low affinity to sulfide. Their light response showed saturation at very low intensities. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event.

    PubMed

    Schirrmeister, Bettina E; de Vos, Jurriaan M; Antonelli, Alexandre; Bagheri, Homayoun C

    2013-01-29

    Cyanobacteria are among the most diverse prokaryotic phyla, with morphotypes ranging from unicellular to multicellular filamentous forms, including those able to terminally (i.e., irreversibly) differentiate in form and function. It has been suggested that cyanobacteria raised oxygen levels in the atmosphere around 2.45-2.32 billion y ago during the Great Oxidation Event (GOE), hence dramatically changing life on the planet. However, little is known about the temporal evolution of cyanobacterial lineages, and possible interplay between the origin of multicellularity, diversification of cyanobacteria, and the rise of atmospheric oxygen. We estimated divergence times of extant cyanobacterial lineages under Bayesian relaxed clocks for a dataset of 16S rRNA sequences representing the entire known diversity of this phylum. We tested whether the evolution of multicellularity overlaps with the GOE, and whether multicellularity is associated with significant shifts in diversification rates in cyanobacteria. Our results indicate an origin of cyanobacteria before the rise of atmospheric oxygen. The evolution of multicellular forms coincides with the onset of the GOE and an increase in diversification rates. These results suggest that multicellularity could have played a key role in triggering cyanobacterial evolution around the GOE.

  1. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event

    PubMed Central

    Schirrmeister, Bettina E.; de Vos, Jurriaan M.; Antonelli, Alexandre; Bagheri, Homayoun C.

    2013-01-01

    Cyanobacteria are among the most diverse prokaryotic phyla, with morphotypes ranging from unicellular to multicellular filamentous forms, including those able to terminally (i.e., irreversibly) differentiate in form and function. It has been suggested that cyanobacteria raised oxygen levels in the atmosphere around 2.45–2.32 billion y ago during the Great Oxidation Event (GOE), hence dramatically changing life on the planet. However, little is known about the temporal evolution of cyanobacterial lineages, and possible interplay between the origin of multicellularity, diversification of cyanobacteria, and the rise of atmospheric oxygen. We estimated divergence times of extant cyanobacterial lineages under Bayesian relaxed clocks for a dataset of 16S rRNA sequences representing the entire known diversity of this phylum. We tested whether the evolution of multicellularity overlaps with the GOE, and whether multicellularity is associated with significant shifts in diversification rates in cyanobacteria. Our results indicate an origin of cyanobacteria before the rise of atmospheric oxygen. The evolution of multicellular forms coincides with the onset of the GOE and an increase in diversification rates. These results suggest that multicellularity could have played a key role in triggering cyanobacterial evolution around the GOE. PMID:23319632

  2. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; Teske, A.

    1996-01-01

    The evolution of non-photosynthetic sulphide-oxidizing bacteria was contemporaneous with a large shift in the isotopic composition of biogenic sedimentary sulphides between 0.64 and 1.05 billion years ago. Both events were probably driven by a rise in atmospheric oxygen concentrations to greater than 5-18% of present levels--a change that may also have triggered the evolution of animals.

  3. Paralarvae of the complex Sthenoteuthis oualaniensis-Dosidicus gigas (Cephalopoda: Ommastrephidae) in the northern limit of the shallow oxygen minimum zone of the Eastern Tropical Pacific Ocean (April 2012)

    NASA Astrophysics Data System (ADS)

    Sánchez-Velasco, Laura; Ruvalcaba-Aroche, Erick D.; Beier, Emilio; Godínez, Victor M.; Barton, Eric D.; Díaz-Viloria, Noe; Pacheco, María. R.

    2016-03-01

    The three-dimensional distribution of the paralarvae of the complex Sthenoteuthis oualaniensis-Dosidicus gigas (Cephalopoda: Ommastrephidae) was analyzed at the northern limit of the shallow oxygen minimum zone in the Eastern Tropical Pacific in April 2012. The upper limit of the oxygen minimum water (˜44 µmol/kg or 1 mL/L) rises from ˜100 m depth in the entrance of the Gulf of California to ˜20 m depth off Cabo Corrientes. Most of the paralarvae of this complex, dominated by D. gigas, were concentrated in the Gulf entrance, between the thermocline (˜20 to ˜50 m depth) and the sea surface, in the warmest (>19°C) oxygenated (>176 µmol/kg) layer. The highest abundance of paralarvae was detected in an anticyclonic eddy (˜120 km diameter and >500 m deep), which contained lower-salinity water (<35 g/kg), consistent with formation in the California Current. Lower paralarvae abundance was recorded further south off Cabo Corrientes, where hypoxic layers were elevated as water shoaled nearshore. Almost no paralarvae were found in the north of the study area beyond the strong salinity front (˜34.8-35.4 g/kg) that bounded the anticyclone. These results showed an affinity of the paralarvae for lower-salinity, oxygenated water, illustrated by the influence of the mesoscale anticyclonic eddy and the salinity front in their distribution. Based on this study, it can be concluded that the expansion of the depth range of hypoxic water observed in the Eastern Tropical Pacific may be increasing environmental stress on the paralarvae by vertically restricting their habitat, and so affecting their survival.

  4. Humidification of Blow-By Oxygen During Recovery of Postoperative Pediatric Patients: One Unit's Journey.

    PubMed

    Donahue, Suzanne; DiBlasi, Robert M; Thomas, Karen

    2018-02-02

    To examine the practice of nebulizer cool mist blow-by oxygen administered to spontaneously breathing postanesthesia care unit (PACU) pediatric patients during Phase one recovery. Existing evidence was evaluated. Informal benchmarking documented practices in peer organizations. An in vitro study was then conducted to simulate clinical practice and determine depth and amount of airway humidity delivery with blow-by oxygen. Informal benchmarking information was obtained by telephone interview. Using a three-dimensional printed simulation model of the head connected to a breathing lung simulator, depth and amount of moisture delivery in the respiratory tree were measured. Evidence specific to PACU administration of cool mist blow-by oxygen was limited. Informal benchmarking revealed that routine cool mist oxygenated blow-by administration was not widely practiced. The laboratory experiment revealed minimal moisture reaching the mid-tracheal area of the simulated airway model. Routine use of oxygenated cool mist in spontaneously breathing pediatric PACU patients is not supported. Copyright © 2017 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  5. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition.

    PubMed

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems.

  6. High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration

    DOE PAGES

    To, John W. F.; Ng, Jia Wei Desmond; Siahrostami, Samira; ...

    2016-11-30

    The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O 2-H 2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH 3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of amore » regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. As a result, this work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.« less

  7. High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    To, John W. F.; Ng, Jia Wei Desmond; Siahrostami, Samira

    The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O 2-H 2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH 3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of amore » regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. As a result, this work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.« less

  8. Phenotypic plasticity drives a depth gradient in male conspicuousness in threespine stickleback, Gasterosteus aculeatus.

    PubMed

    Brock, Chad D; Cummings, Molly E; Bolnick, Daniel I

    2017-08-01

    Signal evolution is thought to depend on both a signal's detectability or conspicuousness (signal design) as well as any extractable information it may convey to a potential receiver (signal content). While theoretical and empirical work in sexual selection has largely focused on signal content, there has been a steady accrual of evidence that signal design is also important for trait evolution. Despite this, relatively little attention has been paid to spatial variation in the conspicuousness of a given signal, especially over small spatial scales (relative to an organism's dispersal distance). Here, we show that visual signals of male threespine stickleback vary in conspicuousness, depending on a male's nest depth within a given lake. Deeper nesting males were typically more chromatically conspicuous than shallow nesting males. This trend is partly because all male stickleback are more conspicuous in deep optical environments. However, deep males are even more conspicuous than environmentally driven null expectations, while shallow males tend to be disproportionally cryptic. Experimental manipulation of male nesting depth induced plastic changes in nuptial color that replicated the natural gradients in conspicuousness. We discuss a number of potential mechanisms that could produce depth gradients in conspicuousness in male stickleback, including concomitant depth gradients in diet, predation pressure, male/female density, female preference, and opportunity for sexual selection. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  9. Thermal evolution of defects in undoped zinc oxide grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Zilan; Su, Shichen; Ling, Francis Chi-Chung; Anwand, W.; Wagner, A.

    2014-07-01

    Undoped ZnO films are grown by pulsed laser deposition on c-plane sapphire with different oxygen pressures. Thermal evolutions of defects in the ZnO films are studied by secondary ion mass spectroscopy (SIMS), Raman spectroscopy, and positron annihilation spectroscopy (PAS), and with the electrical properties characterized by the room temperature Hall measurement. Oxygen deficient defect related Raman lines 560 cm-1 and 584 cm-1 are identified and their origins are discussed. Thermal annealing induces extensive Zn out-diffusion at the ZnO/sapphire interface and leaves out Zn-vacancy in the ZnO film. Two types of Zn-vacancy related defects with different microstructures are identified in the films. One of them dominates in the samples grown without oxygen. Annealing the sample grown without oxygen or growing the samples in oxygen would favor the Zn-vacancy with another microstructure, and this Zn-vacancy defect persists after 1100 °C annealing.

  10. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    PubMed

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Interfacial oxygen migration and its effect on the magnetic anisotropy in Pt/Co/MgO/Pt films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Feng, Chun, E-mail: fengchun@ustb.edu.cn, E-mail: ghyu@mater.ustb.edu.cn; Liu, Yang

    2014-02-03

    This paper reports the interfacial oxygen migration effect and its induced magnetic anisotropy evolution in Pt/Co/MgO/Pt films. During depositing the MgO layer, oxygen atoms from the MgO combine with the neighboring Co atoms, leading to the formation of CoO at the Co/MgO interface. Meanwhile, the films show in-plane magnetic anisotropy (IMA). After annealing, most of the oxygen atoms in CoO migrate back to the MgO layer, resulting in obvious improvement of Co/MgO interface and the enhancement of effective Co-O orbital hybridization. These favor the evolution of magnetic anisotropy from IMA to perpendicular magnetic anisotropy (PMA). The oxygen migration effect ismore » achieved by the redox reaction at the Co/MgO interface. On the contrary, the transfer from IMA to PMA cannot be observed in Pt/Co/Pt films due to the lack of interfacial oxygen migration.« less

  12. Circulation, eddies, oxygen and nutrient changes in the eastern tropical South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Czeschel, R.; Stramma, L.; Weller, R. A.; Fischer, T.

    2014-09-01

    A large, subsurface oxygen deficiency zone is located in the eastern tropical South Pacific Ocean (ETSP). The large-scale circulation in the eastern equatorial Pacific and off Peru in November/December 2012 shows the influence of the equatorial current system, the eastern boundary currents, and the northern reaches of the subtropical gyre. In November 2012 the Equatorial Undercurrent is centered at 250 m depth, deeper than in earlier observations. In December 2012 the equatorial water is transported southeastward near the shelf in the Peru-Chile Undercurrent with a mean transport of 1.6 Sv. In the oxygen minimum zone (OMZ) the flow is overlaid with strong eddy activity on the poleward side of the OMZ. Floats with parking depth at 400 m show fast westward flow in the mid-depth equatorial channel and sluggish flow in the OMZ. Floats with oxygen sensors clearly show the passage of eddies with oxygen anomalies. The long-term float observations in the upper ocean lead to a net community production estimate at about 18° S of up to 16.7 mmol C m-3 yr1 extrapolated to an annual rate and 7.7 mmol C m-3 yr-1 for the time period below the mixed layer. Oxygen differences between repeated ship sections are influenced by the Interdecadal Pacific Oscillation, by the phase of El Niño, by seasonal changes, and by eddies and hence have to be interpreted with care. At and south of the equator the decrease in oxygen in the upper ocean since 1976 is related to an increase in nitrate, phosphate, and in part in silicate.

  13. Circulation, eddies, oxygen, and nutrient changes in the eastern tropical South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Czeschel, R.; Stramma, L.; Weller, R. A.; Fischer, T.

    2015-06-01

    A large subsurface oxygen deficiency zone is located in the eastern tropical South Pacific Ocean (ETSP). The large-scale circulation in the eastern equatorial Pacific and off the coast of Peru in November/December 2012 shows the influence of the equatorial current system, the eastern boundary currents, and the northern reaches of the subtropical gyre. In November 2012 the equatorial undercurrent (EUC) is centered at 250 m depth, deeper than in earlier observations. In December 2012, the equatorial water is transported southeastward near the shelf in the Peru-Chile undercurrent (PCUC) with a mean transport of 1.4 Sv. In the oxygen minimum zone (OMZ), the flow is overlaid with strong eddy activity on the poleward side of the OMZ. Floats with parking depth at 400 m show fast westward flow in the mid-depth equatorial channel and sluggish flow in the OMZ. Floats with oxygen sensors clearly show the passage of eddies with oxygen anomalies. The long-term float observations in the upper ocean lead to a net community production estimate at about 18° S of up to 16.7 mmol C m-3 yr-1 extrapolated to an annual rate and 7.7 mmol C m-3 yr-1 for the time period below the mixed layer. Oxygen differences between repeated ship sections are influenced by the Interdecadal Pacific Oscillation (IPO), by the phase of El Niño, by seasonal changes, and by eddies, and hence have to be interpreted with care. At and south of the Equator the decrease in oxygen in the upper ocean since 1976 is related to an increase in nitrate, phosphate, and in part silicate.

  14. The role of depth in regulating water quality and fish assemblages in oxbow lakes

    USGS Publications Warehouse

    Goetz, Daniel B.; Miranda, Leandro E.; Kroger, Robert; Andrews, Caroline S.

    2015-01-01

    We evaluated water quality and fish assemblages in deep (> 3.0 m; N = 7) and shallow (< 1.5 m; N = 6) floodplain lakes in the intensively cultivated Yazoo River Basin (Mississippi, USA) using indirect gradient multivariate procedures. Shallow lakes displayed wide diel oxygen fluctuations, some reaching hypoxic/anoxic conditions for extended periods of time, high suspended solids, and extreme water temperatures. Conversely, deeper lakes were represented by higher visibility, stable oxygen levels, and cooler water temperatures. Fish assemblages in shallow lakes were dominated by tolerant, small-bodied fishes and those able to breathe atmospheric oxygen. Deeper lakes had a greater representation of predators and other large-bodied fishes. Our evaluation suggests fish assemblages are reflective of oxbow lakes water quality, which is shaped by depth. Understanding the interactions between depth, water quality, and fish assemblages may facilitate development of effective management plans for improving conditions necessary to sustain diverse fish assemblages in agriculturally dominated basins.

  15. Oxygen Profile. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Wooley, John F.

    The oxygen profile procedure is a means of measuring the oxygen concentration at various locations in a basin. By dividing the surface of a basin into sections and then establishing sample points on the surface, at mid-depth, and near the bottom, a waste water treatment plant operator can measure and plot dissolved oxygen data which can be plotted…

  16. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO 3-δ studied using neutron total scattering and Rietveld analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young

    2011-08-29

    Oxygen-deficient BaTiO 3-δ exhibits an insulator-metal transition with increasing δ. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO 3-δ. Despite its significant impact on resistivity, slight oxygen reduction (δ=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (δ=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in themore » highly oxygen-reduced BaTiO 3-δ is due to the appearance of nonferroelectric cubic lattice.« less

  17. Orientation-Dependent Oxygen Evolution on RuO 2 without Lattice Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Diaz-Morales, Oscar; Kolb, Manuel

    RuO2 catalysts exhibit record activities towards the oxygen evolution reaction (OER), which is crucial to enable efficient and sustainable energy storage. Here we examine the RuO2 OER kinetics on rutile (110), (100), (101), and (111) orientations, finding (100) the most active. We assess the potential involvement of lattice oxygen in the OER mechanism with online 3 electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous work, suggesting lattice oxygen is not exchanged in catalyzing OER onmore » crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by DFT, where more active facets bind oxygen more weakly. This new understanding of the active sites provides a design strategy to enhance the OER activity of RuO2 nanoparticles by facet engineering.« less

  18. Effects of pH and Oxygen on Photosynthetic Reactions of Intact Chloroplasts 1

    PubMed Central

    Heber, Ulrich; Andrews, T. John; Boardman, N. Keith

    1976-01-01

    Oxygen inhibition of photosynthesis was studied with intact spinach (Spinacia oleracea L.) chloroplasts which exhibited very high rates of photosynthetic CO2 reduction and were insensitive to additions of photosynthetic intermediates when CO2 was available at saturating concentrations. Photosynthetic rates were measured polarographically as O2 evolution, and the extent of the reduction of substrate was estimated from the amount of O2 evolved. With CO2 as substrate, inhibition of photosynthesis by O2 was dependent on pH. At pH values above 8, rates of O2 evolution were strongly inhibited by O2 and only a fraction of the added bicarbonate was reduced before O2 evolution ceased. The extent of O2 evolution declined with increasing O2 concentration and decreasing initial bicarbonate concentration. At pH 7.2, the initial photosynthetic rate was inhibited about 30% at high O2 levels, but the extent of O2 evolution was unaffected and most of the added bicarbonate was reduced. Photosynthetic O2 evolution with 3-phosphoglycerate as substrate was similarly dependent on pH and O2 concentration. In contrast, there was little effect of O2 and pH on oxaloacetate-dependent oxygen evolution. Acid-base shift experiments with osmotically shocked chloroplasts showed that ATP formation was not affected by O2. The results are discussed in terms of a balance between photosynthetic O2 evolution and O2 consumption by the ribulose diphosphate oxygenase reaction. PMID:16659466

  19. Calcium-manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: lessons from simple models.

    PubMed

    Najafpour, Mohammad Mahdi

    2011-01-01

    The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1994-01-01

    A microporous structure with layered interstitial surface treatments, and method and apparatus for preparation thereof is presented. The structure is prepared by sequentially subjecting a uniformly surface-treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  1. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1992-01-01

    A microporous structure with layered interstitial surface treatments, and the method and apparatus for its preparation are disclosed. The structure is prepared by sequentially subjecting a uniformly surface treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  2. Brain Tissue PO2 Measurement During Normoxia and Hypoxia Using Two-Photon Phosphorescence Lifetime Microscopy.

    PubMed

    Xu, Kui; Boas, David A; Sakadžić, Sava; LaManna, Joseph C

    2017-01-01

    Key to the understanding of the principles of physiological and structural acclimatization to changes in the balance between energy supply (represented by substrate and oxygen delivery, and mitochondrial oxidative phosphorylation) and energy demand (initiated by neuronal activity) is to determine the controlling variables, how they are sensed and the mechanisms initiated to maintain the balance. The mammalian brain depends completely on continuous delivery of oxygen to maintain its function. We hypothesized that tissue oxygen is the primary sensed variable. In this study two-photon phosphorescence lifetime microscopy (2PLM) was used to determine and define the tissue oxygen tension field within the cerebral cortex of mice to a cortical depth of between 200-250 μm under normoxia and acute hypoxia (FiO 2  = 0.10). High-resolution images can provide quantitative distributions of oxygen and intercapillary oxygen gradients. The data are best appreciated by quantifying the distribution histogram that can then be used for analysis. For example, in the brain cortex of a mouse, at a depth of 200 μm, tissue oxygen tension was mapped and the distribution histogram was compared under normoxic and mild hypoxic conditions. This powerful method can provide for the first time a description of the delivery and availability of brain oxygen in vivo.

  3. Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Narayan, Sri R.; Billings, Keith J.

    2011-01-01

    NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to preferentially react with oxygen from the ruthenium oxide, and not oxygen from the environment. Nanoparticulate iridium black and anhydrous ruthenium oxide are weighed out and mixed to 5 18 atomic percent. They are then heat treated at 300 C under flowing argon (in order to create an inert environment) for a minimum of 14 hours. This temperature was chosen because it is approximately the creep temperature of ruthenium oxide, and is below the sintering temperature of both materials. In general, the temperature should always be below the sintering temperature of both materials. The iridium- doped ruthenium oxide catalyst is then fabricated into a PEM-based membrane- electrode assembly (MEA), and then mounted into test cells. The result is an electrolyzer system that can sustain electrolysis at twice the current density, and at the same efficiency as commercial catalysts in the range of 100-200 mA/sq cm. At 200 mA/sq cm, this new system operates at an efficiency of 85 percent, which is 2 percent greater than commercially available catalysts. Testing has shown that this material is as stable as commercially available oxygen evolution catalysts. This means that this new catalyst can be used to regenerate fuel cell systems in space, and as a hydrogen generator on Earth.

  4. Use of Molecular Fossils for the Interpretation of Paleoenvironments on Early Earth: The Synthesis of Lipid Biomarkers by Methane-Oxidizing Bacteria

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Summons, Roger E.; Chang, Sherwood (Technical Monitor)

    1994-01-01

    Over the course of Earth's history, the most important biological influence has come from the evolution of oxygenic photosynthesis and the development of an oxygen-rich biosphere. Although the availability of free oxygen had profound effects on subsequent biological and planetary evolution, clear paleobiological evidence of the timing of this transition is lacking. Recent technical advances in the microanalysis of organic matter has made it possible to detect residual molecules (biomarkers) in proterozoic (2.5 to 0.6 billion years) sedimentary rock characteristic of specific groups of microorganisms. When coupled with the carbon isotopic fractionations characteristic of biological systems and the new field of compound specific isotope analysis, biomarkers could prove to be a powerful tool for decoding ancient biochemistry from the geological record. We have been studying the carbon isotope fractionations associated with the synthesis of organic biomarker molecules in several types of methane-oxidizing bacteria that should have been key to carbon cycling in paleoenvironments after the evolution of oxygenic photosynthesis.

  5. From the Cover: Environmental and biotic controls on the evolutionary history of insect body size

    NASA Astrophysics Data System (ADS)

    Clapham, Matthew E.; Karr, Jered A.

    2012-07-01

    Giant insects, with wingspans as large as 70 cm, ruled the Carboniferous and Permian skies. Gigantism has been linked to hyperoxic conditions because oxygen concentration is a key physiological control on body size, particularly in groups like flying insects that have high metabolic oxygen demands. Here we show, using a dataset of more than 10,500 fossil insect wing lengths, that size tracked atmospheric oxygen concentrations only for the first 150 Myr of insect evolution. The data are best explained by a model relating maximum size to atmospheric environmental oxygen concentration (pO2) until the end of the Jurassic, and then at constant sizes, independent of oxygen fluctuations, during the Cretaceous and, at a smaller size, the Cenozoic. Maximum insect size decreased even as atmospheric pO2 rose in the Early Cretaceous following the evolution and radiation of early birds, particularly as birds acquired adaptations that allowed more agile flight. A further decrease in maximum size during the Cenozoic may relate to the evolution of bats, the Cretaceous mass extinction, or further specialization of flying birds. The decoupling of insect size and atmospheric pO2 coincident with the radiation of birds suggests that biotic interactions, such as predation and competition, superseded oxygen as the most important constraint on maximum body size of the largest insects.

  6. Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives.

    PubMed

    Ghosh, Srabanti; Basu, Rajendra N

    2018-06-21

    Electrocatalytic oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) have attracted widespread attention because of their important role in the application of various energy storage and conversion devices, such as fuel cells, metal-air batteries and water splitting devices. However, the sluggish kinetics of the HER/OER/ORR and their dependency on expensive noble metal catalysts (e.g., Pt) obstruct their large-scale application. Hence, the development of efficient and robust bifunctional or trifunctional electrocatalysts in nanodimension for both oxygen reduction/evolution and hydrogen evolution reactions is highly desired and challenging for their commercialization in renewable energy technologies. This review describes some recent developments in the discovery of bifunctional or trifunctional nanostructured catalysts with improved performances for application in rechargeable metal-air batteries and fuel cells. The role of the electronic structure and surface redox chemistry of nanocatalysts in the improvement of their performance for the ORR/OER/HER under an alkaline medium is highlighted and the associated reaction mechanisms developed in the recent literature are also summarized.

  7. A highly redox-heterogeneous ocean in South China during the early Cambrian (˜529-514 Ma): Implications for biota-environment co-evolution

    NASA Astrophysics Data System (ADS)

    Jin, Chengsheng; Li, Chao; Algeo, Thomas J.; Planavsky, Noah J.; Cui, Hao; Yang, Xinglian; Zhao, Yuanlong; Zhang, Xingliang; Xie, Shucheng

    2016-05-01

    The ;Cambrian Explosion; is known for rapid increases in the morphological disparity and taxonomic diversity of metazoans. It has been widely proposed that this biological event was a consequence of oxygenation of the global ocean, but this hypothesis is still under debate. Here, we present high-resolution Fe-S-C-Al-trace element geochemical records from the Jinsha (outer shelf) and Weng'an (outer shelf) sections of the early Cambrian Yangtze Platform, integrating these results with previously published data from six correlative sections representing a range of water depths (Xiaotan, Shatan, Dingtai, Yangjiaping, Songtao, and Longbizui). The integrated iron chemistry and redox-sensitive trace element data suggest that euxinic mid-depth waters dynamically coexisted with oxic surface waters and ferruginous deep waters during the earliest Cambrian, but that stepwise expansion of oxic waters commenced during Cambrian Stage 3 (∼ 521- 514 Ma). Combined with data from lower Cambrian sections elsewhere, including Oman, Iran and Canada, we infer that the global ocean exhibited a high degree of redox heterogeneity during the early Cambrian, consistent with low atmospheric oxygen levels (∼ 10- 40% of present atmospheric level, or PAL). A large spatial gradient in pyrite sulfur isotopic compositions (δ34Spy), which vary from a mean of - 12.0 ‰ in nearshore areas to + 22.5 ‰ in distal deepwater sections in lower Cambrian marine units of South China imply low concentrations and spatial heterogeneity of seawater sulfate, which is consistent with a limited oceanic sulfate reservoir globally. By comparing our reconstructed redox chemistry with fossil records from the lower Cambrian of South China, we infer that a stepwise oxygenation of shelf and slope environments occurred concurrently with a gradual increase in ecosystem complexity. However, deep waters remained anoxic and ferruginous even as macrozooplankton and suspension-feeding mesozooplankton appeared during Cambrian Stage 3. These findings suggest that the ;Cambrian Explosion; in South China may have been primarily a consequence of locally improved oxygenation of the ocean-surface layer rather than of the full global ocean. Our observations are inconsistent with predicted changes in ocean chemistry driven by early Cambrian animals, suggesting that the influence of early Cambrian animals on contemporaneous ocean chemistry, as proposed in previous studies, may be overly exaggerated.

  8. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  9. The influence of coating solution and calcination condition on the durability of Ir1-xSnxO2/Ti anodes for oxygen evolution

    NASA Astrophysics Data System (ADS)

    Kato, Zenta; Kashima, Ryo; Tatsumi, Kohei; Fukuyama, Shinnosuke; Izumiya, Koichi; Kumagai, Naokazu; Hashimoto, Koji

    2016-12-01

    For oxygen formation without forming chlorine in seawater electrolysis for hydrogen production we have been using the anode consisting of three layers of MnO2-type multiple oxide catalyst, intermediate layer and titanium substrate. The intermediate layer was used for prevention of oxidation of the titanium substrate during anodic polarization for oxygen evolution and was prepared by calcination of butanol solutions of H2IrCl6 and SnCl4 coated on titanium. The protectiveness of Ir1-xSnxO2 layer formed was directly examined using Ir1-xSnxO2/Ti anodes in H2SO4 solution changing the preparation conditions of the layer. When the sum of Ir4+ and Sn4+ was 0.1 M, the highest protectiveness was observed at 0.06 M Sn4+. Although an increase in calcination temperature led to the formation of Ir1-x-ySnxTiyO2 triple oxide with a slightly lower catalytic activity for oxygen evolution, the anode calcined at 450 °C showed the highest protectiveness.

  10. A self-assembled Ni(cyclam)-BTC network on ITO for an oxygen evolution catalyst in alkaline solution.

    PubMed

    Leem, Yun Jin; Cho, Keumnam; Oh, Kyung Hee; Han, Sung-Hwan; Nam, Ki Min; Chang, Jinho

    2017-03-25

    A self-assembled Ni(cyclam)-BTC film was formed on ITO in an acidic solution. Ni(cyclam)-BTC exhibited an enhanced electro-catalytic property for the oxygen evolution reaction (OER), which was strongly relevant to the Ni(iii)/Ni(iv) redox reaction activated by the potential dynamic process. A possible formation mechanism of Ni(cyclam)-BTC by self-assembly on ITO was also proposed.

  11. Reactive oxygen species may play an essential role in driving biological evolution: The Cambrian Explosion as an example.

    PubMed

    Yang, Dong; Guo, Xuejun; Xie, Tian; Luo, Xiaoyan

    2018-01-01

    The Cambrian Explosion is one of the most significant events in the history of life; essentially all easily fossilizable animal body plans first evolved during this event. Although many theories have been proposed to explain this event, its cause remains unresolved. Here, we propose that the elevated level of oxygen, in combination with the increased mobility and food intake of metazoans, led to increased cellular levels of reactive oxygen species (ROS), which drove evolution by enhancing mutation rates and providing new regulatory mechanisms. Our hypothesis may provide a unified explanation for the Cambrian Explosion as it incorporates both environmental and developmental factors and is also consistent with ecological explanations for animal radiation. Future studies should focus on testing this hypothesis, and may lead to important insights into evolution. Copyright © 2017. Published by Elsevier B.V.

  12. Oxygen monitor for semi-closed rebreathers: design and use for estimating metabolic oxygen consumption

    NASA Astrophysics Data System (ADS)

    Clarke, John R.; Southerland, David

    1999-07-01

    Semi-closed circuit underwater breathing apparatus (UBA) provide a constant flow of mixed gas containing oxygen and nitrogen or helium to a diver. However, as a diver's work rate and metabolic oxygen consumption varies, the oxygen percentages within the UBA can change dramatically. Hence, even a resting diver can become hypoxic and become at risk for oxygen induced seizures. Conversely, a hard working diver can become hypoxic and lose consciousness. Unfortunately, current semi-closed UBA do not contain oxygen monitors. We describe a simple oxygen monitoring system designed and prototyped at the Navy Experimental Diving Unit. The main monitor components include a PIC microcontroller, analog-to-digital converter, bicolor LED, and oxygen sensor. The LED, affixed to the diver's mask is steady green if the oxygen partial pressure is within pre- defined acceptable limits. A more advanced monitor with a depth senor and additional computational circuitry could be used to estimate metabolic oxygen consumption. The computational algorithm uses the oxygen partial pressure and the diver's depth to compute O2 using the steady state solution of the differential equation describing oxygen concentrations within the UBA. Consequently, dive transients induce errors in the O2 estimation. To evalute these errors, we used a computer simulation of semi-closed circuit UBA dives to generate transient rich data as input to the estimation algorithm. A step change in simulated O2 elicits a monoexponential change in the estimated O2 with a time constant of 5 to 10 minutes. Methods for predicting error and providing a probable error indication to the diver are presented.

  13. The effect of progressive hypoxia on school structure and dynamics in Atlantic herring Clupea harengus.

    PubMed

    Domenici, Paolo; Ferrari, R Silvana; Steffensen, John F; Batty, Robert S

    2002-10-22

    The effect of progressive hypoxia on the structure and dynamics of herring (Clupea harengus) schools in laboratory conditions was investigated. The length, width and depth of schools of about 20 individuals were measured from video recordings to test the hypothesis that during hypoxia fish schools change their shape and volume. School shape (calculated as the ratios of length/depth, width/depth and length/width) did not change significantly during hypoxia. School length, width, depth, area and volume were all significantly increased at 20% oxygen saturation. Volume, area and width were more sensitive to hypoxia; volume and width were also increased at 25% and area at 30% oxygen saturation. The degree of position changing (shuffling) of individuals within the school was also analysed. Shuffling in normoxia was observed to occur largely through 'O-turn' manoeuvres, a 360( degrees )turn executed laterally to the school that allowed fishes in the front to move to the back. O-turn frequency during normoxia was 0.69 O-turns fish(-1) min(-1) but significantly decreased with hypoxia to 0.37 O-turns fish(-1) min(-1) at 30% oxygen saturation. Shuffling was also investigated by measuring the persistence time of individual herring in leading positions (i.e. the first half of the school). No significant changes occurred during hypoxia, indicating that the decrease in O-turn frequency does not affect shuffling rate during hypoxia, and that position shuffling in hypoxic conditions is mainly due to overtaking or falling back by individual fishes. School integrity and positional dynamics are the outcome of trade-offs among a number of biotic factors, such as food, predator defence, mating behaviour and various physical factors that may impose certain limits. Among these, our results indicate that oxygen level modulates schooling behaviour. Oxygen alters whole-school parameters at oxygen saturation values that can be encountered by herring in the field, indicating that oxygen availability is an important factor in the trade-offs that determine school volume. An increase in school volume in the wild may increase the oxygen available to each individual. However, shuffling rate is not affected by hypoxia, indicating that the internal dynamics of positioning is the result of the balance of other factors, for example related to the nutritional state of each individual fish as suggested by previous studies.

  14. Thermal and dissolved oxygen characteristics of a South Carolina cooling reservoir

    USGS Publications Warehouse

    Oliver, James L.; Hudson, Patrick L.

    1987-01-01

    Temperature and dissolved oxygen concentrations were measured monthly from January 1971 to December 1982 at 1-m depth intervals at 13 stations in Keowee Reservoir in order to characterize spatial and temporal changes associated with operation of the Oconee Nuclear Station. The reservoir water column was i to 4°C warmer in operational than in non-operational years. The thermo-dine was at depths of 5 to 15 m before the operation of Oconee Nuclear Station, but was always below the upper level of the intake (20 m) after the station was in full operation; this suggests that pumping by the Oconee Nuclear Station had depleted all available cool hypolimnetic water to this depth. As a result summer water temperatures at depths greater than 10 m were usually 10°C higher after plant operation began than before. By fall the reservoir was nearly homothemious to a depth of 27 m, where a thermocine developed. Seasonal temperature profiles varied with distance from the plant; a cool water plume was evident in spring and a warm water plume was present in the summer, fall, and winter. A cold water plume also developed in the northern section of the reservoir due to the operation of Jocassee Pumped Storage Station. Increases in the mean water temperature of the reservoir during operational periods were correlated with the generating output of the power plant. The annual heat load to the reservoir increased by one-third after plant operations began. The alteration of the thermal stratification of the receiving water during the summer also caused the dissolved oxygen to mix to greater depths.

  15. Oxygen and life on earth: an anesthesiologist's views on oxygen evolution, discovery, sensing, and utilization.

    PubMed

    Lindahl, Sten G E

    2008-07-01

    The advent of oxygenic photosynthesis and the accumulation of oxygen in our atmosphere opened up new possibilities for the development of life on Earth. The availability of oxygen, the most capable electron acceptor on our planet, allowed the development of highly efficient energy production from oxidative phosphorylation, which shaped the evolutionary development of aerobic life forms from the first multicellular organisms to the vertebrates.

  16. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.

    PubMed

    Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter

    2016-09-28

    Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.

  17. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments.

    DOE PAGES

    Danilovic, N.; Subbaraman, R.; Chang, K-C.; ...

    2014-10-08

    The methods used to improve catalytic activity are well-established, however elucidating the factors that simultaneously control activity and stability is still lacking, especially for oxygen evolution reaction (OER) catalysts. Here, by studying fundamental links between the activity and stability of well-characterized monometallic and bimetallic oxides, we found that there is generally an inverse relationship between activity and stability. To overcome this limitation, we developed a new synthesis strategy that is based on tuning the near-surface composition of Ru and Ir elements by surface segregation, thereby resulting in the formation of a nanosegregated domain that balances the stability and activity ofmore » surface atoms. We demonstrate that a Ru0.5Ir0.5 alloy synthesized by using this method exhibits four-times higher stability than the best Ru-Ir oxygen evolution reaction materials, while still preserving the same activity.« less

  18. Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere

    NASA Astrophysics Data System (ADS)

    Wortel, M. J. R.; Vlaar, N. J.

    1988-09-01

    In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical value T cr. Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650 700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth. Our results imply that no barrier to slab penetration at a depth of 650 700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.

  19. Flash Infrared Thermography Contrast Data Analysis Technique

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    This paper provides information on an IR Contrast technique that involves extracting normalized contrast versus time evolutions from the flash thermography inspection infrared video data. The analysis calculates thermal measurement features from the contrast evolution. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat-bottom holes in the subject material. The measurement features and the contrast simulation are used to evaluate flash thermography data in order to characterize delamination-like anomalies. The thermal measurement features relate to the anomaly characteristics. The contrast evolution simulation is matched to the measured contrast evolution over an anomaly to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat-bottom hole (EFBH) similar to that used as input to the simulation. A similar analysis, in terms of diameter and depth of an equivalent uniform gap (EUG) providing a best match with the measured contrast evolution, is also provided. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH/EUG diameter are compared to evaluate the anomaly. The information provided here is geared towards explaining the IR Contrast technique. Results from a limited amount of validation data on reinforced carbon-carbon (RCC) hardware are included in this paper.

  20. Photosensitizer fluorescence emission during photodynamic therapy applied to dermatological diseases

    NASA Astrophysics Data System (ADS)

    Salas-García, I.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2011-09-01

    Photodynamic Therapy (PDT) is an optical treatment modality that allows malignant tissue destruction. It is based on the administration of a photosensitizer and the posterior irradiation by an optical source. Photosensitizer molecules absorb the excitation light photons triggering a series of photochemical reactions in the presence of oxygen in the target tissue. During such interactions it is produced the de-excitation of the photosensitizer molecules in the singlet excited state which return to their minimum energy state by emitting fluorescence photons. These days, there are fixed clinical PDT protocols that make use of a particular optical dose and photosensitizer amount. However treatment response varies among patients and the type of pathology. In order to adjust an optimal dosimetry, the development of accurate predictive models plays an important role. The photosensitizer fluorescence can be used to estimate the degradation of the photoactive agent and as an implicit dosimetric measurement during treatment. However it is complex to know the fluorescence dependence with the depth in the tumor from observed fluorescence in the pathology surface. We present a first approach to predict the photosensitizer fluorescence dependence with depth during the PDT treatment applied to a skin disease commonly treated in the dermatological clinical practice. The obtained results permit us to know the photosensitizer temporal fluorescence evolution in different points of the tumor sample during the photochemical reactions involved in PDT with a predictive purpose related to the treatment evolution. The model presented also takes into account the distribution of a topical photosensitizer, the propagation of light in a biological media and the subsequent photochemical interactions between light and tissue. This implies that different parameters related with the photosensitizer distribution or the optical source characteristics could be adjusted to provide a specific treatment to a particular pathology.

  1. The Evolutionary Ecology of Biotic Association in a Megadiverse Bivalve Superfamily: Sponsorship Required for Permanent Residency in Sediment

    PubMed Central

    Li, Jingchun; Ó Foighil, Diarmaid; Middelfart, Peter

    2012-01-01

    Background Marine lineage diversification is shaped by the interaction of biotic and abiotic factors but our understanding of their relative roles is underdeveloped. The megadiverse bivalve superfamily Galeommatoidea represents a promising study system to address this issue. It is composed of small-bodied clams that are either free-living or have commensal associations with invertebrate hosts. To test if the evolution of this lifestyle dichotomy is correlated with specific ecologies, we have performed a statistical analysis on the lifestyle and habitat preference of 121 species based on 90 source documents. Methodology/Principal Findings Galeommatoidea has significant diversity in the two primary benthic habitats: hard- and soft-bottoms. Hard-bottom dwellers are overwhelmingly free-living, typically hidden within crevices of rocks/coral heads/encrusting epifauna. In contrast, species in soft-bottom habitats are almost exclusively infaunal commensals. These infaunal biotic associations may involve direct attachment to a host, or clustering around its tube/burrow, but all commensals locate within the oxygenated sediment envelope produced by the host’s bioturbation. Conclusions/Significance The formation of commensal associations by galeommatoidean clams is robustly correlated with an abiotic environmental setting: living in sediments (). Sediment-dwelling bivalves are exposed to intense predation pressure that drops markedly with depth of burial. Commensal galeommatoideans routinely attain depth refuges many times their body lengths, independent of siphonal investment, by virtue of their host’s burrowing and bioturbation. In effect, they use their much larger hosts as giant auto-irrigating siphon substitutes. The evolution of biotic associations with infaunal bioturbating hosts may have been a prerequisite for the diversification of Galeommatoidea in sediments and has likely been a key factor in the success of this exceptionally diverse bivalve superfamily. PMID:22905116

  2. Molecular identification of an ABC transporter complex for manganese: analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process.

    PubMed Central

    Bartsevich, V V; Pakrasi, H B

    1995-01-01

    During photosynthesis, the photosystem II (PSII) pigment-protein complex catalyzes oxygen evolution, a reaction in which a four-manganese ensemble plays a crucial role. Using a newly developed selection scheme, we have isolated BP13, a random photosynthesis-deficient mutant strain of the cyanobacterium, Synechocystis 6803. This mutant grew slowly under photoautotrophic conditions, and had a low oxygen evolution activity. Biochemical analysis revealed that the lesion in this mutant strain had specifically affected the Mn ensemble in PSII. Interestingly, incubation of BP13 cells with micromolar levels of added Mn induced rapid recovery of oxygen evolution activity. The mutant could be complemented with a fragment of wild-type chromosomal DNA containing three closely linked genes, mntA, mntB and mntC. These gene products showed significant sequence similarities with polypeptide components of bacterial permeases that are members of the 'ABC (ATP binding cassette) superfamily' of transporter proteins. We determined that in the BP13 strain, a single nucleotide change had resulted in the replacement of an alanine by an aspartic acid residue in MntA, a soluble protein containing ATP binding motifs. These results suggest that the mntCAB gene cluster encodes polypeptide components of a Mn transporter, the first such protein complex identified in any organism. PMID:7743991

  3. Plasma-Assisted Synthesis of Monodispersed and Robust Ruthenium Ultrafine Nanocatalysts for Organosilane Oxidation and Oxygen Evolution Reactions.

    PubMed

    Gnanakumar, Edwin S; Ng, Wesley; Coşkuner Filiz, Bilge; Rothenberg, Gadi; Wang, Sheng; Xu, Hualong; Pastor-Pérez, Laura; Pastor-Blas, M Mercedes; Sepúlveda-Escribano, Antonio; Yan, Ning; Shiju, N Raveendran

    2017-11-23

    We report a facile and general approach for preparing ultrafine ruthenium nanocatalysts by using a plasma-assisted synthesis at <100 °C. The resulting Ru nanoparticles are monodispersed (typical size 2 nm) and remain that way upon loading onto carbon and TiO 2 supports. This gives robust catalysts with excellent activities in both organosilane oxidation and the oxygen evolution reaction.

  4. The Determination of Rate-Limiting Steps during Soot Formation

    DTIC Science & Technology

    1989-04-27

    acceleration in chemistry due to the presence of oxygen . Quantitative prediction of soot production , should it become a reality, will require knowledge of...PAH ..... ... ..................... 7 Fig. 4 1.25% Benzene/1% Oxygen - Light Products ........ .................... 8 Fig. 5 1.25% Benzene/0.3% Oxygen ...Benzene/0.3% Oxygen - PAH Production ....... .................. 11 Fig. 8 Evolution of Closed Ring Aromatics (t(source) = oo) .................... .15 Fig

  5. Diffusive Transfer of Oxygen From Seamount Basaltic Crust Into Overlying Sediments: an Example From the Clarion-Clipperton Fracture Zone, Equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kasten, S.; Mewes, K.; Mogollón, J.; Picard, A.; Rühlemann, C.; Eisenhauer, A.; Kuhn, T.; Ziebis, W.

    2015-12-01

    Within the Clarion-Clipperton Fracture Zone (CCFZ) located in the equatorial Pacific Ocean numerous seamounts, with diameters ranging from 3 to 30 km and varying heights above the surrounding seafloor of up to 2500 m, occur throughout the deep-sea plain. There is evidence that these may serve as conduits for low-temperature hydrothermal circulation of seawater through the oceanic crust. During RV SONNE cruise SO205 in April/May 2010 and BIONOD cruise with RV ĹATALANTE in spring 2012 we took piston and gravity cores for geochemical analyses, as well as for high-resolution pore-water oxygen and nutrient measurements. Specifically, we took cores along a transect at three sites, located 400, 700 and 1000 m away from the foot of a 240 m high seamount, called 'Teddy Bare'. At all 3 sites oxygen penetrates the entire sediment column of the organic carbon-poor sediment. More importantly, oxygen concentrations initially decrease with sediment depth but increase again at depths of 3 m and 7 m above the basaltic basement, suggesting an upward diffusion of oxygen from seawater circulating within the seamount crust into the overlying basal sediments. This is the first time this has been shown for the deep subsurface in the Pacific Ocean. Mirroring the oxygen concentrations nitrate concentrations accumulate with sediment depth but decrease towards the basement. Transport-reaction modeling revealed that (1) the diffusive flux of oxygen from the basaltic basement exceeds the oxygen consumption through organic matter oxidation and nitrification in the basal sediments and (2) the nutrient exchange between the sediment and the underlying basaltic crust occurs at orders-of-magnitude lower rates than between the sediment surface and the overlying bottom water. We furthermore show that the upward diffusion of oxygen from the basaltic basement affects the preservation of organic compounds within the oxic sediment column at all 3 sites. Our investigations indicate that an upward diffusion of oxygen from the basalt into the overlying sediment may be a widespread phenomenon in this area of the Pacific Ocean that is characterized by numerous seamounts.

  6. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition

    PubMed Central

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems. PMID:27575790

  7. Techniques for Measuring Low Earth Orbital Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Demko, Rikako

    2002-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, where the atomic oxygen fluence is often so low that mass loss measurements can not produce acceptable uncertainties, recession measurements based on atomic force microscopy analyses can be used. Equally necessary to knowing the mass loss or recession depth for determining the erosion yield of polymers is the knowledge of the atomic oxygen fluence that the polymers were exposed to in space. This paper discusses the procedures and relevant issues for mass loss and recession depth measurements for passive atomic oxygen erosion yield characterization of polymers, along with techniques for active atomic oxygen fluence and erosion characterization. One active atomic oxygen erosion technique discussed is a new technique based on optical measurements. Details including the use of both semi-transparent and opaque polymers for active erosion measurement are reviewed.

  8. The timetable of evolution

    PubMed Central

    Knoll, Andrew H.; Nowak, Martin A.

    2017-01-01

    The integration of fossils, phylogeny, and geochronology has resulted in an increasingly well-resolved timetable of evolution. Life appears to have taken root before the earliest known minimally metamorphosed sedimentary rocks were deposited, but for a billion years or more, evolution played out beneath an essentially anoxic atmosphere. Oxygen concentrations in the atmosphere and surface oceans first rose in the Great Oxygenation Event (GOE) 2.4 billion years ago, and a second increase beginning in the later Neoproterozoic Era [Neoproterozoic Oxygenation Event (NOE)] established the redox profile of modern oceans. The GOE facilitated the emergence of eukaryotes, whereas the NOE is associated with large and complex multicellular organisms. Thus, the GOE and NOE are fundamental pacemakers for evolution. On the time scale of Earth’s entire 4 billion–year history, the evolutionary dynamics of the planet’s biosphere appears to be fast, and the pace of evolution is largely determined by physical changes of the planet. However, in Phanerozoic ecosystems, interactions between new functions enabled by the accumulation of characters in a complex regulatory environment and changing biological components of effective environments appear to have an important influence on the timing of evolutionary innovations. On the much shorter time scale of transient environmental perturbations, such as those associated with mass extinctions, rates of genetic accommodation may have been limiting for life. PMID:28560344

  9. The Evolution of Deepwater Dissolved Oxygen in the Northern South China Sea During the Past 400 ka

    NASA Astrophysics Data System (ADS)

    Wang, N.; Huang, B.; Dong, Y.

    2016-12-01

    Reconstruction of dissolved oxygen in paleo-ocean contributes toward understanding the history of ocean circulation, climate, causes of extinctions, and the evolution of marine organisms. Based on analysis of benthic foraminifera oxygen index (BFOI), the redox-sensitive trace elements (Mo/Al), the percentage of epifaunal benthic foraminifera and infaunal/epifaunal ratio at core MD12-3432, we reconstruct the evolution of deep water dissolved oxygen in northern South China Sea (SCS) during the past 400 ka and discuss the mechanisms of variable dissolved oxygen. Both BFOI and Mo/Al are redox indicators. Similar trends confirm that they reflect the variation of dissolved oxygen in seawater since 400 ka accurately. BFOI and Mo/Al indicate that dissolved oxygen was high in MIS 11-MIS 7 and decreased gradually during MIS 6- MIS 2. The percentage of epifauna decreased and infaunal/epifaunal ratio increased with decreasing dissolved oxygen. By comparison of dissolved oxygen and productivity indexes such as phytoplankton total (PT) and species abundances, we found that when PT fluctuated in the average range of 1000-1500 ng/g, the abundances of Bulimina and Uvigerina which represent high productivity increased. However, when PT reached the range of 2500-3000 ng/g, the abundances of Bulimina and Uvigerina didn't increase, but the abundances of dysoxic species Chilostomella oolina and Globobulimina pacifica increased and the dissolved oxygen reached low value. The reasons may be that the decomposition of excessive organic matter consumed more dissolved oxygen. The low dissolved oxygen suppressed the growth of Bulimina and Uvigerina and accelerated the boom of C. oolina and G. oolina. The dissolved oxygen is not only associated with productivity, but also affected by the thermohaline circulation. Benthic foraminifera F. favus is the representative species in Pacific deep water. Its appearance at 194 ka, 205 ka, 325, the 328 ka in MD12-3432 indicate that the upper border of western Pacific deep water was beyond the sill of Bashi Strait and high dissolved oxygen deep water was brought into Northern SCS. The millennium-scale rapid variability and decline of dissolved oxygen in MIS 4, 3, 2 may be caused by fluctuations and slowdown of thermohaline circulation transported from the northern Atlantic to the northern SCS.

  10. Simultaneous quantum yield measurements of carbon uptake and oxygen evolution in microalgal cultures

    PubMed Central

    Gholami, Pardis; Kline, David I.; DuPont, Christopher L.; Dickson, Andrew G.; Mendola, Dominick; Martz, Todd; Allen, Andrew E.; Mitchell, B. Greg

    2018-01-01

    The photosynthetic quantum yield (Φ), defined as carbon fixed or oxygen evolved per unit of light absorbed, is a fundamental but rarely determined biophysical parameter. A method to estimate Φ for both net carbon uptake and net oxygen evolution simultaneously can provide important insights into energy and mass fluxes. Here we present details for a novel system that allows quantification of carbon fluxes using pH oscillation and simultaneous oxygen fluxes by integration with a membrane inlet mass spectrometer. The pHOS system was validated using Phaeodactylum tricornutum cultured with continuous illumination of 110 μmole quanta m-2 s-1 at 25°C. Furthermore, simultaneous measurements of carbon and oxygen flux using the pHOS-MIMS and photon flux based on spectral absorption were carried out to explore the kinetics of Φ in P. tricornutum during its acclimation from low to high light (110 to 750 μmole quanta m-2 s-1). Comparing results at 0 and 24 hours, we observed strong decreases in cellular chlorophyll a (0.58 to 0.21 pg cell-1), Fv/Fm (0.71 to 0.59) and maximum ΦCO2 (0.019 to 0.004) and ΦO2 (0.028 to 0.007), confirming the transition toward high light acclimation. The Φ time-series indicated a non-synchronized acclimation response between carbon uptake and oxygen evolution, which has been previously inferred based on transcriptomic changes for a similar experimental design with the same diatom that lacked physiological data. The integrated pHOS-MIMS system can provide simultaneous carbon and oxygen measurements accurately, and at the time-resolution required to resolve high-resolution carbon and oxygen physiological dynamics. PMID:29920568

  11. Zonal evolution of Alaskan Stream structure and transport quantified with Argo data

    NASA Astrophysics Data System (ADS)

    Logan, Paige D.; Johnson, Gregory C.

    2017-02-01

    The Alaskan Stream (AS) flows west-southwestward along the south side of Alaska and the Aleutian Island Arc; a western boundary current at the northern edge of the North Pacific subpolar gyre. The Argo float array has improved sampling of the Gulf of Alaska, allowing quantification of the AS's zonal evolution from 140°W to 175°W. Geostrophic alongshore transport of the AS in the upper 1000 dbar referenced to an assumed level of no motion at 1000 dbar shows little change from east to west. However, alongshore absolute geostrophic transports in the top 2000 dbar (obtained by combining mean absolute 1000-dbar velocities from float displacements with the geostrophic velocity fields) generally increase to the west. We estimate full-depth transports by fitting a barotropic and the first two baroclinic modes calculated from a climatology to the absolute geostrophic velocities in the upper 2000 dbar and applying the velocities from these fits from 2000 dbar to the seafloor. Flowing west from its formation region at 140°W-145°W the full-depth AS becomes stronger, more barotropic, and also narrower once it reaches ˜160°W, with along-shore transports increasing from -16.4 ± 4.9 Sv (1 Sv = 106 m3 s-1) at 140°W to -32.6 ± 5.2 Sv at 175°W. Mean concentrations of relatively warm, salty, oxygen-poor, and nutrient-rich Pacific Equatorial Water (PEW) in the AS decrease from 17.8% ± 0.3% to 8.5% ± 0.5% between 140°W and 175°W. However, the volume transport of PEW by the AS exhibits little change over the PEW density range between these longitudes.

  12. Atomistic simulation study of influence of Al2O3-Al interface on dislocation interaction and prismatic loop formation during nano-indentation on Al2O3-coated aluminum.

    PubMed

    Mishra, Srishti; Meraj, Md; Pal, Snehanshu

    2018-06-19

    A large-scale molecular dynamics (MD) simulation of nano-indentation was carried out to provide insight into the influence of the Al-Al 2 O 3 interface on dislocation evolution and deformation behavior of Al substrate coated with Al 2 O 3 thin film. Adaptive common neighbor analysis (a-CNA), centro-symmetry parameter (CSP) estimation, and dislocation extraction algorithm (DXA) were implemented to represent structural evolution during nano-indentation deformation. The absence of elastic regime was observed in the P-h curve for this simulated nano-indentation test of Al 2 O 3 thin film coated Al specimen. The displacement of oxygen atoms from Al 2 O 3 to Al partly through the interface greatly influences the plastic deformation behavior of the specimen during nano-indentation. Prismatic dislocation loops, which are formed due to pinning of Shockley partials (1/6 < 112>) by Stair-rod (1/6 < 110>) and Hirth dislocation (1/3 < 001>), were observed in all cases studied in this work. Pile-up of atoms was also observed and the extent of the pile-up was found to vary with the test temperature. A distorted stacking fault tetrahedron (SFT) is formed when a nano-indentation test is carried out at 100 K. The presence of a prismatic dislocation loop, SFT and dislocation forest caused strain hardening and, consequently, there is an increase in hardness as indentation depth increases. Graphical abstract Figure illustrates nano-indentation model set up along with load vs. depth curve and distorted stacking fault tetrahedron.

  13. IR-doped ruthenium oxide catalyst for oxygen evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2012-01-01

    A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Jun; Chen, Chao; Yang, Shi -Ze

    Photocatalytic solar energy conversion is a clean technology for producing renewable energy sources, but its efficiency is greatly hindered by the kinetically sluggish oxygen evolution reaction. Herein, confined defects in atomically-thin BiOCl nanosheets were created to serve as a remarkable platform to explore the relationship between defects and photocatalytic activity. Surface defects can be clearly observed on atomically-thin BiOCl nanosheets from scanning transmission electron microscopy images. Theoretical/experimental results suggest that defect engineering increased states of density and narrowed the band gap. With combined effects from defect induced shortened hole migratory paths and creation of coordination-unsaturated active atoms with dangling bonds,more » defect-rich BiOCl nanosheets displayed 3 and 8 times higher photocatalytic activity towards oxygen evolution compared with atomically-thin BiOCl nanosheets and bulk BiOCl, respectively. As a result, this successful application of defect engineering will pave a new pathway for improving photocatalytic oxygen evolution activity of other materials.« less

  15. Benthic foraminiferal trace metal uptake: a field calibration from the Arabia Sea Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Koho, K. A.; Reichart, G.-J.

    2012-04-01

    The Arabian Sea Oxygen Minimum Zone (OMZ) is sustained by high surface water productivity and relatively weak mid-depth water column ventilation. High primary productivity drives high respiration rates in the water column, causing severe oxygen depletion between ±150-1400 m water depths, with the oxygen concentrations falling below 2 μM in the core of the OMZ. Living (rose Bengal stained) benthic foraminifera were collected at 10-stations, covering a large bottom water oxygen concentration gradient from the Murray Ridge. This sub-marine ridge is located in the open marine environment of the Arabian Sea and thus not affected by large gradients in surface water productivity such as encountered at the continental margins. Since these sites thus receive similar organic fluxes, but are bathed in bottom waters with contrasting oxygen concentrations, pore water profiles mainly reflect bottom water oxygenation. The study sites represent a natural laboratory to investigate the impact of bottom water chemistry on trace metal incorporation in benthic foraminifera. Trace metal analyses by laser ablation ICP-MS allows detailed single chamber measurements of trace metal content, which can be related to in situ pore water geochemistry. Focus of this study is on redox sensitive trace metal (e.g. Mn, U) incorporation into foraminiferal test calcite in relation to pore water oxygen and carbonate chemistry.

  16. Functioning of the Ocean Biological Pump in the Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Moore, J. K.

    2015-12-01

    Oxygen minimum zones occur at mid-depths in the water column in regions with weak ventilation and relatively high export of organic matter from surface waters. They are important ocean for ocean biogeochemistry, and potentially for climate, as sites of water column denitrification and nitrous oxide production. Denitrification is the dominant loss process for fixed nitrogen in the oceans, and can thus affect the ocean inventory of this key nutrient. Denitrification is less energetically efficient than oxic remineralization. Larger zooplankton, which feed on sinking particles, are not present in the lowest oxygen waters. Both of these factors suggest that the remineralization of sinking particles may be slower within the OMZs than in more oxygenated waters. There is limited field evidence and from some modeling studies that remineralization is slower (remineralization length scales are longer) within OMZ waters. In this talk, I will present results from the Community Earth System Model (CESM) ocean component attempting to test this hypothesis. Comparing model results with observed ocean biogeochemical tracer distributions (i.e., phosphate, oxygen), I will examine whether slower remineralization within low oxygen waters provides a better match between simulated and observed tracer distributions. Longer remineralization length scales under low oxygen conditions would provide a negative feedback under global warming scenarios. The biological pump would transfer organic materials to depth more efficiently as ocean oxygen concentrations decline and the OMZs expand.

  17. Paralarvae of the complex Sthenoteuthis oualaniensis - Dosidicus gigas (Cephalopoda: Ommastrephidae) in the northern limit of the shallow oxygen minimum zone of the Eastern Tropical Pacific Ocean.

    NASA Astrophysics Data System (ADS)

    Sanchez Velasco, L.; Ruvalcaba-Aroche, E. D.; Beier, E.; Godinez, V. M.; Barton, E. D.; Diaz-Viloria, N.; Pacheco, M.

    2016-02-01

    The three-dimensional distribution of the paralarvae of the complex Sthenoteuthis oualaniensis - Dosidicus gigas (Cephalopoda: Ommastrephidae) was analyzed in the northern limit of the shallow oxygen minimum zone in the Eastern Tropical Pacific (April, 2012). The hypoxic water ( 1 mL/L) rises from 100 m depth in the entrance of the Gulf of California to 20 m depth off Cabo Corrientes. Most of the paralarvae of this complex, dominated by D. gigas, were concentrated in the Gulf entrance, between the thermocline ( 20 to 50 m depth) and the sea surface, in the warmest (> 19oC) and oxygenated (> 4 mL/L) layer. The highest abundance of paralarvae was detected in an anticyclonic eddy ( 120 km diameter and > 500 m deep), which contained lower salinity water (< 35 g/kg), consistent with formation in the California Current. Lower paralarvae abundance was recorded further south off Cabo Corrientes, where hypoxic layers were elevated as water shoaled near shore. No paralarvae were found in the north of the study area beyond the strong salinity front ( 34.8 - 35.4 g/kg) that bounded the anticyclone. These results showed an affinity of the paralarvae for lower salinity, oxygenated water, illustrated by the influence of the mesoescale anticyclonic eddy and the salinity front in their distribution. Based on this study, it can be hypothesized that the expansion of the depth range of hypoxic water observed in the Eastern Tropical Pacific is vertically restricting the paralarvae habitat and likely causing a northward expansion of its range.

  18. Possibility for a full optical determination of photodynamic therapy outcome

    NASA Astrophysics Data System (ADS)

    Vollet-Filho, J. D.; Menezes, P. F. C.; Moriyama, L. T.; Grecco, C.; Sibata, C.; Allison, R. R.; Castro e Silva, O.; Bagnato, V. S.

    2009-05-01

    The efficacy of photodynamic therapy (PDT) depends on a variety of parameters: concentration of the photosensitizer at the time of treatment, light wavelength, fluence, fluence rate, availability of oxygen within the illuminated volume, and light distribution in the tissue. Dosimetry in PDT requires the congregation of adequate amounts of light, drug, and tissue oxygen. The adequate dosimetry should be able to predict the extension of the tissue damage. Photosensitizer photobleaching rate depends on the availability of molecular oxygen in the tissue. Based on photosensitizers photobleaching models, high photobleaching has to be associated with high production of singlet oxygen and therefore with higher photodynamic action, resulting in a greater depth of necrosis. The purpose of this work is to show a possible correlation between depth of necrosis and the in vivo photosensitizer (in this case, Photogem®) photodegradation during PDT. Such correlation allows possibilities for the development of a real time evaluation of the photodynamic action during PDT application. Experiments were performed in a range of fluence (0-450 J/cm2) at a constant fluence rate of 250 mW/cm2 and applying different illumination times (0-1800 s) to achieve the desired fluence. A quantity was defined (ψ) as the product of fluorescence ratio (related to the photosensitizer degradation at the surface) and the observed depth of necrosis. The correlation between depth of necrosis and surface fluorescence signal is expressed in ψ and could allow, in principle, a noninvasive monitoring of PDT effects during treatment. High degree of correlation is observed and a simple mathematical model to justify the results is presented.

  19. Time-resolved spectral analysis of Radachlorin luminescence in water

    NASA Astrophysics Data System (ADS)

    Belik, V. P.; Gadzhiev, I. M.; Semenova, I. V.; Vasyutinskii, O. S.

    2017-05-01

    We report results of spectral- and time-resolved study of Radachlorin photosensitizer luminescence in water in the spectral range of 950-1350nm and for determination of the photosensitizer triplet state and the singlet oxygen lifetimes responsible for singlet oxygen generation and degradation. At any wavelength within the explored spectral range the luminescence decay contained two major contributions: a fast decay at the ns time scale and a slow evolution at the μs time scale. The fast decay was attributed to electric dipole fluorescence transitions in photosensitizer molecules and the slow evolution to intercombination phosphorescence transitions in singlet oxygen and photosensitizer molecules. Relatively high-amplitude ns peak observed at all wavelengths suggests that singlet oxygen monitoring with spectral isolation methods alone, without additional temporal resolution can be controversial. In the applied experimental conditions the total phosphorescence signal at any wavelength contained a contribution from the photosensitizer triplet state decay, while at 1274nm the singlet oxygen phosphorescence dominated. The results obtained can be used for optimization of the methods of singlet oxygen monitoring and imaging.

  20. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria.

    PubMed

    Soo, Rochelle M; Hemp, James; Parks, Donovan H; Fischer, Woodward W; Hugenholtz, Philip

    2017-03-31

    The origin of oxygenic photosynthesis in Cyanobacteria led to the rise of oxygen on Earth ~2.3 billion years ago, profoundly altering the course of evolution by facilitating the development of aerobic respiration and complex multicellular life. Here we report the genomes of 41 uncultured organisms related to the photosynthetic Cyanobacteria (class Oxyphotobacteria ), including members of the class Melainabacteria and a new class of Cyanobacteria (class Sericytochromatia ) that is basal to the Melainabacteria and Oxyphotobacteria All members of the Melainabacteria and Sericytochromatia lack photosynthetic machinery, indicating that phototrophy was not an ancestral feature of the Cyanobacteria and that Oxyphotobacteria acquired the genes for photosynthesis relatively late in cyanobacterial evolution. We show that all three classes independently acquired aerobic respiratory complexes, supporting the hypothesis that aerobic respiration evolved after oxygenic photosynthesis. Copyright © 2017, American Association for the Advancement of Science.

  1. Rapid Redox Signal Transmission by “Cable Bacteria” beneath a Photosynthetic Biofilm

    PubMed Central

    Meysman, F. J. R.

    2014-01-01

    Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These “cable bacteria” are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments. PMID:25416774

  2. Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm.

    PubMed

    Malkin, S Y; Meysman, F J R

    2015-02-01

    Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These "cable bacteria" are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Oxygen and Temperature Effects on Vertically Migrating Animals in Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Seibel, B.

    2016-02-01

    Large populations of oceanic nekton and zooplankton undergo daily migrations from shallow water at night to depths greater than 200 m during the daytime. In some regions, these migrations cross extreme gradients of temperature, oxygen and carbon dioxide. Oxygen minimum zones (OMZs) are extensive and characterized by deep-water (100-800 m) oxygen partial pressures that would be lethal to most marine organisms, yet are tolerated by vertical migrators. Climate change is predicted to further deplete oxygen, and measurable reductions in oxygen have already been documented in some regions. Increases in shallow water temperature and carbon dioxide are occurring simultaneously. Oxygen levels and temperature are important drivers of biodiversity and distribution, and documented changes in community structure and function are reportedly associated with OMZ expansion and warming. Here I answer fundamental questions concerning zooplankton distributions, adaptations, and functions in oxygen minimum zones. In particular I report that metabolic suppression is a common strategy that facilitates diel occupancy of extreme hypoxia in many oceanic taxa. Anaerobic metabolic pathways play a minimal role in compensating for reduced aerobic ATP production. Numerous epigenetic mechanisms lead to reductions in energetically costly cellular processes, such as transcription and translation. Total metabolism is reduced by 50% or more during exposure to levels of hypoxia that characterize the daytime habitat for most vertically-migrating zooplankton. I further show that many migrators approach their upper thermal maximum in shallow water at night. Thus expanding OMZs and global warming may together compress the habitable depth range for many species.

  4. An In-Depth Study of the Abundance Pattern in the Hot Interstellar Medium in NGC 4649

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzaku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of Oxygen. We construct steady state solutions to the chemical evolution equations that include infall in addition to stellar mass return and Type Ia supernovae (SNIa) enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649 we infer that introduction of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern towards low alpha/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly-introduced gas is heated as it is integrated into, and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an appendix we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  5. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution

    PubMed Central

    Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter

    2015-01-01

    Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co3+/4+ ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions. PMID:26456525

  6. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution.

    PubMed

    Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter

    2015-10-12

    Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co(3+/4+) ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions.

  7. Effect of water depth on the removal of organic matter in horizontal subsurface flow constructed wetlands.

    PubMed

    Aguirre, Paula; Ojeda, Esther; García, Joan; Barragán, Jesús; Mujeriego, Rafael

    2005-01-01

    The objective of this article is to evaluate the effect of water depth on organic matter removal efficiency in horizontal subsurface flow constructed wetlands (SSFs). Experiments were carried out in a pilot plant comprising eight parallel SSF of almost equal surface area (54-56 m2 each) and treating urban wastewater. Each SSF differs from the others in the aspect ratio or the size of the granular medium or the water depth. During a period of two years, the shallow SSFs (0.27 m water depth) removed more chemical oxygen demand (COD) (72-81%), biochemical oxygen demand (BOD)5 (72-85%), ammonia (35-56%), and dissolved reactive phosphorus (DRP) (8-23%) than deep SSFs (0.5 m water depth) (59-64% for COD; 51-57% for BOD5; 18-29% for ammonia; and 0-7% for DRP). Experiments carried out during the summer indicated that sulphate reduction accounted for a clearly higher organic matter removal in the deep SSFs than in the shallow ones. Denitrification seemed to be a significant mechanism for organic matter removal to occur in shallow SSFs. The results suggest that the relative contribution of different metabolic pathways varies with depth.

  8. Evolution of Hydrocarbon-Degrading Microbial Communities in the Aftermath of the Deepwater Horizon Oil Well Blowout in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Dubinsky, E. A.; Chakraborty, R.; Hollibaugh, J. T.; Hazen, T. C.

    2012-12-01

    The Deepwater Horizon oil spill created large plumes of dispersed oil and gas that remained deep in the water column and stimulated growth of several deep-sea bacteria that can degrade hydrocarbons at cold temperatures. We tracked microbial community composition before, during and after the 83-day spill to determine relationships between microbial dynamics, and hydrocarbon and dissolved-oxygen concentrations. Dominant bacteria in plumes shifted drastically over time and were dependent on the concentration of hydrocarbons, and the relative quantities of insoluble and soluble oil fractions. Unmitigated flow from the wellhead early in the spill resulted in the highest concentrations of oil and relatively more n-alkanes suspended in the plume as small oil droplets. These conditions resulted in near complete dominance by alkane-degrading Oceanospirillales, Pseudomonas and Shewanella. Six-weeks into the spill overall hydrocarbon concentrations in the plume decreased and were almost entirely composed of BTEX after management actions reduced emissions into the water column. These conditions corresponded with the emergence of Colwellia, Pseudoalteromonas, Cycloclasticus and Halomonas that are capable of degrading aromatic compounds. After the well was contained dominant plume bacteria disappeared within two weeks after the spill and transitioned to an entirely different set of bacteria dominated by Flavobacteria, Methylophaga, Alteromonas and Rhodobacteraceae that were found in anomalous oxygen depressions throughout August and are prominent degraders of both high molecular weight organic matter as well as hydrocarbons. Bio-Sep beads amended with volatile hydrocarbons from MC-252 oil were used from August through September to create hydrocarbon-amended traps for attracting oil-degrading microbes in situ. Traps were placed at multiple depths on a drilling rig about 600-m from the original MC-252 oil spill site. Microbes were isolated on media using MC-252 oil as the sole carbon source and characterized. Pure cultures were obtained from bacteria similar to those found to dominate hydrocarbon plumes and anomalous oxygen depressions by molecular community analysis. Respirometry studies confirmed that the isolates were able to metabolize the MC-252 oil. Our results from both molecular and culture analysis indicate that indigenous psychrophilic consortia of microorganisms thriving at 5°C from the oil-plume depth water were able to rapidly respond to dispersed oil at depth. The microbial community was highly dynamic and structured by changes in hydrocarbon composition over time. The spill caused sustained alterations in subsurface microbial communities and impacted the deep ocean for at least months after well containment.

  9. Research on rechargeable oxygen electrodes.

    NASA Technical Reports Server (NTRS)

    Giner, J.; Holleck, G.; Malachesky, P. A.

    1970-01-01

    A research program is described which consisted of studying the effects of electrode cycling in very pure KOH solutions, with and without controlled additions of impurities, on oxide formation, oxygen evolution kinetics, oxygen reduction kinetics (including hydrogen peroxide formation), and changes in electrode structure. Bright platinum, platinized platinum, and Teflon-bonded platinum black electrodes were studied. Three main problem areas are identified: the buildup of a refractory anodic layer on prolonged cycling, which leads to a degradation of performance; the dissolution and subsequent deposition of dendritic platinum in the separator, leading to short-circuit ing and loss of electrocatalyst; and the disruptive effect of bubbling during gas evolution on charge. Each of these problem areas is analyzed, and remedial solutions are proposed.

  10. Mid-depth respired carbon storage and oxygenation of the eastern equatorial Pacific over the last 25,000 years

    NASA Astrophysics Data System (ADS)

    Umling, Natalie E.; Thunell, Robert C.

    2018-06-01

    A growing body of evidence suggests that respired carbon was stored in mid-depth waters (∼1-3 km) during the last glacial maximum (LGM) and released to the atmosphere from upwelling regions during deglaciation. Decreased ventilation, enhanced productivity, and enhanced carbonate dissolution are among the mechanisms that have been cited as possible drivers of glacial CO2 drawdown. However, the relative importance of each of these mechanisms is poorly understood. New approaches to quantitatively constrain bottom water carbonate chemistry and oxygenation provide methods for estimating historic changes in respired carbon storage. While increased CO2 drawdown during the LGM should have resulted in decreased oxygenation and a shift in dissolved inorganic carbon (DIC) speciation towards lower carbonate ion concentrations, this is complicated by the interplay of carbonate compensation, export productivity, and circulation. To disentangle these processes, we use a multiproxy approach that includes boron to calcium (B/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentrations ([CO32-]) and the uranium to calcium (U/Ca) ratio of foraminiferal coatings in combination with benthic foraminiferal carbon isotopes to reconstruct changes in bottom water oxygen concentrations ([O2]) and organic carbon export. Our records indicate that LGM [CO32-] and [O2] was reduced at mid water depths of the eastern equatorial Pacific (EEP), consistent with increased respired carbon storage. Furthermore, our results suggest enhanced mixing of lower Circumpolar Deep Water (LCDW) to EEP mid water depths and provide evidence for the importance of circulation for oceanic-atmospheric CO2 exchange.

  11. Simulation of Flow Fluid in the BOF Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Lv, Ming; Zhu, Rong; Guo, Ya-Guang; Wang, Yong-Wei

    2013-12-01

    The basic oxygen furnace (BOF) smelting process consists of different chemical reactions among oxygen, slag, and molten steel, which engenders a vigorous stirring process to promote slagging, dephosphorization, decarbonization, heating of molten steel, and homogenization of steel composition and temperature. Therefore, the oxygen flow rate, lance height, and slag thickness vary during the smelting process. This simulation demonstrated a three-dimensional mathematical model for a 100 t converter applying four-hole supersonic oxygen lance and simulated the effect of oxygen flow rate, lance height, and slag thickness on the flow of molten bath. It is found that as the oxygen flow rate increases, the impact area and depth increases, which increases the flow speed in the molten bath and decreases the area of dead zone. Low oxygen lance height benefits the increase of impact depth and accelerates the flow speed of liquid steel on the surface of the bath, while high oxygen lance height benefits the increase of impact area, thereafter enhances the uniform distribution of radial velocity in the molten steel and increases the flow velocity of molten steel at the bottom of furnace hearth. As the slag thickness increases, the diameter of impinging cavity on the slag and steel surface decreases. The radial velocity of liquid steel in the molten bath is well distributed when the jet flow impact on the slag layer increases.

  12. Wine evolution and spatial distribution of oxygen during storage in high-density polyethylene tanks.

    PubMed

    del Alamo-Sanza, María; Laurie, V Felipe; Nevares, Ignacio

    2015-04-01

    Porous plastic tanks are permeable to oxygen due to the nature of the polymers with which they are manufactured. In the wine industry, these types of tanks are used mainly for storing wine surpluses. Lately, their use in combination with oak pieces has also been proposed as an alternative to mimic traditional barrel ageing. In this study, the spatial distribution of dissolved oxygen in a wine-like model solution, and the oxygen transfer rate (OTR) of high-density polyethylene tanks (HDPE), was analysed by means of a non-invasive opto-luminescence detector. Also, the chemical and sensory evolution of red wine, treated with oak pieces, and stored in HDPE tanks was examined and compared against traditional oak barrel ageing. The average OTR calculated for these tanks was within the commonly accepted amounts reported for new barrels. With regards to wine evolution, a number of compositional and sensory differences were observed between the wines aged in oak barrels and those stored in HDPE tanks with oak barrel alternatives. The use of HDPE tanks in combination with oak wood alternatives is a viable alternative too for ageing wine. © 2014 Society of Chemical Industry.

  13. The timing of events surrounding the Eocene-Oligocene boundary - Results from ODP Leg 199

    NASA Astrophysics Data System (ADS)

    Pälike, H.; Wilson, P. A.; Coxall, H.; Backman, J.

    2003-04-01

    The Eocene/Oligocene (E/O) boundary represents an extreme and rapid climatic transition from the ``greenhouse'' world of the Cretaceous and early Paleogene into the late Paleogene-Neogene ``ice-house''. It is marked by a large and global deepening in the calcite compensation depth (CCD), as well as pronounced changes in the isotopic composition of carbon and oxygen in seawater, recorded in biogenic calcium carbonate. A good understanding is still lacking as to why climatic, palaeoceanographic and marine biological productivity changes occurred within a few tens of thousands of years, and what change in boundary conditions triggered a non-linear response of the climate system. Detailed palaeoceanographic records surrounding the E/O have been rare because of the lack of well-dated, expanded deep-sea sedimentary sections containing well-preserved calcareous microfossils. Ocean Drilling Program Leg 199 recently recovered an extensive set of high-quality sediment cores across the E/O that span a latitudinal and depth transect in the central Pacific Ocean. We present new high-resolution records of bulk %CaCO3, δ18O and δ13C for a set of sites that form a depth transect, clearly delineating the relative depth with respect to the CCD during the transition. Our data show that a two-stepped deepening of the CCD coincides with a remarkably similar and simultaneous evolution of bulk δ18O values. We can demonstrate the imprint of climatic cycles around the E/O boundary, and very high-quality bio- and paleomagnetic datum points allow us to link these to Earth's orbital variations. Shipboard measurements of sediment properties and down-hole log measurements also display an imprint of climatic cycles, and allow us to obtain an astronomically calibrated time scale across the E/O. Our results put tighter constraints on the timing of the evolution of the CCD, mass accumulation rates, and biological productivity across the E/O, which display a distinct two-step shift in the most expanded section at the shallowest end of the transect (Site 1218). The initial deepening of the CCD occurred in less than 50 thousand years, and we observe a change in the nature and amplitude of climatic cycles that are recorded in sediments from Leg 199 across the E/O.

  14. [Stable Isotopes Characters of Soil Water Movement in Shijiazhuang City].

    PubMed

    Chen, Tong-tong; Chen, Hui; Han, Lu; Xing, Xing; Fu, Yang-yang

    2015-10-01

    In this study, we analyzed the stable hydrogen and oxygen isotope values of precipitation, soil water, irrigation water that collected in Shijiazhuang City from April 2013 to May 2014 to investigate the changing rule of the stable isotopes in different soil profiles and the process of soil water movement according to using the isotope tracer technique. The results showed that the mean excess deuterium of the local precipitation was -6.188 5 per thousand. Those reflected that the precipitation in Shijiazhuang City mainly brought by the monsoon from the ocean surface moisture, and also to some extent by the local evaporation. Precipitation was the main source of the soil water and the irrigation water played the supplementary role. In the rainy season, precipitation was enough to supply the soil water. The stable oxygen isotopes at 10-100 cm depth decreased with the increase of depth, the maximum depth of evaporation in the rainy season reached 40 cm. The peak of stable oxygen isotopes of soil water pushed down along the profile, which was infected by the interaction of the precipitation infiltration, evaporation and the mixing water.

  15. Investigations of the preferred modes of north Pacific jet variability, their downstream impacts, and tropical and extratropical precursors

    NASA Astrophysics Data System (ADS)

    Griffin, Kyle S.

    Time extended EOF (TE-EOF) analysis is employed to examine the synoptic-scale evolution of the two leading modes of north Pacific jet stream variability, namely its zonal extension/retraction (TE-EOF 1) and the north/south shift of its exit region (TE-EOF 2). Composite analyses are constructed preceding and following peaks in the principal component associated with each of the two TE-EOFs, providing insight into the preferred evolutions of the north Pacific jet. Jet extension events are associated with an anomalous Gulf of Alaska cyclone, while jet retractions are associated with an anomalous ridge over the Aleutians. Similar but shifted upper level patterns are noted with the corresponding poleward/equatorward shifted jet phases, with the poleward (equatorward) shift of the jet exit region associated with anomalous low-level warmth (cold) over western North America. Such composites also suggest connections between certain phases of these leading modes of jet variability and deep convection in the tropics, a connection that has been challenging to physically diagnose in previous studies. The isentropic pressure depth measures the mass contained within an isentropic layer in a given grid column, enabling the tracking of mass exhausted by deep convection. The gradient of isentropic pressure depth is directly associated with the vertical geostrophic wind shear in that layer and thus provides a means to track the influence of convective mass flux on the evolution of the jet stream. A case study focused on the extreme North American warm episode of March 2012 demonstrates how positive pressure depth anomalies from a strong MJO event impact the jet stream over eastern Asia and drive a portion of the mid-latitude response that leads to the flow amplification and subsequent downstream warmth. This study demonstrates one way by which isentropic pressure depth can diagnose the impacts of tropical deep convection on the mid-latitude circulation. Using TE-EOFs, composites of isentropic pressure depth are constructed, to examine the evolution of pressure depth anomalies preceding each phase of the two leading modes of jet variability. In jet extension events, a large negative pressure depth anomaly in the 315-330 K isentropic layer and a positive pressure depth anomaly in the 340-355 K isentropic layer align north and south of the climatological jet exit region, respectively. A similar but opposite configuration is found in jet retraction events. During poleward shifted jet events, the configuration of pressure depth anomalies is comparable to that observed in jet extension events, but shifted poleward. Positive pressure depth anomalies in each set of events predominantly originate from either the Maritime Continent or East Asia and track along the climatological jet before impacting the exit region of the jet stream. Negative pressure depth anomalies have similar upstream origins before moving through the jet in a similar manner. These composite evolutions provide insight into the synoptic-scale evolutions that precede the preferred modes of jet variability, highlighting the influence of both mid-latitude weather systems and mass flux from tropical deep convection on North Pacific jet variability.

  16. A prototype of an electric-discharge gas flow oxygen-iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge

    NASA Astrophysics Data System (ADS)

    Vagin, N. P.; Ionin, A. A.; Kochetov, I. V.; Napartovich, A. P.; Sinitsyn, D. V.; Yuryshev, N. N.

    2017-03-01

    The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O2: He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as 100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to 220-230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen-iodine laser based on a slab cryogenic RF discharge.

  17. SIMULATION OF DISSOLVED OXYGEN PROFILES IN A TRANSPARENT, DIMICTIC LAKE

    EPA Science Inventory

    Thrush Lake is a small, highly transparent lake in northeastern Minnesota. rom 1986 to 1991, vertical profiles of water temperature, dissolved oxygen, chlorophyll a concentration, underwater light irradiance, and Secchi depths were measured at monthly intervals during the ice-fre...

  18. Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mir, Showkat H.; Chakraborty, Sudip, E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in; Wärnå, John

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of themore » boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.« less

  19. Depth distributions of light action spectra for skin chromophores

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2010-03-01

    Light action spectra over wavelengths of 300-1000 nm are calculated for components of the human cutaneous covering: melanin, basal (bloodless) tissue, and blood oxy- and deoxyhemoglobin. The transformation of the spectra with depth in biological tissue results from two factors. The first is the wavelength dependence of the absorption coefficient corresponding to a particular skin chromophore and the second is the spectral selectivity of the radiation flux in biological tissue. This factor is related to the optical properties of all chromophores. A significant change is found to take place in the spectral distribution of absorbed radiant power with increasing depth. The action spectrum of light for the molecular oxygen contained in all components of biological tissue is also studied in the 625-645 nm range. The spectra are found to change with both the volume fraction of blood vessels and the degree of oxygenation of the blood. These results are useful for analyzing processes associated with optical absorption that are possible mechanisms for the interaction of light with biological tissues: photodissociation of oxyhemoglobin and the light-oxygen effect.

  20. Determining the vertical evolution of hydrodynamic parameters in weathered and fractured south Indian crystalline-rock aquifers: insights from a study on an instrumented site

    NASA Astrophysics Data System (ADS)

    Boisson, A.; Guihéneuf, N.; Perrin, J.; Bour, O.; Dewandel, B.; Dausse, A.; Viossanges, M.; Ahmed, S.; Maréchal, J. C.

    2015-02-01

    Due to extensive irrigation, most crystalline aquifers of south India are overexploited. Aquifer structure consists of an upper weathered saprolite followed by a fractured zone whose fracture density decreases with depth. To achieve sustainable management, the evolution of hydrodynamic parameters (transmissivity and storage coefficient) by depth in the south Indian context should be quantified. Falling-head borehole permeameter tests, injection tests, flowmeter profiles, single-packer tests and pumping tests were carried out in the unsaturated saprolite and saturated fractured granite. Results show that the saprolite is poorly transmissive (T fs = 3 × 10-7 to 8.5 × 10-8 m2 s-1) and that the most conductive part of the aquifer corresponds to the bottom of the saprolite and the upper part of the fractured rock (T = 1.0 × 10-3 to 7.0 × 10-4 m2 s-1). The transmissivity along the profile is mostly controlled by two distinct conductive zones without apparent vertical hydraulic connection. The transmissivity and storage coefficient both decrease with depth depending on the saturation of the main fracture zones, and boreholes are not exploitable after a certain depth (27.5 m on the investigated section). The numerous investigations performed allow a complete quantification with depth of the hydrodynamic parameters along the weathering profile, and a conceptual model is presented. Hydrograph observations (4 years) are shown to be relevant as a first-order characterization of the media and diffusivity evolution with depth. The evolution of these hydrodynamic parameters along the profile has a great impact on groundwater prospecting, exploitation and transport properties in such crystalline rock aquifers.

  1. The oxidation state of the mantle and the extraction of carbon from Earth's interior.

    PubMed

    Stagno, Vincenzo; Ojwang, Dickson O; McCammon, Catherine A; Frost, Daniel J

    2013-01-03

    Determining the oxygen fugacity of Earth's silicate mantle is of prime importance because it affects the speciation and mobility of volatile elements in the interior and has controlled the character of degassing species from the Earth since the planet's formation. Oxygen fugacities recorded by garnet-bearing peridotite xenoliths from Archaean lithosphere are of particular interest, because they provide constraints on the nature of volatile-bearing metasomatic fluids and melts active in the oldest mantle samples, including those in which diamonds are found. Here we report the results of experiments to test garnet oxythermobarometry equilibria under high-pressure conditions relevant to the deepest mantle xenoliths. We present a formulation for the most successful equilibrium and use it to determine an accurate picture of the oxygen fugacity through cratonic lithosphere. The oxygen fugacity of the deepest rocks is found to be at least one order of magnitude more oxidized than previously estimated. At depths where diamonds can form, the oxygen fugacity is not compatible with the stability of either carbonate- or methane-rich liquid but is instead compatible with a metasomatic liquid poor in carbonate and dominated by either water or silicate melt. The equilibrium also indicates that the relative oxygen fugacity of garnet-bearing rocks will increase with decreasing depth during adiabatic decompression. This implies that carbon in the asthenospheric mantle will be hosted as graphite or diamond but will be oxidized to produce carbonate melt through the reduction of Fe(3+) in silicate minerals during upwelling. The depth of carbonate melt formation will depend on the ratio of Fe(3+) to total iron in the bulk rock. This 'redox melting' relationship has important implications for the onset of geophysically detectable incipient melting and for the extraction of carbon dioxide from the mantle through decompressive melting.

  2. Direct observation of localized radial oxygen migration in functioning tantalum oxide memristors

    DOE PAGES

    Kumar, Suhas; Graves, Catherine E.; Strachan, John Paul; ...

    2016-02-02

    Oxygen migration in tantalum oxide, a promising next-generation storage material, is studied using in operando x-ray absorption spectromicroscopy and is used to microphysically describe accelerated evolution of conduction channel and device failure. Furthermore, the resulting ring-like patterns of oxygen concentration are modeled using thermophoretic forces and Fick diffusion, establishing the critical role of temperature-activated oxygen migration that has been under question lately.

  3. Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; El-Refaei, Sayed M.; Russo, Patrícia A.; Pinna, Nicola

    2018-05-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) play key roles in the conversion of energy derived from renewable energy sources into chemical energy. Efficient, robust, and inexpensive electrocatalysts are necessary for driving these reactions at high rates at low overpotentials and minimize energetic losses. Recently, electrocatalysts derived from hybrid metal phosphonate compounds have shown high activity for the HER or OER. We review here the utilization of metal phosphonate coordination networks and metal-organic frameworks as precursors/templates for transition-metal phosphides, phosphates, or oxyhydroxides generated in situ in alkaline solutions, and their electrocatalytic performance in HER or OER.

  4. Response of Benthic Foraminiferal Size to Oxygen Concentration in Antarctic Sediment Cores

    NASA Astrophysics Data System (ADS)

    Guo, D.; Keating-Bitonti, C.; Payne, J.

    2014-12-01

    Oxygen availability is important for biological reactions and the demand of oxygen is determined by the size of the organism. Few marine organisms can tolerate low oxygen conditions, but benthic foraminifera, a group of amoeboid protists that are highly sensitive to environmental factors, are known to live in these conditions. Benthic foraminifera may be able to live in oxygen stressed environments by changing the size and shape of their test. Low oxygen concentrations should favor smaller, thinner-shelled, flattened test morphologies. We hypothesize that the volume-to-surface area ratio of benthic foraminifera will decrease with decreasing dissolved oxygen concentrations. To test this hypothesis, we picked two calcareous species (Epistominella exigua and Cassulinoides porrectus) and one agglutinated species (Portatrochammina antarctica) from three sediment cores collected from Explorer's Cove, Antarctica. Starting at the sediment-water interface, each core spans approximately 5-8 cm of depth. Profiles of dissolved oxygen concentrations were measured at the time of collection. At specific depths within the cores, we measured the three dimensions of picked foraminiferal tests using NIS-Elements. We calculated the volume and surface area of the tests assuming the shape of the foraminifers was an ellipsoid. The size trends of E. exigua confirm our hypothesis that the test volume-to-surface area ratios correlate positively with dissolved oxygen concentrations (p-value < 0.001). However, the size trends of the other species refute our hypothesis: P. antarctica shows no correlation and C. porrectus shows a negative correlation (p-value < 0.001) to dissolved oxygen concentrations. Thus, our results show that the change in size in response to variations in dissolved oxygen concentrations is species dependent. Moreover, we find that calcareous species are more sensitive to oxygen fluctuations than agglutinated species.

  5. Understanding the Differences in the Nitrogen Cycle in the Seasonal Low-Oxygen Zone in the Saanich Inlet of Vancouver Island, British Columbia.

    NASA Astrophysics Data System (ADS)

    Wood, C.; Forbes, M. S.

    2017-12-01

    Ocean Oxygen Deficient Zones (ODZs) are found in specific regions around the globe. ODZs generally form from upwelling of nutrient-rich waters, which drives oxygen consumption. The Saanich Inlet in British Columbia, Canada, is an ODZ, as it experiences oxygen consumption due to its unique topography, where a sill at its entrance prevents mixing with the surrounding ocean for much of the year. Due to this, oxygen and nitrate are consumed but not replenished until winter and spring, when the higher-velocity oxygen rich waters cycle the water. Our objective is to understand this cycle via the δ15N and δ18O analysis of NO3 and NO2 isotopes in conjunction with concentration data. Samples were collected bi-monthly over a 7-month period between September 2016 to March 2017. Initial oxygen readings were conducted on the cruise, as well as conductivity, depth, and position. Over the summer, data has been collected and analyzed on most NO3 samples from the trip. Oxygen levels generally decreased with depth, with a dramatic change (200 to 10 µM) at approximately 100 m. Concentrations of NO3 follow a similar trend, decreasing at this point from 20 to less than 5 µM. Conversely, δ15N and δ18O become more enriched at these lower depths, reaching values of 40.97 ‰ and 31.86 ‰, respectively. During the first half of the sample period, some detectable concentrations of NO2 were identified. In the second half, NO2 was not identified. This preliminary data suggests the presence of denitrification occurring in the inlet throughout the fall and winter period and is most likely a combination of water column and sedimentary denitrification. Data towards the end of the sampling period suggest possible completion of denitrification and a likely influx of nutrient rich waters. We will apply this data set to continue to analyze and explore the effects of low oxygen levels on these nitrogen cycle processes with further analysis of isotope data, to further understand the relationships.

  6. Evolution of Structural and Electrical Properties of Oxygen-Deficient VO2 under Low Temperature Heating Process.

    PubMed

    Zhang, Jiasong; Zhao, Zhengjing; Li, Jingbo; Jin, Haibo; Rehman, Fida; Chen, Pengwan; Jiang, Yijie; Chen, Chunxu; Cao, Maosheng; Zhao, Yongjie

    2017-08-16

    Structural stability and functional performances of vanadium dioxide (VO 2 ) are strongly influenced by oxygen vacancies. However, the mechanism of metal-insulator transition (MIT) influenced by defects is still under debate. Here, we study the evolution of structure and electrical property of oxygen-deficient VO 2 by a low temperature annealing process (LTP) based on a truss-structured VO 2 nanonet. The oxygenation process of the oxygen-deficient VO 2 is greatly prolonged, which enables us to probe the gradual change of properties of the oxygen-deficient VO 2 . A continuous lattice reduction is observed during LTP. No recrystallization and structural collapse of the VO 2 nanonet can be found after LTP. The valence-band X-ray photoelectron spectroscopy (XPS) measurements indicate that the oxygen deficiency strongly affects the energy level of the valence band edge. Correspondingly, the resistance changes of the VO 2 films from 1 to 4.5 orders of magnitude are achieved by LTP. The effect of oxygen vacancy on the electric field driven MIT is investigated. The threshold value of voltage triggering the MIT decreases with increasing the oxygen vacancy concentration. This work demonstrates a novel and effective way to control the content of oxygen vacancies in VO 2 and the obvious impact of oxygen vacancy on MIT, facilitating further research on the role of oxygen vacancy in structure and MIT of VO 2 , which is important for the deep understanding of MIT and exploiting innovative functional application of VO 2 .

  7. Oxygen transport and pyrite oxidation in unsaturated coal-mine spoil

    USGS Publications Warehouse

    Guo, Weixing; Cravotta, Charles A.

    1996-01-01

    An understanding of the mechanisms of oxygen (02) transport in unsaturated mine spoil is necessary to design and implement effective measures to exclude 02 from pyritic materials and to control the formation of acidic mine drainage. Partial pressure of oxygen (Po2) in pore gas, chemistry of pore water, and temperature were measured at different depths in unsaturated spoil at two reclaimed surface coal mines in Pennsylvania. At mine 1, where spoil was loose, blocky sandstone, Po2 changed little with depth, decreasing from 21 volume percent (vol%) at the ground surface to a minimum of about 18 vol% at 10 m depth. At mine 2, where spoil was compacted, friable shale, Po2 decreased to less than 2 vol% at depth of about 10 m. Although pore-water chemistry and temperature data indicate that acid-forming reactions were active at both mines, the pore-gas data indicate that mechanisms for 0 2 transport were different at each mine. A numerical model was developed to simulate 02 transport and pyrite oxidation in unsaturated mine spoil. The results of the numerical simulations indicate that differences in 02 transport at the two mines can be explained by differences in the air permeability of spoil. Po2 changes little with depth if advective transport of 02 dominates as at mine 1, but decreases greatly with depth if diffusive transport of 02 dominates, as in mine 2. Model results also indicate that advective transport becomes significant if the air permeability of spoil is greater than 10-9 m2, which is expected for blocky sandstone spoil. In the advective-dominant system, thermally-induced convective air flow, as a consequence of the exothermic oxidation of pyrite, supplies the 02 to maintain high Po2 within the deep unsaturated zone.

  8. College students' use of science content during socioscientific issues negotiation: Impact of evolution understanding and acceptance

    NASA Astrophysics Data System (ADS)

    Fowler, Samantha R.

    The purpose of this study was to explore the evolution science content used during college students' negotiation of biology-based socioscientific issues (SSI) and examine how it related to students' conceptual understanding and acceptance of biological evolution. Specific research questions were, (1a) what specific evolutionary science content do college students evoke during SSI negotiation, (1b) what is the depth of the evolutionary science content reflected in college students. SSI negotiation, and (2) what is the nature of the interaction between evolution understanding and evolution acceptance as they relate to depth of use of evolution content during SSI negotiation? The Socioscientific Issues Questionnaire (SSI-Q) was developed using inductive data analysis to examine science content use and to develop a rubric for measuring depth of evolutionary science content use during SSI negotiation. Sixty upper level undergraduate biology and non-biology majors completed the SSI-Q and also the Conceptual Inventory of Natural Selection (CINS: Anderson, Fisher, & Norman, 2002) to measure evolution understanding and the Measure of Acceptance of the Theory of Evolution (MATE: Rutledge & Warden, 1999) to measure evolution acceptance. A multiple regression analysis tested for interaction effects between the predictor variables, evolution understanding and evolution acceptance. Results indicate that college students primarily use science concepts related to evolution to negotiate biology-based SSI: variation in a population, inheritance of traits, differential success, and change through time. The hypothesis that the extent of one's acceptance of evolution is a mitigating factor in how evolution content is evoked during SSI negotiation was supported by the data. This was seen in that evolution was the predominant science content used by participants for each of the three SSI scenarios used in this study and used consistently throughout the three SSI scenarios. In addition to its potential to assess aspects of argumentation, a modification of the SSI-Q could be used for further study about students' misconceptions about evolution or scientific literacy, if it is defined as one's tendency to utilize science content during a decision-making process within an SSI context.

  9. The evolution of glutathione metabolism in phototrophic microorganisms

    NASA Technical Reports Server (NTRS)

    Fahey, R. C.; Buschbacher, R. M.; Newton, G. L.

    1987-01-01

    Of the many roles ascribed to glutathione (GSH) the one most clearly established is its role in the protection of higher eucaryotes against oxygen toxicity through destruction of thiol-reactive oxygen byproducts. If this is the primary function of GSH then GSH metabolism should have evolved during or after the evolution of oxygenic photosynthesis. That many bacteria do not produce GSH is consistent with this view. In the present study we have examined the low-molecular-weight thiol composition of a variety of phototrophic microorganisms to ascertain how evolution of GSH production is related to evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols to fluorescent derivatives, which were analyzed by high-pressure liquid chromatography. Significant levels of GSH were not found in the green bacteria (Chlorobium thiosulfatophilum and Chloroflexus aurantiacus). Substantial levels of GSH were present in the purple bacteria (Chromatium vinosum, Rhodospirillum rubrum, Rhodobacter sphaeroides, and Rhodocyclus gelatinosa), the cyanobacteria [Anacystis nidulans, Microcoleus chthonoplastes S.G., Nostoc muscorum, Oscillatoria amphigranulata, Oscillatoria limnetica, Oscillatoria sp. (Stinky Spring, Utah), Oscillatoria terebriformis, Plectonema boryanum, and Synechococcus lividus], and eucaryotic algae (Chlorella pyrenoidsa, Chlorella vulgaris, Euglena gracilis, Scenedesmus obliquus, and Chlamydomonas reinhardtii). Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide; several unidentified thiols were also detected. Many of the organisms examined also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability that was quenched by treatment with 2-pyridyl disulfide or 5,5'-bisdithio-(2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of reactive disulfides. The distribution of GSH in phototrophic eubacteria indicates that GSH synthesis evolved at or around the time that oxygenic photosynthesis evolved.

  10. Indirect heating pyrolysis of oil shale

    DOEpatents

    Jones, Jr., John B.; Reeves, Adam A.

    1978-09-26

    Hot, non-oxygenous gas at carefully controlled quantities and at predetermined depths in a bed of lump oil shale provides pyrolysis of the contained kerogen of the oil shale, and cool non-oxygenous gas is passed up through the bed to conserve the heat

  11. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.

    A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less

  12. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    DOE PAGES

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; ...

    2017-06-08

    A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less

  13. Preliminary study of gaseous nitrogen-liquid oxygen mixing and self cleaning

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1985-01-01

    The penetration of gaseous nitrogen into liquid oxygen at a pressure of 150 psi was determined by monitoring the composition of the evaporating liquid in a nitrogen analyzer. For pressurization times of about 1 hr the penetration depth varies between 0.0024 and 0.018 in. at an evaporation rate of about 1 gal/day. These are small compared to the penetration depth of 22.2 in. measured in the 7-inch high temperature tunnel at a pressure of 1500 psi, pressurization time of 5 min, and evaporation rate of 121 gal/day.

  14. Insights into highly improved solar-driven photocatalytic oxygen evolution over integrated Ag3PO4/MoS2 heterostructures

    NASA Astrophysics Data System (ADS)

    Cui, Xingkai; Yang, Xiaofei; Xian, Xiaozhai; Tian, Lin; Tang, Hua; Liu, Qinqin

    2018-04-01

    Oxygen evolution has been considered as the rate-determining step in photocatalytic water splitting due to its sluggish four-electron half-reaction rate, the development of oxygen-evolving photocatalysts with well-defined morphologies and superior interfacial contact is highly important for achieving high-performance solar water splitting. Herein, we report the fabrication of Ag3PO4/MoS2 nanocomposites and, for the first time, their use in photocatalytic water splitting into oxygen under LED light illumination. Ag3PO4 nanoparticles were found to be anchored evenly on the surface of MoS2 nanosheets, confirming an efficient hybridization of two semiconductor materials. A maximum oxygen-generating rate of 201.6 mol L-1 g-1 h-1 was determined when 200 mg MoS2 nanosheets were incorporated into Ag3PO4 nanoparticles, which is around 5 times higher than that of bulk Ag3PO4. Obvious enhancements in light-harvesting property, as well as electron-hole separation and charge transportation are revealed by the combination of different characterizations. ESR analysis verified that more active oxygen-containing radicals generate over illuminated Ag3PO4/MoS2 composite photocatalysts rather than irradiated Ag3PO4. The improvement in oxygen evolution performance of Ag3PO4/MoS2 composite photocatalysts is ascribed to wide spectra response in the visible-light region, more efficient charge separation and enhanced oxidation capacity in the valence band (VB). This study provides new insights into the design and development of novel composite photocatalytic materials for solar-to-fuel conversion.

  15. Hydrothermally Driven Transformation of Oxygen Functional Groups at Multiwall Carbon Nanotubes for Improved Electrocatalytic Applications.

    PubMed

    Suryanto, Bryan H R; Chen, Sheng; Duan, Jingjing; Zhao, Chuan

    2016-12-28

    The role of carbon nanotubes in the advancement of energy conversion and storage technologies is undeniable. In particular, carbon nanotubes have attracted significant applications for electrocatalysis. However, one central issue related to the use of carbon nanotubes is the required oxidative pretreatment that often leads to significant damage of graphitic structures which deteriorates their electrochemical properties. Traditionally, the oxidized carbon nanomaterials are treated at high temperature under an inert atmosphere to repair the oxidation-induced defect sites, which simultaneously removes a significant number of oxygen functional groups. Nevertheless, recent studies have shown that oxygen functional groups on the surface of MWCNT are the essential active centers for a number of important electrocatalytic reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein we first show that hydrothermal treatment as a mild method to improve the electrochemical properties and activities of surface-oxidized MWCNT for OER, HER, and ORR without significantly altering the oxygen content. The results indicate that hydrothermal treatment could potentially repair the defects without significantly reducing the pre-existing oxygen content, which has never been achieved before with conventional high-temperature annealing treatment.

  16. Decline in global oceanic oxygen content during the past five decades.

    PubMed

    Schmidtko, Sunke; Stramma, Lothar; Visbeck, Martin

    2017-02-15

    Ocean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean, with an increase reported in a few limited areas, varying by study. Prior work attempting to resolve variations in dissolved oxygen concentrations at the global scale reported a global oxygen loss of 550 ± 130 teramoles (10 12  mol) per decade between 100 and 1,000 metres depth based on a comparison of data from the 1970s and 1990s. Here we provide a quantitative assessment of the entire ocean oxygen inventory by analysing dissolved oxygen and supporting data for the complete oceanic water column over the past 50 years. We find that the global oceanic oxygen content of 227.4 ± 1.1 petamoles (10 15  mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths. We suggest that changes in the upper water column are mostly due to a warming-induced decrease in solubility and biological consumption. Changes in the deeper ocean may have their origin in basin-scale multi-decadal variability, oceanic overturning slow-down and a potential increase in biological consumption.

  17. Structural evolution in Ar+ implanted Si-rich silicon oxide

    NASA Astrophysics Data System (ADS)

    Brusa, R. S.; Karwasz, G. P.; Mariotto, G.; Zecca, A.; Ferragut, R.; Folegati, P.; Dupasquier, A.; Ottaviani, G.; Tonini, R.

    2003-12-01

    Silicon-rich silicon oxide films were deposited by plasma-enhanced chemical vapor deposition. Energy was released into the film by ion bombardment, with the aim of promoting formation of Si nanoclusters and reordering the oxide matrix. The effect of the initial stoichiometry, as well as the evolution of the oxide films due to the ion bombardment and to subsequent thermal treatments, has been studied by depth-resolved positron annihilation Doppler spectroscopy, Raman scattering and Fourier transform infrared spectroscopy. As-deposited films were found to contain an open volume fraction in the form of subnanometric cavities that are positively correlated with oxygen deficiency. No Si aggregates were observed. The ion bombardment was found to promote the formation of amorphous Si nanoclusters, together with a reduction of the open volume in the matrix and a substantial release of hydrogen. It also leaves electrically active sites in the oxide and produces gas-filled vacancy defects in the substrate, with the concentrations depending on the implantation temperature. Thermal treatment at 500 °C removes charge defects in the oxide, but vacancy defects are not completely annealed even at 1100 °C. In one case, heating at 1100 °C produced cavities of about 0.6 nm in the oxide. Transformation of Si nanoclusters into nanocrystals is observed to occur from 800 °C.

  18. Metabolic rates of benthic deep-sea decapod crustaceans decline with increasing depth primarily due to the decline in temperature

    NASA Astrophysics Data System (ADS)

    Childress, J. J.; Cowles, D. L.; Favuzzi, J. A.; Mickel, T. J.

    1990-06-01

    The oxygen consumption rates of 11 species of benthic deep-sea decapod crustaceans were measured at a variety of temperatures to test the hypothesis that the metabolic rates of benthic crustaceans decline with increasing depth of occurrence only to the extent explained by the decline in temperature with depth. The species were captured at depths between 150 and 2000m off Southern California using an epibenthic beam trawl equipped with a thermally protecting cod-end to bring the animals to the surface uncontaminated by sediment and at the depth temperature. The data, combined with those for six species of shallower-living crustaceans from California waters, showed a significant decline in oxygen consumption rate with increased species' depths of occurrence, when the measurements were made at temperatures appropriate to each species' depth range. There was no significant relation between wet weight and depth of occurrence in these species. When the data were adjusted to 10°C using a moderate temperature effect factor (corresponding to Q10 values of 2-2.3 depending on the species and temperature range), the significant relationship between oxygen consumption rate and depth was lost, indicating that the observed decline with depth was due to the decline in temperature with depth. When the relationship between metabolic rate and depth of occurrence for the most active (carideans and penaeid) species were compared (ANCOVA) with that for the rest of the species, the active species had significantly higher rates. By combining this data set with data from the literature for a wide variety of shallow-living benthic decapod crustaceans, it was possible to create a data set of 35 species in which the effects of temperature, minimum depth of occurrence and body mass could be separated by multiple linear regression. This demonstrated highly significant effects of size and temperature, but no significant effect of depth for the entire data set and for the data set excluding penaeids and carideans. In contrast, the carideans showed a significant effect of depth on metabolic rate. This is discussed in terms of the adaptive and selective factors responsible for the well-known decline in metabolic rates of midwater crustaceans and fishes, an effect which does exceed the effect of temperature. It is suggested that the typical pattern for deeper living animals may be that metabolic rates on average vary as a function of depth due primarily to variation in temperature, except for the visually orienting pelagic groups (cephalopods, crustaceans and fishes). For those benthic forms which are particularly visually oriented and/or partially pelagic some significant depth-related decline in metabolism beyond that due to the decline in temperature is expected.

  19. Deep drilling at the Siljan Ring impact structure: oxygen-isotope geochemistry of granite

    USGS Publications Warehouse

    Komor, S.C.; Valley, J.W.

    1990-01-01

    The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, ??18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5??? at 5760 m depth. In contrast, feldspar ??18O values decrease with depth from near 10 at the surface to 7.1??? at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of ??18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar ??18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100-300?? C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500?? C) exchange between alkali feldspar and fluids. The high-temperature exchange may have been a post-impact event involving impact-heated fluids, or a post-magmatic event. ?? 1990 Springer-Verlag.

  20. The evolution of photosynthesis...again?

    PubMed

    Rothschild, Lynn J

    2008-08-27

    'Replaying the tape' is an intriguing 'would it happen again?' exercise. With respect to broad evolutionary innovations, such as photosynthesis, the answers are central to our search for life elsewhere. Photosynthesis permits a large planetary biomass on Earth. Specifically, oxygenic photosynthesis has allowed an oxygenated atmosphere and the evolution of large metabolically demanding creatures, including ourselves. There are at least six prerequisites for the evolution of biological carbon fixation: a carbon-based life form; the presence of inorganic carbon; the availability of reductants; the presence of light; a light-harvesting mechanism to convert the light energy into chemical energy; and carboxylating enzymes. All were present on the early Earth. To provide the evolutionary pressure, organic carbon must be a scarce resource in contrast to inorganic carbon. The probability of evolving a carboxylase is approached by creating an inventory of carbon-fixation enzymes and comparing them, leading to the conclusion that carbon fixation in general is basic to life and has arisen multiple times. Certainly, the evolutionary pressure to evolve new pathways for carbon fixation would have been present early in evolution. From knowledge about planetary systems and extraterrestrial chemistry, if organic carbon-based life occurs elsewhere, photosynthesis -- although perhaps not oxygenic photosynthesis -- would also have evolved.

  1. In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C3N4 for the improved photocatalytic H2-evolution performance

    NASA Astrophysics Data System (ADS)

    Wu, Xinhe; Chen, Fengyun; Wang, Xuefei; Yu, Huogen

    2018-01-01

    Surface modification of g-C3N4 is one of the most effective strategies to boost its photocatalytic H2-evolution performance via promoting the interfacial catalytic reactions. In this study, an in situ one-step hydrothermal method was developed to prepare the oxygen-containing groups-modified g-C3N4 (OG/g-C3N4) by a facile and green hydrothermal treatment of bulk g-C3N4 in pure water without any additives. It was found that the hydrothermal treatment (180 °C) not only could greatly increase the specific surface area (from 2.3 to 69.8 m2 g-1), but also caused the formation of oxygen-containing groups (sbnd OH and Cdbnd O) on the OG/g-C3N4 surface, via the interlayer delamination and intralayer depolymerization of bulk g-C3N4. Photocatalytic experimental results indicated that after hydrothermal treatment, the resultant OG/g-C3N4 samples showed an obviously improved H2-evolution performance. Especially, when the hydrothermal time was 6 h, the resultant OG/g-C3N4(6 h) exhibited the highest photocatalytic activity, which was clearly higher than that of the bulk g-C3N4 by a factor of ca. 7. In addition to the higher specific surface area, the enhanced H2-evolution rate of OG/g-C3N4 photocatalysts can be mainly attributed to the formation of oxygen-containing groups, which possibly works as the effective H2-evolution active sites. Considering the facie and green synthesis method, the present work may provide a new insight for the development of highly efficient photocatalytic materials.

  2. High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jaswal, Rajeshwer S.; Yaseen, Mohammad A.; Fu, Buyin; Boas, David A.; Sakadžic, Sava

    2016-03-01

    Due to a lack of imaging tools for high-resolution imaging of cortical tissue oxygenation, the detailed maps of the oxygen partial pressure (PO2) around arterioles, venules, and capillaries remain largely unknown. Therefore, we have limited knowledge about the mechanisms that secure sufficient oxygen delivery in microvascular domains during brain activation, and provide some metabolic reserve capacity in diseases that affect either microvascular networks or the regulation of cerebral blood flow (CBF). To address this challenge, we applied a Two-Photon PO2 Microscopy to map PO2 at different depths in mice cortices. Measurements were performed through the cranial window in the anesthetized healthy mice as well as in the mouse models of microvascular dysfunctions. In addition, microvascular morphology was recorded by the two-photon microscopy at the end of each experiment and subsequently segmented. Co-registration of the PO2 measurements and exact microvascular morphology enabled quantification of the tissue PO2 dependence on distance from the arterioles, capillaries, and venules at various depths. Our measurements reveal significant spatial heterogeneity of the cortical tissue PO2 distribution that is dominated by the high oxygenation in periarteriolar spaces. In cases of impaired oxygen delivery due to microvascular dysfunction, significant reduction in tissue oxygenation away from the arterioles was observed. These tissue domains may be the initial sites of cortical injury that can further exacerbate the progression of the disease.

  3. NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires with surface rich high valence state metal oxide as an efficient electrocatalyst for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yang, Liting; Chen, Lin; Yang, Dawen; Yu, Xu; Xue, Huaiguo; Feng, Ligang

    2018-07-01

    High valence transition metal oxide is significant for anode catalyst of proton membrane water electrolysis technique. Herein, we demonstrate NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires hierarchical nanocomposite catalyst with surface rich high valence metal oxide as an efficient catalyst for oxygen evolution reaction. A low overpotential of 310 mV is needed to drive a 10 mA cm-2 with a Tafel slope of 99 mV dec-1, and a remarkable stability during 8 h is demonstrated in a chronoamperometry test. Theoretical calculation displays the change in the rate-determining step on the nanocomposite electrode in comparison to NiCo2O4 nanowires alone. It is found high valence Ni and Mn oxide in the catalyst system can efficiently facilitate the charge transport across the electrode/electrolyte interface. The enhanced electrical conductivity, more accessible active sites and synergistic effects between NiMn layered double hydroxide nanosheets and NiCo2O4 nanowires can account for the excellent oxygen evolution reaction. The catalytic performance is comparable to most of the best non-noble catalysts and IrO2 noble catalyst, indicating the promising applications in water-splitting technology. It is an important step in the development of hierarchical nanocomposites by surface valence state tuning as an alternative to noble metals for oxygen evolution reaction.

  4. Redox state of the Archean mantle: Evidence from V partitioning in 3.5-2.4 Ga komatiites

    NASA Astrophysics Data System (ADS)

    Nicklas, Robert W.; Puchtel, Igor S.; Ash, Richard D.

    2018-02-01

    Oxygen fugacity of the mantle is a crucial thermodynamic parameter that controls such fundamental processes as planetary differentiation, mantle melting, and possible core-mantle exchange. Constraining the evolution of the redox state of the mantle is of paramount importance for understanding the chemical evolution of major terrestrial reservoirs, including the core, mantle, and atmosphere. In order to evaluate the secular evolution of the redox state of the mantle, oxygen fugacities of six komatiite systems, ranging in age from 3.48 to 2.41 Ga, were determined using high-precision partitioning data of the redox-sensitive element vanadium between liquidus olivine, chromite and komatiitic melt. The calculated oxygen fugacities range from -0.11 ± 0.30 ΔFMQ log units in the 3.48 Ga Komati system to +0.43 ± 0.26 ΔFMQ log units in the 2.41 Ga Vetreny system. Although there is a slight hint in the data for an increase in the oxygen fugacity of the mantle between 3.48 and 2.41 Ga, these values generally overlap within their respective uncertainties; they are also largely within the range of oxygen fugacity estimates for modern MORB lavas of +0.60 ± 0.30 ΔFMQ log units that we obtained using the same technique. Our results are consistent with the previous findings that argued for little change in the mantle oxygen fugacity since the early Archean and indicate that the mantle had reached its nearly-present day redox state by at least 3.48 Ga.

  5. Hadean Crustal Processes Revealed from Oxygen Isotopes and U-Th-Pb Depth Profiling of Pre-4.0 Ga Detrital Zircons from Western Australia

    NASA Technical Reports Server (NTRS)

    Trail, D.; Mojzsis, S. J.; Harrison, T. M.

    2005-01-01

    Because physical and chemical processes of the past are determined from analysis of a preserved geologic record, little is known about terrestrial crustal processes of the first 500 Ma during the so-called Hadean Eon. What is known from direct measurements has been derived almost exclusively from the study of greater than 4.0 Ga detrital zircons from the Jack Hills, Western Australia. The geochemistry of these zircons has direct application to understanding the origin and evolution of the rocks during the Hadean because: (i) U-Th-Pb age determinations by ion microprobe suggests the presence of crust as early as 4.37 Ga, or shortly after lunar formation; (ii) high-resolution U-Th-Pb zircon depth profiles reported here reveal several episodes of zircon growth in the Hadean previously unrecognized; (iii) core regions of pre-4.0 Ga zircons with igneous compositions are enriched in O-18 and contain metaluminous and peraluminous mineral inclusions, both features indicative of S-type grainitod protoliths. Study of these ancient zircons provides a unique window into the first half billion years that permits assessment of the potential of the Hadean Earth to host an emergent biosphere.

  6. Microbial community phylogenetic and trait diversity declines with depth in a marine oxygen minimum zone.

    PubMed

    Bryant, Jessica A; Stewart, Frank J; Eppley, John M; DeLong, Edward F

    2012-07-01

    Oxygen minimum zones (OMZs) are natural physical features of the world's oceans. They create steep physiochemical gradients in the water column, which most notably include a dramatic draw down in oxygen concentrations over small vertical distances (<100 m). Microbial communities within OMZs play central roles in ocean and global biogeochemical cycles, yet we still lack a fundamental understanding of how microbial biodiversity is distributed across OMZs. Here, we used metagenomic sequencing to investigate microbial diversity across a vertical gradient in the water column during three seasons in the Eastern Tropical South Pacific (ETSP) OMZ. Based on analysis of small subunit ribosomal RNA (SSU rRNA) gene fragments, we found that both taxonomic and phylogenetic diversity declined steeply along the transition from oxygen-rich surface water to the permanent OMZ. We observed similar declines in the diversity of protein-coding gene categories, suggesting a decrease in functional (trait) diversity with depth. Metrics of functional and trait dispersion indicated that microbial communities are phylogenetically and functionally more overdispersed in oxic waters, but clustered within the OMZ. These dispersion patterns suggest that community assembly drivers (e.g., competition, environmental filtering) vary strikingly across the oxygen gradient. To understand the generality of our findings, we compared OMZ results to two marine depth gradients in subtropical oligotrophic sites and found that the oligotrophic sites did not display similar patterns, likely reflecting unique features found in the OMZ. Finally, we discuss how our results may relate to niche theory, diversity-energy relationships and stress gradients.

  7. Temperature and oxygen in Missouri reservoirs

    USGS Publications Warehouse

    Jones, John R.; Knowlton, Matthew F.; Obrecht, Daniel V.; Graham, Jennifer L.

    2011-01-01

    Vertical profiles of water temperature (n = 7193) and dissolved oxygen (n = 6516) were collected from 235 Missouri reservoirs during 1989–2007; most data were collected during May–August and provide a regional summary of summer conditions. Collectively, surface water temperature ranged from a mean of ~22 C in May to 28 C in July, and individual summer maxima typically were 28–32 C. Most (~95%) reservoirs stably stratify by mid-May, but few are deep enough to have hypolimnia with near-uniform temperatures. Among stratified reservoirs, maximum effective length and maximum depth accounted for 75% of the variation in mixed depth and thermocline depth. Ephemeral, near-surface thermoclines occurred in 39% of summer profiles and were most frequent in small, turbid reservoirs. Isotherms below the mixed layer deepen during stratification, and the water column is >20 C by August in all but the deepest reservoirs. Most reservoirs showed incipient dissolved oxygen (DO) depletion by mid-May, and by August, 80% of profiles had DO minima of 50% of variation in DO below the mixed layer during summer. Warm summer temperatures and widespread low DO often limit available fish habitat in Missouri reservoirs and compress warm-water fish communities into subsurface layers that exceed their thermal preferences. This study provides a regional baseline of reservoir temperature and oxygen conditions useful for future evaluations of eutrophication and the effects of a warming climate.

  8. Systematic oxidation of polystyrene by ultraviolet-ozone, characterized by near-edge X-ray absorption fine structure and contact angle.

    PubMed

    Klein, Robert J; Fischer, Daniel A; Lenhart, Joseph L

    2008-08-05

    The process of implanting oxygen in polystyrene (PS) via exposure to ultraviolet-ozone (UV-O) was systematically investigated using the characterization technique of near-edge X-ray absorption fine structure (NEXAFS). Samples of PS exposed to UV-O for 10-300 s and washed with isopropanol were analyzed using the carbon and oxygen K-edge NEXAFS partial electron yields, using various retarding bias voltages to depth-profile the oxygen penetration into the surface. Evaluation of reference polymers provided a scale to quantify the oxygen concentration implanted by UV-O treatment. We find that ozone initially reacts with the double bonds on the phenyl rings, forming carbonyl groups, but within 1 min of exposure, the ratio of double to single oxygen bonds stabilizes at a lower value. Oxygen penetrates the film with relative ease, creating a fairly uniform distribution of oxygen within at least the first 4 nm (the effective depth probed by NEXAFS here). Before oxygen accumulates in large concentrations, however, it preferentially degrades the uppermost layer of the film by removing oxygenated low-molecular-weight oligomers. The failure to accumulate high concentrations of oxygen is seen in the nearly constant carbon edge jump, the low concentration of oxygen even at 5 min exposure (58% of that in poly(4-acetoxystyrene), the polymer with the most similarities to UV-O-treated PS), and the relatively high contact angles. At 5 min exposure the oxygen concentration contains ca. 7 atomic % oxygen. The oxygen species that are implanted consist predominantly of single O-C bonds and double O=C bonds but also include a small fraction of O-H. UV-O treatment leads a plateau after 2 min exposure in the water contact angle hysteresis, at a value of 67 +/- 2 degrees , due primarily to chemical heterogeneity. Annealing above T(g) allows oxygenated species to move short distances away from the surface but not diffuse further than 1-2 nm.

  9. Macrofaunal colonization across the Indian margin oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Levin, L. A.; McGregor, A. L.; Mendoza, G. F.; Woulds, C.; Cross, P.; Witte, U.; Gooday, A. J.; Cowie, G.; Kitazato, H.

    2013-11-01

    There is a growing need to understand the ability of bathyal assemblages to recover from disturbance and oxygen stress, as human activities and expanding oxygen minimum zones increasingly affect deep continental margins. The effects of a pronounced oxygen minimum zone (OMZ) on slope benthic community structure have been studied on every major upwelling margin; however, little is known about the dynamics or resilience of these benthic populations. To examine the influence of oxygen and phytodetritus on short-term settlement patterns, we conducted colonization experiments at 3 depths on the West Indian continental margin. Four colonization trays were deployed at each depth for 4 days at 542 and 802 m (transect 1-16°58' N) and for 9 days at 817 and 1147 m (transect 2-17°31' N). Oxygen concentrations ranged from 0.9 μM (0.02 mL L-1) at 542 m to 22 μM (0.5 mL L-1) at 1147 m. All trays contained local defaunated sediments; half of the trays at each depth also contained 13C/15N-labeled phytodetritus mixed into the sediments. Sediment cores were collected between 535 m and 1140 m from 2 cross-margin transects for analysis of ambient (source) macrofaunal (>300 μm) densities and composition. Ambient macrofaunal densities ranged from 0 ind m-2 (at 535-542 m) to 7400 ind m-2, with maximum values on both transects at 700-800 m. Macrofaunal colonizer densities ranged from 0 ind m-2 at 542 m, where oxygen was lowest, to average values of 142 ind m-2 at 800 m, and 3074 ind m-2 at 1147 m, where oxygen concentration was highest. These were equal to 4.3 and 151% of the ambient community at 800 m and 1147 m, respectively. Community structure of settlers showed no response to the presence of phytodetritus. Increasing depth and oxygen concentration, however, significantly influenced the community composition and abundance of colonizing macrofauna. Polychaetes constituted 92.4% of the total colonizers, followed by crustaceans (4.2%), mollusks (2.5%), and echinoderms (0.8%). The majority of colonizers were found at 1147 m; 88.5% of these were Capitella sp., although they were rare in the ambient community. Colonists at 800 and 1147 m also included ampharetid, spionid, syllid, lumbrinerid, cirratulid, cossurid and sabellid polychaetes. Consumption of 13C/15N-labeled phytodetritus was observed for macrofaunal foraminifera (too large to be colonizers) at the 542 and 802/817 m sites, and by metazoan macrofauna mainly at the deepest, better oxygenated sites. Calcareous foraminifera (Uvigerina, Hoeglundina sp.), capitellid polychaetes and cumaceans were among the major phytodetritus consumers. These preliminary experiments suggest that bottom-water oxygen concentrations may strongly influence ecosystem services on continental margins, as reflected in rates of colonization by benthos and colonizer processing of carbon following disturbance. They may also provide a window into future patterns of settlement on the continental slope as the world's oxygen minimum zones expand.

  10. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines.

    PubMed

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-01-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO 2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO 2 non-bleachable pigments during aging varies with wine composition, with Nebbiolo wines appearing not very reactive in this respect, probably due to their low content in anthocyanins and high content in tannins.

  11. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines

    PubMed Central

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-01-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO2 non-bleachable pigments during aging varies with wine composition, with Nebbiolo wines appearing not very reactive in this respect, probably due to their low content in anthocyanins and high content in tannins. PMID:29755971

  12. Impact of increasing levels of oxygen consumption on the evolution of color, phenolic and volatile compounds of Nebbiolo wines

    NASA Astrophysics Data System (ADS)

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-04-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO2 non-bleachable pigments during ageing varies with wine composition, with Nebbiolo wines appearing not very reactive in this respect, probably due to their low content in anthocyanins and high content in tannins.

  13. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    NASA Astrophysics Data System (ADS)

    Kiko, R.; Hauss, H.; Buchholz, F.; Melzner, F.

    2015-10-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2 and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply considerably fuels bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a downregulation of ammonium excretion. Here we show that exposure to OMZ conditions can result in strong depression of respiration and ammonium excretion in calanoid copepods and euphausiids from the Eastern Tropical North Atlantic and the Eastern Tropical South Pacific. These physiological responses need to be taken into account when estimating DVM-mediated fluxes of carbon and nitrogen into OMZs.

  14. In situ analysis of oxygen consumption and diffusive transport in high-temperature acidic iron-oxide microbial mats.

    PubMed

    Bernstein, Hans C; Beam, Jacob P; Kozubal, Mark A; Carlson, Ross P; Inskeep, William P

    2013-08-01

    The role of dissolved oxygen as a principal electron acceptor for microbial metabolism was investigated within Fe(III)-oxide microbial mats that form in acidic geothermal springs of Yellowstone National Park (USA). Specific goals of the study were to measure and model dissolved oxygen profiles within high-temperature (65-75°C) acidic (pH = 2.7-3.8) Fe(III)-oxide microbial mats, and correlate the abundance of aerobic, iron-oxidizing Metallosphaera yellowstonensis organisms and mRNA gene expression levels to Fe(II)-oxidizing habitats shown to consume oxygen. In situ oxygen microprofiles were obtained perpendicular to the direction of convective flow across the aqueous phase/Fe(III)-oxide microbial mat interface using oxygen microsensors. Dissolved oxygen concentrations dropped from ∼ 50-60 μM in the bulk-fluid/mat surface to below detection (< 0.3 μM) at a depth of ∼ 700 μm (∼ 10% of the total mat depth). Net areal oxygen fluxes into the microbial mats were estimated to range from 1.4-1.6 × 10(-4)  μmol cm(-2)  s(-1) . Dimensionless parameters were used to model dissolved oxygen profiles and establish that mass transfer rates limit the oxygen consumption. A zone of higher dissolved oxygen at the mat surface promotes Fe(III)-oxide biomineralization, which was supported using molecular analysis of Metallosphaera yellowstonensis 16S rRNA gene copy numbers and mRNA expression of haem Cu oxidases (FoxA) associated with Fe(II)-oxidation. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation.

    PubMed

    Zhang, Peili; Li, Lin; Nordlund, Dennis; Chen, Hong; Fan, Lizhou; Zhang, Biaobiao; Sheng, Xia; Daniel, Quentin; Sun, Licheng

    2018-01-26

    Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2 . The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.

  16. Oxygen and hydrogen evolution reaction on oriented single crystals of ruthenium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, L I; Pollak, F H; Canivez, Y

    1979-01-01

    A novel design for water electrolysis using a solid polymer electrolyte is being developed by General Electric. Ruthenium is one of the best electrocatalysts for the oxygen evolution reaction. There are problems connected with the significant loss in electrocatalytic activity with time. This performance degradation is presumably due to the gradual formation of an RuO/sub 2/ film. We have performed electrochemical measurements on (100), (110) and (111) oriented single crystals of RuO/sub 2/ in order to elucidate the mechanism of the electrocatalytic process. Large single crystals were grown by the vapor transport method. Our investigation has revealed several interesting differencesmore » for the various orientations. This study indicates that RuO/sub 3/ may be an important intermediate species prior to oxygen evolution and that the formation of the RuO/sub 3/ is the rate limiting process. Similar results were previously obtained for IrO/sub 2/.« less

  17. Oxygen evolution on a SrFeO3 anode - Mechanistic considerations from molecular orbital theory

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, Alfred B.

    1989-01-01

    Various pathways proposed in the literature for the evolution of O2 in electrochemical oxidations are explored using the atom superposition and electron delocalization molecular orbital (ASED-MO) theory and the cluster models of the SrFeO3 surface as a prototype material. Calculations indicate that oxygen atoms can be easily formed on the (100) surface as well as on the edge cation sites of a SrFeO3 anode by the discharge of OH(-), followed by its deprotonation and electron transfer to the electrode. The O atoms can form O2 on the edge and corner sites, where the Fe(4+) is coordinated to four and three bulk oxygen anions, respectively. The calculations strongly disfavor mechanisms involving coupling of oxygen atoms adsorbed on different cations as well as a mechanism featuring an ozone intermediate.

  18. Nitrogen fixation sustained productivity in the wake of the Palaeoproterozoic Great Oxygenation Event.

    PubMed

    Luo, Genming; Junium, Christopher K; Izon, Gareth; Ono, Shuhei; Beukes, Nicolas J; Algeo, Thomas J; Cui, Ying; Xie, Shucheng; Summons, Roger E

    2018-03-07

    The marine nitrogen cycle is dominated by redox-controlled biogeochemical processes and, therefore, is likely to have been revolutionised in response to Earth-surface oxygenation. The details, timing, and trajectory of nitrogen cycle evolution, however, remain elusive. Here we couple nitrogen and carbon isotope records from multiple drillcores through the Rooihoogte-Timeball Hill Formations from across the Carletonville area of the Kaapvaal Craton where the Great Oxygenation Event (GOE) and its aftermath are recorded. Our data reveal that aerobic nitrogen cycling, featuring metabolisms involving nitrogen oxyanions, was well established prior to the GOE and that ammonium may have dominated the dissolved nitrogen inventory. Pronounced signals of diazotrophy imply a stepwise evolution, with a temporary intermediate stage where both ammonium and nitrate may have been scarce. We suggest that the emergence of the modern nitrogen cycle, with metabolic processes that approximate their contemporary balance, was retarded by low environmental oxygen availability.

  19. Key Largo Limestone revisited: Pleistocene shelf-edge facies, Florida Keys, USA

    USGS Publications Warehouse

    Gray, Multer H.; Gischler, E.; Lundberg, J.; Simmons, K.R.; Shinn, E.A.

    2002-01-01

    New dates and analysis of 12 deep and 57 shallow cores allow a more detailed interpretation of the Pleistocene shelf edge of the Florida Platform as found in various facies of the Key Largo Limestone beneath the Florida Keys. In this study a three-phase evolution of the Quaternary units (Q1-Q5) of the Key Largo is presented with new subdivision of the Q5. (1) In the first phase, the Q1 and Q2 (perhaps deposited during oxygen-isotope stage 11) deep-water quartz-rich environment evolved into a shallow carbonate phase. (2) Subsequently, a Q3 (presumably corresponding to oxygen-isotope stage 9) flourishing reef and productive high-platform sediment phase developed. (3) Finally, a Q4 and Q5 (corresponding to oxygen-isotope stages 7 and 5) stabilization phase occured with reefs and leeward productive lagoons, followed by lower sea levels presenting a sequence of younger (isotope substages 5c, 5a) shelf-margin wedges, sediment veneers and outlier reefs. The Key Largo Limestone provides an accessible model of a carbonate shelf edge with fluctuating water depth, bordering a deep seaward basin for a period of at least 300 ka. During this time, at least four onlaps/offlaps, often separated by periods of karst development with associated diagenetic alterations, took place. The story presented by this limestone not only allows a better understanding of the history of south Florida but also aids in the interpretation of similar persistent shelf-edge sites bordering deep basins in other areas.

  20. The Ongoing Evolution of the K2-22 System

    NASA Astrophysics Data System (ADS)

    Colon, Knicole D.; Zhou, George; Shporer, Avi; Collins, Karen A.; Bieryla, Allyson; Latham, David W.; Espinoza, Nestor; Murgas, Felipe; Pattarakijwanich, Petchara; Awiphan, Supachai; TECH Collaboration

    2018-06-01

    Of the thousands of exoplanets known, only three disintegrating planets have been identified. These disintegrating planets appear to have tails of dusty material that produce asymmetric transit shapes. K2-22b is one of these few disintegrating planets discovered to date, and its light curve not only displays highly variable transit depths but also uniquely displays evidence of a leading dust tail. Here, we present results from a large ground-based photometric observing campaign of the K2-22 system that took place between December 2016 and May 2017, which we use to investigate the evolution of the transit of K2-22b. Last observed in early 2015, in these new observations we recover the transit around the expected time and measure a typical depth of <1%. We find that the transit depth has decreased compared to observations from 2014 and 2015, where the maximum transit depth measured at that time was ~1.3%. These new observations support ongoing variability in the transit depth, shape, and time of K2-22b, although the overall shallowness of the transit makes a detailed analysis of the transit shape and timing difficult. In addition, we find no strong evidence of wavelength-dependent transit depths for epochs where we have simultaneous coverage at multiple wavelengths. Given the observed decrease in the transit depth between 2015 and 2017, we encourage continued high-precision photometric monitoring of this system in order to further constrain the evolution timescale and to aid comparative studies with the other few disintegrating planets known.

  1. Microbial Mat Communities along an Oxygen Gradient in a Perennially Ice-Covered Antarctic Lake

    PubMed Central

    Hawes, Ian; Mackey, Tyler J.; Krusor, Megan; Doran, Peter T.; Sumner, Dawn Y.; Eisen, Jonathan A.; Hillman, Colin; Goroncy, Alexander K.

    2015-01-01

    Lake Fryxell is a perennially ice-covered lake in the McMurdo Dry Valleys, Antarctica, with a sharp oxycline in a water column that is density stabilized by a gradient in salt concentration. Dissolved oxygen falls from 20 mg liter−1 to undetectable over one vertical meter from 8.9- to 9.9-m depth. We provide the first description of the benthic mat community that falls within this oxygen gradient on the sloping floor of the lake, using a combination of micro- and macroscopic morphological descriptions, pigment analysis, and 16S rRNA gene bacterial community analysis. Our work focused on three macroscopic mat morphologies that were associated with different parts of the oxygen gradient: (i) “cuspate pinnacles” in the upper hyperoxic zone, which displayed complex topography and were dominated by phycoerythrin-rich cyanobacteria attributable to the genus Leptolyngbya and a diverse but sparse assemblage of pennate diatoms; (ii) a less topographically complex “ridge-pit” mat located immediately above the oxic-anoxic transition containing Leptolyngbya and an increasing abundance of diatoms; and (iii) flat prostrate mats in the upper anoxic zone, dominated by a green cyanobacterium phylogenetically identified as Phormidium pseudopriestleyi and a single diatom, Diadesmis contenta. Zonation of bacteria was by lake depth and by depth into individual mats. Deeper mats had higher abundances of bacteriochlorophylls and anoxygenic phototrophs, including Chlorobi and Chloroflexi. This suggests that microbial communities form assemblages specific to niche-like locations. Mat morphologies, underpinned by cyanobacterial and diatom composition, are the result of local habitat conditions likely defined by irradiance and oxygen and sulfide concentrations. PMID:26567300

  2. Oxygen no longer plays a major role in Body Size Evolution

    NASA Astrophysics Data System (ADS)

    Datta, H.; Sachson, W.; Heim, N. A.; Payne, J.

    2015-12-01

    When observing the long-term relationship between atmospheric oxygen and the maximum size in organisms across the Geozoic (~3.8 Ga - present), it appears that as oxygen increases, organism size grows. However, during the Phanerozoic (541 Ma - Present) oxygen levels varied, so we set out to test the hypothesis that oxygen levels drive patterns marine animal body size evolution. Expected decreases in maximum size due to a lack of oxygen do not occur, and instead, body size continues to increase regardless. In the oxygen data, a relatively low atmospheric oxygen percentage can support increasing body size, so our research tries to determine whether lifestyle affects body size in marine organisms. The genera in the data set were organized based on their tiering, motility, and feeding, such as a pelagic, fully-motile, predator. When organisms fill a certain ecological niche to take advantage of resources, they will have certain life modes, rather than randomly selected traits. For example, even in terrestrial environments, large animals have to constantly feed themselves to support their expensive terrestrial lifestyle which involves fairly consistent movement, and the structural support necessary for that movement. Only organisms with access to high energy food sources or large amounts of food can support themselves, and that is before they expend energy elsewhere. Organisms that expend energy frugally when active or have slower metabolisms in comparison to body size have a more efficient lifestyle and are generally able to grow larger, while those who have higher energy demands like predators are limited to comparatively smaller sizes. Therefore, in respect to the fossil record and modern measurements of animals, the metabolism and lifestyle of an organism dictate its body size in general. With this further clarification on the patterns of evolution, it will be easier to observe and understand the reasons for the ecological traits of organisms today.

  3. Development of an oxygen saturation measuring system by using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kono, K.; Nakamachi, E.; Morita, Y.

    2017-08-01

    Recently, the hypoxia imaging has been recognized as the advanced technique to detect cancers because of a strong relationship with the biological characterization of cancer. In previous studies, hypoxia imaging systems for endoscopic diagnosis have been developed. However, these imaging technologies using the visible light can observe only blood vessels in gastric mucous membrane. Therefore, they could not detect scirrhous gastric cancer which accounts for 10% of all gastric cancers and spreads rapidly into submucous membrane. To overcome this problem, we developed a measuring system of blood oxygen saturation in submucous membrane by using near-infrared (NIR) spectroscopy. NIR, which has high permeability for bio-tissues and high absorbency for hemoglobin, can image and observe blood vessels in submucous membrane. NIR system with LED lights and a CCD camera module was developed to image blood vessels. We measured blood oxygen saturation using the optical density ratio (ODR) of two wavelengths, based on Lambert-Beer law. To image blood vessel clearly and measure blood oxygen saturation accurately, we searched two optimum wavelengths by using a multilayer human gastric-like phantom which has same optical properties as human gastric one. By using Monte Carlo simulation of light propagation, we derived the relationship between the ODR and blood oxygen saturation and elucidated the influence of blood vessel depth on measuring blood oxygen saturation. The oxygen saturation measuring methodology was validated with experiments using our NIR system. Finally, it was confirmed that our system can detect oxygen saturation in various depth blood vessels accurately.

  4. Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study

    NASA Astrophysics Data System (ADS)

    Morrison, J. M.; Codispoti, L. A.; Gaurin, S.; Jones, B.; Manghnani, V.; Zheng, Z.

    Between September 1994 and December 1995, the US JGOFS Arabian Sea Process Experiment collected extensive, high quality hydrographic data (temperature, salinity, dissolved oxygen and nutrients) during all seasons in the northern Arabian Sea. An analysis of this unique data suite suggests the presence of many features that are described in the canonical literature, but these new data provided the following insights. Although the seasonal evolution of mixed-layer depths was in general agreement with previous descriptions, the deepest mixed-layer depths in our data occurred during the late NE Monsoon instead of the SW Monsoon. The region exhibits considerable mesoscale variability resulting in extremely variable temperature-salinity (TS) distributions in the upper 1000 db. This mesoscale variability is readily observed in satellite imaging, in the high resolution data taken by a companion ONR funded project, and in underway ADCP data. The densest water reaching the sea surface during coastal upwelling appeared to have maximum offshore depths of ˜150 m and σθ's close to the core value (˜25) for the saline Arabian Sea Water (ASW), but salinities in these upwelling waters were relatively low. The densest water found at the sea surface during late NE Monsoon conditions has σθ's>24.8 and relatively high salinities, suggesting that they are a source for the ASW salinity maximum. Persian Gulf Water (PGW) with a core σθ of 26.6 forms a widespread salinity maximum. Despite the considerable extent of this feature, Persian Gulf outflow water, with a salinity (4) of ˜39 at its source, can only be a minor contributor. Within the standard US JGOFS sampling grid, maximum salinities on this surface are ˜36.8 at stations near the Gulf, falling to values as low as ˜35.3 at the stations farthest removed from its influence. Even at our standard stations closest to the Gulf (N-1 and N-2), the high-salinity, low-nutrient Persian Gulf water has only a modest direct effect on nutrient concentrations. This PGW salinity maximum is associated with the suboxic portions of the Arabian Sea's oxygen minimum zone. The salinity maximum associated with Red Sea Water (RSW, core σθ=27.2) in the JGOFS study region is clearly evident at the southermost sampling site at 10'N (S-15). Elsewhere, this signal is weak or absent and salinity on the 27.2 σθ surface tends to increase towards the Persian Gulf, suggesting that the disappearance of this salinity maximum is due, at least in part, to the influence of the Persian Gulf outflow. Inorganic nitrogen-to-phosphate ratios were lower (frequently much lower) than the standard Redfield ratio of 15/1-16/1 (by atoms) at all times and all depths suggesting that inorganic nitrogen was more important than phosphate as a limiting nutrient for phytoplankton growth, and that the effects of denitrification dominated the effects of nitrogen fixation. The water upwelling off the Omani coast during the SW Monsoon has inorganic nitrogen to silicate ratios that were higher (˜2/1) than the ˜1/1 ratio often assumed as the ratio of uptake during diatom growth. The temporal evolution of inorganic nitrogen-to-silicate ratios suggests major alteration by diatom uptake only during the late SW Monsoon cruise (TN050) in August-September 1995. Widespread moderate surface layer nutrient concentrations occurred during the late NE Monsoon. A zone of high offshore nutrient concentrations was encountered during the SW Monsoon, but instead of being associated with offshore upwelling it may represent offshore advection from the coastal upwelling zone, the influence of an eddy, or both. Although our data do not contradict previous suggestions that the volume of subtoxic water may be reduced the SW Monsoon, they suggest a weaker re-oxygenation than indicated by some previous work. Similarly, they do not confirm results suggesting that secondary nitrite maxima may be common in waters with oxygen concentrations >5 μM.

  5. Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia

    NASA Astrophysics Data System (ADS)

    González-Márquez, Luis Carlos; Torres-Bejarano, Franklin M.; Torregroza-Espinosa, Ana Carolina; Hansen-Rodríguez, Ivette Renée; Rodríguez-Gallegos, Hugo B.

    2018-03-01

    The aim of this study was to evaluate the viability of using Landsat 8 spectral images to estimate water quality parameters and depth in El Guájaro Reservoir. On February and March 2015, two samplings were carried out in the reservoir, coinciding with the Landsat 8 images. Turbidity, dissolved oxygen, electrical conductivity, pH and depth were evaluated. Through multiple regression analysis between measured water quality parameters and the reflectance of the pixels corresponding to the sampling stations, statistical models with determination coefficients between 0.6249 and 0.9300 were generated. Results indicate that from a small number of measured parameters we can generate reliable models to estimate the spatial variation of turbidity, dissolved oxygen, pH and depth, as well the temporal variation of electrical conductivity, so models generated from Landsat 8 can be used as a tool to facilitate the environmental, economic and social management of the reservoir.

  6. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.

    PubMed

    Gong, Ming; Li, Yanguang; Wang, Hailiang; Liang, Yongye; Wu, Justin Z; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

    2013-06-12

    Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.

  7. Oxygen Sensing for Industrial Safety — Evolution and New Approaches

    PubMed Central

    Willett, Martin

    2014-01-01

    The requirement for the detection of oxygen in industrial safety applications has historically been met by electrochemical technologies based on the consumption of metal anodes. Products using this approach have been technically and commercially successful for more than three decades. However, a combination of new requirements is driving the development of alternative approaches offering fresh opportunities and challenges. This paper reviews some key aspects in the evolution of consumable anode products and highlights recent developments in alternative technologies aimed at meeting current and anticipated future needs in this important application. PMID:24681673

  8. Oxygen sensing for industrial safety - evolution and new approaches.

    PubMed

    Willett, Martin

    2014-03-27

    The requirement for the detection of oxygen in industrial safety applications has historically been met by electrochemical technologies based on the consumption of metal anodes. Products using this approach have been technically and commercially successful for more than three decades. However, a combination of new requirements is driving the development of alternative approaches offering fresh opportunities and challenges. This paper reviews some key aspects in the evolution of consumable anode products and highlights recent developments in alternative technologies aimed at meeting current and anticipated future needs in this important application.

  9. Influence of environmental properties on macrobenthos in the northwest Indian shelf.

    PubMed

    Jayaraj, K A; Jayalakshmi, K V; Saraladevi, K

    2007-04-01

    The paper deals with the standing stock of macrobenthic infauna and associated environmental factors influencing the benthic community in the shelf region of the northwest Indian coast. The data were collected onboard FORV Sagar Sampada during the winter monsoon (January-February, 2003) to understand the community structure and the factors influencing the benthic distribution. The environmental parameters, sediment characteristics and macrobenthic infauna were collected at 26 stations distributed in the depths between 30 and 200 m extending from Mormugao to Porbander. Total benthic abundance was high in lower depths (50-75 m), and low values noticed at 30 m depth contour was peculiar. Polychaetes were the dominant group and were more abundant in shallow and middle depths with moderate organic matter, clay and relatively high dissolved oxygen. On the other hand crustaceans and molluscs were more abundant in deeper areas having sandy sediment and low temperature. High richness and diversity of whole benthic groups observed in deeper depths counter balanced the opposite trend shown by polychaete species. Generally benthos preferred medium grain sized texture with low organic matter and high organic matter had an adverse effect especially on filter feeders. Deposit feeding polychaetes dominated in shallow depths while carnivore species in the middle depths. Ecologically, benthos were controlled by a combination of factors such as temperature, salinity, dissolved oxygen, sand and organic matter and no single factor could be considered as an ecological master factor.

  10. A multidisciplinary glider survey of an open ocean dead-zone eddy

    NASA Astrophysics Data System (ADS)

    Karstensen, Johannes; Schütte, Florian; Pietri, Alice; Krahmann, Gerd; Fiedler, Björn; Löscher, Carolin; Grundle, Damian; Hauss, Helena; Körtzinger, Arne; Testor, Pierre; Viera, Nuno

    2016-04-01

    The physical (temperature, salinity) and biogeochemical (oxygen, nitrate, chlorophyll fluorescence, turbidity) structure of an anticyclonic modewater eddy, hosting an open ocean dead zone, is investigated using observational data sampled in high temporal and spatial resolution with autonomous gliders in March and April 2014. The core of the eddy is identified in the glider data as a volume of fresher (on isopycnals) water in the depth range from the mixed layer base (about 70m) to about 200m depth. The width is about 80km. The core aligns well with the 40 μmolkg-1 oxygen contour. From two surveys about 1 month apart, changes in the minimal oxygen concentrations (below 5μmolkg-1) are observed that indicate that small scale processes are in operation. Several scales of coherent variability of physical and biogeochemical variable are identified - from a few meters to the mesoscale. One of the gliders carried an autonomous Nitrate (N) sensor and the data is used to analyse the possible nitrogen pathways within the eddy. Also the highest N is accompanied by lowest oxygen concentrations, the AOU:N ratio reveals a preferred oxygen cycling per N.

  11. 3D brain oxygenation measurements in awake hypertensive mice using two photon phosphorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Lu, Xuecong; Moeini, Mohammad; Li, Baoqiang; Zhang, Cong; Sakadžić, Sava; Lesage, Frédéric

    2018-02-01

    Cardiovascular risk factors, such as hypertension, have been associated with cognitive decline, potentially due to their impact on brain tissue oxygenation. In this study, high spatial resolution imaging in three dimensions was used to understand changes in brain oxygenation with hypertension. Experiments were performed on Young (WT_Y, 3-4 months, n=8), Old (WT_O, 6-7 months, n=8), and Old with hypertension (HP_O, 6-7 months, n=8) C57bL/6 awake mice. Two photon phosphorescence lifetime microscopy using an O2-sensitive phosphorescent dye PtPC343 was employed to measure two dimensional grids of PO2 in capillary beds (400um*400um, 25*25 pixels, acquired in 4 mins) and decays from arterioles. Scans were obtained continuously at depths from 50 um to 300 um under the brain surface. Using 3D measurements and a 250 um depth stack, we removed the compounding effects on brain oxygenation diffusion from surrounding brain vessels. The entire measurement of each vasculature stack required less than 30 minutes. This study indicates that among vascular risk factors, hypertension can reduce oxygen delivery and could potentially contribute to cognition decline.

  12. Enhanced activity of CaFeMg layered double hydroxides-supported gold nanodendrites for the electrochemical evolution of oxygen and hydrogen in alkaline media

    NASA Astrophysics Data System (ADS)

    Havakeshian, Elaheh; Salavati, Hossein; Taei, Masoumeh; Hasheminasab, Fatemeh; Seddighi, Mohadeseh

    2018-02-01

    In this study, Au was electrodeposited on a support of CaFeMg layered double hydroxide and then, its catalytic activity was investigated for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Field emission scanning electron microscopy images showed that a uniform porous film of aggregated nano-particles of the LDH has been decorated with Au nanodendrite-like structures (AuNDs@LDH). The results obtained from polarization curves, Tafel plots and electrochemical impedance spectroscopy showed that the AuNDs@LDH exhibits lower overpotential, higher current density, faster kinetics and enhanced stability for both of the OER and HER, in comparison with the single AuNPs and LDH catalysts.

  13. Photosynthetic water splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbaum, E.

    1981-01-01

    The photosynthetic unit of hydrogen evolution, the turnover time of photosynthetic hydrogen production, and hydrogenic photosynthesis are discussed in the section on previous work. Recent results are given on simultaneous photoproduction of hydrogen and oxygen, kinetic studies, microscopic marine algae-seaweeds, and oxygen profiles.

  14. Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for low-δ18O magmas of the Snake River Plain - Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Blum, T.; Kitajima, K.; Nakashima, D.; Valley, J. W.

    2013-12-01

    The Snake River Plain - Yellowstone (SRP-Y) hotspot trend is one of the largest known low-δ18O magmatic provinces, yet the timing and distribution of hydrothermal alteration relative to hotspot magmatism remains incompletely understood. Existing models for SRP-Y low-δ18O magma genesis differ regarding the timing of protolith alteration (e.g. Eocene vs. present), depth at which alteration occurs (e.g. 15 km vs. <5 km), and physical controls on the extent of alteration (e.g. caldera collapse, crustal scale fluid flow, etc.). We expand the existing oxygen isotope data set for zircon in the Lake Owyhee volcanic field (LOVF) of east central Oregon to further identify magmatic oxygen isotope trends within the field. These data offer insight into the timing of alteration and the extent of the greater SRP-Y low-δ18O province, as well as the conditions that generate large low-δ18O provinces. 16-14 Ma silicic volcanism in the LOVF is linked to the pre-14 Ma SRP-Y hotspot, with volcanism partially overlapping extension in the north-south trending Oregon-Idaho Graben (OIG). Ion microprobe analyses of zircons from 16 LOVF silicic lavas and tuffs reveal homogeneous zircons on both the single grain and hand sample scales: individual samples have 2 S.D. for δ18O ranging from 0.27 to 0.96‰ (SMOW), and sample averages ranging from 1.8 to 6.0‰, excluding texturally chaotic and/or porous zircons which have δ18O values as low as 0.0‰. All low-δ18O LOVF magmas, including the caldera-forming Tuff of Leslie Gulch and Tuff of Spring Creek, are confined to the OIG, although not all zircons from within the OIG have low δ18O values. The presence and sequence of low-δ18O magmas in the LOVF and adjacent central Snake River Plain (CSRP) cannot be explained by existing caldera subsidence or pre-hotspot source models. These data, however, combined with volumetrically limited low-δ18O material in the adjacent Idaho Batholith and Basin and Range, are consistent with low-δ18O magmas generated by the superposition of high hotspot-derived thermal fluxes on active extensional structures (OIG extension in the LOVF, and Basin and Range rifting in the CSRP) thereby increasing meteoric water transport to depth and generating conditions for regional scale hydrothermal alteration of the crust. The intricacies of deformation rate and style, and the resulting crustal permeability-depth relations along the hotspot track, offer a qualitative explanation for low-δ18O magmas being pervasive in the CSRP, but restricted to post-caldera and late stage ignimbrites in the eastern SRP centers. This model has significant implications for the evolution of SRP-Y systems, as the thermal inputs required to drive both hydrothermal alteration and crustal melting complicate production of long-lived shallow crustal magma chambers. In addition, this model adds to a growing data set (e.g. Tangbai-Dabie-Sulu province, British Tertiary Igneous Province, etc.) demonstrating low-δ18O magmas can be generated in conjunction with regional scale hydrothermal alteration of the crust, and that this process has occurred throughout the geologic past where extensional tectonics and high thermal fluxes are superimposed.

  15. Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Lv, Xiaowei; Xiao, Xin; Cao, Minglei; Bu, Yi; Wang, Chuanqing; Wang, Mingkui; Shen, Yan

    2018-05-01

    Modification of semiconductor photoanodes with oxygen evolution catalyst (OEC) is an effective approach for improving photoelectrochemical (PEC) water splitting efficiency. In the configuration, how to increase the activity of OEC is crucial to further improve PEC performance. Herein, a ternary photoanode system was designed to enhance PEC efficiency of photoelectrodes through introducing carbon dots (CDs), NiFe-layered double hydroxide (NiFe-LDH) nanosheets on BiVO4 particles. Systematic research shows that NiFe-LDH serves as an OEC which accelerates oxygen evolution kinetics, while the introduction of CDs can further reduce charge transfer resistance and overpotential for oxygen evolution. Under the synergistic effect of NiFe-LDH and CDs, the photocurrent and incident photon to current conversion efficiency (IPCE) of the resulting CDs/NiFe-LDH/BiVO4 photoanode is improved significantly than those of the NiFe-LDH/BiVO4 electrode. Consequently, such a ternary heterostructure could be an alternative way to further enhance PEC water splitting performance.

  16. Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving Complex

    ERIC Educational Resources Information Center

    Howard, Derrick L.; Tinoco, Arthur D.; Brudvig, Gary W.; Vrettos, John S.; Allen, Bertha Connie

    2005-01-01

    Bioinorganic models of the manganese Mn4 cluster are important not only as aids in understanding the structure and function of the oxygen-evolving complex (OEC), but also in developing artificial water-oxidation catalysts. The mechanism of water oxidation by photosystem II (PSII) is thought to involve the formation of a high-valent terminal Mn-oxo…

  17. The Rate of Oxygen Utilization by Cells

    PubMed Central

    Wagner, Brett A.; Venkataraman, Sujatha; Buettner, Garry R.

    2011-01-01

    The discovery of oxygen is considered by some to be the most important scientific discovery of all time – from both physical-chemical/astrophysics and biology/evolution viewpoints. One of the major developments during evolution is the ability to capture dioxygen in the environment and deliver it to each cell in the multicellular, complex mammalian body -- on demand, i.e. just-in-time. Humans use oxygen to extract approximately 2550 Calories (10.4 MJ) from food to meet daily energy requirements. This combustion requires about 22 moles of dioxygen per day, or 2.5 × 10-4 mol s-1. This is an average rate of oxygen utilization of 2.5 × 10-18 mol cell-1 s-1, i.e. 2.5 amol cell-1 s-1. Cells have a wide range of oxygen utilization, depending on cell type, function, and biological status. Measured rates of oxygen utilization by mammalian cells in culture range from <1 to >350 amol cell-1 s-1. There is a loose positive linear correlation of the rate of oxygen consumption (OCR) by mammalian cells in culture with cell volume and cell protein. The use of oxygen by cells and tissues is an essential aspect of the basic redox biology of cells and tissues. This type of quantitative information is fundamental to investigations in quantitative redox biology, especially redox systems biology. PMID:21664270

  18. Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways.

    PubMed

    Slesak, Ireneusz; Slesak, Halina; Kruk, Jerzy

    2012-08-01

    In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O(2), reactive oxygen species (ROS), among them hydrogen peroxide (H(2)O(2)), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O(2) appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O(2) and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O(2)-and H(2)O(2)-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O(2)-and H(2)O(2)-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H(2)O(2) and O(2) should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O(2)/H(2)O(2) was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment.

  19. Oceanic oxygenation events in the anoxic Ediacaran ocean.

    PubMed

    Sahoo, S K; Planavsky, N J; Jiang, G; Kendall, B; Owens, J D; Wang, X; Shi, X; Anbar, A D; Lyons, T W

    2016-09-01

    The ocean-atmosphere system is typically envisioned to have gone through a unidirectional oxygenation with significant oxygen increases in the earliest (ca. 635 Ma), middle (ca. 580 Ma), or late (ca. 560 Ma) Ediacaran Period. However, temporally discontinuous geochemical data and the patchy metazoan fossil record have been inadequate to chart the details of Ediacaran ocean oxygenation, raising fundamental debates about the timing of ocean oxygenation, its purported unidirectional rise, and its causal relationship, if any, with the evolution of early animal life. To better understand the Ediacaran ocean redox evolution, we have conducted a multi-proxy paleoredox study of a relatively continuous, deep-water section in South China that was paleogeographically connected with the open ocean. Iron speciation and pyrite morphology indicate locally euxinic (anoxic and sulfidic) environments throughout the Ediacaran in this section. In the same rocks, redox sensitive element enrichments and sulfur isotope data provide evidence for multiple oceanic oxygenation events (OOEs) in a predominantly anoxic global Ediacaran-early Cambrian ocean. This dynamic redox landscape contrasts with a recent view of a redox-static Ediacaran ocean without significant change in oxygen content. The duration of the Ediacaran OOEs may be comparable to those of the oceanic anoxic events (OAEs) in otherwise well-oxygenated Phanerozoic oceans. Anoxic events caused mass extinctions followed by fast recovery in biologically diversified Phanerozoic oceans. In contrast, oxygenation events in otherwise ecologically monotonous anoxic Ediacaran-early Cambrian oceans may have stimulated biotic innovations followed by prolonged evolutionary stasis. © 2016 John Wiley & Sons Ltd.

  20. Utilization of laser Doppler flowmetry and tissue spectrophotometry for burn depth assessment using a miniature swine model.

    PubMed

    Lotter, Oliver; Held, Manuel; Schiefer, Jennifer; Werner, Ole; Medved, Fabian; Schaller, Hans-Eberhard; Rahmanian-Schwarz, Afshin; Jaminet, Patrick; Rothenberger, Jens

    2015-01-01

    Currently, the diagnosis of burn depth is primarily based on a visual assessment and can be dependent on the surgeons' experience. The goal of this study was to determine the ability of laser Doppler flowmeter combined with a tissue spectrophotometer to discriminate burn depth in a miniature swine burn model. Burn injuries of varying depth, including superficial-partial, deep-partial, and full thickness, were created in seven Göttingen minipigs using an aluminium bar (100 °C), which was applied to the abdominal skin for periods of 1, 3, 6, 12, 30, and 60 seconds with gravity alone. The depth of injury was evaluated histologically using hematoxylin and eosin staining. All burns were assessed 3 hours after injury using a device that combines a laser light and a white light to determine blood flow, hemoglobin oxygenation, and relative amount of hemoglobin. The blood flow (41 vs. 124 arbitrary units [AU]) and relative amount of hemoglobin (32 vs. 52 AU) were significantly lower in full thickness compared with superficial-partial thickness burns. However, no significant differences in hemoglobin oxygenation were observed between these depths of burns (61 vs. 60%). These results show the ability of laser Doppler flowmeter and tissue spectrophotometer in combination to discriminate between various depths of injury in the minipig model, suggesting that this device may offer a valuable tool for burn depth assessment influencing burn management. © 2014 by the Wound Healing Society.

  1. Evidence for an evolving oxygen minimum zone in the Eastern Mediterranean during sapropel S1 controlled partly by the increased outflow from the Nile flood

    NASA Astrophysics Data System (ADS)

    Zirks, Eleen; Goodman-Tchernov, Beverly; Krom, Michael D.

    2017-04-01

    Understanding the nature and evolution of past Oxygen Minimum Zones (OMZ) are of great interest since they shed light on expanding OMZ's in the modern ocean. Furthermore, as we alter the nutrient fluxes emitted from modern major rivers there are known to major, often undesirable, consequence to the oxygen status in the marine basin both proximal and distal to the river discharge (e.g. Mississippi). Recent Global Climate Model (GCM) of the nature and development of S-1 sapropel in the Eastern Mediterranean (EMS) have suggested a four layer system with a well-ventilated surface water (0-200 m) and intermediate water (200-500 m), a partially ventilated sapropel intermediate water (SIW, 500-1800 m) and long-term stagnant deep water below 1800 m. Our conceptual model is of the partially ventilated SIW flowing from Adriatic/Aegean towards the east and becoming depleted in oxygen as it is increasingly influenced by descending labile organic matter derived directly or indirectly from the Nile flood. Most studies of sapropels in the EMS concentrate on the deep water below 1800 m water depths with only a limited number of samples having been taken from the SIW layer. In this review, we focus on the several stations sampled between 500-1800 m and particularly on stations in the Eastern Aegean and Levantine basins. Data has been obtained from sediment cores (9509, 9501, SL112, PS009PC, SL123, 562MC) in which either benthic foraminifera fauna or redox sensitive trace metals (RSTM) data have been measured. The Shannon-Weaver diversity index and the Oxygen Index have been calculated on the benthic foraminifera fauna. These cores reveal a distinct pattern in onset and offset of sapropel S1 and in the interruption of the sapropel at 8.2 ka BP. The onset of S1 was earlier in the shallower water depths consistent with greater respiration rates from progressively less labile organic matter dropping from the photic zone. There was a clear spatial trend in intensity of the OMZ with benthic foraminifera surviving in SIW throughout S1 offshore Libya (562MC) and close to Crete (SL123) nearer the source of SIW. By contrast the diversity is reduced and in case of 562MC the Oxygen Index reached zero close to the Israeli coast and under the direct influence of the Nile. There was an observed correlation between the V/Al ratio (PS009PC), a redox sensitive trace metal used as an indicator for sub-oxic conditions in the water column and the calculated Oxygen Index as well as diversity on benthic foraminifera (SL112). Our study also shows that the intensity of S1 sapropel was greater in this region between its onset and the 8.2 interruption, than in the period from 8.2 to the end of S1. Indeed, close to Cyprus (9501) sapropel S1 ends at 8.2 ka BP and doesn't have a second sapropelic part.

  2. Oxygenic Photosynthesis and the Oxidation State of Mars

    NASA Technical Reports Server (NTRS)

    Hartman, Hyman; McKay, Christopher P.

    1995-01-01

    The oxidation state of the Earth's surface is one of the most obvious indications of the effect of life on this planet. The surface of Mars is highly oxidized, as evidenced by its red color, but the connection to life is less apparent. Two possibilities can be considered. First, the oxidant may be photochemically produced in the atmosphere. In this case the fundamental source of O2 is the loss of H2 to space and the oxidant produced is H2O2. This oxidant would accumulate on the surface and thereby destroy any organic material and other reductants to some depth. Recent models suggest that diffusion limits this depth to a few meters. An alternative source of oxygen is biological oxygen production followed by sequestration of organic material in sediments - as on the Earth. In this case, the net oxidation of the surface was determined billions of years ago when Mars was a more habitable planet and oxidative conditions could persist to great depths, over 100 m. Below this must be a compensating layer of biogenic organic material. Insight into the nature of past sources of oxidation on Mars will require searching for organics in the martian subsurface and sediments.

  3. Characterization and impact of "dead-zone" eddies in the tropical Northeast Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Schuette, Florian; Karstensen, Johannes; Krahmann, Gerd; Hauss, Helena; Fiedler, Björn; Brandt, Peter; Visbeck, Martin; Körtzinger, Arne

    2016-04-01

    Localized open-ocean low-oxygen dead-zones in the tropical Northeast Atlantic are recently discovered ocean features that can develop in dynamically isolated water masses within cyclonic eddies (CE) and anticyclonic modewater eddies (ACME). Analysis of a comprehensive oxygen dataset obtained from gliders, moorings, research vessels and Argo floats shows that eddies with low oxygen concentrations at 50-150 m depths can be found in surprisingly high numbers and in a large area (from about 5°N to 20°N, from the shelf at the eastern boundary to 30°W). Minimum oxygen concentrations of about 9 μmol/kg in CEs and close to anoxic concentrations (< 1 μmol/kg) in ACMEs were observed. In total, 495 profiles with oxygen concentrations below the minimum background concentration of 40 μmol/kg could be associated with 27 independent "dead-zone" eddies (10 CEs; 17 ACMEs). The low oxygen concentration right beneath the mixed layer has been attributed to the combination of high productivity in the surface waters of the eddies and the isolation of the eddies' cores. Indeed eddies of both types feature a cold sea surface temperature anomaly and enhanced chlorophyll concentrations in their center. The oxygen minimum is located in the eddy core beneath the mixed layer at around 80 m depth. The mean oxygen anomaly between 50 to 150 m depth for CEs (ACMEs) is -49 (-81) μmol/kg. Eddies south of 12°N carry weak hydrographic anomalies in their cores and seem to be generated in the open ocean away from the boundary. North of 12°N, eddies of both types carry anomalously low salinity water of South Atlantic Central Water origin from the eastern boundary upwelling region into the open ocean. This points to an eddy generation near the eastern boundary. A conservative estimate yields that around 5 dead-zone eddies (4 CEs; 1 ACME) per year entering the area north of 12°N between the Cap Verde Islands and 19°W. The associated contribution to the oxygen budget of the shallow oxygen minimum zone in that area is about -10.3 (-3.0) μmol/kg/yr for CEs (ACMEs). The consumption within these eddies represents an essential part of the total consumption in the open tropical Northeast Atlantic Ocean and might be partly responsible for the formation of the shallow oxygen minimum zone.

  4. Effects of oxygen partial pressure on Li-air battery performance

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  5. Experimental study on the evolution of Peregrine breather with uniform-depth adverse currents

    NASA Astrophysics Data System (ADS)

    Liao, B.; Ma, Y.; Ma, X.; Dong, G.

    2018-05-01

    A series of laboratory experiments were performed to study the evolution of Peregrine breather (PB) in a wave flume in finite depth, and wave trains were initially generated in a region of quiescent water and then propagated into an adverse current region for which the current velocity strength gradually increased from zero to an approximately stable value. The PB is often considered as a prototype of oceanic freak waves that can focus wave energy into a single wave packet. In the experiment, the cases were selected with the relative water depths k0h (k0 is the wave number in quiescent water and h is the water depth) varying from 3.11 through 8.17, and the initial wave steepness k0a0 (a0 is the background wave amplitude) ranges between 0.065 and 0.120. The experimental results show the persistence of the breather evolution dynamics even in the presence of strong opposing currents. We have shown that the characteristic spectrum of the PB persists even on strong currents, thus making it a viable characteristic for prediction of freak waves. It was also found that the adverse currents tend to shift the focusing point upstream compared to the cases without currents. Furthermore, it was found that uniform-depth adverse currents can reduce the breather extension in time domain.

  6. Peroxy defects in Rocks and H2O2 formation on the early Earth

    NASA Astrophysics Data System (ADS)

    Gray, A.; Balk, M.; Mason, P.; Freund, F.; Rothschild, L.

    2013-12-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex life to evolve on Earth and possibly elsewhere in the Universe. The question is still shrouded in uncertainty how free oxygen became available on the early Earth. Here we study processes of peroxy defects in silicate minerals which, upon weathering, generate mobilized electronic charge carriers resulting in oxygen formation in an initially anoxic subsurface environment. Reactive Oxygen Species (ROS) are precursors to molecular oxygen during this process. Due to their toxicity they may have strongly influenced the evolution of life. ROS are generated during hydrolysis of peroxy defects, which consist of pairs of oxygen anions. A second pathway for formation occurs during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, microorganisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defenses against the potentially dangerous, even lethal effects of ROS and oxygen. We have investigated how oxygen might be released through weathering and test microorganisms in contact with rock surfaces. Our results show how early Life might have adapted to oxygen. Early microorganisms must have "trained" to detoxify ROS prior to the evolution of aerobic metabolism and oxygenic photosynthesis. A possible way out of this dilemma comes from a study of igneous and high-grade metamorphic rocks, whose minerals contain a small but significant fraction of oxygen anions in the valence state 1- , forming peroxy links of the type O3Si-OO-SiO3 [1, 2]. As water hydrolyzes the peroxy links hydrogen peroxide, H2O2, forms. Continued experimental discovery of H2O2 formation at rock-water interfaces as part of stress-activated currents on the tectonically active Earth may help us better understand the oxidation of the early Earth and the evolution of early Life. [1] Balk et al. (2009) Earth and Planetary Science Letters 283, 87-92. [2] Grant, R. A. et al. (2011) Int. J. Environ. Res. Public Health 8, 1936-1956.

  7. Balancing the generation and elimination of reactive oxygen species

    USGS Publications Warehouse

    Rodriguez, Rusty; Redman, Regina

    2005-01-01

    Fossil records suggest that bacteria developed the ability to photosynthesize ≈3,500 million years ago (mya), initiating a very slow accumulation of atmospheric oxygen (1). Recent geochemical models suggest that atmospheric oxygen did not accumulate to levels conducive for aerobic life until 500–1,000 mya (2, 3). The oxygenation of Earth's atmosphere resulted in the emergence of aerobic organisms followed by a great diversification of biological species and the eventual evolution of humans.

  8. Oxygen as a factor in eukaryote evolution - Some effects of low levels of oxygen on Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Jahnke, L.; Klein, H. P.

    1979-01-01

    A comparative study of the effects of varying levels of oxygen on some of the metabolic functions of the primitive eukaryote, Saccharomyces cerevisiae, has shown that these cells are responsive to very low levels of oxygen: the level of palmitoyl-Co A desaturase was greatly enhanced by only 0.03 vol % oxygen. Similarly, an acetyl-CoA synthetase associated predominantly with anaerobic growth was stimulated by as little as 0.1% oxygen, while an isoenzyme correlated with aerobic growth was maximally active at much higher oxygen levels (greater than 1%). Closely following this latter pattern were three mitochondrial enzymes that attained maximal activity only under atmospheric levels of oxygen.

  9. The Submarine Volcano Eruption off El Hierro Island: Effects on the Scattering Migrant Biota and the Evolution of the Pelagic Communities

    PubMed Central

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. PMID:25047077

  10. The submarine volcano eruption off El Hierro Island: effects on the scattering migrant biota and the evolution of the pelagic communities.

    PubMed

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community.

  11. Depth Profiling Analysis of Aluminum Oxidation During Film Deposition in a Conventional High Vacuum System

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Weimer, Jeffrey J.; Zukic, Muamer; Torr, Douglas G.

    1994-01-01

    The oxidation of aluminum thin films deposited in a conventional high vacuum chamber has been investigated using x-ray photoelectron spectroscopy (XPS) and depth profiling. The state of the Al layer was preserved by coating it with a protective MgF2 layer in the deposition chamber. Oxygen concentrations in the film layers were determined as a function of sputter time (depth into the film). The results show that an oxidized layer is formed at the start of Al deposition and that a less extensively oxidized Al layer is deposited if the deposition rate is fast. The top surface of the Al layer oxidizes very quickly. This top oxidized layer may be thicker than has been previously reported by optical methods. Maximum oxygen concentrations measured by XPS at each Al interface are related to pressure to rate ratios determined during the Al layer deposition.

  12. Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution

    DOE PAGES

    Strickler, Alaina L.; Escudero-Escribano, Marı́a; Jaramillo, Thomas F.

    2017-09-25

    Enhanced catalysis for electrochemical oxygen evolution is essential for the efficacy of many renewable energy technologies, including water electrolyzers and metal–air batteries. Recently, Au supports have been shown to enhance the activity of many 3d transition metal-oxide thin films for the oxygen evolution reaction (OER) in alkaline media. In this paper, we translate the beneficial impact of Au supports to high surface area, device-ready core–shell nanoparticles consisting of a Au-core and a metal-oxide shell (Au@M xO y where M = Ni, Co, Fe, and CoFe). Through a systematic evaluation, we establish trends in performance and illustrate the universal activity enhancementmore » when employing the Au-core in the 3d transition metal-oxide nanoparticles. Finally, the highest activity particles, Au@CoFeO x, demonstrate an overpotential of 328 ± 3 mV over a 2 h stability test at 10 mA cm –2, illustrating that strategically coupling Au support and mixed metal-oxide effects in a core–shell nanoparticle morphology is a promising avenue to achieve device-ready, high-performance OER catalysts.« less

  13. Influence of Fluoride Ion on the Performance of Pb-Ag Anode During Long-Term Galvanostatic Electrolysis

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaocong; Yu, Xiaoying; Jiang, Liangxing; Lv, Xiaojun; Liu, Fangyang; Lai, Yanqing; Li, Jie

    2015-09-01

    Anodic potential, morphology and phase composition of the anodic layer, corrosion morphology of the metallic substrate, and oxygen evolution behavior of Pb-Ag anode in H2SO4 solution without/with fluoride ion were investigated and compared. The results showed that the presence of fluoride ions contributed to a smoother anodic layer with lower PbO2 concentration, which resulted in lower double layer capacity and higher charge transfer resistance for the oxygen evolution reaction. Consequently, the Pb-Ag anode showed a higher anodic potential (about 35 mV) in the fluoride-containing electrolyte. In addition, the fluoride ions accelerated the detachment of loose flakes on the anodic layer. It was demonstrated that the anodic layer formed in the fluoride-containing H2SO4 solution was thinner. Furthermore, fluoride ions aggravated the corrosion of the metallic substrate at interdendritic boundary regions. Hence, the presence of fluoride ions is detrimental to oxygen evolution reactivity and increases the corrosion of the Pb-Ag anode, which may further increase the energy consumption and capital cost of zinc plants.

  14. Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickler, Alaina L.; Escudero-Escribano, Marı́a; Jaramillo, Thomas F.

    Enhanced catalysis for electrochemical oxygen evolution is essential for the efficacy of many renewable energy technologies, including water electrolyzers and metal–air batteries. Recently, Au supports have been shown to enhance the activity of many 3d transition metal-oxide thin films for the oxygen evolution reaction (OER) in alkaline media. In this paper, we translate the beneficial impact of Au supports to high surface area, device-ready core–shell nanoparticles consisting of a Au-core and a metal-oxide shell (Au@M xO y where M = Ni, Co, Fe, and CoFe). Through a systematic evaluation, we establish trends in performance and illustrate the universal activity enhancementmore » when employing the Au-core in the 3d transition metal-oxide nanoparticles. Finally, the highest activity particles, Au@CoFeO x, demonstrate an overpotential of 328 ± 3 mV over a 2 h stability test at 10 mA cm –2, illustrating that strategically coupling Au support and mixed metal-oxide effects in a core–shell nanoparticle morphology is a promising avenue to achieve device-ready, high-performance OER catalysts.« less

  15. The oxidative environment: a mediator of interspecies communication that drives symbiosis evolution.

    PubMed

    Moné, Yves; Monnin, David; Kremer, Natacha

    2014-06-22

    Symbiotic interactions are ubiquitous in nature and play a major role in driving the evolution of life. Interactions between partners are often mediated by shared signalling pathways, which strongly influence both partners' biology and the evolution of the association in various environments. As an example of 'common language', the regulation of the oxidative environment plays an important role in driving the evolution of symbiotic associations. Such processes have been occurring for billions of years, including the increase in Earth's atmospheric oxygen and the subsequent evolution of mitochondria. The effect of reactive oxygen species and reactive nitrogen species (RONS) has been characterized functionally, but the molecular dialogue between partners has not been integrated within a broader evolutionary context yet. Given the pleiotropic role of RONS in cell-cell communication, development and immunity, but also their associated physiological costs, we discuss here how their regulation can influence the establishment, the maintenance and the breakdown of various symbiotic associations. By synthesizing recent developments in redox biology, we aim to provide an interdisciplinary understanding of the influence of such mediators of interspecies communication on the evolution and stability of symbioses, which in turn can shape ecosystems and play a role in health and disease.

  16. Point-of-care instrument for monitoring tissue health during skin graft repair

    NASA Astrophysics Data System (ADS)

    Gurjar, R. S.; Seetamraju, M.; Zhang, J.; Feinberg, S. E.; Wolf, D. E.

    2011-06-01

    We have developed the necessary theoretical framework and the basic instrumental design parameters to enable mapping of subsurface blood dynamics and tissue oxygenation for patients undergoing skin graft procedures. This analysis forms the basis for developing a simple patch geometry, which can be used to map by diffuse optical techniques blood flow velocity and tissue oxygenation as a function of depth in subsurface tissue.skin graft, diffuse correlation analysis, oxygen saturation.

  17. MoS2 interactions with 1.5 eV atomic oxygen

    NASA Technical Reports Server (NTRS)

    Martin, J. A.; Cross, J. B.; Pope, L. E.

    1989-01-01

    Exposures of MoS2 to 1.5-eV atomic oxygen in an anhydrous environment reveal that the degree of oxidation is essentially independent of crystallite orientation, and that the surface-adsorbed reaction products are MoO3 and MoO2. A mixture of oxides and sulfide exists over a depth of about 90 A, and this layer has a low diffusion rate for oxygen. It is concluded that a protective oxide layer forms on MoS2 on exposure to the atomic-oxygen-rich environment of LEO.

  18. Observations of the Evolution of Ion Outflow During a Sawtooth Event

    NASA Astrophysics Data System (ADS)

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Frey, H. U.

    2015-12-01

    Sawtooth oscillations are one of several convection modes known to exist in the magnetosphere. Recent simulations have suggested that O+^+ ions transported from the high-latitude ionosphere to the magnetotail can drive sawtooth events. We present observational case studies of sawtooth events using data from FAST near the noon-midnight meridional plane, Cluster in the magnetotail, GOES and LANL energetic particle sensors at geosynchronous orbit, and ACE solar wind data to investigate the evolution of ion outflow during sawtooth events and the question of whether O+^+ outflow from one tooth helps to drive subsequent teeth. We find that oxygen enters the tail from the lobes after each tooth onset, the oxygen fraction in the magnetotail often increases after a tooth onset, and that the oxygen fraction of outflowing ions increases after a tooth event both in the cusp and on the nightside. However, a significant amount of low energy oxygen (≲1 keV) can end up in the dayside inner magnetosphere.

  19. Operando Evidence for a Universal Oxygen Evolution Mechanism on Thermal and Electrochemical Iridium Oxides.

    PubMed

    Saveleva, Viktoriia A; Wang, Li; Teschner, Detre; Jones, Travis; Gago, Aldo S; Friedrich, K Andreas; Zafeiratos, Spyridon; Schlögl, Robert; Savinova, Elena R

    2018-06-07

    Progress in the development of proton exchange membrane (PEM) water electrolysis technology requires decreasing the anode overpotential, where the sluggish multistep oxygen evolution reaction (OER) occurs. This calls for an understanding of the nature of the active OER sites and reaction intermediates, which are still being debated. In this work, we apply synchrotron radiation-based near-ambient pressure X-ray photoelectron and absorption spectroscopies under operando conditions in order to unveil the nature of the reaction intermediates and shed light on the OER mechanism on electrocatalysts most widely used in PEM electrolyzers-electrochemical and thermal iridium oxides. Analysis of the O K-edge and Ir 4f spectra backed by density functional calculations reveals a universal oxygen anion red-ox mechanism regardless of the nature (electrochemical or thermal) of the iridium oxide. The formation of molecular oxygen is considered to occur through a chemical step from the electrophilic O I- species, which itself is formed in an electrochemical step.

  20. Ciliate diversity, community structure, and novel taxa in lakes of the McMurdo Dry Valleys, Antarctica.

    PubMed

    Xu, Yuan; Vick-Majors, Trista; Morgan-Kiss, Rachael; Priscu, John C; Amaral-Zettler, Linda

    2014-10-01

    We report an in-depth survey of next-generation DNA sequencing of ciliate diversity and community structure in two permanently ice-covered McMurdo Dry Valley lakes during the austral summer and autumn (November 2007 and March 2008). We tested hypotheses on the relationship between species richness and environmental conditions including environmental extremes, nutrient status, and day length. On the basis of the unique environment that exists in these high-latitude lakes, we expected that novel taxa would be present. Alpha diversity analyses showed that extreme conditions-that is, high salinity, low oxygen, and extreme changes in day length-did not impact ciliate richness; however, ciliate richness was 30% higher in samples with higher dissolved organic matter. Beta diversity analyses revealed that ciliate communities clustered by dissolved oxygen, depth, and salinity, but not by season (i.e., day length). The permutational analysis of variance test indicated that depth, dissolved oxygen, and salinity had significant influences on the ciliate community for the abundance matrices of resampled data, while lake and season were not significant. This result suggests that the vertical trends in dissolved oxygen concentration and salinity may play a critical role in structuring ciliate communities. A PCR-based strategy capitalizing on divergent eukaryotic V9 hypervariable region ribosomal RNA gene targets unveiled two new genera in these lakes. A novel taxon belonging to an unknown class most closely related to Cryptocaryon irritans was also inferred from separate gene phylogenies. © 2014 Marine Biological Laboratory.

  1. Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, II

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Special Session: Oxygen in the Solar System, II, included the following reports:Evolution of Oxygen Isotopes in the Solar Nebula; Disequilibrium Melting of Refractory Inclusions: A Mechanism for High-Temperature Oxygen; Isotope Exchange in the Solar Nebula; Oxygen Isotopic Compositions of the Al-rich Chondrules in the CR Carbonaceous Chondrites: Evidence for a Genetic Link to Ca-Al-rich Inclusions and for Oxygen Isotope Exchange During Chondrule Melting; Nebular Formation of Fayalitic Olivine: Ineffectiveness of Dust Enrichment; Water in Terrestrial Planets: Always an Oxidant?; Oxygen Barometry of Basaltic Glasses Based on Vanadium Valence Determination Using Synchrotron MicroXANES; A New Oxygen Barometer for Solar System Basaltic Glasses Based on Vanadium Valence; The Relationship Between Clinopyroxene Fe3+ Content and Oxygen Fugacity ; and Olivine-Silicate Melt Partitioning of Iridium.

  2. Microbial Mat Communities along an Oxygen Gradient in a Perennially Ice-Covered Antarctic Lake.

    PubMed

    Jungblut, Anne D; Hawes, Ian; Mackey, Tyler J; Krusor, Megan; Doran, Peter T; Sumner, Dawn Y; Eisen, Jonathan A; Hillman, Colin; Goroncy, Alexander K

    2016-01-15

    Lake Fryxell is a perennially ice-covered lake in the McMurdo Dry Valleys, Antarctica, with a sharp oxycline in a water column that is density stabilized by a gradient in salt concentration. Dissolved oxygen falls from 20 mg liter(-1) to undetectable over one vertical meter from 8.9- to 9.9-m depth. We provide the first description of the benthic mat community that falls within this oxygen gradient on the sloping floor of the lake, using a combination of micro- and macroscopic morphological descriptions, pigment analysis, and 16S rRNA gene bacterial community analysis. Our work focused on three macroscopic mat morphologies that were associated with different parts of the oxygen gradient: (i) "cuspate pinnacles" in the upper hyperoxic zone, which displayed complex topography and were dominated by phycoerythrin-rich cyanobacteria attributable to the genus Leptolyngbya and a diverse but sparse assemblage of pennate diatoms; (ii) a less topographically complex "ridge-pit" mat located immediately above the oxic-anoxic transition containing Leptolyngbya and an increasing abundance of diatoms; and (iii) flat prostrate mats in the upper anoxic zone, dominated by a green cyanobacterium phylogenetically identified as Phormidium pseudopriestleyi and a single diatom, Diadesmis contenta. Zonation of bacteria was by lake depth and by depth into individual mats. Deeper mats had higher abundances of bacteriochlorophylls and anoxygenic phototrophs, including Chlorobi and Chloroflexi. This suggests that microbial communities form assemblages specific to niche-like locations. Mat morphologies, underpinned by cyanobacterial and diatom composition, are the result of local habitat conditions likely defined by irradiance and oxygen and sulfide concentrations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Spatio-temporal evolutions of non-orthogonal equatorial wave modes derived from observations

    NASA Astrophysics Data System (ADS)

    Barton, Cory

    Equatorial waves have been studied extensively due to their importance to the tropical climate and weather systems. Historically, their activity is diagnosed mainly in the wavenumber-frequency domain. Recently, many studies have projected observational data onto parabolic cylinder functions (PCFs), which represent the meridional structure of individual wave modes, to attain time-dependent spatial wave structures. The non-orthogonality of wave modes has yet posed a problem when attempting to separate data into wave fields where the waves project onto the same structure functions. We propose the development and application of a new methodology for equatorial wave expansion of instantaneous flows using the full equatorial wave spectrum. By creating a mapping from the meridional structure function amplitudes to the equatorial wave class amplitudes, we are able to diagnose instantaneous wave fields and determine their evolution. Because all meridional modes are shared by some subset of the wave classes, we require constraints on the wave class amplitudes to yield a closed system with a unique solution for all waves' spatial structures, including IG waves. A synthetic field is analyzed using this method to determine its accuracy for data of a single vertical mode. The wave class spectra diagnosed using this method successfully match the correct dispersion curves even if the incorrect depth is chosen for the spatial decomposition. In the case of more than one depth scale, waves with varying equivalent depth may be similarly identified using the dispersion curves. The primary vertical mode is the 200 m equivalent depth mode, which is that of the peak projection response. A distinct spectral power peak along the Kelvin wave dispersion curve for this value validates our choice of equivalent depth, although the possibility of depth varying with time and height is explored. The wave class spectra diagnosed assuming this depth scale mostly match their expected dispersion curves, showing that this method successfully partitions the wave spectra by calculating wave amplitudes in physical space. This is particularly striking because the time evolution, and therefore the frequency characteristics, is determined simply by a timeseries of independently-diagnosed instantaneous horizontal fields. We use the wave fields diagnosed by this method to study wave evolution in the context of the stratospheric QBO of zonal wind, confirming the continuous evolution of the selection mechanism for equatorial waves in the middle atmosphere. The amplitude cycle synchronized with the background zonal wind as predicted by QBO theory is present in the wave class fields even though the dynamics are not forced by the method itself. We have additionally identified a time-evolution of the zonal wavenumber spectrum responsible for the amplitude variability in physical space. Similar to the temporal characteristics, the vertical structures are also the result of a simple height cross-section through multiple independently-diagnosed levels.

  4. Relationships between wintering waterbirds and invertebrates, sediments and hydrology of coastal marsh ponds

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2004-01-01

    We studied relationships among sediment variables (carbon content, C:N, hardness, oxygen penetration, silt-clay fraction), hydrologic variables (dissolved oxygen, salinity, temperature, transparency, water depth), sizes and biomass of common invertebrate classes, and densities of 15 common waterbird species in ponds of impounded freshwater, oligohaline, mesohaline, and unimpounded mesohaline marshes during winters 1997-98 to 1999-2000 on Rockefeller State Wildlife Refuge, Louisiana, USA. Canonical correspondence analysis and forward selection was used to analyze the above variables. Water depth and oxygen penetration were the variables that best segregated habitat characteristics that resulted in maximum densities of common waterbird species. Most common waterbird species were associated with specific marsh types, except Green-winged Teal (Anas crecca) and Northern Shoveler (Anas clypeata). We concluded that hydrologic manipulation of marsh ponds is the best way to manage habitats for these birds, if the hydrology can be controlled adequately.

  5. Projections of climate-driven changes in tuna vertical habitat based on species-specific differences in blood oxygen affinity.

    PubMed

    Mislan, K A S; Deutsch, Curtis A; Brill, Richard W; Dunne, John P; Sarmiento, Jorge L

    2017-10-01

    Oxygen concentrations are hypothesized to decrease in many areas of the ocean as a result of anthropogenically driven climate change, resulting in habitat compression for pelagic animals. The oxygen partial pressure, pO 2 , at which blood is 50% saturated (P 50 ) is a measure of blood oxygen affinity and a gauge of the tolerance of animals for low ambient oxygen. Tuna species display a wide range of blood oxygen affinities (i.e., P 50 values) and therefore may be differentially impacted by habitat compression as they make extensive vertical movements to forage on subdaily time scales. To project the effects of end-of-the-century climate change on tuna habitat, we calculate tuna P 50 depths (i.e., the vertical position in the water column at which ambient pO 2 is equal to species-specific blood P 50 values) from 21st century Earth System Model (ESM) projections included in the fifth phase of the Climate Model Intercomparison Project (CMIP5). Overall, we project P 50 depths to shoal, indicating likely habitat compression for tuna species due to climate change. Tunas that will be most impacted by shoaling are Pacific and southern bluefin tunas-habitat compression is projected for the entire geographic range of Pacific bluefin tuna and for the spawning region of southern bluefin tuna. Vertical shifts in P 50 depths will potentially influence resource partitioning among Pacific bluefin, bigeye, yellowfin, and skipjack tunas in the northern subtropical and eastern tropical Pacific Ocean, the Arabian Sea, and the Bay of Bengal. By establishing linkages between tuna physiology and environmental conditions, we provide a mechanistic basis to project the effects of anthropogenic climate change on tuna habitats. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  6. Molecular evolution of globin genes in Gymnotiform electric fishes: relation to hypoxia tolerance.

    PubMed

    Tian, Ran; Losilla, Mauricio; Lu, Ying; Yang, Guang; Zakon, Harold

    2017-02-13

    Nocturnally active gymnotiform weakly electric fish generate electric signals for communication and navigation, which can be energetically taxing. These fish mainly inhabit the Amazon basin, where some species prefer well-oxygenated waters and others live in oxygen-poor, stagnant habitats. The latter species show morphological, physiological, and behavioral adaptations for hypoxia-tolerance. However, there have been no studies of hypoxia tolerance on the molecular level. Globins are classic respiratory proteins. They function principally in oxygen-binding and -delivery in various tissues and organs. Here, we investigate the molecular evolution of alpha and beta hemoglobins, myoglobin, and neuroglobin in 12 gymnotiforms compared with other teleost fish. The present study identified positively selected sites (PSS) on hemoglobin (Hb) and myoglobin (Mb) genes using different maximum likelihood (ML) methods; some PSS fall in structurally important protein regions. This evidence for the positive selection of globin genes suggests that the adaptive evolution of these genes has helped to enhance the capacity for oxygen storage and transport. Interestingly, a substitution of a Cys at a key site in the obligate air-breathing electric eel (Electrophorus electricus) is predicted to enhance oxygen storage of Mb and contribute to NO delivery during hypoxia. A parallel Cys substitution was also noted in an air-breathing African electric fish (Gymnarchus niloticus). Moreover, the expected pattern under normoxic conditions of high expression of myoglobin in heart and neuroglobin in the brain in two hypoxia-tolerant species suggests that the main effect of selection on these globin genes is on their sequence rather than their basal expression patterns. Results indicate a clear signature of positive selection in the globin genes of most hypoxia-tolerant gymnotiform fishes, which are obligate or facultative air breathers. These findings highlight the critical role of globin genes in hypoxia tolerance evolution of Gymnotiform electric fishes.

  7. Objective characterization of bruise evolution using photothermal depth profiling and Monte Carlo modeling

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2015-01-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive determination of laser-induced temperature depth profiles in optically scattering layered structures. The obtained profiles provide information on spatial distribution of selected chromophores such as melanin and hemoglobin in human skin. We apply the described approach to study time evolution of incidental bruises (hematomas) in human subjects. By combining numerical simulations of laser energy deposition in bruised skin with objective fitting of the predicted and measured PPTR signals, we can quantitatively characterize the key processes involved in bruise evolution (i.e., hemoglobin mass diffusion and biochemical decomposition). Simultaneous analysis of PPTR signals obtained at various times post injury provides an insight into the variations of these parameters during the bruise healing process. The presented methodology and results advance our understanding of the bruise evolution and represent an important step toward development of an objective technique for age determination of traumatic bruises in forensic medicine.

  8. Sensitivity of ocean oxygenation to variations in tropical zonal wind stress magnitude

    NASA Astrophysics Data System (ADS)

    Ridder, Nina N.; England, Matthew H.

    2014-09-01

    Ocean oxygenation has been observed to have changed over the past few decades and is projected to change further under global climate change due to an interplay of several mechanisms. In this study we isolate the effect of modified tropical surface wind stress conditions on the evolution of ocean oxygenation in a numerical climate model. We find that ocean oxygenation varies inversely with low-latitude surface wind stress. Approximately one third of this response is driven by sea surface temperature anomalies; the remaining two thirds result from changes in ocean circulation and marine biology. Global mean O2 concentration changes reach maximum values of +4 μM and -3.6 μM in the two most extreme perturbation cases of -30% and +30% wind change, respectively. Localized changes lie between +92 μM under 30% reduced winds and -56 μM for 30% increased winds. Overall, we find that the extent of the global low-oxygen volume varies with the same sign as the wind perturbation; namely, weaker winds reduce the low-oxygen volume on the global scale and vice versa for increased trade winds. We identify two regions, one in the Pacific Ocean off Chile and the other in the Indian Ocean off Somalia, that are of particular importance for the evolution of oxygen minimum zones in the global ocean.

  9. Ocean Drilling Program Leg 112, Peru continental margin: Part 2, Sedimentary history and diagenesis in a coastal upwelling environment

    NASA Astrophysics Data System (ADS)

    Suess, E.; von Huene, R.

    1988-10-01

    On the shelf and upper slope off Peru the signal of coastal upwelling productivity and bottom-water oxygen is well preserved in alternately laminated and bioturbated diatomaceous Quaternary sediments. Global sea-level fluctuations are the ultimate cause for these cyclic facies changes. During late Miocene time, coastal upwelling was about 100 km west of the present centers, along the edge of an emergent structure that subsequently subsided to form the modern slope. The sediments are rich in organic carbon, and intense microbially mediated decomposition of organic matter is evident in sulfate reduction and methanogenesis. These processes are accompanied by the formation of diagenetic carbonates, mostly Ca-rich dolomites and Mg-calcites. The downhole isotopic signatures of these carbonate cements display distinct successions that reflect the vertical evolution of the pore fluid environment. From the association of methane gas hydrates, burial depth, and low-chloride interstitial fluids, we suggest an additional process that could contribute to the characteristic chloride depletion in pore fluids of active margins: release of interlayer water from clays without a mineral phase change. The shelf sediments also contain a subsurface brine that stretches for more than 500 km from north to south over the area drilled. The source of the brine remains uncertain, although the composition of the oxygen isotopes suggests dissolution of evaporites by seawater.

  10. Facile Method to Study Catalytic Oxygen Evolution Using a Dissolved Oxygen Optical Probe: An Undergraduate Chemistry Laboratory to Appreciate Artificial Photosynthesis

    ERIC Educational Resources Information Center

    Renderos, Genesis; Aquino, Tawanda; Gutierrez, Kristian; Badiei, Yosra M.

    2017-01-01

    Artificial photosynthesis (AP) is a synthetic chemical process that replicates natural photosynthesis to mass produce hydrogen as a clean fuel from sunlight-driven water splitting (2H[subscript 2]O [right arrow] O[subscript 2] + H[subscript 2]). In both natural and artificial photosynthesis, an oxygen-evolving catalyst (OEC) is needed to catalyze…

  11. Modelling the helium plasma jet delivery of reactive species into a 3D cancer tumour

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Oh, Jun-Seok; Fukuhara, Hideo; Bhatia, Rishabh; Gaur, Nishtha; Nguyen, Cuong K.; Hong, Sung-Ha; Ito, Satsuki; Ogawa, Kotaro; Kawada, Chiaki; Shuin, Taro; Tsuda, Masayuki; Furihata, Mutsuo; Kurabayashi, Atsushi; Furuta, Hiroshi; Ito, Masafumi; Inoue, Keiji; Hatta, Akimitsu; Short, Robert D.

    2018-01-01

    Cold atmospheric plasmas have attracted significant worldwide attention for their potential beneficial effects in cancer therapy. In order to further improve the effectiveness of plasma in cancer therapy, it is important to understand the generation and transport of plasma reactive species into tissue fluids, tissues and cells, and moreover the rates and depths of delivery, particularly across physical barriers such as skin. In this study, helium (He) plasma jet treatment of a 3D cancer tumour, grown on the back of a live mouse, induced apoptosis within the tumour to a depth of 2.8 mm. The He plasma jet was shown to deliver reactive oxygen species through the unbroken skin barrier before penetrating through the entire depth of the tumour. The depth and rate of transport of He plasma jet generated H2O2, NO3 - and NO2 -, as well as aqueous oxygen [O2(aq)], was then tracked in an agarose tissue model. This provided an approximation of the H2O2, NO3 -, NO2 - and O2(aq) concentrations that might have been generated during the He plasma jet treatment of the 3D tumour. It is proposed that the He plasma jet can induce apoptosis within a tumour by the ‘deep’ delivery of H2O2, NO3 - and NO2 - coupled with O2(aq); the latter raising oxygen tension in hypoxic tissue.

  12. Balancing the (carbon) budget: Using linear inverse models to estimate carbon flows and mass-balance 13C:15N labelling experiments in low oxygen sediments.

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Van Oevelen, Dick; Witte, Ursula

    2013-04-01

    Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.

  13. Atmospheric oxygen level and the evolution of insect body size.

    PubMed

    Harrison, Jon F; Kaiser, Alexander; VandenBrooks, John M

    2010-07-07

    Insects are small relative to vertebrates, possibly owing to limitations or costs associated with their blind-ended tracheal respiratory system. The giant insects of the late Palaeozoic occurred when atmospheric PO(2) (aPO(2)) was hyperoxic, supporting a role for oxygen in the evolution of insect body size. The paucity of the insect fossil record and the complex interactions between atmospheric oxygen level, organisms and their communities makes it impossible to definitively accept or reject the historical oxygen-size link, and multiple alternative hypotheses exist. However, a variety of recent empirical findings support a link between oxygen and insect size, including: (i) most insects develop smaller body sizes in hypoxia, and some develop and evolve larger sizes in hyperoxia; (ii) insects developmentally and evolutionarily reduce their proportional investment in the tracheal system when living in higher aPO(2), suggesting that there are significant costs associated with tracheal system structure and function; and (iii) larger insects invest more of their body in the tracheal system, potentially leading to greater effects of aPO(2) on larger insects. Together, these provide a wealth of plausible mechanisms by which tracheal oxygen delivery may be centrally involved in setting the relatively small size of insects and for hyperoxia-enabled Palaeozoic gigantism.

  14. A distributed snow-evolution modeling system (SnowModel)

    Treesearch

    Glen E. Liston; Kelly Elder

    2006-01-01

    SnowModel is a spatially distributed snow-evolution modeling system designed for application in landscapes, climates, and conditions where snow occurs. It is an aggregation of four submodels: MicroMet defines meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowPack simulates snow depth and water-equivalent evolution, and SnowTran-3D...

  15. MOF derived Ni/Co/NC catalysts with enhanced properties for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Hu, Jiapeng; Chen, Juan; Lin, Hao; Liu, Ruilai; Yang, Xiaobing

    2018-03-01

    Designing efficient electrocatalysts for oxygen evolution reaction (OER) is very important for renewable energy storage and conversion devices. In this paper, we introduced a new strategy to synthesize Ni doped Co/NC catalysts (NC is the abbreviation of nitrogen-doped graphitic carbon), which were derived from ZIF-67. All catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and oxygen evolution reaction (OER). The results show that Ni was well doped in the Ni/Co/NC catalysts and the doping of Ni has great influence on the OER activity of Ni/Co/NC catalysts. Among these catalysts, 0.50Ni/Co/NC exhibits the highest OER activity. The onset potential of 0.50Ni/Co/NC is 1.47 V, which is superior than the onset potential of Co/NC (1.54 V), 0.25Ni/Co/NC (1.48 V), 1.00Ni/Co/NC (1.53 V). The excellent OER activity of 0.50Ni/Co/NC catalyst makes its potential to be used on renewable energy storage.

  16. Design Strategy of Multi-electron Transfer Catalysts Based on a Bioinformatic Analysis of Oxygen Evolution and Reduction Enzymes.

    PubMed

    Ooka, Hideshi; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2018-05-14

    Understanding the design strategy of photosynthetic and respiratory enzymes is important to develop efficient artificial catalysts for oxygen evolution and reduction reactions. Here, based on a bioinformatic analysis of cyanobacterial oxygen evolution and reduction enzymes (photosystem II: PS II and cytochrome c oxidase: COX, respectively), the gene encoding the catalytic D1 subunit of PS II was found to be expressed individually across 38 phylogenetically diverse strains, which is in contrast to the operon structure of the genes encoding major COX subunits. Selective synthesis of the D1 subunit minimizes the repair cost of PS II, which allows compensation for its instability by lowering the turnover number required to generate a net positive energy yield. The different bioenergetics observed between PS II and COX suggest that in addition to the catalytic activity rationalized by the Sabatier principle, stability factors have also provided a major influence on the design strategy of biological multi-electron transfer enzymes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Broad Phylogenetic Occurrence of the Oxygen-Binding Hemerythrins in Bilaterians.

    PubMed

    Costa-Paiva, Elisa M; Schrago, Carlos G; Halanych, Kenneth M

    2017-10-01

    Animal tissues need to be properly oxygenated for carrying out catabolic respiration and, as such, natural selection has presumably favored special molecules that can reversibly bind and transport oxygen. Hemoglobins, hemocyanins, and hemerythrins (Hrs) fulfill this role, with Hrs being the least studied. Knowledge of oxygen-binding proteins is crucial for understanding animal physiology. Hr genes are present in the three domains of life, Archaea, Bacteria, and Eukaryota; however, within Animalia, Hrs has been reported only in marine species in six phyla (Annelida, Brachiopoda, Priapulida, Bryozoa, Cnidaria, and Arthropoda). Given this observed Hr distribution, whether all metazoan Hrs share a common origin is circumspect. We investigated Hr diversity and evolution in metazoans, by employing in silico approaches to survey for Hrs from of 120 metazoan transcriptomes and genomes. We found 58 candidate Hr genes actively transcribed in 36 species distributed in 11 animal phyla, with new records in Echinodermata, Hemichordata, Mollusca, Nemertea, Phoronida, and Platyhelminthes. Moreover, we found that "Hrs" reported from Cnidaria and Arthropoda were not consistent with that of other metazoan Hrs. Contrary to previous suggestions that Hr genes were absent in deuterostomes, we find Hr genes present in deuterostomes and were likely present in early bilaterians, but not in nonbilaterian animal lineages. As expected, the Hr gene tree did not mirror metazoan phylogeny, suggesting that Hrs evolutionary history was complex and besides the oxygen carrying capacity, the drivers of Hr evolution may also consist of secondary functional specializations of the proteins, like immunological functions. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Carbon and Oxygen Budgets of Hypersaline Cyanobacterial Mats: Effects of Tidal Cycle and Temperature

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Bebout, Brad M.; Carpenter, Steven; Discipulo, Mykell; Turk, Kendra

    2003-01-01

    The hierarchical organization of microbial ecosystems determines the rates of processes that shape Earth#s environment, define the stage upon which major evolutionary events occurred, and create biosignatures in sediments and atmospheres. In cyanobacterial mats, oxygenic photosynthesis provides energy, organic substrates and oxygen to the ecosystem. Incident light changes with depth in the mat, both in intensity and spectral composition, and counteracting gradients of oxygen and sulfide shape the chemical microenvironment. A combination of benefits and hazards of light, oxygen and sulfide promotes the allocation of the various essential mat processes between light and dark periods and to various depths in the mat. Microbiota produce hydrogen, small organic acids, and nitrogen and sulfur species. Such compounds fuel a flow of energy and electrons in these ecosystems and thus shape interactions between groups of microorganisms. Coordinated observations of population distribution, abundance, and activity for an entire community are making fundamental questions in ecology accessible. These questions address those factors that sustain the remarkable diversity of microorganisms that are now being revealed by molecular techniques. These questions also target the processes that shape the various kinds of biosignatures that we will seek, both in ancient rocks from Earth and Mars, and in atmospheres of distant planets beyond our Solar System.

  19. Operando investigation of Au-MnO x thin films with improved activity for the oxygen evolution reaction

    DOE PAGES

    Frydendal, Rasmus; Seitz, Linsey C.; Sokaras, Dimosthenis; ...

    2017-01-20

    The electrochemical splitting of water holds great potential as a method for producing clean fuels by storing electricity from intermittent energy sources. The efficiency of such a process would be greatly facilitated by incorporating more active catalysts based on abundant materials for the oxygen evolution reaction. Manganese oxides are promising as catalysts for this reaction. Recent reports show that their activity can be drastically enhanced when modified with gold. Herein, we investigate highly active mixed Au-MnO x thin films for the oxygen evolution reaction, which exhibit more than five times improvement over pure MnO x. These films are characterized withmore » operando X-ray Absorption Spectroscopy, which reveal that Mn assumes a higher oxidation state under reaction conditions when Au is present. As a result, the magnitude of the enhancement is correlated to the size of the Au domains, where larger domains are the more beneficial.« less

  20. Benthos response following petroleum exploration in the southern Caspian Sea: Relating effects of nonaqueous drilling fluid, water depth, and dissolved oxygen.

    PubMed

    Tait, R D; Maxon, C L; Parr, T D; Newton, F C

    2016-09-15

    The effects of linear alpha olefin (LAO) nonaqueous drilling fluid on benthic macrofauna were assessed over a six year period at a southern Caspian Sea petroleum exploration site. A wide-ranging, pre-drilling survey identified a relatively diverse shelf-depth macrofauna numerically dominated by amphipods, cumaceans, and gastropods that transitioned to a less diverse assemblage dominated by hypoxia-tolerant annelid worms and motile ostracods with increasing depth. After drilling, a similar transition in macrofauna assemblage was observed with increasing concentration of LAO proximate to the shelf-depth well site. Post-drilling results were consistent with a hypothesis of hypoxia from microbial degradation of LAO, supported by the presence of bacterial mats and lack of oxygen penetration in surface sediment. Chemical and biological recoveries at ≥200m distance from the well site were evident 33months after drilling ceased. Our findings show the importance of monitoring recovery over time and understanding macrofauna community structure prior to drilling. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Dynamics of Productivity-Related Oxygen Minimum Zone along the Shirshov Ridge, Western Bering Sea, during the Last Glacial Termination

    NASA Astrophysics Data System (ADS)

    Ovsepyan, E.; Ivanova, E. V.; Tiedemann, R.

    2017-12-01

    Seasonally sea-ice covered Bering Sea is known to be a sensitive region to study rapid climatic oscillations. Based on benthic (BF) and planktic (PF) foraminiferal data from two sediment cores SO201-2-85KL (85KL, w.d. 968 m) and SO201-2-77KL (77KL, w.d. 2163 m) we reconstruct variations in intensity of oxygen minimum zone (OMZ) and its relation to sea-surface bioproductivity in the central and southern parts of the Shirshov Ridge, western Bering Sea, during the Termination I. A prevalence of suboxic BF group (Kaiho, 1994) in both cores mirrors moderately oxygenated intermediate and deep waters during LGM-Heinrich I interval. Rapid increase in percentages of dysoxic group is registered in the core 77KL at the onset of Bølling/Allerød. This implies that relatively low-oxygen conditions developed at 2 km water depths in the southwestern Bering Sea, but occurrence (20-30%) of suboxic group suggests that oxygen depletion was not dramatic. Simultaneous spikes of high-productivity species point to a bioproductivity rise above the southern part of the ridge. Increase in bioproductivity and decrease in oxygen content are detected 0.9 kyr later above the central part of Shirshov Ridge than above the southern one. This delay might reflect a gradual sea ice retreat from station 77 KL to 85KL during the global warming and sea level rise. Moderate bottom-water oxygenation is suggested for the intermediate depths of 1 km whereas no changes in relative oxygen content are found at 2 km below sea level during the Younger Dryas. Concurrent decrease in bioproductivity is reconstructed from BF records from the core 85KL. However, presence of high-productivity species and elevated BF accumulation rates in the core 77KL point to higher organic matter flux to the sea floor in the southern part of the ridge at the end of Younger Dryas. For the Early Holocene, bioproductivity rise and oxygen depletion in the intermediate waters are inferred from BF data. Strong dominance of dysoxic group in the 85KL indicates that oxygen content at the intermediate depths was much lower during the Early Holocene than during the Bølling/Allerød. The results provide evidence for complex development of OMZ in the western Bering Sea during the Termination I. They also demonstrate high potential to extend such studies to the North Pacific realm.

  2. Nanostructured Platinum Alloys for Use as Catalyst Materials

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R. (Inventor); Hays, Charles C. (Inventor)

    2015-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  3. Nanostructured Platinum Alloys for Use as Catalyst Materials

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)

    2013-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  4. Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater.

    PubMed

    Hodel, F; Macouin, M; Trindade, R I F; Triantafyllou, A; Ganne, J; Chavagnac, V; Berger, J; Rospabé, M; Destrigneville, C; Carlut, J; Ennih, N; Agrinier, P

    2018-04-13

    The evolution of the seawater oxygen isotopic composition (δ 18 O) through geological time remains controversial. Yet, the past δ 18 O seawater is key to assess past seawater temperatures, providing insights into past climate change and life evolution. Here we provide a new and unprecedentedly precise δ 18 O value of -1.33 ± 0.98‰ for the Neoproterozoic bottom seawater supporting a constant oxygen isotope composition through time. We demonstrate that the Aït Ahmane ultramafic unit of the ca. 760 Ma Bou Azzer ophiolite (Morocco) host a fossil black smoker-type hydrothermal system. In this system we analyzed an untapped archive for the ocean oxygen isotopic composition consisting in pure magnetite veins directly precipitated from a Neoproterozoic seawater-derived fluid. Our results suggest that, while δ 18 O seawater and submarine hydrothermal processes were likely similar to present day, Neoproterozoic oceans were 15-30 °C warmer on the eve of the Sturtian glaciation and the major life diversification that followed.

  5. Evolution and development of gas exchange structures in Mammalia: the placenta and the lung.

    PubMed

    Mess, Andrea M; Ferner, Kirsten J

    2010-08-31

    Appropriate oxygen supply is crucial for organisms. Here we examine the evolution of structures associated with the delivery of oxygen in the pre- and postnatal phases in mammals. There is an enormous structural and functional variability in the placenta that has facilitated the evolution of specialized reproductive strategies, such as precociality. In particular the cell layers separating fetal and maternal blood differ markedly: a non-invasive epitheliochorial placenta, which increases the diffusion distance, represents a derived state in ungulates. Rodents and their relatives have an invasive haemochorial placental type as optimum for the diffusion distance. In contrast, lung development is highly conserved and differences in the lungs of neonates can be explained by different developmental rates. Monotremes and marsupials have altricial stages with lungs at the early saccular phase, whereas newborn eutherians have lungs at the late saccular or alveolar phase. In conclusion, the evolution of exchange structures in the pre- and postnatal periods does not follow similar principles. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Improved heuristics for early melanoma detection using multimode hyperspectral dermoscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; MacKinnon, Nicholas B.; Booth, Nicholas; Farkas, Daniel L.

    2017-02-01

    Purpose: To determine the performance of a multimode dermoscopy system (SkinSpect) designed to quantify and 3-D map in vivo melanin and hemoglobin concentrations in skin and its melanoma scoring system, and compare the results accuracy with SIAscopy, and histopathology. Methods: A multimode imaging dermoscope is presented that combines polarization, fluorescence and hyperspectral imaging to accurately map the distribution of skin melanin, collagen and hemoglobin in pigmented lesions. We combine two depth-sensitive techniques: polarization, and hyperspectral imaging, to determine the spatial distribution of melanin and hemoglobin oxygenation in a skin lesion. By quantifying melanin absorption in pigmented areas, we can also more accurately estimate fluorescence emission distribution mainly from skin collagen. Results and discussion: We compared in vivo features of melanocytic lesions (N = 10) extracted by non-invasive SkinSpect and SIMSYS-MoleMate SIAscope, and correlate them to pathology report. Melanin distribution at different depths as well as hemodynamics including abnormal vascularity we detected will be discussed. We will adapt SkinSpect scoring with ABCDE (asymmetry , border, color, diameter, evolution) and seven point dermatologic checklist including: (1) atypical pigment network, (2) blue-whitish veil, (3) atypical vascular pattern, (4) irregular streaks, (5) irregular pigmentation, (6) irregular dots and globules, (7) regression structures estimated by dermatologist. Conclusion: Distinctive, diagnostic features seen by SkinSpect in melanoma vs. normal pigmented lesions will be compared by SIAscopy and results from histopathology.

  7. Strong depth-related zonation of megabenthos on a rocky continental margin (∼700-4000 m) off southern Tasmania, Australia.

    PubMed

    Thresher, Ronald; Althaus, Franziska; Adkins, Jess; Gowlett-Holmes, Karen; Alderslade, Phil; Dowdney, Jo; Cho, Walter; Gagnon, Alex; Staples, David; McEnnulty, Felicity; Williams, Alan

    2014-01-01

    Assemblages of megabenthos are structured in seven depth-related zones between ∼700 and 4000 m on the rocky and topographically complex continental margin south of Tasmania, southeastern Australia. These patterns emerge from analysis of imagery and specimen collections taken from a suite of surveys using photographic and in situ sampling by epibenthic sleds, towed video cameras, an autonomous underwater vehicle and a remotely operated vehicle (ROV). Seamount peaks in shallow zones had relatively low biomass and low diversity assemblages, which may be in part natural and in part due to effects of bottom trawl fishing. Species richness was highest at intermediate depths (1000-1300 m) as a result of an extensive coral reef community based on the bioherm-forming scleractinian Solenosmilia variabilis. However, megabenthos abundance peaked in a deeper, low diversity assemblage at 2000-2500 m. The S. variabilis reef and the deep biomass zone were separated by an extensive dead, sub-fossil S. variabilis reef and a relatively low biomass stratum on volcanic rock roughly coincident with the oxygen minimum layer. Below 2400 m, megabenthos was increasingly sparse, though punctuated by occasional small pockets of relatively high diversity and biomass. Nonetheless, megabenthic organisms were observed in the vast majority of photographs on all seabed habitats and to the maximum depths observed--a sandy plain below 3950 m. Taxonomic studies in progress suggest that the observed depth zonation is based in part on changing species mixes with depth, but also an underlying commonality to much of the seamount and rocky substrate biota across all depths. Although the mechanisms supporting the extraordinarily high biomass in 2000-2500 m depths remains obscure, plausible explanations include equatorwards lateral transport of polar production and/or a response to depth-stratified oxygen availability.

  8. Evolution and Depths of the High-Ti Mare Picrite Glass Source Regions

    NASA Technical Reports Server (NTRS)

    Hess, Paul C.

    1997-01-01

    The objectives of this research were to examine the igneous evolution of the Moon with emphasis on the petrogenesis of Mare basalts, lunar troctolites and the Mg-rich suite and on the evolution of the crystallization products of the magma ocean.

  9. Theoretical dosimetric evaluation of carbon and oxygen minibeam radiation therapy.

    PubMed

    González, Wilfredo; Peucelle, Cécile; Prezado, Yolanda

    2017-05-01

    Charged particles have several advantages over x-ray radiations, both in terms of physics and radiobiology. The combination of these advantages with those of minibeam radiation therapy (MBRT) could help enhancing the therapeutic index for some cancers with poor prognosis. Among the different ions explored for therapy, carbon ions are considered to provide the optimum physical and biological characteristics. Oxygen could be advantageous due to a reduced oxygen enhancement ratio along with a still moderate biological entrance dose. The aforementioned reasons justified an in-depth evaluation of the dosimetric features of carbon and oxygen minibeam radiation therapy to establish the interest of further explorations of this avenue. The GATE/Geant4 6.2 Monte Carlo simulation platform was employed to simulate arrays of rectangular carbon and oxygen minibeams (600 μm × 2 cm) at a water phantom entrance. They were assumed to be generated by means of a magnetic focusing. The irradiations were performed with a 2-cm-long spread-out Bragg peak (SOBP) centered at 7-cm-depth. Several center-to-center (c-t-c) distances were considered. Peak and valley doses, as well as peak-to-valley dose ratio (PVDR) and the relative contribution of nuclear fragments and electromagnetic processes were assessed. In addition, the type and proportion of the secondary nuclear fragments were evaluated in both peak and valley regions. Carbon and oxygen MBRT lead to very similar dose distributions. No significant advantage of oxygen over carbon ions was observed from physical point of view. Favorable dosimetric features were observed for both ions. Thanks to the reduced lateral scattering, the standard shape of the depth dose curves (in the peaks) is maintained even for submillimetric beam sizes. When a narrow c-t-c is considered (910-980 μm), a (quasi) homogenization of the dose can be obtained at the target, while a spatial fractionation of the dose is maintained in the proximal normal tissues with low PVDR. In contrast when a larger c-t-c is used (3500 μm) extremely high PVDR (≥ 50) are obtained in normal tissues, corresponding to very low valley doses. This suggests that carbon and oxygen MBRT might lead to a significant reduction of normal tissue complication probability. The main participant to the valley doses are secondary nuclear products at all depths. Among them the highest yield in normal tissues corresponds to the lightest fragments, neutrons and protons. Heavier fragments are dominant in the valleys only at the target position, which might favor tumor control. The computed dose distributions suggest that a spatial fractionation of the dose combined to the use of submillimetric field sizes might allow profiting from the high efficiency of carbon and oxygen ions for the treatment of radioresistant tumors, while preserving normal tissues. Only biological experiments could confirm the shifting of the normal tissue complication probability curves. The authors' results support the further exploration of this avenue. © 2017 American Association of Physicists in Medicine.

  10. Oxygen in the deep-sea: The challenge of maintaining uptake rates in a changing ocean

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2011-12-01

    Although focused on recently, ocean acidification is not the only effect of anthropogenic CO2 emissions on the ocean. Ocean warming will reduce dissolved oxygen concentrations and at the hypoxic limit for a given species this can pose challenges to marine life. The limit is traditionally reported simply as the static mass concentration property [O2]; here we treat it as a dynamic gas exchange problem for the animal analogous to gas exchange at the sea surface. The diffusive limit and its relationship to water velocity is critical for the earliest stages of marine life (eggs, embryos), but the effect is present for all animals at all stages of life. We calculate the external limiting O2 conditions for several representative metabolic rates and their relationship to flow of the bulk fluid under different environmental conditions. Ocean O2 concentrations decline by ≈ 14 μmol kg-1 for a 2 °C rise in temperature. At standard 1000 m depth conditions in the Pacific, flow over the surface would have to increase by ≈ 60% from 2.0 to 3.2 cm s-1 to compensate for this change. The functions derived allow new calculations of depth profiles of limiting O2 concentrations, as well as maximal diffusively sustainable metabolic oxygen consumption rates at various places around the world. Our treatment shows that there is a large variability in the global ocean in terms of facilitating aerobic life. This variability is greater than the variability of the oxygen concentration alone. It becomes clear that temperature and pressure dependencies of diffusion and partial pressure create a region typically around 1000 m depth where a maximal [O2] is needed to sustain a given metabolic rate. This zone of greatest physical constriction on the diffusive transport in the boundary layer is broadly consistent with the oxygen minimum zone, i.e., the zone of least oxygen concentration supply, resulting in a pronounced minimum of maximal diffusively sustainable metabolic oxygen consumption rates. This least-favorable zone for aerobic respiration is bound to expand with further ocean warming.

  11. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution.

    PubMed

    Nowicka, Beatrycze; Kruk, Jerzy

    2016-01-01

    Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. SAFT nickel-cadmium cell performances for GEO and LEO applications

    NASA Technical Reports Server (NTRS)

    Puig, Olivier

    1991-01-01

    The following topics are covered in viewgraph format: test matrix and cycling status; test results at 30 percent depth of discharge (DOD); test results at 40 percent DOD; capacity evolution; and dissipated power evolution.

  13. XANES analyses of silicon crystalline irradiated by nitrogen/oxygen ions.

    PubMed

    Yoshida, T; Hara, T; Li, T; Yoshida, H; Tanabe, T

    2001-03-01

    X-ray absorption techniques have been applied to the characterization of 5 keV nitrogen / oxygen ions implanted silicon samples. The depth selective measurement of XANES by recording in PEY mode and the quantitative analysis by superposition of XANES spectra were carried out to elucidate the depth profile of implanted ions. It has been revealed that the silicon nitride phase were formed in silicon after prolonged N+ irradiation and it extended over the deep part of the damaged region from the surface. On the other hand, for the O+ irradiation, silicon dioxide phase were produced only in the shallow part of the damaged region, i.e., the silicon dioxide phase likely broke off during the irradiation.

  14. Diazotroph community structure in the deep oxygen minimum zone of the Costa Rica Dome.

    PubMed

    Cheung, Shunyan; Xia, Xiaomin; Guo, Cui; Liu, Hongbin

    2016-03-01

    Oxygen minimum zones (OMZs), characterized by depleted dissolved oxygen concentration in the intermediate depth of the water column, are predicted to expand under the influence of global warming. Recent studies in the Eastern Tropical South Pacific Ocean and Arabian Sea have reported that heterotrophic nitrogen fixation is active in the OMZs. In this study, we investigated the community structure of diazotrophs in the OMZ of the Costa Rica Dome (CRD) upwelling region in the Eastern Tropical North Pacific Ocean, using 454-pyrosequencing of nifH gene amplicons. Comparing diazotroph assemblages in different depth strata of the OMZ (200-1000 m in depth), we found a unique diazotroph community in the OMZ core, which was mainly dominated by methanotroph-like diazotrophs, suggesting a potential coupling of nitrogen cycle and methane assimilation. In addition, some OTUs revealed in this study, especially those belonging to the large sub-cluster Vibrio diazotrophicus , were reported to be abundant and expressing the nifH gene in other OMZs. Our results suggest that the unique hydrographic conditions in OMZs may support similar assemblages of diazotrophs, and heterotrophic nitrogen fixation could also be occurring in our studied region. Our study provides the first insight into the composition and distribution of putative diazotrophs in the CRD OMZ.

  15. Free-standing, flexible β-Ni(OH)2/electrochemically-exfoliated graphene film electrode for efficient oxygen evolution

    NASA Astrophysics Data System (ADS)

    Wang, Lanlan; Zhang, Jian; Jiang, Weitao; Zhao, Hong; Liu, Hongzhong

    2018-03-01

    The oxidation of water into molecular oxygen (oxygen evolution reaction, OER) is a pivotal reaction in many energy conversion devices. The high cost of IrO2, however, seriously hinder its large-scale applications in water oxidation. Here, we have at first reported a free-standing and flexible film electrode consisting of 2D β-Ni(OH)2/electrochemically-exfoliated graphene hybrid nanosheets (NiG-2), which is synthesized by a solvothermal reaction and an assembly process. The as-obtained NiG-2 film electrode exhibited an excellent electrocatalytic OER activity with an extremely low OER onset overpotential of ∼250 mV in a 1 M KOH aqueous solution, which is lower than these of the commercial Ir/C (370 mV at 10 mA cm-2) catalyst.

  16. Depth dependence of defect evolution and TED during annealing

    NASA Astrophysics Data System (ADS)

    Colombeau, B.; Cowern, N. E. B.; Cristiano, F.; Calvo, P.; Lamrani, Y.; Cherkashin, N.; Lampin, E.; Claverie, A.

    2004-02-01

    A quantitative transmission electron microscopy (TEM) study on the depth profile of extended defects, formed after Si implantation, has been carried out. Two different Si + implant conditions have been considered. TEM analysis for the highest energy/dose shows that {1 1 3} defects evolve into dislocation loops whilst the defect depth distribution remains unchanged as a function of annealing time. For the lowest energy/dose, {1 1 3} defects grow and dissolve while the defect band shrinks preferentially on the surface side. At the same time, extraction of boron transient enhanced diffusion (TED) as a function of depth shows a decrease of the supersaturation towards the surface, starting at the location of the defect band. The study clearly shows that in these systems the silicon surface is the principal sink for interstitials. The results provide a critical test of the ability of physical models to simulate defect evolution and TED.

  17. Surface preparation effects on GTA weld shape in JBK-75 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, R.D.; Robertson, A.M.; Heiple, C.R.

    1993-02-01

    The results of a study are reported here on the effects of surface preparation on the shape of autogenous gas tungsten arc (GTA) welds in JBK-75, an austenitic precipitation hardenable stainless steel similar to A286. Minor changes in surface preparation produced substantial changes in the fusion zone shape and welding behavior of this alloy. Increased and more consistent depth of fusion (higher d/w ratios) along with improved arc stability and less arc wander resulted from wire brushing and other abrasive surface preparations, although chemical and machining methods did not produce any increase in depth of fusion. Abrasive treatments roughen themore » surface, increase the surface area, increase the surface oxide thickness, and entrap oxide. The increased weld d/w ratio is attributed to oxygen added to the weld pool from the surface oxide on the base metal. The added oxygen alters the surface-tension-driven fluid flow pattern in the weld pool. Increased depth of fusion in wire-fed U-groove weld joints also resulted when welding wire with a greater surface oxide thickness was used. Increasing the amount of wire brushing produced even deeper welds. However, a maximum in depth of fusion was observed with further wire brushing, beyond which weld fusion depth decreased.« less

  18. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong-Tae; Lopes, Pietro Papa; Park, Shin-Ae

    The selection of oxide materials for catalyzing the Oxygen Evolution Reaction in acid-based electrolyzers must be guided by the proper balance between activity, stability and conductivity – a challenging mission of great importance for delivering affordable and environmentally friendly hydrogen. Here we report that the highly conductive nanoporous architecture of an iridium oxide shell on a metallic iridium core, formed through the fast dealloying of osmium from an Ir25Os75 alloy, exhibits an exceptional balance between oxygen evolution activity and stability as quantified by the Activity-Stability FactorASF. Based on this metric, the nanoporous Ir/IrO2 morphology of dealloyed Ir25Os75 shows a factormore » of ~30 improvement ASFrelative to conventional Ir-based oxide materials and a ~8 times improvement over dealloyed Ir25Os75 nanoparticles due to optimized stability and conductivity, respectively. We propose that the Activity-Stability FactorASF is the key “metric” for determining the technological relevance of oxide-based anodic water electrolyzer catalysts.« less

  19. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting

    NASA Astrophysics Data System (ADS)

    Li, Haoyi; Chen, Shuangming; Jia, Xiaofan; Xu, Biao; Lin, Haifeng; Yang, Haozhou; Song, Li; Wang, Xun

    2017-05-01

    Highly active and robust eletcrocatalysts based on earth-abundant elements are desirable to generate hydrogen and oxygen as fuels from water sustainably to replace noble metal materials. Here we report an approach to synthesize porous hybrid nanostructures combining amorphous nickel-cobalt complexes with 1T phase molybdenum disulfide (MoS2) via hydrazine-induced phase transformation for water splitting. The hybrid nanostructures exhibit overpotentials of 70 mV for hydrogen evolution and 235 mV for oxygen evolution at 10 mA cm-2 with long-term stability, which have superior kinetics for hydrogen- and oxygen-evolution with Tafel slope values of 38.1 and 45.7 mV dec-1. Moreover, we achieve 10 mA cm-2 at a low voltage of 1.44 V for 48 h in basic media for overall water splitting. We propose that such performance is likely due to the complete transformation of MoS2 to metallic 1T phase, high porosity and stabilization effect of nickel-cobalt complexes on 1T phase MoS2.

  20. Experimental and Computational Evidence of Highly Active Fe Impurity Sites on the Surface of Oxidized Au for the Electrocatalytic Oxidation of Water in Basic Media

    DOE PAGES

    Klaus, Shannon; Trotochaud, Lena; Cheng, Mu-Jeng; ...

    2015-10-22

    Addition of Fe to Ni- and Co-based (oxy)hydroxides has been shown to enhance the activity of these materials for electrochemical oxygen evolution. Here we show that Fe cations bound to the surface of oxidized Au exhibit enhanced oxygen evolution reaction (OER) activity. We find that the OER activity increases with increasing surface concentration of Fe. Density functional theory analysis of the OER energetics reveals that oxygen evolution over Fe cations bound to a hydroxyl-terminated oxidized Au (Fe-Au 2O 3) occurs at an overpotential ~0.3V lower than over hydroxylated Au 2O 3 (0.82V). This finding agrees well with experimental observations andmore » is a consequence of the more optimal binding energetics of OER reaction intermediates at Fe cations bound to the surface of Au 2O 3. These findings suggest that the enhanced OER activity reported recently upon low-potential cycling of Au may be due to surface Fe impurities rather than to "superactive" Au(III) surfaquo species.« less

  1. Fuel Cells | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion, Electrochimica Acta (2016) Suppression of Oxygen Reduction Reaction Activity on Pt-Based Electrocatalysts from Ionomer Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction, Journal of the Electrochemical Society

  2. Studying Biological Responses to Global Change in Atmospheric Oxygen

    PubMed Central

    Powell, Frank L.

    2010-01-01

    A popular book recently hypothesized that change in atmospheric oxygen over geological time is the most important physical factor in the evolution of many fundamental characteristics of modern terrestrial animals. This hypothesis is generated primarily using fossil data but the present paper considers how modern experimental biology can be used to test it. Comparative physiology and experimental evolution clearly show that changes in atmospheric O2 over the ages had the potential to drive evolution, assuming the physiological O2-sensitivity of animals today is similar to the past. Established methods, such as phylogenetically independent contrasts, as well new approaches, such as adding environmental history to phylogenetic analyses or modeling interactions between environmental stresses and biological responses with different rate constants, may be useful for testing (disproving) hypotheses about biological adaptations to changes in atmospheric O2. PMID:20385257

  3. CuCo 2O 4 ORR/OER Bi-functional catalyst: Influence of synthetic approach on performance

    DOE PAGES

    Serov, Alexey; Andersen, Nalin I.; Roy, Aaron J.; ...

    2015-02-07

    A series of CuCo 2O 4 catalysts were synthesized by pore forming, sol-gel, spray pyrolysis and sacrificial support methods. Catalysts were characterized by XRD, SEM, XPS and BET techniques. The electrochemical activity for the oxygen reduction and oxygen evolution reactions (ORR and OER) was evaluated in alkaline media by RRDE. Density Functional Theory was used to identify two different types of active sites responsible for ORR/OER activity of CuCo 2O 4 and it was found that CuCo 2O 4 can activate the O-O bond by binding molecular oxygen in bridging positions between Co or Co and Cu atoms. It wasmore » found that the sacrificial support method (SSM) catalyst has the highest performance in both ORR and OER and has the highest content of phase-pure CuCo 2O 4. It was shown that the presence of CuO significantly decreases the activity in oxygen reduction and oxygen evolution reactions. As a result, the half-wave potential (E 1/2) of CuCo 2O 4-SSM was found as 0.8 V, making this material a state-of-the-art, unsupported oxide catalyst.« less

  4. The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity.

    PubMed

    El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E; Riboulleau, Armelle; Rollion Bard, Claire; Macchiarelli, Roberto; Ngombi Pemba, Lauriss; Hammarlund, Emma; Meunier, Alain; Moubiya Mouele, Idalina; Benzerara, Karim; Bernard, Sylvain; Boulvais, Philippe; Chaussidon, Marc; Cesari, Christian; Fontaine, Claude; Chi-Fru, Ernest; Garcia Ruiz, Juan Manuel; Gauthier-Lafaye, François; Mazurier, Arnaud; Pierson-Wickmann, Anne Catherine; Rouxel, Olivier; Trentesaux, Alain; Vecoli, Marco; Versteegh, Gerard J M; White, Lee; Whitehouse, Martin; Bekker, Andrey

    2014-01-01

    The Paleoproterozoic Era witnessed crucial steps in the evolution of Earth's surface environments following the first appreciable rise of free atmospheric oxygen concentrations ∼2.3 to 2.1 Ga ago, and concomitant shallow ocean oxygenation. While most sedimentary successions deposited during this time interval have experienced thermal overprinting from burial diagenesis and metamorphism, the ca. 2.1 Ga black shales of the Francevillian B Formation (FB2) cropping out in southeastern Gabon have not. The Francevillian Formation contains centimeter-sized structures interpreted as organized and spatially discrete populations of colonial organisms living in an oxygenated marine ecosystem. Here, new material from the FB2 black shales is presented and analyzed to further explore its biogenicity and taphonomy. Our extended record comprises variably sized, shaped, and structured pyritized macrofossils of lobate, elongated, and rod-shaped morphologies as well as abundant non-pyritized disk-shaped macrofossils and organic-walled acritarchs. Combined microtomography, geochemistry, and sedimentary analysis suggest a biota fossilized during early diagenesis. The emergence of this biota follows a rise in atmospheric oxygen, which is consistent with the idea that surface oxygenation allowed the evolution and ecological expansion of complex megascopic life.

  5. Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, I

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Special Session: Oxygen in the Solar System, I, included the following reports:Oxygen in the Solar System: Origins of Isotopic and Redox Complexity; The Origin of Oxygen Isotope Variations in the Early Solar System; Solar and Solar-Wind Oxygen Isotopes and the Genesis Mission; Solar 18O/17O and the Setting for Solar Birth; Oxygen Isotopes in Early Solar System Materials: A Perspective Based on Microbeam Analyses of Chondrules from CV Carbonaceous Chondrites; Insight into Primordial Solar System Oxygen Reservoirs from Returned Cometary Samples; Tracing Meteorites to Their Sources Through Asteroid Spectroscopy; Redox Conditions Among the Terrestrial Planets; Redox Complexity in Martian Meteorites: Implications for Oxygen in the Terrestrial Planets; Implications of Sulfur Isotopes for the Evolution of Atmospheric Oxygen; Oxygen in the Outer Solar System; and On the Oxidation States of the Galilean Satellites: Implications for Internal Structures.

  6. Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers

    NASA Astrophysics Data System (ADS)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2014-06-01

    Molecular dynamics simulations are used to study the structural and dynamic properties of calcium aluminosilicate, (CaO-Al2O3)1-x(SiO2)x, glass formers along three joins, namely, R = 1, 1.57, and 3, in which the silica content x can vary from 0 to 1. For all compositions, we determined the glass-transition temperature, the abundances of the non-bridging oxygen, triclusters, and AlO5 structural units, as well as the fragility from the temperature evolution of the α-relaxation times. We clearly evidence the role played by the non-bridging oxygen linked either to Al atoms or Si atoms in the evolution of the glass-transition temperature as well as of the fragility as a function of silica content along the three joins.

  7. The origin and evolution of oxygenic photosynthesis

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.; Hartman, H.

    1998-01-01

    The evolutionary developments that led to the ability of photosynthetic organisms to oxidize water to molecular oxygen are discussed. Two major changes from a more primitive non-oxygen-evolving reaction center are required: a charge-accumulating system and a reaction center pigment with a greater oxidizing potential. Intermediate stages are proposed in which hydrogen peroxide was oxidized by the reaction center, and an intermediate pigment, similar to chlorophyll d, was present.

  8. Isopycnal diffusivity in the tropical North Atlantic oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Köllner, Manuela; Visbeck, Martin; Tanhua, Toste; Fischer, Tim

    2017-04-01

    Isopycnal diffusivity plays an important role in the ventilation of the Eastern Tropical North Atlantic (ETNA) Oxygen Minimum Zone (OMZ). Lateral tracer transport is described by isopycnal diffusivity and mean advection of the tracer (e.g. oxygen), together they account for up to 70% of the oxygen supply for the OMZ. One of the big challenges is to separate diffusivity from advection. Isopycnal diffusivity was estimated to be Ky=(500 ± 200) m2 s-1 and Kx=(1200 ± 600) m2 s-1 by Banyte et. al (2013) from a Tracer Release Experiment (TRE). Hahn et al. (2014) estimated a meridional eddy diffusivity of 1350 m2 s-1 at 100 m depth decaying to less than 300 m2 s-1 below 800 m depth from repeated ship sections of CTD and ADCP data in addition with hydrographic mooring data. Uncertainties of the estimated diffusivities were still large, thus the Oxygen Supply Tracer Release Experiment (OSTRE) was set up to estimate isopycnal diffusivity in the OMZ using a newly developed sampling strategy of a control volume. The tracer was released in 2012 in the core of the OMZ at approximately 410 m depth and mapped after 6, 15 and 29 months in a regular grid. In addition to the calculation of tracer column integrals from vertical tracer profiles a new sampling method was invented and tested during two of the mapping cruises. The mean eddy diffusivity during OSTRE was found to be about (300 ± 130) m2 s-1. Additionally, the tracer has been advected further to the east and west by zonal jets. We compare different analysis methods to estimate isopycnal diffusivity from tracer spreading and show the advantage of the control volume surveys and control box approach. From the control box approach we are estimating the strength of the zonal jets within the OMZ core integrated over the TRE time period. References: Banyte, D., Visbeck, M., Tanhua, T., Fischer, T., Krahmann, G.,Karstensen, J., 2013. Lateral Diffusivity from Tracer Release Experiments in the Tropical North Atlantic Thermocline. Journal of Geophysical Research 118. Hahn, J., Brandt, P., Greatbatch, R., Krahmann, G., Körtzinger, A., 2014. Oxygen variance and meridional oxygen supply in the Tropical North East Atlantic oxygen minimum zone. Climate Dynamics 43, 2999-3024.

  9. Cell–cell signaling drives the evolution of complex traits: introduction—lung evo-devo

    PubMed Central

    Torday, John S.; Rehan, V. K.

    2009-01-01

    Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell–cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such an evolutionary vertical integration of cell-to-tissue-to-organ-to-physiology of intrinsic cell–cell signaling and extrinsic factors is the reverse of the “top-down” conventional way in which physiologic systems are usually regarded. This novel mechanistic approach, incorporating a “middle-out” cell–cell signaling component, will lead to a readily available algorithm for integrating genes and phenotypes. This symposium surveyed the phylogenetic origins of such vertically integrated mechanisms for the evolution of cell–cell communication as the basis for complex physiologic traits, from sponges to man. PMID:20607136

  10. Mapping tissue oxygen in vivo by photoacoustic lifetime imaging

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Choi, Jeung-Hwan; Jiang, Chunlan; Bischof, John; Ashkenazi, Shai

    2013-03-01

    Oxygen plays a key role in the energy metabolism of living organisms. Any imbalance in the oxygen levels will affect the metabolic homeostasis and lead to pathophysiological diseases. Hypoxia, a status of low tissue oxygen, is a key factor in tumor biology as it is highly prominent in tumor tissues. However, clinical tools for assessing tissue oxygenation are limited. The gold standard is polarographic needle electrode which is invasive and not capable of mapping (imaging) the oxygen content in tissue. We applied the method of photoacoustic lifetime imaging (PALI) of oxygen-sensitive dye to small animal tissue hypoxia research. PALI is new technology for direct, non-invasive imaging of oxygen. The technique is based on mapping the oxygen-dependent transient optical absorption of Methylene Blue (MB) by pump-probe photoacoustic imaging. Our studies show the feasibility of imaging of dissolved oxygen distribution in phantoms. In vivo experiments demonstrate that the hypoxia region is consistent with the site of subcutaneously xenografted prostate tumor in mice with adequate spatial resolution and penetration depth.

  11. Hypoxia Tolerance and Metabolic Suppression in Oxygen Minimum Zone Euphausiids: Implications for Ocean Deoxygenation and Biogeochemical Cycles.

    PubMed

    Seibel, Brad A; Schneider, Jillian L; Kaartvedt, Stein; Wishner, Karen F; Daly, Kendra L

    2016-10-01

    The effects of regional variations in oxygen and temperature levels with depth were assessed for the metabolism and hypoxia tolerance of dominant euphausiid species. The physiological strategies employed by these species facilitate prediction of changing vertical distributions with expanding oxygen minimum zones and inform estimates of the contribution of vertically migrating species to biogeochemical cycles. The migrating species from the Eastern Tropical Pacific (ETP), Euphausia eximia and Nematoscelis gracilis, tolerate a Partial Pressure (PO2) of 0.8 kPa at 10 °C (∼15 µM O2) for at least 12 h without mortality, while the California Current species, Nematoscelis difficilis, is incapable of surviving even 2.4 kPa PO2 (∼32 µM O2) for more than 3 h at that temperature. Euphausia diomedeae from the Red Sea migrates into an intermediate oxygen minimum zone, but one in which the temperature at depth remains near 22 °C. Euphausia diomedeae survived 1.6 kPa PO2 (∼22 µM O2) at 22 °C for the duration of six hour respiration experiments. Critical oxygen partial pressures were estimated for each species, and, for E. eximia, measured via oxygen consumption (2.1 kPa, 10 °C, n = 2) and lactate accumulation (1.1 kPa, 10 °C). A primary mechanism facilitating low oxygen tolerance is an ability to dramatically reduce energy expenditure during daytime forays into low oxygen waters. The ETP and Red Sea species reduced aerobic metabolism by more than 50% during exposure to hypoxia. Anaerobic glycolytic energy production, as indicated by whole-animal lactate accumulation, contributed only modestly to the energy deficit. Thus, the total metabolic rate was suppressed by ∼49-64%. Metabolic suppression during diel migrations to depth reduces the metabolic contribution of these species to vertical carbon and nitrogen flux (i.e., the biological pump) by an equivalent amount. Growing evidence suggests that metabolic suppression is a widespread strategy among migrating zooplankton in oxygen minimum zones and may have important implications for the economy and ecology of the oceans. The interacting effects of oxygen and temperature on the metabolism of oceanic species facilitate predictions of changing vertical distribution with climate change. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. Fluid Characteristics and Evolution of Chelungpu fault of Taiwan

    NASA Astrophysics Data System (ADS)

    Song, S. R.

    2017-12-01

    We analyzed geochemical characteristics, such as hydrogen and oxygen isotopes, and ionic concentrations, of fluid samples retrieved from various depth along boreholes of the Hole A and Hole B of Taiwan Chelungpu fault Drilling Project(TCDP) to trace the fluid sources. The results show that the source of fluid in the Hole B is mainly the tap water, while there are two probable sources in the Hole A owing to the abrupt shift of ionic concentrations at the depth of 200-300 m. The shallower fluid might be from the leakage above the depth of 300 m and is characteristic of lower ionic concentrations and the isotopic ratios are close to those of adjacent river water. However, the deeper fluid should be the thermal water from Kueichulin formation because of high ionic concentrations, especially HCO3-, and higher oxygen isotope, which suggests higher temperature and more isotope exchange. Two sources of fluid of the Hole A are representative of the fluid systems in the hanging wall and foot wall respectively. The characteristics of fluids in the Hole A imply that the fault zone serves as a barrier in the inter-seismic period, resulting in distinctly different fluid between the Hanging wall and the foot wall. The frequent occurrence and the distribution of calcite veins provide the evidence of the upwelling of HCO3-rich fluid of Kueichulin formation and indicate that the fault served as fluid conduit during faulting and allowed the fluid flow across the fault zone to precipitate calcite veins in fractures of the hanging wall. Thus, we can deduce the mechanism of local groundwater flow during different stages of fault development by evidences such as calcite veins distribution, regional groundwater geology, and fluids characteristics in boreholes of the Hole-A and Hole B. During inter-seismic period, groundwater flows below and above the fault zone are separated by the impermeable fault gouge layer. In co-seismic time, faulting breaks the gouge layer, providing openings that let the over-pressured thermal water which contained high concentration of bicarbonate ion to surge up. After co-seismic period, the gouge layer is sealed again, residual thermal water which contained high concentration of bicarbonate ion in the hanging wall gradually precipitated calcite in fractures and the closer precipitation took place, the more calcite veins.

  13. Aspects of the distribution, population structure and reproduction of the gastropod Tibia delicatula (Nevill, 1881) inhabiting the oxygen minimum zone of the Oman and Pakistan continental margins

    NASA Astrophysics Data System (ADS)

    Ramirez-Llodra, Eva; Olabarria, Celia

    2005-11-01

    The present study describes some aspects of the distribution and biology of Tibia delicatula (Nevill), a gastropod belonging to the family Strombidae. This species has been found in large numbers in the upper oxygen minimum zone (OMZ) of the Oman margin, and has also been collected from the OMZ of the Pakistan margin. The highest abundance of adult specimens in the Oman OMZ was found between 300 and 450 m. Numbers dropped rapidly below 450 m, to zero below 500 m depth. Similarly dense populations were not observed in the Pakistan OMZ. Multiple regression with oxygen concentration and depth indicates that depth (and its related variables) is the main factor explaining the variation in abundance of T. delicatula. The populations from the Oman and Pakistan OMZs were dominated by juveniles. This suggests a unimodal size structure with evidence of a marked recruitment event. Basic reproductive aspects were analysed. All specimens had a penis and sperm groove. The gonad wall consisted of reticular tissue that might be used for nutrient storage or as an irrigation system. Only vitellogenic oocytes were present. The large oocyte sizes observed (200-300 μm) suggest a lecithotrophic larval development.

  14. Bacterioplankton Populations within the Oxygen Minimum Zone of the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Schuler, G.; Parsons, R. J.; Johnson, R. J.

    2016-02-01

    Oxygen minimum zones are present throughout the world's oceans, and occur at depths between 200 to 1000m. Heterotrophic bacteria reduce the dissolved oxygen within this layer through respiration, while metabolizing falling particles. This report studied the bacterioplankton in the oxygen minimum zone at the BATS (Bermuda Atlantic Times-series Study) site from July 2014 until November 2014. Total bacterioplankton populations were enumerated through direct counts. In the transitional zone (400m-800m) of the oxygen minimum zone, a secondary bacterioplankton peak formed. This study used FISH (Fluorescent in situ hybridization) and CARD-FISH (Catalyzed Reporter Deposition-Fluorescent in situ hybridization) to enumerate specific bacterial and archaeal taxa. Crenarchaeota (including Thaumarchaeota) increased in abundance within the upper oxycline. Thaumarchaeota have the ammonia monooxygenase gene that oxidizes ammonium into nitrite in low oxygen conditions. Amplification of the amoA gene confirmed that ammonia oxidizing archaea (AOA) were present within the OMZ. Using Terminal Restriction Fragment Length Polymorphism (T-RFLP), the bacterial community structure showed high similarity based depth zones (0-80m, 160-600m, and 800-4500m). Niskin experiments determined that water collected at 800m had an exponential increase in bacterioplankton over time. While experimental design did not allow for oxygen levels to be maintained, the bacterioplankton community was predominantly bacteria with eubacteria positive cells making up 89.3% of the of the total bacterioplankton community by day 34. Improvements to the experimental design are required to determine which specific bacterial taxa caused this increase at 800m. This study suggests that there are factors other than oxygen influencing bacterioplankton populations at the BATS site, and more analysis is needed once the BATS data is available to determine the key drivers of bacterioplankton dynamics within the BATS OMZ.

  15. Constraining the thermal and tectonic evolution of a greenschist facies shear zone on Syros, Greece by using stable isotopes and mineral chemistry.

    NASA Astrophysics Data System (ADS)

    Cisneros, M.; Barnes, J.; Behr, W. M.

    2016-12-01

    Retrograde metamorphic rocks are key to understanding the exhumation history of high-pressure/low-temperature terranes. The Cycladic Blueschist Unit of Syros, Greece experienced peak metamorphic conditions of 15 kbar and 500 °C at 50 Ma and was subsequently exhumed to the shallow-crust ( 1-3 km) by 15 Ma; however, the processes associated with exhumation from mantle depths to the mid-crust remain poorly understood. We present structural, microstructural, and geochemical analyses of greenschist facies metamafic rocks exposed on Lotos beach in Syros that help to constrain the early exhumation history of these rocks. The outcrop preserves two main fabrics: 1) an early transposition foliation (Ss) defined by tight, isoclinal folds with shallow hingelines, and 2) upright open folds with a steep axial-planar cleavage (Sc). Ss is associated with viscous deformation and alignment of both amphibole and epidote into the foliation plane, whereas Sc is associated with semi-brittle deformation, amphibole overgrowths, and boudinage in elongate epidote (ep). Amphiboles display a progressive evolution from Na-to-Ca-rich end-members and exhibit continuous crystallization throughout Ss and Sc, as evidenced by new amphibole growth and overgrowths oriented parallel to foliation. Cal-qtz precipitates in ep boudin necks and chl + cal pseudomorphs after actinolite represent the last stage of lower greenschist facies metamorphism. These results indicate that foliation-forming deformation initiated prior-to or during blueschist facies and continued through lowermost greenschist facies. Oxygen isotope thermometry indicates that qtz-cal pairs equilibrated at 187 °C. Carbon and oxygen isotope values of fluids in equilibrium with qtz-cal pairs (δ18O and δ13C ≈ 0 ‰) indicate a seawater-derived fluid source. Preliminary results suggest this shear zone experienced cooling during decompression, followed by interaction with fluids transferred along a low-angle detachment.

  16. SIMS study of oxygen diffusion in monoclinic HfO2

    NASA Astrophysics Data System (ADS)

    Mueller, Michael P.; De Souza, Roger A.

    2018-01-01

    The diffusion of oxygen in dense ceramics of monoclinic HfO2 was studied by means of (18O/16O) isotope exchange annealing and subsequent determination of isotope depth profiles by Secondary Ion Mass Spectrometry. Anneals were performed in the temperature range of 573 ≤T /K ≤ 973 at an oxygen partial pressure of p O2=200 mbar . All measured isotope profiles exhibited two features: the first feature, closer to the surface, was attributed mainly to slow oxygen diffusion in an impurity silicate phase; the second feature, deeper in the sample, was attributed to oxygen diffusion in bulk monoclinic HfO2 . The activation enthalpy of oxygen tracer diffusion in bulk HfO2 was found to be ΔHD∗≈0.5 eV .

  17. Simulated space weathering of Fe- and Mg-rich aqueously altered minerals using pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Kaluna, H. M.; Ishii, H. A.; Bradley, J. P.; Gillis-Davis, J. J.; Lucey, P. G.

    2017-08-01

    Simulated space weathering experiments on volatile-rich carbonaceous chondrites (CCs) have resulted in contrasting spectral behaviors (e.g. reddening vs bluing). The aim of this work is to investigate the origin of these contrasting trends by simulating space weathering on a subset of minerals found in these meteorites. We use pulsed laser irradiation to simulate micrometeorite impacts on aqueously altered minerals and observe their spectral and physical evolution as a function of irradiation time. Irradiation of the mineral lizardite, a Mg-phyllosilicate, produces a small degree of reddening and darkening, but a pronounced reduction in band depths with increasing irradiation. In comparison, irradiation of an Fe-rich aqueously altered mineral assemblage composed of cronstedtite, pyrite and siderite, produces significant darkening and band depth suppression. The spectral slopes of the Fe-rich assemblage initially redden then become bluer with increasing irradiation time. Post-irradiation analyses of the Fe-rich assemblage using scanning and transmission electron microscopy reveal the presence of micron sized carbon-rich particles that contain notable fractions of nitrogen and oxygen. Radiative transfer modeling of the Fe-rich assemblage suggests that nanometer sized metallic iron (npFe0) particles result in the initial spectral reddening of the samples, but the increasing production of micron sized carbon particles (μpC) results in the subsequent spectral bluing. The presence of npFe0 and the possible catalytic nature of cronstedtite, an Fe-rich phyllosilicate, likely promotes the synthesis of these carbon-rich, organic-like compounds. These experiments indicate that space weathering processes may enable organic synthesis reactions on the surfaces of volatile-rich asteroids. Furthermore, Mg-rich and Fe-rich aqueously altered minerals are dominant at different phases of the aqueous alteration process. Thus, the contrasting spectral slope evolution between the Fe- and Mg-rich samples in these experiments may indicate that space weathering trends of volatile-rich asteroids have a compositional dependency that could be used to determine the aqueous histories of asteroid parent bodies.

  18. Biochemical and physical factors affecting discoloration characteristics of 19 bovine muscles.

    PubMed

    McKenna, D R; Mies, P D; Baird, B E; Pfeiffer, K D; Ellebracht, J W; Savell, J W

    2005-08-01

    Steaks from muscles (n=19 from nine beef carcasses) were evaluated over the course of retail display (0-, 1-, 2-, 3-, 4- or 5-d) for objective measures of discoloration (metmyoglobin, oxymyoglobin, L*-, a*-, and b*-values), reducing ability (metmyoglobin reductase activity (MRA), resistance to induced metmyoglobin formation (RIMF), and nitric oxide metmyoglobin reducing ability (NORA)), oxygen consumption rate (OCR), oxygen penetration depth, myoglobin content, oxidative rancidity, and pH. Muscles were grouped according to objective color measures of discoloration. M. longissimus lumborum, M. longissimus thoracis, M. semitendinosus, and M. tensor fasciae latae were grouped as "high" color stability muscles, M. semimembranosus, M. rectus femoris, and M. vastus lateralis were grouped as "moderate" color stability muscles, M. trapezius, M. gluteus medius, and M. latissimus dorsi were grouped as "intermediate" color stability muscles, M. triceps brachi - long head, M. biceps femoris, M. pectoralis profundus, M. adductor, M. triceps brachi - lateral head, and M. serratus ventralis were grouped as "low" color stability muscles, and M. supraspinatus, M. infraspinatus, and M. psoas major were grouped as "very low" color stability muscles. Generally, muscles of high color stability had high RIMF, nitric oxide reducing ability, and oxygen penetration depth and possessed low OCRs, myoglobin content, and oxidative rancidity. In contrast, muscles of low color stability had high MRA, OCRs, myoglobin content, and oxidative rancidity and low RIMF, NORA, and oxygen penetration depth. Data indicate that discoloration differences between muscles are related to the amount of reducing activity relative to the OCR.

  19. Cobalt-Bridged Ionic Liquid Polymer on a Carbon Nanotube for Enhanced Oxygen Evolution Reaction Activity.

    PubMed

    Ding, Yuxiao; Klyushin, Alexander; Huang, Xing; Jones, Travis; Teschner, Detre; Girgsdies, Frank; Rodenas, Tania; Schlögl, Robert; Heumann, Saskia

    2018-03-19

    By taking inspiration from the catalytic properties of single-site catalysts and the enhancement of performance through ionic liquids on metal catalysts, we exploited a scalable way to place single cobalt ions on a carbon-nanotube surface bridged by polymerized ionic liquid. Single dispersed cobalt ions coordinated by ionic liquid are used as heterogeneous catalysts for the oxygen evolution reaction (OER). Performance data reveals high activity and stable operation without chemical instability. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. SOME EFFECTS OF CADMIUM ON CONIFEROUS FOREST SOIL AND LITTER MICROCOSMS

    EPA Science Inventory

    Description and criticism is given of a preliminary design and use of a soil/litter microcosm in which oxygen, temperature, and humidity are kept constant, and oxygen generation and carbon dioxide and heat evolution rates are monitored. Using four microcosms, one acting as a dead...

  1. Evolution of Space Station EMU PLSS technology recommendations

    NASA Technical Reports Server (NTRS)

    Wilde, Richard C.

    1990-01-01

    Viewgraphs on extravehicular mobility unit (EMU) portable life support system (PLSS) technology recommendations are presented. Topics covered include: oxygen supply storage; oxygen supply regulators; carbon dioxide control; prime movers; crew comfort; heat rejection; power sources; controls; display devices; and sensor technology.

  2. Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base.

    PubMed

    Lyons, Michael E G; Doyle, Richard L; Brandon, Michael P

    2011-12-28

    Outstanding issues regarding the film formation, redox switching characteristics and the oxygen evolution reaction (OER) electrocatalytic behaviour of multicycled iron oxyhydroxide films in aqueous alkaline solution have been revisited. The oxide is grown using a repetitive potential multicycling technique, and the mechanism of the latter hydrous oxide formation process has been discussed. A duplex layer model of the oxide/solution interphase region is proposed. The acid/base behaviour of the hydrous oxide and the microdispersed nature of the latter material has been emphasised. The hydrous oxide is considered as a porous assembly of interlinked octahedrally coordinated anionic metal oxyhydroxide surfaquo complexes which form an open network structure. The latter contains considerable quantities of water molecules which facilitate hydroxide ion discharge at the metal site during active oxygen evolution, and also charge compensating cations. The dynamics of redox switching has been quantified via analysis of the cyclic voltammetry response as a function of potential sweep rate using the Laviron-Aoki electron hopping diffusion model by analogy with redox polymer modified electrodes. Steady state Tafel plot analysis has been used to elucidate the kinetics and mechanism of oxygen evolution. Tafel slope values of ca. 60 mV dec(-1) and ca. 120 mV dec(-1) are found at low and high overpotentials respectively, whereas the reaction order with respect to hydroxide ion activity changes from ca. 3/2 to ca. 1 as the potential is increased. These observations are rationalised in terms of a kinetic scheme involving Temkin adsorption and the rate determining formation of a physisorbed hydrogen peroxide intermediate on the oxide surface. The dual Tafel slope behaviour is ascribed to the potential dependence of the surface coverage of adsorbed intermediates.

  3. Effects of artificial hypolimnetic oxygenation in a shallow lake. Part 1: phenomenological description and management.

    PubMed

    Toffolon, Marco; Ragazzi, Marco; Righetti, Maurizio; Teodoru, Cristian R; Tubino, Marco; Defrancesco, Chiara; Pozzi, Sabrina

    2013-01-15

    Artificial oxygenation is a common management technique for lake restoration, but the use of hypolimnetic aeration in shallow basins can have dramatic effects on the dynamics of thermal stratification. This study presents the results of extensive field measurements performed in Lake Serraia (Trentino, Italy) after the installation of a Side Stream Pumping System, whereby oxygen-rich water is injected through 24 jets, uniformly distributed along an octagonal-shaped pipe at approximately 1 m above the sediment floor (10 m in depth). The lake is characterised by an average depth of 7 m, a volume of 3.1 × 10(6) m(3) and a residence time of about one year. Prior to the installation of the pumping system, the undisturbed hypolimnion thickness during summer stratification was relatively small. After the start of oxygen injection (up to 0.5 m(3)/s of oxygen-saturated water), an increase of in-lake temperature over the entire water column was noted with a maximum hypolimnetic temperature increase of up to 9 °C. The analysis of the flow field data and the results of numerical simulations (presented in the companion paper), indicate that the jets were solely responsible for the observed increase in temperature. Moreover, this study shows that modelling efforts are useful to provide guidelines for optimising contrasting needs (e.g., increase in oxygen supply versus jet discharge rate). Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Biogeochemistry of Microbial Mats

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenizi, D. (Technical Monitor)

    2002-01-01

    The hierarchical organization of microbial ecosystems determines the rates of processes that shape Earth's environment, define the stage upon which major evolutionary events occurred, and create biosignatures in sediments and atmospheres. In cyanobacterial mats, oxygenic photosynthesis provides energy, organic substrates and oxygen to the ecosystem. Incident light changes with depth in the mat, both in intensity and spectral composition, and counteracting gradients of oxygen and sulfide shape the chemical microenvironment. A combination of benefits and hazards of light, oxygen and sulfide promotes the allocation of the various essential mat processes between light and dark periods and to various depths in the mat. Microliters produce hydrogen, small organic acids, nitrogen and sulfur species. Such compounds fuel a flow of energy and electrons in these ecosystems and thus shape interactions between groups of microorganisms. Coordinated observations of population distribution, abundance, and activity for an entire community are making fundamental questions in ecology accessible. These questions address those factors that sustain the remarkable diversity of microorganisms that are now being revealed by molecular techniques. These questions also target the processes that shape the various kinds of biosignatures that we will seek, both in ancient rocks from Earth and Mars, and in atmospheres of distant planets beyond our Solar System.

  5. Evolution of a phase separated gravity independent bioreactor

    NASA Technical Reports Server (NTRS)

    Villeneuve, Peter E.; Dunlop, Eric H.

    1992-01-01

    The evolution of a phase-separated gravity-independent bioreactor is described. The initial prototype, a zero head-space manifold silicone membrane based reactor, maintained large diffusional resistances. Obtaining oxygen transfer rates needed to support carbon-recycling aerobic microbes is impossible if large resistances are maintained. Next generation designs (Mark I and II) mimic heat exchanger design to promote turbulence at the tubing-liquid interface, thereby reducing liquid and gas side diffusional resistances. While oxygen transfer rates increased by a factor of ten, liquid channeling prevented further increases. To overcome these problems, a Mark III reactor was developed which maintains inverted phases, i.e., media flows inside the silicone tubing, oxygen gas is applied external to the tubing. This enhances design through changes in gas side driving force concentration and liquid side turbulence levels. Combining an applied external pressure of 4 atm with increased Reynolds numbers resulted in oxygen transfer intensities of 232 mmol O2/l per hr (1000 times greater than the first prototype and comparable to a conventional fermenter). A 1.0 liter Mark III reactor can potentially deliver oxygen supplies necessary to support cell cultures needed to recycle a 10-astronaut carbon load continuously.

  6. Pyrite-Induced Hydrogen Peroxide Formation as a Driving Force in the Evolution of Photosynthetic Organisms on an Early Earth

    NASA Astrophysics Data System (ADS)

    Borda, Michael J.; Elsetinow, Alicia R.; Schoonen, Martin A.; Strongin, Daniel R.

    2001-09-01

    The remarkable discovery of pyrite-induced hydrogen peroxide (H2O2) provides a key step in the evolution of oxygenic photosynthesis. Here we show that H2O2 can be generated rapidly via a reaction between pyrite and H2O in the absence of dissolved oxygen. The reaction proceeds in the dark, and H2O2 levels increase upon illumination with visible light. Since pyrite was stable in most photic environments prior to the rise of O2 levels, this finding represents an important mechanism for the formation of H2O2 on early Earth.

  7. Hydrophilic cobalt sulfide nanosheets as a bifunctional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution.

    PubMed

    Zhu, Mingchao; Zhang, Zhongyi; Zhang, Hu; Zhang, Hui; Zhang, Xiaodong; Zhang, Lixue; Wang, Shicai

    2018-01-01

    Hydrophilic medium and precursors were used to synthesize a hydrophilic electro-catalyst for overall water splitting. The cobalt sulfide (Co 3 S 4 ) catalyst exhibits a layered nanosheet structure with a hydrophilic surface, which can facilitate the diffusion of aqueous substrates into the electrode pores and towards the active sites. The Co 3 S 4 catalyst shows excellent bifunctional catalytic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline solution. The assembled water electrolyzer based on Co 3 S 4 exhibits better performance and stability than that of Pt/C-RuO 2 catalyst. Thereforce the hydrophilic Co 3 S 4 is a highly promising bifunctional catalyst for the overall water splitting reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh

    NASA Astrophysics Data System (ADS)

    Jerkstrand, A.; Ergon, M.; Smartt, S. J.; Fransson, C.; Sollerman, J.; Taubenberger, S.; Bersten, M.; Spyromilio, J.

    2015-01-01

    We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modelling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modelling of the [O I] λλ6300, 6364 lines constrains the progenitors of these three SNe to the MZAMS = 12-16 M⊙ range (ejected oxygen masses 0.3-0.9 M⊙), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from MZAMS ≳ 17 M⊙ progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low-to-moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of 0.02-0.14 M⊙ is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO burning gives strong [N II] λλ6548, 6583 emission lines that dominate over Hα emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable Hα emission or absorption after ~150 days, and nebular phase emission seen around 6550 Å is in many cases likely caused by [N II] λλ6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated. Significant line blocking in the metal core remains for several hundred days, which affects the emergent spectrum. These radiative transfer effects lead to early-time blueshifts of the emission line peaks, which gradually disappear as the optical depths decrease with time. The modelled evolution of this effect matches the observed evolution in SN 2011dh. Appendices are available in electronic form at http://www.aanda.org

  9. A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning.

    PubMed

    Ryu, Won-Hee; Gittleson, Forrest S; Li, Jinyang; Tong, Xiao; Taylor, André D

    2016-08-10

    Understanding the catalyzed formation and evolution of lithium-oxide products in Li-O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li-O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.

  10. A new design strategy for observing lithium oxide growth-evolution interactions using geometric catalyst positioning

    DOE PAGES

    Ryu, Won -Hee; Gittleson, Forrest S.; Li, Jinyang; ...

    2016-06-21

    Understanding the catalyzed formation and evolution of lithium-oxide products in Li-O 2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li-O 2 cells by characterizing products that grow from the electrode surface.more » Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. Lastly, the influence of the catalyst position on product composition is further verified by ex situ Xray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.« less

  11. McCook Reservoir Water Quality Model. Numerical Model Investigation

    DTIC Science & Technology

    1991-09-01

    REPT TYPE AND DATES COVERED ad September Cana Final report . LEAND SUBTITLE S. FUNDING NUERS Spinfild VA2261 ThcCook Reservoir Water Quality Model...oxygen injected by the aeration system Manufacturers of diffusers supply OTE information specific to gas flow rate and depth. The depths at which most

  12. Cyanobacteria abundance and its relationship to water quality in the Mid-Cross River floodplain, Nigeria.

    PubMed

    Okogwu, Okechukwu I; Ugwumba, Alex O

    2009-01-01

    The physicochemical variables and cyanobacteria of Mid-Cross River, Nigeria, were studied in six stations between March 2005 and August 2006 to determine the relationship between water quality and cyanobacteria abundance. Canonical Correspondence Analysis (CCA) showed that biological oxygen demand (BOD), dissolved oxygen, pH, water velocity, width and depth were important environmental factors that influenced cyanobacteria abundance. Trace metals, phosphate and nitrate increased significantly from values of previous studies indicating increased eutrophication of the river but were weakly correlated with cyanobacteria abundance and could be scarcely regarded as regulating factors. A higher cyanobacteria abundance was recorded during the wet season in most of the sampled stations. The dominant cyanobacteria included Microcystis aeruginosa, Aphanizomenon flos-aquae, Oscillatoria limnetica and Anabaena spiroides. The toxins produced by these species could degrade water quality. The factors favouring cyanobacteria abundance were identified as increased pH, width and depth. Increase in cyanobacteria abundance was associated with reduction in dissolved oxygen and increase in BOD values.

  13. Environment-dependent variation in selection on life history across small spatial scales.

    PubMed

    Lange, Rolanda; Monro, Keyne; J Marshall, Dustin

    2016-10-01

    Variation in life-history traits is ubiquitous, even though genetic variation is thought to be depleted by selection. One potential mechanism for the maintenance of trait variation is spatially variable selection. We explored spatial variation in selection in the field for a colonial marine invertebrate that shows phenotypic differences across a depth gradient of only 3 m. Our analysis included life-history traits relating to module size, colony growth, and phenology. Directional selection on colony growth varied in strength across depths, while module size was under directional selection at one depth but not the other. Differences in selection may explain some of the observed phenotypic differentiation among depths for one trait but not another: instead, selection should actually erode the differences observed for this trait. Our results suggest selection is not acting alone to maintain trait variation within and across environments in this system. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  14. Oxygen-Induced Cracking Distillation of Oil in the Continuous Flow Tank Reactor

    ERIC Educational Resources Information Center

    Shvets, Valeriy F.; Kozlovskiy, Roman A.; Luganskiy, Artur I.; Gorbunov, Andrey V.; Suchkov, Yuriy P.; Ushin, Nikolay S.; Cherepanov, Alexandr A.

    2016-01-01

    The article analyses problems of processing black oil fuel and addresses the possibility of increasing the depth of oil refining by a new processing scheme. The study examines various methods of increasing the depth of oil refining reveals their inadequacies and highlights a need to introduce a new method of processing atmospheric and vacuum…

  15. Integrating spatial and temporal oxygen data to improve the quantification of in situ petroleum biodegradation rates.

    PubMed

    Davis, Gregory B; Laslett, Dean; Patterson, Bradley M; Johnston, Colin D

    2013-03-15

    Accurate estimation of biodegradation rates during remediation of petroleum impacted soil and groundwater is critical to avoid excessive costs and to ensure remedial effectiveness. Oxygen depth profiles or oxygen consumption over time are often used separately to estimate the magnitude and timeframe for biodegradation of petroleum hydrocarbons in soil and subsurface environments. Each method has limitations. Here we integrate spatial and temporal oxygen concentration data from a field experiment to develop better estimates and more reliably quantify biodegradation rates. During a nine-month bioremediation trial, 84 sets of respiration rate data (where aeration was halted and oxygen consumption was measured over time) were collected from in situ oxygen sensors at multiple locations and depths across a diesel non-aqueous phase liquid (NAPL) contaminated subsurface. Additionally, detailed vertical soil moisture (air-filled porosity) and NAPL content profiles were determined. The spatial and temporal oxygen concentration (respiration) data were modeled assuming one-dimensional diffusion of oxygen through the soil profile which was open to the atmosphere. Point and vertically averaged biodegradation rates were determined, and compared to modeled data from a previous field trial. Point estimates of biodegradation rates assuming no diffusion ranged up to 58 mg kg(-1) day(-1) while rates accounting for diffusion ranged up to 87 mg kg(-1) day(-1). Typically, accounting for diffusion increased point biodegradation rate estimates by 15-75% and vertically averaged rates by 60-80% depending on the averaging method adopted. Importantly, ignoring diffusion led to overestimation of biodegradation rates where the location of measurement was outside the zone of NAPL contamination. Over or underestimation of biodegradation rate estimates leads to cost implications for successful remediation of petroleum impacted sites. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence.

    PubMed

    Zhang, Chen; Zhao, Kuaile; Bu, Wenbo; Ni, Dalong; Liu, Yanyan; Feng, Jingwei; Shi, Jianlin

    2015-02-02

    Strong oxygen dependence and limited penetration depth are the two major challenges facing the clinical application of photodynamic therapy (PDT). In contrast, ionizing radiation is too penetrative and often leads to inefficient radiotherapy (RT) in the clinic because of the lack of effective energy accumulation in the tumor region. Inspired by the complementary advantages of PDT and RT, we present herein the integration of a scintillator and a semiconductor as an ionizing-radiation-induced PDT agent, achieving synchronous radiotherapy and depth-insensitive PDT with diminished oxygen dependence. In the core-shell Ce(III)-doped LiYF4@SiO2@ZnO structure, the downconverted ultraviolet fluorescence from the Ce(III)-doped LiYF4 nanoscintillator under ionizing irradiation enables the generation of electron-hole (e(-)-h(+)) pairs in ZnO nanoparticles, giving rise to the formation of biotoxic hydroxyl radicals. This process is analogous to a type I PDT process for enhanced antitumor therapeutic efficacy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiangyi; Amine, Rachid; Lau, Kah Chun

    2017-05-26

    The discharge and charge mechanisms of rechargeable Li-O-2 batteries have been the subject of extensive investigation recently. However, they are not fully understood yet. Here we report a systematic study of the morphological transition of Li2O2 from a single crystalline structure to a toroid like particle during the discharge-charge cycle, with the help of a theoretical model to explain the evolution of the Li2O2 at different stages of this process. The model suggests that the transition starts in the first monolayer of Li2O2, and is subsequently followed by a transition from particle growth to film growth if the applied currentmore » exceeds the exchange current for the oxygen reduction reaction in a Li-O-2 cell. Furthermore, a sustainable mass transport of the diffusive active species (e.g., O-2 and Li+) and evolution of the underlying interfaces are critical to dictate desirable oxygen reduction (discharge) and evolution (charge) reactions in the porous carbon electrode of a Li-O-2 cell.« less

  18. The application of electrochemical impedance spectroscopy for characterizing the degradation of Ni(OH)2/NiOOH electrodes

    NASA Technical Reports Server (NTRS)

    Macdonald, D. D.; Pound, B. G.; Lenhart, S. J.

    1989-01-01

    Electrochemical impedance spectra of rolled and bonded and sintered porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes for rolled and bonded electrodes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (non-porous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low. Transmission line modeling results suggest that porous rolled and bonded nickel electrodes undergo restructuring during charge/discharge cycling prior to failure.

  19. A prototype of an electric-discharge gas flow oxygen−iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vagin, N. P.; Ionin, A. A., E-mail: aion@sci.lebedev.ru; Kochetov, I. V.

    The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O{sub 2}: He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions,more » volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as ~100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to ~220–230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen−iodine laser based on a slab cryogenic RF discharge.« less

  20. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles.

    PubMed

    Hu, Qingyang; Kim, Duck Young; Yang, Wenge; Yang, Liuxiang; Meng, Yue; Zhang, Li; Mao, Ho-Kwang

    2016-06-09

    The distribution, accumulation and circulation of oxygen and hydrogen in Earth's interior dictate the geochemical evolution of the hydrosphere, atmosphere and biosphere. The oxygen-rich atmosphere and iron-rich core represent two end-members of the oxygen-iron (O-Fe) system, overlapping with the entire pressure-temperature-composition range of the planet. The extreme pressure and temperature conditions of the deep interior alter the oxidation states, spin states and phase stabilities of iron oxides, creating new stoichiometries, such as Fe4O5 (ref. 5) and Fe5O6 (ref. 6). Such interactions between O and Fe dictate Earth's formation, the separation of the core and mantle, and the evolution of the atmosphere. Iron, in its multiple oxidation states, controls the oxygen fugacity and oxygen budget, with hydrogen having a key role in the reaction of Fe and O (causing iron to rust in humid air). Here we use first-principles calculations and experiments to identify a highly stable, pyrite-structured iron oxide (FeO2) at 76 gigapascals and 1,800 kelvin that holds an excessive amount of oxygen. We show that the mineral goethite, FeOOH, which exists ubiquitously as 'rust' and is concentrated in bog iron ore, decomposes under the deep lower-mantle conditions to form FeO2 and release H2. The reaction could cause accumulation of the heavy FeO2-bearing patches in the deep lower mantle, upward migration of hydrogen, and separation of the oxygen and hydrogen cycles. This process provides an alternative interpretation for the origin of seismic and geochemical anomalies in the deep lower mantle, as well as a sporadic O2 source for the Great Oxidation Event over two billion years ago that created the present oxygen-rich atmosphere.

  1. Evolution of native point defects in ZnO bulk probed by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Xiao; Wang, Ke-Fan; Zhang, Yang; Guo, Feng-Li; Weng, Hui-Min; Ye, Bang-Jiao

    2009-05-01

    This paper studies the evolution of native point defects with temperature in ZnO single crystals by positron lifetime and coincidence Doppler broadening (CDB) spectroscopy, combined with the calculated results of positron lifetime and electron momentum distribution. The calculated and experimental results of the positron lifetime in ZnO bulk ensure the presence of zinc monovacancy, and zinc monovacancy concentration begins to decrease above 600 °C annealing treatment. CDB is an effective method to distinguish the elemental species, here we combine this technique with calculated electron momentum distribution to determine the oxygen vacancies, which do not trap positrons due to their positive charge. The CDB spectra show that oxygen vacancies do not appear until 600 °C annealing treatment, and increase with the increase of annealing temperature. This study supports the idea that green luminescence has a close relation with oxygen vacancies.

  2. Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures as efficient bicatalysts for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Qi, Chunling; Zhang, Li; Xu, Guancheng; Sun, Zhipeng; Zhao, Aihua; Jia, Dianzeng

    2018-01-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play crucial roles in efficient energy conversion and storage solutions. Here, Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures (denoted as Co@Co3O4/NCs) are prepared via a simple two-step and in situ approach by carbonization and subsequent oxidation of Co-MOF containing high contents of carbon and nitrogen. When evaluated as electrocatalyst towards both ORR and OER in a KOH electrolyte solution, the as-fabricated Co@Co3O4/NC-2 exhibits similar ORR catalytic activity to the commercial Pt/C catalyst, but superior stability and good methanol tolerance. Furthermore, the as-fabricated catalysts also show promising catalytic activity for OER. The effective catalytic activities originate from the synergistic effects between well wrapped Co@Co3O4 nanoparticles and nitrogen doped carbon structures.

  3. The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012-2013

    NASA Astrophysics Data System (ADS)

    Damerell, Gillian M.; Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan

    2016-05-01

    This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre-scale water mass changes. Below ˜150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode-1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ˜415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700-900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques.

  4. Fe3O4@NiSx/rGO composites with amounts of heterointerfaces and enhanced electrocatalytic properties for oxygen evolution

    NASA Astrophysics Data System (ADS)

    Zhu, Guoxing; Xie, Xulan; Liu, Yuanjun; Li, Xiaoyun; Xu, Keqiang; Shen, Xiaoping; Yao, Yinjie; Shah, Sayyar Ali

    2018-06-01

    The sluggish oxygen evolution kinetics involved in water splitting and various metal-air batteries makes the effective and inexpensive electrocatalysts be highly desirable for oxygen evolution reaction (OER). Herein, an effective and facile two-step route is developed to construct Fe3O4@NiSx composite loaded on reduced graphene oxide (rGO). The morphology and microstructure of the composites were characterized by different characterization techniques. The obtained composites show amounts of heterointerfaces. The shift of binding energy in X-ray photoelectron spectrum demonstrates the existence of interfacial charge transfer effect between Fe3O4 and NiSx. The optimized Fe3O4@NiSx/rGO sample exhibits excellent electrocatalytic performance toward OER in alkaline media, showing 10 mA·cm-2 at η = 330 mV, lower Tafel slope (35.5 mV·dec-1), and good durability, demonstrating a great perspective. The excellent OER performance can be ascribed to the synergetic effect between Fe and Ni species. It is believed that the heterointerfaces between Fe3O4 and NiSx perform as active centers for OER.

  5. Selected papers in the hydrologic sciences 1984; July 1984

    USGS Publications Warehouse

    Meyer, Eric L.

    1984-01-01

    The rapid, accurate measurement of the oxygen content of soil gas in the unsaturated zone or dissolved oxygen in soil water in the saturated zone can be useful in wetland vegetation studies. A method has been devised and tested in the Great Dismal Swamp, a wetland with fine silt-clay and organic soils, that appears to provide good results. A 60-milliliter sample of soil gas or water is withdrawn from permanently installed chambers at various depths in the soil profile. The oxygen concentration of air samples is measured with a specially constructed analyzer cell fitted to the polarographic oxygen electrode of a portable oxygen meter. The dissolved oxygen concentration of water samples is measured directly with the oxygen electrode while stirring the sample in a 32-milliliter glass bottle with a portable magnetic stirrer. Field tests with duplicate chamber installations showed that consistent results are obtained for soil gas and water.

  6. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery – Part 1

    PubMed Central

    Purushothaman, B. K.; Wainright, J. S.

    2012-01-01

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H2 storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1st hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body. PMID:22423175

  7. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery - Part 1.

    PubMed

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H(2) storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1(st) hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body.

  8. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    NASA Astrophysics Data System (ADS)

    Brassé, C.; Buch, A.; Raulin, F.; Coll, P.; Poch, O.; Ramirez, S.

    2013-09-01

    Titan, the largest moon of Saturn, is known for its dense and nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are objects of astrobiological interest. In this paper we focus on their potential chemical evolution when they reach the surface and interact with putative ammonia-water cryomagma[1]. In this context we have studied the evolution of alkaline pH hydrolysis of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at ambient and low temperature. However, we identified oxygenated molecules in non-hydrolyzed tholins meaning that oxygen gets in the PLASMA reactor during the tholins synthesis [2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. After confirming the non-presence of oxygen in tholins produced with this new experimental setup, the study of oxygen-free tholins' evolution has been carried out. A recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less [3]), as previously described by other teams [2,4]. Thus new hydrolysis experiments will take this lower value into account. Additionally, a new report [5] provides upper and lower limits for the bulk content of Titan's interior for various gas species. It also shows that most of them are likely stored and dissolved in the subsurface water ocean. But considering the plausible acido-alkaline properties of the ammonia-water ocean, additional species could be dissolved in the ocean and present in the magma. They were also included in our hydrolysis experiments. Taking into account these new data, four different hydrolysis have been applied to oxygen-free tholins. For each type of hydrolysis, we also follow the influence of the hydrolysis temperature on the organic molecules production. The preliminary qualitative and quantitative results of those experiments will be presented at EPSC.

  9. Ketogenic diet for high partial pressure oxygen diving.

    PubMed

    Valadao, Jason M; Vigilante, John A; DiGeorge, Nicholas W; O'Connor, Sunila E; Bear, Alexandria; Kenyon, Jeffrey; Annis, Heather; Dituri, Joseph; Dituri, Amy E; Whelan, Harry T

    2014-01-01

    A ketogenic diet (KD) may decrease central nervous system oxygen toxicity symptoms in divers, and in view of this implication a feasibility/ toxicity pilot study was performed to demonstrate tolerance of KD while performing normal diving profiles. The exact mechanism of neuroprotection from the KD remains unknown; however, evidence to support the efficacy of the KD in reducing seizures is present in epilepsy and oxygen toxicity studies, and may provide valuable insight in diving activities. Three divers (two males and one female ages 32-45 with a history of deep diving and high pO2 exposure) on the KD made dives to varying depths in Hawaii using fully closed-circuit MK-15 and Inspiration rebreathers. These rebreathers have an electronically controlled set point, allowing the divers to monitor and control the oxygen level in the breathing loop, which can be varied manually by the divers. Oxygen level was varied during descent, bottom depth and ascent (decompression). Divers fasted for 12-18 hours before diet initiation. The ketosis level was verified by urinating on a Ketostix (reagent strips for urinalysis). Ketosis was achieved and was easily monitored with Ketostix in the simulated operational environment. The KD did not interfere with the diving mission; no seizure activity or signs or symptoms of CNS toxicity were observed, and there were no adverse effects noted by the divers while on the KD.

  10. The effects of arterial carbon dioxide partial pressure and sevoflurane on capillary venous cerebral blood flow and oxygen saturation during craniotomy.

    PubMed

    Klein, Klaus Ulrich; Glaser, Martin; Reisch, Robert; Tresch, Achim; Werner, Christian; Engelhard, Kristin

    2009-07-01

    Intraoperative routine monitoring of cerebral blood flow and oxygenation remains a technological challenge. Using the physiological principle of carbon dioxide reactivity of cerebral vasculature, we investigated a recently developed neuromonitoring device (oxygen-to-see, O2C device) for simultaneous measurements of regional cerebral blood flow (rvCBF), blood flow velocity (rvVelo), oxygen saturation (srvO2), and hemoglobin amount (rvHb) at the capillary venous level in patients subjected to craniotomy. Twenty-six neurosurgical patients were randomly assigned to anesthesia with 1.4% or 2.0% sevoflurane end-tidal concentration. After craniotomy, a fiberoptic probe was applied on a macroscopically healthy surface of cerebral tissue next to the site of surgery. Simultaneous measurements in 2 and 8 mm cerebral depth were performed in each patient during lower (35 mm Hg) and higher (45 mm Hg) levels (random order) of arterial carbon dioxide partial pressure (PaCO2). The principle of these measurements relies on the combination of laser-Doppler flowmetry (rvCBF, rvVelo) and photo-spectrometry (srvO2, rvHb). Linear models were fitted to test changes of end points (rvCBF, rvVelo, srvO2, rvHb) in response to lower and higher levels of PaCO2, 1.4% and 2.0% sevoflurane end-tidal concentration, and 2 and 8 mm cerebral depth. RvCBF and rvVelo were elevated by PaCO2 independent of sevoflurane concentration in 2 and 8 mm depth of cerebral tissue (P < 0.001). Higher PaCO2 induced an increase in mean srvO2 from 50% to 68% (P < 0.001). RvVelo (P < 0.001) and srvO2 (P = 0.007) were higher in 8 compared with 2 mm cerebral depth. RvHb was not influenced by alterations in PaCO2 but positively correlated to sevoflurane concentration (P = 0.005). Increases in rvCBF and rvVelo by PaCO2 suggest preserved hypercapnic vasodilation under anesthesia with sevoflurane 1.4% and 2.0% end-tidal concentration. A consecutive increase in srvO2 implies that cerebral arteriovenous difference in oxygen was decreased by elevated PaCO2. Unchanged levels of rvHb signify that there was no blood loss during measurements. Data suggest that the device allows detection of local changes in blood flow and oxygen saturation in response to different PaCO2 levels in predominant venous cerebral microvessels.

  11. Evaluating lake stratification and temporal trends by using near-continuous water-quality data from automated profiling systems for water years 2005-09, Lake Mead, Arizona and Nevada

    USGS Publications Warehouse

    Veley, Ronald J.; Moran, Michael J.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Southern Nevada Water Authority, collected near-continuous depth-dependent water-quality data at Lake Mead, Arizona and Nevada, as part of a multi-agency monitoring network maintained to provide resource managers with basic data and to gain a better understanding of the hydrodynamics of the lake. Water-quality data-collection stations on Lake Mead were located in shallow water (less than 20 meters) at Las Vegas Bay (Site 3) and Overton Arm, and in deep water (greater than 20 meters) near Sentinel Island and at Virgin and Temple Basins. At each station, near-continual depth-dependent water-quality data were collected from October 2004 through September 2009. The data were collected by using automatic profiling systems equipped with multiparameter water-quality sondes. The sondes had sensors for temperature, specific conductance, dissolved oxygen, pH, turbidity, and depth. Data were collected every 6 hours at 2-meter depth intervals (for shallow-water stations) or 5-meter depth intervals (for deep-water stations) beginning at 1 meter below water surface. Data were analyzed to determine water-quality conditions related to stratification of the lake and temporal trends in water-quality parameters. Three water-quality parameters were the main focus of these analyses: temperature, specific conductance, and dissolved oxygen. Statistical temporal-trend analyses were performed for a single depth at shallow-water stations [Las Vegas Bay (Site 3) and Overton Arm] and for thermally-stratified lake layers at deep-water stations (Sentinel Island and Virgin Basin). The limited period of data collection at the Temple Basin station prevented the application of statistical trend analysis. During the summer months, thermal stratification was not observed at shallow-water stations, nor were major maxima or minima observed for specific-conductance or dissolved-oxygen profiles. A clearly-defined thermocline and well-defined maxima and minima in specific-conductance and dissolved-oxygen profiles were observed at deep-water stations during the summer months. Specific-conductance maxima were likely the result of inflow of water from either the Las Vegas Wash or Muddy/Virgin Rivers or both, while the minima were likely the result of inflow of water from the Colorado River. Maxima and minima for dissolved oxygen were likely the result of primary productivity blooms and their subsequent decay. Temporal-trend analyses indicated that specific conductance decreased at all stations over the period of record, except for Las Vegas Bay (Site 3), where specific conductance increased. Temperature also decreased over the period of record at deep-water stations for certain lake layers. Decreasing temperature and specific conductance at deep-water stations is the result of decreasing values in these parameters in water coming from the Colorado River. Quagga mussels (Dreissena rostriformis bugensis), however, could play a role in trends of decreasing specific conductance through incorporation of calcite in their shells. Trends of decreasing turbidity and pH at deep-water stations support the hypothesis that quagga mussels could be having an effect on the physical properties and water chemistry of Lake Mead. Unlike other stations, Las Vegas Bay (Site 3) had increasing specific conductance and is interpreted as the result of lowering lake levels decreasing the volume of lake water available for mixing and dilution of the high-conductance water coming from Las Vegas Wash. Dissolved oxygen increased over the period of record in some lake layers at the deep-water stations. Increasing dissolved oxygen at deep-water stations is believed to result, in part, from a reduction of phosphorus entering Lake Mead and the concomitant reduction of biological oxygen demand.

  12. Calcium manganese oxides as oxygen evolution catalysts: O2 formation pathways indicated by 18O-labelling studies.

    PubMed

    Shevela, Dmitriy; Koroidov, Sergey; Najafpour, M Mahdi; Messinger, Johannes; Kurz, Philipp

    2011-05-02

    Oxygen evolution catalysed by calcium manganese and manganese-only oxides was studied in (18)O-enriched water. Using membrane-inlet mass spectrometry, we monitored the formation of the different O(2) isotopologues (16)O(2), (16)O(18)O and (18)O(2) in such reactions simultaneously with good time resolution. From the analysis of the data, we conclude that entirely different pathways of dioxygen formation catalysis exist for reactions involving hydrogen peroxide (H(2)O(2)), hydrogen persulfate (HSO(5)(-)) or single-electron oxidants such as Ce(IV) and [Ru(III) (bipy)(3)](3+) . Like the studied oxide catalysts, the active sites of manganese catalase and the oxygen-evolving complex (OEC) of photosystem II (PSII) consist of μ-oxido manganese or μ-oxido calcium manganese sites. The studied processes show very similar (18)O-labelling behaviour to the natural enzymes and are therefore interesting model systems for in vivo oxygen formation by manganese metalloenzymes such as PSII. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Earth’s oxygen cycle and the evolution of animal life

    PubMed Central

    Reinhard, Christopher T.; Planavsky, Noah J.; Olson, Stephanie L.; Lyons, Timothy W.; Erwin, Douglas H.

    2016-01-01

    The emergence and expansion of complex eukaryotic life on Earth is linked at a basic level to the secular evolution of surface oxygen levels. However, the role that planetary redox evolution has played in controlling the timing of metazoan (animal) emergence and diversification, if any, has been intensely debated. Discussion has gravitated toward threshold levels of environmental free oxygen (O2) necessary for early evolving animals to survive under controlled conditions. However, defining such thresholds in practice is not straightforward, and environmental O2 levels can potentially constrain animal life in ways distinct from threshold O2 tolerance. Herein, we quantitatively explore one aspect of the evolutionary coupling between animal life and Earth’s oxygen cycle—the influence of spatial and temporal variability in surface ocean O2 levels on the ecology of early metazoan organisms. Through the application of a series of quantitative biogeochemical models, we find that large spatiotemporal variations in surface ocean O2 levels and pervasive benthic anoxia are expected in a world with much lower atmospheric pO2 than at present, resulting in severe ecological constraints and a challenging evolutionary landscape for early metazoan life. We argue that these effects, when considered in the light of synergistic interactions with other environmental parameters and variable O2 demand throughout an organism’s life history, would have resulted in long-term evolutionary and ecological inhibition of animal life on Earth for much of Middle Proterozoic time (∼1.8–0.8 billion years ago). PMID:27457943

  14. Earth's oxygen cycle and the evolution of animal life.

    PubMed

    Reinhard, Christopher T; Planavsky, Noah J; Olson, Stephanie L; Lyons, Timothy W; Erwin, Douglas H

    2016-08-09

    The emergence and expansion of complex eukaryotic life on Earth is linked at a basic level to the secular evolution of surface oxygen levels. However, the role that planetary redox evolution has played in controlling the timing of metazoan (animal) emergence and diversification, if any, has been intensely debated. Discussion has gravitated toward threshold levels of environmental free oxygen (O2) necessary for early evolving animals to survive under controlled conditions. However, defining such thresholds in practice is not straightforward, and environmental O2 levels can potentially constrain animal life in ways distinct from threshold O2 tolerance. Herein, we quantitatively explore one aspect of the evolutionary coupling between animal life and Earth's oxygen cycle-the influence of spatial and temporal variability in surface ocean O2 levels on the ecology of early metazoan organisms. Through the application of a series of quantitative biogeochemical models, we find that large spatiotemporal variations in surface ocean O2 levels and pervasive benthic anoxia are expected in a world with much lower atmospheric pO2 than at present, resulting in severe ecological constraints and a challenging evolutionary landscape for early metazoan life. We argue that these effects, when considered in the light of synergistic interactions with other environmental parameters and variable O2 demand throughout an organism's life history, would have resulted in long-term evolutionary and ecological inhibition of animal life on Earth for much of Middle Proterozoic time (∼1.8-0.8 billion years ago).

  15. Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2014-06-21

    Molecular dynamics simulations are used to study the structural and dynamic properties of calcium aluminosilicate, (CaO-Al{sub 2}O{sub 3}){sub 1−x}(SiO{sub 2}){sub x}, glass formers along three joins, namely, R = 1, 1.57, and 3, in which the silica content x can vary from 0 to 1. For all compositions, we determined the glass-transition temperature, the abundances of the non-bridging oxygen, triclusters, and AlO{sub 5} structural units, as well as the fragility from the temperature evolution of the α-relaxation times. We clearly evidence the role played by the non-bridging oxygen linked either to Al atoms or Si atoms in the evolution ofmore » the glass-transition temperature as well as of the fragility as a function of silica content along the three joins.« less

  16. Catalysts for electrochemical generation of oxygen

    NASA Technical Reports Server (NTRS)

    Hagans, P.; Yeager, E.

    1978-01-01

    Single crystal surfaces of platinum and gold and transition metal oxides of the spinel type were studied to find more effective catalysts for the electrolytic evolution of oxygen and to understand the mechanism and kinetics for the electrocatalysis in relation to the surface electronic and lattice properties of the catalyst. The single crystal studies involve the use of low energy electron diffraction (LEED) and Auger electron spectroscopy as complementary tools to the electrochemical measurements. Modifications to the transfer system and to the thin-layer electrochemical cell used to facilitate the transfer between the ultrahigh vacuum environment of the electron surface physics equipment and the electrochemical environment with a minimal possibility of changes in the surface structure, are described. The electrosorption underpotential deposition of Pb onto the Au(111), (100) and (110) single crystal surfaces with the thin-layer cell-LEED-Auger system is discussed as well as the synthesis of spinels for oxygen evolution studies.

  17. Survey of selected seaweeds for simultaneous photoproduction of hydrogen and oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbaum, E.; Ramus, J.

    1983-03-01

    Then seaweed species were surveyed for simultaneous photoevolution of hydrogen and oxygen. In an attempt to induce hydrogenase activity (as measured by hydrogen photoproduction) the seaweeds were maintained under anaerobiosis in CO/sub 2/-free seawater for varying lengths of time. Although oxygen evolution was observed in every alga studied, hydrogen evolution was not observed. One conclusion of this research is that, in contrast to the microscopic algae, there is not a single example of a macroscopic alga for which the photoevolution of hydrogen has been observed, in spite of the fact that there are now at least nine macroscopic algal speciesmore » known for which hydrogenase activity has been reported (either by dark hydrogen evolution or light-activated hydrogen uptake). These results are in conflict with the conventional view that algal hydrogenase can catalyze a multiplicity of reactions, one of which is the photoproduction of molecular hydrogen. Two possible explanations for the lack of hydrogen photoproduction in macroscopic algae are presented. It is postulated that electron acceptors other than carbon dioxide can take up reducing equivalents from Photosystem I to the measurable exclusion of hydrogen photoproduction. Alternatively, the hydrogenase system in macroscopic algae may be primarily a hydrogen-uptake system with respect to light-activated reactions. A simple kinetic argument based on recent measurements of the photosynthetic turnover times of simultaneous light-activated hydrogen and oxygen production is presented that supports the second explanation. 25 references, 3 figures, 1 table.« less

  18. Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen.

    PubMed

    Castresana, J; Lübben, M; Saraste, M; Higgins, D G

    1994-06-01

    Cytochrome oxidase is a key enzyme in aerobic metabolism. All the recorded eubacterial (domain Bacteria) and archaebacterial (Archaea) sequences of subunits 1 and 2 of this protein complex have been used for a comprehensive evolutionary analysis. The phylogenetic trees reveal several processes of gene duplication. Some of these are ancient, having occurred in the common ancestor of Bacteria and Archaea, whereas others have occurred in specific lines of Bacteria. We show that eubacterial quinol oxidase was derived from cytochrome c oxidase in Gram-positive bacteria and that archaebacterial quinol oxidase has an independent origin. A considerable amount of evidence suggests that Proteobacteria (Purple bacteria) acquired quinol oxidase through a lateral gene transfer from Gram-positive bacteria. The prevalent hypothesis that aerobic metabolism arose several times in evolution after oxygenic photosynthesis, is not sustained by two aspects of the molecular data. First, cytochrome oxidase was present in the common ancestor of Archaea and Bacteria whereas oxygenic photosynthesis appeared in Bacteria. Second, an extant cytochrome oxidase in nitrogen-fixing bacteria shows that aerobic metabolism is possible in an environment with a very low level of oxygen, such as the root nodules of leguminous plants. Therefore, we propose that aerobic metabolism in organisms with cytochrome oxidase has a monophyletic and ancient origin, prior to the appearance of eubacterial oxygenic photosynthetic organisms.

  19. Vertical Variability of Anoxia Along the Northern Omani Shelf.

    NASA Astrophysics Data System (ADS)

    Queste, B. Y.; Piontkovski, S.; Heywood, K. J.

    2016-02-01

    Three autonomous underwater gliders were deployed along a 80 km transect extending from Muscat out into the Gulf during both monsoons and the intermonsoon season as part of a project funded by ONR Global and the UK NERC. The gliders surveyed the top 1000m across the continental shelf, the steep continental slope, and the Sea of Oman while measuring temperature, salinity, oxygen, chlorophyll a fluorescence, optical backscatter, photosyntheticall active radiation and providing estimates of depth-averaged currents and up/downwelling. The data show the depth of the surface oxycline varying by 50m across the transect as a function of mixed layer depth. Below, we observed high variability, on the order of days, in the oxygen profile with the boundary of the suboxic zone (< 6 µmol.kg-1) varying by up to 250m. This upper boundary was determined by the volume of the Persian Gulf Water (PGW) outflow which travels along the shelf edge. Below 400m, oxygen concentrations reached levels below 1 µmol.kg-1. The physical drivers of PGW transport therefore double, or reduce by half, the available habitat for macrofauna. The across-shelf transect allowed estimation of along-slope transport and variability of the PGW, identified by its higher salinity, temperature, optical backscatter and oxygen content. The structure and volume of the outflow was highly variable. During peak outflow, the core extended beyond the glider transect. During periods of minimal flow, it was constrained to 10km beyond the shelf break. PGW was also present in mesoscale eddies beyond the shelf break.

  20. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  1. The evolutionary puzzle of egg size, oxygenation and parental care in aquatic environments.

    PubMed

    Braga Goncalves, Ines; Ahnesjö, Ingrid; Kvarnemo, Charlotta

    2015-08-22

    Offspring fitness generally improves with increasing egg size. Yet, eggs of most aquatic organisms are small. A common but largely untested assumption is that larger embryos require more oxygen than they can acquire through diffusion via the egg surface, constraining egg size evolution. However, we found no detrimental effects of large egg size on embryo growth and survival under hypoxic conditions. We tested this in the broad-nosed pipefish, Syngnathus typhle, whose males provide extensive care (nourishment, osmoregulation and oxygenation) to their young in a brood pouch on their bodies. We took advantage of this species' pronounced variation in egg size, correlating positively with female size, and tested the effect of hypoxia (40% dissolved oxygen) versus fully oxygenated (100%) water on embryo size and survival of large versus small eggs after 18 days of paternal brooding. Egg size did not affect embryo survival, regardless of O2 treatment. While hypoxia affected embryo size negatively, both large and small eggs showed similar reductions in growth. Males in hypoxia ventilated more and males with large eggs swam more, but neither treatment affected their position in the water column. Overall, our results call into question the most common explanation for constrained egg size evolution in aquatic environments. © 2015 The Author(s).

  2. The evolutionary puzzle of egg size, oxygenation and parental care in aquatic environments

    PubMed Central

    Braga Goncalves, Ines; Ahnesjö, Ingrid; Kvarnemo, Charlotta

    2015-01-01

    Offspring fitness generally improves with increasing egg size. Yet, eggs of most aquatic organisms are small. A common but largely untested assumption is that larger embryos require more oxygen than they can acquire through diffusion via the egg surface, constraining egg size evolution. However, we found no detrimental effects of large egg size on embryo growth and survival under hypoxic conditions. We tested this in the broad-nosed pipefish, Syngnathus typhle, whose males provide extensive care (nourishment, osmoregulation and oxygenation) to their young in a brood pouch on their bodies. We took advantage of this species' pronounced variation in egg size, correlating positively with female size, and tested the effect of hypoxia (40% dissolved oxygen) versus fully oxygenated (100%) water on embryo size and survival of large versus small eggs after 18 days of paternal brooding. Egg size did not affect embryo survival, regardless of O2 treatment. While hypoxia affected embryo size negatively, both large and small eggs showed similar reductions in growth. Males in hypoxia ventilated more and males with large eggs swam more, but neither treatment affected their position in the water column. Overall, our results call into question the most common explanation for constrained egg size evolution in aquatic environments. PMID:26290070

  3. Metabolism estimates in small boreal lakes: the importance of accounting for vertical fluxes of oxygen

    NASA Astrophysics Data System (ADS)

    Klaus, M.; MacIntyre, S.; Hotchkiss, E. R.; Bergström, A. K.; Karlsson, J.

    2015-12-01

    Lake metabolism models based on the diel oxygen technique often assume that oxygen dynamics are mainly controlled by metabolic processes, only accounting for wind-driven atmospheric gas exchange. However, oxygen dynamics can also be affected by abiotic mass fluxes across oxygen gradients within lakes and atmospheric gas exchange driven by convection. Here, we quantify how much vertical fluxes of oxygen modify epilimnetic metabolism estimates for three pairs of small Swedish boreal lakes, one of each fertilized with nitrate, with dissolved organic carbon (DOC) concentrations of 7 to 22 mg l-1. Oxygen concentrations were measured every 10 min at 50 cm depth and biweekly across depths profiles during one full open water period. Based on additional two weeks of ten-minute oxygen profiling we calculated vertical fluxes of oxygen using equations for atmospheric gas exchange caused by wind shear (F1) and convection (F2), and lake-internal gas exchange caused by diffusion and mixed layer deepening (F3). We ran three inverse Bayesian models to estimate daily metabolism: (M1) accounting for F1, (M2) accounting for F1 and F2, and (M3) accounting for F1 and F3. Initial results suggest that gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) ranged from 0.1 to 0.2, -0.3 to -0.5 and -0.2 to -0.4 g C m-2 d-1, respectively. GPP and R were higher in fertilized lakes and at the lower end of previous worldwide estimates. Accounting for convection-driven gas exchange increased ER estimates by 10-40% (M2 vs. M1). This bias increased with DOC concentration but was not affected by fertilization. Including lake-internal vertical oxygen fluxes changed GPP and ER estimates by up to ±40% (M3 vs. M1), with inconsistent trends along the DOC-gradient. We conclude that vertical fluxes of oxygen can significantly affect diel oxygen dynamics in oligotrophic humic systems and should therefore be included in metabolism models applied to small boreal lakes.

  4. Evolution of the atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1985-01-01

    Theories on the origin of the Earth atmosphere and chemical composition are presented. The role of oxygenic photosynthesis on the determination of the Earth's origin is discussed. The research suggests that further analysis of the geologic record is needed to more accurately estimate the history of atmospheric oxygen.

  5. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study.

    PubMed

    Ren, Xiaodong; Wang, Beizhou; Zhu, Jinzhen; Liu, Jianjun; Zhang, Wenqing; Wen, Zhaoyin

    2015-06-14

    A lithium-air battery as an energy storage technology can be used in electric vehicles due to its large energy density. However, its poor rate capability, low power density and large overpotential problems limit its practical usage. In this paper, the first-principles thermodynamic calculations were performed to study the catalytic activity of X-doped graphene (X = B, N, Al, Si, and P) materials as potential cathodes to enhance charge reactions in a lithium-air battery. Among these materials, P-doped graphene exhibits the highest catalytic activity in reducing the charge voltage by 0.25 V, while B-doped graphene has the highest catalytic activity in decreasing the oxygen evolution barrier by 0.12 eV. By combining these two catalytic effects, B,P-codoped graphene was demonstrated to have an enhanced catalytic activity in reducing the O2 evolution barrier by 0.70 eV and the charge voltage by 0.13 V. B-doped graphene interacts with Li2O2 by Li-sited adsorption in which the electron-withdrawing center can enhance charge transfer from Li2O2 to the substrate, facilitating reduction of O2 evolution barrier. In contrast, X-doped graphene (X = N, Al, Si, and P) prefers O-sited adsorption toward Li2O2, forming a X-O2(2-)···Li(+) interface structure between X-O2(2-) and the rich Li(+) layer. The active structure of X-O2(2-) can weaken the surrounding Li-O2 bonds and significantly reduce Li(+) desorption energy at the interface. Our investigation is helpful in developing a novel catalyst to enhance oxygen evolution reaction (OER) in Li-air batteries.

  6. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.

    PubMed

    Strasser, Peter

    2016-11-15

    Nanomaterial science and electrocatalytic science have entered a successful "nanoelectrochemical" symbiosis, in which novel nanomaterials offer new frontiers for studies on electrocatalytic charge transfer, while electrocatalytic processes give meaning and often practical importance to novel nanomaterial concepts. Examples of this fruitful symbiosis are dealloyed core-shell nanoparticle electrocatalysts, which often exhibit enhanced kinetic charge transfer rates at greatly improved atom-efficiency. As such, they represent ideal electrocatalyst architectures for the acidic oxygen reduction reaction to water (ORR) and the acidic oxygen evolution reaction from water (OER) that require scarce Pt- and Ir-based catalysts. Together, these two reactions constitute the "O-cycle", a key elemental process loop in the field of electrochemical energy interconversion between electricity (free electrons) and molecular bonds (H 2 O/O 2 ), realized in the combination of water electrolyzers and hydrogen/oxygen fuel cells. In this Account, we describe our recent efforts to design, synthesize, understand, and test noble metal-poor dealloyed Pt and Ir core-shell nanoparticles for deployment in acidic polymer electrolyte membrane (PEM) electrolyzers and PEM fuel cells. Spherical dealloyed Pt core-shell particles, derived from PtNi 3 precursor alloys, showed favorable ORR activity. More detailed size-activity correlation studies further revealed that the 6-8 nm diameter range is a most desirable initial particle size range in order to maximize the particle Ni content after ORR testing and to preserve performance stability. Similarly, dealloyed and oxidized IrO x core-shell particles derived from Ni-rich Ir-Ni precursor particles proved highly efficient oxygen evolution reaction (OER) catalysts in acidic conditions. In addition to the noble metal savings in the particle cores, the Pt core-shell particles are believed to benefit in terms of their mass-based electrochemical kinetics from surface lattice strain effects that tune the adsorption energies and barriers of elementary steps. The molecular mechanism of the kinetic benefit of the dealloyed IrO x particle needs more attention, but there is mounting evidence for ligand hole effects in defect-rich IrO x shells that generate preactive oxygen centers.

  7. North Pond: a natural observatory for sub-seafloor oxidant supply and metabolic reactions

    NASA Astrophysics Data System (ADS)

    Ziebis, Wiebke; Ferdelman, Timothy; McManus, James; Muratli, Jesse; Picard, Aude; Schmidt-Schierhorn, Friederike; Stephan, Sebastian; Villinger, Heinrich; Edwards, Katrina J.

    2010-05-01

    Evidence of upward transport of oxidants from basaltic aquifers to deeply buried sediments has raised questions on microbial respiration and energy cycling within the deep biosphere. Sediment ponds that occur over a vast area of sea floor on the flank of the Mid-Atlantic Ridge maybe ideal observatories to study the role of unsuspected sources of oxidants for sub-seafloor microbial life. The western flank of the Mid-Atlantic Ridge, at 22°45'N is characterized by depressions filled with sediment and surrounded by high relief topography of 7 Ma old basement. The largest depressions are 5 km to 20 km wide and sediment thickness varies but can reach 400 m (Langseth et al. 1992). They are believed to overly recharge zones for the venting of fluids that takes place locally through unsedimented young ocean crust. If we consider the sediments as boundaries overlying the hydrologically active crustal environment, then using profiles of bioactive compounds measured through the sediment layer with the goal to extract information on transport and reactions is an obvious approach to understanding the implications of subsurface transport of oxidants on metabolic activity. Recently obtained deep oxygen profiles obtained during a site survey expedition in February/March of 2009 onboard RV Maria S. Merian to North Pond, one of the larger (70 square km) and best studied sediment ponds, provided proof of this principal. North Pond is the site of the proposed IODP Expedition "677 Mid-Atlantic Microbiology". Investigations included heat-flow, single-channel seismic and bathymetry surveys, as well as gravity coring. Oxygen measurements and pore water sampling (25 cm depth intervals) were performed directly on intact sediment cores, which were subsequently sampled for microbiological analyses, as well as for incubation experiments to test for autotrophic and heterotrophic microbial activity. The entire sediment column down to > 8 m sediment depth contained oxygen. In the central part of the sediment pond oxygen decreased continuously with depth, indicating an active aerobic microbial community, while nitrate concentrations increased. In contrast, along the northern and western rims of North Pond, oxygen concentrations remained surprisingly constant with depth at values around 170 µM. In addition, at 3 locations along the north shore oxygen profiles indicated an upward supply of oxygen from the underlying basaltic basement. Pore water nutrient profiles and incubation experiments confirmed active microbial communities throughout the sediment layer, as well as the influence of upward transport of oxidants on microbial processes in deeply buried sediments. Langseth, M.G., K. Becker, R.P. Von Herzen, and P. Schultheiss. 1992. Heat and fluid flow through sediments on the western flank of the Mid-Atlantic Ridge: A hydrogeological study of North Pond. Geophys. Res. Lett. 19: 517-520.

  8. Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode

    DOE PAGES

    Newhouse, Paul F.; Reyes-Lillo, Sebastian E.; Li, Guo; ...

    2017-11-13

    Solar-driven oxygen evolution is a critical technology for renewably synthesizing hydrogen- and carbon-containing fuels in solar fuel generators. New photoanode materials are needed to meet efficiency and stability requirements, motivating materials explorations for semiconductors with (i) band-gap energy in the visible spectrum and (ii) stable operation in aqueous electrolyte at the electrochemical potential needed to evolve oxygen from water. Motivated by the oxygen evolution competency of many Mn-based oxides, the existence of several Bi-containing ternary oxide photoanode materials, and the variety of known oxide materials combining these elements with Sm, we explore the Bi-Mn-Sm oxide system for new photoanodes. Throughmore » the use of a ferri/ferrocyanide redox couple in high-throughput screening, BiMn 2O 5 and its alloy with Sm are identified as photoanode materials with a near-ideal optical band gap of 1.8 eV. Using density functional theory-based calculations of the mullite Bi 3+ Mn 3+ Mn 4+O 5 phase, we identify electronic analogues to the well-known BiVO 4 photoanode and demonstrate excellent Pourbaix stability above the oxygen evolution Nernstian potential from pH 4.5 to 15. Lastly, our suite of experimental and computational characterization indicates that BiMn 2O 5 is a complex oxide with the necessary optical and chemical properties to be an efficient, stable solar fuel photoanode.« less

  9. Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newhouse, Paul F.; Reyes-Lillo, Sebastian E.; Li, Guo

    Solar-driven oxygen evolution is a critical technology for renewably synthesizing hydrogen- and carbon-containing fuels in solar fuel generators. New photoanode materials are needed to meet efficiency and stability requirements, motivating materials explorations for semiconductors with (i) band-gap energy in the visible spectrum and (ii) stable operation in aqueous electrolyte at the electrochemical potential needed to evolve oxygen from water. Motivated by the oxygen evolution competency of many Mn-based oxides, the existence of several Bi-containing ternary oxide photoanode materials, and the variety of known oxide materials combining these elements with Sm, we explore the Bi-Mn-Sm oxide system for new photoanodes. Throughmore » the use of a ferri/ferrocyanide redox couple in high-throughput screening, BiMn 2O 5 and its alloy with Sm are identified as photoanode materials with a near-ideal optical band gap of 1.8 eV. Using density functional theory-based calculations of the mullite Bi 3+ Mn 3+ Mn 4+O 5 phase, we identify electronic analogues to the well-known BiVO 4 photoanode and demonstrate excellent Pourbaix stability above the oxygen evolution Nernstian potential from pH 4.5 to 15. Lastly, our suite of experimental and computational characterization indicates that BiMn 2O 5 is a complex oxide with the necessary optical and chemical properties to be an efficient, stable solar fuel photoanode.« less

  10. Light penetration structures the deep acoustic scattering layers in the global ocean.

    PubMed

    Aksnes, Dag L; Røstad, Anders; Kaartvedt, Stein; Martinez, Udane; Duarte, Carlos M; Irigoien, Xabier

    2017-05-01

    The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna and contribute to the biological carbon pump through the active flux of organic carbon transported in their daily vertical migrations. They occupy depths from 200 to 1000 m at daytime and migrate to a varying degree into surface waters at nighttime. Their daytime depth, which determines the migration amplitude, varies across the global ocean in concert with water mass properties, in particular the oxygen regime, but the causal underpinning of these correlations has been unclear. We present evidence that the broad variability in the oceanic DSL daytime depth observed during the Malaspina 2010 Circumnavigation Expedition is governed by variation in light penetration. We find that the DSL depth distribution conforms to a common optical depth layer across the global ocean and that a correlation between dissolved oxygen and light penetration provides a parsimonious explanation for the association of shallow DSL distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web.

  11. Investigation of the Effects of Oxygen Content in YBa2Cu3Ox on the Depth and Profile of Direct Ion Milled Trenches

    DTIC Science & Technology

    2014-09-01

    fashion, thereby providing an experimental resolution previously unobtainable. Josephson junctions can be fabricated via many known methods; however... junction formation geometry. The objective of this study is to systematically investigate and de- termine the impact of local oxygen content on the ion...used advantageously in the fabrication of Josephson junction on films of YBa2Cu3O7−δ, wherein the film is annealed such that the oxygen content of the

  12. Vertical zonation and distributions of calanoid copepods through the lower oxycline of the Arabian Sea oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Wishner, Karen F.; Gelfman, Celia; Gowing, Marcia M.; Outram, Dawn M.; Rapien, Mary; Williams, Rebecca L.

    2008-08-01

    This paper provides the first comprehensive analysis of calanoid copepod vertical zonation and community structure at midwater depths (300-1000 m) through the lower oxygen gradient (oxycline) (0.02 to ∼0.3 ml/L) of an oxygen minimum zone (OMZ). Feeding ecology was also analyzed. Zooplankton were collected with a double 1 m 2 MOCNESS plankton net in day and night vertically-stratified oblique tows from 1000 m to the surface at six stations during four seasons as part of the 1995 US Joint Global Ocean Flux Study (JGOFS) Arabian Sea project. The geographic comparison between a eutrophic more oxygenated onshore station and an offshore station with a strong OMZ served as a natural experiment to elucidate the influence of depth, oxygen concentration, season, food resources, and predators on the copepod distributions. Copepod species and species assemblages of the Arabian Sea OMZ differed in their spatial and vertical distributions relative to environmental and ecological characteristics of the water column and region. The extent and intensity of the oxycline at the lower boundary of the OMZ, and its spatial and temporal variability over the year of sampling, was an important factor affecting distributional patterns. Calanoid copepod species showed vertical zonation through the lower OMZ oxycline. Clustering analyses defined sample groups with similar copepod assemblages and species groups with similar distributions. No apparent diel vertical migration for either calanoid or non-calanoid copepods at these midwater depths was observed, but some species had age-related differences in vertical distributions. Subzones of the OMZ, termed the OMZ Core, the Lower Oxycline, and the Sub-Oxycline, had different copepod communities and ecological interactions. Major distributional and ecological changes were associated with surprisingly small oxygen gradients at low oxygen concentrations. The calanoid copepod community was most diverse in the most oxygenated environments (oxygen >0.14 ml/L), but the rank order of abundance of species was similar in the Lower Oxycline and Sub-Oxycline. Some species were absent or much scarcer in the OMZ Core. Two copepod species common in the Lower Oxycline were primarily detritivorous but showed dietary differences suggesting feeding specialization. The copepod Spinocalanus antarcticus fed primarily on components of the vertical particulate flux and suspended material, a less versatile diet than the co-occurring copepod Lucicutia grandis. Vertical zonation of copepod species through the lower OMZ oxycline is probably a complex interplay between physiological limitation by low oxygen, potential predator control, and potential food resources. Pelagic OMZ and oxycline communities, and their ecological interactions in the water column and with the benthos, may become even more widespread and significant in the future ocean, if global warming increases the extent and intensity of OMZs as predicted.

  13. The evolution of the metallicity gradient and the star formation efficiency in disc galaxies

    NASA Astrophysics Data System (ADS)

    Sillero, Emanuel; Tissera, Patricia B.; Lambas, Diego G.; Michel-Dansac, Leo

    2017-12-01

    We study the oxygen abundance profiles of the gas-phase components in hydrodynamical simulations of pre-prepared disc galaxies including major mergers, close encounters and isolated configurations. We analyse the evolution of the slope of oxygen abundance profiles and the specific star formation rate (sSFR) along their evolution. We find that galaxy-galaxy interactions could generate either positive or negative gas-phase oxygen profiles, depending on the state of evolution. Along the interaction, galaxies are found to have metallicity gradients and sSFR consistent with observations, on average. Strong gas inflows produced during galaxy-galaxy interactions or as a result of strong local instabilities in gas-rich discs are able to produce both a quick dilution of the central gas-phase metallicity and a sudden increase of the sSFR. Our simulations show that, during these events, a correlation between the metallicity gradients and the sSFR can be set up if strong gas inflows are triggered in the central regions in short time-scales. Simulated galaxies without experiencing strong disturbances evolve smoothly without modifying the metallicity gradients. Gas-rich systems show large dispersion along the correlation. The dispersion in the observed relation could be interpreted as produced by the combination of galaxies with different gas-richness and/or experiencing different types of interactions. Hence, our findings suggest that the observed relation might be the smoking gun of galaxies forming in a hierarchical clustering scenario.

  14. The Dynamics of sediment oxygenation in Spartina anglica Rhizospheres - a Planar Optode Study

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, Ketil

    2013-04-01

    The salt marsh grass Spartina anglica have well-developed aerenthyma tissue facilitating a rapid transport of oxygen from the atmosphere to belowground roots and rhizomes, where oxygen can leak out of the root system and oxygenate the surrounding sediment. In this way, oxic microzones are distributed vertically in marsh sediments promoting aerobic microbial activity at depth. In this study, the dynamics of sediment oxygenation in Spartina anglica rhizospheres was investigated, visualizing the belowground oxygen content using planar optode technology. Oxic microzones around roots and rhizomes were monitored in the laboratory under different light conditions and during tidal inundations of the aboveground biomass. Oxic microzones were restricted to the root tips extending up to16mm along the root and 1.5mm into the anoxic bulk sediment from the root surface. The oxygen concentration was highest at the root-surface ranging from 58-85μM. The volume of the oxic microzones did not change significantly with decreasing light availability of the aboveground biomass showing that the atmosphere is the primary source for oxygen transported below ground. Consequently, tidal inundations cutting off the access to atmospheric oxygen resulted in a complete collapse of the oxic microzones after 3 hours of inundation in the light as well as in the dark. However, monitoring oxic microzones during a 24h tidal cycle with diurnal tidal inundations lasting 90min showed a 36% reduction of the oxic microzones in the light in contrast to a complete collapse of the oxic microzones in the dark. Hence, light availability and photosynthetic oxygen production of the aboveground biomass does influence the kinetics of oxic microzone develupment. Belowground sediment oxygenation is of significant importance for the biogeochemical cycles in salt marsh sediment, in particular coupled nitrification-denitrification occurring at depth associated with oxic microzones can account for a significant proportion of the gaseous export of nitrogen from Spartina spp.-dominated marshes. This study shows that tidal inundations have significant impact on belowground biogeochemical conditions and must be taken into account when monitoring tidal marsh processes on a daily basis.

  15. Influence of mass transfer on bubble plume hydrodynamics.

    PubMed

    Lima Neto, Iran E; Parente, Priscila A B

    2016-03-01

    This paper presents an integral model to evaluate the impact of gas transfer on the hydrodynamics of bubble plumes. The model is based on the Gaussian type self-similarity and functional relationships for the entrainment coefficient and factor of momentum amplification due to turbulence. The impact of mass transfer on bubble plume hydrodynamics is investigated considering different bubble sizes, gas flow rates and water depths. The results revealed a relevant impact when fine bubbles are considered, even for moderate water depths. Additionally, model simulations indicate that for weak bubble plumes (i.e., with relatively low flow rates and large depths and slip velocities), both dissolution and turbulence can affect plume hydrodynamics, which demonstrates the importance of taking the momentum amplification factor relationship into account. For deeper water conditions, simulations of bubble dissolution/decompression using the present model and classical models available in the literature resulted in a very good agreement for both aeration and oxygenation processes. Sensitivity analysis showed that the water depth, followed by the bubble size and the flow rate are the most important parameters that affect plume hydrodynamics. Lastly, dimensionless correlations are proposed to assess the impact of mass transfer on plume hydrodynamics, including both the aeration and oxygenation modes.

  16. Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans

    PubMed Central

    Liu, Hui; Probert, Ian; Uitz, Julia; Claustre, Hervé; Aris-Brosou, Stéphane; Frada, Miguel; Not, Fabrice; de Vargas, Colomban

    2009-01-01

    The current paradigm holds that cyanobacteria, which evolved oxygenic photosynthesis more than 2 billion years ago, are still the major light harvesters driving primary productivity in open oceans. Here we show that tiny unicellular eukaryotes belonging to the photosynthetic lineage of the Haptophyta are dramatically diverse and ecologically dominant in the planktonic photic realm. The use of Haptophyta-specific primers and PCR conditions adapted for GC-rich genomes circumvented biases inherent in classical genetic approaches to exploring environmental eukaryotic biodiversity and led to the discovery of hundreds of unique haptophyte taxa in 5 clone libraries from subpolar and subtropical oceanic waters. Phylogenetic analyses suggest that this diversity emerged in Paleozoic oceans, thrived and diversified in the permanently oxygenated Mesozoic Panthalassa, and currently comprises thousands of ribotypic species, belonging primarily to low-abundance and ancient lineages of the “rare biosphere.” This extreme biodiversity coincides with the pervasive presence in the photic zone of the world ocean of 19′-hexanoyloxyfucoxanthin (19-Hex), an accessory photosynthetic pigment found exclusively in chloroplasts of haptophyte origin. Our new estimates of depth-integrated relative abundance of 19-Hex indicate that haptophytes dominate the chlorophyll a-normalized phytoplankton standing stock in modern oceans. Their ecologic and evolutionary success, arguably based on mixotrophy, may have significantly impacted the oceanic carbon pump. These results add to the growing evidence that the evolution of complex microbial eukaryotic cells is a critical force in the functioning of the biosphere. PMID:19622724

  17. Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans.

    PubMed

    Liu, Hui; Probert, Ian; Uitz, Julia; Claustre, Hervé; Aris-Brosou, Stéphane; Frada, Miguel; Not, Fabrice; de Vargas, Colomban

    2009-08-04

    The current paradigm holds that cyanobacteria, which evolved oxygenic photosynthesis more than 2 billion years ago, are still the major light harvesters driving primary productivity in open oceans. Here we show that tiny unicellular eukaryotes belonging to the photosynthetic lineage of the Haptophyta are dramatically diverse and ecologically dominant in the planktonic photic realm. The use of Haptophyta-specific primers and PCR conditions adapted for GC-rich genomes circumvented biases inherent in classical genetic approaches to exploring environmental eukaryotic biodiversity and led to the discovery of hundreds of unique haptophyte taxa in 5 clone libraries from subpolar and subtropical oceanic waters. Phylogenetic analyses suggest that this diversity emerged in Paleozoic oceans, thrived and diversified in the permanently oxygenated Mesozoic Panthalassa, and currently comprises thousands of ribotypic species, belonging primarily to low-abundance and ancient lineages of the "rare biosphere." This extreme biodiversity coincides with the pervasive presence in the photic zone of the world ocean of 19'-hexanoyloxyfucoxanthin (19-Hex), an accessory photosynthetic pigment found exclusively in chloroplasts of haptophyte origin. Our new estimates of depth-integrated relative abundance of 19-Hex indicate that haptophytes dominate the chlorophyll a-normalized phytoplankton standing stock in modern oceans. Their ecologic and evolutionary success, arguably based on mixotrophy, may have significantly impacted the oceanic carbon pump. These results add to the growing evidence that the evolution of complex microbial eukaryotic cells is a critical force in the functioning of the biosphere.

  18. Geochemistry and the origin of life

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1974-01-01

    The origin of life on earth is examined from a viewpoint stressing the validity of the concept of chemical evolution. The different geological formations supporting the mechanisms of the theory are described; the stage of chemical evolution (preceding that of biological evolution) would have taken place from the time of the origin of the earth and meteorites, 4.6 billion years ago, to the early Precambrian period, about 3.2 billion years ago. Specific aspects of the problem discussed include amino acids from spark discharges and their comparison with the Murchison meteorite amino acids, the properties and theory of genesis of the carbonaceous complex within the cold Bokevelt meteorite, ammonion ion concentration in the primitive ocean, the oxygen isotope chemistry of ancient charts, the origin and rise of oxygen concentration in the earth's atmosphere, Precambrian microorganisms and evolutionary events prior to the origin of vascular plants, and biogenicity and significance of the oldest known stromatolites.

  19. Dicationic ionic liquid mediated fabrication of Au@Pt nanoparticles supported on reduced graphene oxide with highly catalytic activity for oxygen reduction and hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Shi, Ya-Cheng; Chen, Sai-Sai; Feng, Jiu-Ju; Lin, Xiao-Xiao; Wang, Weiping; Wang, Ai-Jun

    2018-05-01

    Ionic liquids as templates or directing agents have attracted great attention for shaping-modulated synthesis of advanced nanomaterials. In this work, reduced graphene oxide supported uniform core-shell Au@Pt nanoparticles (Au@Pt NPs/rGO) were fabricated by a simple one-pot aqueous approach, using N-methylimidazolium-based dicationic ionic liquid (1,1-bis(3-methylimadazoilum-1-yl)butylene bromide, [C4(Mim)2]2Br) as the shape-directing agent. The morphology evolution, structural information and formation mechanism of Au@Pt NPs anchored on rGO were investigated by a series of characterization techniques. The obtained nanocomposites displayed superior electrocatalytic features toward hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) compared with commercial Pt/C catalyst. This approach provides a novel route for facile synthesis of nanocatalysts in fuel cells.

  20. Habitat compression and expansion of sea urchins in response to changing climate conditions on the California continental shelf and slope (1994-2013)

    NASA Astrophysics Data System (ADS)

    Sato, Kirk N.; Levin, Lisa A.; Schiff, Kenneth

    2017-03-01

    Echinoid sea urchins with distributions along the continental shelf and slope of the eastern Pacific often dominate the megafauna community. This occurs despite their exposure to naturally low dissolved oxygen (DO) waters (<60 μmol kg-1) associated with the Oxygen Limited Zone and low-pH waters undersaturated with respect to calcium carbonate (ΩCaCO3<1). Here we present vertical depth distribution and density analyses of historical otter trawl data collected in the Southern California Bight (SCB) from 1994 to 2013 to address the question: Do changes in echinoid density and species' depth distributions along the continental margin in the SCB reflect observed secular or interannual changes in climate? Deep-dwelling burrowing urchins (Brissopsis pacifica, Brisaster spp. and Spatangus californicus), which are adapted to low-DO, low-pH conditions appeared to have expanded their vertical distributions and populations upslope over the past decade (2003-2013), and densities of the deep pink urchin, Strongylocentrotus fragilis, increased significantly in the upper 500 m of the SCB. Conversely, the shallower urchin, Lytechinus pictus, exhibited depth shoaling and density decreases within the upper 200 m of the SCB from 1994 to 2013. Oxygen and pH in the SCB also vary inter-annually due to varying strengths of the El Niño Southern Oscillation (ENSO). Changes in depth distributions and densities were correlated with bi-monthly ENSO climate indices in the region. Our results suggest that both a secular trend in ocean deoxygenation and acidification and varying strength of ENSO may be linked to echinoid species distributions and densities, creating habitat compression in some and habitat expansion in others. Potential life-history mechanisms underlying depth and density changes observed over these time periods include migration, mortality, and recruitment. These types of analyses are needed for a broad suite of benthic species in order to identify and manage climate-sensitive species on the margin.

  1. Maps showing predicted probabilities for selected dissolved oxygen and dissolved manganese threshold events in depth zones used by the domestic and public drinking water supply wells, Central Valley, California

    USGS Publications Warehouse

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2018-01-31

    The purpose of the prediction grids for selected redox constituents—dissolved oxygen and dissolved manganese—are intended to provide an understanding of groundwater-quality conditions at the domestic and public-supply drinking water depths. The chemical quality of groundwater and the fate of many contaminants is influenced by redox processes in all aquifers, and understanding the redox conditions horizontally and vertically is critical in evaluating groundwater quality. The redox condition of groundwater—whether oxic (oxygen present) or anoxic (oxygen absent)—strongly influences the oxidation state of a chemical in groundwater. The anoxic dissolved oxygen thresholds of <0.5 milligram per liter (mg/L), <1.0 mg/L, and <2.0 mg/L were selected to apply broadly to regional groundwater-quality investigations. Although the presence of dissolved manganese in groundwater indicates strongly reducing (anoxic) groundwater conditions, it is also considered a “nuisance” constituent in drinking water, making drinking water undesirable with respect to taste, staining, or scaling. Three dissolved manganese thresholds, <50 micrograms per liter (µg/L), <150 µg/L, and <300 µg/L, were selected to create predicted probabilities of exceedances in depth zones used by domestic and public-supply water wells. The 50 µg/L event threshold represents the secondary maximum contaminant level (SMCL) benchmark for manganese (U.S. Environmental Protection Agency, 2017; California Division of Drinking Water, 2014), whereas the 300 µg/L event threshold represents the U.S. Geological Survey (USGS) health-based screening level (HBSL) benchmark, used to put measured concentrations of drinking-water contaminants into a human-health context (Toccalino and others, 2014). The 150 µg/L event threshold represents one-half the USGS HBSL. The resultant dissolved oxygen and dissolved manganese prediction grids may be of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Prediction grids for selected redox constituents and thresholds were created by the USGS National Water-Quality Assessment (NAWQA) modeling and mapping team.

  2. Structure and function of nematode communities across the Indian western continental margin and its oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Singh, R.; Ingole, B. S.

    2016-01-01

    We studied patterns of nematode distribution along the western Indian continental margin to determine the influence of habitat heterogeneity and low oxygen levels on the community's taxonomic and functional structure. A single transect, perpendicular to the coast at 14° N latitude was sampled from 34 to 2546 m depth for biological and environmental variables during August 2007. The oxygen minimum zone extended from 102 to 1001 m. Nematodes (described and undescribed) were identified to species and classified according to biological and functional traits. A total of 110 nematode species belonging to 24 families were found along the transect. Three depth zones were identified: the shelf (depth range: 34-102 m; highest nematode mean density: 176.6 ± 37 ind 10 cm-2), the slope (525-1524 m; 124.3 ± 16 ind 10 cm-2), and the basin (2001-2546 m; 62.9 ± 2 ind 10 cm-2). Across the entire study area, the dominant species were Terschellingia longicaudata, Desmodora sp. 1, Sphaerolaimus gracilis, and Theristus ensifer; their maximum density was at shelf stations. Nematode communities in different zones differed in species composition. Chromadorita sp. 2 (2.78 %) and Sphaerolaimus gracilis (2.21 %) were dominant on the shelf, whereas Terschellingia longicaudata (4.73 %) and Desmodora sp. 1 (4.42 %) were dominant on the slope, but in the basin, Halalaimus sp. 1(1.11 %) and Acantholaimus elegans (1.11 %) were dominant. The information in a particular functional group was not a simple reflection of the information in species abundance. Ecological information captured by adult length, adult shape, and life-history strategy was less site-specific and thus differed notably from information contained in other taxonomic groups. The functional composition of nematodes was strongly linked to the organic-carbon and dissolved-oxygen concentration. Seven species were found exclusively in the oxygen minimum zone: Pselionema sp. 1, Choanolaimus sp. 2, Halichoanolaimus sp. 1, Cobbia dentata, Daptonema sp. 1, Trissonchulus sp. 1, and Minolaimus sp. 1. Correlation with a number of environmental variables indicated that food quantity (measured as the organic-carbon content and chlorophyll content) and oxygen level were the major factors that influenced nematode community structure and function.

  3. Iron carbide encapsulated by porous carbon nitride as bifunctional electrocatalysts for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Wei, Liangqin; Sun, Hongdi; Yang, Tiantian; Deng, Shenzhen; Wu, Mingbo; Li, Zhongtao

    2018-05-01

    Herein, the study reports a facile and scale-up able strategy to synthesize metal organic frameworks (MOFs) Fe-7,7,8,8-Tetracyanoquinodimethane (Fe-TCNQ) as precursors to develop non-precious metal bifunctional electrocatalysts through a one-step hydrothermal route. Then, Fe3C/carbon nitride (Fe3C@CNx) core-shell structure composites are readily available through pyrolyzing Fe-TCNQ at reasonable temperature, during which hierarchical porous structures with multimodal porosity formed. Nitrogen doped porosity carbon layers can facilitate mass access to active sites and accelerate reaction. Consequently, the optimized catalyst exhibits superior oxygen reduction reaction (ORR) electrocatalytic activity and better catalytic activity for oxygen evolution reaction (OER) in alkaline medium than that of Pt/C, which can be attributed to the synergistic effect of strong coupling between Fe3C and nitrogen doped carbon shells, active sites Fe-NX, optimal level of nitrogen doping, and appropriate multimodal porosity.

  4. Rising levels of atmospheric oxygen and evolution of Nrf2.

    PubMed

    Gacesa, Ranko; Dunlap, Walter C; Barlow, David J; Laskowski, Roman A; Long, Paul F

    2016-06-14

    In mammals, the master transcription regulator of antioxidant defences is provided by the Nrf2 protein. Phylogenetic analyses of Nrf2 sequences are used here to derive a molecular clock that manifests persuasive evidence that Nrf2 orthologues emerged, and then diverged, at two time points that correlate with well-established geochemical and palaeobiological chronologies during progression of the 'Great Oxygenation Event'. We demonstrate that orthologues of Nrf2 first appeared in fungi around 1.5 Ga during the Paleoproterozoic when photosynthetic oxygen was being absorbed into the oceans. A subsequent significant divergence in Nrf2 is seen during the split between fungi and the Metazoa approximately 1.0-1.2 Ga, at a time when oceanic ventilation released free oxygen to the atmosphere, but with most being absorbed by methane oxidation and oxidative weathering of land surfaces until approximately 800 Ma. Atmospheric oxygen levels thereafter accumulated giving rise to metazoan success known as the Cambrian explosion commencing at ~541 Ma. Atmospheric O2 levels then rose in the mid Paleozoic (359-252 Ma), and Nrf2 diverged once again at the division between mammals and non-mammalian vertebrates during the Permian-Triassic boundary (~252 Ma). Understanding Nrf2 evolution as an effective antioxidant response may have repercussions for improved human health.

  5. Evaluation and use of a diffusion-controlled sampler for determining chemical and dissolved oxygen gradients at the sediment-water interface

    USGS Publications Warehouse

    Simon, N.S.; Kennedy, M.M.; Massoni, C.S.

    1985-01-01

    Field and laboratory evaluations were made of a simple, inexpensive diffusion-controlled sampler with ports on two sides at each interval which incorporates 0.2-??m polycarbonate membrane to filter samples in situ. Monovalent and divalent ions reached 90% of equilibrium between sampler contents and the external solution within 3 and 6 hours, respectively. Sediment interstitial water chemical gradients to depths of tens of centimeters were obtained within several days after placement. Gradients were consistent with those determined from interstitial water obtained by centrifugation of adjacent sediment. Ten milliliter sample volumes were collected at 1-cm intervals to determine chemical gradients and dissolved oxygen profiles at depth and at the interface between the sediment and water column. The flux of dissolved species, including oxygen, across the sediment-water interface can be assessed more accurately using this sampler than by using data collected from benthic cores. ?? 1985 Dr W. Junk Publishers.

  6. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting

    PubMed Central

    Li, Haoyi; Chen, Shuangming; Jia, Xiaofan; Xu, Biao; Lin, Haifeng; Yang, Haozhou; Song, Li; Wang, Xun

    2017-01-01

    Highly active and robust eletcrocatalysts based on earth-abundant elements are desirable to generate hydrogen and oxygen as fuels from water sustainably to replace noble metal materials. Here we report an approach to synthesize porous hybrid nanostructures combining amorphous nickel-cobalt complexes with 1T phase molybdenum disulfide (MoS2) via hydrazine-induced phase transformation for water splitting. The hybrid nanostructures exhibit overpotentials of 70 mV for hydrogen evolution and 235 mV for oxygen evolution at 10 mA cm−2 with long-term stability, which have superior kinetics for hydrogen- and oxygen-evolution with Tafel slope values of 38.1 and 45.7 mV dec−1. Moreover, we achieve 10 mA cm−2 at a low voltage of 1.44 V for 48 h in basic media for overall water splitting. We propose that such performance is likely due to the complete transformation of MoS2 to metallic 1T phase, high porosity and stabilization effect of nickel-cobalt complexes on 1T phase MoS2. PMID:28485395

  7. Electrons, life and the evolution of Earth's oxygen cycle.

    PubMed

    Falkowski, Paul G; Godfrey, Linda V

    2008-08-27

    The biogeochemical cycles of H, C, N, O and S are coupled via biologically catalysed electron transfer (redox) reactions. The metabolic processes responsible for maintaining these cycles evolved over the first ca 2.3 Ga of Earth's history in prokaryotes and, through a sequence of events, led to the production of oxygen via the photobiologically catalysed oxidation of water. However, geochemical evidence suggests that there was a delay of several hundred million years before oxygen accumulated in Earth's atmosphere related to changes in the burial efficiency of organic matter and fundamental alterations in the nitrogen cycle. In the latter case, the presence of free molecular oxygen allowed ammonium to be oxidized to nitrate and subsequently denitrified. The interaction between the oxygen and nitrogen cycles in particular led to a negative feedback, in which increased production of oxygen led to decreased fixed inorganic nitrogen in the oceans. This feedback, which is supported by isotopic analyses of fixed nitrogen in sedimentary rocks from the Late Archaean, continues to the present. However, once sufficient oxygen accumulated in Earth's atmosphere to allow nitrification to out-compete denitrification, a new stable electron 'market' emerged in which oxygenic photosynthesis and aerobic respiration ultimately spread via endosymbiotic events and massive lateral gene transfer to eukaryotic host cells, allowing the evolution of complex (i.e. animal) life forms. The resulting network of electron transfers led a gas composition of Earth's atmosphere that is far from thermodynamic equilibrium (i.e. it is an emergent property), yet is relatively stable on geological time scales. The early coevolution of the C, N and O cycles, and the resulting non-equilibrium gaseous by-products can be used as a guide to search for the presence of life on terrestrial planets outside of our Solar System.

  8. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less

  9. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    DOE PAGES

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan; ...

    2016-07-15

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less

  10. Stellar Parameters, Chemical composition and Models of chemical evolution

    NASA Astrophysics Data System (ADS)

    Mishenina, T.; Pignatari, M.; Côté, B.; Thielemann, F.-K.; Soubiran, C.; Basak, N.; Gorbaneva, T.; Korotin, S. A.; Kovtyukh, V. V.; Wehmeyer, B.; Bisterzo, S.; Travaglio, C.; Gibson, B. K.; Jordan, C.; Paul, A.; Ritter, C.; Herwig, F.

    2018-04-01

    We present an in-depth study of metal-poor stars, based high resolution spectra combined with newly released astrometric data from Gaia, with special attention to observational uncertainties. The results are compared to those of other studies, including Gaia benchmark stars. Chemical evolution models are discussed, highlighting few puzzles that are still affecting our understanding of stellar nucleosynthesis and of the evolution of our Galaxy.

  11. An Approach to the Study of the Interactions between Ellagitannins and Oxygen during Oak Wood Aging.

    PubMed

    García-Estévez, Ignacio; Alcalde-Eon, Cristina; Martínez-Gil, Ana María; Rivas-Gonzalo, Julián C; Escribano-Bailón, M Teresa; Nevares, Ignacio; Del Alamo-Sanza, María

    2017-08-09

    During the aging of red wine in oak wood barrels, or in alternative aging systems, interactions between the compounds released from wood, the compounds of the wine, and oxygen can take place. The main objective of the present work was to study oxygen-ellagitannin interactions by monitoring their levels in three model systems, all containing the same amounts of French oak chips and differing only in the oxygen content: total absence, only the oxygen released from the chips, and air-saturated (model systems F, OW, and OS, respectively). This study has highlighted the influence of oxygen in the ellagitannins' evolution and the relevance of the oxygen trapped into the oak chips, reporting for the first time the kinetics of oxygen release to the model wine. Furthermore, the indirect contribution of oxygen to the ellagitannins' disappearance by boosting autoxidative reactions has also been pointed out. Vescalagin seems to be the ellagitannin most affected by the initial oxygen levels.

  12. The Antioxidation Mechanism of Polydimethylsiloxane in Oil.

    PubMed

    Yawata, Miho; Satoh, Tohru; Iwahashi, Maiko; Hori, Ryuji; Takeuchi, Shigeo; Shiramasa, Hiroshi; Totani, Nagao

    2015-01-01

    Strong and stable antioxidation effects of polydimethylsiloxane (PDMS) are widely accepted and utilized in commercial frying oil; however, the mechanism is not fully established. On the other hand, canola oil contains about 700 ppm (mg/kg-oil) of the natural antioxidant, tocopherol. Canola oil containing 0, 1 and 10 ppm added PDMS was heated at 180°C for 1 h under stirring, then left for 2-3 days at room temperature; this treatment was repeated 5 times. Compared to pure canola oil, PDMS-containing canola oil exhibited remarkably lower peroxide, p-anisidine and acid values, a lower decrease in tocopherol content but a higher oxygen content during the heating experiments, implicating low oxygen consumption for the oxidation. While PDMS has not been known to exhibit antioxidative effects at ambient temperatures, the present results show that PDMS prevents autoxidation as well as thermal oxidation. In addition, PDMS, not tocopherols, provided the major antioxidative effect during intermittent heating, and the decrease of tocopherols was significantly inhibited by PDMS. Phase contrast microscopy confirmed that PDMS contained in canola oil was suspended as particles. Also, the oxygen content in standing PDMS-containing canola oil decreased as the depth of oil increased, corresponding to the PDMS distribution, which also decreased as the depth of oil increased. Moreover, PDMS had a higher affinity for oxygen than canola oil in a mixture of canola oil/PDMS, 1:1 v/v. Thus, it is suggested that PDMS restricted the behavior of oxygen dissolved in canola oil by attracting oxygen in and around the PDMS particles, which is wholly different from the radical scavenging antioxidation of tocopherol.

  13. Evolution of thiol protective systems in prokaryotes

    NASA Technical Reports Server (NTRS)

    Fahey, R. C.; Newton, G. L.

    1986-01-01

    Biological thiols are essential elements in most aspects of cell function but undergo rapid oxidation to disulfides in the presence of oxygen. The evolution of systems to protect against such oxygen toxicity was essential to the emergence of aerobic life. The protection system used by eukaryotes is based upon glutathione (GSH) and GSH-dependent enzymes but many bacteria lack GSH and apparently use other mechanisms. The objective of this research is to elaborate the thiol protective mechanisms employed by prokaryotes of widely divergent evolutionary origin and to understand why GSH became the central thiol employed in essentially all higher organisms. Thiol-selective fluorescent labeling and HPLC analysis has been used to determine key monothiol components.

  14. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear

    PubMed Central

    Del Castillo, Luis F.; da Silva, Ana R. Ferreira; Hernández, Saul I.; Aguilella, M.; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente

    2014-01-01

    Purpose We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (pO2) obtained from in vivo estimation previously reported by other authors.1 Methods Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Results Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low pO2) are considered at the interface cornea-tears film. Conclusion Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. PMID:25649636

  15. MOF-Derived Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts

    PubMed Central

    Li, Hong; Ke, Fei; Zhu, Junfa

    2018-01-01

    The development of a highly efficient and stable bifunctional electrocatalyst for water splitting is still a challenging issue in obtaining clean and sustainable chemical fuels. Herein, a novel bifunctional catalyst consisting of 2D transition-metal phosphide nanosheets with abundant reactive sites templated by Co-centered metal−organic framework nanosheets, denoted as CoP-NS/C, has been developed through a facile one-step low-temperature phosphidation process. The as-prepared CoP-NS/C has large specific surface area and ultrathin nanosheets morphology providing rich catalytic active sites. It shows excellent electrocatalytic performances for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic and alkaline media, with the Tafel slopes of 59 and 64 mV/dec and a current density of 10 mA/cm2 at the overpotentials of 140 and 292 mV, respectively, which are remarkably superior to those of CoP/C, CoP particles, and comparable to those of commercial noble-metal catalysts. In addition, the CoP-NS/C also shows good durability after a long-term test. PMID:29414838

  16. Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna

    NASA Astrophysics Data System (ADS)

    Gooday, A. J.; Levin, L. A.; Aranda da Silva, A.; Bett, B. J.; Cowie, G. L.; Dissard, D.; Gage, J. D.; Hughes, D. J.; Jeffreys, R.; Lamont, P. A.; Larkin, K. E.; Murty, S. J.; Schumacher, S.; Whitcraft, C.; Woulds, C.

    2009-03-01

    The Pakistan Margin is characterised by a strong mid-water oxygen minimum zone (OMZ) that intercepts the seabed at bathyal depths (150-1300 m). We investigated whether faunal abundance and diversity trends were similar among protists (foraminiferans and gromiids), metazoan macrofauna and megafauna along a transect (140-1850 m water depth) across the OMZ during the 2003 intermonsoon (March-May) and late/post-monsoon (August-October) seasons. All groups exhibited some drop in abundance in the OMZ core (250-500 m water depth; O 2: 0.10-0.13 mL L -1=4.46-5.80 μM) but to differing degrees. Densities of foraminiferans >63 μm were slightly depressed at 300 m, peaked at 738 m, and were much lower at deeper stations. Foraminiferans >300 μm were the overwhelmingly dominant macrofaunal organisms in the OMZ core. Macrofaunal metazoans reached maximum densities at 140 m depth, with additional peaks at 850, 940 and 1850 m where foraminiferans were less abundant. The polychaete Linopherus sp. was responsible for a macrofaunal biomass peak at 950 m. Apart from large swimming animals (fish and natant decapods), metazoan megafauna were absent between 300 and 900 m (O 2 <0.14-0.15 mL L -1=6.25-6.69 μM) but were represented by a huge, ophiuroid-dominated abundance peak at 1000 m (O 2 ˜0.15-0.18 mL L -1=6.69-8.03 μM). Gromiid protists were confined largely to depths below 1150 m (O 2 >0.2 mL L -1=8.92 μM). The progressively deeper abundance peaks for foraminiferans (>63 μm), Linopherus sp. and ophiuroids probably represent lower OMZ boundary edge effects and suggest a link between body size and tolerance of hypoxia. Macro- and megafaunal organisms collected between 800 and 1100 m were dominated by a succession of different taxa, indicating that the lower part of the OMZ is also a region of rapid faunal change. Species diversity was depressed in all groups in the OMZ core, but this was much more pronounced for macrofauna and megafauna than for foraminiferans. Oxygen levels strongly influenced the taxonomic composition of all faunal groups. Calcareous foraminiferans dominated the seasonally and permanently hypoxic sites (136-300 m); agglutinated foraminiferans were relatively more abundant at deeper stations where oxygen concentrations were >0.13 mL L -1(=5.80 μM). Polychaetes were the main macrofaunal taxon within the OMZ; calcareous macrofauna and megafauna (molluscs and echinoderms) were rare or absent where oxygen levels were lowest. The rarity of larger animals between 300 and 700 m on the Pakistan Margin, compared with the abundant macrofauna in the OMZ core off Oman, is the most notable contrast between the two sides of the Arabian Sea. This difference probably reflects the slightly higher oxygen levels and better food quality on the western side.

  17. Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway.

    PubMed

    Boyd, Eric S; Thomas, Khaleh M; Dai, Yuyuan; Boyd, Jeff M; Outten, F Wayne

    2014-09-23

    Iron-sulfur (Fe-S) cluster metalloproteins conduct essential functions in nearly all contemporary forms of life. The nearly ubiquitous presence of Fe-S clusters and the fundamental requirement for Fe-S clusters in both aerobic and anaerobic Archaea, Bacteria, and Eukarya suggest that these clusters were likely integrated into central metabolic pathways early in the evolution of life prior to the widespread oxidation of Earth's atmosphere. Intriguingly, Fe-S cluster-dependent metabolism is sensitive to disruption by oxygen because of the decreased bioavailability of ferric iron as well as direct oxidation of sulfur trafficking intermediates and Fe-S clusters by reactive oxygen species. This fact, coupled with the ubiquity of Fe-S clusters in aerobic organisms, suggests that organisms evolved with mechanisms that facilitate the biogenesis and use of these essential cofactors in the presence of oxygen, which gradually began to accumulate around 2.5 billion years ago as oxygenic photosynthesis proliferated and reduced minerals that buffered against oxidation were depleted. This review highlights the most ancient of the Fe-S cluster biogenesis pathways, the Suf system, which likely was present in early anaerobic forms of life. Herein, we use the evolution of the Suf pathway to assess the relationships between the biochemical functions and physiological roles of Suf proteins, with an emphasis on the selective pressure of oxygen toxicity. Our analysis suggests that diversification into oxygen-containing environments disrupted iron and sulfur metabolism and was a main driving force in the acquisition of accessory Suf proteins (such as SufD, SufE, and SufS) by the core SufB-SufC scaffold complex. This analysis provides a new framework for the study of Fe-S cluster biogenesis pathways and Fe-S cluster-containing metalloenzymes and their complicated patterns of divergence in response to oxygen.

  18. Multi-scale approach to the environmental factors effects on spatio-temporal variability of Chironomus salinarius (Diptera: Chironomidae) in a French coastal lagoon

    NASA Astrophysics Data System (ADS)

    Cartier, V.; Claret, C.; Garnier, R.; Fayolle, S.; Franquet, E.

    2010-03-01

    The complexity of the relationships between environmental factors and organisms can be revealed by sampling designs which consider the contribution to variability of different temporal and spatial scales, compared to total variability. From a management perspective, a multi-scale approach can lead to time-saving. Identifying environmental patterns that help maintain patchy distribution is fundamental in studying coastal lagoons, transition zones between continental and marine waters characterised by great environmental variability on spatial and temporal scales. They often present organic enrichment inducing decreased species richness and increased densities of opportunist species like C hironomus salinarius, a common species that tends to swarm and thus constitutes a nuisance for human populations. This species is dominant in the Bolmon lagoon, a French Mediterranean coastal lagoon under eutrophication. Our objective was to quantify variability due to both spatial and temporal scales and identify the contribution of different environmental factors to this variability. The population of C. salinarius was sampled from June 2007 to June 2008 every two months at 12 sites located in two areas of the Bolmon lagoon, at two different depths, with three sites per area-depth combination. Environmental factors (temperature, dissolved oxygen both in sediment and under water surface, sediment organic matter content and grain size) and microbial activities (i.e. hydrolase activities) were also considered as explanatory factors of chironomid densities and distribution. ANOVA analysis reveals significant spatial differences regarding the distribution of chironomid larvae for the area and the depth scales and their interaction. The spatial effect is also revealed for dissolved oxygen (water), salinity and fine particles (area scale), and for water column depth. All factors but water column depth show a temporal effect. Spearman's correlations highlight the seasonal effect (temperature, dissolved oxygen in sediment and water) as well as the effect of microbial activities on chironomid larvae. Our results show that a multi-scale approach identifies patchy distribution, even when there is relative environmental homogeneity.

  19. Influence of dissolved oxygen convection on well sampling

    USGS Publications Warehouse

    Vroblesky, D.A.; Casey, C.C.; Lowery, M.A.

    2007-01-01

    Convective transport of dissolved oxygen (D.O.) from shallow to deeper parts of wells was observed as the shallow water in wells in South Carolina became cooler than the deeper water in the wells due to seasonal changes. Wells having a relatively small depth to water were more susceptible to thermally induced convection than wells where the depth to water was greater because the shallower water levels were more influenced by air temperature. The potential for convective transport of D.O. to maintain oxygenated conditions in a well screened in an anaerobic aquifer was diminished as ground water exchange through the well screen increased and as oxygen demand increased. Transport of D.O. to the screened interval can adversely affect the ability of passive samplers to produce accurate concentrations of oxygen-sensitive solutes such as iron, other redox indicators, and microbiological data. A comparison of passive sampling to low-flow sampling in a well undergoing convection, however, showed general agreement of volatile organic compound concentrations. During low-flow sampling, the pumped water may be a mixture of convecting water from within the well casing and aquifer water moving inward through the screen. This mixing of water during low-flow sampling can substantially increase equilibration times, can cause false stabilization of indicator parameters, can give false indications of the redox state, and can provide microbiological data that are not representative of the aquifer conditions. Data from this investigation show that simple in-well devices can effectively mitigate convective transport of oxygen. The devices can range from inflatable packers to simple, inexpensive baffle systems. ?? 2007 National Ground Water Association.

  20. A New Optical Oxygen Sensor Reveals Spatial and Temporal Variations of Dissolved Oxygen at Ecohydrological Interfaces

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Schmidt, C.; Fleckenstein, J. H.; Vieweg, M.; Harjung, A.

    2015-12-01

    The spatial and temporal distribution of dissolved oxygen (DO) at highly reactive aquatic interfaces, e.g. in the hyporheic zone (HZ), is a primary indicator of redox and interlinked biogeochemical zonations. However, continuous measuring of DO over time and depths is challenging due to the dynamic and potentially heterogenic nature of the HZ. We further developed a novel technology for spatially continuous in situ vertical oxygen profiling based on optical sensing (Vieweg et al, 2013). Continuous vertical measurements to a depth of 50 cm are obtained by the motor-controlled insertion of a side-firing Polymer Optical Fiber (POF) into tubular DO probes. Our technology allows minimally invasive DO measurements without DO consumption at high spatial resolution in the mm range. The reduced size of the tubular probe (diameter 5 mm) substantially minimizes disturbance of flow conditions. We tested our technology in situ in the HZ of an intermittent stream during the drying period. Repeated DO measurements were taken over a total duration of six weeks at two locations up- and downstream of a pool-cascade sequence. We were able to precisely map the spatial DO distribution which exhibited sharp gradients and rapid temporal changes as a function of changing hydrologic conditions. Our new vertical oxygen sensing technology will help to provide new insights to the coupling of transport of DO and biogeochemical reactions at aquatic interfaces. Vieweg, M., Trauth, N., Fleckenstein, J. H., Schmidt, C. (2013): Robust Optode-Based Method for Measuring in Situ Oxygen Profiles in Gravelly Streambeds. Environmental Science & Technology. doi:10.1021/es401040w

  1. Seasonal oxygen and carbon isotope variability in euthecosomatous pteropods from the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Juranek, L. W.; Russell, A. D.; Spero, H. J.

    2003-02-01

    We examine seasonal variations in the stable carbon and oxygen isotopic composition of individual shells of the pteropods Limacina inflata and Styliola subula, collected from Oceanic Flux Program sediment traps (at 500 m depth) near Bermuda in the western Sargasso Sea. Calcification depths estimated from L. inflata δ18O vary between 200 and 650 m in late winter and spring, and between 50 and 250 m in late summer and fall. S. subula shows similar seasonal variability with calcification depths between 250 and 600 m in late winter and spring and 50-400 m in late summer and fall. These results suggest that both species calcify across a greater range of depths than indicated by previous geochemical studies. Furthermore, the data indicate that these species change their calcification depth in conjunction with changes in thermal stratification of the water column. Pteropod shell δ13C values vary inversely with δ13C DIC but show a positive correlation with seawater [CO 32-] and temperature after depth differences in δ13C DIC are accounted for. We hypothesize that either the influence of temperature on metabolic CO 2 incorporation during shell growth and/or the influence of ambient [CO 32-] on shell geochemistry can explain these relationships. Taken together, the individual shell δ18O and δ13C data suggest that shell calcification, and by inference the life cycle, of these pteropods is several months or less. Individual pteropod shell analyses have potential for contributing to our understanding of the environmental parameters that play a role in seasonal calcification depth shifts, as well as to our knowledge of past upper ocean thermal structure.

  2. Strong Depth-Related Zonation of Megabenthos on a Rocky Continental Margin (∼700–4000 m) off Southern Tasmania, Australia

    PubMed Central

    Thresher, Ronald; Althaus, Franziska; Adkins, Jess; Gowlett-Holmes, Karen; Alderslade, Phil; Dowdney, Jo; Cho, Walter; Gagnon, Alex; Staples, David; McEnnulty, Felicity; Williams, Alan

    2014-01-01

    Assemblages of megabenthos are structured in seven depth-related zones between ∼700 and 4000 m on the rocky and topographically complex continental margin south of Tasmania, southeastern Australia. These patterns emerge from analysis of imagery and specimen collections taken from a suite of surveys using photographic and in situ sampling by epibenthic sleds, towed video cameras, an autonomous underwater vehicle and a remotely operated vehicle (ROV). Seamount peaks in shallow zones had relatively low biomass and low diversity assemblages, which may be in part natural and in part due to effects of bottom trawl fishing. Species richness was highest at intermediate depths (1000–1300 m) as a result of an extensive coral reef community based on the bioherm-forming scleractinian Solenosmilia variabilis. However, megabenthos abundance peaked in a deeper, low diversity assemblage at 2000–2500 m. The S. variabilis reef and the deep biomass zone were separated by an extensive dead, sub-fossil S. variabilis reef and a relatively low biomass stratum on volcanic rock roughly coincident with the oxygen minimum layer. Below 2400 m, megabenthos was increasingly sparse, though punctuated by occasional small pockets of relatively high diversity and biomass. Nonetheless, megabenthic organisms were observed in the vast majority of photographs on all seabed habitats and to the maximum depths observed - a sandy plain below 3950 m. Taxonomic studies in progress suggest that the observed depth zonation is based in part on changing species mixes with depth, but also an underlying commonality to much of the seamount and rocky substrate biota across all depths. Although the mechanisms supporting the extraordinarily high biomass in 2000–2500 m depths remains obscure, plausible explanations include equatorwards lateral transport of polar production and/or a response to depth-stratified oxygen availability. PMID:24465758

  3. Investigation of Atmospheric Effects on Retrieval of Sun-Induced Fluorescence Using Hyperspectral Imagery.

    PubMed

    Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei

    2016-04-06

    Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators-depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance-to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O₂-A and O₂-B bands (111.4% and 77.1% in the O₂-A band; and 27.5% and 32.6% in the O₂-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R² = 0.91 for Damm vs. SCOPE SIF; R² = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence.

  4. Investigation of Atmospheric Effects on Retrieval of Sun-Induced Fluorescence Using Hyperspectral Imagery

    PubMed Central

    Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei

    2016-01-01

    Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators—depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance—to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O2-A and O2-B bands (111.4% and 77.1% in the O2-A band; and 27.5% and 32.6% in the O2-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R2 = 0.91 for Damm vs. SCOPE SIF; R2 = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence. PMID:27058542

  5. Core formation and core composition from coupled geochemical and geophysical constraints

    DOE PAGES

    Badro, James; Brodholt, John P.; Piet, Helene; ...

    2015-09-21

    The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal–silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Heremore » we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth’s magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. As a result, this core formation model produces a core that contains 2.7–5% oxygen along with 2–3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium.« less

  6. Core formation and core composition from coupled geochemical and geophysical constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badro, James; Brodholt, John P.; Piet, Helene

    The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal–silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Heremore » we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth’s magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. As a result, this core formation model produces a core that contains 2.7–5% oxygen along with 2–3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium.« less

  7. Evolution of the Radial Abundance Gradient and Cold Gas along the Milky Way Disk

    NASA Astrophysics Data System (ADS)

    Chen, Q. S.; Chang, R. X.; Yin, J.

    2014-03-01

    We have constructed a phenomenological model of the chemical evolution of the Milky Way disk, and treated the molecular and atomic gas separately. Using this model, we explore the radial profiles of oxygen abundance, the surface density of cold gas, and their time evolutions. It is shown that the model predictions are very sensitive to the adopted infall time-scale. By comparing the model predictions with the observations, we find that the model adopting the star formation law based on H_2 can properly predict the observed radial distributions of cold gas and oxygen abundance gradient along the disk. We also compare the model results with the predictions of the model which adopts the instantaneous recycling approximation (IRA), and find that the IRA assumption has little influence on the model results, especially in the low-density gas region.

  8. Microplasma effect on skin scaffold for melanoma cancer treatment

    NASA Astrophysics Data System (ADS)

    Abdullah, Zulaika; Zaaba, S. K.; Mustaffa, M. T.; Mohamad, C. W. S. R.; Zakaria, A.

    2017-03-01

    An atmospheric plasma system using Helium gas was developed. The effect of helium plasma treatment on skin scaffold surface was studied by scanning electron microscopy (SEM). The changes of skin scaffold surfaces before and after helium plasma treatment was recorded. The surface of skin scaffold changed with the prolonged of helium plasma treatment time. The depth of helium plasma penetration was studied using methylene blue dye staining method. The methylene blue will detect the presence or absence of an oxygen that was induced from plasma excitation. The presence of the oxygen indicated on the depth of helium plasma penetration. Results showed plasma are able to penetrate 4mm of skin scaffold after 1200 seconds of exposure.

  9. Research on rechargeable oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Giner, J.; Malachesky, P. A.; Holleck, G.

    1971-01-01

    Studies were carried out on a number of factors which may influence the behavior of the platinum electrocatalyst of oxygen electrodes for use in rechargeable metal-oxygen batteries or hydrogen-oxygen fuel cells. The effects of pretreatments for various potentials and added ionic species, which could be present in such systems, were studied with reguard to: (1) the state of surface oxidation, (2) platinum dissolution, (3) the kinetics of oxygen evolution and reduction (including the role of hydrogen peroxide), and (4) changes in porous electrode structure. These studies were carried out on smooth platinum, platinized platinum, and Teflon-bonded platinum black electrodes in carefully purified electrolyte solutions. The main factors which appear to affect rechargeable oxygen electrode performance and life are: (1) the buildup of a refractory anodic layer on extended cycling, and (2) the dissolution of platinum.

  10. Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO 2.5-σ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qinghua; He, Xu; Shi, Jinan

    Oxygen ion transport is the key issue in redox processes. Visualizing the process of oxygen ion migration with atomic resolution is highly desirable for designing novel devices such as oxidation catalysts, oxygen permeation membranes, and solid oxide fuel cells. We show the process of electrically induced oxygen migration and subsequent reconstructive structural transformation in a SrCoO 2.5-σ film by scanning transmission electron microscopy. We find that the extraction of oxygen from every second SrO layer occurs gradually under an electrical bias; beyond a critical voltage, the brownmillerite units collapse abruptly and evolve into a periodic nano-twined phase with a highmore » c/a ratio and distorted tetrahedra. These results show that oxygen vacancy rows are not only natural oxygen diffusion channels, but also preferred sites for the induced oxygen vacancies. These direct experimental results of oxygen migration may provide a common mechanism for the electrically induced structural evolution of oxides.« less

  11. Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO 2.5-σ

    DOE PAGES

    Zhang, Qinghua; He, Xu; Shi, Jinan; ...

    2017-07-24

    Oxygen ion transport is the key issue in redox processes. Visualizing the process of oxygen ion migration with atomic resolution is highly desirable for designing novel devices such as oxidation catalysts, oxygen permeation membranes, and solid oxide fuel cells. We show the process of electrically induced oxygen migration and subsequent reconstructive structural transformation in a SrCoO 2.5-σ film by scanning transmission electron microscopy. We find that the extraction of oxygen from every second SrO layer occurs gradually under an electrical bias; beyond a critical voltage, the brownmillerite units collapse abruptly and evolve into a periodic nano-twined phase with a highmore » c/a ratio and distorted tetrahedra. These results show that oxygen vacancy rows are not only natural oxygen diffusion channels, but also preferred sites for the induced oxygen vacancies. These direct experimental results of oxygen migration may provide a common mechanism for the electrically induced structural evolution of oxides.« less

  12. The environmental impact of the Virgo Cluster on the evolution of dwarf irregular galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Henry

    Dwarf galaxies are the greatest contributor to the total number of galaxies and most are believed to be systems consisting of matter in a near-primordial state. Containing H I gas and H II regions, dwarf irregular galaxies (dIs) can be used as test bodies to evaluate the impact of the environment on their evolution. Oxygen abundances relative to hydrogen within H II regions are a measure of how far the conversion of gas in the interstellar medium into stars has proceeded as a whole, as abundances do not vary significantly with galactocentric radius in dIs. Measurements of the [O III]λ4363 emission line from H II region spectroscopy provide accurate probes of the electron temperature from which oxygen abundances are directly computed. The impact of the Virgo Cluster environment is investigated by comparing the properties of a set of Virgo dIs with those of a set of dIs in the field. To ensure accurate measures of luminosity and abundance, dIs in the field are chosen to have distance determinations from well-calibrated techniques and oxygen abundances derived from [O III]λ4363 measurements. Spectroscopic data are obtained for H II regions in 11 dIs distributed in the central and outer regions of the Virgo Cluster. There is no systematic difference in oxygen abundance between field dIs and Virgo dIs at a given luminosity, showing that there is no detectable difference in their stellar populations. Oxygen abundances for field dIs are well correlated with the gas fraction in a way which shows definitively that evolution has been isolated, i.e., consistent with the “closed-box” model of chemical evolution. For the gas-poor dI UGC 7636 (VCC 1249), the oxygen abundance of a newly discovered intergalactic H II region is combined with the optical luminosity of the dI and the gas mass of the adjacent H I cloud (STET) to show that STET must have once been the interstellar medium of the dI. Tidal interactions of the dI with the elliptical NGC 4472 combined with ram-pressure stripping by the intracluster medium (ICM) best explain the observed properties of the detached cloud and the dI. A “staged” model is described to examine the chemical evolution of a gas-poor dI in the Virgo Cluster. Motivated by the observations, the model is characterized by three phases: isolated evolution, then sudden stripping which removes most of the gas, followed by a second stage of isolated evolution for the residual gas. The time since a typical stripping event is found to be approximately 1 Gyr or less. The GDIs for Virgo dIs correlate roughly with values of the projected X-ray surface brightness of the intracluster gas at the positions of the dIs. Thus, ram-pressure stripping best explains the observed gas-poor dIs in the Virgo sample. Together with the lack of significant fading, these observations suggest that dIs have recently encountered the ICM for the first time. A faded remnant of a gas-poor dI in Virgo will resemble a bright dE/dSph-like object like those presently seen in the cluster core. (Abstract shortened by UMI.)

  13. Tracing the evolution of the Galactic bulge with chemodynamical modelling of alpha-elements

    NASA Astrophysics Data System (ADS)

    Friaça, A. C. S.; Barbuy, B.

    2017-02-01

    Context. Galactic bulge abundances can be best understood as indicators of bulge formation and nucleosynthesis processes by comparing them with chemo-dynamical evolution models. Aims: The aim of this work is to study the abundances of alpha-elements in the Galactic bulge, including a revision of the oxygen abundance in a sample of 56 bulge red giants. Methods: Literature abundances for O, Mg, Si, Ca and Ti in Galactic bulge stars are compared with chemical evolution models. For oxygen in particular, we reanalysed high-resolution spectra obtained using FLAMES+UVES on the Very Large Telescope, now taking each star's carbon abundances, derived from CI and C2 lines, into account simultaneously. Results: We present a chemical evolution model of alpha-element enrichment in a massive spheroid that represents a typical classical bulge evolution. The code includes multi-zone chemical evolution coupled with hydrodynamics of the gas. Comparisons between the model predictions and the abundance data suggest a typical bulge formation timescale of 1-2 Gyr. The main constraint on the bulge evolution is provided by the O data from analyses that have taken the C abundance and dissociative equilibrium into account. Mg, Si, Ca and Ti trends are well reproduced, whereas the level of overabundance critically depends on the adopted nucleosynthesis prescriptions. Observations collected both at the European Southern Observatory, Paranal, Chile (ESO programmes 71.B-0617A, 73.B0074A, and GTO 71.B-0196)

  14. Temporal and spatial evolution characteristics of water environment quality in Heze

    NASA Astrophysics Data System (ADS)

    Gao, Qian; Zhao, Qiang; Li, Xiumei

    2018-06-01

    The evolution of water environment is relatively complicated. The study of its characteristics is helpful to grasp the general direction of spatial and temporal evolution of water environment in Heze city, and to carry out water resources development and water environment protection more rationally. The comprehensive pollution index method for calculation, and the observed data are handled by Excel. In order to facilitate the analysis of the basin, Arcgis is utilized to map the watershed map. In addition, for the spatial evolution, surfer12 is used to analyze the spatial evolution characteristics the spatial evolution, and to draw the pictures of spatial evolution of chemical oxygen demand and water quality evolution. The study shows that: (1) In Heze, the quality of water environment has been improved year by year from 2006 to 2013. In 2014, the water environment has deteriorated. The content of volatile phenol has increased greatly, and the evolution trend of COD is close to the trend of the comprehensive pollution index. (2) In terms of Spatial state of water environment, the water quality of Zhuzhao New River and Wanfu River is poor, and Dongyu River water quality is better. Zhuzhao New River and Wanfu River water qualityis often worse than grade V or V, and Dongyu River water quality is mostly maintained in the grade Ⅳ. Through the analysis on the spatial revolution characteristics of water quality and chemical oxygen demand(COD),as a result, water quality is poor in the northern region,and the water quality in the southern region is better in Heze. Although the water quality has changed in recent years, the overall pattern is relatively stable.

  15. Theories of Evolution, Science (Experimental): 5315.42.

    ERIC Educational Resources Information Center

    Adams, Joseph P.

    This is an in-depth course of study of the historical attempts to explain the evolutionary process and of recent developments pertinent to the study of biomedical evolution. Topics included in the module are: (1) ancient concepts of the evolutionary process; (2) various aspects of Lamarckism, Darwinism and neo-Darwinism, including substantiating…

  16. Depth-dependent positron annihilation in different polymers

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, P.; Cheng, G. D.; Li, D. X.; Wu, H. B.; Li, Z. X.; Cao, X. Z.; Jia, Q. J.; Yu, R. S.; Wang, B. Y.

    2013-09-01

    Depth-dependent positron annihilation Doppler broadening measurements were conducted for polymers with different chemical compositions. Variations of the S parameter with respect to incident positron energy were observed. For pure hydrocarbons PP, HDPE and oxygen-containing polymer PC, S parameter rises with increasing positron implantation depth. While for PI and fluoropolymers like PTFE, ETFE and PVF, S parameter decreases with higher positron energy. For chlorine-containing polymer PVDC, S parameter remains nearly constant at all incident positron energies. It is suggested that these three variation trends are resulted from a competitive effect between the depth-dependent positronium formation and the influence of highly electronegative atoms on positron annihilation characteristics.

  17. Characterization of boronized graphite in NSTX-U and its effect on plasma performance

    NASA Astrophysics Data System (ADS)

    Bedoya, Felipe; Allain, Jean Paul; Kaita, Robert; Skinner, Charles; University of Illinois Team; Princeton Plasma Physics Laboratory Collaboration

    2017-10-01

    Plasma Facing Components (PFC) conditioning can have a crucial influence in plasma performance in tokamak machines. The National Spherical Torus Experiment (NSTX-U) used boronization as the main wall conditioning technique during the FY16 experimental campaign. The Materials Analysis Particle Probe (MAPP), a characterization facility, was used to investigate the surface of ATJ graphite exposed to boronization and plasma in the tokamak using X-ray Photoelectron Spectroscopy (XPS). The measurements showed that plasma induced oxidation plays a critical role in the chemical evolution of the surfaces and as a consequence in plasma performance. Additionally, ex-vessel in-situ laboratory experiments and post-mortem studies of extracted NSTX-U tiles were performed to complement the observations made with MAPP, including controlled D irradiations and XPS depth profiles. These three methodologies show congruent results where D exposures increase the oxygen concentration between 20-30%, highlighting the influence of these two species on the chemistry of the samples. USDOE Contract DE-AC02-09CH11466, USDOE Contract DE-SC0010717 and Award Number DE-SC0012890.

  18. Dependence of Photochemical Escape of Oxygen at Mars on Solar Radiation and Solar Wind Interaction

    NASA Astrophysics Data System (ADS)

    Cravens, T.; Rahmati, A.; Lillis, R. J.; Fox, J. L.; Bougher, S. W.; Jakosky, B. M.

    2016-12-01

    The evolution of the atmosphere of Mars and the loss of volatiles over the life of the solar system is a key topic in planetary science. An important loss process in the ionosphere is photochemical escape. In particular, dissociative recombination of O2+ ions (the major ion species) produces fast oxygen atoms, some of which can escape from the planet. Several theoretical models have been constructed over the years to study hot oxygen and its escape from Mars. These model have a number of uncertainties, particularly for the elastic cross sections of O collisions with target neutral species. Recently, the Mars Atmosphere and Volatile Evolution Mission (MAVEN) mission has been rapidly improving our understanding of the upper atmosphere and ionosphere of Mars and its interaction with the external environment (e.g., the solar wind). The purpose of the current paper is to take a simple analytical approach to the oxygen escape problem in order to: (1) study the role that solar flux and solar wind variations have on escape and (2) isolate the effects of uncertainties in oxygen cross sections on the derived oxygen escape rates. Not surprisingly, we find, in agreement with more elaborate numerical models, that the escape flux is directly proportional to the incident solar extreme ultraviolet irradiance and is inversely proportional to the backscatter elastic cross section. The role for atmospheric loss that ion transport plays in the topside ionosphere and how the solar wind interaction drives this will also be discussed.

  19. Dual organism design cycle reveals small subunit substitutions that improve [NiFe] hydrogenase hydrogen evolution.

    PubMed

    Yonemoto, Isaac T; Matteri, Christopher W; Nguyen, Thao Amy; Smith, Hamilton O; Weyman, Philip D

    2013-07-02

    Photosynthetic microorganisms that directly channel solar energy to the production of molecular hydrogen are a potential future biofuel system. Building such a system requires installation of a hydrogenase in the photosynthetic organism that is both tolerant to oxygen and capable of hydrogen production. Toward this end, we have identified the [NiFe] hydrogenase from the marine bacterium Alteromonas macleodii "Deep ecotype" that is able to be heterologously expressed in cyanobacteria and has tolerance to partial oxygen. The A. macleodii enzyme shares sequence similarity with the uptake hydrogenases that favor hydrogen uptake activity over hydrogen evolution. To improve hydrogen evolution from the A. macleodii hydrogenase, we examined the three Fe-S clusters found in the small subunit of many [NiFe] uptake hydrogenases that presumably act as a molecular wire to guide electrons to or from the active site of the enzyme. Studies by others altering the medial cluster of a Desulfovibrio fructosovorans hydrogenase from 3Fe-4S to 4Fe-4S resulted in two-fold improved hydrogen evolution activity. We adopted a strategy of screening for improved hydrogenase constructs using an Escherichia coli expression system before testing in slower growing cyanobacteria. From the A. macleodii enzyme, we created a mutation in the gene encoding the hydrogenase small subunit that in other systems is known to convert the 3Fe-4S medial cluster to 4Fe-4S. The medial cluster substitution did not improve the hydrogen evolution activity of our hydrogenase. However, modifying both the medial cluster and the ligation of the distal Fe-S cluster improved in vitro hydrogen evolution activity relative to the wild type hydrogenase by three- to four-fold. Other properties of the enzyme including thermostability and tolerance to partial oxygen did not appear to be affected by the substitutions. Our results show that substitution of amino acids altering the ligation of Fe-S clusters in the A. macleodii [NiFe] uptake hydrogenase resulted in increased hydrogen evolution activity. This activity can be recapitulated in multiple host systems and with purified protein. These results validate the approach of using an E. coli-cyanobacteria shuttle system for enzyme expression and improvement.

  20. The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012–2013

    PubMed Central

    Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan

    2016-01-01

    Abstract This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre‐scale water mass changes. Below ∼150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode‐1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ∼415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700–900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques. PMID:27840785

Top