Science.gov

Sample records for oxygen isotope variations

  1. Ordinary Chondrite Chondrules: Oxygen Isotope Variations

    NASA Astrophysics Data System (ADS)

    Metzler, K.; Pack, A.; Hezel, D. C.

    2017-02-01

    Chondrules in some H and LL chondrites show positive/negative correlations between size and oxygen isotopic composition. This indicates that they exchanged oxygen with different oxygen reservoirs and cannot stem from a common chondrule population.

  2. Triple oxygen isotope variations in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Levin, Naomi E.; Raub, Timothy D.; Dauphas, Nicolas; Eiler, John M.

    2014-08-01

    Relatively large (⩾0.2‰) 17O anomalies in the geologic record have been used to recognize atmospheric processes such as photochemical reactions and to trace changes in the partial pressures of O2 and CO2 in Earth’s atmosphere through time. However, recent oxygen isotope measurements of terrestrial rocks, minerals and waters also reveal common, smaller (but statistically significant) deviations from a single mass-dependent fractionation line. These subtle anomalies have been explained through differences in mass-dependent isotopic fractionations for various equilibrium and kinetic mechanisms. Here we present triple oxygen isotope data on sedimentary silica and oxides, including Archean and Phanerozoic cherts, and iron formations. The distribution of data reflects the mass fractionation laws of low-temperature precipitation reactions during growth of authigenic minerals, variation in Δ17O of the waters from which sedimentary minerals precipitate, and equilibrium exchange after initial authigenic formation. We use these results to illustrate the potential for small, mass-dependent variations in Δ17O values of sedimentary rocks to provide constraints on the environmental and climatic conditions in which they formed.

  3. Oxygen isotope variations in phosphate of deer bones

    NASA Astrophysics Data System (ADS)

    Luz, Boaz; Cormie, Allison B.; Schwarcz, Henry P.

    1990-06-01

    Variations of δ 18O of bone phosphate (δ p) of white tailed deer were studied in samples with wide geographic distribution in North America. Bones from the same locality have similar isotopic values, and the difference between specimens (0.4‰) is not large relative to the measurement error (0.3‰). The total range of δ p values is about 12‰. This indicates that deer use water from a relatively small area, and thus their δ p indicates local environmental conditions. Multiple regression analysis between oxygen isotope composition of deer bone phosphate and of local relative humidity and precipitation (δ w) yields a high correlation coefficient (0.95). This correlation is significantly better than the linear correlation (0.81) between δ p and δ w of precipitation alone. Thus δ p depends on both isotopic composition of precipitation and on relative humidity. This is because deer obtain most of their water from leaves, the isotopic composition of which is partly controlled by relative humidity through evaporation/transpiration.

  4. Oxygen isotope variation in stony-iron meteorites.

    PubMed

    Greenwood, R C; Franchi, I A; Jambon, A; Barrat, J A; Burbine, T H

    2006-09-22

    Asteroidal material, delivered to Earth as meteorites, preserves a record of the earliest stages of planetary formation. High-precision oxygen isotope analyses for the two major groups of stony-iron meteorites (main-group pallasites and mesosiderites) demonstrate that each group is from a distinct asteroidal source. Mesosiderites are isotopically identical to the howardite-eucrite-diogenite clan and, like them, are probably derived from the asteroid 4 Vesta. Main-group pallasites represent intermixed core-mantle material from a single disrupted asteroid and have no known equivalents among the basaltic meteorites. The stony-iron meteorites demonstrate that intense asteroidal deformation accompanied planetary accretion in the early Solar System.

  5. Dehydroxylation and diagenetic variations in diatom oxygen isotope values

    NASA Astrophysics Data System (ADS)

    Dodd, Justin P.; Wiedenheft, Wilson; Schwartz, Joshua M.

    2017-02-01

    Numerous studies have documented changes in the dissolution and reactivity of biogenic silica as it is transferred from the water column to sediment archives; here we present the first experimental data that demonstrate a physical mechanism by which the oxygen isotope (δ18Osil) values of biogenic silica (diatoms) are altered during early diagenesis. The δ18Osil value of diatom silica cultured at 19.3 °C was +31.9‰ ± 0.2‰ (n = 6); the same silica experimentally aged in an artificial seawater media at near silica saturation at 85 °C had an average δ18Osil value of +27.1‰ ± 0.6‰ (n = 20). The most significant change in the δ18Osil value was coincident with an initial reduction in the total silanol abundance, indicating that the timing of dehydroxylation reactions in natural sedimentary environments is associated with diagenetic changes in the recorded δ18Osil values. The rate of change in the experimental aging environment at 85 °C was rapid, with significant changes in both silanol abundance and δ18Osil values. Additionally, the silica-water fractionation relationship recorded by the experimentally-aged samples approaches the equilibrium quartz-water fractionation factor. The linear rate law was used to estimate the timing of these changes in low temperature environments; the initial and most significant change in silica reactivity and δ18Osil values is likely to occur on the order of 10's of years at 4 °C. Published silica-water fractionation factors for sedimentary diatoms most likely represent a combination of growth and diagenetic environments, and the δ18O value of diagenetic water needs to be addressed when using δ18Osil values to reconstruct paleoceanographic and paleoenvironmental conditions.

  6. Oxygen-isotope variations in post-glacial Lake Ontario

    NASA Astrophysics Data System (ADS)

    Hladyniuk, Ryan; Longstaffe, Fred J.

    2016-02-01

    The role of glacial meltwater input to the Atlantic Ocean in triggering the Younger Dryas (YD) cooling event has been the subject of controversy in recent literature. Lake Ontario is ideally situated to test for possible meltwater passage from upstream glacial lakes and the Laurentide Ice Sheet (LIS) to the Atlantic Ocean via the lower Great Lakes. Here, we use the oxygen-isotope compositions of ostracode valves and clam shells from three Lake Ontario sediment cores to identify glacial meltwater contributions to ancient Lake Ontario since the retreat of the LIS (∼16,500 cal [13,300 14C] BP). Differences in mineralogy and sediment grain size are also used to identify changes in the hydrologic regime. The average lakewater δ18O of -17.5‰ (determined from ostracode compositions) indicates a significant contribution from glacial meltwater. Upon LIS retreat from the St. Lawrence lowlands, ancient Lake Ontario (glacial Lake Iroquois) lakewater δ18O increased to -12‰ largely because of the loss of low-18O glacial meltwater input. A subsequent decrease in lakewater δ18O (from -12 to -14‰), accompanied by a median sediment grain size increase to 9 μm, indicates that post-glacial Lake Ontario received a final pulse of meltwater (∼13,000-12,500 cal [11,100-10,500 14C] BP) before the onset of hydrologic closure. This meltwater pulse, which is also recorded in a previously reported brief freshening of the neighbouring Champlain Valley (Cronin et al., 2012), may have contributed to a weakening of thermohaline circulation in the Atlantic Ocean. After 12,900 cal [11,020 14C] BP, the meltwater presence in the Ontario basin continued to inhibit entry of Champlain seawater into early Lake Ontario. Opening of the North Bay outlet diverted upper Great Lakes water from the lower Great Lakes causing a period (12,300-8300 cal [10,400-7500 14C] BP) of hydrologic closure in Lake Ontario (Anderson and Lewis, 2012). This change is demarcated by a shift to higher δ18Olakewater

  7. Seasonal variation in kangaroo tooth enamel oxygen and carbon isotopes in southern Australia

    NASA Astrophysics Data System (ADS)

    Brookman, Tom H.; Ambrose, Stanley H.

    2012-09-01

    Serial sampling of tooth enamel growth increments for carbon and oxygen isotopic analyses of Macropus (kangaroo) teeth was performed to assess the potential for reconstructing paleoseasonality. The carbon isotope composition of tooth enamel apatite carbonate reflects the proportional intake of C3 and C4 vegetation. The oxygen isotopic composition of enamel reflects that of ingested and metabolic water. Tooth enamel forms sequentially from the tip of the crown to the base, so dietary and environmental changes during the tooth's formation can be detected. δ13C and δ18O values were determined for a series of enamel samples drilled from the 3rd and 4th molars of kangaroos that were collected along a 900 km north-south transect in southern Australia. The serial sampling method did not yield pronounced seasonal isotopic variation patterns in Macropus enamel. The full extent of dietary isotopic variation may be obscured by attenuation of the isotopic signal during enamel mineralisation. Brachydont (low-crowned) Macropus teeth may be less sensitive to seasonal variation in isotopic composition due to time-averaging during mineralisation. However, geographic variations observed suggest that there may be potential for tracking latitudinal shifts in vegetation zones and seasonal environmental patterns in response to climate change.

  8. Carbon and oxygen isotope variations in Precambrian cherts

    SciTech Connect

    Robert, F. )

    1988-06-01

    Isotopic compositions of O in bulk Precambrian cherts and of C in the insoluble organic matter trapped in the silica have been determined. A general negative correlation relates these two variables and indicates that post-depositional alteration may have markedly modified the pristine isotopic ratios of the C compounds and their hosts. This interpretation is in good agreement with the expected isotopic trends for C and O resulting from secondary geological thermal events. Based on this correlation, a maximum {delta}{sup 13}C value of ca. {minus}33{per thousand}/PDB is proposed for the Precambrian kerogen. The difference between Proterozoic and Phanerozoic ({minus}27{per thousand}) {delta}{sup 13}C values could be linked to the flowering of life at the end of the Precambrian.

  9. Glacial-interglacial Variations of Molybdenum Isotopes in the Peruvian Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Siebert, C.; Frank, M.; Scholz, F.

    2015-12-01

    Mo isotopes have been widely used as a tool to constrain redox-conditions during major global events such as the oxygenation of the oceans in the Precambrian and Cretaceous Ocean Anoxic Events. In addition, Mo isotopes have considerable, yet underexplored potential to quantitatively track local redox-variation at high resolution on shorter timescales. Here we present data from piston core M77/2-024-5 that was retrieved in the Peruvian oxygen minimum zone in the context of Collaborative Research Centre (SFB) 754 of the Deutsche Forschungs Gemeinschaft (DFG). The age model for this core is well constrained and the core covers the last 140 ka with a hiatus between 20 and 50 ky BP. The oxygen minimum zone along the Peru continental margin is thought to have been better ventilated and therefore less pronounced during glacial periods compared to interglacials. Concentrations of redox-sensitive trace elements show high-amplitude changes and indicate periods of strongly sulphidic conditions with high Mo fixation rate and oxygenated periods with limited Mo fixation (Scholz et al 2014). Mo isotopes do not show straightforward correlations with elemental redox tracers and are only weakly correlated with Mo/U and total organic carbon (TOC). However, Mo isotopes become significantly heavier around the last glacial maximum (Δ98Mo of 0.4 permil). The observed signatures indicate that the Mo isotope composition is dominated by changes in the operating Mo delivery mechanism, i.e. particulate transport versus molecular diffusion. Our results suggest that Mo isotopes can track local redox variation therefore adding to our understanding of this complex indicator for marine environmental change. Scholz et al., (2014), Nature Geosciences, Vol. 7, Pages 433-437

  10. Oxygen Isotope Variations at the Margin of a CAI Records Circulation Within the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Simon, Justin I.; Hutcheon, Ian D.; Simon, Steven B.; Matzel, Jennifer E. P.; Ramon, Erick C.; Weber, Peter K.; Grossman, Lawrence; DePaolo, Donald J.

    2011-03-01

    Micrometer-scale analyses of a calcium-, aluminum-rich inclusion (CAI) and the characteristic mineral bands mantling the CAI reveal that the outer parts of this primitive object have a large range of oxygen isotope compositions. The variations are systematic; the relative abundance of 16O first decreases toward the CAI margin, approaching a planetary-like isotopic composition, then shifts to extremely 16O-rich compositions through the surrounding rim. The variability implies that CAIs probably formed from several oxygen reservoirs. The observations support early and short-lived fluctuations of the environment in which CAIs formed, either because of transport of the CAIs themselves to distinct regions of the solar nebula or because of varying gas composition near the proto-Sun.

  11. Oxygen isotope variations at the margin of a CAI records circulation within the solar nebula.

    PubMed

    Simon, Justin I; Hutcheon, Ian D; Simon, Steven B; Matzel, Jennifer E P; Ramon, Erick C; Weber, Peter K; Grossman, Lawrence; DePaolo, Donald J

    2011-03-04

    Micrometer-scale analyses of a calcium-, aluminum-rich inclusion (CAI) and the characteristic mineral bands mantling the CAI reveal that the outer parts of this primitive object have a large range of oxygen isotope compositions. The variations are systematic; the relative abundance of (16)O first decreases toward the CAI margin, approaching a planetary-like isotopic composition, then shifts to extremely (16)O-rich compositions through the surrounding rim. The variability implies that CAIs probably formed from several oxygen reservoirs. The observations support early and short-lived fluctuations of the environment in which CAIs formed, either because of transport of the CAIs themselves to distinct regions of the solar nebula or because of varying gas composition near the proto-Sun.

  12. Oxygen isotope variations in granulite-grade iron formations: constraints on oxygen diffusion and retrograde isotopic exchange

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; O'Neil, J. R.; Essene, E. J.

    1988-04-01

    The oxygen isotope ratios of various minerals were measured in a granulite-grade iron formation in the Wind River Range, Wyoming. Estimates of temperature and pressure for the terrane using well calibrated geothermometers and geobarometers are 730±50° C and 5.5±0.5 kbar. The mineral constraints on fluid compositions in the iron formation during retrogression require either very CO2-rich fluids or no fluid at all. In the iron formation, isotopic temperature estimates from quartz-magnetite fractionations are controlled by the proximity to the enclosing granitic gneiss, and range from 500° C ( Δ qz - mt=10.0‰) within 2 3 meters of the orthogneiss contact to 600° C ( Δ qz - mt=8.0‰) farther from the contact. Temperature estimates from other isotopic thermometers are in good agreement with those derived from the quartz-magnetite fractionations. During prograde metamorphism, the isotopic composition of the iron formation was lowered by the infiltration of an external fluid. Equilibrium was achieved over tens of meters. Closed-system retrograde exchange is consistent with the nearly constant whole-rock δ 18Owr value of 8.0±0.6‰. The greater Δ qz-mt values in the iron formation near the orthogneiss contact are most likely due to a lower oxygen blocking temperature related to greater exchange-ability of deformed minerals at the contact. Cooling rates required to preserve the quartz-magnetite fractionations in the central portion of the iron formation are unreasonably high (˜800° C/Ma). In order to preserve the 600° C isotopic temperature, the diffusion coefficient D (for α-quartz) should be two orders of magnitude lower than the experimentally determined value of 2.5×10-16 cm2/s at 833 K. There are no values for the activation energy ( Q) and pre-exponential diffusion coefficient ( D 0), consistent with the experimentally determined values, that will result in reasonable cooling rates for the Wind River iron formation. The discrepancy between the

  13. Oxygen isotope variations in granulite-grade iron formations: constraints on oxygen diffusion and retrograde isotopic exchange

    USGS Publications Warehouse

    Sharp, Z.D.; O'Neil, J.R.; Essene, E.J.

    1988-01-01

    The oxygen isotope ratios of various minerals were measured in a granulite-grade iron formation in the Wind River Range, Wyoming. Estimates of temperature and pressure for the terrane using well calibrated geothermometers and geobarometers are 730??50?? C and 5.5??0.5 kbar. The mineral constraints on fluid compositions in the iron formation during retrogression require either very CO2-rich fluids or no fluid at all. In the iron formation, isotopic temperature estimates from quartz-magnetite fractionations are controlled by the proximity to the enclosing granitic gneiss, and range from 500?? C (??qz - mt=10.0???) within 2-3 meters of the orthogneiss contact to 600?? C (??qz - mt=8.0???) farther from the contact. Temperature estimates from other isotopic thermometers are in good agreement with those derived from the quartz-magnetite fractionations. During prograde metamorphism, the isotopic composition of the iron formation was lowered by the infiltration of an external fluid. Equilibrium was achieved over tens of meters. Closed-system retrograde exchange is consistent with the nearly constant whole-rock ??18Owr value of 8.0??0.6???. The greater ??qz-mt values in the iron formation near the orthogneiss contact are most likely due to a lower oxygen blocking temperature related to greater exchange-ability of deformed minerals at the contact. Cooling rates required to preserve the quartz-magnetite fractionations in the central portion of the iron formation are unreasonably high (???800?? C/Ma). In order to preserve the 600?? C isotopic temperature, the diffusion coefficient D (for ??-quartz) should be two orders of magnitude lower than the experimentally determined value of 2.5??10-16 cm2/s at 833 K. There are no values for the activation energy (Q) and pre-exponential diffusion coefficient (D0), consistent with the experimentally determined values, that will result in reasonable cooling rates for the Wind River iron formation. The discrepancy between the diffusion

  14. Oxygen isotopic variations in the outer margins and Wark-Lovering rims of refractory inclusions

    NASA Astrophysics Data System (ADS)

    Simon, Justin I.; Matzel, Jennifer E. P.; Simon, Steven B.; Hutcheon, Ian D.; Ross, D. Kent; Weber, Peter K.; Grossman, Lawrence

    2016-08-01

    Oxygen isotopic variations across the outer margins and Wark-Lovering (WL) rims of a diverse suite of six coarse-grained Types A and B refractory inclusions from both oxidized and reduced CV3 chondrites suggest that CAIs originated from a 16O-rich protosolar gas reservoir and were later exposed to both relatively 17,18O-rich and 16O-rich reservoirs. The O-isotope profiles of CAIs can be explained by changes in the composition of gas near the protoSun or the migration of CAIs through a heterogeneous nebula. Variability within the inclusion interiors appears to have been set prior to WL rim growth. Modeling the isotopic zoning profiles as diffusion gradients between inclusion interiors and edges establishes a range of permissible time-temperature combinations for their exposure in the nebula. At mean temperatures of 1400 K, models that match the isotope gradients in the inclusions yield timescales ranging from 5 × 103 to 3 × 105 years. Assuming CAIs originated with a relatively 16O-rich (protosolar) isotopic composition, differences among the melilite interiors and the isotopic gradients in their margins imply the existence of a number of isotopically distinct reservoirs. Evidence at the edges of some CAIs for subsequent isotopic exchange may relate to the beginning of rim formation. In the WL rim layers surrounding the interiors, spinel is relatively 16O-rich but subtly distinct among different CAIs. Melilite is often relatively 16O-poor, but rare relatively 16O-rich grains also exist. Pyroxene generally exhibits intermediate O-isotope compositions and isotopic zoning. Olivine in both WL and accretionary rims, when present, is isotopically heterogeneous. The extreme isotopic heterogeneity among and within individual WL rim layers and in particular, the observed trends of outward 16O-enrichments, suggest that rims surrounding CAIs contained in CV3 chondrites, like the inclusions themselves, formed from a number of isotopically distinct gas reservoirs. Collectively

  15. Variation in oxygen isotope fractionation during cellulose synthesis: intramolecular and biosynthetic effects.

    PubMed

    Sternberg, Leonel; Pinzon, Maria Camila; Anderson, William T; Jahren, A Hope

    2006-10-01

    The oxygen isotopic composition of plant cellulose is commonly used for the interpretations of climate, ecophysiology and dendrochronology in both modern and palaeoenvironments. Further applications of this analytical tool depends on our in-depth knowledge of the isotopic fractionations associated with the biochemical pathways leading to cellulose. Here, we test two important assumptions regarding isotopic effects resulting from the location of oxygen in the carbohydrate moiety and the biosynthetic pathway towards cellulose synthesis. We show that the oxygen isotopic fractionation of the oxygen attached to carbon 2 of the glucose moieties differs from the average fractionation of the oxygens attached to carbons 3-6 from cellulose by at least 9%, for cellulose synthesized within seedlings of two different species (Triticum aestivum L. and Ricinus communis L.). The fractionation for a given oxygen in cellulose synthesized by the Triticum seedlings, which have starch as their primary carbon source, is different than the corresponding fractionation in Ricinus seedlings, within which lipids are the primary carbon source. This observation shows that the biosynthetic pathway towards cellulose affects oxygen isotope partitioning, a fact heretofore undemonstrated. Our findings may explain the species-dependent variability in the overall oxygen isotope fractionation during cellulose synthesis, and may provide much-needed insight for palaeoclimate reconstruction using fossil cellulose.

  16. What drives interannual variation in tree ring oxygen isotopes in the Amazon?

    NASA Astrophysics Data System (ADS)

    Baker, J. C. A.; Gloor, M.; Spracklen, D. V.; Arnold, S. R.; Tindall, J. C.; Clerici, S. J.; Leng, M. J.; Brienen, R. J. W.

    2016-11-01

    Oxygen isotope ratios in tree rings (δ18OTR) from northern Bolivia record local precipitation δ18O and correlate strongly with Amazon basin-wide rainfall. While this is encouraging evidence that δ18OTR can be used for paleoclimate reconstructions, it remains unclear whether variation in δ18OTR is truly driven by within-basin processes, thus recording Amazon climate directly, or if the isotope signal may already be imprinted on incoming vapor, perhaps reflecting a pan-tropical climate signal. We use atmospheric back trajectories combined with satellite observations of precipitation, together with water vapor transport analysis to show that δ18OTR in Bolivia are indeed controlled by basin-intrinsic processes, with rainout over the basin the most important factor. Furthermore, interannual variation in basin-wide precipitation and atmospheric circulation are both shown to affect δ18OTR. These findings suggest δ18OTR can be reliably used to reconstruct Amazon precipitation and have implications for the interpretation of other paleoproxy records from the Amazon basin.

  17. Oxygen Isotopes in Meteorites

    NASA Astrophysics Data System (ADS)

    Clayton, R. N.

    2003-12-01

    Oxygen isotope abundance variations in meteorites are very useful in elucidating chemical and physical processes that occurred during the formation of the solar system (Clayton, 1993). On Earth, the mean abundances of the three stable isotopes are 16O: 99.76%, 17O: 0.039%, and 18O: 0.202%. It is conventional to express variations in abundances of the isotopes in terms of isotopic ratios, relative to an arbitrary standard, called SMOW (for standard mean ocean water), as follows:The isotopic composition of any sample can then be represented by one point on a "three-isotope plot," a graph of δ17O versus δ18O. It will be seen that such plots are invaluable in interpreting meteoritic data. Figure 1 shows schematically the effect of various processes on an initial composition at the center of the diagram. Almost all terrestrial materials lie along a "fractionation" trend; most meteoritic materials lie near a line of "16O addition" (or subtraction). (4K)Figure 1. Schematic representation of various isotopic processes shown on an oxygen three-isotope plot. Almost all terrestrial materials plot along a line of "fractionation"; most primitive meteoritic materials plot near a line of "16O addition." The three isotopes of oxygen are produced by nucleosynthesis in stars, but by different nuclear processes in different stellar environments. The principal isotope, 16O, is a primary isotope (capable of being produced from hydrogen and helium alone), formed in massive stars (>10 solar masses), and ejected by supernova explosions. The two rare isotopes are secondary nuclei (produced in stars from nuclei formed in an earlier generation of stars), with 17O coming primarily from low- and intermediate-mass stars (<8 solar masses), and 18O coming primarily from high-mass stars (Prantzos et al., 1996). These differences in type of stellar source result in large observable variations in stellar isotopic abundances as functions of age, size, metallicity, and galactic location ( Prantzos

  18. Oxygen isotopic determination of climatic variation using phosphate from beaver bone, tooth enamel, and dentine

    NASA Astrophysics Data System (ADS)

    Stuart-Williams, Hilary Le Q.; Schwarcz, Henry P.

    1997-06-01

    The δ 18O of Canadian beaver ( Castor canadensis) teeth should reflect variations in the isotopic composition of the water in which the beavers live, as their incisors grow rapidly and continuously. We observe seasonal variations in phosphate δ 18O using samples of enamel taken along the length of single teeth. In the spring the δ 18O of the enamel being deposited gradually declines, reflecting a retarded input of δ 18O depleted winter water. After mid-year, enamel δ 18O is higher than average (as represented by the δ 18O of bone phosphate from the same animal) and passes through a maximum in late summer or early fall. Overall, the amplitude of seasonal excursions in enamel δ 18O (4‰) is much smaller than the expected summer-winter range in the δ 18O of meteoric water (> 10‰). This is because hydrologic mixing processes, gradual admixing of environmental water with beaver body water, long-term plant growth, and oxygen inputs of relatively constant value (particularly atmospheric oxygen) tend to even out summer-winter differences in the δ 18O of oxygen inputs to the beaver. The δ 18O of bone from adult beavers was uniform at 11.9 ± 0.5‰ over the study area. Analyses of a Sangamon age giant beaver ( Castoroides ohioensis) incisor from Hopwood Farm, Illinois, show a slightly larger 5.5‰ seasonal cycle of δ 18O with an average enamel δ 18O of 18‰. This suggests that average temperatures were warmer during the Sangamon than today and that seasonal temperature differences and/or relative humidity variations were larger.

  19. Vanadium Stable Isotope Variations in the Mariana Island Arc: Oxygen Fugacity Versus Magmatic Differentiation

    NASA Astrophysics Data System (ADS)

    Prytulak, J.; Elliott, T.; Halliday, A.; Kelley, K. A.; Nielsen, S. G.; Plank, T.; Schauble, E. A.

    2010-12-01

    A widely held view in igneous geochemistry is that the sub-arc mantle has elevated oxygen fugacity (fO2) compared to the upper mantle source of Mid-Ocean Ridge basalts (MORB). However, debate on the fO2 of the sub-arc mantle has arisen from examination of V/Sc ratios [1], which suggest no difference between the sub-arc mantle and the MORB source. This supposition is contrasted by recent μ-XANES determination of Fe3+/FeΣ in olivine-hosted melt inclusions [2], which supports the more traditional notion of an oxidized source for arc lavas. We have recently developed a method for high precision analyses of stable vanadium (V) isotope variations, able to resolve isotope fractionation to a precision of 0.15‰ 2sd [3, 4]. Theoretical calculations predict that stable V isotope fractionation should be robustly related to changes in fO2, with heavier isotopes favored in oxidizing conditions. Furthermore, V isotopes should be immune to alteration and late-stage degassing processes that could affect fO2 determined by Fe3+/FeΣ ratios. Therefore, examination of this new isotopic tracer in arc lavas may provide insight into the fO2 conditions of their source. Here we present the first stable V isotope measurements (reported as δ51V relative to a standard defined as 0‰) on subduction zone inputs (sediments, MORB) and outputs (arc lavas). We have focused initial efforts on well-characterized lavas from the Mariana central island province [5] and subducting sediment and underlying MORB from ODP Site 801, just outboard of the Mariana trench [6]. We find a surprisingly large, resolvable range in δ51V of the arc lavas of almost 0.8‰, which co-varies with SiO2, CaO, and V/Sc ratios. Co-variation of δ51V with SiO2 and CaO is suggestive of possible influence of clinopyroxene fractionation on the isotope composition. We explore the affects of magmatic differentiation and causes of δ51V inter-suite variability in arc lavas versus the δ51V signature of MORB. [1] Lee, C

  20. Oxygen and hydrogen isotope variations in the Pecos River of American Southwest

    NASA Astrophysics Data System (ADS)

    Yuan, F.; Miyamoto, S.

    2006-12-01

    The Pecos River is located in eastern New Mexico and western Texas, and its salinity increases downstream. Oxygen and hydrogen isotopic compositions (δ18O and δD) were measured on surface waters sampled from the Pecos River and its tributaries in March, May, and July of 2005. The measurements show considerably large variations in δ18O and δD, ranging from a δ18O of - 8.9‰ and δD of -64.5‰ in March at Salt Creek to a δ18O of 3.6‰ and δD of 1.6‰ in July at Girvin. Many surface waters except for head and tail waters have negative values of deuterium excess (dexcess=δD-8δ18O). Combined with the existing stable isotopic data from three gaging stations along the Pecos River (Santa Rosa, Red Bluff and Langtry) collected by the U.S. Geological Survey, it appears that evaporative enrichments of heavier isotopic species (O-18 and D) are more evident in the middle section than other parts of the river. δ18O and δD decrease at Langtry due to substantial increases in local runoff. The enhanced evaporation in the middle Pecos River is probably ascribed to a prolonged residence time resulting from anthropogenic perturbations (e.g., multi-cycle irrigation water uses and water impoundments in typically shallow reservoirs). Additionally, natural topographical gradients may have played a role in affecting water residence time and the amount of water evaporated from watersheds. These observations suggest that high dissolved salt contents of the Pecos River can be attributed to intense evaporation besides dissolution of geological salt deposits.

  1. Variations in triple isotope composition of dissolved oxygen and primary production in a subtropical reservoir

    NASA Astrophysics Data System (ADS)

    Jurikova, Hana; Guha, Tania; Abe, Osamu; Shiah, Fuh-Kwo; Wang, Chung-Ho; Liang, Mao-Chang

    2016-12-01

    Lakes and reservoirs play an important role in the carbon cycle, and therefore monitoring their metabolic rates is essential. The triple oxygen-isotope anomaly of dissolved O2 [17Δ = ln(1+δ17O) - 0.518 × ln(1 + δ18O)] offers a new, in situ, perspective on primary production, yet little is known about 17Δ from freshwater systems. We investigated the 17Δ together with the oxygen : argon ratio [Δ(O2 / Ar)] in the subtropical Feitsui Reservoir in Taiwan from June 2014 to July 2015. Here, we present the seasonal variations in 17Δ, GP (gross production), NP (net production) and the NP / GP (net to gross ratio) in association with environmental parameters. The 17Δ varied with depth and season, with values ranging between 26 and 205 per meg. The GP rates were observed to be higher (702 ± 107 mg C m-2 d-1) in winter than those (303 ± 66 mg C m-2 d-1) recorded during the summer. The overall averaged GP was 220 g C m-2 yr-1 and NP was -3 g C m-2 yr-1, implying the reservoir was net heterotrophic on an annual basis. This is due to negative NP rates from October to February (-198 ± 78 mg C m-2 d-1). Comparisons between GP rates obtained from the isotope mass balance approach and 14C bottle incubation method (14C-GP) showed consistent values on the same order of magnitude with a GP / 14C-GP ratio of 1.2 ± 1.1. Finally we noted that, although typhoon occurrences were scarce, higher than average 17Δ values and GP rates were recorded after typhoon events.

  2. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico

    PubMed Central

    Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-01-01

    [1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ18Otr). Interannual variation in δ18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ18Otr of M. acantholoba can be used as a proxy for source water δ18O and that interannual variation in δ18Oprec is caused by a regional amount effect. This contrasts with δ18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes

  3. Oxygen isotopes in tree rings record variation in precipitation δ(18)O and amount effects in the south of Mexico.

    PubMed

    Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-12-01

    [1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ(18)Otr). Interannual variation in δ(18)Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ(13)C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ(18)Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly (18)O-depleted rain in the region and seem to have affected the δ(18)Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ(18)Otr of M. acantholoba can be used as a proxy for source water δ(18)O and that interannual variation in δ(18)Oprec is caused by a regional amount effect. This contrasts with δ(18)O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in

  4. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico

    NASA Astrophysics Data System (ADS)

    Brienen, Roel J. W.; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-12-01

    Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ18Otr). Interannual variation in δ18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ18Otr of M. acantholoba can be used as a proxy for source water δ18O and that interannual variation in δ18Oprec is caused by a regional amount effect. This contrasts with δ18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes

  5. Determination of oxygen diffusion rates in magnetite from natural isotopic variations

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.

    1991-06-01

    The oxygen isotope compositions of magnetite grains, hosted in a calcite marble from the Bancroft terrane of the Ontario Grenville province, vary systematically with grain size. The δ18O values of magnetite and corresponding closure temperatures (Tc) based on Δcalcite-magnetite range from δ18O = 2.6‰, Tc = 505 °C for a grain radius of 0.075 mm, to δ18O = 5.5‰ Tc = 660 °C for a grain radius of 1.15 mm. The δ18O of the calcite is constant within a scale of 100 μm at a value of 12.3‰. The observed isotopic variations can be fit to the diffusion model of Dodson by the method of least squares (r = 0.98) to yield an activation energy (Q) = 211 (±20) kJ/mole and a pre-exponential factor (Do) = 4.3 (+3.3, -1.9) x 10-7 cm2/s for a cooling rate of 4 °C/m.y. The activation energy estimate is independent of the assumed cooling rate, but the calculated pre-exponential factor varies as follows: Do (cm2/s) = (dT/dt) x (-1.08 x 10-7). (Note: dT/dt is in °C/m.y.) The activation energy is identical to an experimental determination by Giletti and Hess, but the pre-exponential factor is 100 times lower. The difference is attributed to the water-rich conditions in the experiments and the absence of fluid in the slowly cooled marbles investigated in this study. The strong dependence of diffusion rate on water presence, or fH2O, may be used as a sensor for water-rich fluids during cooling in natural systems.

  6. Oxygen and Carbon Isotope Variations in a Modern Rodent Community – Implications for Palaeoenvironmental Reconstructions

    PubMed Central

    Gehler, Alexander; Tütken, Thomas; Pack, Andreas

    2012-01-01

    Background The oxygen (δ18O) and carbon (δ13C) isotope compositions of bioapatite from skeletal remains of fossil mammals are well-established proxies for the reconstruction of palaeoenvironmental and palaeoclimatic conditions. Stable isotope studies of modern analogues are an important prerequisite for such reconstructions from fossil mammal remains. While numerous studies have investigated modern large- and medium-sized mammals, comparable studies are rare for small mammals. Due to their high abundance in terrestrial ecosystems, short life spans and small habitat size, small mammals are good recorders of local environments. Methodology/Findings The δ18O and δ13C values of teeth and bones of seven sympatric modern rodent species collected from owl pellets at a single locality were measured, and the inter-specific, intra-specific and intra-individual variations were evaluated. Minimum sample sizes to obtain reproducible population δ18O means within one standard deviation were determined. These parameters are comparable to existing data from large mammals. Additionally, the fractionation between coexisting carbonate (δ18OCO3) and phosphate (δ18OPO4) in rodent bioapatite was determined, and δ18O values were compared to existing calibration equations between the δ18O of rodent bioapatite and local surface water (δ18OLW). Specific calibration equations between δ18OPO4 and δ18OLW may be applicable on a taxonomic level higher than the species. However, a significant bias can occur when bone-based equations are applied to tooth-data and vice versa, which is due to differences in skeletal tissue formation times. δ13C values reflect the rodents’ diet and agree well with field observations of their nutritional behaviour. Conclusions/Significance Rodents have a high potential for the reconstruction of palaeoenvironmental conditions by means of bioapatite δ18O and δ13C analysis. No significant disadvantages compared to larger mammals were observed. However

  7. Variation in oxygen isotope ratio of dissolved orthophosphate induced by uptake process in natural coral holobionts

    NASA Astrophysics Data System (ADS)

    Ferrera, Charissa M.; Miyajima, Toshihiro; Watanabe, Atsushi; Umezawa, Yu; Morimoto, Naoko; San Diego-McGlone, Maria Lourdes; Nadaoka, Kazuo

    2016-06-01

    A model incubation experiment using natural zooxanthellate corals was conducted to evaluate the influence of phosphate uptake by coral holobionts on oxygen isotope ratio of dissolved PO4 3- (δ18Op). Live coral samples of Acropora digitifera, Porites cylindrica, and Heliopora coerulea were collected from coral reefs around Ishigaki Island (Okinawa, Japan) and Bolinao (northern Luzon, Philippines) and incubated for 3-5 d after acclimatization under natural light conditions with elevated concentrations of PO4 3-. Phosphate uptake by corals behaved linearly with incubation time, with uptake rate depending on temperature. δ18Op usually increased with time toward the equilibrium value with respect to oxygen isotope exchange with ambient seawater, but sometimes became higher than equilibrium value at the end of incubation. The magnitude of the isotope effect associated with uptake depended on coral species; the greatest effect was in A. digitifera and the smallest in H. coerulea. However, it varied even within samples of a single coral species, which suggests multiple uptake processes with different isotope effects operating simultaneously with varying relative contributions in the coral holobionts used. In natural environments where concentrations of PO4 3- are much lower than those used during incubation, PO4 3- is presumably turned over much faster and the δ18Op easily altered by corals and other major primary producers. This should be taken into consideration when using δ18Op as an indicator of external PO4 3- sources in coastal ecosystems.

  8. Carbon and oxygen isotope variations of the Middle-Late Triassic Al Aziziyah Formation, northwest Libya

    NASA Astrophysics Data System (ADS)

    Moustafa, Mohamed S. H.; Pope, Michael C.; Grossman, Ethan L.; Mriheel, Ibrahim Y.

    2016-06-01

    This study presents the δ13C and δ18O records from whole rock samples of the Middle-Late Triassic (Ladinian-Carnian) Al Aziziyah Formation that were deposited on a gently sloping carbonate ramp within the Jifarah Basin of Northwest Libya. The Al Aziziyah Formation consists of gray limestone, dolomite, and dolomitic limestone interbedded with shale. The Ghryan Dome and Kaf Bates sections were sampled and analyzed for carbon and oxygen isotope chemostratigraphy to integrate high-resolution carbon isotope data with an outcrop-based stratigraphy, to provide better age control of the Al Aziziyah Formation. This study also discusses the relation between the facies architecture of the Al Aziziyah Formation and the carbon isotope values. Seven stages of relative sea level rise and fall within the Ghryan Dome were identified based on facies stacking patterns, field observations and carbon stable isotopes. The Al Aziziyah Formation δ13C chemostratigraphic curve can be partially correlated with the Triassic global δ13C curve. This correlation indicates that the Al Aziziyah Formation was deposited during the Ladinian and early Carnian. No straight-forward relationship is seen between δ13C and relative sea level probably because local influences complicated systematic environmental and diagenetic isotopic effects associated with sea level change.

  9. Strontium and oxygen isotopic variations in Mesozoic and Tertiary plutons of central Idaho

    USGS Publications Warehouse

    Fleck, R.J.; Criss, R.E.

    1985-01-01

    Regional variations in initial 87Sr/86Sr ratios (ri) of Mesozoic plutons in central Idaho locate the edge of Precambrian continental crust at the boundary between the late Paleozoic-Mesozoic accreted terranes and Precambrian sialic crust in western Idaho. The ri values increase abruptly but continuously from less than 0.704 in the accreted terranes to greater than 0.708 across a narrow, 5 to 15 km zone, characterized by elongate, lens-shaped, highly deformed plutons and schistose metasedimentary and metavolcanic units. The chemical and petrologic character of the plutons changes concomitantly from ocean-arc-type, diorite-tonalite-trondhjemite units to a weakly peraluminous, calcic to calcalkalic tonalite-granodiorite-granite suite (the Idaho batholith). Plutons in both suites yield Late Cretaceous ages, but Permian through Early Cretaceous bodies are confined to the accreted terranes and early Tertiary intrusions are restricted to areas underlain by Precambrian crust. The two major terranes were juxtaposed between 75 and 130 m.y. ago, probably between 80 and 95 m.y. Oxygen and strontium isotopic ratios and Rb and Sr concentrations of the plutonic rocks document a significant upper-crustal contribution to the magmas that intrude Precambrian crust. Magmas intruding the arc terranes were derived from the upper mantle/subducted oceanic lithosphere and may have been modified by anatexis of earlier island-arc volcanic and sedimentary units. Plutons near the edge of Precambrian sialic crust represent simple mixtures of the Precambrian wall-rocks with melts derived from the upper mantle or subducted oceanic lithosphere with ri of 0.7035. Rb/Sr varies linearly with ri, producing "pseudoisochrons" with apparent "ages" close to the age of the wall rocks. Measured ??18O values of the wall rocks are less than those required for the assimilated end-member by Sr-O covariation in the plutons, however, indicating that wall-rock ??18O was reduced significantly by exchange with

  10. Understanding continental-scale variation in plant hydrogen and oxygen isotope ratios - Pseudotsuga menziesii across a 1500 km transect

    NASA Astrophysics Data System (ADS)

    West, J. B.; Wilson, E.; Hyodo, A.

    2013-12-01

    The isotopic composition of plant tissues provides an important recorder of vegetation response to climate. Hydrogen and oxygen isotope ratios have been used to infer precipitation isotope ratios and therefore variability in temperature. While this is the case, important questions remain about the primary drivers of plant tissue hydrogen and oxygen isotope ratio variation, including fundamental questions about the role of plant physiology. Relatively recent work suggests, in some species, an important role of physiology in organic matter d2H, in particular stomatal conductance, while other work suggests a distinct lack of influence of physiology. It is critical that mechanistic models of plant tissue variation in δ2H and δ18O can encompass landscape and larger-scale variability in plant isotope ratios. In particular existing models need to be compared to large-scale observations in order to assess their ability to describe variation in climate and plant physiology driven by such geographic variables as continentality and elevation. We report on ongoing work to better understand the role of climate and other drivers in plant tissue isotopic composition across relatively large spatial scales. An approximately 1500 km-long transect was established from the Continental Divide in North America (at approximately 39° N latitude) to the Coast Range. Leaf, branch, and tree core samples of Pseudotsuga menziesii were collected, along with surface waters. At each location, samples were collected from at least three elevations and on the western and eastern slopes of the target mountain range. Xylem water broadly reflected local precipitation as inferred from a global precipitation isoscape model and local surface water measurements. There was also a clear difference across the transect in apparent access to surface water, with the drier interior showing greater source water evaporative enrichment. In addition, the relationships between leaf water and stem water changed

  11. Interpreting species-specific variation in tree-ring oxygen isotope ratios among three temperate forest trees.

    PubMed

    Song, Xin; Clark, Kenneth S; Helliker, Brent R

    2014-09-01

    Although considerable variation has been documented in tree-ring cellulose oxygen isotope ratios (δ(18)O(cell)) among co-occurring species, the underlying causes are unknown. Here, we used a combination of field measurements and modelling to investigate the mechanisms behind variations in late-wood δ(18) O(cell) (δ(18)O(lc)) among three co-occurring species (chestnut oak, black oak and pitch pine) in a temperate forest. For two growing seasons, we quantified among-species variation in δ(18)O(lc), as well as several variables that could potentially cause the δ(18)O(lc) variation. Data analysis based on the δ(18) O(cell) model rules out leaf water enrichment (Δ(18)O(lw)) and tree-ring formation period (Δt), but highlights source water δ(18) O (δ(18) O(sw)) as an important driver for the measured difference in δ(18)O(lc) between black and chestnut oak. However, the enriched δ(18)O(lc) in pitch pine relative to the oaks could not be sufficiently explained by consideration of the above three variables only, but rather, we show that differences in the proportion of oxygen exchange during cellulose synthesis (p(ex)) is most likely a key mechanism. Our demonstration of the relevance of some species-specific features (or lack thereof) to δ(18)O(cell) has important implications for isotope based ecophysiological/paleoclimate studies.

  12. Latitudinal variations of nitrogen and triple oxygen isotopic composition of nitrate in the marine boundary layer over the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Morin, S.; Frey, M. M.; Grudzieu, A.; Martins, J.; Savarino, J.

    2007-12-01

    The analysis of the isotopic composition of nitrate (NO3-) in various environments is a fast-growing field of investigation. Atmospheric nitrate oxygen isotopes feature the appealing potential to record a footprint of the cycling between ozone (O3) and nitrogen oxides (NOx), through the transmission of an isotope anomaly (Δ17O=δ17O - 0.52 ×~δ18O) borne by the ozone molecule. This discovery has lead to the idea that the isotopic composition of nitrate preserved in firn and ice of the polar ice caps could be used as a proxy of past ozone chemistry and thus provide the long-awaited link between the climate record from ice cores and the oxidative capacity of ancient atmospheres. To better constrain the relationships between nitrate oxygen isotopes and the oxidative state of the atmosphere, we have carried out a series of ship-borne measurements in the marine boundary layer (MBL) between Cape Town, Rep. South Africa (30°S) and Bremerhaven, Germany (50°N) covering a wide range of meteorological and atmospheric chemistry conditions. Onboard the R/V Polarstern, we measured surface ozone and collected size-segregated aerosols with a latitudinal resolution of 4°. Besides major ions concentrations, nitrate contained in these samples was analyzed for all stable isotopes of its constituents (namely δ15N, δ17O and δ18O), using the denitrifier technique (based on Kaiser et al., Anal. Chem., 2007), thus providing an unprecedented latitudinal profile of nitrate isotopes in the MBL. Variations of nitrate isotopic compositions are studied as a function of particle size and changing MBL background chemistry, ranging from the remote and unpolluted Southern Atlantic Ocean (O3 20 nmol~mol-1) to the polluted English Channel area (O3 45 nmol~mol-1), through air masses influenced by North-African desert dust in the subtropical North Atlantic. Known main chemical mechanisms responsible for the formation of atmospheric nitrate are used to test our understanding of the causes for the

  13. Paleoclimatic Study of the West Pacific Warm Pool using Oxygen Isotope Variations in a Stalagmite from Guam

    NASA Astrophysics Data System (ADS)

    Moore, M. W.; Hardt, B. F.; Partin, J. W.; Banner, J. L.; Jenson, J. W.; Sinclair, D. J.; Taylor, F.

    2011-12-01

    The West Pacific Warm Pool (WPWP) is a region of the Pacific with mean seasonal sea surface temperatures > 28°C, and is a major driver of global climate. While the past ˜150 years have been instrumented and conditions have been recorded, it is unclear how much of the changes observed are due to anthropogenic effects or natural variability. In addition, this time frame may not include events that are natural but infrequent. This study investigates climate of the WPWP using oxygen isotope variations in speleothem calcite as a proxy for changes in rainfall on the island of Guam. The temperature effect on oxygen isotope ratios is relatively small in the tropics when compared to the effects of rainfall at Guam, and speleothem oxygen isotope ratios are more likely to vary in response to changes in storm tracks or rainfall amount. Previous research in the area has shown a correlation (r2 of .57) between rainfall amount and stable isotopic composition. The speleothem sample "Stumpy" being used for this study was collected in 2005 from Jinapsan Cave on Guam (13° 38' N, 144° 53' E), where annual rainfall is connected to the state of the WPWP. Samples were milled at 1 millimeter resolution, representing an average resolution of 50 years per sample. U-series analyses show that the 33-cm-long Stumpy grew from ˜18,000 ka up to present day. Oxygen isotope values range from -9.4 to -4.5 per mille, and exhibit oscillations of approximately 0.5 per mille. At 27 cm, the record shows a 3.8 per mille shift to higher values, coincident with the occurrence of a dark brown growth layer. This shift may represent a change in rainfall across a growth hiatus. The range in oxygen isotope values of 4.9 per mille in Stumpy corresponds to a difference in rainfall of 350 +/- 74 mm/month, based on previous study of rainfall in the modern system.

  14. Variations of oxygen and hydrogen isotope ratios in deer bones and their potential in paleoclimatology

    SciTech Connect

    Luz, B.; Schwarcz, H.P.; Cormie, A.B.

    1985-01-01

    Variations of deltaO-18 of bone phosphate (deltap) and deltaD of bone collagen of white tailed deer, were studied in samples with wide geographic distribution in North America. There is a linear relationship between deltaO-18 of local precipitation (deltaw) and deltap (deltap=0.54deltaw+21.53; r=0.81). Scatter about the regression line is related to estimation errors of deltaw and to changes in relative humidity. Low relative humidity results in highly O-18 enriched leaf water, which may lead to similar enrichment in bones of deer, that depend on leaves as a major source of food. Linear correlation between deltaD and deltap is high (r=0.93), suggesting that both variables depend on variations in isotopic composition of local environmental water. Samples from arid regions are highly enriched in O-18 and deviate from the regression line. This raises the possibility of estimating past changes in relative humidity by simultaneous analysis of deltap and deltaD in fossil bones.

  15. Understanding Spatial and Temporal Variations of Arctic Circulation Using Oxygen Isotopes of Seawater

    NASA Astrophysics Data System (ADS)

    Yin, L.; Kopans-Johnson, C. R.; LeGrande, A. N.; Kelly, S.

    2015-12-01

    The isotopic ratio of 18O to 16O in seawater (2005ppm in ocean water is defined as 𝛿18Oseawater≡0 permil or 0‰) is a fundamental ocean tracer due to its distinct linear relationship with salinity(𝛿18O -S) from regional inland freshwater sources. As opposed to salinity alone, 𝛿18O distinguishes river runoff from sea-ice melt and traces ocean circulation pathways from coastal to open waters and surface to deep waters. Observations from the past 60 years of 𝛿18O seawater were compiled into a database by Schimdt et al. (1999), and subsequently used to calculate a 3-dimensional 1°x1° 𝛿18O global gridded dataset by LeGrande and Schmidt (2006). Although the Schmidt et al. (1999) Global Seawater Oxygen-18 Database (𝛿18Oobs) contains 25,514 measurements used to calculate the global gridded dataset, LeGrande and Schmidt (2006) point out that, "data coverage varies greatly from region to region," with seasonal variability creating biases in areas where sea ice is present. Python Pandas is used to automate the addition of 2,942 records to the Schmidt et al. (1999) Global Seawater Oxygen-18 Database (𝛿18Oobs), and examine the spatial and temporal distributions of 18O in the Arctic Ocean. 10 initial water masses are defined using spatial and temporal trends, clusters of observations, and Arctic surface circulation. Jackknife slope analysis of water mass 𝛿18O -S is used to determine anomalous data points and regional hydrology, resulting in 4 distinct Arctic water masses. These techniques are used to improve the gridded 𝛿18Oseawater dataset by distinguishing unique water masses, and accounting for seasonal variability of complex high latitude areas.

  16. Factors controlling the growth rate, carbon and oxygen isotope variation in modern calcite precipitation in a subtropical cave, Southwest China

    NASA Astrophysics Data System (ADS)

    Pu, Junbing; Wang, Aoyu; Shen, Licheng; Yin, Jianjun; Yuan, Daoxian; Zhao, Heping

    2016-04-01

    A prerequisite for using cave speleothems to reconstruct palaeoenvironmental conditions is an accurate understanding of specific factors controlling calcite growth, in particular the isotopic partitioning of oxygen (δ18O) and carbon (δ13C) which are the most commonly used proxies. An in situ monitoring study from April 2008 to September 2009 at Xueyu Cave, Chongqing, SW China, provides insight into the controls on calcite growth rates, drip water composition, cave air parameters and δ18O and δ13C isotopic values of modern calcite precipitation. Both cave air PCO2 and drip water hydrochemical characteristics show obvious seasonality driven by seasonal changes in the external environment. Calcite growth rates also display clear intra-annual variation, with the lowest values occurring during wet season and peak values during the dry season. Seasonal variations of calcite growth rate are primarily controlled by variations of cave air PCO2 and drip water rate. Seasonal δ18O-VPDB and δ13C-VPDB in modern calcite precipitates vary, with more negative values in the wet season than in the dry season. Strong positive correlation of δ18O-VPDB vs. δ13C-VPDB is due to simultaneous enrichment of both isotopes in the calcite. This correlation indicates that kinetic fractionation occurs between parent drip water and depositing calcite, likely caused by the variations of cave air PCO2 and drip rate influenced by seasonal cave ventilation. Kinetic fractionation amplifies the equilibrium fractionation value of calcite δ18O (by ∼1.5‰) and δ13C (by ∼1.7‰), which quantitatively reflects surface conditions during the cave ventilation season. These results indicate that the cave monitoring of growth rate and δ18O and δ13C of modern calcite precipitation are necessary in order to use a speleothem to reconstruct palaeoenvironment.

  17. Sulfur, carbon, and oxygen isotope variations in submarine hydrothermal deposits of Guaymas Basin, Gulf of California, USA

    USGS Publications Warehouse

    Peter, J.M.; Shanks, Wayne C.

    1992-01-01

    Sulfur, carbon, and oxygen isotope values were measured in sulfide, sulfate, and carbonate from hydrothermal chimney, spire, and mound samples in the southern trough of Guaymas Basin, Gulf of California, USA. ??34S values of sulfides range from -3.7 to 4.5%. and indicate that sulfur originated from several sources: 1. (1) dissolution of 0??? sulfide contained within basaltic rocks, 2. (2) thermal reduction of seawater sulfate during sediment alteration reactions in feeder zones to give sulfide with positive ??34S, and 3. (3) entrainment or leaching of isotopically light (negative-??34S) bacteriogenic sulfide from sediments underlying the deposits. ??34S of barite and anhydrite indicate sulfur derivation mainly from unfractionated seawater sulfate, although some samples show evidence of sulfate reduction and sulfide oxidation reactions during mixing within chimneys. Oxygen isotope temperatures calculated for chimney calcites are in reasonable agreement with measured vent fluid temperatures and fluid inclusion trapping temperatures. Hydrothermal fluids that formed calcite-rich chimneys in the southern trough of Guaymas Basin were enriched in 18O with respect to seawater by about 2.4??? due to isotopic exchange with sedimentary and/or basaltic rocks. Carbon isotope values of calcite range from -9.6 to -14.0??? ??34CpDB, indicating that carbon was derived in approximately equal quantities from the dissolution of marine carbonate minerals and the oxidation of organic matter during migration of hydrothermal fluid through the underlying sediment column. Statistically significant positive, linear correlations of ??34S, ??34C, and ??18O of sulfides and calcites with geographic location within the southern trough of Guaymas Basin are best explained by variations in water/rock ( w r) ratios or sediment reactivity within subsurface alteration zones. Low w r ratios and the leaching of detrital carbonates and bacteriogenic sulfides at the southern vent sites result in relatively

  18. Assessing site-specific spatio-temporal variations in hydrogen and oxygen stable isotopes of human drinking water

    NASA Astrophysics Data System (ADS)

    Kennedy, C. D.; Bowen, G. J.; Ehleringer, J. R.

    2008-12-01

    Stable isotope ratios of hydrogen and oxygen (δ2H and δ18O) are environmental forensic tracers that can be used to constrain the origin and movement of animals, people, and products. The fundamental assumption underlying this method is that water resources at different geographic locations have distinct and characteristic isotopic signatures that are assimilated into organic tissues. Although much is known about regional-scale spatio-temporal variability in δ2H and δ18O of water, few studies have addressed the question of how distinct these geographic and seasonal patterns are for any given site. To address this question, a 2-year survey of δ2H and δ18O in tap water from across the contiguous U.S. and Canada was conducted. The data show that seasonal variability in δ2H and δ18O of tap water is generally low (<10 ‰ for δ2H), and those with the highest variability can be classified as: a) cities or towns in areas of high climate seasonality, or b) large cities in arid or seasonally arid regions which access and switch among multiple water sources throughout the year. The data suggest that inter-annual variation in tap water isotope ratios is typically low, with a median difference for month-month pairs during the 2 sampling years of 2.7 (δ2H). The results from this study confirm the existence of temporal variability in δ2H and δ18O of tap water, but suggest that this variability in human-managed systems is highly damped and may be amenable to classification, modeling, and prediction. In all, the data provide the foundation for incorporating temporal variation in predictive models of water and organic δ2H and δ18O, leading to more robust and statistically defensible tests of geographic origin.

  19. Unexpected variations in the triple oxygen isotope composition of stratospheric carbon dioxide.

    PubMed

    Wiegel, Aaron A; Cole, Amanda S; Hoag, Katherine J; Atlas, Elliot L; Schauffler, Sue M; Boering, Kristie A

    2013-10-29

    We report observations of stratospheric CO2 that reveal surprisingly large anomalous enrichments in (17)O that vary systematically with latitude, altitude, and season. The triple isotope slopes reached 1.95 ± 0.05(1σ) in the middle stratosphere and 2.22 ± 0.07 in the Arctic vortex versus 1.71 ± 0.03 from previous observations and a remarkable factor of 4 larger than the mass-dependent value of 0.52. Kinetics modeling of laboratory measurements of photochemical ozone-CO2 isotope exchange demonstrates that non-mass-dependent isotope effects in ozone formation alone quantitatively account for the (17)O anomaly in CO2 in the laboratory, resolving long-standing discrepancies between models and laboratory measurements. Model sensitivities to hypothetical mass-dependent isotope effects in reactions involving O3, O((1)D), or CO2 and to an empirically derived temperature dependence of the anomalous kinetic isotope effects in ozone formation then provide a conceptual framework for understanding the differences in the isotopic composition and the triple isotope slopes between the laboratory and the stratosphere and between different regions of the stratosphere. This understanding in turn provides a firmer foundation for the diverse biogeochemical and paleoclimate applications of (17)O anomalies in tropospheric CO2, O2, mineral sulfates, and fossil bones and teeth, which all derive from stratospheric CO2.

  20. The oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Brown, B. Alex

    The properties of the oxygen isotopes provide diverse examples of progress made in experiments and theory. This chain of isotopes has been studied from beyond the proton drip line in 12O to beyond the neutron drip line in 25,26O. This short survey starts with the microscopic G matrix approach for 18O of Kuo and Brown in the 1960’s and shows how theory has evolved. The nuclear structure around the doubly-magic nucleus 24O is particularly simple in terms of the nuclear shell model. The nuclear structure around the doubly-magic nucleus 16O exhibits the coexistence of single-particle and collective structure.

  1. On the Use of Biomineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-Sample Variation, Statistical Methods and Geographical Considerations

    PubMed Central

    Lightfoot, Emma; O’Connell, Tamsin C.

    2016-01-01

    Oxygen isotope analysis of archaeological skeletal remains is an increasingly popular tool to study past human migrations. It is based on the assumption that human body chemistry preserves the δ18O of precipitation in such a way as to be a useful technique for identifying migrants and, potentially, their homelands. In this study, the first such global survey, we draw on published human tooth enamel and bone bioapatite data to explore the validity of using oxygen isotope analyses to identify migrants in the archaeological record. We use human δ18O results to show that there are large variations in human oxygen isotope values within a population sample. This may relate to physiological factors influencing the preservation of the primary isotope signal, or due to human activities (such as brewing, boiling, stewing, differential access to water sources and so on) causing variation in ingested water and food isotope values. We compare the number of outliers identified using various statistical methods. We determine that the most appropriate method for identifying migrants is dependent on the data but is likely to be the IQR or median absolute deviation from the median under most archaeological circumstances. Finally, through a spatial assessment of the dataset, we show that the degree of overlap in human isotope values from different locations across Europe is such that identifying individuals’ homelands on the basis of oxygen isotope analysis alone is not possible for the regions analysed to date. Oxygen isotope analysis is a valid method for identifying first-generation migrants from an archaeological site when used appropriately, however it is difficult to identify migrants using statistical methods for a sample size of less than c. 25 individuals. In the absence of local previous analyses, each sample should be treated as an individual dataset and statistical techniques can be used to identify migrants, but in most cases pinpointing a specific homeland should

  2. On the Use of Biomineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-Sample Variation, Statistical Methods and Geographical Considerations.

    PubMed

    Lightfoot, Emma; O'Connell, Tamsin C

    2016-01-01

    Oxygen isotope analysis of archaeological skeletal remains is an increasingly popular tool to study past human migrations. It is based on the assumption that human body chemistry preserves the δ18O of precipitation in such a way as to be a useful technique for identifying migrants and, potentially, their homelands. In this study, the first such global survey, we draw on published human tooth enamel and bone bioapatite data to explore the validity of using oxygen isotope analyses to identify migrants in the archaeological record. We use human δ18O results to show that there are large variations in human oxygen isotope values within a population sample. This may relate to physiological factors influencing the preservation of the primary isotope signal, or due to human activities (such as brewing, boiling, stewing, differential access to water sources and so on) causing variation in ingested water and food isotope values. We compare the number of outliers identified using various statistical methods. We determine that the most appropriate method for identifying migrants is dependent on the data but is likely to be the IQR or median absolute deviation from the median under most archaeological circumstances. Finally, through a spatial assessment of the dataset, we show that the degree of overlap in human isotope values from different locations across Europe is such that identifying individuals' homelands on the basis of oxygen isotope analysis alone is not possible for the regions analysed to date. Oxygen isotope analysis is a valid method for identifying first-generation migrants from an archaeological site when used appropriately, however it is difficult to identify migrants using statistical methods for a sample size of less than c. 25 individuals. In the absence of local previous analyses, each sample should be treated as an individual dataset and statistical techniques can be used to identify migrants, but in most cases pinpointing a specific homeland should not

  3. The stable hydrogen and oxygen isotope variation of water stored in polyethylene terephthalate (PET) bottles.

    PubMed

    Spangenberg, Jorge E; Vennemann, Torsten W

    2008-01-01

    A set of bottled waters from a single natural spring distributed worldwide in polyethylene terephthalate (PET) bottles has been used to examine the effects of storage in plastic polymer material on the isotopic composition (delta18O and delta2H values) of the water. All samples analyzed were subjected to the same packaging procedure but experienced different conditions of temperature and humidity during storage. Water sorption and the diffusive transfer of water and water vapor through the wall of the PET bottle may cause isotopic exchange between water within the bottle and water vapor in air near the PET-water interface. Changes of about +4 per thousand for delta2H and +0.7 per thousand for delta18O have been measured for water after 253 days of storage within the PET bottle. The results of this study clearly indicate the need to use glass bottles for storing water samples for isotopic studies. It is imperative to transfer PET-bottled natural waters to glass bottles for their use as calibration material or potential international working standards.

  4. Earlywood and Latewood Stable Carbon and Oxygen Isotope Variations in Two Pine Species in Southwestern China during the Recent Decades.

    PubMed

    Fu, Pei-Li; Grießinger, Jussi; Gebrekirstos, Aster; Fan, Ze-Xin; Bräuning, Achim

    2016-01-01

    Stable isotopes in wood cellulose of tree rings provide a high-resolution record of environmental conditions, yet intra-annual analysis of carbon and oxygen isotopes and their associations with physiological responses to seasonal environmental changes are still lacking. We analyzed tree-ring stable carbon (δ(13)C) and oxygen (δ(18)O) isotope variations in the earlywood (EW) and latewood (LW) of pines from a secondary forest (Pinus kesiya) and from a natural forest (Pinus armandii) in southwestern China. There was no significant difference between δ(13)CEW and δ(13)CLW in P. kesiya, while δ(13)CEW was significantly higher than δ(13)CLW in P. armandii. For both P. kesiya and P. armandii, δ(13)CEW was highly correlated with previous year's δ(13)CLW, indicating a strong carbon carry-over effect for both pines. The intrinsic water use efficiency (iWUE) in the earlywood of P. armandii was slightly higher than that of P. kesiya, and iWUE of both pine species showed an increasing trend, but at a considerably higher rate in P. kesiya. Respective δ(13)CEW and δ(13)CLW series were not correlated between the two pine species and could be influenced by local environmental factors. δ(13)CEW of P. kesiya was positively correlated with July to September monthly mean temperature (MMT), whereas δ(13)CEW of P. armandii was positively correlated with February to May MMT. Respective δ(18)OEW and δ(18)OLW in P. kesiya were positively correlated with those in P. armandii, indicating a strong common climatic forcing in δ(18)O for both pine species. δ(18)OEW of both pine species was negatively correlated with May relative humidity and δ(18)OEW in P. armandii was negatively correlated with May precipitation, whereas δ(18)OLW in both pine species was negatively correlated with precipitation during autumn months, showing a high potential for climate reconstruction. Our results reveal slightly higher iWUE in natural forest pine species than in secondary forest pine species

  5. Earlywood and Latewood Stable Carbon and Oxygen Isotope Variations in Two Pine Species in Southwestern China during the Recent Decades

    PubMed Central

    Fu, Pei-Li; Grießinger, Jussi; Gebrekirstos, Aster; Fan, Ze-Xin; Bräuning, Achim

    2017-01-01

    Stable isotopes in wood cellulose of tree rings provide a high-resolution record of environmental conditions, yet intra-annual analysis of carbon and oxygen isotopes and their associations with physiological responses to seasonal environmental changes are still lacking. We analyzed tree-ring stable carbon (δ13C) and oxygen (δ18O) isotope variations in the earlywood (EW) and latewood (LW) of pines from a secondary forest (Pinus kesiya) and from a natural forest (Pinus armandii) in southwestern China. There was no significant difference between δ13CEW and δ13CLW in P. kesiya, while δ13CEW was significantly higher than δ13CLW in P. armandii. For both P. kesiya and P. armandii, δ13CEW was highly correlated with previous year’s δ13CLW, indicating a strong carbon carry-over effect for both pines. The intrinsic water use efficiency (iWUE) in the earlywood of P. armandii was slightly higher than that of P. kesiya, and iWUE of both pine species showed an increasing trend, but at a considerably higher rate in P. kesiya. Respective δ13CEW and δ13CLW series were not correlated between the two pine species and could be influenced by local environmental factors. δ13CEW of P. kesiya was positively correlated with July to September monthly mean temperature (MMT), whereas δ13CEW of P. armandii was positively correlated with February to May MMT. Respective δ18OEW and δ18OLW in P. kesiya were positively correlated with those in P. armandii, indicating a strong common climatic forcing in δ18O for both pine species. δ18OEW of both pine species was negatively correlated with May relative humidity and δ18OEW in P. armandii was negatively correlated with May precipitation, whereas δ18OLW in both pine species was negatively correlated with precipitation during autumn months, showing a high potential for climate reconstruction. Our results reveal slightly higher iWUE in natural forest pine species than in secondary forest pine species, and separating earlywood and

  6. Intraspecific variations in carbon-isotope and oxygen-isotope compositions of a brachiopod Basiliola lucida collected off Okinawa-jima, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Takayanagi, Hideko; Asami, Ryuji; Abe, Osamu; Miyajima, Toshihiro; Kitagawa, Hiroyuki; Sasaki, Keiichi; Iryu, Yasufumi

    2013-08-01

    This study presents intraspecific variations in carbon-isotope (δ13C) and oxygen-isotope (δ18O) compositions of nine specimens of a subtropical brachiopod, Basiliola lucida, collected west of Okinawa-jima, Ryukyu Islands, southwestern Japan. The δ13C values of samples collected along the maximum growth axis (ontogenetic samples) from two modern and seven older (pre-1945 cal AD) shells show no seasonal changes. The modern shells, which were collected from comparable depths, have similar δ13C values that fall within the range of calcite precipitated in isotopic equilibrium with ambient seawater (equilibrium calcite) (δ13CEC values), and their mean δ13C values are ˜1.1-1.6‰ less than those from the older shells. This decrease in δ13C values is similar in magnitude to the decreases in atmospheric CO2 and the oceanic dissolved inorganic carbon at the sea surface in recent years (13C Suess effect), suggesting that the effect can even be detected at water depths of 200-300 m in the subtropical northwestern Pacific Ocean. The δ18O values fluctuate within a narrow range (0.26-0.41‰) with no seasonal changes, and they exhibit small (0.14-0.51‰) offsets from those of equilibrium calcite (δ18OEC values). A statistically significant negative linear relationship is established between seawater temperature and mean δ18O values of the nine shells, but the slope (-0.31‰/°C) is steeper than those of equilibrium calcite (-0.23‰/°C) and other calcareous organisms (-0.15‰ to -0.26‰/°C). The cross-plots of the δ13C and δ18O values suggest that the degree of the vital effect varies among individuals in this species. The δ13C and δ18O values of B. lucida are potentially useful for reconstructing the δ13C and δ18O evolution of ancient oceans, because both values show small intraspecific variations, the former is identical to the δ13CEC values, and the latter shows small within-shell variations and small, nearly constant offsets from the δ18OEC values.

  7. Oxygen Isotope Variation Within a Quaternary, Caldera-forming, Phonolitic Eruptive Sequence; the Diego Hernández Formation, Tenerife, Canary Islands (Spain)

    NASA Astrophysics Data System (ADS)

    Hickes, H. J.; Larson, P. B.; Wolff, J. A.; Olin, P.

    2003-12-01

    Much of the work done on oxygen isotopes in volcanic rocks has been based on analyses of whole rock or multiple crystal aliquots, inherently discounting the importance of heterogeneity. Recently, due to advances in technology and the recognition of small-scale chemical disequilibria in magmatic systems, it has proven valuable to measure variations among individual grains to examine the evolution of these systems. Here, we present the results of both single and multi-crystal feldspar oxygen isotope analyses (1σ < 0.1 ‰ ) from phonolitic eruptive units of the Diego Hernández Formation (DHF) as part of an on-going study of the evolution of the Las Cañadas caldera complex on Tenerife. δ 18O (VSMOW) values of feldspar range from 4.7 to 6.7 ‰ (slightly lower than previously reported) and show a positive correlation with average crystal size (mg) in units that display a range of oxygen isotope values. For example, one unit shows a linear variation of feldspar δ 18O values that range from 4.7 to 6.4 ‰ , and these ratios are positively correlated with average phenocryst size over a range of 0.7 to 3.6 mg. Overall, intra-unit feldspar δ 18O values vary by as much as ˜2 ‰ and are lower than those predicted by fractionation of a basanitic parental magma. Additionally, δ 18O values show no coherent relationship with incompatible trace element abundances, an indication that the oxygen isotopic ratios are being controlled by neither fractionation nor recharge of the system by basaltic injections. However, the largest variation in oxygen isotope ratios is found in the most differentiated units, consistent with earlier suggestions that the most highly evolved phonolites may contain a component of hydrothermally-altered wall rock. We propose that oxygen isotope variation in Tenerife phonolites is being controlled by variable amounts of assimilation of hydrothermally-altered syenite country rock (δ 18O 0.1 - 5.8 ‰ ) and that timescales between assimilation and

  8. Kangaroo tooth enamel oxygen and carbon isotope variation on a latitudinal transect in southern Australia: implications for palaeoenvironmental reconstruction.

    PubMed

    Brookman, Tom H; Ambrose, Stanley H

    2013-02-01

    Tooth enamel apatite carbonate carbon and oxygen isotope ratios of modern kangaroos (Macropus spp.) collected on a 900-km latitudinal transect spanning a C(3)-C(4) transition zone were analysed to create a reference set for palaeoenvironmental reconstruction in southern Australia. The carbon isotope composition of enamel carbonate reflects the proportional intake of C(3) and C(4) vegetation, and its oxygen isotope composition reflects that of ingested water. Tooth enamel forms incrementally, recording dietary and environmental changes during mineralisation. Analyses show only weak correlations between climate records and latitudinal changes in δ(13)C and δ(18)O. No species achieved the δ(13)C values (~-1.0 ‰) expected for 100 % C(4) grazing diets; kangaroos at low latitudes that are classified as feeding primarily on C(4) grasses (grazers) have δ(13)C of up to -3.5 ‰. In these areas, δ(13)C below -12 ‰ suggests a 100 % C(3) grass and/or leafy plant (browse) diet while animals from higher latitude have lower δ(13)C. Animals from semi-arid areas have δ(18)O of 34-40 ‰, while grazers from temperate areas have lower values (~28-30 ‰). Three patterns with implications for palaeoenvironmental reconstruction emerge: (1) all species in semi-arid areas regularly browse to supplement limited grass resources; (2) all species within an environmental zone have similar carbon and oxygen isotope compositions, meaning data from different kangaroo species can be pooled for palaeoenvironmental investigations; (3) relatively small regional environmental differences can be distinguished when δ(13)C and δ(18)O data are used together. These data demonstrate that diet-isotope and climate-isotope relationships should be evaluated in modern ecosystems before application to the regional fossil record.

  9. Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica

    NASA Astrophysics Data System (ADS)

    Ishino, Sakiko; Hattori, Shohei; Savarino, Joel; Jourdain, Bruno; Preunkert, Susanne; Legrand, Michel; Caillon, Nicolas; Barbero, Albane; Kuribayashi, Kota; Yoshida, Naohiro

    2017-03-01

    Triple oxygen isotopic compositions (Δ17O = δ17O - 0.52 × δ18O) of atmospheric sulfate (SO42-) and nitrate (NO3-) in the atmosphere reflect the relative contribution of oxidation pathways involved in their formation processes, which potentially provides information to reveal missing reactions in atmospheric chemistry models. However, there remain many theoretical assumptions for the controlling factors of Δ17O(SO42-) and Δ17O(NO3-) values in those model estimations. To test one of those assumption that Δ17O values of ozone (O3) have a flat value and do not influence the seasonality of Δ17O(SO42-) and Δ17O(NO3-) values, we performed the first simultaneous measurement of Δ17O values of atmospheric sulfate, nitrate, and ozone collected at Dumont d'Urville (DDU) Station (66°40' S, 140°01' E) throughout 2011. Δ17O values of sulfate and nitrate exhibited seasonal variation characterized by minima in the austral summer and maxima in winter, within the ranges of 0.9-3.4 and 23.0-41.9 ‰, respectively. In contrast, Δ17O values of ozone showed no significant seasonal variation, with values of 26 ± 1 ‰ throughout the year. These contrasting seasonal trends suggest that seasonality in Δ17O(SO42-) and Δ17O(NO3-) values is not the result of changes in Δ17O(O3), but of the changes in oxidation chemistry. The trends with summer minima and winter maxima for Δ17O(SO42-) and Δ17O(NO3-) values are caused by sunlight-driven changes in the relative contribution of O3 oxidation to the oxidation by HOx, ROx, and H2O2. In addition to that general trend, by comparing Δ17O(SO42-) and Δ17O(NO3-) values to ozone mixing ratios, we found that Δ17O(SO42-) values observed in spring (September to November) were lower than in fall (March to May), while there was no significant spring and fall difference in Δ17O(NO3-) values. The relatively lower sensitivity of Δ17O(SO42-) values to the ozone mixing ratio in spring compared to fall is possibly explained by (i) the

  10. Isotopic variations in primitive meteorites

    NASA Astrophysics Data System (ADS)

    Clayton, R. N.

    1981-12-01

    Oxygen isotopic variations in carbonaceous chondrites and ordinary chondrites can each be interpreted as mixtures of two isotopically different reservoirs, one consisting of solids, enriched in O-16, the other of a gas, depleted in O-16 relative to terrestrial abundances. The data indicate a common source of the solids for each of the two classes of meteorites, but a different gas reservoir for each. These conditions might obtain in gaseous protoplanets. It is noted that radiogenic Mg-26 is variable in abundance among some classes of Allende inclusions, implying either nebular heterogeneity with respect to Al-26/Al-27 ratios or time differences of crystal formation. The presence of excess Ag-107 from decay of extinct Pd-107 corroborates the evidence from Mg-26 for a time interval of at most a few million years between the last nucleosynthetic event and the accretion of substantial bodies in the solar system.

  11. Oxygen isotope ratios in eclogites from kimberlites.

    PubMed

    Garlick, G D; Macgregor, I D; Vogel, D E

    1971-06-04

    The oxygen isotope compositions (delta(18)O) of eclogitic xenoliths from the Roberts Victor kimberlite range from 2 to 8 per mil relative to SMOW (standard mean ocean water). This surprising variation appears to be due to fractional crystallization: the eclogites rich in oxygen-18 represent early crystal accumulates; the eclogites poor in oxygen-18 represent residual liquids. Crystal-melt partitioning probably exceeded 3 per mil and is interpreted to be pressure-dependent. Anomalous enrichment of oxygen-18 in cumulate eclogites relative to ultramafic xenoliths suggests that crystal-melt partitioning increased after melt-formation but prior to crystallization.

  12. Theoretical calculation of oxygen equilibrium isotope fractionation factors involving various NOy molecules, radOH, and H2O and its implications for isotope variations in atmospheric nitrate

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2016-10-01

    The oxygen stable isotope composition (δ18O) of nitrogen oxides [NOx = nitric oxide (NO) + nitrogen dioxide (NO2)] and their oxidation products (NOy = NOx + nitric acid (HNO3) + particulate nitrate (p-NO3-) + nitrate radical (NO3) + dinitrogen pentoxide (N2O5) + nitrous acid (HONO) + …) have been shown to be a useful tool for inferring the proportion of NOx that is oxidized by ozone (O3). However, isotopic fractionation processes may have an influence on δ18O of various NOy molecules and other atmospheric O-bearing molecules pertinent to NOx oxidation chemistry. Here we have evaluated the impacts of O isotopic exchange involving NOy molecules, the hydroxyl radical (radOH), and water (H2O) using reduced partition function ratios (xβ) calculated by hybrid density functional theory. Assuming atmospheric isotopic equilibrium is achieved between NO and NO2 during the daytime, and NO2, NO3, and N2O5 during the nighttime, δ18O-δ15N compositions were predicted for the major atmospheric nitrate formation pathways using our calculated exchange fractionation factors and isotopic mass-balance. Our equilibrium model predicts that various atmospheric nitrate formation pathways, including NO2 + radOH → HNO3, N2O5 + H2O + surface → 2HNO3, and NO3 + R → HNO3 + Rrad will yield distinctive δ18O-δ15N compositions. Our calculated δ18O-δ15N compositions match well with previous atmospheric nitrate measurements, and will potentially help better understand the role oxidation chemistry plays on the N and O isotopic composition of atmospheric nitrate.

  13. Isotopic Composition of Oxygen in Lunar Zircons

    NASA Technical Reports Server (NTRS)

    Nemchin, A. A.; Whitehouse, M. J.; Pidgeon, R. T.; Meyer, C.

    2005-01-01

    The recent discovery of heavy oxygen in zircons from the Jack Hills conglomerates Wilde et al. and Mojzsis et al. was interpreted as an indication of presence of liquid water on the surface of Early Earth. The distribution of ages of Jack Hills zircons and lunar zircons appears to be very similar and therefore analysis of oxygen in the lunar grains may provide a reference frame for further study of the early history of the Earth as well as give additional information regarding processes that operated on the Moon. In the present study we have analysed the oxygen isotopic composition of zircon grains from three lunar samples using the Swedish Museum of Natural History CAMECA 1270 ion microprobe. The samples were selected as likely tests for variations in lunar oxygen isotopic composition. Additional information is included in the original extended abstract.

  14. Seasonal variations in the stable oxygen isotope ratio of wood cellulose reveal annual rings of trees in a Central Amazon terra firme forest.

    PubMed

    Ohashi, Shinta; Durgante, Flávia M; Kagawa, Akira; Kajimoto, Takuya; Trumbore, Susan E; Xu, Xiaomei; Ishizuka, Moriyoshi; Higuchi, Niro

    2016-03-01

    In Amazonian non-flooded forests with a moderate dry season, many trees do not form anatomically definite annual rings. Alternative indicators of annual rings, such as the oxygen (δ(18)Owc) and carbon stable isotope ratios of wood cellulose (δ(13)Cwc), have been proposed; however, their applicability in Amazonian forests remains unclear. We examined seasonal variations in the δ(18)Owc and δ(13)Cwc of three common species (Eschweilera coriacea, Iryanthera coriacea, and Protium hebetatum) in Manaus, Brazil (Central Amazon). E. coriacea was also sampled in two other regions to determine the synchronicity of the isotopic signals among different regions. The annual cyclicity of δ(18)Owc variation was cross-checked by (14)C dating. The δ(18)Owc showed distinct seasonal variations that matched the amplitude observed in the δ(18)O of precipitation, whereas seasonal δ(13)Cwc variations were less distinct in most cases. The δ(18)Owc variation patterns were similar within and between some individual trees in Manaus. However, the δ(18)Owc patterns of E. coriacea differed by region. The ages of some samples estimated from the δ(18)Owc cycles were offset from the ages estimated by (14)C dating. In the case of E. coriacea, this phenomenon suggested that missing or wedging rings may occur frequently even in well-grown individuals. Successful cross-dating may be facilitated by establishing δ(18)Owc master chronologies at both seasonal and inter-annual scales for tree species with distinct annual rings in each region.

  15. Transpiration rate relates to within- and across-species variations in effective path length in a leaf water model of oxygen isotope enrichment.

    PubMed

    Song, Xin; Barbour, Margaret M; Farquhar, Graham D; Vann, David R; Helliker, Brent R

    2013-07-01

    Stable oxygen isotope ratio of leaf water (δ(18)O(L)) yields valuable information on many aspects of plant-environment interactions. However, current understanding of the mechanistic controls on δ(18)O(L) does not provide complete characterization of effective path length (L) of the Péclet effect,--a key component of the leaf water model. In this study, we collected diurnal and seasonal series of leaf water enrichment and estimated L in six field-grown angiosperm and gymnosperm tree species. Our results suggest a pivotal role of leaf transpiration rate (E) in driving both within- and across-species variations in L. Our observation of the common presence of an inverse scaling of L with E in the different species therefore cautions against (1) the conventional treatment of L as a species-specific constant in leaf water or cellulose isotope (δ(18)O(p)) modelling; and (2) the use of δ(18)O(p) as a proxy for gs or E under low E conditions. Further, we show that incorporation of a multi-species L-E scaling into the leaf water model has the potential to both improve the prediction accuracy and simplify parameterization of the model when compared with the conventional approach. This has important implications for future modelling of oxygen isotope ratios.

  16. Oxygen isotope corrections for online δ34S analysis

    USGS Publications Warehouse

    Fry, B.; Silva, S.R.; Kendall, C.; Anderson, R.K.

    2002-01-01

    Elemental analyzers have been successfully coupled to stable-isotope-ratio mass spectrometers for online measurements of the δ34S isotopic composition of plants, animals and soils. We found that the online technology for automated δ34S isotopic determinations did not yield reproducible oxygen isotopic compositions in the SO2 produced, and as a result calculated δ34S values were often 1–3‰ too high versus their correct values, particularly for plant and animal samples with high C/S ratio. Here we provide empirical and analytical methods for correcting the S isotope values for oxygen isotope variations, and further detail a new SO2-SiO2 buffering method that minimizes detrimental oxygen isotope variations in SO2.

  17. Seasonal and interannual variations in carbon and oxygen isotopes of atmospheric CO2 observed over a C4-dominated tallgrass prairie in central Kansas, USA

    NASA Astrophysics Data System (ADS)

    Lai, C.; Owensby, C.; Ham, J.; Ehleringer, J.

    2004-12-01

    We conducted weekly measurements of carbon (\\delta13C) and oxygen (\\delta18O) isotopes in atmospheric CO2 over a C4-dominated tallgrass prairie in 2002, 2003 and 2004. Air samples above and within canopies were collected using 100-ml flasks for both day- and nighttime periods. A two-source mixing line approach estimated isotope ratios of ecosystem respired CO2 for both carbon (\\delta13CR) and oxygen (\\delta18OR). In general, values of \\delta13CR showed a significant shift from ˜ -20 ‰ in early spring to ˜ -12 ‰ in mid-summer for all 3 years, reflecting the dominance of C4 photosynthesis in the {wet} and warm environment. Precipitation in the spring has a profound impact on the seasonal variations in \\delta13CR values and net ecosystem exchange (NEE) CO2 fluxes. Variations in \\delta13CR corresponded with NEE fluxes on both weekly and interannual time scales; more positive \\delta13CR values (C4 dominance) were observed with greater NEE fluxes under well-watered conditions. When C4 photosynthetic uptake of atmospheric CO2 decreased, values of \\delta13CR reflected an increased impact of C3 forbs and nearby C3 cropland. The coupling between photosynthetic fluxes and respired \\delta13C suggests that a significant portion of recently fixed carbon was returned to the atmosphere through autotrophic respiration within days. Measuring oxygen isotopes of ecosystem CO2 provides a means to further separate total ecosystem respiration into contributions from above- and belowground components. Our measurements showed that values of \\delta18OR ranged from ˜22 to ˜35 ‰ (VSMOW scale) within a season. These variations were a result of respired CO2 equilibrated with two isotopically distinct ecosystem water pools: \\delta18O values in leaf water are more positive relative to soil water owing to the evaporative enrichment during the day. \\delta18O values of leaf and soil water will be modeled to constrain \\delta18OR measurements in order to partition respiratory

  18. Oxygen Isotopic Compositions of Fulgurites

    NASA Astrophysics Data System (ADS)

    Robert, F.; Javoy, M.

    1992-07-01

    Two occurrences of vitreous rocks (fulgurites) that have resulted from the fusion of Etnean lavas, have been ascribed to the result of lightning striking the basalts and melting fresh volcanic rocks [1]. Rapidly quenched melts appear as tubular cavities that preserve the path of the discharge. Glass droplets (D <= 500 micrometers) are always dispersed around the fused lava tube and show several petrographic similarities with chondrules found in ordinary chondrites (presence of melilite, radiating skeletal fassaite, etc). In this process, high temperatures (T>1800 K) have probably been reached during timescales <=10 sec. Because it has been suggested that lightning discharges may have played an important role in the formation of chondrules [2], we have analyzed the oxygen isotope compositions of these fulgurites (our experimental protocol is described elsewhere [3]). The glass (free from any contamination from the unmelted basalt) is 1.5o/oo depleted in ^18O relative to its measured initial isotopic composition (delta^18O = +5.6o/oo); most of the data define a mass-dependent fractionation relationship (i.e. delta^17O = 0.52 x delta^18O). Therefore the data clearly do not reproduce the oxygen isotope anomaly defined for meteorites, which has a slope of 1 in the diagram delta^17O versus delta^18O (i.e. delta^17O = 1.0 x delta^18O). Nevertheless, it should be noted that some glass samples scatter around this canonical value of 0.52 with minor departures from a purely mass-dependent fractionation. If these results are confirmed by additional determinations (now in progress) on the separated glassy droplets, the following conclusions can be proposed: 1) lightning discharges do not yield oxygen isotope anomalies similar to those measured in chondrules and 2) an isotope exchange between hot chondrules and their parent nebular gas--presumably "anomalous" in its oxygen isotopes-- seems difficult to achieve within the duration of the rapid cooling of the melt. This last point

  19. The oxygen isotope composition, petrology and geochemistry of mare basalts: Evidence for large-scale compositional variation in the lunar mantle

    NASA Astrophysics Data System (ADS)

    Hallis, L. J.; Anand, M.; Greenwood, R. C.; Miller, M. F.; Franchi, I. A.; Russell, S. S.

    2010-12-01

    To investigate the formation and early evolution of the lunar mantle and crust we have analysed the oxygen isotopic composition, titanium content and modal mineralogy of a suite of lunar basalts. Our sample set included eight low-Ti basalts from the Apollo 12 and 15 collections, and 12 high-Ti basalts from Apollo 11 and 17 collections. In addition, we have determined the oxygen isotopic composition of an Apollo 15 KREEP (K - potassium, REE - Rare Earth Element, and P - phosphorus) basalt (sample 15386) and an Apollo 14 feldspathic mare basalt (sample 14053). Our data display a continuum in bulk-rock δ 18O values, from relatively low values in the most Ti-rich samples to higher values in the Ti-poor samples, with the Apollo 11 sample suite partially bridging the gap. Calculation of bulk-rock δ 18O values, using a combination of previously published oxygen isotope data on mineral separates from lunar basalts, and modal mineralogy (determined in this study), match with the measured bulk-rock δ 18O values. This demonstrates that differences in mineral modal assemblage produce differences in mare basalt δ 18O bulk-rock values. Differences between the low- and high-Ti mare basalts appear to be largely a reflection of mantle-source heterogeneities, and in particular, the highly variable distribution of ilmenite within the lunar mantle. Bulk δ 18O variation in mare basalts is also controlled by fractional crystallisation of a few key mineral phases. Thus, ilmenite fractionation is important in the case of high-Ti Apollo 17 samples, whereas olivine plays a more dominant role for the low-Ti Apollo 12 samples. Consistent with the results of previous studies, our data reveal no detectable difference between the Δ 17O of the Earth and Moon. The fact that oxygen three-isotope studies have been unable to detect a measurable difference at such high precisions reinforces doubts about the giant impact hypothesis as presently formulated.

  20. Tracing oxygen variations and its biogeochemical expression during the late hauterivian Faraoni Event: A multi tracers approach using paired carbon, nitrogen, sulfur isotopes and trace metallic elements

    NASA Astrophysics Data System (ADS)

    Thomazo, Christophe; Riquier, Laurent; Martinez, Mathieu; Mathieu, Olivier

    2013-04-01

    During the Cretaceous, several occurrences of Oceanic Anoxic Event (OAE) are described in the sedimentary record. Among them, the late Hauterivian Faraoni Event has been extensively studied in several locations including Italy, Switzerland, France and Spain and interpreted as a short-lived OAE from palaeontological, sedimentological and geochemical observations. However, the biogeochemical response to water column oxygen depletion is poorly documented and mostly stands on carbon carbonates isotopes during the Faraoni event. In order to bring further insights into the biogeochemical cycles modifications during O2 variations across the Faraoni Event, we performed an integrated geochemical study including C, N and S isotopes together with paleo-redox tracers (i.e. trace metallic elements and iron speciation) on about 25 samples from the Río Argos section (S.E. Spain). δ13Ccarb increases from 1.23‰ to 1.61‰ at the base of the studied section before the Faraoni event. Maximum values, ranging between 1.21‰ and 1.73‰, are observed within this event and are followed by a rapid decrease in δ13Ccarb values down to 0.50‰ toward the top of the section. δ13Corg and TOC values show a narrow range of variations around -26.3±0.3‰ and 0.15±0.3 wt.%, respectively. Only one sample records a higher TOC content up to 1.53 wt.% at the very base of the Faraoni Event while no sensible variations can be deduced form organic carbon isotopes. Bulk sediments nitrogen isotopes have a mean value of 2.3±0.2‰ and nitrogen contents vary between 320 and 790 ppm. A noticeable δ15N excursion (i.e. 0.86‰) is observed at the very base of the Faraoni Event and is associated with the highest TOC value. Sulfur contents vary between 100 and 2480 ppm, the highest content being recorded just bellow the base of the Faraoni Event. δ34S show a wide range of variations from -44.8 to -10.1‰ on a short scale without easily recognizable stratigraphic trend. Finally, slight increases of

  1. Seasonal and interannual variations of carbon and oxygen isotopes of respired CO2 in a tallgrass prairie: Measurements and modeling results from 3 years with contrasting water availability

    NASA Astrophysics Data System (ADS)

    Lai, Chun-Ta; Riley, William; Owensby, Clenton; Ham, Jay; Schauer, Andrew; Ehleringer, James R.

    2006-04-01

    We made weekly measurements of carbon (δ13C) and oxygen (δ18O) isotopes of atmospheric CO2 in a C3/C4 tallgrass prairie during the growing season for 3 years with contrasting soil moisture conditions. Air samples above and within canopies were collected using 100-ml flasks at night to characterize isotopic composition of ecosystem respiration. We used a two-source mixing line (Keeling plot) approach to estimate isotope ratios of ecosystem respired CO2 for both carbon (δ13CR) and oxygen (δ18OR). Measured net ecosystem CO2 exchange (NEE) showed the largest net carbon uptake in 2004, followed by 2003 and 2002. This interannual difference in NEE strongly depends on the amount and distribution of precipitation received by this tallgrass prairie. Precipitation also affects the timing of the seasonal transition from C3 dominance in spring to C4 dominance in summer. Variations of δ13CR showed that C4 plants dominated ecosystem respiration in 2003 and 2004, except in early spring when C3 plants were more active. In contrast, contributions of C3 plants were relatively higher for an extended period in the summer of 2002, when a severe drought occurred. Typically, C3 forbs extract water and nutrients from soil layers below that of the C4 grasses and remain photosynthetically active in periods when C4 grasses have water stress that limits photosynthesis. Drought-reduced C4 grass photosynthesis was lower than temperature-limited C3 forb growth during this period. We used an integrated isotope land surface model (ISOLSM) to simulate (and compare to measurements) net CO2 fluxes, δ18O values of leaf and soil water, and δ18O values of aboveground and soil respiration. The Keeling plot analysis becomes less reliable for estimating δ18OR values when the surface soil is dry. We suspect this is due to low CO2 production in the soil when water is limiting, in which case the invasion (abiotic) effect is more significant. ISOLSM reasonably captured seasonal variations of measured

  2. Regional-scale climate influences on temporal variations of rainwater and cave dripwater oxygen isotopes in northern Borneo

    NASA Astrophysics Data System (ADS)

    Cobb, Kim M.; Adkins, Jess F.; Partin, Judson W.; Clark, Brian

    2007-11-01

    This study investigates the relationship between large-scale climate variability, rainfall oxygen isotopic composition ( δ18O), and cave dripwater δ18O at Gunung Mulu and Gunung Buda National Parks in northern Borneo (4°N, 115°E) on intraseasonal to interannual timescales. A 3-yr timeseries of rainfall δ18O contains prominent seasonal and interannual variability. The seasonal cycle in rainfall δ18O is defined by lighter values of - 10‰ during late boreal summer and heavier values of - 4‰ during late boreal winter, and is poorly correlated to local precipitation, which displays very weak seasonality. Seasonally-varying moisture trajectories likely play a key role in the observed seasonal cycle of rainfall δ18O, driving enhanced fractionation during boreal summer and less fractionation during boreal winter. Dripwater δ18O timeseries display 2‰ seasonal cycles that follow the rainfall δ18O seasonal cycles, with a mean δ18O value equivalent to the mean δ18O of rainfall. Large surveys of cave dripwaters conducted during three fieldtrips to Gunung Mulu/Buda reveal a system-wide response to rainfall δ18O seasonality that supports a relatively short (less than 6months) response time for most drips. During the weak 2005/2006 La Niña event, sustained positive precipitation anomalies are associated with rainfall δ18O values that are 4 to 5‰ lighter than previous years' values, consistent with the tropical "amount effect" observed in both models and data. Dripwater δ18O values are 1 to 2‰ lighter during the weak La Niña event. The importance of the "amount effect" in driving intraseasonal rainfall δ18O anomalies at our site is supported by an 8‰ increase in rainfall δ18O that occurred over the course of two weeks in response to a pronounced decrease in regional convective activity. Dripwater discharge rates underwent a ten-fold decrease during the extended dry period, but dripwater δ18O values remained constant. This study supports the

  3. Meteorites and their parent bodies: Evidence from oxygen isotopes

    NASA Technical Reports Server (NTRS)

    Clayton, R. N.

    1978-01-01

    Isotopic abundance variations among meteorites are used to establish genetic associations between meteorite classes. Oxygen isotope distributions between group II E irons with H-group ordinary chondrites and enstatic meteorites indicate that the parent bodies were formed out of pre-solar material that was not fully mixed at the time condensation occurred within the solar nebula.

  4. Tooth Enamel Oxygen and Carbon Isotope Variations in Modern Central Asian Horses: Development of a Calibration Database for the Interpretation of Stable Isotope Signals Preserved in Fossil Horse Remains from Archaeological Sites

    NASA Astrophysics Data System (ADS)

    Sikora, M. T.; Rosenmeier, M. F.; Allard, F.; Olsen, S. L.

    2005-12-01

    Recent studies of early nomadic pastoralism within Central Asia have focused on the rich archaeological history of Mongolia and specifically the examination of so-called khirigsuur sites. These monumental Bronze Age (first and second millennium B.C.) structures consist of stone constructions that contain abundant horse remains (typically skulls) and occasionally human burials. Isotopic analysis of horse remains preserved within these sites may provide a wealth of paleoclimatic information. However, the accuracy of climate reconstructions from fossil teeth collected at archaeological sites in Mongolia is currently limited by insufficient knowledge of the relationship between local environmental conditions and tooth enamel isotope ratios as well as uncertainties attributed to intra-population variability. In this study we measured the oxygen and carbon isotope (δ18O and δ13C) values of enamel samples from modern horse teeth collected along a nearly 550 km latitudinal (northwest-southeast) transect within central Mongolia. Preliminary results suggest that modern tooth enamel records local environmental conditions, although δ18O and δ13C values are not always a direct proxy for climate and vegetation cover. The modern samples serve as a baseline for interpreting isotope signals preserved in fossil horses and thereby increase the accuracy of paleoclimatic reconstructions. Approximately one-hundred individuals were examined from highly varied geographic zones (forest steppe, grassland steppe, dry steppe, and semi-desert) and compared with the δ18O of meteoric waters and δ13C values of local vegetation. Oxygen isotope ratios of bulk enamel samples (spanning the entire vertical axis of tooth growth) parallel spatial trends observed in isotopic composition of meteoric waters and major north-south gradients in temperature and precipitation. Average δ13C values similarly increase with decreasing geographic latitude and likely correspond to documented increases in the

  5. Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean. Evidence in support of the Péclet effect.

    PubMed

    Barbour, M M; Schurr, U; Henry, B K; Wong, S C; Farquhar, G D

    2000-06-01

    Theory suggests that the level of enrichment of (18)O above source water in plant organic material (Delta) may provide an integrative indicator of control of water loss. However, there are still gaps in our understanding of the processes affecting Delta. One such gap is the observed discrepancy between modeled enrichment of water at the sites of evaporation within the leaf and measured enrichment of the leaf water as a whole (Delta(L)). Farquhar and Lloyd (1993) suggested that this may be caused by a Péclet effect. It is also unclear whether organic material formed in the leaf reflects enrichment of water at the sites of evaporation within the leaf or Delta(L). To investigate this question castor bean (Ricinus communis L.) leaves, still attached to the plant, were sealed into a controlled-environment gas exchange chamber and subjected to a step change in leaf-to-air vapor pressure difference. Sucrose was collected from a cut on the petiole of the leaf in the chamber under equilibrium conditions and every hour for 6 h after the change in leaf-to-air vapor pressure difference. Oxygen isotope composition of sucrose in the phloem sap (Delta(suc)) reflected modeled Delta(L). A model is presented describing Delta(suc) at isotopic steady state, and accounts for 96% of variation in measured Delta(suc). The data strongly support the Péclet effect theory.

  6. Within-shell variations in carbon and oxygen isotope compositions of two modern brachiopods from a subtropical shelf environment off Amami-o-shima, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuyuki; Asami, Ryuji; Iryu, Yasufumi

    2010-10-01

    This study examines the fidelity of carbon (δ13C) and oxygen (δ18O) isotope compositions of two modern brachiopod species (Kikaithyris hanzawai and Basiliola lucida) to use as proxies of δ13C values of total dissolved inorganic carbon and temperature and/or δ18O values of seawater, respectively. Well-preserved shells of K. hanzawai and living individuals of B. lucida were collected from a subtropical shelf environment off Amami-o-shima, southwestern Japan. Some portions of the shells are in isotopic equilibrium with the ambient seawater, while other portions are not. The degree of disequilibrium differs between the two species and between different portions of each shell. Statistically significant positive correlations are recognized between the δ13C and δ18O values of these samples, which can be ascribed to a kinetic fractionation effect. Far from the posterior shell edge and along the axis of shell growth, the δ18O values of the secondary shell layer of K. hanzawai mostly fall within the expected range of equilibrium calcite. The δ13C values from the inner surface of the secondary shell layer in both species are relatively constant and are equivalent to or very close to equilibrium calcite. Therefore, these portions of the shells are most suitable for collecting reliable environmental proxy data. Although the δ13C and δ18O values of modern brachiopod shells are predominantly controlled by a kinetic fractionation effect, the appropriate selection of species and shell portions that reflect the isotopic composition of ambient seawater can facilitate the reconstruction of secular variations in oceanic δ13C or δ18O values.

  7. Neodymium isotopic variations in seawater

    NASA Technical Reports Server (NTRS)

    Piepgras, D. J.; Wasserburg, G. J.

    1980-01-01

    Direct measurement of the isotopic composition of Nd in the Atlantic agree with the Nd content in ferromanganese sediments and differ from the observed amounts in the Pacific samples. These data indicate the existence of distinctive differences in the isotopic composition of Nd in the waters of major oceans; the average values determined from seawater and ferromanganese sediments are considerably lower than in sources with oceanic mantle affinities showing that the REE in the oceans is dominated by continental sources. The Nd isotopic variations in seawater are applied to relate the residence time of Nd and mixing rates between the oceans.

  8. Device and method for separating oxygen isotopes

    DOEpatents

    Rockwood, Stephen D.; Sander, Robert K.

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  9. Spatial and temporal variation in tree-ring α-cellulose oxygen and hydrogen isotope values as a record of water availability in the Atacama Desert

    NASA Astrophysics Data System (ADS)

    Olson, E. J.; Dodd, J. P.

    2015-12-01

    Previous studies have documented that tree ring oxygen and hydrogen isotopes primarily reflect source water; however, biosynthetic fractionation processes modify this signal and can have a varied response to environmental conditions. The degree to which source water contributes to δ2H and δ18O values of plant α-cellulose is species-specific and modern calibration studies are necessary. Here we present a calibration data set of P. tamarugo α-cellulose δ2H and δ18O values from the Atacama Desert in Northern Chile. P. tamarugo trees are endemic to the region and have adapted to the extremely arid environment where average annual precipitation is < 5mm/yr. This modern isotope chronology has been constructed from living P. tamarugo trees (n=12) from the Pampa del Tamarugal Basin in the northern Atacama. Generally, the tree-ring α-cellulose δ18O values are poorly correlated with meteorological data from coastal stations (i.e. Iquique); however, there is good agreement between regional groundwater depth and α-cellulose δ18O values. Most notably, average α-cellulose δ18O values increase by >2 ‰ over the past 20 years associated with a ~1.1 m lowering of the local groundwater table throughout the area. The correlation between a-cellulose isotope values and hydrologic conditions in modern times provides a baseline for interpretation of tree-ring isotope chronologies from the past 9.5 kya. A high-resolution Holocene (1.8-9.1 kya) age record of Prosopis sp. tree ring α-cellulose δ18O values provides a proxy for climatic and hydrologic conditions. During the early Holocene δ18O values range from 31 to 35‰ (2σ=0.58‰), while during the late Holocene values are much more variable (27.4 to 41‰; 2σ=2.64‰). Anthropogenic demand on local water sources is the most significant environmental factor affecting the variation in modern α-cellulose δ18O values; however, climate induced changes in regional water availability are the dominant driver of variability

  10. Oxygen isotopes in deep-sea spherules

    NASA Technical Reports Server (NTRS)

    Clayton, Robert N.; Mayeda, Toshiko K.; Brownlee, Donald E.

    1986-01-01

    Oxygen isotopic compositions have been measured on several size fractions of deep-sea spherules of extraterrestrial origin. The silicate spherules have an isotopic composition unlike that of any known macrometeorite. Their pre-terrestrial compositions may have been similar to those of C3 chondrites or the anhydrous component of C2 chondrites, the latter being preferred on chemical grounds. Metallic particles oxidize in the upper atmosphere, and sample a region for which no previous oxygen isotope data exist. This part of the atmosphere, above about 100 km, is apparently strongly enriched in the heavy isotopes of oxygen.

  11. New constraints on the relationship between 26Al and oxygen, calcium, and titanium isotopic variation in the early Solar System from a multielement isotopic study of spinel-hibonite inclusions

    NASA Astrophysics Data System (ADS)

    Kööp, Levke; Nakashima, Daisuke; Heck, Philipp R.; Kita, Noriko T.; Tenner, Travis J.; Krot, Alexander N.; Nagashima, Kazuhide; Park, Changkun; Davis, Andrew M.

    2016-07-01

    We report oxygen, calcium, titanium and 26Al-26Mg isotope systematics for spinel-hibonite inclusions (SHIBs), a class of calcium-aluminum-rich inclusions (CAI) common in CM chondrites. In contrast to previous studies, our analyses of 33 SHIBs and four SHIB-related objects obtained with high spatial resolution demonstrate that these CAIs have a uniform Δ17O value of approximately -23‰, similar to many other mineralogically pristine CAIs from unmetamorphosed chondrites (e.g., CR, CV, and Acfer 094). Five SHIBs studied for calcium and titanium isotopes have no resolvable anomalies beyond 3σ uncertainties. This suggests that nucleosynthetic anomalies in the refractory elements had been significantly diluted in the environment where SHIBs with uniform Δ17O formed. We established internal 26Al-26Mg isochrons for eight SHIBs and found that seven of these formed with uniformly high levels of 26Al (a multi-CAI mineral isochron yields an initial 26Al/27Al ratio of ∼4.8 × 10-5), but one SHIB has a smaller initial 26Al/27Al of ∼ 2.5 × 10-5, indicating variation in 26Al/27Al ratios when SHIBs formed. The uniform calcium, titanium and oxygen isotopic characteristics found in SHIBs with both high and low initial 26Al/27Al ratios allow for two interpretations. (1) If subcanonical initial 26Al/27Al ratios in SHIBs are due to early formation, as suggested by Liu et al. (2012), our data would indicate that the CAI formation region had achieved a high degree of isotopic homogeneity in oxygen and refractory elements before a homogeneous distribution of 26Al was achieved. (2) Alternatively, if subcanonical ratios were the result of 26Al-26Mg system resetting, the clustering of SHIBs at a Δ17O value of ∼-23‰ would imply that a 16O-rich gaseous reservoir existed in the nebula until at least ∼0.7 Ma after the formation of the majority of CAIs.

  12. Hydrogen and oxygen isotope geochemistry of Ascension Island lavas and granites: variation with crystal fractionation and interaction with sea water

    NASA Astrophysics Data System (ADS)

    Sheppard, Simon M. F.; Harris, Chris

    1985-09-01

    Lavas and pyroclastics on Ascension Island contain plutonic blocks that include fluid-inclusion-bearing peralkaline-granite. 18O/16O ratios, F and Cl have been analysed on whole rocks and/or minerals for lavas and granites, and D/H ratios and H2O+ for comenditic obsidians and granites. Whole rock 18O/16O ratios of fresh alkali-basalt, hawaiite, trachyandesite, trachyte and comendite range from 6.0 to 6.9‰ with 18O tending to increase with increase in SiO2. The δ 18O values of the granites are from 0.0 to 0.3‰ depleted in 18O relative to the comendites. Comenditic obsidians have δD= -80±4‰ and H2O+ ˜0.3 wt.% while amphiboles from the granites have δD= -56±2‰ The O-isotope trend of the lavas is consistent with a crystal fractionation model. Fresh igneous rocks with δ 18O values greater than 7‰ involve processes in addition to crystal fractionation of a basaltic magma. The D/H ratios and Cl contents (˜ 3,000 ppm) of the H2O-poor comenditic obsidians represent undegassed primary magmatic values. The H-isotope compositions and low H2O and Cl (167 ppm) contents of the granites are consistent with the major degassing (loss of >90% of initial H2O) of an H2Osaturated magma derived from the interaction of sea (or possibly meteoric) water with the H2O-undersaturated comenditic melt. It is proposed that, associated with caldera subsidence and stoping, water was sucked in around the residual magma before the system had time to be sealed up. The H2O-undersaturated magma consumed this H2O with possibly some minor partial dehydration and dewatering of the hydrated volcanic roof blocks, at a pressure of about 1.5 kb. The granites are the plutonic equivalents of rhyolitic pyroclastics and not directly of the comendites. Granites from oceanic islands may, in general, be a result of generating an H2O-saturated acid melt by such direct or indirect crustal water-magma interaction processes.

  13. Variations in groundwater availability during the past 9,000 years in the Atacama Desert, Chile: A subannual record of oxygen isotope values from Prosopis tamarugo tree rings

    NASA Astrophysics Data System (ADS)

    Dodd, J. P.; Rivera, M.

    2012-12-01

    The Atacama Desert is among the driest regions on Earth; therefore, access to water is critical to human populations throughout the Pampa del Tamarugal region of northern Chile (20° to 22°S, 69° to 70°W). Presently, the region receives <5 mm of precipitation annually, and seasonal runoff and groundwater recharge from higher altitudes in the Andes Mountains is the primary source of water in the Pampa del Tamarugal. Oxygen isotope data from Prosopis tamarugo tree rings indicate that the region has become increasingly arid over the past 9ka, likely as a result of decreased water transport from these recharge areas. Oxygen isotope values from α-cellulose of P. tamarugo tree rings from the Llamara Basin (9130 ±145 and 7910 to 7870 ±10 Cal BP), Ramaditas (2615 ±135 Cal BP), and La Tirana Refresco (modern) record sub-annual variations in groundwater availability in the Pampa del Tamarugal. Low δ18O values (23.8 to 32.8‰) in the P. tamarugo samples from the Llamara Basin indicate wetter conditions prior to 7.8 ka; however, sub-annual variability in the δ18O values remains relatively high with an average range in intra-ring values of 3.0‰ (2σ=1.1‰). P. tamarugo logs that were used as building materials and grown in agricultural fields at Ramaditas (~2.6ka), an archeological site in the Pampa del Tamarugal, have a wider range of δ18O values (17.5 to 35.6‰) and greater intra-ring variability (ave. 4.5‰, 2σ=3.2‰). The greater range in interannual and subannual δ18O values most likely reflects a period with highly variable fluxes of runoff/recharge water. The development and eventual abandonment of Ramaditas and other settlements appear to coincide with changes in the availability of water in the region. Modern P. tamarugo from La Tirana Refresco collected in 2008 have δ18O values that are consistently higher (33.1 to 36.3‰) with much lower intra-ring variability (1.5‰, 2σ=0.9‰), indicating persistently drier conditions and greater evaporative

  14. Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range.

    PubMed

    Liu, Jingfeng; Xiao, Cunde; Ding, Minghu; Ren, Jiawen

    2014-11-01

    The newly-developed cavity ring-down laser absorption spectroscopy analyzer with special calibration protocols has enabled the direct measurement of atmospheric vapor isotopes at high spatial and temporal resolution. This paper presents real-time hydrogen and oxygen stable isotope data for atmospheric water vapor above the sea surface, over a wide range of latitudes spanning from 38°N to 69°S. Our results showed relatively higher values of δ(18)O and δ(2)H in the subtropical regions than those in the tropical and high latitude regions, and also a notable decreasing trend in the Antarctic coastal region. By combining the hydrogen and oxygen isotope data with meteoric water line and backward trajectory model analysis, we explored the kinetic fractionation caused by subsiding air masses and related saturated vapor pressure in the subtropics, and the evaporation-driven kinetic fractionation in the Antarctic region. Simultaneous observations of meteorological and marine variables were used to interpret the isotopic composition characteristics and influential factors, indicating that d-excess is negatively correlated with humidity across a wide range of latitudes and weather conditions worldwide. Coincident with previous studies, d-excess is also positively correlated with sea surface temperature and air temperature (Tair), with greater sensitivity to Tair. Thus, atmospheric vapor isotopes measured with high accuracy and good spatial-temporal resolution could act as informative tracers for exploring the water cycle at different regional scales. Such monitoring efforts should be undertaken over a longer time period and in different regions of the world.

  15. Oxygen isotope exchange between refractory inclusion in Allende and solar nebula gas.

    PubMed

    Yurimoto, H; Ito, M; Nagasawa, H

    1998-12-04

    A calcium-aluminum-rich inclusion (CAI) from the Allende meteorite was analyzed and found to contain melilite crystals with extreme oxygen-isotope composition (approximately 5 percent oxygen-16 enrichment relative to terrestrial oxygen-16). Some of the melilite is also anomalously enriched in oxygen-16 compared with oxygen isotopes measured in other CAIs. The oxygen isotopic variation measured among the minerals (melilite, spinel, and fassaite) indicates that crystallization of the CAI started from oxygen-16-rich materials that were probably liquid droplets in the solar nebula, and oxygen isotope exchange with the surrounding oxygen-16-poor nebular gas progressed through the crystallization of the CAI. Additional oxygen isotope exchange also occurred during subsequent reheating events in the solar nebula.

  16. Oxygen isotope exchange between refractory inclusion in allende and solar nebula Gas

    PubMed

    Yurimoto; Ito; Nagasawa

    1998-12-04

    A calcium-aluminum-rich inclusion (CAI) from the Allende meteorite was analyzed and found to contain melilite crystals with extreme oxygen-isotope compositions ( approximately 5 percent oxygen-16 enrichment relative to terrestrial oxygen-16). Some of the melilite is also anomalously enriched in oxygen-16 compared with oxygen isotopes measured in other CAIs. The oxygen isotopic variation measured among the minerals (melilite, spinel, and fassaite) indicates that crystallization of the CAI started from oxygen-16-rich materials that were probably liquid droplets in the solar nebula, and oxygen isotope exchange with the surrounding oxygen-16-poor nebular gas progressed through the crystallization of the CAI. Additional oxygen isotope exchange also occurred during subsequent reheating events in the solar nebula.

  17. Oxygen isotopes in deep sea spherules

    NASA Technical Reports Server (NTRS)

    Mayeda, T. K.; Clayton, R. N.; Brownlee, D. E.

    1984-01-01

    The determination of the genetic relationships between the dust and small particles in the solar system, and the meteorites and larger bodies are examined. Oxygen isotopes proved useful in the identification of such relationships between one meteorite group and another. Of the various samples of submillimeter extraterrestrial particles available for laboratory study, only the deep sea spherules are abundant enough for precise oxygen isotope analysis using existing techniques. Complications arise in interpretation of the isotopic data, since these particles were melted during passage through the Earth's atmosphere, and have been in contact with seawater for prolonged periods. Spherules that were originally silicates are considered with the originally metallic ones to deduce their preterrestrial isotopic compositions. The type 1 spherules which enter the atmosphere as metallic particles, contain only atmospheric oxygen. The type S spherules contain a mixture of atmospheric oxygen and their original extraterrestrial oxygen. It is suggested that the Earth's mesosphere is strongly enriched in heavy isotopes of oxygen at altitudes near 90 km at which the iron particles are oxidized. Fractionation due to the combined diffusion of O atoms and O2 molecules may be responsible.

  18. Oxygen-isotope fractionation between marine biogenic silica and seawater

    SciTech Connect

    Matheney, R.K.; Knauth, L.P. )

    1989-12-01

    A stepwise fluorination technique has been used to selectively react away the water component of hydrous silica in order to better investigate the oxygen-isotope fractionation between biogenic opal and seawater, and to determine whether all taxa produce opal which is suitable for oxygen isotope paleothermometry. {delta}{sup 18}O of the tetrahedrally coordinated silicate oxygen of siliceous sponge spicules grown at a wide variety of temperatures varies independently of temperature. {delta}{sup 18}O from an Eocene radiolarian ooze sample is much more enriched than would be expected from any reasonable isotopic temperature curve, given the probable growing temperature of the sample. {delta}{sup 18}O of diatom samples seems to vary systematically with temperature and to conform approximately to the isotopic temperature curve for diatom frustules obtained by Labeyrie and coworkers using an entirely different analytical technique. Sponges appear to precipitate silica in isotopic disequilibrium with seawater oxygen, and old radiolarian silica may exchange readily with could oceanic bottom water. Neither will apparently be useful for paleoclimate reconstructions. Diatoms maybe useful in deducing ancient surface-water temperatures, but the systematic variation of {alpha} with temperature for diatoms may not be related to the quartz-H{sub 2}O equilibrium isotope fractionation.

  19. Oxygen and hydrogen isotopic variations between adjacent drips in three caves at increasing elevation in a temperate coastal rainforest, Vancouver Island, Canada

    NASA Astrophysics Data System (ADS)

    Beddows, Patricia A.; Mandić, Magda; Ford, Derek C.; Schwarcz, Henry P.

    2016-01-01

    The interpretation of speleothem paleoenvironmental records requires understanding of spatial-temporal variations in vadose drip water chemistry and isotopic composition. This study reports on intra- and inter-cave differences in δD, δ18O and electrical conductivity, using 18 monthly water samples from three adjacent drips (<20 m apart) in each of three caves at increasing elevation (0, 550, and 740 m ASL) on very steep ground at the head of Tahsis Inlet fjord on the Pacific coast of Vancouver Island, British Columbia. All drips showed isotopic seasonal signals, despite varied patterns of drip hydrology. There was overlap in isotopic ranges (at 1 SD) between all three caves, in contrast with the expected δ18O depletion of -0.15 to -0.5‰/100 m of ascent observed in standard precipitation. The isotopic seasonality was approximated with sine curves, and compared to a GNIP data set from Victoria ∼300 km to the south. The δD and δ18O drip isotopes lagged the Victoria record by 155 ± 26 days and 165 ± 50 days respectively. The longest lag was at the slowest drip (sea level), while the shortest lag (87 days for δ18O, 550 m ASL) implies a short residence time, paradoxically from the drip with the highest mean electrical conductivity. Vadose residence time was less than one climatic year, reflecting a combination of negligible matrix porosity in the host rock and super-humid climatic conditions. Beneath the epikarst, drip hydrology was evidently by simple piston flow. Phase-shifted drip isotope records showed excellent agreement with sea level mean monthly air temperatures at the Tahsis meteorological station over the study period. The δD and δ18O drip amplitudes were damped on average 74% and 73% respectively compared to the Victoria data. The drips at 740 m ASL are tightly aligned to the global mean meteoric water line (GMWL) and 18O-depleted; the drips at 550 m ASL and at sea level plot along the GMWL, or between it and the Victoria LMWL, with the exception

  20. Sex-associated variations in coral skeletal oxygen and carbon isotopic composition of Porites panamensis in the southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Cabral-Tena, R. A.; Sánchez, A.; Reyes-Bonilla, H.; Ruvalcaba-Díaz, A. H.; Balart, E. F.

    2015-11-01

    Coral δ18O variations are used as a proxy for changes in near sea surface temperature and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent. Recent published data show differences in growth parameters between female and male coral; thus, skeletal δ18O and δ13C are hypothesized to be different in each sex. To assess this difference, this study describes changes in the skeletal δ18O and δ13C record of four female and six male Porites panamensis coral collected in Bahía de La Paz, whose growth bands spanned 12 years. The isotopic data were compared to SST, precipitation, PAR, chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric brooder whose growth parameters are different in females and males. Splitting the data by sexes explained 81 and 93 % of the differences of δ18O, and of δ13C, respectively, in the isotope record between colonies. Both isotope records were different between sexes. δ18O was higher in female colonies than in male colonies, with a 0.31 ‰ difference; δ13C was lower in female colonies, with a 0.28 ‰ difference. A difference in the skeletal δ18O implies an error in SST estimates of ≈ 1.0 °C to ≈ 2.6 °C. The δ18O records showed a seasonal pattern that corresponded to SST, with low correlation coefficients (-0.45, -0.32), and gentle slopes (0.09 ‰ °C-1, 0.10 ‰ °C-1) of the δ18O-SST relation. Seasonal variation in coral δ18O represents only 52.37 and 35.66 % of the SST cycle; 29.72 and 38.53 % can be attributed to δ18O variability in seawater. δ13C data did not correlate with any of the environmental variables; therefore, variations in skeletal δ13C appear to be driven mainly by metabolic effects. Our

  1. Oxygen isotope fractionation in double carbonates.

    PubMed

    Zheng, Yong-Fei; Böttcher, Michael E

    2016-01-01

    Oxygen isotope fractionations in double carbonates of different crystal structures were calculated by the increment method. Synthesis experiments were performed at 60 °C and 100 °C to determine oxygen and carbon isotope fractionations involving PbMg[CO3]2. The calculations suggest that the double carbonates of calcite structure are systematically enriched in (18)O relative to those of aragonite and mixture structures. Internally consistent oxygen isotope fractionation factors are obtained for these minerals with respect to quartz, calcite and water at a temperature range of 0-1200 °C. The calculated fractionation factors for double carbonate-water systems are generally consistent with the data available from laboratory experiments. The experimentally determined fractionation factors for PbMg[CO3]2, BaMg[CO3]2 and CaMg[CO3]2 against H2O not only fall between fractionation factors involving pure carbonate end-members but are also close to the calculated fractionation factors. In contrast, experimentally determined carbon isotope fractionation factors between PbMg[CO3]2 and CO2 are much closer to theoretical predictions for the cerussite-CO2 system than for the magnesite-CO2 system, similar to the fractionation behavior for BaMg[CO3]2. Therefore, the combined theoretical and experimental results provide insights into the effects of crystal structure and exchange kinetics on oxygen isotope partitioning in double carbonates.

  2. The effects of α-cellulose extraction and blue-stain fungus on retrospective studies of carbon and oxygen isotope variation in live and dead trees†

    USGS Publications Warehouse

    English, N.B.; McDowell, N.G.; Allen, C.D.; Mora, C.

    2011-01-01

    Tree-ring carbon and oxygen isotope ratios from live and recently dead trees may reveal important mechanisms of tree mortality. However, wood decay in dead trees may alter the δ13C and δ18O values of whole wood obscuring the isotopic signal associated with factors leading up to and including physiological death. We examined whole sapwood and α-cellulose from live and dead specimens of ponderosa pine (Pinus ponderosa), one-seed juniper (Juniperous monosperma), piñon pine (Pinus edulis) and white fir (Abies concolor), including those with fungal growth and beetle frass in the wood, to determine if α-cellulose extraction is necessary for the accurate interpretation of isotopic compositions in the dead trees. We found that the offset between the δ13C or δ18O values of α-cellulose and whole wood was the same for both live and dead trees across a large range of inter-annual and regional climate differences. The method of α-cellulose extraction, whether Leavitt-Danzer or Standard Brendel modified for small samples, imparts significant differences in the δ13C (up to 0.4‰) and δ18O (up to 1.2‰) of α-cellulose, as reported by other studies. There was no effect of beetle frass or blue-stain fungus (Ophiostoma) on the δ13C and δ18O of whole wood or α-cellulose. The relationships between whole wood and α-cellulose δ13C for ponderosa, piñon and juniper yielded slopes of ~1, while the relationship between δ18O of whole wood and α-cellulose was less clear. We conclude that there are few analytical or sampling obstacles to retrospective studies of isotopic patterns of tree mortality in forests of the western United States.

  3. Unified picture of the oxygen isotope effect in cuprate superconductors.

    PubMed

    Chen, Xiao-Jia; Struzhkin, Viktor V; Wu, Zhigang; Lin, Hai-Qing; Hemley, Russell J; Mao, Ho-kwang

    2007-03-06

    High-temperature superconductivity in cuprates was discovered almost exactly 20 years ago, but a satisfactory theoretical explanation for this phenomenon is still lacking. The isotope effect has played an important role in establishing electron-phonon interaction as the dominant interaction in conventional superconductors. Here we present a unified picture of the oxygen isotope effect in cuprate superconductors based on a phonon-mediated d-wave pairing model within the Bardeen-Cooper-Schrieffer theory. We show that this model accounts for the magnitude of the isotope exponent as functions of the doping level as well as the variation between different cuprate superconductors. The isotope effect on the superconducting transition is also found to resemble the effect of pressure on the transition. These results indicate that the role of phonons should not be overlooked for explaining the superconductivity in cuprates.

  4. Sex-associated variations in coral skeletal oxygen and carbon isotopic composition of Porites panamensis in the southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Cabral-Tena, Rafael A.; Sánchez, Alberto; Reyes-Bonilla, Héctor; Ruvalcaba-Díaz, Angel H.; Balart, Eduardo F.

    2016-05-01

    Coral δ18O variations are used as a proxy for changes in sea surface temperature (SST) and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent than environmental variables. Recent published data show differences in growth parameters between female and male coral in the gonochoric brooding coral Porites panamensis; thus, skeletal δ18O and δ13C are hypothesized to be different in each sex. To test this, this study describes changes in the skeletal δ18O and δ13C record of four female and six male Porites panamensis coral collected in Bahía de La Paz, Mexico, whose growth bands spanned 12 years. The isotopic data were compared to SST, precipitation, photosynthetically active radiation (PAR), chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric brooder whose growth parameters are different in females and males. Splitting the data by sexes explained 81 and 93 % of the differences of δ18O, and of δ13C, respectively, in the isotope record between colonies. Both isotope records were different between sexes. δ18O was higher in female colonies than in male colonies, with a 0.31 ‰ difference; δ13C was lower in female colonies, with a 0.28 ‰ difference. A difference in the skeletal δ18O could introduce an error in SST estimates of ≈ 1.0 to ≈ 2.6 °C. The δ18O records showed a seasonal pattern that corresponded to SST, with low correlation coefficients (-0.45, -0.32), and gentle slopes (0.09, 0.10 ‰ °C-1) of the δ18O-SST relation. Seasonal variation in coral δ18O represents only 52.37 and 35.66 % of the SST cycle; 29.72 and 38.53 % can be attributed to δ18O variability in seawater. δ13C data did not correlate with any of the environmental

  5. Oxygen isotope fractionation between aragonite and seawater: Developing a novel kinetic oxygen isotope fractionation model

    NASA Astrophysics Data System (ADS)

    Wang, Zhengrong; Gaetani, Glenn; Liu, Chao; Cohen, Anne

    2013-09-01

    }-(0.30±0.03)·S-(4.7±1.2) where S is the salinity, R is the gas constant, pH0 is the pH difference between free scale and the scale used to calculate the concentration of DIC species. Quantitative evaluation of these two extreme cases using our model suggests that oxygen isotope fractionation between aragonite and water varies significantly with a pH change between 7.5 and 10 (e.g., ˜4‰ at 25 °C), but little with a salinity change between 5‰ and 35‰ (<0.1‰ at 25 °C) during extremely fast precipitation, whereas during slow precipitation little variation occurs with pH varying between 7.5 and 10 at a given salinity (<0.3‰ in δ18O at T = 0-55 °C). This model connects aragonite precipitation kinetics with oxygen isotope fractionation between aragonite and water, and provides a framework to reconcile the discrepancy among experimental calibrations of aragonite-water fractionation in different labs and empirical calibrations using biogenic aragonites by variations in precipitation conditions (including pH, salinity and precipitation rate).

  6. Extreme oxygen isotope ratios in the early Solar System.

    PubMed

    Aléon, Jérôme; Robert, François; Duprat, Jean; Derenne, Sylvie

    2005-09-15

    The origins of the building blocks of the Solar System can be studied using the isotopic composition of early planetary and meteoritic material. Oxygen isotopes in planetary materials show variations at the per cent level that are not related to the mass of the isotopes; rather, they result from the mixture of components having different nucleosynthetic or chemical origins. Isotopic variations reaching orders of magnitude in minute meteoritic grains are usually attributed to stellar nucleosynthesis before the birth of the Solar System, whereby different grains were contributed by different stars. Here we report the discovery of abundant silica-rich grains embedded in meteoritic organic matter, having the most extreme 18O/16O and 17O/16O ratios observed (both approximately 10(-1)) together with a solar silicon isotopic composition. Both O and Si isotopes indicate a single nucleosynthetic process. These compositions can be accounted for by one of two processes: a single exotic evolved star seeding the young Solar System, or irradiation of the circumsolar gas by high energy particles accelerated during an active phase of the young Sun. We favour the latter interpretation, because the observed compositions are usually not expected from nucleosynthetic processes in evolved stars, whereas they are predicted by the selective trapping of irradiation products.

  7. Oxygen and carbon isotope disequilibria in Galapagos corals: isotopic thermometry and calcification physiology

    SciTech Connect

    McConnaughey, T.A.

    1986-01-01

    Biological carbonate skeletons are built largely from carbon dioxide, which reacts to form carbonate ion within thin extracellular solutions. The light isotopes of carbon and oxygen react faster than the heavy isotopes, depleting the resulting carbonate ions in /sup 13/C and /sup 18/O. Calcium carbonate precipitation occurs sufficiently fast that the skeleton remains out of isotopic equilibrium with surrounding fluids. This explanation for isotopic disequilibrium in biological carbonates was partially simulated in vitro, producing results similar to those seen in non-photosynthetic corals. Photosynthetic corals have higher /sup 13/C//sup 12/C ratios due to the preferential removal of /sup 12/C (as organic carbon) from the reservoir of dissolved inorganic carbon. The oxygen isotopic variations in corals can be used to reconstruct past sea surface temperatures to an accuracy of about 0.5/sup 0/C. The carbon isotopic content of photosynthetic corals provides an indication of cloudiness. Using isotopic data from Galapagos corals, it was possible to construct proxy histories of the El Nino phenomenon. The physiology of skeletogenesis appears to be surprisingly similar in calcium carbonate, calcium phosphate, and silica precipitating systems.

  8. Paleoclimate Reconstruction at Lamanai, Belize Using Oxygen-Isotope Tropical Dendrochronology

    NASA Astrophysics Data System (ADS)

    Prentice, A.; Webb, E. A.; White, C. D.; Graham, E.

    2009-05-01

    Tropical dendrochronology can be complicated because many trees growing in these areas lack distinct visible annual rings. However, the oxygen-isotope composition of wood growing in tropical regions can provide a record of seasonal fluctuations in the amount of precipitation even when visible rings are absent. Variations in the oxygen-isotope compositions of cellulose as the trees grow can be related to the relative timing of wet and dry seasons and used to identify periods of drought. In this study, the oxygen-isotope composition was determined for cellulose extracted from living trees at the site of Lamanai, Belize to assess the variation in oxygen-isotope values that result from heterogeneity within individual tree rings and seasonal fluctuations in amount of precipitation. In temperate regions, the latewood rings that form during periods of reduced growth are traditionally selected for oxygen-isotope analysis of cellulose because their oxygen-isotope compositions are more directly influenced by climate and precipitation during the growing season. However, in tropical isotope dendrochronology, when visible rings are present, detailed sampling of both the light coloured earlywood and the denser latewood is required. At Lamanai, a seasonal signal was evident in the oxygen- isotope composition of the cellulose when tree rings were sectioned in very small increments (approximately every mm), sub-sampling both earlywood and latewood. However, the visible rings did not always correspond with minimum or maximum oxygen-isotope values. As a result, the amplitude of the oxygen-isotope signal obtained by considering only latewood samples is smaller than that obtained from fine-increment sampling. Hence, the oxygen-isotope values of latewood samples alone did not provide accurate data for climate reconstruction. Multiple series of latewood samples extracted from different cross-sections of the same tree did not consistently show the same trends in oxygen isotope values

  9. Ca isotope variations in Allende

    NASA Technical Reports Server (NTRS)

    Jungck, M. H. A.; Shimamura, T.; Lugmair, G. W.

    1984-01-01

    Ca-isotope measurements of Allende Ca-Al-rich inclusions (CAIs), together with those on an apatite-enriched fraction from Orgueil, indicate the existence of widespread excesses on the neutron-rich isotope Ca-48. Isotopic anomalies are noted in 7 out of 11 CAIs analyzed. This abundance of isotopic excesses places Ca alongside Ti and O, although no clear correlation has yet been found between Ca-48 and Ti-50, which are thought to be coproduced by neutron-rich nucleosynthetic processes within stars. It is suggested that the higher volatility of Ca, by comparison with Ti compounds, led to a variable dilution with isotopically normal Ca in vaporization and recondensation processes in stellar envelopes, the interstellar medium, and/or the solar nebula.

  10. Oxygen Isotope Systematics of Almahata Sitta

    NASA Technical Reports Server (NTRS)

    Kita, N. T.; Goodrich, C. A.; Herrin, J. S.; Shaddad, M. H.; Jenniskens, P.

    2011-01-01

    The Almahata Sitta (hereafter "AHS") meteorite was derived from an impact of asteroid 2008TC3 on Earth and is classified as an anomalous polymict ureilite. More than 600 meteorite fragments have been recovered from the strewnfield. Previous reports indicate that these fragments consist mainly of ureilitic materials with textures and compositions, while some fragments are found to be chondrites of a wide range of chemical classes. Bulk oxygen three isotope analyses of ureilitic fragments from AHS fall close to the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line similar to ureilites. In order to further compare AHS with known ureilites, we performed high precision SIMS (Secondary Ion Mass Spectrometer) oxygen isotope analyses of some AHS samples

  11. Oxygen and hydrogen isotope geochemistry of zeolites

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  12. Biological oxygen productivity during the last 60,000 years from triple oxygen isotope measurements

    NASA Astrophysics Data System (ADS)

    Blunier, Thomas; Barnett, Bruce; Bender, Michael L.; Hendricks, Melissa B.

    2002-07-01

    The oxygen isotope signature of atmospheric O2 is linked to the isotopic signature of seawater (H2O) through photosynthesis and respiration. Fractionation during these processes is mass dependent, affecting δ17O about half as much as δ18O. An ``anomalous'' fractionation process, which changes δ17O and δ18O of O2 about equally, takes place during isotope exchange between O2 and CO2 in the stratosphere. The relative rates of biologic O2 production and stratospheric processing determine the relationship between δ17O and δ18O of O2 in the atmosphere. Variations of this relationship thus allow us to estimate changes in the rate of mass-dependent O2 production by photosynthesis versus the rate of O2-CO2 exchange in the stratosphere with about equal fractionations of δ17O and δ18O. In this study we reconstruct total oxygen productivity for the last glacial, the last glacial termination, and the early Holocene from the triple isotope composition of atmospheric oxygen trapped in ice cores. With a box model we estimate that total biogenic productivity was only ~76-83% of today for the glacial and was probably lower than today during the glacial-interglacial transition and the early Holocene. Depending on how reduced the oxygen flux from the land biosphere was during the glacial, the oxygen flux from the glacial ocean biosphere was 88-140% of its present value.

  13. Defining uncertainty and error in planktic foraminiferal oxygen isotope measurements

    NASA Astrophysics Data System (ADS)

    Fraass, A. J.; Lowery, C. M.

    2017-02-01

    Foraminifera are the backbone of paleoceanography. Planktic foraminifera are one of the leading tools for reconstructing water column structure. However, there are unconstrained variables when dealing with uncertainty in the reproducibility of oxygen isotope measurements. This study presents the first results from a simple model of foraminiferal calcification (Foraminiferal Isotope Reproducibility Model; FIRM), designed to estimate uncertainty in oxygen isotope measurements. FIRM uses parameters including location, depth habitat, season, number of individuals included in measurement, diagenesis, misidentification, size variation, and vital effects to produce synthetic isotope data in a manner reflecting natural processes. Reproducibility is then tested using Monte Carlo simulations. Importantly, this is not an attempt to fully model the entire complicated process of foraminiferal calcification; instead, we are trying to include only enough parameters to estimate the uncertainty in foraminiferal δ18O records. Two well-constrained empirical data sets are simulated successfully, demonstrating the validity of our model. The results from a series of experiments with the model show that reproducibility is not only largely controlled by the number of individuals in each measurement but also strongly a function of local oceanography if the number of individuals is held constant. Parameters like diagenesis or misidentification have an impact on both the precision and the accuracy of the data. FIRM is a tool to estimate isotopic uncertainty values and to explore the impact of myriad factors on the fidelity of paleoceanographic records, particularly for the Holocene.

  14. Planetary Accretion, Oxygen Isotopes and the Central Limit Theorem

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Hill, Hugh G. M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The accumulation of presolar dust into increasingly larger aggregates (CAIs and Chondrules, Asteroids, Planets) should result in a very drastic reduction in the numerical spread in oxygen isotopic composition between bodies of similar size, in accord with the Central Limit Theorem. Observed variations in oxygen isotopic composition are many orders of magnitude larger than would be predicted by a simple, random accumulation model that begins in a well-mixed nebula - no matter which size-scale objects are used as the beginning or end points of the calculation. This discrepancy implies either that some as yet unspecified process acted on the solids in the Solar Nebula to increase the spread in oxygen isotopic composition during each and every stage of accumulation or that the nebula was heterogeneous and maintained this heterogeneity throughout most of nebular history. Large-scale nebular heterogeneity would have significant consequences for many areas of cosmochemistry, including the application of some well-known isotopic systems to the dating of nebular events or the prediction of bulk compositions of planetary bodies on the basis of a uniform cosmic abundance.

  15. The Oxygen Isotopic Composition of the Sun

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.; Kallio, A.; Heber, V. S.; Jarzebinski, G.; Mao, P.; Coath, C.; Kunihiro, T.; Wiens, R. C.; Judith, A.; Burnett, D. S.

    2010-12-01

    An accurate and precise determination of the oxygen isotopic composition of the Sun is the highest priority scientific goal of the Genesis Mission [1] as such data would provide a baseline from which one could interpret the oxygen isotopic anomalies found at all spatial scales in inner solar system materials. We have measured oxygen isotope compositions of implanted solar wind in 40 spots along a radial traverse of the Genesis SiC target sample 60001 by depth profiling with the UCLA MegaSIMS [2]. Mass-dependent fractionation induced by the solar wind concentrator [3] ion optics was corrected by comparison of the concentrator 22Ne/20Ne with that measured in a bulk solar wind target (diamond-like carbon on Si, [4]). The solar wind captured at L1 has an isotopic composition of (δ18O, δ17O) ≈ (-99, -79)‰, a value which is far removed from the terrestrial mass fractionation line. Profiles from the central portion of the target, where solar concentrations are highest and background corrections minimal, yield a mean Δ17O = -28.3 ± 1.8 ‰ indicating that the Earth and other planetary materials from the inner solar system are highly depleted in 16O relative to the solar wind. A mass-dependent fractionation of ~ -20%/amu in the acceleration of solar wind is required if we hypothesize that the photospheric oxygen isotope value, which represents the bulk starting composition of the solar system, is on the 16O-mixing line characteristic of refractory phase in primitive meteorites [5]. With this assumption, our preferred value for the bulk solar oxygen isotope composition is δ18O ≈ δ17O ≈ -57‰. A mechanism is required to fractionate oxygen isotopes in a non-mass-dependent manner to deplete 16O by ~6 to 7% in the rocky materials of the solar nebula. As oxygen is the third most abundant element in the solar system, and the most abundant in the terrestrial planets, this mechanism must operate on a large scale. Isotope-selective photochemistry, for example as in

  16. Iron isotope fractionation and the oxygen fugacity of the mantle.

    PubMed

    Williams, Helen M; McCammon, Catherine A; Peslier, Anne H; Halliday, Alex N; Teutsch, Nadya; Levasseur, Sylvain; Burg, Jean-Pierre

    2004-06-11

    The oxygen fugacity of the mantle exerts a fundamental influence on mantle melting, volatile speciation, and the development of the atmosphere. However, its evolution through time is poorly understood. Changes in mantle oxidation state should be reflected in the Fe3+/Fe2+ of mantle minerals, and hence in stable iron isotope fractionation. Here it is shown that there are substantial (1.7 per mil) systematic variations in the iron isotope compositions (delta57/54Fe) of mantle spinels. Spinel delta57/54Fe values correlate with relative oxygen fugacity, Fe3+/sigmaFe, and chromium number, and provide a proxy of changes in mantle oxidation state, melting, and volatile recycling.

  17. Isotope-abundance variations of selected elements (IUPAC technical report)

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; Rieder, S.E.; Rosman, K.J.R.; Roth, E.; Taylor, P.D.P.; Vocke, R.D.; Xiao, Y.K.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic-weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic-weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope-abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope-abundance variations potentially are large enough to result in future expansion of their atomic-weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic-weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio.

  18. Oxygen isotopes in nitrite: Analysis, calibration, and equilibration

    USGS Publications Warehouse

    Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.

    2007-01-01

    Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in "mixed" samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant. ?? 2007 American Chemical Society.

  19. Oxygen Isotope Measurements of a Rare Murchison Type A CAI and Its Rim

    NASA Technical Reports Server (NTRS)

    Matzel, J. E. P.; Simon, J. I.; Hutcheon, I. D.; Jacobsen, B.; Simon, S. B.; Grossman, L.

    2013-01-01

    Ca-, Al-rich inclusions (CAIs) from CV chondrites commonly show oxygen isotope heterogeneity among different mineral phases within individual inclusions reflecting the complex history of CAIs in both the solar nebula and/or parent bodies. The degree of isotopic exchange is typically mineral-specific, yielding O-16-rich spinel, hibonite and pyroxene and O-16-depleted melilite and anorthite. Recent work demonstrated large and systematic variations in oxygen isotope composition within the margin and Wark-Lovering rim of an Allende Type A CAI. These variations suggest that some CV CAIs formed from several oxygen reservoirs and may reflect transport between distinct regions of the solar nebula or varying gas composition near the proto-Sun. Oxygen isotope compositions of CAIs from other, less-altered chondrites show less intra-CAI variability and 16O-rich compositions. The record of intra-CAI oxygen isotope variability in CM chondrites, which commonly show evidence for low-temperature aqueous alteration, is less clear, in part because the most common CAIs found in CM chondrites are mineralogically simple (hibonite +/- spinel or spinel +/- pyroxene) and are composed of minerals less susceptible to O-isotopic exchange. No measurements of the oxygen isotope compositions of rims on CAIs in CM chondrites have been reported. Here, we present oxygen isotope data from a rare, Type A CAI from the Murchison meteorite, MUM-1. The data were collected from melilite, hibonite, perovskite and spinel in a traverse into the interior of the CAI and from pyroxene, melilite, anorthite, and spinel in the Wark-Lovering rim. Our objectives were to (1) document any evidence for intra-CAI oxygen isotope variability; (2) determine the isotopic composition of the rim minerals and compare their composition(s) to the CAI interior; and (3) compare the MUM-1 data to oxygen isotope zoning profiles measured from CAIs in other chondrites.

  20. OXYGEN ISOTOPIC COMPOSITIONS OF SOLAR CORUNDUM GRAINS

    SciTech Connect

    Makide, Kentaro; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2009-11-20

    Oxygen is one of the major rock-forming elements in the solar system and the third most abundant element of the Sun. Oxygen isotopic composition of the Sun, however, is not known due to a poor resolution of astronomical spectroscopic measurements. Several DELTA{sup 17}O values have been proposed for the composition of the Sun based on (1) the oxygen isotopic measurements of the solar wind implanted into metallic particles in lunar soil (< -20 per mille by Hashizume and Chaussidon and approx +26 per mille by Ireland et al.), (2) the solar wind returned by the Genesis spacecraft (-27 per mille +- 6 per mille by McKeegan et al.), and (3) the mineralogically pristine calcium-aluminum-rich inclusions (CAIs) (-23.3 per mille +- 1.9 per mille by Makide et al. and -35 per mille by Gounelle et al.). CAIs are the oldest solar system solids, and are believed to have formed by evaporation, condensation, and melting processes in hot nebular region(s) when the Sun was infalling (Class 0) or evolved (Class 1) protostar. Corundum (Al{sub 2}O{sub 3}) is thermodynamically the first condensate from a cooling gas of solar composition. Corundum-bearing CAIs, however, are exceptionally rare, suggesting either continuous reaction of the corundum condensates with a cooling nebular gas and their replacement by hibonite (CaAl{sub 12}O{sub 19}) or their destruction by melting together with less refractory condensates during formation of igneous CAIs. In contrast to the corundum-bearing CAIs, isolated micrometer-sized corundum grains are common in the acid-resistant residues from unmetamorphosed chondrites. These grains could have avoided multistage reprocessing during CAI formation and, therefore, can potentially provide constraints on the initial oxygen isotopic composition of the solar nebula, and, hence, of the Sun. Here we report oxygen isotopic compositions of approx60 micrometer-sized corundum grains in the acid-resistant residues from unequilibrated ordinary chondrites (Semarkona (LL3

  1. Devils Hole paleotemperatures and implications for oxygen isotope equilibrium fractionation

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; Affek, Hagit P.; Dublyansky, Yuri; Spötl, Christoph

    2014-08-01

    Subaqueous calcite in Devils Hole, Nevada, was growing continuously from slightly super-saturated groundwater, providing a 570 kyr-long δO18 paleoclimate record. Due to its very slow growth it has been assumed to have grown under conditions of isotopic equilibrium. However, its Holocene δO18 value is 1.5‰ higher than predicted by laboratory-precipitation-based oxygen isotope thermometer calibrations. The suggestion that Devils Hole calcite anchors the isotope thermometer to more 18O-enriched values has stirred a debate as to which paleothermometer calibration is relevant for paleoclimate and casts doubt on the validity of δO18-based paleotemperatures. We used clumped isotopes to test the assumptions of the Devils Hole alternative 18O-thermometer. Carbonate clumped isotopes are a temperature proxy that measures the abundance of 13Csbnd 18O bonds in CaCO3. This proxy is independent of the water composition and therefore gives independent estimates of temperatures when calcite forms at thermodynamic and isotopic equilibrium. We find that Devils Hole water paleotemperatures were constant at 30.6±2.6 °C between 27 and 180 ka, similarly to the modern groundwater temperature of 32.8-34.3 °C. The proximity of the Devils Hole clumped isotope data to values expected based on modern groundwater temperatures supports the notion that Devils Hole calcite grew under equilibrium conditions. Therefore, the commonly used laboratory-based δO18-temperature calibrations should be reconsidered. The constant water temperature over the glacial-interglacial cycles indicates that the long Devils Hole δO18 record reflects only variations in the groundwater δO18 values and as such, represents a valuable archive of paleoclimate and isotope paleohydrology.

  2. Biological Oxygen Productivity Over The Last Glacial Termination From Triple Oxygen Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Blunier, T.; Bender, M. L.; Hendricks, M. B.

    The atmospheric oxygen isotope signature of O2 is linked to the oxygen signature of seawater through photosynthesis and respiration. Fractionation during these pro- cesses is mass dependent affecting 17O about half as much as 18O. A mass indepen- dent fractionation process takes place during isotope exchange between O2 and CO2 in the stratosphere (Thiemens, 1999; Luz et al., 1999). The magnitude of the mass- independent anomaly in the triple isotope composition of O2 depends on relative rates of biological O2 cycling and photochemical reactions in the stratosphere. Variations of this anomaly thus allows us to estimate changes of mass dependent O2 production by photosynthesis versus mass independent O2-CO2 exchange in the stratosphere. We reconstruct total oxygen productivity for the past from 17O and 18O measure- ments of O2 trapped in ice cores. With a box model we estimate that the total biogenic productivity was only 76-83 % of today for the glacial and was probably still lower than today during the glacial-interglacial transition and the early Holocene. In principle we can calculate the oxygen flux from the ocean biosphere if we know the oxygen flux from the land biosphere. Calculated ocean production is very sensitive to the estimate of land biosphere production. The latter term remains uncertain, however, and we can presently only constrain glacial ocean production to 88 to 140 % of the present value.

  3. Climatic influences on the oxygen isotopic composition of biogenic silica in prairie grass

    NASA Astrophysics Data System (ADS)

    Webb, Elizabeth A.; Longstaffe, Fred J.

    2002-06-01

    Samples of Calamovilfa longifolia were collected from across the North American prairies to investigate the relationship between the oxygen-isotope composition of biogenic silica (phytoliths) deposited in this grass and relative humidity, temperature, and the oxygen-18 enrichment of soil water relative to local precipitation. The δ 18O values of silica in nontranspiring tissues were controlled by soil-water composition and temperature, whereas the oxygen-18 content of silica formed in leaf and inflorescence tissues was enriched further by transpiration. Accurate calculation of growing temperature was possible only when the oxygen-isotope compositions of both stem silica and soil water were known. However, the oxygen-isotope values of stem phytoliths can be used to calculate the variation in the isotopic composition of soil water across a North American temperature gradient. As plant organic matter decays and phytoliths are transferred to the soil, the temperature and soil-water signals carried by the oxygen-isotope composition of silica from nontranspiring tissues can be masked by the oxygen-18 enrichment of phytoliths from transpiring tissues. However, the overall oxygen-isotope composition of a soil-phytolith assemblage can be related to temperature using an empirical relationship based on temperature and the difference between soil-phytolith and estimated soil-water oxygen-isotope compositions.

  4. Oxygen isotope homogeneity and trace element variations in glass within 250-79 ka Central Plateau Member rhyolite lavas from the Yellowstone Volcanic System

    NASA Astrophysics Data System (ADS)

    Loewen, M.; Bindeman, I. N.; Befus, K. S.

    2014-12-01

    The 250-79 ka Central Plateau Member CPM) rhyolites are represented mostly by large volume lava flows with less than 10% crystals and are the youngest eruptive products inside of the 620 ka Yellowstone Caldera, formed after eruption of Lava Creek Tuff (LCT). These flows are low-δ18O requiring tens of percent of shallowly remelted hydrothermally-altered material and provide evidence into how large silicic magma systems evolve before and after major caldera-forming cycles. We have developed a technique to directly analyze small micro-domains of rhyolite glass for precise (better than 0.1 ‰) δ18O determination coupled with D/H, [H2O], trace elements, and Pb isotopes. We present evidence for striking δ18O homogeneity (4.48 ± 0.12 ‰, 2 standard deviations of all analyses) both across small (1 km3) and large (up to 70 km3) flows and between flows erupted over almost 200 ka. D/H analyses in the glasses are highly degassed and are not affected by secondary hydration (H2O = 0.05 to 0.28 wt. %, δD = -99 to -171 ‰). Trace element analyses show broad temporal compositional evolution consistent with increasing feldspar fractionation over time: the oldest Scaup Lake flow contains 8 ppm Sr, 330 ppm Rb, and 270 ppm Ba to the youngest Pitchstone Plateau flow contains 0.7-1.9 ppm Sr, 180-250 ppm Rb, 18-25 ppm Ba. We also show small but recognizable trace element heterogeneity within lava flows unrelated to long-term geochemical trends. Homogeneity of oxygen in melt from individual lava flows across the LCT caldera is consistent with convective homogenization of a large magma body generated by remelting of post and pre LCT hydrothermally-altered and likely highly variable, low- δ18O rocks. In combination with trace element data we show that the CPM rhyolites have also undergone a broad, caldera-wide differentiation trend with no evidence for significant recharge. We are reconciling diverse geochemical data streams to develop a comprehensive petrologic model for the

  5. Oxygen isotope geochemistry of The Geysers reservoir rocks, California

    SciTech Connect

    Gunderson, Richard P.; Moore, Joseph N.

    1994-01-20

    Whole-rock oxygen isotopic compositions of Late Mesozoic graywacke, the dominant host rock at The Geysers, record evidence of a large liquid-dominated hydrothermal system that extended beyond the limits of the present steam reservoir. The graywackes show vertical and lateral isotopic variations that resulted from gradients in temperature, permeability, and fluid composition during this early liquid-dominated system. All of these effects are interpreted to have resulted from the emplacement of the granitic "felsite" intrusion 1-2 million years ago. The {delta}{sup 18}O values of the graywacke are strongly zoned around a northwest-southeast trending low located near the center of and similar in shape to the present steam system. Vertical isotopic gradients show a close relationship to the felsite intrusion. The {delta}{sup 18}O values of the graywacke decrease from approximately 15 per mil near the surface to 4-7 per mil 300 to 600 m above the intrusive contact. The {delta}{sup 18}O values then increase downward to 8-10 per mil at the felsite contact, thereafter remaining nearly constant within the intrusion itself. The large downward decrease in {delta}{sup 18}O values are interpreted to be controlled by variations in temperature during the intrusive event, ranging from 150{degree}C near the surface to about 425{degree}C near the intrusive contact. The upswing in {delta}{sup 18}O values near the intrusive contact appears to have been caused by lower rock permeability and/or heavier fluid isotopic composition there. Lateral variations in the isotopic distributions suggests that the effects of temperature were further modified by variations in rock permeability and/or fluid-isotopic composition. Time-integrated water:rock ratios are thought to have been highest within the central isotopic low where the greatest isotopic depletions are observed. We suggest that this region of the field was an area of high permeability within the main upflow zone of the liquid

  6. Oxygen isotopic ratios in intermediate-mass red giants

    NASA Astrophysics Data System (ADS)

    Lebzelter, T.; Straniero, O.; Hinkle, K. H.; Nowotny, W.; Aringer, B.

    2015-06-01

    Context. The abundances of the three main isotopes of oxygen are altered in the course of the CNO-cycle. When the first dredge-up mixes the burning products to the surface, the nucleosynthesis processes can be probed by measuring oxygen isotopic ratios. Aims: By measuring 16O/17O and 16O/18O in red giants of known mass we compare the isotope ratios with predictions from stellar and galactic evolution modelling. Methods: Oxygen isotopic ratios were derived from the K-band spectra of six red giants. The sample red giants are open cluster members with known masses of between 1.8 and 4.5 M⊙. The abundance determination employs synthetic spectra calculated with the COMARCS code. The effect of uncertainties in the nuclear reaction rates, the mixing length, and of a change in the initial abundance of the oxygen isotopes was determined by a set of nucleosynthesis and mixing models using the FUNS code. Results: The observed 16O/17O ratios are in good agreement with the model results, even if the measured values do not present clear evidence of a variation with the stellar mass. The observed 16O/18O ratios are clearly lower than the predictions from our reference model. Variations in nuclear reaction rates and mixing length parameter both have only a very weak effect on the predicted values. The 12C/13C ratios of the K giants studied implies the absence of extra-mixing in these objects. Conclusions: A comparison with galactic chemical evolution models indicates that the 16O/18O abundance ratio underwent a faster decrease than predicted. To explain the observed ratios, the most likely scenario is a higher initial 18O abundance combined with a lower initial 16O abundance. Comparing the measured 18O/17O ratio with the corresponding value for the interstellar medium points towards an initial enhancement of 17O as well. Limitations imposed by the observations prevent this from being a conclusive result.

  7. The oxygen isotope equilibrium fractionation between sulfite species and water

    NASA Astrophysics Data System (ADS)

    Müller, Inigo A.; Brunner, Benjamin; Breuer, Christian; Coleman, Max; Bach, Wolfgang

    2013-11-01

    Sulfite is an important sulfoxy intermediate in oxidative and reductive sulfur cycling in the marine and terrestrial environment. Different aqueous sulfite species exist, such as dissolved sulfur dioxide (SO2), bisulfite (HSO3-), pyrosulfite (S2O52-) and sulfite sensu stricto (SO32-), whereas their relative abundance in solution depends on the concentration and the pH. Conversion of one species into another is rapid and involves in many cases incorporation of oxygen from, or release of oxygen to, water (e.g. SO2 + H2O ↔ HSO3- + H+), resulting in rapid oxygen isotope exchange between sulfite species and water. Consequently, the oxygen isotope composition of sulfite is strongly influenced by the oxygen isotope composition of water. Since sulfate does not exchange oxygen isotopes with water under most earth surface conditions, it can preserve the sulfite oxygen isotope signature that it inherits via oxidative and reductive sulfur cycling. Therefore, interpretation of δO values strongly hinges on the oxygen isotope equilibrium fractionation between sulfite and water which is poorly constrained. This is in large part due to technical difficulties in extraction of sulfite from solution for oxygen isotope analysis.

  8. Thermophysiology of Tyrannosaurus rex: Evidence from Oxygen Isotopes.

    PubMed

    Barrick, R E; Showers, W J

    1994-07-08

    The oxygen isotopic composition of vertebrate bone phosphate (delta(p)) is related to ingested water and to the body temperature at which the bone forms. The delta(p) is in equilibrium with the individual's body water, which is at a physiological steady state throughout the body. Therefore, intrabone temperature variation and the mean interbone temperature differences of well-preserved fossil vertebrates can be determined from the deltap variation. Values of delta(p) from a well-preserved Tyrannosaurus rex suggest that this species maintained homeothermy with less than 4 degrees C of variability in body temperature. Maintenance of homeothermy implies a relatively high metabolic rate that is similar to that of endotherms.

  9. Oxygen Isotope Variability within Nautilus Shell Growth Bands

    PubMed Central

    2016-01-01

    Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands. PMID:27100183

  10. Oxygen Isotope Variability within Nautilus Shell Growth Bands.

    PubMed

    Linzmeier, Benjamin J; Kozdon, Reinhard; Peters, Shanan E; Valley, John W

    2016-01-01

    Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands.

  11. Oxygen isotope constraints on the alteration temperatures of CM chondrites

    NASA Astrophysics Data System (ADS)

    Verdier-Paoletti, Maximilien J.; Marrocchi, Yves; Avice, Guillaume; Roskosz, Mathieu; Gurenko, Andrey; Gounelle, Matthieu

    2017-01-01

    We report a systematic oxygen isotopic survey of Ca-carbonates in nine different CM chondrites characterized by different degrees of alteration, from the least altered known to date (Paris, 2.7-2.8) to the most altered (ALH 88045, CM1). Our data define a continuous trend that crosses the Terrestrial Fractionation Line (TFL), with a general relationship that is indistinguishable within errors from the trend defined by both matrix phyllosilicates and bulk O-isotopic compositions of CM chondrites. This bulk-matrix-carbonate (BMC) trend does not correspond to a mass-dependent fractionation (i.e., slope 0.52) as it would be expected during fluid circulation along a temperature gradient. It is instead a direct proxy of the degree of O-isotopic equilibration between 17,18O-rich fluids and 16O-rich anhydrous minerals. Our O-isotopic survey revealed that, for a given CM, no carbonate is in O-isotopic equilibrium with its respective surrounding matrix. This precludes direct calculation of the temperature of carbonate precipitation. However, the O-isotopic compositions of alteration water in different CMs (inferred from isotopic mass-balance calculation and direct measurements) define another trend (CMW for CM Water), parallel to BMC but with a different intercept. The distance between the BMC and CMW trends is directly related to the temperature of CM alteration and corresponds to average carbonates and serpentine formation temperatures of 110 °C and 75 °C, respectively. However, carbonate O-isotopic variations around the BMC trend indicate that they formed at various temperatures ranging between 50 and 300 °C, with 50% of the carbonates studied here showing precipitation temperature higher than 100 °C. The average Δ17O and the average carbonate precipitation temperature per chondrite are correlated, revealing that all CMs underwent similar maximum temperature peaks, but that altered CMs experienced protracted carbonate precipitation event(s) at lower temperatures than

  12. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa.

    PubMed

    Beukes, N J; Klein, C; Kaufman, A J; Hayes, J M

    1990-01-01

    The transition zone comprises Campbellrand microbialaminated (replacing "cryptalgalaminate") limestone and shale, with minor dolomite, conformably overlain by the Kuruman Iron Formation of which the basal part is characterized by siderite-rich microbanded iron-formation with minor magnetite and some hematite-containing units. The iron-formation contains subordinate intraclastic and microbialaminated siderite mesobands and was deposited in deeper water than the limestones. The sequence is virtually unaltered with diagenetic mineral assemblages reflecting a temperature interval of about 110 degrees to 170 degrees C and pressures of 2 kbars. Carbonate minerals in the different rock types are represented by primary micritic precipitates (now recrystallized to microsparite), early precompactional sparry cements and concretions, deep burial limpid euhedral sparites, and spar cements precipitated from metamorphic fluids in close contact with diabase sills. Paragenetic pathways of the carbonate minerals are broadly similar in all lithofacies with kerogen intimately associated with them. Kerogen occurs as pigmentation in carbonate crystals, as reworked organic detritus in clastic-textured carbonate units, and as segregations of kerogen pigment around late diagenetic carbonate crystals. Locally kerogen may also be replaced by carbonate spar. Carbon isotope compositions of the carbonate minerals and kerogen are dependent on their mode of occurrence and on the composition of the dominant carbonate species in a specific lithofacies. Integration of sedimentary, petrographic, geochemical, and isotopic results makes it possible to distinguish between depositional, early diagenetic, deep burial, and metamorphic effects on the isotopic compositions of the carbonate minerals and the kerogen in the sequence. Major conclusions are that deep burial thermal decarboxylation led to 13C depletion in euhedral ferroan sparites and 13C enrichment in kerogen (organic carbon). Metamorphic

  13. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa

    NASA Technical Reports Server (NTRS)

    Beukes, N. J.; Klein, C.; Kaufman, A. J.; Hayes, J. M.

    1990-01-01

    The transition zone comprises Campbellrand microbialaminated (replacing "cryptalgalaminate") limestone and shale, with minor dolomite, conformably overlain by the Kuruman Iron Formation of which the basal part is characterized by siderite-rich microbanded iron-formation with minor magnetite and some hematite-containing units. The iron-formation contains subordinate intraclastic and microbialaminated siderite mesobands and was deposited in deeper water than the limestones. The sequence is virtually unaltered with diagenetic mineral assemblages reflecting a temperature interval of about 110 degrees to 170 degrees C and pressures of 2 kbars. Carbonate minerals in the different rock types are represented by primary micritic precipitates (now recrystallized to microsparite), early precompactional sparry cements and concretions, deep burial limpid euhedral sparites, and spar cements precipitated from metamorphic fluids in close contact with diabase sills. Paragenetic pathways of the carbonate minerals are broadly similar in all lithofacies with kerogen intimately associated with them. Kerogen occurs as pigmentation in carbonate crystals, as reworked organic detritus in clastic-textured carbonate units, and as segregations of kerogen pigment around late diagenetic carbonate crystals. Locally kerogen may also be replaced by carbonate spar. Carbon isotope compositions of the carbonate minerals and kerogen are dependent on their mode of occurrence and on the composition of the dominant carbonate species in a specific lithofacies. Integration of sedimentary, petrographic, geochemical, and isotopic results makes it possible to distinguish between depositional, early diagenetic, deep burial, and metamorphic effects on the isotopic compositions of the carbonate minerals and the kerogen in the sequence. Major conclusions are that deep burial thermal decarboxylation led to 13C depletion in euhedral ferroan sparites and 13C enrichment in kerogen (organic carbon). Metamorphic

  14. Spatial variation in photosynthetic CO(2) carbon and oxygen isotope discrimination along leaves of the monocot triticale (Triticum × Secale) relates to mesophyll conductance and the Péclet effect.

    PubMed

    Kodama, Naomi; Cousins, Asaph; Tu, Kevin P; Barbour, Margaret M

    2011-09-01

    Carbon and oxygen isotope discrimination of CO(2) during photosynthesis (Δ(13)C(obs) and Δ(18)O(obs)) were measured along a monocot leaf, triticale (Triticum × Secale). Both Δ(13)C(obs) and Δ(18)O(obs) increased towards the leaf tip. While this was expected for Δ(18)O(obs) , because of progressive enrichment of leaf water associated with the Péclet effect, the result was surprising for Δ(13) C(obs). To explore parameters determining this pattern, we measured activities of key photosynthetic enzymes [ribulose bis-phosphate carboxylase-oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPC) and carbonic anhydrase) as well as maximum carboxylation and electron transport rates (V(cmax) and J(max)) along the leaf. Patterns in leaf internal anatomy along the leaf were also quantified. Mesophyll conductance (g(m)) is known to have a strong influence on Δ(13)C(obs) , so we used three commonly used estimation methods to quantify variation in g(m) along the leaf. Variation in Δ(13)C(obs) was correlated with g(m) and chloroplast surface area facing the intercellular air space, but unrelated to photosynthetic enzyme activity. The observed variation could cause errors at higher scales if the appropriate portion of a leaf is not chosen for leaf-level measurements and model parameterization. Our study shows that one-third of the way from the base of the leaf represents the most appropriate portion to enclose in the leaf chamber.

  15. Silicon and oxygen isotopic trends in Mesozoic radiolarites

    NASA Astrophysics Data System (ADS)

    Bôle, Maximlien; Baumgartner Peter, O.; Lukas, Baumgartner; Anne-Sophie, Bouvier; Rie, Hori; Masayuki, Ikeda

    2016-04-01

    Silicon and oxygen isotopes (δ30Si and δ18O) of siliceous tests (diatoms, sponges and radiolarians) preserve environmental signatures in unconsolidated sediments, but few studies show such signatures for ancient biosilicieous rocks. In Precambrian cherts from greenstone belts, small scaled isotopic variations were interpreted as a primary diagenetic feature. They were used, coupled to mean δ18O, to reconstruct seawater temperature at which cherts precipitated. Here, we examine stable isotopes in Mesozoic biogenic cherts that may also preserve an environmental signature. We measured δ30Si and δ18O in situ by SIMS, in the chalcedony of individual radiolarian tests preserved in Mesozoic radiolarites. Microanalysis of chalcedony, rather than the bulk rock isotopic composition, is likely to reveal a palaeoenvironmental signal, since it is derived from biogenic opal, the most mobile silica phase during earliest diagenesis. Our data reveal clear trends through several Mesozoic radiolarite sections from Panthalassa (Kiso River, Japan) and Western Tethys (Sogno, Italy). δ18O records measured in radiolarites show a relatively good correlation to δ18O-variations of Mesozoic low magnesium calcite shells, which are commonly used as a palaeotemperature proxy. Once these variations, attributed to seawater temperature, are removed, the residual δ18O trends are opposite to the δ30Si trends. δ30Si increases from Middle Triassic to Early Jurassic in the Kiso River sections and decrease during the Middle Jurassic in the Sogno section. The observed d30Si-trends are likely to represent a palaeoenvironmental signal, because they are not compatible with simple models of progressive diagenesis along P/T-paths (or depth below sea bottom in drill holes). Among the palaeoenvironmental factors that may have influenced these trends are the oceanic silica cycle changing though time, oceanic circulation and/or the palaeogeographic location of each studied site. Siliceous organisms are

  16. Oxygen isotopic compositions of chondrules in Allende and ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Clayton, R. N.; Mayeda, T. K.; Hutcheon, I. D.; Molini-Velsko, C.; Onuma, N.; Ikeda, Y.; Olsen, E. J.

    1983-01-01

    The ferromagnesian chondrules in Allende follow a trend in the oxygen three-isotope plot that diverges significantly from the 16-O mixing line defined by light and dark inclusions and the matrix of the meteorite. The trend probably results from isotopic exchange with an external gaseous reservoir during the process of chondrule formation sometime after the establishment of the isotopic compositions of the inclusions and matrix. The Allende chondrules approach, but do not reach, the isotopic compositions of chondrules in unequilibrated ordinary chondrites, implying exchange with a similar ambient gas, but isotopically different solid precursors for the two types of meteorite.

  17. Hafnium isotope variations in oceanic basalts.

    USGS Publications Warehouse

    Patchett, P.J.; Tatsumoto, M.

    1980-01-01

    Routine low-blank chemistry and 0.01-0.04% precision on the ratio 176Hf/177Hf allows study of Hf isotopic variations, generated by beta --decay of 176Lu, in volcanic rocks derived from the suboceanic mantle. Normalized to 176Hf/177Hf = 0.7325, 176Hf/177Hf ranges 0.2828-0.2835, based on 24 basalt samples. 176Hf/177Hf is positively correlated with 143Nd/144Nd, and negatively correlated with 87Sr/86Sr and 206Pb/204Pb. Along the Iceland-Reykjanes ridge traverse, 176Hf/177Hf increases southwards. The coherence of Hf, Nd and Sr isotopes in the oceanic mantle allows an approximate bulk Earth 176Hf/177Hf of 0.28295 to be inferred from the bulk Earth 143Nd/144Nd. This requires the bulk Earth Lu/Hf to be 0.25, similar to that of the Juvinas eucrite. 60% of the Hf isotopic variation in oceanic basalts occurs among mid-ocean ridge samples. Lu-Hf fractionation probably decouples from Sm-Nd and Rb-Sr fractionation in very depleted source regions, with high Lu/Hf, and consequent high 176Hf/177Hf ratios developing in mantle residual from partial melting. (Authors' abstract) -T.R.

  18. Holocene precipitation seasonality captured by a dual hydrogen and oxygen isotope approach at Steel Lake, Minnesota

    NASA Astrophysics Data System (ADS)

    Henderson, Anna K.; Nelson, David M.; Hu, Feng Sheng; Huang, Yongsong; Shuman, Bryan N.; Williams, John W.

    2010-12-01

    Middle-Holocene (8 to 4 ka BP) warmth and aridity are well recorded in sediment archives from midcontinental North America. However, neither the climatic driver nor the seasonal character of precipitation during this period is well understood because of the limitations of available proxy indicators. For example, an important challenge is to distinguish among the interacting effects of evaporation, temperature, or precipitation seasonality in existing δ 18O records from the region. Here we combine hydrogen isotopes of palmitic acid and oxygen isotopes of carbonate to derive lake-water isotopic values during the Holocene at Steel Lake in north-central Minnesota. In combination, these data enable us to separate variations in evaporation from variations in the isotopic composition of input-waters to lake. Variations in evaporation are used as a proxy for aridity and lake-water input isotopic values are used as a proxy for the isotopic values of meteoric precipitation. Our results suggest that lake-water input isotopic values were more negative during the middle Holocene than at present. To test whether these more negative values are related to temperature or precipitation seasonality, we compare pollen-inferred temperatures and the expected isotopic value of precipitation resulting from these temperatures to the reconstructed precipitation isotopic values. Results suggest that middle Holocene warmth and aridity were associated with increased evaporation rates and decreased summer precipitation. These inferences are consistent with climate simulations that highlight the role of seasonal insolation and sea surface temperatures in driving variations in precipitation seasonality during the Holocene. Results also suggest that changes in Holocene precipitation seasonality may have influenced the expansion of the prairie-forest border in Minnesota as well as regional variations in grassland community composition. This study demonstrates the efficacy of the dual hydrogen and

  19. Chromium Isotopes Record Fluctuations in Precambrian Biospheric Oxygenation

    NASA Astrophysics Data System (ADS)

    Frei, R.; Gaucher, C.; Poulton, S. W.; Canfield, D. E.

    2009-12-01

    There is a direct relationship between life, oxygen, and the surface chemistry of the Earth. Geochemical data suggest that oxygenation of the Earth's atmosphere occurred in two broad steps, near the beginning and the end of the Proterozoic Eon (2500 to 542 million years ago), but the details of this history are unclear. The geochemical behaviour of chromium (Cr) is highly sensitive to the redox state of the surface environment as oxidative weathering processes produce the oxidised hexavalent [Cr(VI)] form. Oxidation of reduced trivaltent [Cr(III)] chromium on land is accompanied by an isotopic fractionation, leading to enrichment of the mobile hexavalent form in the heavier isotope. The fractionated Cr isotope signature is then tranfered by riverine transport to the sea. Here, we use Cr stable isotopes from banded iron formations (BIFs) to track the presence of Cr(VI) in Precambrian oceans, providing a time-resolved picture of the oxygenation history of Earth’s atmosphere-hydrosphere system. Fractionated Cr isotopes indicate the accumulation of Cr(VI) in ocean surface waters ~2.8 to 2.6 billion years (Gyr) ago and a likely transient elevation in atmospheric and surface ocean oxygen prior to the first great rise of oxygen 2.45-2.2 Gyr ago (the Great Oxidation Event; GOE). In contrast, Cr isotopes in ~1.88 Gyr old BIFs are not fractionated, indicating a major decline in atmospheric oxygen and demonstrating that the GOE did not lead to a unidirectional stepwise increase in atmospheric oxygen. In the late Neoproterozoic, ~800 to 542 million years (Myr) ago, we observe strong positive fractionations in Cr isotopes (δ53Cr up to +4.9 ‰) providing independent support for increased surface oxygenation at this time. This may have stimulated rapid evolution of macroscopic multicellular life. Our chromium isotope data thus provide new insights into the oxygenation history of the Earth, and highlight its use as a powerful redox tracer in aquatic systems.

  20. Oxygen Isotopes and Geothermometry of Secondary Minerals in CR Chondrites

    NASA Astrophysics Data System (ADS)

    Jilly, C. E.; Huss, G. R.; Nagashima, K.; Schrader, D. L.

    2014-09-01

    We report oxygen isotopes measured from secondary calcite and magnetite in QUE 99177, a weakly altered CR chondrite, and discuss implications for temperature and fluid chemistry during aqueous alteration on the CR parent body.

  1. The triple isotopic composition of oxygen in leaf water

    NASA Astrophysics Data System (ADS)

    Landais, A.; Barkan, E.; Yakir, D.; Luz, B.

    2006-08-01

    The isotopic composition of atmospheric O 2 depends on the rates of oxygen cycling in photosynthesis, respiration, photochemical reactions in the stratosphere and on δ17O and δ18O of ocean and leaf water. While most of the factors affecting δ17O and δ18O of air O 2 have been studied extensively in recent years, δ17O of leaf water—the substrate for all terrestrial photosynthesis—remained unknown. In order to understand the isotopic composition of atmospheric O 2 at present and in fossil air in ice cores, we studied leaf water in field experiments in Israel and in a European survey. We measured the difference in δ17O and δ18O between stem and leaf water, which is the result of isotope enrichment during transpiration. We calculated the slopes of the lines linking the isotopic compositions of stem and leaf water. The obtained slopes in ln( δ17O + 1) vs. ln( δ18O + 1) plots are characterized by very high precision (˜0.001) despite of relatively large differences between duplicates in both δ17O and δ18O (0.02-0.05‰). This is so because the errors in δ18O and δ17O are mass-dependent. The slope of the leaf transpiration process varied between 0.5111 ± 0.0013 and 0.5204 ± 0.0005, which is considerably smaller than the slope linking liquid water and vapor at equilibrium (0.529). We further found that the slope of the transpiration process decreases with atmospheric relative humidity ( h) as 0.522-0.008 × h, for h in the range 0.3-1. This slope is neither influenced by the plant species, nor by the environmental conditions where plants grow nor does it show strong variations along long leaves.

  2. Simulating oxygen isotope ratios in tree ring cellulose using a dynamic global vegetation model

    NASA Astrophysics Data System (ADS)

    Keel, Sonja G.; Joos, Fortunat; Spahni, Renato; Saurer, Matthias; Weigt, Rosemarie B.; Klesse, Stefan

    2016-07-01

    Records of stable oxygen isotope ratios in tree rings are valuable tools to reconstruct past climatic conditions and investigate the response of trees to those conditions. So far the use of stable oxygen isotope signatures of tree rings has not been systematically evaluated in dynamic global vegetation models (DGVMs). DGVMs integrate many hydrological and physiological processes and their application could improve proxy-model comparisons and the interpretation of oxygen isotope records. Here we present an approach to simulate leaf water and stem cellulose δ18O of trees using the LPX-Bern DGVM (LPX-Bern). Our results lie within a few per mil of measured tree ring δ18O of 31 different forest stands mainly located in Europe. Temporal means over the last 5 decades as well as interannual variations for a subset of sites in Switzerland are captured. A sensitivity analysis reveals that relative humidity, temperature, and the water isotope boundary conditions have the largest influence on simulated stem cellulose δ18O, followed by all climatic factors combined, whereas increasing atmospheric CO2 and nitrogen deposition exert no impact. We conclude that simulations with LPX-Bern are useful for investigating large-scale oxygen isotope patterns of tree ring cellulose to elucidate the importance of different environmental factors on isotope variations and therefore help to reduce uncertainties in the interpretation of δ18O of tree rings.

  3. Diurnal Variations in Maximal Oxygen Uptake.

    ERIC Educational Resources Information Center

    McClellan, Powell D.

    A study attempted to determine if diurnal (daily cyclical) variations were present during maximal exercise. The subjects' (30 female undergraduate physical education majors) oxygen consumption and heart rates were monitored while they walked on a treadmill on which the grade was raised every minute. Each subject was tested for maximal oxygen…

  4. The influence of climate on the oxygen isotopes in tree rings.

    PubMed

    Saurer, M

    2003-06-01

    Natural variations in the oxygen isotope ratio 18O/16O are occurring in the hydrological cycle as a result of isotope fractionations during evaporation and condensation. These processes imprint a valuable climatic signal in the precipitation, which is stored in ice caps as well as in the cellulose of trees. Recent developments in the continuous-flow analysis of 18O/16O of organic matter now enable a systematic application of this method in tree rings. It becomes possible to build maps of the past oxygen isotope distribution in continental areas, yielding important information on regional climate changes. In this paper, the factors influencing the isotope composition of tree rings are discussed with an example from trees in northern Eurasia. Oxygen isotope values of Larix, Picea and Pinus trees were measured over a large climatic gradient extending from Norway to Siberia. The spatial isotope variations were highly correlated to the annual mean temperature (r2 = 0.84), whereby the slope of the corresponding regression line was 0.35%/degrees C. When considering the changes in 18O/16O during the 20th century, not only the temperature, but also changes in the precipitation patterns have to be considered, in particular the observed increase in the amount of winter precipitation.

  5. Oxygen isotope variability within Nautilus shell growth bands

    DOE PAGES

    Linzmeier, Benjamin J.; Kozdon, Reinhard; Peters, Shanan E.; ...

    2016-04-21

    Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis ofmore » oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. In addition, to create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands.« less

  6. Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions.

    PubMed

    Dubbert, Maren; Cuntz, Matthias; Piayda, Arndt; Werner, Christiane

    2014-09-01

    The oxygen isotope signature of water is a powerful tracer of water movement from plants to the global scale. However, little is known about the short-term variability of oxygen isotopes leaving the ecosystem via transpiration, as high-frequency measurements are lacking. A laser spectrometer was coupled to a gas-exchange chamber directly estimating branch-level fluxes in order to evaluate the short-term variability of the isotopic composition of transpiration (δE ) and to investigate the role of isotopic non-steady-state transpiration under natural conditions in cork-oak trees (Quercus suber) during distinct Mediterranean seasons. The measured δ(18) O of transpiration (δE ) deviated from isotopic steady state throughout most of the day even when leaf water at the evaporating sites was near isotopic steady state. High agreement was found between estimated and modeled δE values assuming non-steady-state enrichment of leaf water. Isoforcing, that is, the influence of the transpirational δ(18) O flux on atmospheric values, deviated from steady-state calculations but daily means were similar between steady state and non-steady state. However, strong daytime isoforcing on the atmosphere implies that short-term variations in δE are likely to have consequences for large-scale applications, for example, partitioning of ecosystem fluxes or satellite-based applications.

  7. Tooth enamel maturation reequilibrates oxygen isotope compositions and supports simple sampling methods

    NASA Astrophysics Data System (ADS)

    Trayler, Robin B.; Kohn, Matthew J.

    2017-02-01

    Oxygen isotope and major element zoning patterns of several disparate ungulate teeth were collected to evaluate the timing and geometry of enamel formation, records of isotope zoning, and tooth enamel sampling strategies. Isotopic zoning in mammalian tooth enamel encodes a sub-annual time series of isotopic variation of an animal's body water composition, with a damping factor that depends on the specifics of how enamel mineralizes. Enamel formation comprises two stages: precipitation of appositional enamel with a high CO3:PO4 ratio, followed by precipitation of maturational enamel with a lower CO3:PO4. If appositional and maturational enamel both contribute to isotope compositions (but with different CO3:PO4), and if isotope compositions vary seasonally, paired δ18O values from CO3 and PO4 profiles should show a spatial separation. CO3 isotope patterns should be shifted earlier seasonally than PO4 isotope patterns. Such paired profiles for new and published data show no resolvable shifts, i.e. CO3 and PO4 δ18O profiles show coincident maxima and minima. This coincidence suggests that enamel maturation reequilibrates appositional isotope compositions. If enamel maturation establishes enamel isotope compositions, the geometry of maturation, not apposition, should be considered when devising sampling protocols. X-ray maps of Ca zoning show that the majority of enamel (inner and middle layers) mineralizes heavily at a high angle to the external tooth surface and the enamel-dentine junction over length scales of 2-4 mm, while the outer enamel surface mineralizes more slowly. These data suggest that isotopic sampling strategies should parallel maturational geometry and focus on interior enamel to improve data fidelity. The magnitude of isotopic damping is also smaller than implied in previous studies, so tooth enamel zoning more closely reflects original body water isotopic variations than previously assumed.

  8. The isotopic homogeneity in the early solar system: Revisiting the CAI oxygen isotopic anomaly

    NASA Astrophysics Data System (ADS)

    Ozima, M.; Yamada, A.

    2009-12-01

    Since the first discovery of the mass-independently fractionated oxygen isotopes in anhydrous, high temperature Ca-Al rich inclusion minerals in carbonaceous meteorites (CAIs) by Clayton et al. (1), their common occurrence in primitive meteorites has generally been regarded to reflect some fundamental process prevalent in the early solar nebula. The CAI oxygen isotopic composition is uniquely characterized by (i) large mass independent isotopic fractionation and (ii) their isotopic data in an oxygen three isotope plot (δ17O - δ18O (δ17O ≡ {(17O/16O)/(17O/16O)SMOW - 1} × 1000) yield nearly a straight line with a slope 1.0. In establishing these characteristics, ion microprobe analyses has played a central role, especially an isotopic mapping technique (isotopography) was crucial (e.g., 2). The extraordinary oxygen isotopic ratio in CAIs is widely attributed to the self-shielding absorption of UV radiation in CO, one of the dominant chemical compounds in the early solar nebula (3). However, the self-shielding scenario necessarily leads to the unusual prediction that a mean solar oxygen isotopic composition differs from most of planetary bodies including Earth, Moon, and Mars. If the self-shielding process were indeed responsible to the CAI oxygen isotopic anomaly, this would require a fundamental revision of the current theory of the origin of the solar system, which generally assumes the initial total vaporization of nebula material to give rise to isotopic homogenization. The GENESIS mission launched in 2001(4), which collected oxygen in the solar wind was hoped to resolve the isotopic composition of the Sun. However, because of difficulties in correcting for instrumental and more importantly for intrinsic isotopic fractionation between the SW and the Sun, a final answer is yet to be seen (5). Here, we show on the basis of the oxygen isotopic fractionation systematics that the self shielding hypothesis cannot explain the key characteristics of the CAI oxygen

  9. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes.

    PubMed

    Frei, Robert; Gaucher, Claudio; Poulton, Simon W; Canfield, Don E

    2009-09-10

    Geochemical data suggest that oxygenation of the Earth's atmosphere occurred in two broad steps. The first rise in atmospheric oxygen is thought to have occurred between approximately 2.45 and 2.2 Gyr ago, leading to a significant increase in atmospheric oxygen concentrations and concomitant oxygenation of the shallow surface ocean. The second increase in atmospheric oxygen appears to have taken place in distinct stages during the late Neoproterozoic era ( approximately 800-542 Myr ago), ultimately leading to oxygenation of the deep ocean approximately 580 Myr ago, but details of the evolution of atmospheric oxygenation remain uncertain. Here we use chromium (Cr) stable isotopes from banded iron formations (BIFs) to track the presence of Cr(VI) in Precambrian oceans, providing a time-resolved picture of the oxygenation history of the Earth's atmosphere-hydrosphere system. The geochemical behaviour of Cr is highly sensitive to the redox state of the surface environment because oxidative weathering processes produce the oxidized hexavalent [Cr(VI)] form. Oxidation of reduced trivalent [Cr(III)] chromium on land is accompanied by an isotopic fractionation, leading to enrichment of the mobile hexavalent form in the heavier isotope. Our fractionated Cr isotope data indicate the accumulation of Cr(VI) in ocean surface waters approximately 2.8 to 2.6 Gyr ago and a likely transient elevation in atmospheric and surface ocean oxygenation before the first great rise of oxygen 2.45-2.2 Gyr ago (the Great Oxidation Event). In approximately 1.88-Gyr-old BIFs we find that Cr isotopes are not fractionated, indicating a decline in atmospheric oxygen. Our findings suggest that the Great Oxidation Event did not lead to a unidirectional stepwise increase in atmospheric oxygen. In the late Neoproterozoic, we observe strong positive fractionations in Cr isotopes (delta(53)Cr up to +4.9 per thousand), providing independent support for increased surface oxygenation at that time, which may

  10. Rate of oxygen isotope exchange between selenate and water.

    PubMed

    Kaneko, Masanori; Poulson, Simon R

    2012-04-17

    The rate of oxygen isotope exchange between selenate and water was investigated at conditions of 10 to 80 °C and pH -0.6 to 4.4. Oxygen isotope exchange proceeds as a first-order reaction, and the exchange rate is strongly affected by reaction temperature and pH, with increased rates of isotope exchange at higher temperature and lower pH. Selenate speciation (HSeO(4)(-) vs SeO(4)(2-)) also has a significant effect on the rate of isotope exchange. The half-life for isotope exchange at example natural conditions (25 °C and pH 7) is estimated to be significantly in excess of 10(6) years. The very slow rate of oxygen isotope exchange between selenate and water under most environmental conditions demonstrates that selenate-δ(18)O signatures produced by biogeochemical processes will be preserved and hence that it will be possible to use the value of selenate-δ(18)O to investigate the biogeochemical behavior of selenate, in an analogous fashion to the use of sulfate-δ(18)O to study the biogeochemical behavior of sulfate.

  11. Distinguishing Biotic from Abiotic Phosphate Oxygen Isotopic Signatures

    NASA Astrophysics Data System (ADS)

    Blake, R.; Moyer, C.; Colman, A.; Liang, Y.; Dogru, D.

    2006-05-01

    On earth, phosphate has a strong biological oxygen isotope signature due to its concentration and intense cycling by living organisms as an essential nutrient. Phosphate does not undergo oxygen isotope exchange with water at low temperature without enzymatic catalysis, making the oxygen isotope ratio (18O/16O) of phosphate, δ18OP, an attractive biosignature in the search for early and extraterrestrial life. Recent laboratory and field studies have demonstrated that the δ18OP value of dissolved inorganic phosphate (PO4) records specific microbial activity and enzymatic reaction pathways in both laboratory cultures and natural waters/sediments (Blake et al., 2005; Colman et al 2005; Liang and Blake, 2005). Phosphate oxygen isotope biosignatures may be distinguished from abiotic signatures by: (1) evaluating the degree of temperature-dependent PO4-water oxygen isotope exchange in aqueous systems and deviation from equilibrium; and (2) evolution from an abiotic P reservoir signature towards a biotic P reservoir signature. Important abiotic processes potentially affecting phosphate δ18OP values include dissolution/precipitation, adsorption/desorption, recrystallization of PO4 mineral phases, diagenesis and metamorphism. For most of these processes, the recording, retention and alteration of δ18OP biosignatures have not been evaluated. Deep-sea hydrothermal vent fields are an ideal system in which to study the preservation and alteration of δ18OP biosignatures, as well as potential look-alikes produced by heat-promoted PO4 -water oxygen isotope exchange. Results from recent studies of δ18OP biosignatures in hydrothermal deposits near 9 and 21 degrees N. EPR and at Loihi seamount will be presented.

  12. Oxygen isotope fractionation between analcime and water - An experimental study

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    The oxygen isotope fractionation between analcime and water is studied to test the feasibility of using zeolites as low-temperature thermometers. The fractionation of oxygen isotopes between natural analcime and water is determined at 300, 350, and 400 C, and at fluid pressures ranging from 1.5 to 5.0 kbar. Also, isotope ratios for the analcime framework, the channel water, and bulk water are obtained. The results suggest that the channel water is depleted in O-18 relative to bulk water by a constant value of about 5 percent, nearly independent of temperature. The analcime-water fractionation curve is presented, showing that the exchange has little effect on grain morphology and does not involve recrystallization. The exchange is faster than any other observed for a silicate. The exchange rates suggest that zeolites in active high-temperature geothermal areas are in oxygen isotopic equilibrium with ambient fluids. It is concluded that calibrated zeolites may be excellent low-temperature oxygen isotope geothermometers.

  13. On the mean oxygen isotope composition of the Solar System

    NASA Astrophysics Data System (ADS)

    Ozima, M.; Podosek, F. A.; Higuchi, T.; Yin, Q.-Z.; Yamada, A.

    2007-02-01

    Since the first discovery of extraordinary oxygen isotope compositions in carbonaceous meteorites by Clayton et al. [Clayton, R.N., Grossman, L., Mayeda, T.K., 1973. Science 182, 485-488], numerous studies have been done to explain the unusual mass-independent isotope fractionation, but the problem is still unresolved to this day. Clayton's latest interpretation [Clayton, R.N., 2002. Nature 415, 860-861] sheds new light on the problem, and possible hypotheses now seem to be fairly well defined. A key issue is to resolve whether the oxygen isotopes in the Solar System represented by the Sun (solar oxygen) are the same as oxygen isotopes in planetary objects such as bulk meteorites, Mars, Earth, and Moon, or whether the solar oxygen is more similar to the lightest oxygen isotopes observed in CAIs (Calcium Aluminum-rich Inclusions) in primitive meteorites. Here, we examined the problem using oxygen isotope analytical data of about 400 bulk meteorite samples of various classes or types (data compiled by K. Lodders). We used in our discussion exclusively the parameter Δ 17O, a direct measure of the degree of mass-independent isotope fractionation of oxygen isotopes. When Δ 17O is arranged according to a characteristic size of their host planetary object, it shows a systematic trend: (1) Δ 17O values scatter around zero; (2) the scatter from the mean (Δ 17O=0) decreases with increasing representative size of the respective host planetary object. This systematic trend is easily understood on the basis of a hierarchical scenario of planetary formation, that is, larger planetary objects have formed by progressive accretion of planetesimals by random sampling over a wide spectrum of proto-solar materials. If this progressive random sampling of planetesimals were the essential process of planetary formation, the isotopic composition of planetary oxygen should approach that of the solar oxygen. To test this random sampling hypothesis, we applied a multiscale, multistep

  14. Carbon and oxygen isotopes of Maastrichtian Danian shallow marine carbonates: Yacoraite Formation, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Marquillas, Rosa; Sabino, Ignacio; Nobrega Sial, Alcides; Papa, Cecilia del; Ferreira, Valderez; Matthews, Stephen

    2007-04-01

    The Maastrichtian-Danian limestones of the Yacoraite Formation (northwestern Argentina) show carbon and oxygen isotopic values consistent with shallow marine conditions. The members of the formation respond to different sedimentary environments and are characterised by distinctive stable isotopes and geochemistry. The basal Amblayo Member is composed of high-energy dolomitic limestones and limestones with positive isotopic values (+2‰ δ 13C, +2‰ δ 18O). The top of the member reveals an isotopic shift of δ 13C (-5‰) and δ 18O (-10‰), probably related to a descent in the sea level. The sandy Güemes Member has isotopically negative (-2‰ δ 13C, -1‰ δ 18O) limestones, principally controlled by water mixing, decreased organic productivity, and compositional changes in the carbonates. The isotopically lighter limestones are calcitic, with a greater terrigenous contribution and different geochemical composition (high Si-Mn-Fe-Na, low Ca-Mg-Sr). These isotopic and lithological changes relate to the Cretaceous-Palaeogene transition. The Alemanía Member, composed of dolomitic limestones and pelites, represents a return to marine conditions and shows a gradual increase in isotopic values, reaching values similar to those of the Amblayo Member. The Juramento Member, composed of stromatolite limestones, shows isotopic variations that can be correlated with the two well-defined, shallowing-upward sequences of the member.

  15. Oxygen isotope fractionation in divalent metal carbonates

    USGS Publications Warehouse

    O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.

    1969-01-01

    Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.

  16. Sulfur- and oxygen-isotopes in sediment-hosted stratiform barite deposits

    NASA Astrophysics Data System (ADS)

    Johnson, Craig A.; Emsbo, Poul; Poole, Forrest G.; Rye, Robert O.

    2009-01-01

    Sulfur- and oxygen-isotope analyses have been obtained for sediment-hosted stratiform barite deposits in Alaska, Nevada, Mexico, and China to examine the environment of formation of this deposit type. The barite is contained in sedimentary sequences as old as Late Neoproterozoic and as young as Mississippian. If previously published data for other localities are considered, sulfur- and oxygen-isotope data are now available for deposits spanning a host-rock age range of Late Neoproterozoic to Triassic. On a δ 34S versus δ 18O diagram, many deposits show linear or concave-upward trends that project down toward the isotopic composition of seawater sulfate. The trends suggest that barite formed from seawater sulfate that had been isotopically modified to varying degrees. The δ 34S versus δ 18O patterns resemble patterns that have been observed in the modern oceans in pore water sulfate and water column sulfate in some anoxic basins. However, the closest isotopic analog is barite mineralization that occurs at fluid seeps on modern continental margins. Thus the data favor genetic models for the deposits in which barium was delivered by seafloor seeps over models in which barium was delivered by sedimentation of pelagic organisms. The isotopic variations within the deposits appear to reflect bacterial sulfate reduction operating at different rates and possibly with different electron donors, oxygen isotope exchange between reduction intermediates and H 2O, and sulfate availability. Because they are isotopically heterogeneous, sediment-hosted stratiform barite deposits are of limited value in reconstructing the isotopic composition of ancient seawater sulfate.

  17. Sulfur- and oxygen-isotopes in sediment-hosted stratiform barite deposits

    USGS Publications Warehouse

    Johnson, C.A.; Emsbo, P.; Poole, F.G.; Rye, R.O.

    2009-01-01

    Sulfur- and oxygen-isotope analyses have been obtained for sediment-hosted stratiform barite deposits in Alaska, Nevada, Mexico, and China to examine the environment of formation of this deposit type. The barite is contained in sedimentary sequences as old as Late Neoproterozoic and as young as Mississippian. If previously published data for other localities are considered, sulfur- and oxygen-isotope data are now available for deposits spanning a host-rock age range of Late Neoproterozoic to Triassic. On a ??34S versus ??18O diagram, many deposits show linear or concave-upward trends that project down toward the isotopic composition of seawater sulfate. The trends suggest that barite formed from seawater sulfate that had been isotopically modified to varying degrees. The ??34S versus ??18O patterns resemble patterns that have been observed in the modern oceans in pore water sulfate and water column sulfate in some anoxic basins. However, the closest isotopic analog is barite mineralization that occurs at fluid seeps on modern continental margins. Thus the data favor genetic models for the deposits in which barium was delivered by seafloor seeps over models in which barium was delivered by sedimentation of pelagic organisms. The isotopic variations within the deposits appear to reflect bacterial sulfate reduction operating at different rates and possibly with different electron donors, oxygen isotope exchange between reduction intermediates and H2O, and sulfate availability. Because they are isotopically heterogeneous, sediment-hosted stratiform barite deposits are of limited value in reconstructing the isotopic composition of ancient seawater sulfate.

  18. Photosynthetic fractionation of the stable isotopes of oxygen and carbon

    SciTech Connect

    Guy, R.D. ); Fogel, M.L.; Berry, J.A. )

    1993-01-01

    Isotope discrimination during photosynthetic exchange of O[sub 2] and CO[sub 2] was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([triangle], where 1 + [triangle]/1000 equals the isotope effect, k[sup 16]/k[sup 18] or k[sup 12]/k[sup 13]) was determined by analysis of residual substrate (O[sub 2] or CO[sub 2]). The [triangle] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per thousand]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per thousand] and independent of enzyme source, unlike carbon isotope dicrimination: 30.3[per thousand] for spinach enzyme and 19.6 to 23[per thousand] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [triangle] for O[sub 2] consumption catalyzed by glycolate oxidase was 22.7[per thousand]. Consistent with this, when Asparagus sprengeri Regel mesopyll cells approached the compensation point within a sealed vessel, the [delta][sup 18]O of dissolved O[sub 2] came to a steady-state value of about 21.5[per thousand] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global oxygen cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen. 47 refs., 8 figs., 2 tabs.

  19. Calcium and Oxygen Isotopic Composition of Calcium Carbonates

    NASA Astrophysics Data System (ADS)

    Niedermayr, Andrea; Eisenhauer, Anton; Böhm, Florian; Kisakürek, Basak; Balzer, Isabelle; Immenhauser, Adrian; Jürgen Köhler, Stephan; Dietzel, Martin

    2016-04-01

    Different isotopic systems are influenced in multiple ways corresponding to the crystal structure, dehydration, deprotonation, adsorption, desorption, isotope exchange and diffusion processes. In this study we investigated the structural and kinetic effects on fractionation of stable Ca- and O-isotopes during CaCO3 precipitation. Calcite, aragonite and vaterite were precipitated using the CO2 diffusion technique[1]at a constant pH of 8.3, but various temperatures (6, 10, 25 and 40° C) and precipitation rates R (101.5 to 105 μmol h-1 m-2). The calcium isotopic fractionation between solution and vaterite is lower (Δ44/40Ca= -0.10 to -0.55 ‰) compared to calcite (-0.69 to -2.04 ‰) and aragonite (-0.91 to -1.55 ‰). In contrast the fractionation of oxygen isotopes is highest for vaterite (32.1 ‰), followed by aragonite (29.2 ‰) and calcite (27.6 ‰) at 25° C and equilibrium. The enrichment of 18O vs. 16O in all polymorphs decreases with increasing precipitation rate by around -0.7 ‰ per log(R). The calcium isotopic fractionation between calcite/ vaterite and aqueous Ca2+ increases with increasing precipitation rate by ˜0.45 ‰ per log(R) and ˜0.1 ‰ per log(R) at 25° C and 40° C, respectively. In contrast the fractionation of Ca-isotopes between aragonite and aqueous Ca2+ decreases with increasing precipitation rates. The large enrichment of 18O vs. 16O isotopes in carbonates is related to the strong bond of oxygen to the small and highly charged C4+-ion. In contrast equilibrium isotopic fractionation between solution and calcite or vaterite is nearly zero as the Ca-O bond length is similar for calcite, vaterite and the hydrated Ca. Aragonite incorporates preferentially the lighter 40Ca isotope as it has very large Ca-O bonds in comparison to the hydrated Ca. At the crystal surface the lighter 40Ca isotopes are preferentially incorporated as dehydration and diffusion of lighter isotopes are faster. Consequently, the surface becomes enriched in 40

  20. Oxygen Isotopes and Origin of Opal in an Antarctic Ureilite

    NASA Astrophysics Data System (ADS)

    Downes, H.; Beard, A. D.; Franchi, I. A.; Greenwood, R. C.

    2016-08-01

    Fragments of opal (SiO2.nH2O) in several internal chips of a single Antarctic polymict ureilite meteorite Elephant Moraine (EET) 83309 have been studied by NanoSIMS to determine their oxygen isotope compositions and hence constrain their origin.

  1. Determining the oxygen isotope composition of evapotranspiration with eddy covariance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oxygen isotope componsition of evapotranspiration (dF) represents an important tracer in the study of biosphere-atmosphere interactions, hydrology, paleoclimate, and carbon cycling. Here we demonstrate direct measurement of dF based on eddy covariance (EC) and tunable diode laser (EC-TDL) techni...

  2. Rapid biologically mediated oxygen isotope exchange between water and phosphate

    NASA Astrophysics Data System (ADS)

    Paytan, Adina; Kolodny, Yehoshua; Neori, Amir; Luz, Boaz

    2002-03-01

    In order to better constrain the rate of oxygen isotope exchange between water and phosphate via biochemical reactions a set of controlled experiments were conducted in 1988 at the Aquaculture Plant in Elat, Israel. Different species of algae and other organisms were grown in seawater tanks under controlled conditions, and the water temperature and oxygen isotopic composition (δ18Ow) were monitored. The oxygen isotopic composition of phosphate (δ18Op) in the organisms' food source, tissues, and the δ18Op of dissolved inorganic phosphate (DIP) were measured at different stages of the experiments. Results indicate that intracellular oxygen isotope exchange between phosphorus compounds and water is very rapid and occurs at all levels of the food chain. Through these reactions the soft tissue δ18Op values become 23-26‰ higher than δ18Ow, and δ18Op values of DIP become ~20‰ higher than δ18Ow. No correlation between δ18Op values and either temperature or P concentrations in these experiments was observed. Our data imply that biogenic recycling and intracellular phosphorus turnover, which involves kinetic fractionation effects, are the major parameters controlling the δ18Op values of P compounds dissolved in aquatic systems. This information is fundamental to any application of δ18Op of dissolved organic or inorganic phosphate to quantify the dynamics of phosphorus cycling in aquatic systems.

  3. Atmospheric odd oxygen production due to the photodissociation of ordinary and isotopic molecular oxygen

    NASA Technical Reports Server (NTRS)

    Omidvar, K.; Frederick, J. E.

    1987-01-01

    Line-by-line calculations are performed to determine the contributions of the Schumann-Runge bands of ordinary and isotopic oxygen to the photodissociation of these molecules at different altitudes. The contributions to the dissociation rates of the satellite lines and of the first and higher vibrational states of the initial molecular states are found to be insignificant. At 70 km, (O-16)(O-18) is found to produce 10 times as much odd oxygen as would be produced if the isotope did not have selective absorption, and 6 percent of the odd oxygen produced is due to this isotope. It is noted that the excess odd oxygen produced is not enough to explain the excess quantity of ozone observed in the atmosphere, which cannot be accounted for in photochemical models. Comparison with previous results is made.

  4. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Casciotti, Karen L.

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  5. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    PubMed

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  6. Photosynthetic Fractionation of the Stable Isotopes of Oxygen and Carbon.

    PubMed Central

    Guy, R. D.; Fogel, M. L.; Berry, J. A.

    1993-01-01

    Isotope discrimination during photosynthetic exchange of O2 and CO2 was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([delta], where 1 + [delta]/1000 equals the isotope effect, k16/k18 or k12/k13) was determined by analysis of residual substrate (O2 or CO2). The [delta] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per mille (thousand) sign]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per mille (thousand) sign] and independent of enzyme source, unlike carbon isotope discrimination: 30.3[per mille (thousand) sign] for spinach enzyme and 19.6 to 23[per mille (thousand) sign] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [delta] for O2 consumption catalyzed by glycolate oxidase was 22.7[per mille (thousand) sign]. The expected overall [delta] for photorespiration is about 21.7[per mille (thousand) sign]. Consistent with this, when Asparagus sprengeri Regel mesophyll cells approached the compensation point within a sealed vessel, the [delta]18O of dissolved O2 came to a steady-state value of about 21.5[per mille (thousand) sign] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global O cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen. PMID:12231663

  7. Isotope Variations in Terrestrial Carbonates and Thermal Springs as Biomarkers: Analogs for Martian Processes

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Gibson, Everett K., Jr.; Bissada, K. K.

    2006-01-01

    Stable isotope measurements of carbonate minerals contained within ALH84001 [1] suggest that fluids were present at 3.9 Gy on Mars [2, 3, 4, 5]. Both oxygen and carbon isotopes provide independent means of deciphering paleoenvironmental conditions at the time of carbonate mineral precipitation. In terrestrial carbonate rocks oxygen isotopes not only indicate the paleotemperature of the precipitating fluid, but also provide clues to environmental conditions that affected the fluid chemistry. Carbon isotopes, on the other hand, can indicate the presence or absence of organic compounds during precipitation (i.e. biogenically vs. thermogenically-generated methane), thus serving as a potential biomarker. We have undertaken a study of micro scale stable isotope variations measured in some terrestrial carbonates and the influence of organic compounds associated with the formation of these carbonates. Preliminary results indicate that isotope variations occur within narrow and discrete intervals, providing clues to paleoenvironmental conditions that include both biological and non-biological activity. These results carry implications for deciphering Martian isotope data and therefore potential biological prospecting on the planet Mars. Recently, Fourier Transform Spectrometer observations have detected methane occurring in the Martian atmosphere [6] that could be attributed to a possible biogenic source. Indeed, Mars Express has detected the presence of methane in the Martian atmosphere [7], with evidence indicating that methane abundances are greatest above those basins with high water concentrations.

  8. Oxygen Isotope Signatures of Biogenic Manganese(III/IV) Oxides

    NASA Astrophysics Data System (ADS)

    Sutherland, K. M.; Hansel, C. M.; Wankel, S. D.

    2015-12-01

    Manganese (Mn) oxide minerals are pervasive throughout a number of surface earth environments as rock varnishes, ferromanganese nodules, crusts around deep-sea vents, and cave deposits among many other marine, freshwater, and terrestrial deposits. Mn(III,IV) oxides are also among the strongest sorbents and oxidants in surface earth environments and are crucial to understanding the fate of organic matter in sedimentary environments. The precipitation of Mn oxide minerals proceeds via both abiotic and biotic oxidation pathways, the latter due to the indirect or direct activity of Mn(II)- oxidizing microorganisms, including bacteria and fungi. Although the precipitation of Mn oxides is believed to be primarily controlled by Mn(II)-oxidizing organisms in most surface earth environments, confirmation of this generally held notion has remained illusive and limits our understanding of their formation on Earth and beyond (e.g., Mars). Previous work provided evidence that O atom incorporation by specific Mn oxidation pathways may exhibit unique and predictable isotopic fractionation. In this study, we expand upon this evidence by measuring the oxygen isotope signature of several biogenic and abiogenic Mn oxide minerals synthesized under a range of oxygen-18 labeled water. These results allow us to determine the relative amount oxygen atoms derived from water and molecular oxygen that are incorporated in the oxide and shed light on corresponding isotope fractionation factors. Additionally, we show that, once precipitated, Mn oxide isotope signatures are robust with respect to aqueous oxygen isotope exchange. The study provides a foundation on which to study and interpret Mn oxides in natural environments and determine which environmental controls may govern Mn(II) oxidation.

  9. Seasonal variability of soil phosphate stable oxygen isotopes in rainfall manipulation experiments

    NASA Astrophysics Data System (ADS)

    Angert, Alon; Weiner, Tal; Mazeh, Shunit; Tamburini, Federica; Frossard, Emmanuel; Bernasconi, Stefano M.; Sternberg, Marcelo

    2011-08-01

    Phosphorus (P) availability limits productivity in many ecosystems worldwide. As a result, improved understanding of P cycling through soil and plants is much desirable. The use of the oxygen isotopes associated to phosphate can be used to study the cycle of P in terrestrial systems. However, changes with time in the oxygen isotopes associated to available P have not yet been evaluated under field conditions. Here we present the variations in available-P oxygen isotopes, based on resin extractions, in a semi-arid site that included plots in which the amount of rainfall reaching the soil was modified. In addition, the oxygen isotopes in the less dynamic fraction which is extractable by HCl, were also measured. The δ 18O of the HCl-extractable phosphate shows no seasonal pattern and corresponds to the average value of the available phosphate of 16.5‰. This value is in the expected range for equilibration with soil water at the prevailing temperatures in the site. The δ 18O values of resin-extractable P showed a range of 14.5-19.1‰ (SMOW), and evidence of seasonal variability, as well as variability induced by rainfall manipulation experiments. We present a framework for analyzing the isotopic ratios in soil phosphate and explain the variability as mainly driven by phosphate equilibration with soil water, and by the isotopic effects associated with extracellular mineralization. Additional isotopic effects result from fractionation in uptake, and the input to the soil of phosphate equilibrated in leaves. These results suggest that the δ 18O of resin-extractable P is an interesting marker for the rate of biological P transformations in soil systems.

  10. Oxygen isotopes in spinels from Antarctic micrometeorites

    NASA Astrophysics Data System (ADS)

    Kurat, G.; Hoppe, P.; Walter, J.; Engrand, C.; Maurette, M.

    1994-07-01

    Spinel-rich inclusions were found in a large unmelted micrometeorite (MM) from Antarctica. This particle (MM92/15-23) consists of a fine-grained matrix of dehydrated former phyllosilicates that enclose a few small olivines, one large chromite, and several spinel-rich inclusions. The latter form elongated to rounded bodies up to 35 microns in length and consist of a spinel core enveloped by a Fe-rich silicate phase that probably is a (dehydrated?) phyllosilicate -- too small to be analyzed with the electron microprobe. A few very small perovskite grains are enclosed within the spinel. The chemical composition of the spinel is that of a Mg-Al spinel. On top of the Fe-rich silicate envelopes there is a discontinuous rim of aluminous Ca-rich pyroxene with a fairly high FeO content. The trace-element content is determined by secondary ion mass spectrometry (SIMS) of these inclusions resembles that of group II CAIs. Meanwhile we have found a second Antartic micrometeorite containing a few spinel grains. This spinel is associated with some tiny ilmenite grains and embedded in the foamy melt matrix of scoriaceous micrometeorite particle MM94/1-28. The chemical composition of the spinel is that of a Mg-Al-spinel containing small amounts of FeO (0.6 wt%), but no Cr2O3. We have successfully analyzed the O isotopic composition of two spinels from MM92/15-23 and one from MM94/1-28. The most common matter accreting onto the Earth today and represented by unmelted and partially melted micrometeorites consists of a matter similar, but not identical, to CM carbonaceous chondrites. The presence of spinel-rich Ca-Al rich inclusions (CAIs) with trace-element contents and O isotopic compositions of group II inclusions provides an additional support of that view.

  11. Oxygen isotope fractionation in phosphates: the role of dissolved complex anions in isotope exchange.

    PubMed

    Zheng, Yong-Fei

    2016-01-01

    Oxygen isotope fractionation factors for phosphates were calculated by means of the increment method. The results suggest that Ag3PO4 and BiPO4 are enriched in (18)O relative to AgPO4, and the three phosphates are consistently depleted in (18)O relative to Ba3[PO4]2; fluorapatite and chlorapatite exhibit a similar behaviour of oxygen isotope fractionation with consistent enrichment of (18)O relative to hydroxyapatite. The valence, radii and coordination of metal cations play a quantitative role in dictating the (18)O/(16)O partitioning in these phosphates of different compositions. The calculated fractionation factors for the Ag3PO4-H2O system are in agreement with experimental determinations derived from enzyme-catalysed isotope exchange between dissolved inorganic phosphate and water at the longest reaction durations at low temperatures. This demonstrates that the precipitated Ag3PO4 has completely captured the oxygen isotope fractionation in the dissolved inorganic phosphate. The calculated fractionation factors for the F/Cl-apatite-water systems are in agreement with the enzyme-catalysed experimental fractionations for the dissolved phosphate-water system at the longest reaction durations but larger than fractionations derived from bacteria-facilitated exchange and inorganic precipitation experiments as well as natural observations. For the experimental calibrations of oxygen isotope fractionation involving the precipitation of dissolved phosphate species from aqueous solutions, the fractionation between precipitate and water is primarily dictated by the isotope equilibration between the dissolved complex anions and water prior to the precipitation. Therefore, the present results provide a quantitative means to interpret the temperature dependence of oxygen isotope fractionation in inorganic and biogenic phosphates.

  12. The Divnoe meteorite: Petrology, chemistry, oxygen isotopes and origin

    NASA Technical Reports Server (NTRS)

    Petaev, M. I.; Barsukova, L. D.; Lipschultz, M. E.; Wang, M.-S.; Ariskin, A. A.; Clayton, R. N.; Mayeda, T. K.

    1994-01-01

    The Divnoe meteorite is an olivine-rich primitive achondrite with subchondritic chemistry and mineralogy. It has a granoblastic, coarse-grained, olivine groundmass (CGL: coarse-grained lithology) with relatively large pyroxene-plagioclase poiklitic patches (PP) and small fine-grained domains of an opaque-rich lithology (ORL). Both PP and ORL are inhomogeneously distributed and display reaction boundaries with the groundmass. Major silicates, olivine Fa(20-28) and orthopyroxyene Fs(20-28 Wo(0.5-2.5), display systematic differences in composition between CGL and ORL as well as a complicated pattern of variations within CGL. Accessory plagioclase has low K content and displays regular igneous zoning with core compositions An(40-45) and rims An(32-37). The bulk chemical composition of Divnoe is similar to that of olivine-rich primitive achondrites, except for a depletion of incompatible elements and minor enrichment of refractory siderophiles. Oxygen isotope compositions for whole-rock and separated minerals from Divnoe fall in a narrow range, with mean delta O-18 = +4.91, delta O-17 = +2.24, and Delta O-17 = -0.26 +/- 0.11. The isotopic composition is not within the range of any previously recognized group but is very close to that of the brachinites. To understand the origin of Divnoe lithologies, partial melting and crystallization were modelled using starting compositions equal to that of Divnoe and some chondritic meteorites. It was found that the Divnoe composition could be derived from a chondritic source region by approximately 20 wt% partial melting at Ta approximately 1300 C and log(fO2) = IW-1.8, followed by approximtely 60 wt% crystallization of the partial melt formed, and removal of the still-liquid portion of the partial melt. Removal of the last partial melt resulted in depletion of the Divnoe plagioclase in Na and K. In this scenario, CGL represents the residue of partial melting, and PP is a portion of the partial melt that crystallized in situ. The

  13. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    NASA Astrophysics Data System (ADS)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  14. Investigations of the oxidation capacities of polar atmospheres with multiple oxygen isotopes

    NASA Astrophysics Data System (ADS)

    McCabe, Justin R.

    contains results and interpretations of nitrate oxygen isotopes from South Pole, Antarctica measured in aerosol and surface snow during 2004 and a 6-meter snow pit that provides a record 1977 to 2003. The isotope measurements from South Pole are compared to instrumental measurements of October-November-December column ozone, October-November-December UV, annual surface ozone, the quasi-biennial oscillation, and solar variability. A summary of related work on the oxygen and sulfur isotopic composition of volcanic sulfate from the Masaya volcano in Nicaragua is presented in the appendix along with measurements of ion chemistry used to establish a chronology in the South Pole snow pit. The nitrogen cycle has been drastically altered by human influence; however the sources of nitrogen to the Antarctic are expected to be relatively unaffected by human activity and may provide a means of establishing natural variability of nitrogen sources. Unfortunately, two significant problems exist. One, the sources to Antarctica are quite uncertain, and two, the records are difficult to interpret as a result of post-depositional effects in the ice. Through the use of multiple oxygen isotopes, the present work provides new insights into Antarctic nitrate records. The results suggest that greater knowledge of the influence of post-depositional effects (volatilization, photochemistry and diffusion) emerges from multiple oxygen isotope measurements in aerosol, surface snow and firn nitrate. The seasonal variation in winter stratospheric and summer tropospheric values of oxygen isotopes in Antarctic nitrate aerosol is preserved in surface snow. Evidence of stratospheric nitrate in snow at the South Pole suggests the potential for a proxy of ozone hole variability and solar variability; however, the location and meteorology of the South Pole create a site best suited for understanding boundary layer oxidation conditions across the Antarctic plateau. Changes in these conditions are driven by

  15. Oxygen Isotopic Constraints on the Genesis of Carbonates from Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Leshin, Laurie A.; McKeegan, Kevin D.; Carpenter, Paul K.; Harvey, Ralph P.

    1998-01-01

    Ion microprobe oxygen isotopic measurements of a chemically diverse suite of carbonates from Martian meteorite ALH84001 are reported. The delta(sup 18)O values are highly variable, ranging from +5.4 to + 25.3%, and are correlated with major element compositions of the carbonate. The earliest forming (Ca-rich) carbonates have the lowest delta(sup 18)O values and the late-forming (Mg-rich) carbonates have the highest delta(sup 18)O values. Two models are presented which can explain the isotopic variations. The carbonates could have formed in a water rich environment at relatively low, but highly variable temperatures. In this open-system case the lower limit to the temperature variation is approx. 125 C, with fluctuations of over 250 C possible within the constraints of the model. Alternatively, the data can be explained by a closed-system model in which the carbonates precipitated from a limited amount of CO2-rich fluid. This scenario can reproduce the isotopic variations observed at a range of temperatures, including relatively high temperatures (less than 500 C). Thus the oxygen isotopic compositions do not provide unequivocal evidence for formation of the carbonates at low temperature. Although more information is needed in order to distinguish between the models, neither of the implied environments is consistent with biological activity. Thus, we suggest that features associated with the carbonates which have been interpreted to be the result of biological activity were most probably formed by inorganic processes.

  16. Oxygen isotopes in the early protoplanetary disk inferred from pyroxene in a classical type B CAI

    NASA Astrophysics Data System (ADS)

    Aléon, Jérôme

    2016-04-01

    A major unanswered question in solar system formation is the origin of the oxygen isotopic dichotomy between the Sun and the planets. Individual Calcium-Aluminum-rich inclusions (CAIs) from CV chondrites exhibit almost the full isotopic range, but how their composition evolved is still unclear, which prevents robust astrochemical conclusions. A key issue is notably the yet unsolved origin of the 16O-rich isotopic composition of pyroxene in type B CAIs. Here, I report an in-situ oxygen isotope study of the archetypal type B CAI USNM-3529-Z from Allende with emphasis on the isotopic composition of pyroxene and its isotopic and petrographic relationships with other major minerals. The O isotopic composition of pyroxene is correlated with indicators of magmatic growth, indicating that the pyroxene evolved from a 16O-poor composition and became progressively enriched in 16O during its crystallization, contrary to the long held assumption that pyroxene was initially 16O-rich. This variation is well explained by isotopic exchange between a 16O-poor partial melt having the isotopic composition of melilite and a 16O-rich gas having the isotopic composition of spinel, during pyroxene crystallization. The isotopic evolution of 3529-Z is consistent with formation in an initially 16O-rich environment where spinel and gehlenitic melilite crystallized, followed by a 16O-depletion associated with melilite partial melting and recrystallization and finally a return to the initial 16O-rich environment before pyroxene crystallization. This strongly suggests that the environment of CAI formation was globally 16O-rich, with local 16O-depletions systematically associated with high temperature events. The Al/Mg isotopic systematics of 3529-Z further indicates that this suite of isotopic changes occurred in the first 150 000 yr of the solar system, during the main CAI formation period. A new astrophysical setting is proposed, where the 16O-depletion occurs in an optically thin surface

  17. Oxygen Isotopic Analyses of Water Extracted from Lunar Samples

    NASA Astrophysics Data System (ADS)

    Nunn Martinez, M.; Thiemens, M. H.

    2014-12-01

    Oxygen exists in lunar materials in distinct phases having unique sources and equilibration histories. The oxygen isotopic composition (δ17O, δ18O) of various components of lunar materials has been studied extensively, but analyses of water in these samples are relatively sparse [1-3]. Samples collected on the lunar surface reflect not only the composition of their source reservoirs but also contributions from asteroidal and cometary impacts, interactions with solar wind and cosmic radiation, among other surface processes. Isotopic characterization of oxygen in lunar water could help resolve the major source of water in the Earth-Moon system by revealing if lunar water is primordial, asteroidal, or cometary in origin [1]. Methods: A lunar rock/soil sample is pumped to high vacuum to remove physisorbed water before heating step-wise to 50, 150, and 1000°C to extract extraterrestrial water without terrestrial contamination. The temperature at which water is evolved is proportional to the strength with which the water is bound in the sample and the relative difficulty of exchanging oxygen atoms in that water. This allows for the isolated extraction of water bound in different phases, which could have different source reservoirs and/or histories, as evidenced by the mass (in)dependence of oxygen compositions. A low blank procedure was developed to accommodate the low water content of lunar material [4]. Results: Oxygen isotopic analyses of lunar water extracted by stepwise heating lunar basalts and breccias with a range of compositions, petrologic types, and surface exposure ages will be presented. The cosmic ray exposure age of these samples varies by two orders of magnitude, and we will consider this in discussing the effects of solar wind and cosmic radiation on the oxygen isotopic composition (Δ17O). I will examine the implications of our water analyses for the composition of the oxygen-bearing reservoir from which that water formed, the effects of surface

  18. Oxygen-isotope exchange rates for three isostructural polyoxometalate ions.

    PubMed

    Villa, Eric M; Ohlin, C André; Casey, William H

    2010-04-14

    We compare oxygen-isotope exchange rates for all structural oxygens in three polyoxoniobate ions that differ by systematic metal substitutions of Ti(IV) --> Nb(V). The [H(x)Nb(10)O(28)]((6-x)-), [H(x)TiNb(9)O(28)]((7-x)-), and [H(x)Ti(2)Nb(8)O(28)]((8-x)-) ions are all isostructural yet have different Brønsted properties. Rates for sites within a particular molecule in the series differ by at least approximately 10(4), but the relative reactivities of the oxygen sites rank in nearly the same relative order for all ions in the series. Within a single ion, most structural oxygens exhibit rates of isotopic exchange that vary similarly with pH, indicating that each structure responds as a whole to changes in pH. Across the series of molecules, however, the pH dependencies for isotope exchanges and dissociation are distinctly different, reflecting different contributions from proton- or base-enhanced pathways. The proton-enhanced pathway for isotope exchange dominates at most pH conditions for the [H(x)Ti(2)Nb(8)O(28)]((8-x)-) ion, but the base-enhanced pathways are increasingly important for the [H(x)TiNb(9)O(28)]((7-x)-) and [H(x)Nb(10)O(28)]((6-x)-) structures at higher pH. The local effect of Ti(IV) substitution could be assessed by comparing rates for structurally similar oxygens on each side of the [H(x)TiNb(9)O(28)]((7-x)-) ion and is surprisingly small. Interestingly, these nanometer-size structures seem to manifest the same general averaged amphoteric chemistry that is familiar for other reactions affecting oxides in water, including interface dissolution by proton- and hydroxyl-enhanced pathways.

  19. Isotopic variations in precipitation at Bangkok and their climatological significance

    NASA Astrophysics Data System (ADS)

    He, Yuanqing; Pang, Hongxi; Theakstone, W. H.; Zhang, Zhonglin; Lu, Aigang; Gu, Juan

    2006-08-01

    The stable isotopic composition of precipitation from low to mid latitudes contains information about changes of some climatic factors, such as temperature, precipitation and atmospheric circulation patterns. However, the isotopic variations in the area are very complicated because of the combined influences of these factors. Proper interpretation of the patterns of isotopic variations for palaeoclimate reconstructions in this area requires a detailed understanding of these complex stable isotope controls. The isotopic data (18O and 2D) in precipitation at the International Atomic Energy Agency-World Meteorological Organization Bangkok station were collected and analysed because of the relatively long and unbroken isotopic records and the particular geographical location. The isotopic variations at Bangkok have strong seasonal patterns owing to distinct source regions in different seasons. In summer, the remote sources of water there can influence the 18O values significantly, which is verified by the simple Rayleigh model. In winter, the mixing of isotopically distinct air masses with different origins, i.e. the continental and oceanic air masses, accounts for the isotopic variations. In the transition periods of the Asia-Australia monsoon, namely in May and October, the local vapour contribution may play a role in the isotopic ratios. On the interannual time-scale, the influences of El Niño-southern oscillation (ENSO) and the Indian Ocean dipole (IOD) on isotopic composition are examined. The indications are that both the ENSO and IOD indices have a significant correlation with the 18O ratios, and that the 18O ratio in summer rains is significantly more enriched (depleted) during the warm (cold) phase of ENSO/IOD events. All the results suggest that it is useful for us in understanding the water cycling process and may be helpful in palaeoclimate reconstruction in this monsoon region.

  20. Oxygen Isotopes in Chondritic Interplanetary Dust: Parent-Bodies and Nebular Oxygen Reservoirs

    SciTech Connect

    Aleon, J; McKeegan, K D; Leshin, L

    2006-02-14

    Planetary objects have preserved various amounts of oxygen issued from isotopically different oxygen reservoirs reflecting their origin and physico-chemical history. An {sup 16}O-rich component is preserved in refractory inclusions (CAIs) whereas meteorites matrices are enriched in an {sup 16}O-poor component. The origin of these components is still unclear. The most recent models are based on isotope selective photodissociation of CO in a {sup 16}O-rich nebula/presolr cloud resulting in a {sup 16}O-poor gas in the outer part of the nebula. However because most meteorite components are thought to be formed in the inner 3AU of the solar nebula, the precise isotopic composition of outer solar system components is yet unknown. In that respect, the oxygen isotopic composition of cometary dust is a key to understand the origin of the solar system. The Stardust mission will bring back to the Earth dust samples from comet Wild2, a short period comet from the Jupiter family. A precise determination of the oxygen isotope composition of Wild2 dust grains is essential to decipher the oxygen reservoirs of the outer solar system. However, Stardust samples may be extremely fragmented upon impact in the collector. In addition, interplanetary dust particles (IDPs) collected in the stratosphere are likely to contain comet samples. Therefore, they started to investigate the oxygen isotopic composition of a suite of chondritic interplanetary dust particles that includes IDPs of potential cometary origin using a refined procedure to increase the lateral resolution for the analysis of Stardust grains or IDP subcomponents down to {approx} 3 {micro}m. High precision data for 4 IDPs were previously reported, here they have measured 6 additional IDPs.

  1. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    PubMed

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  2. Sulfur and oxygen isotope fractionation during benzene, toluene, ethyl benzene, and xylene degradation by sulfate-reducing bacteria.

    PubMed

    Knöller, Kay; Vogt, Carsten; Richnow, Hans-Herrmann; Weise, Stephan M

    2006-06-15

    We examined the oxygen and sulfur isotope fractionation of sulfate during anaerobic degradation of toluene by sulfate-reducing bacteria in culture experiments with Desulfobacula toluolica as a type strain and with an enrichment culture Zz5-7 obtained from a benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated aquifer. Sulfur isotope fractionation can show considerable variation upon sulfate reduction and may react extremely sensitively to changes in environmental conditions. In contrast, oxygen isotope fractionation seems to be less sensitive to environmental changes. Our results clearly indicate that oxygen isotope fractionation is dominated by isotope exchange with ambient water. To verify our experimental results and to test the applicability of oxygen and sulfur isotope investigations under realistic field conditions, we evaluated isotope data from two BTEX-contaminated aquifers presented in the recent literature. On a field scale, bacterial sulfate reduction may be superimposed by processes such as dispersion, adsorption, reoxidation, or mixing. The dual isotope approach enables the identification of such sulfur transformation processes. This identification is vital for a general qualitative evaluation of the natural attenuation potential of the contaminated aquifer.

  3. Hydrogen and oxygen isotope ratios in human hair are related to geography

    PubMed Central

    Ehleringer, James R.; Bowen, Gabriel J.; Chesson, Lesley A.; West, Adam G.; Podlesak, David W.; Cerling, Thure E.

    2008-01-01

    We develop and test a model to predict the geographic region-of-origin of humans based on the stable isotope composition of their scalp hair. This model incorporates exchangeable and nonexchangeable hydrogen and oxygen atoms in amino acids to predict the δ2H and δ18O values of scalp hair (primarily keratin). We evaluated model predictions with stable isotope analyses of human hair from 65 cities across the United States. The model, which predicts hair isotopic composition as a function of drinking water, bulk diet, and dietary protein isotope ratios, explains >85% of the observed variation and reproduces the observed slopes relating the isotopic composition of hair samples to that of local drinking water. Based on the geographical distributions of the isotope ratios of tap waters and the assumption of a “continental supermarket” dietary input, we constructed maps of the expected average H and O isotope ratios in human hair across the contiguous 48 states. Applications of this model and these observations are extensive and include detection of dietary information, reconstruction of historic movements of individuals, and provision of region-of-origin information for unidentified human remains. PMID:18299562

  4. Hydrogen and oxygen isotope ratios in human hair are related to geography.

    PubMed

    Ehleringer, James R; Bowen, Gabriel J; Chesson, Lesley A; West, Adam G; Podlesak, David W; Cerling, Thure E

    2008-02-26

    We develop and test a model to predict the geographic region-of-origin of humans based on the stable isotope composition of their scalp hair. This model incorporates exchangeable and nonexchangeable hydrogen and oxygen atoms in amino acids to predict the delta(2)H and delta(18)O values of scalp hair (primarily keratin). We evaluated model predictions with stable isotope analyses of human hair from 65 cities across the United States. The model, which predicts hair isotopic composition as a function of drinking water, bulk diet, and dietary protein isotope ratios, explains >85% of the observed variation and reproduces the observed slopes relating the isotopic composition of hair samples to that of local drinking water. Based on the geographical distributions of the isotope ratios of tap waters and the assumption of a "continental supermarket" dietary input, we constructed maps of the expected average H and O isotope ratios in human hair across the contiguous 48 states. Applications of this model and these observations are extensive and include detection of dietary information, reconstruction of historic movements of individuals, and provision of region-of-origin information for unidentified human remains.

  5. Sr isotopic variations along the Juan de Fuca Ridge.

    USGS Publications Warehouse

    Eaby, J.; Clague, D.A.; Delaney, J.R.

    1984-01-01

    The Sr isotopic ratios of 39 glass and microcrystalline basalt samples along the Juan de Fuca Ridge and one glass sample from Brown Bear Seamount are at the lower end of the range for normal MORB; the average 87Sr/86Sr ratio is 0.70249 + or - 0.00014 (2sigma ). Although subtle variations exist along the strike of the ridge, the Sr isotopic data do not show systematic variation relative to the proposed Cobb hotspot. The isotopic data are inconsistent with an enriched mantle-plume origin for the Cobb-Eikelberg Seamount chain.-W.H.B.

  6. Pristine extraterrestrial material with unprecedented nitrogen isotopic variation

    PubMed Central

    Briani, Giacomo; Gounelle, Matthieu; Marrocchi, Yves; Mostefaoui, Smail; Leroux, Hugues; Quirico, Eric; Meibom, Anders

    2009-01-01

    Pristine meteoritic materials carry light element isotopic fractionations that constrain physiochemical conditions during solar system formation. Here we report the discovery of a unique xenolith in the metal-rich chondrite Isheyevo. Its fine-grained, highly pristine mineralogy has similarity with interplanetary dust particles (IDPs), but the volume of the xenolith is more than 30,000 times that of a typical IDP. Furthermore, an extreme continuum of N isotopic variation is present in this xenolith: from very light N isotopic composition (δ15NAIR = −310 ± 20‰), similar to that inferred for the solar nebula, to the heaviest ratios measured in any solar system material (δ15NAIR = 4,900 ± 300‰). At the same time, its hydrogen and carbon isotopic compositions exhibit very little variation. This object poses serious challenges for existing models for the origin of light element isotopic anomalies. PMID:19528640

  7. Pristine extraterrestrial material with unprecedented nitrogen isotopic variation.

    PubMed

    Briani, Giacomo; Gounelle, Matthieu; Marrocchi, Yves; Mostefaoui, Smail; Leroux, Hugues; Quirico, Eric; Meibom, Anders

    2009-06-30

    Pristine meteoritic materials carry light element isotopic fractionations that constrain physiochemical conditions during solar system formation. Here we report the discovery of a unique xenolith in the metal-rich chondrite Isheyevo. Its fine-grained, highly pristine mineralogy has similarity with interplanetary dust particles (IDPs), but the volume of the xenolith is more than 30,000 times that of a typical IDP. Furthermore, an extreme continuum of N isotopic variation is present in this xenolith: from very light N isotopic composition (delta(15)N(AIR) = -310 +/- 20 per thousand), similar to that inferred for the solar nebula, to the heaviest ratios measured in any solar system material (delta(15)N(AIR) = 4,900 +/- 300 per thousand). At the same time, its hydrogen and carbon isotopic compositions exhibit very little variation. This object poses serious challenges for existing models for the origin of light element isotopic anomalies.

  8. Predictions of oxygen isotope ratios in stars and of oxygen-rich interstellar grains in meteorites

    NASA Astrophysics Data System (ADS)

    Boothroyd, Arnold I.; Sackmann, I.-Juliana; Wasserburg, G. J.

    1994-07-01

    We carried out detailed, self-consistent calculations for stars from 1 to 9 solar mass over a wide range of metallicities, following the evolution and nucleosynthesis from the pre-main sequence to the asymptotic giant branch (AGB), in order to provide a self-consistent grid for evaluating stellar oxygen isotopic variations. These were calculated for first and second dredge-up, and for some masses also for third dredge-up and 'hot bottom' convective envelope burning on the AGB. We demonstrate that 0-16/0-17 in red giant envelopes is primarily a function of the star's mass, while 0-16/0-18 is primarily a function of the initial composition. Uncertainties in the 0-17-destruction rate have no effect on the 0-16/0-17 ratio for stars from 1 to 2.5 solar mass, but do affect the ratios for higher masses: the stellar 0-16/0-17 observations are consistent with the Landre et al. (1990) rates using f = 0.2 for 0-17(p,gamma) F-18 and -17(p. alpha) N-14, and with the Caughlan & Fowler (1988) rates using f approximately equals 1. The stellar 0-16/0-18 observations require f approximately equals 0 in the Caughlan & Fowler 0-18(p, alpha) N-15 rate. First dredge-up has the largest effect on the oxygen isotope ratios, decreasing 0-16/0-17 significantly from the initial value and increasing 0-16/0-18 slightly. Second and third dredge-up have only minor effects for solar metallicity stars. The absence of very low observed 0-16/0-18 ratios is consistent with a major increase in the 0-18(alpha, gamma) Ne-22 rate over the Caughlan & Fowler (1988) value. Hot bottom burning in stars above about 5 solar mass can cause a huge increase in 0-16/0-18 to approximately greater than 106, and possibly a significant decrease in 0-16/0-17; these are accompanied by a huge increase in Li-7 and a value of C-12/C-13 approximately = 3. The oxygen isotope ratios in the Al203 grains (Orgueil grain B, the Murchison 83-5 grain, and the new Bishunpur B39 grain) can be accounted for if they originated in stars

  9. Carbon and Oxygen Isotopic Ratios for Nearby Miras

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth H.; Lebzelter, Thomas; Straniero, Oscar

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration-rotation first and second-overtone CO lines in 1.5-2.5 μm spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M ⊙ and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of 16O/17O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2-2 M ⊙ stars after the first dredge-up. In contrast, the 16O/18O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the 16O/18O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O-rich grains, no star in our sample shows evidence of hot bottom burning, which is expected for

  10. Oxygen isotopic disequilibrium in coccolith carbonate from phytoplankton blooms

    NASA Astrophysics Data System (ADS)

    Paull, Charles K.; Balch, William M.

    1994-01-01

    Particulate carbonate was concentrated with a flow centrifuge out of the waters from a coccolithophore bloom in the Gulf of Maine for δ 18O CaCO 3 measurement. The particulate samples were composed of diverse organic materials, but most samples were observed to be dominated by Emiliana huxleyi CaCO 3. The oxygen isotopic fractionation associated with these E. huxleyi populations were determined by comparing oxygen isotope ratios in coccoliths with those of anbient waters at the time of collection. The observed isotopic fractionations were large (up to 2.8%), but did not match well with the expected values based on previous laboratory experiments. The temperatures calculated from the isotopic values of surface samples averaged 7.4°C cooler than the waters from which this carbonate was collected. These discrepancies may indicate that the coccoliths were precipatated in cooler water 10-20 m below the surface waters were they were captured, or that the waters had warmed since the coccoliths grew.

  11. Oxygen isotope constraints on the petrogenesis of Aleutian arc magmas

    SciTech Connect

    Singer, B.S.; O'Neil, J.R. ); Brophy, J.G. )

    1992-04-01

    The first measurement of {sup 18}O/{sup 16}O ratios of plagioclase, clinopyroxene, orthopyroxene, and titanomagnetite phenocrysts from modern Aleutian island-arc lavas provides new insight and independent constraints on magma sources and intracrustal processes. Basalts are heterogeneous on the scale of the entire arc and individual volcanic centers. Combined with Sr isotope and trace element data {delta}{sup 18}O{sub plag} values suggest a variable magma source characterized by differences in the mantle wedge or the subducted sediment component along the volcanic front. Seven tholeiitic basalt to rhyodacite lavas from the Seguam volcanic center have nearly identical {delta}{sup 18}O{sub plag} values of 6.0{per thousand} {plus minus} 0.2{per thousand}, reflecting extensive closed-system plagioclase-dominated crystal fractionation. Oxygen isotope thermometry and pyroxene and oxide equilibria indicate that differentiation occurred between 1,150 {plus minus} 100C (basalt) and 950 {plus minus} 100C (rhyodacite). In contrast, {delta}{sup 18}O{sub plag} values of 12 calc-alkalic basaltic andesites and andesites from the smaller Kanaga volcanic center span a broader range of 5.9{per thousand}-6.6{per thousand}, and consist of mostly higher values. Isotopic disequilibrium in the Kanaga system is manifest in two ways: two types of basaltic inclusions with contrasting {delta}{sup 18}O values occur in one andesite, and in two other andesites plagioclase-titanomagnetite and clinopyroxene-titanomagnetite oxygen isotope temperatures are inconsistent.

  12. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    SciTech Connect

    Williams, A.E.; Elders, W.A.

    1981-01-01

    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.

  13. Hydrogen and Oxygen Isotope Ratios in Body Water and Hair: Modeling Isotope Dynamics in Nonhuman Primates

    PubMed Central

    O’Grady, Shannon P.; Valenzuela, Luciano O.; Remien, Christopher H.; Enright, Lindsey E.; Jorgensen, Matthew J.; Kaplan, Jay R.; Wagner, Janice D.; Cerling, Thure E.; Ehleringer, James R.

    2012-01-01

    The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water (2H/1H, 18O/16O expressed as δ2H and δ18O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ2H and δ18O values of body water and a second model to predict the δ2H and δ18O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ2H and δ18O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ2H and δ18O values of gut water and the 18O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (αow). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of αow was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. PMID:22553163

  14. Hydrogen and oxygen isotope ratios in body water and hair: modeling isotope dynamics in nonhuman primates.

    PubMed

    O'Grady, Shannon P; Valenzuela, Luciano O; Remien, Christopher H; Enright, Lindsey E; Jorgensen, Matthew J; Kaplan, Jay R; Wagner, Janice D; Cerling, Thure E; Ehleringer, James R

    2012-07-01

    The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water ((2)H/(1)H, (18)O/(16)O expressed as δ(2) H and δ(18)O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ(2)H and δ(18)O values of body water and a second model to predict the δ(2)H and δ(18)O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ(2)H and δ(18)O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ(2)H and δ(18)O values of gut water and the (18)O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (α(ow)). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of α(ow) was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems.

  15. The triple oxygen isotope composition of leaf waters in Mpala, central Kenya

    NASA Astrophysics Data System (ADS)

    Li, S.; Levin, N.; Soderberg, K.; Dennis, K. J.; Caylor, K. K.

    2013-12-01

    evapotranspiration to explain the diurnal 17O-excess variation of the Acacia leaf waters. The results from this model indicate that 17O-excess of the leaf waters may be affected by variations in stomatal conductance, leaf water volume, and water residence time, in addition to variations in Rh. Our study emphasizes that the triple oxygen isotope composition of leaf waters is controlled both physically by Rh conditions but also by the physiological responses of a plant to its environment. The triple oxygen isotope composition of grass leaf water is a result of both evapotranspiration and mixing processes, and thus species effects should be considered in the discussion of λ(stem-leaf)-Rh relationships. A better understanding of the λ(stem-leaf)-Rh relationships could provide a framework for interpreting variations of triple oxygen isotopes of tree cellulose or fossil tissues as proxies for paleo-hydrological change.

  16. Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report)

    USGS Publications Warehouse

    Coplen, Tyler B.; Shrestha, Yesha

    2016-01-01

    There are 63 chemical elements that have two or more isotopes that are used to determine their standard atomic weights. The isotopic abundances and atomic weights of these elements can vary in normal materials due to physical and chemical fractionation processes (not due to radioactive decay). These variations are well known for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium), and the standard atomic weight of each of these elements is given by IUPAC as an interval with lower and upper bounds. Graphical plots of selected materials and compounds of each of these elements have been published previously. Herein and at the URL http://dx.doi.org/10.5066/F7GF0RN2, we provide isotopic abundances, isotope-delta values, and atomic weights for each of the upper and lower bounds of these materials and compounds.

  17. Tunable Diode Laser Measurements of Leaf-scale Carbon Isotope Discrimination and Ecosystem Respired Carbon and Oxygen Isotope Ratios in a Semi-arid Woodland

    NASA Astrophysics Data System (ADS)

    McDowell, N.; Chris, B.; Hanson, D.; Kern, S.; Meyer, C.; Pockman, W.; Powers, H.

    2005-12-01

    We present results and speculative interpretation of leaf-level carbon isotope discrimination and ecosystem respired carbon and oxygen isotope ratios from a semi-arid, C3/C4 woodland located in northern New Mexico, USA. Overstory leaf area index (LAI) is dominated by live juniper (Juniperus monosperma) trees with an LAI value of approximately 1.0 m2 per m2 ground area, and has a seasonally dynamic understory of mixed C3 forbs and C4 grasses and cacti, with a maximum LAI of 0.30 m2 per m2 ground area. Ecosystem respired carbon isotope ratios showed values characteristic of C3 dominated photosynthesis (Keeling plot intercepts of -35 to -22 per mil). Seasonal variation was typical of that found in wetter, C3 dominated forests, as was the dependence on climate (e.g. relationships with vapor pressure deficit, soil water content, and canopy conductance). Leaf-level carbon isotope discrimination of the junipers, measured by coupling a Li-Cor 6400 photosynthesis system to the TDL, provided discrimination-Ci and discrimination-vpd relationships consistent with measured ecosystem respired carbon isotope ratios. The oxygen isotope ratio of ecosystem respiration was dependent on rain water isotope composition, but was correlated with soil water content during rain-free periods. The cumulative effect of vapor pressure deficit after a rain event was tightly correlated with the oxygen isotope ratio of ecosystem respiration, suggesting the primary drivers are evaporative enrichment of soil water and perhaps nocturnal leaf enrichment. Instrument precision for carbon and oxygen isotope ratios of carbon dioxide is 0.06 to 0.18 per mil; however, overall precision is somewhat lower due to pressure and sampling effects.

  18. Isotopic study of oxygen diffusion in oxide coatings

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.; Kren, Lawrence A.; Dever, Therese M.

    1989-01-01

    Diffusion of oxygen in thin films of silicon dioxide was studied using oxygen isotopically enriched in oxygen of atomic mass 18 (O-18). This subject is of interest because thin films of dielectrics such as SiO2 are proposed for use as a protective coatings for solar mirrors in low Earth orbit, which is a strongly oxidizing environment. Films of this material were prepared with a direct current magnetron using reactive sputtering techniques. To produce (O-18)- enriched SiO2, a standard 3.5-in.-diameter silicon wafer was reactively sputtered using (O-18)-enriched (95 percent) oxygen as the plasma feed gas. The films were characterized using Rutherford backscattering and Secondary Ion Mass Spectrometer (SIMS) to establish stoichiometry and purity. Subsequently, the films were exposed to an air-derived oxygen plasma in a standard laboratory plasma reactor for durations of up to 10 hr. The concentration ratio of O-16 as a function of depth was determined using SIMS profiling and compared to a baseline, nonplasma exposed sample. A value for the diffusivity of oxygen near the surface of these films was obtained and found to be about 10(-15)sq cm/sec.

  19. Oxygen isotope fractionation of dissolved oxygen during reduction by ferrous iron

    NASA Astrophysics Data System (ADS)

    Oba, Yasuhiro; Poulson, Simon R.

    2009-01-01

    The oxygen isotope fractionation factor of dissolved oxygen gas has been measured during inorganic reduction by aqueous FeSO 4 at 10-54 °C under neutral (pH 7) and acidic (pH 2) conditions, with Fe(II) concentrations ranging up to 0.67 mol L -1, in order to better understand the geochemical behavior of oxygen in ferrous iron-rich groundwater and acidic mine pit lakes. The rate of oxygen reduction increased with increasing temperature and increasing Fe(II) concentration, with the pseudo-first-order rate constant k ranging from 2.3 to 82.9 × 10 -6 s -1 under neutral conditions and 2.1 to 37.4 × 10 -7 s -1 under acidic conditions. The activation energy of oxygen reduction was 30.9 ± 6.6 kJ mol -1 and 49.7 ± 13.0 kJ mol -1 under neutral and acidic conditions, respectively. Oxygen isotope enrichment factors ( ɛ) become smaller with increasing temperature, increasing ferrous iron concentration, and increasing reaction rate under acidic conditions, with ɛ values ranging from -4.5‰ to -11.6‰. Under neutral conditions, ɛ does not show any systematic trends vs. temperature or ferrous iron concentration, with ɛ values ranging from -7.3 to -10.3‰. Characterization of the oxygen isotope fractionation factor associated with O 2 reduction by Fe(II) will have application to elucidating the process or processes responsible for oxygen consumption in environments such as groundwater and acidic mine pit lakes, where a number of possible processes (e.g. biological respiration, reduction by reduced species) may have taken place.

  20. Helium isotopic abundance variation in nature

    SciTech Connect

    Holden, N.E.

    1993-08-01

    The isotopic abundance of helium in nature has been reviewed. This atomic weight value is based on the value of helium in the atmosphere, which is invariant around the world and up to a distance of 100,000 feet. Helium does vary in natural gas, volcanic rocks and gases, ocean floor sediments, waters of various types and in radioactive minerals and ores due to {alpha} particle decay of radioactive nuclides.

  1. Uranium Stable Isotopes: A Proxy For Productivity Or Ocean Oxygenation?

    NASA Astrophysics Data System (ADS)

    Severmann, S.

    2015-12-01

    Uranium elemental abundances in sediments have traditionally been used to reconstruct primary productivity and carbon flux in the ocean. 238U/235U isotope compositions, in contrast, are currently understood to reflect the extent of bottom water anoxia in the ocean. A review of our current understanding of authigenic U enrichment mechanism into reducing sediments suggests that a revision of this interpretation is warranted. Specifically, the current interpretation of U isotope effects in suboxic vs. anoxic deposits has not taken into account the well-documented linear relationship with organic C burial rates. Although organic C rain rates (i.e., surface productivity) and bottom water oxygenation are clearly related, distinction between these two environmental controls is conceptually important as it relates to the mechanism of enhanced C burial and ultimately the strength of the biological pump. Here we will review new and existing data to test the hypothesis that the isotope composition of authigenic U in reducing sediments are best described by their relationship with parameters related to organic carbon delivery and burial, rather than bottom water oxygen concentration.

  2. Isotope fractionation during oxidation of tetravalent uranium by dissolved oxygen

    NASA Astrophysics Data System (ADS)

    Wang, Xiangli; Johnson, Thomas M.; Lundstrom, Craig C.

    2015-02-01

    We conducted laboratory experiments to investigate isotopic fractionations during oxidation of tetravalent uranium, U(IV), by dissolved oxygen. In hydrochloric acid media with the U(IV) dissolved, the δ238U value of the remaining U(IV) increased as the extent of oxidation increased. The δ238U value of the product U(VI) paralleled, but was offset to 1.1 ± 0.2‰ lower than the remaining U(IV). In contrast, oxidation of solid U(IV) by dissolved oxygen in 20 mM NaHCO3 solution at pH = 9.4 caused only a weak fractionation (∼0.1‰ to 0.3‰), with δ238U being higher in the dissolved U(VI) relative to the solid U(IV). We suggest that isotope fractionation during oxidation of solid U(IV) is inhibited by a "rind effect", where the surface layer of the solid U(IV) must be completely oxidized before the next layer is exposed to oxidant. The necessity of complete conversion of each layer results in minimal isotopic effect. The weak shift in δ238U of U(VI) is attributed to adsorption of part of the product U(VI) to the solid U(IV) surfaces.

  3. Oxygen isotopic composition of carbon dioxide in the middle atmosphere.

    PubMed

    Liang, Mao-Chang; Blake, Geoffrey A; Lewis, Brenton R; Yung, Yuk L

    2007-01-02

    The isotopic composition of long-lived trace molecules provides a window into atmospheric transport and chemistry. Carbon dioxide is a particularly powerful tracer, because its abundance remains >100 parts per million by volume (ppmv) in the mesosphere. Here, we successfully reproduce the isotopic composition of CO(2) in the middle atmosphere, which has not been previously reported. The mass-independent fractionation of oxygen in CO(2) can be satisfactorily explained by the exchange reaction with O((1)D). In the stratosphere, the major source of O((1)D) is O(3) photolysis. Higher in the mesosphere, we discover that the photolysis of (16)O(17)O and (16)O(18)O by solar Lyman-alpha radiation yields O((1)D) 10-100 times more enriched in (17)O and (18)O than that from ozone photodissociation at lower altitudes. This latter source of heavy O((1)D) has not been considered in atmospheric simulations, yet it may potentially affect the "anomalous" oxygen signature in tropospheric CO(2) that should reflect the gross carbon fluxes between the atmosphere and terrestrial biosphere. Additional laboratory and atmospheric measurements are therefore proposed to test our model and validate the use of CO(2) isotopic fractionation as a tracer of atmospheric chemical and dynamical processes.

  4. Isotopic variations in the rock-forming elements in meteorites

    NASA Technical Reports Server (NTRS)

    Clayton, R. N.; Hinton, R. W.; Davis, A. M.

    1988-01-01

    Variations in isotopic abundances of the major rock-forming elements can be used as tracers for chemical processes in the solar nebula, and may also provide links to the presolar cloud from which the solar nebula was derived. The paper reviews recent developments involving meteoritic abundances of the isotopes of O, Mg, Si, Ca, Ti, Cr, Fe, and Ni). Some of the effects observed are due to mass-dependent fractionation, and some are due to interaction of isotopically distinct reservoirs, reflecting incomplete homogenization of materials with different nucleosynthetic histories.

  5. Isotopic variations in the rock-forming elements in meteorites

    NASA Astrophysics Data System (ADS)

    Clayton, R. N.; Hinton, R. W.; Davis, A. M.

    1988-07-01

    Variations in isotopic abundances of the major rock-forming elements can be used as tracers for chemical processes in the solar nebula, and may also provide links to the presolar cloud from which the solar nebula was derived. The paper reviews recent developments involving meteoritic abundances of the isotopes of O, Mg, Si, Ca, Ti, Cr, Fe, and Ni). Some of the effects observed are due to mass-dependent fractionation, and some are due to interaction of isotopically distinct reservoirs, reflecting incomplete homogenization of materials with different nucleosynthetic histories.

  6. Environmental and biomedical applications of natural metal stable isotope variations

    USGS Publications Warehouse

    Bullen, T.D.; Walczyk, T.

    2009-01-01

    etal stable isotopes are now being used to trace metal contaminants in the environment and as indicators of human systemic function where metals play a role. Stable isotope abundance variations provide information about metal sources and the processes affecting metals in complex natural systems, complementing information gained from surrogate tracers, such as metal abundance ratios or biochemical markers of metal metabolism. The science is still in its infancy, but the results of initial studies confirm that metal stable isotopes can provide a powerful tool for forensic and biomedical investigations.

  7. Kinetic theory of oxygen isotopic exchange between minerals and water

    USGS Publications Warehouse

    Criss, R.E.; Gregory, R.T.; Taylor, H.P.

    1987-01-01

    Kinetic and mass conservation equations are used to describe oxygen isotopic exchange between minerals and water in "closed" and open hydrothermal systems. In cases where n coexisting mineral phases having different reaction rates are present, the exchange process is described by a system of n + 1 simultaneous differential equations consisting of n pseudo first-order rate equations and a conservation of mass equation. The simultaneous solutions to these equations generate curved exchange trajectories on ??-?? plots. Families of such trajectories generated under conditions allowing for different fluid mole fractions, different fluid isotopic compositions, or different fluid flow rates are connected by positive-sloped isochronous lines. These isochrons reproduce the effects observed in hydrothermally exchanged mineral pairs including 1) steep positive slopes, 2) common reversals in the measured fractionation factors (??), and 3) measured fractionations that are highly variable over short distances where no thermal gradient can be geologically demonstrated. ?? 1987.

  8. Oxygenation of a Cryogenian ocean (Nanhua Basin, South China) revealed by pyrite Fe isotope compositions

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Zhu, Xiangkun; Yan, Bin; Kendall, Brian; Peng, Xi; Li, Jin; Algeo, Thomas J.; Romaniello, Stephen

    2015-11-01

    The nature of ocean redox chemistry between the Cryogenian Sturtian and Marinoan glaciations (ca. 663-654 Ma) is important for understanding the relationship between environmental conditions and the subsequent emergence and expansion of early animals. The Cryogenian-to-Ediacaran stratigraphic succession of the Nanhua Basin in South China provides a nearly complete sedimentary record of the Cryogenian, including a continuous record of interglacial sedimentation. Here, we present a high-resolution pyrite Fe isotope record for a ∼120-m-long drill-core (ZK105) through Sturtian glacial diamictites and the overlying interglacial sediments in the Nanhua Basin to explore changes in marine chemistry during the late Cryogenian. Our pyrite Fe isotope profile exhibits significant stratigraphic variation: Interval I, comprising middle to upper Tiesi'ao diamictites (correlative with the Sturtian glaciation), is characterized by light, modern seawater-like Fe isotope compositions; Interval II, comprising uppermost Tiesi'ao diamictites and the basal organic-rich Datangpo Formation, is characterized by an abrupt shift to heavier Fe isotope compositions; and Interval III, comprising organic-poor grey shales in the middle Datangpo Formation, is characterized by the return of lighter, seawater-like Fe isotope compositions. We infer that Interval I pyrite was deposited in a predominantly anoxic glacial Nanhua Basin through reaction of dissolved Fe2+ and H2S mediated by microbial sulfate reduction (MSR). The shift to heavier pyrite Fe isotope values in Interval II is interpreted as partial oxidation of ferrous iron to ferric iron and subsequent near-quantitative reduction and transformation of Fe-oxyhydroxides to pyrite through coupling with oxidation of organic matter in the local diagenetic environment. In Interval III, near-quantitative oxidation of ferrous iron to Fe-oxyhydroxides followed by near-quantitative reduction and conversion to pyrite in the local diagenetic environment

  9. Oxygen and Chlorine Isotopic Fractionation During Microbial Reduction of Perchlorate

    NASA Astrophysics Data System (ADS)

    Beloso, A. D.; Sturchio, N. C.; Böhlke, J. K.; Streger, S. H.; Heraty, L. J.; Hatzinger, P. B.

    2006-12-01

    Perchlorate is a widespread environmental contaminant that has both anthropogenic and natural sources. Stable isotope ratios of O and Cl in perchlorate have been used recently to distinguish perchlorate of different origins. Isotopic ratios may also be useful for identifying the occurrence and extent of biodegradation of perchlorate in natural environments, information that is critical for assessing natural attenuation of this contaminant. For this approach to be useful, however, the extent of isotopic fractionation of both Cl and O by bacteria must be determined, and the influence of environmental variables on this process must be defined. During this laboratory study, the O and Cl isotope ratios of perchlorate were monitored as a function of degradation by two separate bacterial species (Azospira suillum JPLRND and Dechlorospirillum sp. FBR2) at both 10 °C and 22 °C with acetate as the electron donor. Perchlorate was completely degraded by both strains within 280 hr at 22 °C and 615 hr at 10 °C. Measured values of isotopic fractionation factors were ɛ18O = -36.6 to -29.0 ‰ and ɛ37Cl = -14.5 to - 11.5 ‰, and these showed no apparent systematic variation with either temperature or bacterial strain. One experiment using 18O-enriched water (δ18O = 200‰) gave results indistinguishable from those observed in isotopically normal water, indicating little or no isotopic exchange between perchlorate and water during biodegradation. The fractionation factor ratio ɛ18O/ɛ37Cl was nearly invariant in all experiments at 2.50 ± 0.04. These data indicate that isotopic analysis will be useful for documenting perchlorate biodegradation in soils and groundwater. The establishment of a microbial fractionation factor ratio (ɛ18O/ɛ37Cl) also has significance for forensic studies, as these data indicate that fractionation via biodegradation will not cause the reported mass-dependent Cl and O isotopic signatures of synthetic and natural perchlorate to overlap.

  10. Temperature and Oxygen Isotope Composition of The Ediacaran Ocean: Constraints From Clumped Isotope Carbonate Thermometry

    NASA Astrophysics Data System (ADS)

    Bonifacie, M.; Eiler, J. M.; Fike, D. A.

    2008-12-01

    The temperature and chemical variations of the early oceans on Earth are highly debated, particularly for periods associated with significant evolutionary change and/or extinction. The temperature of past oceans has been estimated based on conventional carbonate-water and/or silicate-water stable oxygen isotope thermometry. Precambrian carbonates and silicates both exhibit a long-term secular trend of increasing δ18O values with decreasing age. This trend has been used to support two opposite - though related - interpretations: the Earth's oceans gradually cooled over the course of the Proterozoic eon, from a maximum of ~ 60-90°C at ~ 2.5Ga (and were, on average, relatively warm during much of the Paleozoic era) [1]. This interpretation has been supported by Si-isotope proxies and the thermal tolerances of proteins in various classes of microbial organisms [2-3]. Alternatively, the δ18O value of the oceans has gradually increased through time [4-5], and mean Earth surface temperatures varied over a narrow range similar to modern conditions. In other terms, one either assumes an ocean of constant δ18O and infers that climate varied dramatically, or vise versa. Finally, it is possible that post- depositional processes (e.g., diagenesis, burial metamorphism, weathering) has modified the δ18O values of all or most Precambrian sedimentary carbonates and silicates, overprinting any paleoclimatic variations. Carbonate 'clumped isotope' thermometry provides a new way to independently test these hypotheses because it allows one to determine the apparent growth temperatures of carbonate minerals based on their abundances of 13C-18O bonds, as reflected by the 'Δ47' value of CO2 extracted by phosphoric acid digestion [6]. This method is thermodynamically based and independent of the δ18O of water from which the carbonate grew. We will report the initial results of measurements of 'Δ47 for a suite of carbonates from the Sultanate of Oman. This Ediacaran age (~ 635 to

  11. Lightning and Mass Independent Oxygen Isotopic Fractionation in Nebular Silicates

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.

    2009-01-01

    Lightning has long been postulated as the agent of Chondru|e formation in the solar nebula, but it may have an additional role to play as well. Lightning bolts of almost any scale will both vaporize dust and liberate oxygen atoms that will then interact with both nebular gases as well as the refractory silicate vapor as it re-condenses. Such processes should result in the addition of the heavy oxygen isotopes to the growing silicate grains while the light oxygen-16 becomes part of the gas phase water. This process will proceed to some extent throughout the history of any turbulent nebula and will result in the gradual increase of O-16 in the gas phase and in a much larger relative increase in the O-17 and O-18 content of the nebular dust. Laboratory experiments have demonstrated the production of such "heavy oxygen enriched", non-mass-dependently-fractionated dust grains in a high voltage discharge in a hydrogen rich gas containing small quantities of silane, pentacarbonyl iron and oxygen.

  12. An Archean Terrestrial Fractionation Line for Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Rumble, D.; Blake, R. E.; Bao, H.; Bowring, S.; Komiya, T.; Rosing, M.; Ueno, Y.

    2008-12-01

    The Terrestrial Fractionation Line (TFL) for oxygen isotopes is defined by 17O/16O and 18O/16O analyses of meteoric waters, seawater, sedimentary, metamorphic, and igneous rocks and constituent minerals. Interlaboratory measurements of the slope of the TFL on a plot of d18O vs. d17O revealed eclogitic garnets with a slope of 0.526 and hydrothermal quartz of 0.524 from rocks younger than 0.8 Ga (Giga years before present). New measurements show Archean metamorphic rocks and minerals from Barberton, (3.2 Ga, S. Africa), Isua (3.8 Ga, Greenland), and Acasta (4.0 Ga, Canada) have a slope of 0.524 +/- 0.002 (95% confidence, MSWD = 0.66). Analysis of Ag3PO4 prepared from apatite mineral separates from Isua meta-sediments gives a slope of 0.509 +/- 0.022 (95% confidence, MSWD = 0.59). Taken at face value, steeper slopes on a d17O vs. d18O diagram indicate an approach towards isotope exchange equilibrium. Lower slopes are expected when isotope fractionation is kinetically controlled. The lower slope of 0.509 for Isua apatite suggests that the formation of orthophosphate was kinetically controlled. Kinetic fractionations are known to occur during catalysis of reactions by enzymes secreted by microbes. Enzymatic catalysis confers an advantage on organisms because energy-producing reactions may be induced to occur at lower temperature conditions more accessible to the organism. May it be definitively concluded that enzymatic catalysis was responsible for the measured 0.509 slope? No, abiotic kinetic fractionation cannot be disproven with existing data. The preparation of Ag3PO4 from apatite may have introduced kinetic fractionation as an analytical artifact. Conclusions fully supported by the data suggest: (1) Mixing accompanying the violent birth of the Earth- Moon system had already succeeded in establishing Earth's current oxygen isotope composition by 4.0 Ga; and (2) No trace of an episode of late heavy meteorite bombardment remains in the oxygen isotope compositions of

  13. Natural and Anthropogenic Impacts on the Stable Isotopes of Nitrogen and Oxygen of Ice-Core Nitrate

    NASA Astrophysics Data System (ADS)

    Walters, W.; Michalski, G. M.

    2013-12-01

    The stable isotopes of nitrogen and oxygen of the Ross Ice Drainage System (RIDS) ice-core nitrate were measured in approximately 2-3 year time resolution using a Delta V Isotope Ratio Mass Spectrometer (IRMS). The nitrogen isotope variation (δ15N) and the mass-independent fractionation of oxygen (Δ17O = δ17O - 0.52*δ18O) yield a detailed picture of the changes in the global nitrogen cycling and the shift in the oxidation capacity of the atmosphere in response to natural and anthropogenic induced climate change. This is one of the few studies on stable isotopes of ice-core nitrate for time periods prior to the 1800's and will increase our understanding of the oxidation feedbacks of the atmosphere in response to volcanic events, the Little Ice Age, the Maunder Minimum, and anthropogenic emissions in the Southern Hemisphere.

  14. Hafnium isotope variations in oceanic basalts

    NASA Technical Reports Server (NTRS)

    Patchett, P. J.; Tatsumoto, M.

    1980-01-01

    Hafnium isotope ratios generated by the beta(-) decay of Lu-176 are investigated in volcanic rocks derived from the suboceanic mantle. Hf-176/Hf-177 and Lu/Hf ratios were determined to precisions of 0.01-0.04% and 0.5%, respectively, by routine, low-blank chemistry. The Hf-176/Hf-177 ratio is found to be positively correlated with the Nd-143/Nd-144 ratio and negatively correlated with the Sr-87/Sr-86 and Pb-206/Pb-204 ratios, and to increase southwards along the Iceland-Reykjanes ridge traverse. An approximate bulk earth Hf-176/Hf-177 ratio of 0.28295 is inferred from the bulk earth Nd-143/Nd-144 ratio, which requires a bulk earth Lu/Hf ratio of 0.25, similar to the Juvinas eucrite. Midocean ridge basalts are shown to account for 60% of the range of Hf isotope ratios, and it is suggested that Lu-Hf fractionation is decoupled from Sm-Nd and Rb-Sr fractionation in very trace-element-depleted source regions as a result of partial melting.

  15. Geochemistry and origin of formation waters in the western Canada sedimentary basin-I. Stable isotopes of hydrogen and oxygen

    USGS Publications Warehouse

    Hitchon, B.; Friedman, I.

    1969-01-01

    Stable isotopes of hydrogen and oxygen, together with chemical analyses, were determined for 20 surface waters, 8 shallow potable formation waters, and 79 formation waters from oil fields and gas fields. The observed isotope ratios can be explained by mixing of surface water and diagenetically modified sea water, accompanied by a process which enriches the heavy oxygen isotope. Mass balances for deuterium and total dissolved solids in the western Canada sedimentary basin demonstrate that the present distribution of deuterium in formation waters of the basin can be derived through mixing of the diagenetically modified sea water with not more than 2.9 times as much fresh water at the same latitude, and that the movement of fresh water through the basin has redistributed the dissolved solids of the modified sea water into the observed salinity variations. Statistical analysis of the isotope data indicates that although exchange of deuterium between water and hydrogen sulphide takes place within the basin, the effect is minimized because of an insignificant mass of hydrogen sulphide compared to the mass of formation water. Conversely, exchange of oxygen isotopes between water and carbonate minerals causes a major oxygen-18 enrichment of formation waters, depending on the relative masses of water and carbonate. Qualitative evidence confirms the isotopic fractionation of deuterium on passage of water through micropores in shales. ?? 1969.

  16. Dentine oxygen isotopes (δ (18)O) as a proxy for odontocete distributions and movements.

    PubMed

    Matthews, Cory J D; Longstaffe, Fred J; Ferguson, Steven H

    2016-07-01

    Spatial variation in marine oxygen isotope ratios (δ (18)O) resulting from differential evaporation rates and precipitation inputs is potentially useful for characterizing marine mammal distributions and tracking movements across δ (18)O gradients. Dentine hydroxyapatite contains carbonate and phosphate that precipitate in oxygen isotopic equilibrium with body water, which in odontocetes closely tracks the isotopic composition of ambient water. To test whether dentine oxygen isotope composition reliably records that of ambient water and can therefore serve as a proxy for odontocete distribution and movement patterns, we measured δ (18)O values of dentine structural carbonate (δ (18) OSC) and phosphate (δ (18) OP) of seven odontocete species (n = 55 individuals) from regional marine water bodies spanning a surface water δ (18)O range of several per mil. Mean dentine δ (18) OSC (range +21.2 to +25.5‰ VSMOW) and δ (18) OP (+16.7 to +20.3‰) values were strongly correlated with marine surface water δ (18)O values, with lower dentine δ (18) OSC and δ (18) OP values in high-latitude regions (Arctic and Eastern North Pacific) and higher values in the Gulf of California, Gulf of Mexico, and Mediterranean Sea. Correlations between dentine δ (18) OSC and δ (18) OP values with marine surface water δ (18)O values indicate that sequential δ (18)O measurements along dentine, which grows incrementally and archives intra- and interannual isotopic composition over the lifetime of the animal, would be useful for characterizing residency within and movements among water bodies with strong δ (18)O gradients, particularly between polar and lower latitudes, or between oceans and marginal basins.

  17. Boron, Thorium and Oxygen Isotopes in Icelandic Tephra

    NASA Astrophysics Data System (ADS)

    Rose-Koga, E. F.; Sigmarsson, O.

    2006-12-01

    Important Th-isotope variations in silicic rocks from Iceland have been interpreted in terms of partial melting of a metabasic crust. This hypothesis was tested by boron systematics, since both the B-isotope ratios and their concentration are significantly different in the altered oceanic crust and the underlying mantle. Here we present new boron isotope compositions and concentrations measured by ion microprobe (3f, Nancy, France) on Holocene tephra samples from 6 Icelandic volcanoes. The B concentrations vary by more than a factor 20, from 1.48±0.03 to 36.38±4.46 ppm in basaltic tholeiite and trachytes, respectively. A large range is also observed for B isotope compositions, between - 9.8±2.0 in a trachyte to +7.6±2.6‰ in a subalkaline rhyolite from Askja volcano. Furthermore, the δ^{11}B correlates positively with Th/B (0.26 < Th/B < 2.90) and negatively with 230Th/232Th (0.940 < (230Th/232Th) < 1.067) and with δ18O (-0.2 to +5.3‰). The variations of B isotope compositions in the Icelandic tephra and the correlations with both δ18O and (230Th/232Th) strongly support the crustal melting model for most Icelandic rhyolites. In fact, the co-variation is interpreted as a mixing between mantle derived basalts and crustal melts derived from the anatexis of hydrothermally altered basaltic crust. The highest δ^{11}B (+7.6±2.6 and +7.1±2.1‰) measured in rhyolites from the rift-related Askja and Krafla volcanoes represent the B-isotope composition for the altered Icelandic crust. These values are indeed well within the range of values proposed for altered oceanic crust (between +0.1 and +9.2‰, Spivack and Edmond, 1987 ; +3.4±1.1‰, Smith et al., 1995). In contrast, the lowest δ^{11}B values (-9.8 to -5.7‰) are observed in samples with the highest δ18O (+4.95 to +5.30‰) and (230Th/232Th; 0.990 to 1.067) corresponding to a "normal-mantle" signature (δ^{11}B =- 9.9±1.3‰; Chaussidon and Marty, 1995).

  18. Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements

    NASA Astrophysics Data System (ADS)

    Kaiser, J.

    2011-07-01

    Oxygen triple isotope measurements can be used to calculate aquatic gross oxygen production rates. Past studies have emphasised the appropriate definition of the 17O excess and often used an approximation to derive production rates from the 17O excess. Here, I show that the calculation can be phrased more consistently and without any approximations using the relative 17O/16O and 18O/16O isotope ratio differences (delta values) directly. I call this the "dual delta method". The 17O excess is merely a mathematical construct and the derived production rate is independent of its definition, provided all calculations are performed with a consistent definition. I focus on the mixed layer, but also show how time series of triple isotope measurements below the mixed layer can be used to derive gross production. In the calculation of mixed layer productivity, I explicitly include isotopic fractionation during gas invasion and evasion, which requires the oxygen supersaturation s to be measured as well. I also suggest how bubble injection could be considered in the same mathematical framework. I distinguish between concentration steady state and isotopic steady state and show that only the latter needs to be assumed in the calculation. It is even possible to derive an estimate of the net production rate in the mixed layer that is independent of the assumption of concentration steady state. I review measurements of the parameters required for the calculation of gross production rates and show how their systematic uncertainties as well as the use of different published calculation methods can cause large variations in the production rates for the same underlying isotope ratios. In particular, the 17O excess of dissolved O2 in equilibrium with atmospheric O2 and the 17O excess of photosynthetic O2 need to be re-measured. Because of these uncertainties, all calculation parameters should always be fully documented and the measured relative isotope ratio differences as well as the

  19. Consistent calculation of aquatic gross production from oxygen triple isotope measurements

    NASA Astrophysics Data System (ADS)

    Kaiser, J.

    2011-04-01

    Oxygen triple isotope measurements can be used to calculate aquatic gross oxygen production rates. Past studies have emphasised the appropriate definition of the 17O excess and often used an approximation to derive production rates from the 17O excess. Here, I show that the calculation can be phrased more consistently and without any approximations using the relative 17O/16O and 18O/16O isotope ratio differences directly. The 17O excess is merely a mathematical construct and the derived production rate is independent of its definition, provided all calculations are performed with a consistent definition. I focus on the mixed layer, but also show how time series of triple oxygen measurements below the mixed layer can be used to derive gross production. In the calculation of mixed layer productivity, I explicitly include isotopic fractionation during gas invasion and evasion, which requires the oxygen supersaturation s to be measured as well. I also suggest how bubble injection could be considered in the same mathematical framework. I distinguish between concentration steady state and isotopic steady state and show that only the latter needs to be assumed in the calculation. It is even possible to derive an estimate of the net production rate in the mixed layer that is independent of the assumption of concentration steady state. I review measurements of the parameters required for the calculation of gross production rates and show how their systematic uncertainties as well as the use of different published calculation methods can cause large variations in the production rates for the same underlying isotope ratios. In particular, the 17O excess of dissolved O2 in equilibrium with atmospheric O2 and the 17O excess of photosynthetic O2 need to be re-measured. Because of these uncertainties, all calculation parameters should always be fully documented and the measured isotope ratio differences as well as the oxygen supersaturation should be permanently archived, so that

  20. Origin of uranium isotope variations in early solar nebula condensates.

    PubMed

    Tissot, François L H; Dauphas, Nicolas; Grossman, Lawrence

    2016-03-01

    High-temperature condensates found in meteorites display uranium isotopic variations ((235)U/(238)U), which complicate dating the solar system's formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide (247)Cm (t 1/2 = 15.6 My) into (235)U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of (235)U reaching ~+6% relative to average solar system composition, which can only be due to the decay of (247)Cm. This allows us to constrain the (247)Cm/(235)U ratio at solar system formation to (1.1 ± 0.3) × 10(-4). This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture.

  1. Origin of uranium isotope variations in early solar nebula condensates

    PubMed Central

    Tissot, François L. H.; Dauphas, Nicolas; Grossman, Lawrence

    2016-01-01

    High-temperature condensates found in meteorites display uranium isotopic variations (235U/238U), which complicate dating the solar system’s formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide 247Cm (t1/2 = 15.6 My) into 235U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of 235U reaching ~+6% relative to average solar system composition, which can only be due to the decay of 247Cm. This allows us to constrain the 247Cm/235U ratio at solar system formation to (1.1 ± 0.3) × 10−4. This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture. PMID:26973874

  2. Oxygen isotope thermometry of basic lavas and mantle nodules

    USGS Publications Warehouse

    Kyser, T.K.; O'Neil, J.R.; Carmichael, I.S.E.

    1981-01-01

    Measurements have been made of the oxygen isotope and chemical composition of glass and phenocrysts in lavas and coexisting minerals in mantle nodules. Temperatures of formation of these assemblages have been estimated from various chemical thermometers and range from 855?? to 1,300?? C. The permil fractionations between coexisting orthopyroxene and clinopyroxene in the lavas and nodules are all near zero. The fractionations between pyroxene and olivine vary from +1.2 to -1.4 and are a smooth function of temperature over the entire range. This function is given by T(?? C)=1151-173?? (px-d)-68??2(px-d) and has an uncertainty of ??60?? (2??). At temperatures above 1,150?? C, olivine in the nodules becomes more18O-rich than coexisting clinopyroxene, orthopyroxene, and plagioclase. In combination with the experimental work of Muehlenbachs and Kushiro (1974), the olivine-pyroxene fractionations indicate that olivine also becomes substantially more18O-rich than basaltic liquids above 1,200?? C. Geothermometers based on the oxygen isotope equilibration of basaltic liquid with olivine, pyroxene, and plagioclase are presented. ?? 1981 Springer-Verlag.

  3. Sources and Contributions of Oxygen During Microbial Pyrite Oxidation: the Triple Oxygen Isotopes of Sulfate

    NASA Astrophysics Data System (ADS)

    Ziegler, K.; Coleman, M. L.; Mielke, R. E.; Young, E. D.

    2008-12-01

    The triple isotopes of oxygen (Δ17O' = δ17O'-0.528 × δ18O' using logarithmic deltas) can trace the oxygen sources of sulfate produced during sulfide oxidation, an important biogeochemical process on Earth's surface and possibly also on Mars [1]. δ18OSO4 compositions are determined by the isotopic selectivity of the mechanism(s) responsible for their changes, and the δ18O value of the reactants (O2 vs. H2O). The relative proportional importance and contribution of each of those sources and mechanisms, as well as their associated isotopic fractionations, are not well understood. We are investigating the use of Δ 17O as a quantitative and qualitative tracer for the different processes and oxygen sources involved in sulfate production. Δ17O signatures are distinct fingerprints of these reservoirs, independent of fractionation factors that can be ambiguous. We conducted controlled abiotic and biotic (Acidithiobacillus ferrooxidans, A.f.) laboratory experiments in which water was spiked with 18O, allowing us to quantify the sources of sulfate oxygen and therefore the processes attending sulfate formation. Results of this Δ17O tracer study show that A.f. microbes initiate pyrite S-oxidation within hours of exposure, and that sulfate is produced from ~90% atmospheric oxygen. This initial lag-phase (< 3 days) is characterized by subtle and multiple changes in oxygen source and contribution that is likely due to the adjustment of the microbial metabolism from S to Fe2+-oxidation. A more detailed understanding of the microbial mechanisms and behavior in the initial lag-phase will aid in the understanding of the ecological conditions required for microbial populations to establish and survive. An exponential phase of growth, facilitated by microbial Fe2+-oxidation, follows. The source of sulfate rapidly switches to abiotic sulfide oxidation during exponential growth and the source of oxygen switches from atmospheric O2 to nearly ~100% water. Pending acquisition of

  4. Oxygen isotope perspective on Precambrian crustal growth and maturation

    SciTech Connect

    Peck, W.H.; King, E.M.; Valley, J.W.

    2000-04-01

    In this study the authors contrast insights on Precambrian crustal growth and maturation from radiogenic and oxygen isotope systematics in the Superior (3.0--2.7 Ga) and Grenville (1.3--1.0 Ga) Provinces of the Canadian shield. Oxygen isotope ratios in zircon provide the best evidence of supracrustal input into ancient orogens. Archean Superior Province zircons have relatively low {delta}{sup 18}O values and a limited range (5.7{per_thousand} {+-} 0.6{per_thousand}), while Proterozoic Grenville Province zircons have elevated {delta}{sup 18}O values and a wider range (8.2{per_thousand} {+-} 1.7{per_thousand}). These data reflect fundamental differences in crustal evolution and maturation between the Superior and the Grenville Provinces. In the Grenville Province, radiogenically juvenile supracrustal material with high {delta}{sup 18}O values was buried (or subducted) to the base of the crust within 150 m.y. of initial crust production, causing high magmatic {delta}{sup 18}O values ({delta}{sup 18}O [zircon] {ge} 8{per_thousand}) in anorthosite suite and subsequent plutons. Information about large volumes and rapid recycling of Grenville crust is not accessible from radiogenic isotope data alone. The Grenville data contrast with the restricted {delta}{sup 18}O values of Superior Province magmatism, where subtle ({approximately}1{per_thousand}) elevation in {delta}{sup 18}O occurs only in volumetrically minor, late to postorogenic (sanukitoid) plutons. Differences in sediment {delta}{sup 18}O values between the Superior and Grenville Provinces are predominantly a function of the {delta}{sup 18}O of source materials, rather than differences in chemical maturity or erosion styles. This study shows that zircon is a robust reference mineral to compare igneous processes in rocks that have undergone radically different histories.

  5. A non-mass-dependent oxygen isotope effect in the production of ozone from molecular oxygen - The role of molecular symmetry in isotope chemistry

    NASA Technical Reports Server (NTRS)

    Heidenreich, J. E., III; Thiemens, M. H.

    1986-01-01

    It was previously reported that the reaction products from the synthesis of ozone in an electric discharge through molecular oxygen display a nonmass-dependent (NoMaDic) oxygen isotope effect. In this paper, a detailed characterization of the isotope effect, including the effect of molecular oxygen pressure, and the presence of a chemically inert third body (helium), is reported. The NoMaDic effect is due to an isotopically selective stabilization of the O3 formation reaction intermediate, possibly resulting from the ability of the different isotopomers to exhibit different molecular symmetries.

  6. Fractionation of Nitrogen and Oxygen Isotopes During Microbial Nitrate Reduction

    NASA Astrophysics Data System (ADS)

    Lehmann, M. F.; Bernasconi, S. M.; Reichert, P.; Barbieri, A.; McKenzie, J. A.

    2001-12-01

    Lakes represent an important continental sink of fixed nitrogen. Besides the burial of particulate nitrogen, fixed nitrogen is eliminated from lakes by emission of N2 and N2O to the atmosphere during dissimilative nitrate reduction within suboxic and anoxic waters or sediments. The understanding and quantification of this efficient nitrogen removal process in eutrophic lakes is crucial for nitrogen budget modelling and the application and evaluation of lake restoration measures. In order to use natural abundance N and O isotope ratios as tracers for microbial nitrate reduction and to obtain quantitative estimates on its intensity, it is crucial to constrain the associated isotope fractionation. This is the first report of nitrogen and oxygen isotope effects associated with microbial nitrate reduction in lacustrine environments. Nitrate reduction in suboxic and anoxic waters of the southern basin of Lake Lugano (Switzerland) is demonstrated by a progressive nitrate depletion coupled to increasing δ 15N and δ 18O values for residual nitrate. 15N and 18O enrichment factors (ɛ ) were estimated using a closed-system (Rayleigh-distillation) model and a dynamic reaction-diffusion model. Calculated enrichment factors ɛ ranged between -11.2 and -22‰ for 15N and between -6.6 and -11.3‰ for 18O with both nitrogen and oxygen isotope fractionation being greatest during times with the highest nitrate reduction rates. The closed-system model neglects vertical diffusive mixing and does not distinguish between sedimentary and water-column nitrate reduction. Therefore, it tends to underestimate the intrinsic isotope effect of microbial nitrate reduction. Based upon results from earlier studies that indicate that nitrate reduction in sediments displays a highly reduced N-isotope effect (Brandes and Devol, 1997), model-derived enrichment factors could be used to discern the relative importance of nitrate reduction in the water column and in the sediment. Sedimentary nitrate

  7. New views on the isotopic composition of atmospheric oxygen

    NASA Astrophysics Data System (ADS)

    Luz, B.

    2001-05-01

    Air oxygen is enriched in O-18 with respect to ocean water by about 23 permil. This enrichment is named "Dole effect" after its discoverer. Air oxygen originates from marine and terrestrial photosynthesis that produces oxygen gas without fractionation with respect to the substrate water. The O-18 enrichment results primarily from preferential removal of O-16 during respiratory uptake. However, the discrimination against O-18 in ordinary dark respiration is only 18 permil, and cannot account for the entire magnitude of the Dole effect. Part of the discrepancy may be explained by enrichment of the substrate water in terrestrial evapo-transpiration. But the existing evidence on the magnitude of this enrichment shows that this mechanism alone cannot explain the discrepancy. In an attempt to better understand the Dole effect we have studied the overall fractionation in soil and aquatic oxygen uptake. Due to slow gas diffusion in soils and roots the discrimination is smaller than in respiration. This result thus increases the discrepancy. On the other hand, our new estimates show that discrimination in aquatic oxygen uptake is considerably greater than previously assumed. Oxygen uptake in the surface waters of oceans and lakes takes place by ordinary dark respiration as well as by cyanide resistant respiration in both dark and light conditions, and by photorespiration and Mehler reaction that occur only during illumination. Thus in order to study the overall discrimination in aquatic systems it is necessary to evaluate its effects in both light and dark conditions and to separate the effect of photosynthetic production of oxygen. Such separation is possible if gross rates of oxygen production and consumption are known. We have estimated these rates from in situ incubation experiments and from the natural distribution of O-16, O-17, O-18 and the ratio of dissolved oxygen/argon. We have used isotopic and elemental budgets to derive the overall respiratory fractionation in

  8. Oxygen isotope fractionation between human phosphate and water revisited.

    PubMed

    Daux, Valérie; Lécuyer, Christophe; Héran, Marie-Anne; Amiot, Romain; Simon, Laurent; Fourel, François; Martineau, François; Lynnerup, Niels; Reychler, Hervé; Escarguel, Gilles

    2008-12-01

    The oxygen isotope composition of human phosphatic tissues (delta18OP) has great potential for reconstructing climate and population migration, but this technique has not been applied to early human evolution. To facilitate this application we analyzed delta18OP values of modern human teeth collected at 12 sites located at latitudes ranging from 4 degrees N to 70 degrees N together with the corresponding oxygen composition of tap waters (delta18OW) from these areas. In addition, the delta18O of some raw and boiled foods were determined and simple mass balance calculations were performed to investigate the impact of solid food consumption on the oxygen isotope composition of the total ingested water (drinking water+solid food water). The results, along with those from three, smaller published data sets, can be considered as random estimates of a unique delta18OW/delta18OP linear relationship: delta18OW=1.54(+/-0.09)xdelta18OP-33.72(+/-1.51)(R2=0.87: p [H0:R2=0]=2x10(-19)). The delta18O of cooked food is higher than that of the drinking water. As a consequence, in a modern diet the delta18O of ingested water is +1.05 to 1.2 per thousand higher than that of drinking water in the area. In meat-dominated and cereal-free diets, which may have been the diets of some of our early ancestors, the shift is a little higher and the application of the regression equation would slightly overestimate delta18OW in these cases.

  9. Delineating the effect of El-Nino Southern Oscillations using oxygen and sulfur isotope anomalies of sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Abaunza Quintero, M. M.; Jackson, T.; McCabe, J.; Savarino, J. P.; Thiemens, M. H.

    2013-12-01

    Sulfate aerosols, unlike greenhouse gases, contribute to global cooling by acting as cloud condensation nuclei in the troposphere and by directly reflecting solar radiation in the stratosphere. To understand the long-term effect of natural and anthropogenic sulfate aerosol on the climate cycle, it is critical to obtain a clear picture of the factors controlling the transport and transformation of sulfate aerosols. We have employed both oxygen triple isotopes and sulfur quadruple isotopes on sulfates from Antarctic ice samples to define the oxidation history, long range transport dynamics, and sources of sulfate aerosols over time. The measurements are used to deconvolve the impact of natural and anthropogenic aerosols on the stratospheric sulfate aerosol composition. Sulfate aerosols were extracted from a snow pit at the South Pole (1979-2002) with a high resolution temporal (6 month) record of the winter and summer seasons covering two largest volcanic events, Pinatubo and El-chichon and three largest ENSO events of the century. All three oxygen and four sulfur isotopes were measured on the extracted sulfate (Shaheen et al., 2013). The high temperature pyrolysis (1000oC) of silver sulfate yielded O2 and SO2. The oxygen triple isotopic composition of the O2 gas was used to determine the oxidation history of sulfate aerosol and SO2 gas obtained during this reaction was utilized to measure sulfur quadruple isotopes following appropriate reaction chemistry (Farquhar et al., 2001). The data revealed that oxygen isotope anomalies in Antarctic aerosols (Δ17O = 0.8-3.7‰) from 1990 to 2001 are strongly linked to the variation in ozone levels in the upper stratosphere/lower stratosphere. The variations in ozone levels are reflective of the intensity of the ENSO events and changes in relative humidity in the atmosphere during this time period. Sulfate concentrations and sulfur quadruple isotopic composition and associated anomalies were used to elucidate the sources of

  10. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China

    NASA Astrophysics Data System (ADS)

    Li, Ting-Yong; Shen, Chuan-Chou; Li, Hong-Chun; Li, Jun-Yun; Chiang, Hong-Wei; Song, Sheng-Rong; Yuan, Dao-Xian; Lin, Chris D.-J.; Gao, Pan; Zhou, Liping; Wang, Jian-Li; Ye, Ming-Yang; Tang, Liang-Liang; Xie, Shi-You

    2011-08-01

    To understand oxygen and carbon stable isotopic characteristics of aragonite stalagmites and evaluate their applicability to paleoclimate, the isotopic compositions of active and fossil aragonite speleothems and water samples from an in situ multi-year (October 2005-July 2010) monitoring program in Furong Cave located in Chongqing of China have been examined. The observations during October 2005-June 2007 show that the meteoric water is well mixed in the overlying 300-500-m bedrock aquifer, reflected by relatively constant δ 18O, ±0.11-0.14‰ (1 σ), of drip waters in the cave, which represents the annual status of rainfall water. Active cave aragonite speleothems are at oxygen isotopic equilibrium with drip water and their δ 18O values capture the surface-water oxygen isotopic signal. Aragonite-to-calcite transformation since the last glaciation is not noticeable in Furong stalagmites. Our multi-year field experiment approves that aragonite stalagmite δ 18O records in this cave are suitable for paleoclimate reconstruction. With high U, 0.5-7.2 ppm, and low Th, 20-1270 ppt, the Furong aragonite stalagmites provide very precise chronology (as good as ±20s yrs (2 σ)) of the climatic variations since the last deglaciation. The synchroneity of Chinese stalagmite δ 18O records at the transition into the Bølling-Allerød (t-BA) and the Younger Dryas from Furong, Hulu and Dongge Caves supports the fidelity of the reconstructed East Asian monsoon evolution. However, the Furong record shows that the cold Older Dryas (OD) occurred at 14.0 thousand years ago, agreeing with Greenland ice core δ 18O records but ˜200 yrs younger than that in the Hulu record. The OD age discrepancy between Chinese caves can be attributable to different regionally climatic/environmental conditions or chronological uncertainty of stalagmite proxy records, which is limited by changes in growth rate and subsampling intervals in absolute dating. Seasonal dissolved inorganic carbon δ 13C

  11. Oxygen isotope activities and concentrations in aqueous salt solutions at elevated temperatures: Consequences for isotope geochemistry

    USGS Publications Warehouse

    Truesdell, A.H.

    1974-01-01

    Studies of the effect of dissolved salts on the oxygen isotope activity ratio of water have been extended to 275??C. Dehydrated salts were added to water of known isotope composition and the solutions were equilibrated with CO2 which was sampled for analysis. For comparison similar studies were made using pure water. Results on water nearly coincide with earlier calculations. Salt effects diminish with increasing temperature only for solutions of MgCl2 and LiCl. Other salt solutions show complex behavior due to the temperature-dependent formation of ion pairs of changing character. Equilibrium fractionations (103 ln ??) between 1 molal solutions and pure water at 25, 100, and 275??C are: NaCl 0.0, -1.5, +1.0; KCl 0.0, -1.0, +2.0; LiCl -1.0, -0.6, -0.5; CaCl2 -0.4, -1.8, +0.8; MgCl2 -1.1, -0.7, -0.3; MgSO4 -1.1, +0.1, -; NaF (0.8 m) 0.0, -1.5, -0.3; and NH4Cl (0.55 m) 0.0, -1.2, -1.3. These effects are significant in the isotope study of hot saline fluids responsible for ore deposition and of fluids found in certain geothermal systems. Minor modification of published isotope geothermometers may be required. ?? 1974.

  12. Triple oxygen isotopes in biogenic and sedimentary carbonates

    NASA Astrophysics Data System (ADS)

    Passey, Benjamin H.; Hu, Huanting; Ji, Haoyuan; Montanari, Shaena; Li, Shuning; Henkes, Gregory A.; Levin, Naomi E.

    2014-09-01

    The 17O anomaly (Δ17O) of natural waters has been shown to be sensitive to evaporation in a way analogous to deuterium excess, with evaporated bodies of water (e.g., leaf waters, lake waters, animal body waters) tending to have lower Δ17O than primary meteoric waters. In animal body water, Δ17O relates to the intake of evaporated waters, evaporative effluxes of water, and the Δ17O value of atmospheric O2, which itself carries signatures of global carbon cycling and photochemical reactions in the stratosphere. Carbonates have the potential to record the triple oxygen isotope compositions of parent waters, allowing reconstruction of past water compositions, but such investigations have awaited development of methods for high-precision measurement of Δ17O of carbonate. We describe optimized methods based on a sequential acid digestion/reduction/fluorination approach that yield Δ17O data with the high precision (∼0.010‰, 1σ) needed to resolve subtle environmental signals. We report the first high-precision Δ17O dataset for terrestrial carbonates, focusing on vertebrate biogenic carbonates and soil carbonates, but also including marine invertebrates and high-temperature carbonates. We determine apparent three-isotope fractionation factors between the O2 analyte derived from carbonate and the parent waters of the carbonate. These in combination with appropriate temperature estimates (from clumped isotope thermometry, or known or estimated body temperatures) are used to calculate the δ18O and Δ17O of parent waters. The clearest pattern to emerge is the strong 17O-depletion in avian, dinosaurian, and mammalian body water (from analyses of eggshell and tooth enamel) relative to meteoric waters, following expected influences of evaporated water (e.g., leaf water) and atmospheric O2 on vertebrate body water. Parent waters of the soil carbonates studied here have Δ17O values that are similar to or slightly lower than global precipitation. Our results suggest

  13. Spatially Controlled Fe Isotope Variations at Torres del Paine

    NASA Astrophysics Data System (ADS)

    Gajos, N.; Lundstrom, C.

    2013-12-01

    Recent advances in mass-spectrometry have identified systematic trends of non-traditional stable isotope variation in igneous rocks with differentiation index. We present new Fe isotope data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of a 1 km vertical exposure of homogenous granite overlying a contemporaneous and possibly cogenetic 0.5 km mafic gabbro suite. Whereas previous isotopic investigations do little to address variations across important magmatic contacts, this study focuses on a first-of-its-kind spatially dependent non-traditional stable isotope investigation of an igneous pluton. Samples were collected at Torres del Paine in spatially significant transects, focusing on major contacts between country rock, granite and mafic units. Results collected by bracketed double spike MC-ICP-MS (2s precision of ×0.03) show an increase in δ56Fe towards the high silica margins of the pluton with values as high as δ56Fe 0.36. Additionally, the data show a decrease in δ56Fe toward the mafic center of the pluton with δ56Fe values ranging from δ56Fe -0.05 to 0.18. Samples collected on the contact between the granite and mafic complex show intermediate values of δ56Fe= 0.18(×) 0.03. Country rock samples in contact with granite show an isotopically light signature of δ56Fe=0.04 (×) 0.03. Analysis of 50 samples in total show a trend of increasing δ56Fe with SiO2 content. The process responsible for Fe isotope variations remains debated but is suggested to reflect four mechanisms: (1) crustal assimilation, (2) fractional crystallization, (3) late stage fluid exsolution [1] and (4) thermal migration [3]. Preliminary results show that mechanisms #1 and #2 would produce isotopic signatures opposite of those seen at Torres del Paine and other plutonic rocks. Isotopically light Torres country rock samples reveal that assimilation of rocks would not produce the isotopically heavy granites seen at Torres. Based on

  14. Geographic variation of stable isotopes in African elephant ivory

    NASA Astrophysics Data System (ADS)

    Ziegler, S.; Merker, S.; Jacob, D.

    2012-04-01

    In 1989, the international community listed the African elephant in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) thus prohibiting commercial ivory trade. Recent surveillance data show that the illegal trade in ivory has been growing worldwide. Long-term preservation of many of the African elephant populations can be supported with a control mechanism that helps with the implementation of remedial conservation action. Therefore, setting up a reference database that predicts the origin of ivory specimens can assist in determining smuggling routes and the provenance of illegal ivory. Our research builds on earlier work to seek an appropriate method for determining the area of origin for individual tusks. Several researchers have shown that the provenance of elephant ivory can be traced by its isotopic composition, but this is the first attempt to produce an integrated isotopic reference database of elephant ivory provenance. We applied a combination of various routine geochemical analyses to measure the stable isotope ratios of hydrogen, carbon, nitrogen, oxygen, and sulphur. Up to now, we analysed 606 ivory samples of known geographical origin from African range states, museums and private collections, comprising 22 African elephant range states. The isotopic measurements were superimposed with data layers from vegetation, geology and climate. A regression function for the isotope composition of the water isotopes in precipitation and collagen in ivory was developed to overcome the problem of imprecise origin of some of the sampled material. Multivariate statistics, such as nearest neighborhood and discriminate analysis were applied to eventually allow a statistical determination of the provenance for ivory of unknown origin. Our results suggest that the combination of isotopic parameters have the potential to provide predictable and complementary markers for estimating the origin of seized elephant ivory.

  15. Oxygen isotope composition of mafic magmas at Vesuvius

    NASA Astrophysics Data System (ADS)

    Dallai, L.; Cioni, R.; Boschi, C.; D'Oriano, C.

    2009-12-01

    The oxygen isotope composition of olivine and clinopyroxene from four plinian (AD 79 Pompeii, 3960 BP Avellino), subplinian (AD 472 Pollena) and violent strombolian (Middle Age activity) eruptions were measured to constrain the nature and evolution of the primary magmas of the last 4000 years of Mt. Vesuvius activity. A large set of mm-sized crystals was accurately separated from selected juvenile material of the four eruptions. Crystals were analyzed for their major and trace element compositions (EPMA, Laser Ablation ICP-MS), and for 18O/16O ratios. As oxygen isotope composition of uncontaminated mantle rocks on world-wide scale is well constrained (δ18Oolivine = 5.2 ± 0.3; δ18Ocpx = 5.6 ± 0.3 ‰), the measured values can be conveniently used to monitor the effects of assimilation/contamination of crustal rocks in the evolution of the primary magmas. Instead, typically uncontaminated mantle values are hardly recovered in Italian Quaternary magmas, mostly due to the widespread occurrence of crustal contamination of the primary magmas during their ascent to the surface (e.g. Alban Hills, Ernici Mts., and Aeolian Islands). Low δ18O values have been measured in olivine from Pompeii eruption (δ18Oolivine = 5.54 ± 0.03‰), whereas higher O-compositions are recorded in mafic minerals from pumices or scoria of the other three eruptions. Measured olivine and clinopyroxene share quite homogeneous chemical compositions (Olivine Fo 85-90 ; Diopside En 45-48, respectively), and represent phases crystallized in near primary mafic magmas, as also constrained by their trace element compositions. Data on melt inclusions hosted in crystals of these compositions have been largely collected in the past demonstrating that they crystallized from mafic melt, basaltic to tephritic in composition. Published data on volatile content of these melt inclusions reveal the coexistence of dissolved water and carbon dioxide, and a minimum trapping pressure around 200-300 MPa, suggesting

  16. Oxygen isotope evidence for shallow emplacement of Adirondack anorthosite

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1982-01-01

    Oxygen isotopic analysis of wollastonites from the Willsboro Mine, Adirondack Mountains, New York reveals a 400-ft wide zone of 18O depletion at anorthosite contacts. Values of ??18O vary more sharply with distance and are lower (to -1.3) than any yet reported for a granulite fades terrain. Exchange with circulating hot meteoric water best explains these results and implies that the anorthosite was emplaced at relatively shallow depths, <10 km, in marked contrast to the depth of granulite fades metamorphism (23 km). These 18O depletions offer the first strong evidence for shallow emplacement of anorthosite within the Grenville Province and suggest that regional metamorphism was a later and tectonically distinct event. ?? 1982 Nature Publishing Group.

  17. Oxygen Isotopes and Emerald Trade Routes Since Antiquity

    NASA Astrophysics Data System (ADS)

    Giuliani, Gaston; Chaussidon, Marc; Schubnel, Henri-Jean; Piat, Daniel H.; Rollion-Bard, Claire; France-Lanord, Christian; Giard, Didier; de Narvaez, Daniel; Rondeau, Benjamin

    2000-01-01

    Oxygen isotopic compositions of historical emerald artifacts from the Gallo-Roman period to the 18th century indicate that during historical times, artisans worked emeralds originating from deposits supposedly discovered in the 20th century. In antiquity, Pakistani and Egyptian emeralds were traded by way of the Silk Route. Together with Austrian stones, they were the only source of gem-quality emeralds. Immediately after the discovery of the Colombian mines by Spaniards in the 16th century, a new trade route was established, first via Spain to Europe and India and then directly via the Philippines to India. Since then, Colombian emeralds have dominated the emerald trade, and most of the high-quality emeralds cut in the 18th century in India originated from Colombia.

  18. Oxygen isotopes and emerald trade routes since antiquity

    PubMed

    Giuliani; Chaussidon; Schubnel; Piat; Rollion-Bard; France-Lanord; Giard; de Narvaez D; Rondeau

    2000-01-28

    Oxygen isotopic compositions of historical emerald artifacts from the Gallo-Roman period to the 18th century indicate that during historical times, artisans worked emeralds originating from deposits supposedly discovered in the 20th century. In antiquity, Pakistani and Egyptian emeralds were traded by way of the Silk Route. Together with Austrian stones, they were the only source of gem-quality emeralds. Immediately after the discovery of the Colombian mines by Spaniards in the 16th century, a new trade route was established, first via Spain to Europe and India and then directly via the Philippines to India. Since then, Colombian emeralds have dominated the emerald trade, and most of the high-quality emeralds cut in the 18th century in India originated from Colombia.

  19. Nd isotopic variations in Precambrian banded iron formations

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.; Pimentel-Klose, Mario R.

    1988-01-01

    The isotopic composition of Nd is reported for eight banded iron formations (BIFs) ranging in age from 0.65 to 3.4 Ga. The data suggest a trend of increasingly positive epsilon(Nd) values with age which is interpreted to reflect isotopic variations in Precambrian seawater. The Urucum (0.65 Ga) and the Gunflint (1.9 Ga) BIFs yield negative epsilon(Nd) values between -6 and 0. The remaining BIFs, with ages of 1.84 to 3.4 Ga, have predominantly positive values between -1 and +4. The Nd isotopic signature of BIFs changes from a principally continental source to a dominantly depleted mantle source from the present into the Archean.

  20. An oxygen isotope study of Wark-Lovering rims on type A CAIs in primitive carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Bodénan, Jean-David; Starkey, Natalie A.; Russell, Sara S.; Wright, Ian P.; Franchi, Ian A.

    2014-09-01

    Calcium-aluminium-rich Inclusions (CAIs) and the thin Wark-Lovering (WL) rims of minerals surrounding them offer a record of the nature of changing conditions during the earliest stages of Solar System formation. Considerable heterogeneity in the gas composition in the immediate vicinity of the proto-Sun had previously been inferred from oxygen isotopic variations in the WL rim of a CAI from Allende (Simon et al., 2011). However, high precision and high spatial resolution oxygen isotope measurements presented in this study show that WL rim and pristine core minerals of individual CAIs from meteorites that had experienced only low degrees of alteration or low grade metamorphism (one from Léoville (reduced CV3), two in QUE 99177 (CR3.0) and two in ALHA 77307 (CO3.0)) are uniformly 16O-rich. This indicates that the previously observed variations are the result of secondary processes, most likely on the asteroid parent body, and that there were no temporal or spatial variations in oxygen isotopic composition during CAI and WL rim formation. Such homogeneity across three groups of carbonaceous chondrites lends further support for a common origin for the CAIs in all chondrites. 16O-poor oxygen reservoirs such as those associated with chondrule formation, were probably generated by UV photo-dissociation involving self-shielding mechanisms and must have occurred elsewhere in outer regions of the solar accretion disk.

  1. Vertical distribution of triple oxygen isotopic composition of dissolved oxygen in the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Abe, Osamu; Honda, Makio; Saino, Toshiro

    2013-04-01

    Oxygen-17 excess of dissolved oxygen calculated from δ18O and δ17O is not affected by oxygen consumption process but controlled only by processes of primary production and air-water gas transfer. Evaluating gross primary productivity using the 17O-excess in ocean surface water are one of the most advanced geochemical researches for last 10 years. Oxygen-17 excess below ocean mixed/photic layer has not been much investigated because it might be out of focus for estimating present primary productivity, except for the purpose to correct diapycnal mixing effect on surface water. In principle, water mass which has not been affected both by photosynthesis and gas transfer after its separation from ocean surface could preserve 17O-excess value where the water mass was at the surface. The purpose of this study is to determine the vertical distribution of 17O-excess from the surface to the bottom of northwestern Pacific to know whether 17O-excess could really preserve its "original" value after the long and dark travel. Near stations K2 and KNOT, water mass which has a density of 26.8 ?? is observed at depth between 100 and 300 m. This water mass is mainly originated from bottom water in the Okhotsk Sea and spreading widely to entire northwestern Pacific, which is called North Pacific Intermediate Water (NPIW). NPIW is found at depth of 700 m at station S1. Samplings were conducted by two R/V Mirai cruises (MR10-06, Oct-Nov 2010; MR11-02, Feb-Mar 2011). Dissolved oxygen gas was purified by the method of Sarma et al. (2003) and its isotopic composition was determined by dual-inlet isotope ratio mass spectrometer (Thermo Scientific Delta Plus). Gross primary productivities at mixed layer estimated by 17O-excess were well consistent with those by conventional light and dark bottle incubations for stations K2 and S1.

  2. Oxygen isotopic composition of opaline phytoliths: Potential for terrestrial climatic reconstruction

    SciTech Connect

    Shahack-Gross, R.; Weiner, S.; Shemesh, A.; Yakir, D.

    1996-10-01

    Opaline mineralized bodies are produced by many terrestrial plants and accumulate in certain soils and archaeological sites. Analyses of the oxygen isotopic compositions of these so-called phytoliths from stems and leaves of wheat plants grown in a greenhouse showed a linear relationship with stem and leaf water isotopic compositions and hence, indirectly, rain water isotopic composition. Analyses of wheat plants grown in fields showed that stem phytoliths isotopic composition directly reflects the seasonal air temperature change, whereas leaf phytoliths isotopic composition reflects both temperature and relative humidity. Temperature and the oxygen isotopic composition of stem phytoliths were related by an equation similar to that proposed for marine opal. Oxygen isotopic compositions of fossil phytoliths, and in particular those from stems, could be valuable for reconstructing past terrestrial climate change.

  3. Natural variations in the rhenium isotopic composition of meteorites

    NASA Astrophysics Data System (ADS)

    Liu, R.; Hu, L.; Humayun, M.

    2017-03-01

    Rhenium is an important element with which to test hypotheses of isotope variation. Historically, it has been difficult to precisely correct the instrumental mass bias in thermal ionization mass spectrometry. We used W as an internal standard to correct mass bias on the MC-ICP-MS, and obtained the first precise δ187Re values ( ±0.02‰, 2SE) for iron meteorites and chondritic metal. Relative to metal from H chondrites, IVB irons are systematically higher in δ187Re by 0.14 ‰. δ187Re for other irons are similar to H chondritic metal, although some individual samples show significant isotope fractionation. Since 185Re has a high neutron capture cross section, the effect of galactic cosmic-ray (GCR) irradiation on δ187Re was examined using correlations with Pt isotopes. The pre-GCR irradiation δ187Re for IVB irons is lower, but the difference in δ187Re between IVB irons and other meteoritic metal remains. Nuclear volume-dependent fractionation for Re is about the right magnitude near the melting point of iron, but because of the refractory and compatible character of Re, a compelling explanation in terms of mass-dependent fractionation is elusive. The magnitude of a nucleosynthetic s-process deficit for Re estimated from Mo and Ru isotopes is essentially unresolvable. Since thermal processing reduced nucleosynthetic effects in Pd, it is conceivable that Re isotopic variations larger than those in Mo and Ru may be present in IVBs since Re is more refractory than Mo and Ru. Thus, the Re isotopic difference between IVBs and other irons or chondritic metal remains unexplained.

  4. Anomalous Oxygen Isotopic Fractionation in Vacuum Ultraviolet Photodissociation of Carbon Monoxide and Test of Self-Shielding: Relevance for Meteorite Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Ahmed, M.; Jackson, T. L.; Thiemens, M. H.

    2008-12-01

    Oxygen is the predominant elemental constituent of rocky planets and asteroids. It is the third most abundant element in the solar system after hydrogen and helium. The isotopic compo-sition of oxygen in three-isotope space (δ18O vs. δ17O plot) exhibits large heterogeneity among different bodies formed from the same primordial gas and dust mixture, termed the solar nebula. It is not possible to fully understand the formation and evolution of our own planetary system, unless we resolve the source of the oxygen isotopes. At present, there are two models: self shielding photochemistry in the solar nebula, and symmetry driven gas-phase and/or surface chemistry in the solar nebula, which can also involve photochemistry, but isn't required. Photochemistry is a dominant process at the outer layers of the nebular disk and isotopically selective photodissociation (a process known as isotopic self-shielding) of carbon monoxide, the most abundant nebular oxygen bearing molecule, has been suggested as a source of isotopically anomalous oxygen in the solar reservoir [1-3]. However, these models have had no experimental verification of the relevant isotopic fractionation associated with VUV-CO photodissociation at the relevant wavelengths. Recently, we have performed a series of CO photodissociation experiment with a windowless flow chamber at the Advanced Light Source (LBNL) synchrotron at Berkeley. These experiments demonstrate an anomalously enriched atomic oxygen reservoir is generated through CO photo-dissociation, but, without requiring isotopic self shielding [4]. These results emphasize the importance of chemistry in the solar nebula as we have previously demonstrated through recent laboratory experiments [5]. It is clear that the mass- independent oxygen isotopic composition, as observed in some of the first condensed solids in the solar system (Calcium-Aluminum rich Inclusions- CAIs, Chondrules etc.), can be generated through symmetry driven gas-phase chemical

  5. Determination of triple oxygen isotopic compositions of nitrate by using continuous-flow isotope ratio MS.

    NASA Astrophysics Data System (ADS)

    Komatsu, D. D.; Ohkubo, S.; Ishimura, T.; Nakagawa, F.; Tsunogai, U.

    2006-12-01

    The triple oxygen isotopic compositions (18O/16O and 17O/16O) of nitrate in natural waters can be a useful tracer to clarify the sources. The triple oxygen isotopic compositions of nitrate have been usually determined by using conventional IRMS system using O2 molecule converted from nitrate through multiple reaction/purification steps. The traditional methods, however, required at least 1-100 μmol quantities of nitrate so that applications of the methods to various environmental nitrate samples were difficult. Thus, we developed a rapid and sensitive analytical system to determine the triple oxygen isotopic compositions of nitrate in nmol quantities using continuous-flow IRMS (CF-IRMS) without the cumbersome and time-consuming pretreatments. Our method is based on the isotopic analysis of N2O quantitatively converted from nitrate based on the simple reactions using spongy cadmium and sodium azide in an acetic acid buffer. However, we cannot determine 17O/16O ratio of N2O directly by measuring the masses 44, 45, and 46 of N2O introduced to IRMS, because the measured output of mass 45 from IRMS consists of 14N15N16O, 15N14N16O, and 14N14N17O. Thus, addition to the N2O isotopic analysis at the masses 44, 45, and 46, the 15N/14N ratio is determined separately for the same sample N2O. To attain this purpose, two instrumental approaches were done. In the first system, the N2+ fragment ion beams of N2O at masses 28 and 29 were used to determine the 15N/14N ratio of N2O. While the analytical precisions better than 0.5 ‰ for 20 nmol N2O injections and better than 1.0 ‰ for 7 nmol N2O injections were obtained for 15N/14N ratio, we found that the accuracy strongly depended on the quantities introduced. In the second system, the N2 molecules, converted from N2O using an on line Cu reduction furnace (720 degree) was used to determine the 15N/14N ratio of N2O. The analytical precisions better than 0.1 ‰ for 5 nmol N2O injections and better than 0.4 ‰ for 1 nmol N2O

  6. Physiological and environmental factors related to carbon isotopic variations in mollusc shell carbonate

    SciTech Connect

    Krantz, D.E.; Williams, D.F.; Jones, D.S.

    1985-01-01

    The carbon isotopic composition of mollusc shell carbonate has been used as a general environmental indicator in numerous studies, but relatively little is known of the factors which affect within-shell variation. Primary control of delta/sup 13/C values in shell carbonate comes from the dissolved bicarbonate source, particularly as related to marine versus fresh water. Present models explain cyclic variations in the delta/sup 13/C profiles of mollusc shells due to upwelling, phytoplankton productivity and stratification, disequilibrium with rapid shell growth, and infaunal versus epifaunal habitat. Carbon and oxygen isotopic profiles in this study were obtained from specimens of Spisula solidissima (surf clam) and Placopecten magellanicus (sea scallop) collected alive from 14 to 57 m water depths off the Virginia coast. Three main factors appear to affect the delta/sup 13/C profiles in these specimens. Isotopically light values commonly associated with the spring and occasionally the fall correspond with seasonal phytoplankton productivity. A significant negative delta/sup 13/C offset of the infaunal Spisula relative to the epifaunal Placopecten probably relates to the inclusion of isotopically more negative pore-water bicarbonate by Spisula. Additionally, occasional transient spikes in both the delta/sup 18/O and delta/sup 13/C profiles correspond to intrusion of reduced-salinity water.

  7. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon.

    PubMed

    Kemp, A I S; Hawkesworth, C J; Paterson, B A; Kinny, P D

    2006-02-02

    It is thought that continental crust existed as early as 150 million years after planetary accretion, but assessing the rates and processes of subsequent crustal growth requires linking the apparently contradictory information from the igneous and sedimentary rock records. For example, the striking global peaks in juvenile igneous activity 2.7, 1.9 and 1.2 Gyr ago imply rapid crustal generation in response to the emplacement of mantle 'super-plumes', rather than by the continuous process of subduction. Yet uncertainties persist over whether these age peaks are artefacts of selective preservation, and over how to reconcile episodic crust formation with the smooth crustal evolution curves inferred from neodymium isotope variations of sedimentary rocks. Detrital zircons encapsulate a more representative record of igneous events than the exposed geology and their hafnium isotope ratios reflect the time since the source of the parental magmas separated from the mantle. These 'model' ages are only meaningful if the host magma lacked a mixed or sedimentary source component, but the latter can be diagnosed by oxygen isotopes, which are strongly fractionated by rock-hydrosphere interactions. Here we report the first study that integrates hafnium and oxygen isotopes, all measured in situ on the same, precisely dated detrital zircon grains. The data reveal that crust generation in part of Gondwana was limited to major pulses at 1.9 and 3.3 Gyr ago, and that the zircons crystallized during repeated reworking of crust formed at these times. The implication is that the mechanisms of crust formation differed from those of crustal differentiation in ancient orogenic belts.

  8. Tracing the Impact of Aviation on the Atmospheric Nitrate With Oxygen Triple Isotopes

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Jackson, T. L.; Chan, S.; Hill, A.; Chakraborty, S.; Thiemens, M. H.

    2014-12-01

    The aviation industry is responsible for ~ 5% of anthropogenic climate change. Jet emission affects ~ in 25 mile radii from airports produce fine particles and concomitant pulmonary and cardio-vascular diseases. These unregulated emissions are of particular concerns for the health of local residents and environment in general due to rapid increase in worldwide air travel in 21st century. The accurate measurement of emissions from airports therefore requires development of new tools that quantification of aviation related emissions against other road traffic and hence to assess its local and global impacts and provide deeper understanding of nitrate in the environment in general, including the stratosphere where contrails are inadequately detailed Triple oxygen isotopic analysis of particulate nitrate from a DC 8 engine during a controlled experiment in Palmdale, CA documented the emission of nitric acid (~31 ng.m-3) at ~ 1m. The oxygen triple isotopic composition of nitrate emitted directly from the jet had δ18O values (22±1‰) identical to air O2 (δ18O = 23.5‰) with a mass dependent isotopic signature (Δ17O = 0), thus providing a unique isotopic signature of jet nitrate. A year long sampling campaign at one of the world's busiest airports, the Los Angeles International airport showed the contribution of NO3 varies from 60 to 90% in summer and winter with variations largely attributed to the change in road traffic as air traffic remains fairly constant throughout the year at LAX. The next step in this is to detect these contributions at distal sites and use this as a signal carrier of atmospheric nitrate and its transport in general in the global biogeochemical system. These aspects will be discussed in the presentation.

  9. Partitioning water and carbon fluxes in a Mediterranean oak woodland using stable oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra; Silva, Filipe Costa e.; Pereira, Joao; Werner, Christiane

    2014-05-01

    evaporation (Dubbert et al. 2013). Moreover, we found continuously strong deviations from isotopic steady-state in plant transpiration combined with large isoforcing on the atmosphere. This implies that assuming plant transpiration to be in the steady-state can have a huge impact at least for studies that distinguish relatively short time intervals (hours, e.g. partitioning studies). Finally. partitioning ecosystem ET and NEE into its three sources revealed a strong contribution of soil evaporation (E) and herbaceous transpiration (T) to ecosystem ET during spring and fall. In contrast, soil respiration (R) and herbaceous net carbon gain contributed to a lesser amount to ecosystem NEE during spring and fall, leading to consistently smaller water use efficiencies (WUE) of the herbaceous understory compared to the cork-oaks. Craig H, Gordon, LI. 1965. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. Paper presented at the Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto, Italy. Dubbert M, Cuntz M, Piayda A, Maguas C, Werner C, 2013: Partitioning evapotranspiration - Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of evaporative fluxes. J Hydrol.

  10. Oxygen isotope ratios in the shell of Mytilus edulis: archives of glacier meltwater in Greenland?

    NASA Astrophysics Data System (ADS)

    Versteegh, E. A. A.; Blicher, M. E.; Mortensen, J.; Rysgaard, S.; Als, T. D.; Wanamaker, A. D., Jr.

    2012-09-01

    Melting of the Greenland Ice Sheet (GrIS) is accelerating and will contribute significantly to global sea level rise during the 21st century. Instrumental data on GrIS melting only cover the last few decades, and proxy data extending our knowledge into the past are vital for validating models predicting the influence of ongoing climate change. We investigated a potential meltwater proxy in Godthåbsfjord (West Greenland), where glacier meltwater causes seasonal excursions with lower oxygen isotope water (δ18Ow) values and salinity. The blue mussel (Mytilus edulis) potentially records these variations, because it precipitates its shell calcite in oxygen isotopic equilibrium with ambient seawater. As M. edulis shells are known to occur in raised shorelines and kitchen middens from previous Holocene warm periods, this species may be ideal in reconstructing past meltwater dynamics. We investigate its potential as a palaeo-meltwater proxy. First, we confirmed that M. edulis shell calcite oxygen isotope (δ18Oc) values are in equilibrium with ambient water and generally reflect meltwater conditions. Subsequently we investigated if this species recorded the full range of δ18Ow values occurring during the years 2007 to 2010. Results show that δ18Ow values were not recorded at very low salinities (< ~19), because the mussels appear to cease growing. This implies that M. edulis δ18Oc values are suitable in reconstructing past meltwater amounts in most cases, but care has to be taken that shells are collected not too close to a glacier, but rather in the mid region or mouth of the fjord. The focus of future research will expand on the geographical and temporal range of the shell measurements by sampling mussels in other fjords in Greenland along a south-north gradient, and by sampling shells from raised shorelines and kitchen middens from prehistoric settlements in Greenland.

  11. Could organic phosphorus compounds contaminate the analysis of phosphate oxygen isotopes in freshwater matrices?

    NASA Astrophysics Data System (ADS)

    Davies, Ceri; Surridge, Ben; Gooddy, Daren

    2014-05-01

    Variation in the stable isotope composition of oxygen within dissolved phosphate (δ18Op) represents a novel and potentially powerful environmental tracer, providing insights into the sources of phosphorus and the extent to which phosphorus from different sources is metabolised. The analysis of δ18Opwithin freshwater matrices requires isolation of the phosphate ion from possible sources of contaminant oxygen within the bulk matrix, prior to pyrolysis (usually of a silver phosphate precipitate) and analysis of the oxygen isotope composition. The majority of published research uses co-precipitation of phosphate with brucite (Mg(OH)2) as an initial step in the isolation of the phosphate ion. However, freshwater matrices also contain a wide range of organic phosphorus compounds, including adenosine 5'-triphosphate (ATP) and phosphonates such as 2-aminoethylphosphonic acid. In this paper, we initially examine the potential for co-precipitation of organic phosphorus compounds with brucite. Our data indicate that ATP, sodium pyrophosphate and inositol hexakisphosphate are almost entirely removed from solution through co-precipitation with brucite, whilst glucose-6-phosphate and 2-aminoethylphosphonic acid are less readily co-precipitated. Subsequently, we assessed the potential for acid-hydrolysis of organic phosphorus compounds during re-dissolution of the brucite precipitate, using a range of acid systems. Our data indicate that up to 17% of ATP and up to 5% of sodium pyrophosphate can be hydrolysed by concentrated acetic acid, yielding fresh phosphate ions in solution. Our findings have potentially significant implications for analysis of δ18Opbecause the fresh phosphate ions produced following acid hydrolysis will be subjected to inheritance and kinetic isotope fractionations, likely altering the bulk δ18Op within a freshwater sample.

  12. Contributions of Mycorrhizal Trees to Mg Isotopic Variations in Weathering

    NASA Astrophysics Data System (ADS)

    Bryce, J. G.; Hobbie, E. A.; Blichert-Toft, J.; Colpaert, J.; Hoff, C.; Prado, M. F.; Pettitt, E.; Telouk, P.

    2013-12-01

    Although it is well established that organisms contribute significantly to the weathering process and to the distribution of elements within continental environments, the degree to which biota actively drive weathering versus the degree to which organisms benefit from nutrients released during largely inorganic weathering processes remains shrouded in mystery. Furthermore, the relative influence of different organisms on key emerging isotopic systems, especially Mg, remains poorly understood. To address these questions, we have carried out a series of Mg isotopic investigations on semi-hydroponically cultured trees (pine, Pinus sylvestris and sugar maple, Acer saccharum) grown with appropriate mycorrhizal symbionts (ectomycorrhizal, Suillus, or arbuscular, Glomus, respectively) in different geologic substrates (carbonate and granitic) under low nutrient supply. Plant tissues and eluting solutions across these biogeochemical experiments were studied for elemental abundances and Mg isotopic signatures. Eluting solutions were most distinctive from the abiotic control for those trees grown in granite-bearing cultures, an observation we attribute to biotite weathering. Foliar and root tissues recorded distinctive isotopic compositions (e.g., differences up to 0.6 ‰ δ26/24Mg) in both the pines and sugar maples. Foliar δ26/24Mg varied amongst the trees grown in the different experiments: compared to the substrate, ectomycorrhizal pine had more depleted Mg isotopic signatures in foliage than nonmycorrhizal pine and arbuscular mycorrhizal sugar maple. Taken together our results indicate that ectomycorrhizal symbioses contribute to Mg isotopic variations during weathering and that this effect may be more pronounced in soils forming over biotite-bearing terrains.

  13. Strontium isotopic variations of Neoproterozoic seawater: Implications for crustal evolution

    SciTech Connect

    Asmerom, Y.; Jacobsen, S.B.; Knoll, A.H.; Butterfield, N.J. ); Swett, K. )

    1991-10-01

    The authors report high precision Sr isotopic data on carbonates from the Neoproterozoic Shaler Group, Victoria Island, Northwest Territories, Canada. Samples with low {sup 87}Rb/{sup 86}Sr ratios (<0.01) were selected for Sr isotopic analysis. {delta}{sup 18}O, Mn, Ca, Mg, and Sr data were used to recognize altered samples. The altered samples are characterized by high Mn/Sr ({ge}2) and variable {delta}{sup 18}O; most are dolomites. The data indicate that between ca. 790-850 Ma the {sup 87}Sr/{sup 86}Sr ratio of seawater varied between 0.70676 and 0.70561. The samples show smooth and systematic variation, with the lowest {sup 87}Sr/{sup 86}Sr value of 0.70561 at ca. 830 Ma. The low {sup 87}Sr/{sup 86}Sr ratio of carbonates from the lower parts of the section is similar to a value reported for one sample from the Adrar of Mauritania ({approx}900 Ma), West African Craton. Isotopic ratios from the upper part of the Shaler section are identical to values from the lower part of the Neoproterozoic Akademikerbreen Group, Spitsbergen. Although a paucity of absolute age determinations hinders attempts at the precise correlation of Neoproterozoic successions, it is possible to draw a broad outline of the Sr isotopic composition of seawater for this period. Data from this study and the literature are used to construct a curve of the {sup 87}Sr/{sup 86}Sr ratio of Neoproterozoic seawater. The Sr isotope composition of seawater reflects primarily the balance between continental Sr input through river input and mantle input via hydrothermal circulation of seawater through mid-ocean ridges. Coupling of Nd and Sr isotopic systems allows the authors to model changes in seafloor spreading rates (or hydrothermal flux) and continental erosion. The Sr hydrothermal flux and the erosion rate (relative to present-day value) are modeled for the period 500-900 Ma.

  14. Reconciling intra and inter annual oxygen isotope variability in the White Mountain Bristlecone Pine chronology

    NASA Astrophysics Data System (ADS)

    Berkelhammer, M.; Stott, L. D.

    2008-12-01

    The δ18O of tree-ring cellulose is a function of both the isotopic composition of the soil water and the climatic conditions at the leaf boundary, which affect the magnitude of oxygen isotope fractionations during photosynthesis. Separating the dual-influence of water isotope composition and environmental influences on the final cellulosic product remains a serious challenge in attempts to utilize the cellulosic data for climate reconstructions. In many alpine environments such as the White Mountains of California, the isotopic composition of the soil water pool is established by winter-time precipitation whereas tree growth occurs months later during summer. In this location the δ18O of cellulose has both a winter precipitation influence and a summer environmental influence and the two may vary independently. We utilize 2 isotopic datasets from the White Mountain Bristlecone Pine chronology to argue that the year to year δ18O variations in homogenized whole-ring (early and late wood) cellulose captures the source water (winter) signature while the within-ring isotope variations reflect a systematic response to growing seasonal climate conditions. Thus, by comparing the shape and amplitude of the intra-annual isotope cycle we can distinguish changes in growing season temperature and humidity from year to year or low frequency changes in the isotopic composition of the source water. The intra-annual data for this study utilized over 40 annual growth rings that were sub-sampled at a near-weekly resolution (6-12 samples per ring). We selected wood that grew during the Medieval Climate Anomaly, the Little Ice Age, and an extended drought period at 2ky BP in order to evaluate how growing-season conditions differed between these distinct climatic intervals. The data exhibit a pervasive intra annual cycle whose amplitude and shape remains fairly constant irrespective of the width or the mean isotopic composition of the ring. We are able to generate a similar intra

  15. [Hydrogen and oxygen isotopes of lake water and geothermal spring water in arid area of south Tibet].

    PubMed

    Xiao, Ke; Shen, Li-Cheng; Wang, Peng

    2014-08-01

    The condition of water cycles in Tibet Plateau is a complex process, and the hydrogen and oxygen isotopes contain important information of this process. Based on the analysis of isotopic composition of freshwater lake, saltwater lake and geothermal water in the southern Tibetan Plateau, this study investigated water cycling, composition and variation of hydrogen and oxygen isotopes and the influencing factors in the study area. The study found that the mean values of delta18O and deltaD in Daggyaima lake water (-17.0 per thousand for delta18O and -138. 6 per thousand for deltaD), Langcuo lake water (-6.4 per thousand for delta18O and -87.4 per thousand for deltaD) and Dagejia geothermal water (-19.2 per thousand for delta18 and -158.2 per thousand for deltaD) all showed negative delta18O and deltaD values in Tibetan Plateau by the influence of altitude effects. Lake water and geothermal water were influenced by evaporation effects in inland arid area, and the slope of evaporation line was less than 8. Deuterium excess parameters of lake water and geothermal water were all negative. The temperature of geothermal reservoirs in Dagejia geothermal field was high,and oxygen shift existed in the relationship of hydrogen and oxygen isotopes.

  16. Phosphate oxygen isotope ratios as a tracer for sources and cycling of phosphate in North San Francisco Bay, California

    USGS Publications Warehouse

    McLaughlin, K.; Kendall, C.; Silva, S.R.; Young, M.; Paytan, A.

    2006-01-01

    A seasonal analysis assesing variations in the oxygen isotopic composition of dissolved inorganic phosphate (DIP) was conducted in the San Francisco Bay estuarine system, California. Isotopic fractionation of oxygen in DIP (exchange of oxygen between phosphate and environmental water) at surface water temperatures occurs only as a result of enzyme-mediated, biological reactions. Accordingly, if phospate demand is low relative to input and phosphate is not heavily cycled in the ecosystem, the oxygen isotopic composition of DIP (?? 18Op) will reflect the isotopic composition of the source of phosphate to the system. Such is the case for the North San Francisco Bay, an anthropogenically impacted estuary with high surface water phosphate concentrations. Variability in the ?? 18Op in the bay is primarily controlled by mixing of water masses with different ??18Op signatures. The ??18Op values range from 11.4??? at the Sacramento River to 20.1??? at the Golden Gate. Deviations from the two-component mixing model for the North Bay reflect additional, local sources of phosphate to the estuary that vary seasonally. Most notably, deviations from the mixing model occur at the confluence of a major river into the bay during periods of high river discharge and near wastewater treatment outlets. These data suggest that ??18Op can be an effective tool for identifying P point sources and understanding phosphate dynamics in estuarine systems. Copyright 2006 by the American Geophysical Union.

  17. A preliminary assessment of oxygen isotope fractionation and growth increment periodicity in the estuarine clam Rangia cuneata

    NASA Astrophysics Data System (ADS)

    Andrus, C. Fred T.; Rich, Kelley Whatley

    2008-10-01

    Rangia cuneata is an upper estuarine clam common in the coastal regions of the Gulf of Mexico. Limited data exist regarding oxygen isotope fractionation and microstructural increment periodicity in this species. As these clams were recently identified as an invasive species in other regions, such data may be useful for environmental management purposes. Additionally, the shell of this clam is common in archeological middens, and thus may serve as a paleoenvironmental proxy. In order to assess these aspects of the species' natural history, samples were collected from the upper Mobile Bay, Alabama, USA. A stable oxygen isotope profile was generated from one of these valves, and compared to growth increments seen in thin section. Time-series water temperature data from near the collection site were used to construct idealized models of oxygen isotope variation, assuming equilibrium fractionation, constant shell growth, and stable water δ18O values. Comparison of the modeled and measured data suggest the shell was precipitated in, or near oxygen isotope equilibrium with ambient water, and that the microstructural increments in the shell were precipitated in response to tidal cycles.

  18. Phosphate oxygen isotope ratios as a tracer for sources and cycling of phosphate in North San Francisco Bay, California

    NASA Astrophysics Data System (ADS)

    McLaughlin, Karen; Kendall, Carol; Silva, Steven R.; Young, Megan; Paytan, Adina

    2006-09-01

    A seasonal analysis assesing variations in the oxygen isotopic composition of dissolved inorganic phosphate (DIP) was conducted in the San Francisco Bay estuarine system, California. Isotopic fractionation of oxygen in DIP (exchange of oxygen between phosphate and environmental water) at surface water temperatures occurs only as a result of enzyme-mediated, biological reactions. Accordingly, if phospate demand is low relative to input and phosphate is not heavily cycled in the ecosystem, the oxygen isotopic composition of DIP (δ18Op) will reflect the isotopic composition of the source of phosphate to the system. Such is the case for the North San Francisco Bay, an anthropogenically impacted estuary with high surface water phosphate concentrations. Variability in the δ18Op in the bay is primarily controlled by mixing of water masses with different δ18Op signatures. The δ18Op values range from 11.4‰ at the Sacramento River to 20.1‰ at the Golden Gate. Deviations from the two-component mixing model for the North Bay reflect additional, local sources of phosphate to the estuary that vary seasonally. Most notably, deviations from the mixing model occur at the confluence of a major river into the bay during periods of high river discharge and near wastewater treatment outlets. These data suggest that δ18Op can be an effective tool for identifying P point sources and understanding phosphate dynamics in estuarine systems.

  19. The use of the oxygen isotopes from diatom silica as a proxy for North Atlantic Oscillation reconstruction

    NASA Astrophysics Data System (ADS)

    Hernández, Armand; Leng, Melanie J.; Trigo, Ricardo M.; Vázquez-Loureiro, David; Bao, Roberto; Sloane, Hilary J.; Rubio-Inglés, Maria J.; Sánchez-López, Guiomar; Gonçalves, Vitor; Raposeiro, Pedro M.; Sáez, Alberto; Giralt, Santiago

    2015-04-01

    The North Atlantic Oscillation (NAO) is the main atmospheric circulation mode controlling climate variability in the Northern Hemisphere. Instrumental records of the NAO are relatively short, and therefore proxy approaches are essential to understand its evolution over longer time periods. Diatom oxygen isotope ratios are increasingly being used for palaeoclimatic reconstructions in lacustrine sedimentary records. However, application of this proxy to annual-to-decadal resolution lacustrine records is still in its infancy. To our knowledge, oxygen isotope ratios from diatoms at annual-to-decadal resolution has not been attempted, mainly due to the difficulty in obtaining large enough samples suitable for analysis at this temporal scale. Here we present a high-resolution, ca. 200-year-long, proxy record based on 56 oxygen isotope measurements from Lake Santiago (37° 50' N - 25° 47'W, Azores Archipelago, Portugal). This record will be compared to instrumental data of precipitation and NAO index values to test its robustness to conduct an ancient NAO reconstruction. In detail the oxygen isotope data shows an isotope depletion trend (-3o), with several interannual oscillations, from 1830 cal yr AD until present. The entire record can be divided into two intervals. The interval, from 1830 to 1938 cal yr AD, displays values above the average (+33o), whereas the interval from 1939 to 2012 cal yr AD shows values below the mean. Since Lake Santiago is a hydrologically closed lake, the oxygen isotope variations are mostly related to the precipitation-evaporation ratio. These results exhibit a good agreement with the rainfall instrumental data with an increase of net rainfall amount through the last decades in the Azores archipelago. Besides this, the short-term recorded isotope excursions (±3.5o) are related to the rainfall interannual variability. These patterns suggest that the isotope data from diatom silica in Lake Santiago sediments are directly linked to past

  20. Oxygen isotopes in calcite grown under cave-analogue conditions

    NASA Astrophysics Data System (ADS)

    Day, C. C.; Henderson, G. M.

    2011-07-01

    Speleothem oxygen isotopes and growth rates are valuable proxies for reconstructing climate history. There is debate, however, about the conditions that allow speleothems to grow in oxygen isotope equilibrium, and about the correct equilibrium fractionation factors. We report results from a series of carbonate growth experiments in karst-analogue conditions in the laboratory. The setup closely mimics natural processes (e.g. precipitation driven by CO 2-degassing, low ionic strength solution, thin solution film) but with a tight control on growth conditions (temperature, pCO 2, drip rate, calcite saturation index and the composition of the initial solution). Calcite is dissolved in water in a 20,000 ppmV pCO 2 environment. This solution is dripped onto glass plates (coated with seed-carbonate) in a lower pCO 2 environment (<2500 ppmV), where degassing leads to calcite growth. Experiments were performed at 7, 15, 25 and 35 °C. At each temperature, calcite was grown at three drip rates (2, 6 and 10 drips per minute) on separate plates. The mass of calcite grown in these experiments varies with temperature ( T in K) and drip rate ( d_ r in drips min -1) according to the relationship daily growth mass = 1.254 + 1.478 ∗ 10 -9 ∗ e0.0679 T + ( e0.00248 T - 2) ∗ (-0.779 d_ r2 + 10.05 d_ r + 11.69). This relationship indicates a substantial increase of growth mass with temperature, a smaller influence of drip rate on growth mass at low temperature and a non-linear relationship between drip rate and growth mass at higher temperatures. Low temperature, fast dripping conditions are found to be the most favourable for reducing effects associated with evaporation and rapid depletion of the dissolved inorganic carbon reservoir (rapid DIC-depletion). The impact of evaporation can be large so caves with high relative humidity are also preferable for palaeoclimate reconstruction. Even allowing for the maximum offsets that may have been induced by evaporation and rapid DIC

  1. Unexpected hydrogen isotope variation in oceanic pelagic seabirds.

    PubMed

    Ostrom, Peggy H; Wiley, Anne E; Rossman, Sam; Stricker, Craig A; James, Helen F

    2014-08-01

    Hydrogen isotopes have significantly enhanced our understanding of the biogeography of migratory animals. The basis for this methodology lies in predictable, continental patterns of precipitation δD values that are often reflected in an organism's tissues. δD variation is not expected for oceanic pelagic organisms whose dietary hydrogen (water and organic hydrogen in prey) is transferred up the food web from an isotopically homogeneous water source. We report a 142‰ range in the δD values of flight feathers from the Hawaiian petrel (Pterodroma sandwichensis), an oceanic pelagic North Pacific species, and inquire about the source of that variation. We show δD variation between and within four other oceanic pelagic species: Newell's shearwater (Puffinus auricularis newellii), Black-footed albatross (Phoebastria nigripes), Laysan albatross (Phoebastria immutabilis) and Buller's shearwater (Puffinus bulleri). The similarity between muscle δD values of hatch-year Hawaiian petrels and their prey suggests that trophic fractionation does not influence δD values of muscle. We hypothesize that isotopic discrimination is associated with water loss during salt excretion through salt glands. Salt load differs between seabirds that consume isosmotic squid and crustaceans and those that feed on hyposmotic teleost fish. In support of the salt gland hypothesis, we show an inverse relationship between δD and percent teleost fish in diet for three seabird species. Our results demonstrate the utility of δD in the study of oceanic consumers, while also contributing to a better understanding of δD systematics, the basis for one of the most commonly utilized isotope tools in avian ecology.

  2. Unexpected hydrogen isotope variation in oceanic pelagic seabirds

    USGS Publications Warehouse

    Ostrom, Peggy H.; Wiley, Anne E.; Rossman, Sam; Stricker, Craig A.; James, Helen F.

    2014-01-01

    Hydrogen isotopes have significantly enhanced our understanding of the biogeography of migratory animals. The basis for this methodology lies in predictable, continental patterns of precipitation δD values that are often reflected in an organism's tissues. δD variation is not expected for oceanic pelagic organisms whose dietary hydrogen (water and organic hydrogen in prey) is transferred up the food web from an isotopically homogeneous water source. We report a 142% range in the δD values of flight feathers from the Hawaiian petrel (Pterodroma sandwichensis), an oceanic pelagic North Pacific species, and inquire about the source of that variation. We show δD variation between and within four other oceanic pelagic species: Newell's shearwater (Puffinus auricularis newellii), Black-footed albatross (Phoebastria nigripes), Laysan albatross (Phoebastria immutabilis) and Buller's shearwater (Puffinus bulleri). The similarity between muscle δD values of hatch-year Hawaiian petrels and their prey suggests that trophic fractionation does not influence δD values of muscle. We hypothesize that isotopic discrimination is associated with water loss during salt excretion through salt glands. Salt load differs between seabirds that consume isosmotic squid and crustaceans and those that feed on hyposmotic teleost fish. In support of the salt gland hypothesis, we show an inverse relationship between δD and percent teleost fish in diet for three seabird species. Our results demonstrate the utility of δD in the study of oceanic consumers, while also contributing to a better understanding of δD systematics, the basis for one of the most commonly utilized isotope tools in avian ecology.

  3. Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign

    NASA Astrophysics Data System (ADS)

    Savarino, Joël; Vicars, William C.; Legrand, Michel; Preunkert, Suzanne; Jourdain, Bruno; Frey, Markus M.; Kukui, Alexandre; Caillon, Nicolas; Gil Roca, Jaime

    2016-03-01

    Variations in the stable oxygen isotope composition of atmospheric nitrate act as novel tools for studying oxidative processes taking place in the troposphere. They provide both qualitative and quantitative constraints on the pathways determining the fate of atmospheric nitrogen oxides (NO + NO2 = NOx). The unique and distinctive 17O excess (Δ17O = δ17O - 0.52 × δ18O) of ozone, which is transferred to NOx via oxidation, is a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O excess within the NOx cycle is critical in polar areas, where there exists the possibility of extending atmospheric investigations to the glacial-interglacial timescale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C (East Antarctic Plateau) during the austral summer of 2011/2012. Nitrate isotope analysis has been here combined for the first time with key precursors involved in nitrate production (NOx, O3, OH, HO2, RO2, etc.) and direct observations of the transferrable Δ17O of surface ozone, which was measured at Dome C throughout 2012 using our recently developed analytical approach. Assuming that nitrate is mainly produced in Antarctica in summer through the OH + NO2 pathway and using concurrent measurements of OH and NO2, we calculated a Δ17O signature for nitrate on the order of (21-22 ± 3) ‰. These values are lower than the measured values that ranged between 27 and 31 ‰. This discrepancy between expected and observed Δ17O(NO3-) values suggests the existence of an unknown process that contributes significantly to the atmospheric nitrate budget over this East Antarctic region. However, systematic errors or false isotopic balance transfer functions are not totally excluded.

  4. Petrologic and oxygen isotopic study of ALH 85085-like chondrites

    NASA Astrophysics Data System (ADS)

    Prinz, M.; Weisberg, M. K.; Clayton, R. N.; Mayeda, T. K.; Ebihara, M.

    1994-07-01

    Four meteorites (PAT 91546, PCA 91328, PCA 91452, PCA 91467) petrologically similar to ALH 85085 chondrite have now been found. Previous studies of ALH 85085 showed it be a new kind of CR-related microchondrule-bearing chondrite, although one called it a sub-chondrite. The purpose of this study is to learn more about ALH 85085-like meteorites and their relationship to CR and CR-related (LEW 85332, Acfer 182, Bencubbin) chondrites. The methods used included petrology, INA bulk chemical analysis (PAT 91546, PCA 91467), and O isotopic analyses of the whole rocks and separated chondrules and dark inclusions (DIs) from PAT 91546. Since microchondrules and fragments are approximately 20 microns it was necessary to analyze composite samples for O; one was of approximately 100 chondrules, and another was of 5 DIs. Petrologically, the four meteorites are similar to ALH 85085, and there is no basis for determining if all of them, or any combinations, are paired. Mineralogically, olivine and pyroxene are highly magnesian FeNi metal generally has 3-10% Ni, and has a positive Ni-Co correlation similar to that in CR and CR-related chondrites. Refractory inclusions are similar in size to the chondrules and have the following assemblages: (1) hibonite-perovskite, (2) melilite-fassaite-forsterite, (3) grossite (Ca-dialuminate)-melilite-perovskite, (4) spinel-melilite, and (5) spinel-pyroxene aggregates. Chemically, INA analyses indicate that PAT 91546 and PCA 91467 are generally similar to ALH 85085. Oxygen isotopic analyses of the four whole-rock compositions fall along the CR mixing line as does ALH 85085; they are also close to LEW 85332, Acfer 182, and Bencubbin. This supports the concept that these are all CR-related chondrites. Even stronger support is found in the compositions of the chondrules and DIs in PAT 91546, which also plot on or near the CR line.

  5. Stable Isotopic Variations in Columnar Cacti: are Responses to Climate Recorded in Spines?

    NASA Astrophysics Data System (ADS)

    English, N. B.; Dettman, D. L.; Williams, D. G.

    2004-12-01

    The behavior of the North American monsoon (NAM), particularly with respect to times of continental drought and its relationship to the Pacific-North American (PNA) teleconnection pattern and the El Nino/Southern Oscillation (ENSO) is of great interest to paleoclimatologists and water managers. Long-term instrumental precipitation and tree ring records in the southwestern United States and northwestern Mexico at low elevations are sparse and this has hindered research on NAM variability at interannual timescales. Saguaro cacti (Carnegiea gigantea) and other columnar cacti in North and South America are long-lived and have the potential to record climate variability on land with high temporal and spatial resolution. The vertical sequence of spines on the saguaro's exterior represents a high resolution (4 to 6 per year), and long (over 150 years) record of environmental change. We present results from an experiment where we tracked the oxygen isotopic values in the source waters, stem tissue waters and spine tissue for three treatments over the course of three months. These data are then compared to a previously developed mechanistic model of isotopic variation that reflects the physiological responses of Saguaro to climate variation over seasonal to century long time-scales. We also present the rationale for a new method to determine the growth rate of columnar cacti using the radiocarbon bomb spike. Our measurements reveal that oxygen and hydrogen isotopic variation among the sequentially produced and persistent spines covering the saguaro body record fluctuations in saguaro water balance. The model successfully predicts isotopic variation in spines and constrains controlling variables, yielding a powerful and high-resolution stable isotope index of water stress in the low desert. The development and refinement of an isotopic model for saguaro will serve as the basis for models applied to other species of columnar cacti in North and South America. The role of the

  6. Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria

    USGS Publications Warehouse

    Mandernack, K.W.; Bazylinski, D.A.; Shanks, Wayne C.; Bullen, T.D.

    1999-01-01

    A series of carefully controlled laboratory studies was carried out to investigate oxygen and iron isotope fractionation during the intracellular production of magnetite (Fe3O4) by two different species of magnetotactic bacteria at temperatures between 4??and 35??C under microaerobic and anaerobic conditions. No detectable fractionation of iron isotopes in the bacterial magnetites was observed. However, oxygen isotope measurements indicated a temperature-dependent fractionation for Fe3O4 and water that is consistent with that observed for Fe3O4 produced extracellularly by thermophilic Fe3+-reducing bacteria. These results contrast with established fractionation curves estimated from either high-temperature experiments or theoretical calculations. With the fractionation curve established in this report, oxygen-18 isotope values of bacterial Fe3O4 may be useful in paleoenvironmental studies for determining the oxygen-18 isotope values of formation waters and for inferring paleotemperatures.

  7. Oxygen isotope signatures of transpired water vapor - the role of isotopic non-steady-state transpiration of Mediterranean cork-oaks (Quercus suber L.)under natural conditions

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Werner, Christiane

    2014-05-01

    Oxygen isotope signatures of transpired water vapor (δT) are a powerful tracer of water movement from plants to the global scale, but little is known on short-term variability of δT as direct high-frequency measurements are lacking. A laser spectrometer was coupled to a gas-exchange chamber directly estimating branch-level fluxes and δT to evaluate a modeling approach and investigate the role of isotopic non-steady-state transpiration under natural conditions in distinct seasons in cork-oaks (Quercus suber L.). The isotope signature of transpiration (δT) always deviated from steady-state predictions (ΔT) throughout most of the day even when leaf water at the evaporating sites is near isotopic steady-state. Thus, ΔT is further amplified compared to deviations of leaf water isotopes from steady-state, specifically in dry conditions. High agreement was found for direct estimates and modeled ΔT assuming non-steady-state conditions of leaf-water at the evaporating sites. Strong isoforcing on the atmosphere of transpiration in isotopic non-steady-state imply that short-term variations in δT have likely consequences for large-scale applications, e.g. partitioning of ecosystem evapotranspiration or carbon fluxes using C18O16O, or satellite-based applications.

  8. Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm-Nd chronometer

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Wang, Zheng-Rong; Li, Shu-Guang; Zhao, Zi-Fu

    2002-02-01

    Sm-Nd and oxygen isotope analyses were carried out for mineral separates of ultrahigh pressure eclogites from the Sulu terrane in eastern China. The results show a direct correspondence in equilibrium or disequilibrium state between the oxygen and Sm-Nd isotope systems of eclogite minerals. The omphacite-garnet pairs of oxygen isotope equilibrium at eclogite-facies conditions yield meaningful Triassic Sm-Nd isochron ages, whereas those of oxygen isotope disequilibrium give non-Triassic ages of geological meaninglessness. This can be reasonably interpreted by the fact that the rates of oxygen diffusion in garnet and pyroxene are lower than, or close to, those of Nd diffusion, and thus attainment of isotopic equilibrium in the omphacite-garnet O system suggests achievement of Nd isotope equilibrium in the same mineral pairs. The presence or absence of fluid in the eclogite protoliths is a major rate-controlling factor for isotopic equilibration during high-grade metamorphism. It appears that the state of oxygen isotope equilibrium between cogenetic minerals can provide a critical test for the validity of the Sm-Nd mineral chronometer. In addition, the exact timing of the ultrahigh pressure metamorphism in the Dabie-Sulu terranes is constrained at Early Triassic rather than Late Triassic.

  9. Oxygen isotope geochemistry of mafic magmas at Mt. Vesuvius

    NASA Astrophysics Data System (ADS)

    Dallai, Luigi; Raffaello, Cioni; Chiara, Boschi; Claudia, D'oriano

    2010-05-01

    above the range of typical mantle minerals. The δ18Oolivine and δ18Ocpxof the minerals from all the studied eruptions define variable degrees of carbonate interaction and magma crystallization for the different eruptions, and possibly within the same eruption, and show evidence of oxygen isotope equilibrium at high temperature. However, energy-constrained AFC model suggest that carbonate assimilation was limited. On the basis of our data, we suggest that interaction between magma and a fluxing, decarbonation-derived CO2 fluid may be partly accounted for the measured O-isotope compositions.

  10. Isotope dilution spaces of mice injected simultaneously with deuterium, tritium and oxygen-18.

    PubMed

    Król, E; Speakman, J R

    1999-10-01

    The isotope dilution technique for measuring total body water (TBW), and the doubly labelled water (DLW) method for measuring energy expenditure, are both sensitive to small variations in the ratio of the hydrogen to oxygen-18 dilution space. Since the dilution space ratio varies between individuals, there has been much recent debate over what causes this variability (i.e. physiological differences between individuals or analytical error in the isotope determinations), and thus which values (individual or a population mean dilution space ratio) should be employed for TBW and DLW calculations. To distinguish between physiological and analytical variability, we injected 15 non-reproductive and 12 lactating mice (Mus musculus, outbred MF1) simultaneously with deuterium, tritium and oxygen-18. The two hydrogen labels were administered and analysed independently, therefore we expected a strong correlation between dilution space ratios based on deuterium and tritium if most of the variation in dilution spaces was physiological, but only a weak correlation if most of the variation was analytical. Dilution spaces were significantly influenced by reproductive status. Dilution spaces expressed as a percentage of body mass averaged 15.7 % greater in lactating mice than in non-reproductive mice. In addition, the hydrogen tracer employed had a significant effect (deuterium spaces were 2.0 % larger than tritium spaces). Deuterium and tritium dilution spaces, expressed as a percentage of body mass, were highly correlated. Dilution space ratios ranged from 0.952 to 1. 146 when using deuterium, and from 0.930 to 1.103 when using tritium. Dilution space ratios based on deuterium and tritium were also highly correlated. Comparison of standard deviations of the dilution space ratio based on deuterium in vivo and in vitro indicated that only 4.5 % of the variation in the dilution space ratios observed in the mice could be accounted for by analytical variation in the deuterium and

  11. Correlated helium and lead isotope variations in Hawaiian lavas

    SciTech Connect

    Eiler, J.M.; Farley, K.A.; Stolper, E.M.

    1998-06-01

    Variations in {sup 3}He/{sup 4}He ratios among Hawaiian shield-building and pre-shield basalts are correlated with variations in {sup 208}Pb/{sup 204}Pb and {sup 206}Pb/{sup 204}Pb ratios. Using this correlation, the {sup 32}He/{sup 4}He ratio of Hawaiian lavas can be predicted to within 2.9 R{sub A} (mean deviation) between 7 and 32 R{sub A} based only upon the lead isotope composition. This level of prediction is as good as can be expected based upon the precision of lead isotope ratio measurements. This correlation demonstrates a coupling of volatile and nonvolatile elements in the sources of Hawaiian basalts and allows the nonvolatile-element characteristics of the high-{sup 3}He/{sup 4}He component of the mantle sources of Hawaiian lavas to be defined. This result confirms and extends previous inferences based upon correlations between helium and strontium isotope ratios in individual suites of Hawaiian lavas. The source of high {sup 3}He/{sup 4}He ratios in Hawaiian lavas has a higher time-integrated Th/U ratio than the sources of Pacific mid-ocean ridge basalts, consistent with it being a mixture containing primitive mantle or having differentiated in two or more stages from primitive mantle.

  12. Mo isotope record of shales points to deep ocean oxygenation in the early Paleoproterozoic

    NASA Astrophysics Data System (ADS)

    Asael, Dan; Scott, Clint; Rouxel, Olivier; Poulton, Simon; Lyons, Timothy; Javaux, Emmanuelle; Bekker, Andrey

    2014-05-01

    Two steps in Earth's surface oxidation lie at either end of the Proterozoic Eon. The first step, known as the Great Oxidation Event (GOE), occurred at ca. 2.32 Ga (1), when atmospheric oxygen first exceeded 0.001% of present atmospheric levels (2). The second step, occurred at ca. 0.58 Ga, resulting in the pervasive oxygenation of the deep oceans, a feature that persisted through most of the Phanerozoic (3). The conventional model envisions two progressive and unidirectional increases in free oxygen. However, recent studies have challenged this simplistic view of the GOE (4, 5). A dramatic increase and decline in Earth oxidation state between 2.3 and 2.0 Ga is now well supported (6-9) and raises the question of how well-oxygenated the Earth surface was in the immediate aftermath of the GOE. In order to constrain the response of the deep oceans to the GOE, we present a study of Mo isotope composition and Mo concentration from three key early Paleoproterozoic black shale units with ages ranging from 2.32 to 2.06 Ga. Our results suggest high and unstable surface oxygen levels at 2.32 Ga, leading to an abrupt increase in Mo supply to the still globally anoxic ocean, and producing extreme seawater Mo isotopic enrichments in these black shales. We thus infer a period of significant Mo isotopic Rayleigh effects and non-steady state behaviour of the Mo oceanic system at the beginning of the GOE. Between 2.2-2.1 Ga, we observe smaller Mo isotopic variations and estimate the δ98Mo of seawater to be 1.42 ± 0.27 ‰W conclude that oxygen levels must have stabilized at a relatively high level and that the deep oceans were oxygenated for the first time in Earth's history. By ca. 2.06 Ga, immediately after the Lomagundi Event, the Mo isotopic composition decreased dramatically to δ98MoSW = 0.80 ± 0.21 o reflecting the end of deep ocean oxygenation and the return of largely anoxic deep oceans. References: [1] A. Bekker et al., 2004, Nature 427, 117-20. [2] A. Pavlov and J

  13. Oxygen isotopes in refractory stratospheric dust particles - Proof of extraterrestial origin

    NASA Technical Reports Server (NTRS)

    Mckeegan, Kevin D.

    1987-01-01

    The oxygen and magnesium isotopic compositions of five individual particles that were collected from the stratosphere and that bear refractory minerals were measured by secondary ion mass spectrometry. Four of the particles exhibit excesses of oxygen-16 similar to those observed in anhydrous mineral phases of carbonaceous chondrites and thus are extraterrestrial. The oxygen and magnesium isotopic abundances of one corundum-rich particle are consistent with a terrestial origin. Magnesium in the four extraterrestrial particles is isotopically normal. It is unlikely that these particles are derived from carbonaceous chondrites and thus such particles probably represent a new type of collected extraterrestrial material.

  14. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.; Schoeninger, Margaret J.; Valley, John W.

    1996-10-01

    The applicability of rapid and precise laser probe analysis of tooth enamel for δ18O has been verified, and the method has been applied to different modern herbivores in East Africa. Sampling and pretreatment procedures involve initial bleaching and grinding of enamel to <75 μm, and elimination of adsorbed water and organic compounds with BrF 5. Typical analytical reproducibilities for 0.5-2 mg samples are ±0.08‰ (± 1σ). Chemical and spectroscopic characterization of pretreated but unanalyzed samples show no alteration compared to fresh enamel. Solid reaction products are nearly pure CaF 2 with little evidence for residual O 2. Because laser probe fluorination extracts oxygen from all sites in the apatite structure (phosphate, structural carbonate, and hydroxyl), only unaltered tooth enamel (>95% apatite) can be analyzed reliably. Different East African herbivores exhibit previously unsuspected compositional differences. Average enamel δ18O values (V-SMOW) are approximately: 25‰ (goat), 27‰ (oryx), 28‰ (dikdik and zebra), 29‰ (topi), 30‰ (gerenuk), and 32‰ (gazelle). These compositions differ from generalized theoretical models, but are broadly consistent with expected isotope effects associated with differences in how much each animal (a) drinks, (b) eats C3 vs. C4 plants, and (c) pants vs. sweats. Consideration of diet, water turnover, and animal physiology will allow the most accurate interpretation of ancient teeth and targeting of environmentally-sensitive animals in paleoclimate studies.

  15. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation

    USGS Publications Warehouse

    Claypool, George E.; Holser, William T.; Kaplan, Isaac R.; Sakai, Hitoshi; Zak, Israel

    1980-01-01

    Three hundred new samples of marine evaporite sulfate, of world-wide distribution, were analyzed for δ34S, and 60 of these also for δ18O in the sulfate ion. Detailed δ34S age curves for Tertiary—Cretaceous, Permian—Pennsylvanian, Devonian, Cambrian and Proterozoic times document large variations in δ34S. A summary curve forδ18O also shows definite variations, some at different times than δ34S, and always smaller. The measured δ34S and δ18O correspond to variations in these isotopes in sulfate of the world ocean surface. The variations of δ18O are controlled by input and output fluxes of sulfur in the ocean, three of which are the same that control δ34S: deposition and erosion of sulfate, and deposition of sulfide. Erosion of sulfide differs in its effect on the S and O systems. δ18O in the sulfate does not seem to be measurably affected by equilibration with either seawater or with subsurface waters after crystallization. In principle, the simultaneous application of both δ34S and δ18O age curves should help reduce the number of assumptions in calculations of the cycles of sulfur and oxygen through geological time, and a new model involving symmetrical fluxes is introduced here to take advantage of the oxygen data. However, all previously published models as well as this one lead to anomalies, such as unreasonable calcium or oxygen depletions in the ocean—atmosphere system. In addition, most models are incapable of reproducing the sharp rises of the δ34S curve in the late Proterozoic, the Devonian and the Triassic which would be the result of unreasonably fast net sulfide deposition. This fast depletion could result from an ocean that has not always been mixed (as previously assumed in all model calculations).

  16. Hydrogen and oxygen in brine shrimp chitin reflect environmental water and dietary isotopic composition

    NASA Astrophysics Data System (ADS)

    Nielson, Kristine E.; Bowen, Gabriel J.

    2010-03-01

    Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ 2H values in the early spring to autochthonous particulate matter with significantly lower δ 2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.

  17. A new isotopic reference material for stable hydrogen and oxygen isotope-ratio measurements of water—USGS50 Lake Kyoga Water

    USGS Publications Warehouse

    Coplen, Tyler B.; Wassenaar, Leonard I; Mukwaya, Christine; Qi, Haiping; Lorenz, Jennifer M.

    2015-01-01

    This isotopic reference material, designated as USGS50, is intended as one of two reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer, of use especially for isotope-hydrology laboratories analyzing freshwater samples from equatorial and tropical regions.

  18. Characterizing Variation of Isotopic Markers in Northern Alaskan Caribou Forages

    NASA Astrophysics Data System (ADS)

    VanSomeren, L.; Barboza, P. S.; Gustine, D. D.; Parrett, L. S.; Stricker, C. A.

    2013-12-01

    Isotopic markers in feces and tissues are a potential tool for monitoring the importance of feeding areas for migratory herbivores such as caribou (Rangifer tarandus). Many of these techniques are currently limited by gaps in our knowledge of how these isotopic signatures vary over the landscape. We collected seven species of preferred caribou forages along a latitudinal gradient in the summer ranges of the Central Arctic (9 sites) and Teshekpuk Lake (4 sites) caribou herds during 2011 and 2012. We analyzed forages at peak protein content and at the end of the season to characterize temporal, species-specific, and spatial variation in isotopic markers. The availability of C and N was measured by digestion in vitro. Isotopic signatures of digested samples were used to calculate fractionation that would bias the isotopic signature of feces. The range of values for isotopes (all values ‰) of nitrogen (δ15N -9.5 - +4.3), and sulfur (δ34S -3.6 - +15.5) were greater than those for carbon (δ13C -30.5 - -24.9). Small declines in forage δ13C with latitude (Carex aquatilis, Eriophorum vaginatum, Salix pulchra, and S. richardsonii [all P < 0.01]), season (all species except C. bigelowii [all P ≤ 0.01]), and season x year (S. richardsonii; P = 0.01) were probably associated with changes in water availability. Fractionation of δ13C in early season forages was 0.1 × 1.0 and positively related to C availability (58% × 15%; P < 0.01) with the greatest fractionation for the highly digestible forb Pedicularis langsdorfii (1.43 × 0.44; P < 0.01). Sedges (Carex and Eriophorum) were significantly higher in δ15N than Salix spp. and other dicots (2.0 × 1.1 vs. -2.9 × 2.2; P < 0.01). For Salix spp., δ15N was consistent over the season and between years. Fractionation of δ15N in early season forages was 0.2 × 1.8 and not related to N availability (60% × 17%). For S. pulchra, δ34S may indicate usage of coastal habitats over foothills because δ34S was higher on the

  19. Oxygen Isotope Character of the Lake Owyhee Volcanic Field, Oregon

    NASA Astrophysics Data System (ADS)

    Blum, T.; Strickland, A.; Valley, J. W.

    2012-12-01

    Oxygen isotope analyses of zircons from lavas and tuffs from the Lake Owyhee Volcanic Field (LOVF) of east central Oregon unequivocally demonstrate the presence of mid-Miocene low-δ18O magmas (δ18Ozrc<4.7 ‰). Despite the growing data set of low-δ18O melts within, and proximal to, the Snake River Plain (SRP) Large Igneous Province, debate persists regarding both the mechanisms for low-δ18O magma petrogenesis, and their relative influence in the SRP. The LOVF is associated with widespread silicic volcanism roughly concurrent with the eruption of the Steens-Columbia River Basalt Group between ~17-15Ma. Silicic activity in the LOVF is limited to 16-15Ma, when an estimated 1100km3 of weakly peralkaline to metaluminous rhyolitic lavas and ignimbrites erupted from a series of fissures and calderas. Geographically, the LOVF overlaps the Oregon-Idaho Graben (OIG), and straddles the 87Sr/86Sr= 0.704 line which, together with the 0.706 line to the east, delineate the regional transition from the North American Precambrian continental crust to the east to younger Phanerozoic accreted terranes to the west. Here we report high accuracy ion microprobe analyses of δ18O in zircons using a 10-15μm spot, with average spot-to-spot precision ±0.28‰ (2SD), to investigate intra-grain and intra-unit δ18Ozrc trends for LOVF rhyolites. Due to its high closure temperature, chemical and physical resistance, and slow oxygen diffusion rates, zircon offers a robust record of magmatic oxygen isotope ratios during crystallization and provides constraints on the petrogenesis of Snake River Plain (SRP) low-δ18O melts. Individual zircons from LOVF rhyolites show no evidence of core-rim δ18O zoning, and populations exhibit ≤0.42‰ (2SD) intra-unit variability. Unit averages range from 2.2 to 4.3‰, with the lowest values in caldera-forming ignimbrites, but all units show evidence of crystallization from low-δ18O melts. Quartz and feldspar analyses by laser fluorination (precision

  20. A model of oxygen transport in Pt/ceria catalysts from isotope exchange

    SciTech Connect

    Holmgren, A.; Andersson, B.; Duprez, D.

    1999-03-10

    From isotope oxygen exchange reactions and simulations of these experiments, the important steps in oxygen transport in Pt/ceria were distinguished and their rates were estimated. A Pt/alumina sample was also experimentally investigated for comparison. Oxygen surface diffusion as well as oxygen spillover from Pt to ceria was found to be fast in comparison with adsorption/desorption of oxygen on the metal and oxygen bulk diffusion. The exchange rate was found to be higher on a very-low-Pt-dispersion sample than on a high-dispersion sample, which in the model was explained by the different adsorption properties of oxygen.

  1. Holocene climate change in Newfoundland reconstructed using oxygen isotope analysis of lake sediment cores

    NASA Astrophysics Data System (ADS)

    Finkenbinder, Matthew S.; Abbott, Mark B.; Steinman, Byron A.

    2016-08-01

    Carbonate minerals that precipitate from open-basin lakes can provide archives of past variations in the oxygen isotopic composition of precipitation (δ18Oppt). Holocene δ18Oppt records from the circum- North Atlantic region exhibit large fluctuations during times of rapid ice sheet deglaciation, followed by more stable conditions when interglacial boundary conditions were achieved. However, the timing, magnitude, and climatic controls on century to millennial-scale variations in δ18Oppt in northeastern North America are unclear principally because of a dearth of paleo-proxy data. Here we present a lacustrine sediment oxygen isotope (δ18O) record spanning 10,200 to 1200 calendar years before present (cal yr BP) from Cheeseman Lake, a small, alkaline, hydrologically open lake basin located in west-central Newfoundland, Canada. Stable isotope data from regional lakes, rivers, and precipitation indicate that Cheeseman Lake water δ18O values are consistent with the isotopic composition of inflowing meteoric water. In light of the open-basin hydrology and relatively short water residence time of the lake, we interpret down-core variations in calcite oxygen isotope (δ18Ocal) values to primarily reflect changes in δ18Oppt and atmospheric temperature, although other factors such as changes in the seasonality of precipitation may be a minor influence. We conducted a series of climate sensitivity simulations with a lake hydrologic and isotope mass balance model to investigate theoretical lake water δ18O responses to climate change. Results from these experiments suggest that Cheeseman Lake δ18O values are primarily controlled by temperature and to a much lesser extent, the seasonality of precipitation. Increasing and more positive δ18Ocal values between 10,200 and 8000 cal yr BP are interpreted to reflect the waning influence of the Laurentide Ice Sheet on atmospheric circulation, warming temperatures, and rapidly changing surface ocean δ18O from the input of

  2. Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment.

    PubMed

    Treydte, Kerstin; Boda, Sonja; Graf Pannatier, Elisabeth; Fonti, Patrick; Frank, David; Ullrich, Bastian; Saurer, Matthias; Siegwolf, Rolf; Battipaglia, Giovanna; Werner, Willy; Gessler, Arthur

    2014-05-01

    For accurate interpretation of oxygen isotopes in tree rings (δ(18) O), it is necessary to disentangle the mechanisms underlying the variations in the tree's internal water cycle and to understand the transfer of source versus leaf water δ(18) O to phloem sugars and stem wood. We studied the seasonal transfer of oxygen isotopes from precipitation and soil water through the xylem, needles and phloem to the tree rings of Larix decidua at two alpine sites in the Lötschental (Switzerland). Weekly resolved δ(18) O records of precipitation, soil water, xylem and needle water, phloem organic matter and tree rings were developed. Week-to-week variations in needle-water (18) O enrichment were strongly controlled by weather conditions during the growing season. These short-term variations were, however, not significantly fingerprinted in tree-ring δ(18) O. Instead, seasonal trends in tree-ring δ(18) O predominantly mirrored trends in the source water, including recent precipitation and soil water pools. Modelling results support these findings: seasonal tree-ring δ(18) O variations are captured best when the week-to-week variations of the leaf water signal are suppressed. Our results suggest that climate signals in tree-ring δ(18) O variations should be strongest at temperate sites with humid conditions and precipitation maxima during the growing season.

  3. Oxygen isotope evidence for submarine hydrothermal alteration of the Del Puerto ophiolite, California

    USGS Publications Warehouse

    Schiffman, P.; Williams, A.E.; Evarts, R.C.

    1984-01-01

    The oxygen isotope compositions and metamorphic mineral assemblages of hydrothermally altered rocks from the Del Puerto ophiolite and overlying volcaniclastic sedimentary rocks at the base of the Great Valley sequence indicate that their alteration occurred in a submarine hydrothermal system. Whole rock ??18O compositions decrease progressively down section (with increasing metamorphic grade): +22.4??? (SMOW) to +13.8 for zeolite-bearing volcaniclastic sedimentary rocks overlying the ophiolite; +19.6 to +11.6 for pumpellyite-bearing metavolcanic rocks in the upper part of the ophiolite's volcanic member; +12.3 to +8.1 for epidote-bearing metavolcanic rocks in the lower part of the volcanic member; +8.5 to +5.7 for greenschist facies rocks from the ophiolite's plutonic member; +7.6 to +5.8 for amphibolite facies or unmetamorphosed rocks from the plutonic member. Modelling of fluid-rock interaction in the Del Puerto ophiolite indicates that the observed pattern of upward enrichment in whole rock ??18O can be best explained by isotopic exchange with discharging 18O-shifted seawater at fluid/rock mass ratios near 2 and temperatures below 500??C. 18O-depleted plutonic rocks necessarily produced during hydrothermal circulation were later removed as a result of tectonism. Submarine weathering and later burial metamorphism at the base of the Great Valley sequence cannot by itself have produced the zonation of hydrothermal minerals and the corresponding variations in oxygen isotope compositions. The pervasive zeolite and prehnite-pumpellyite facies mineral assemblages found in the Del Puerto ophiolite may reflect its origin near an island arc rather than deep ocean spreading center. ?? 1984.

  4. Longterm and seasonal variation in the isotopic composition of tropospheric CFC-12 and CFC-11

    NASA Astrophysics Data System (ADS)

    Bahlmann, Enno; Weinberg, Ingo; Eckhardt, Tim; Michaelis, Walter; Seifert, Richard

    2013-04-01

    Strong carbon isotope fractionation effects were recently discovered for the degradation of chlorofluorocarbons (CFC's) in landfills and for their photolytical destruction in the troposphere. Both results suggest an enrichment in 13C in the residual fraction of these compounds over time. Thus the isotopic composition of these CFC's may improve our understanding of their fate and reduce uncertainties in current source estimates. Here we report carbon isotope ratios for CFC-11 (CFCl3) and CFC-12 (CF2Cl2)) in background air. The samples were taken during five sampling campaigns between September 2010 and July 2012 with the sample locations spanning from 10°N to 60°N. For CFC-12 our data indicate a long term 13C enrichment of 0.5‰ per year corrobating very recent results from firn air measurements. The long term enrichment is superimposed by a seasonal cycle with an amplitude of 1.2‰ with the most enriched δ13C values occurring in June /July. We hypothesize the long term trend and the seasonal cycle to be driven by the stratosphere troposphere exchange (STE) of CFC-12. The mean δ13C for CFC-11 was -28.4 ± 0.6‰ (n =82) without any significant spatial or temporal variation. The kinetic isotope effect for the photolytic degradation of CFC-11 in the stratosphere is substantially smaller as compared to that for CFC-12 resulting in a minor imprint of the STE on the isotopic composition of tropospheric CFC-11. Furthermore, in contrast to CFC-12, degradation of CFC-11 has been reported from a variety of oxygen deficient marine settings. This may result in small scale variations in the δ13C of tropospheric CFC-11 superimposing any seasonal variability.

  5. Sulfur and oxygen isotope tracing in zero valent iron based In situ remediation system for metal contaminants.

    PubMed

    Kumar, Naresh; Millot, Romain; Battaglia-Brunet, Fabienne; Négrel, Philippe; Diels, Ludo; Rose, Jérôme; Bastiaens, Leen

    2013-01-01

    In the present study, controlled laboratory column experiments were conducted to understand the biogeochemical changes during the microbial sulfate reduction. Sulfur and oxygen isotopes of sulfate were followed during sulfate reduction in zero valent iron incubated flow through columns at a constant temperature of 20±1°C for 90 d. Sulfur isotope signatures show considerable variation during biological sulfate reduction in our columns in comparison to abiotic columns where no changes were observed. The magnitude of the enrichment in δ(34)S values ranged from 9.4‰ to 10.3‰ compared to initial value of 2.3‰, having total fractionation δS between biotic and abiotic columns as much as 6.1‰. Sulfur isotope fractionation was directly proportional to the sulfate reduction rates in the columns. Oxygen isotopes in this experiment seem less sensitive to microbial activities and more likely to be influenced by isotopic exchange with ambient water. A linear relationship is observed between δ(34)S and δ(18)O in biotic conditions and we also highlight a good relationship between δ(34)S and sulfate reduction rate in biotic columns.

  6. Oxygen isotope values of precipitation and the thermal climate in Europe during the middle to late Weichselian ice age

    NASA Astrophysics Data System (ADS)

    Arppe, L.; Karhu, J. A.

    2010-05-01

    The oxygen isotope compositions of 28 mammoth tooth enamel samples from Estonia, Latvia, Lithuania, Poland and Denmark provide new quantitative records of the middle to late Weichselian climate in northern Europe. The new δ18O data was combined with records of oxygen isotope values from earlier investigations on European mammoth tooth enamel and palaeogroundwaters to study the spatial patterns and temporal variations in the oxygen isotope composition of precipitation and the thermal climate over much of Europe. The reconstructed geographical distribution of δ18O in precipitation during 52-24 ka reflects the progressive isotopic depletion of air masses moving northeast, consistent with a westerly source of moisture for the entire region, and a circulation pattern similar to that of the present-day. Regional long-term average δ18O w values were 0.6-4.1‰ lower than at present, the largest changes recorded for the currently maritime influenced southern Sweden and the Baltic region. The application of regionally varied δ/ T-slopes, estimated from palaeogroundwater data and modern correlations, yield reasonable estimates of glacial surface temperatures in Europe and imply 2-9 °C lower long-term mean annual surface temperatures during the glacial period.

  7. A model predicting hydrogen and oxygen isotopes of mammalian hair at the landscape scale

    NASA Astrophysics Data System (ADS)

    Ehleringer, J.; Podlesak, D.; Cerling, T.; Chesson, L.; Bowen, G.

    2006-12-01

    A model has been developed to predict hydrogen and oxygen isotope ratios of keratin in hair of mammalian herbivores and omnivores, incorporating the influences of drinking water and dietary input. The isotopic composition of carbohydrates in food sources and the water in blood and tissues are predicted as intermediate components linking drinking water and dietary sources (environment) with hair (environmental recorder). This model is scaled to landscape and regional levels using geographic information system map predictions of the hydrogen and oxygen isotope ratios of drinking waters and anticipated hydrogen and oxygen isotope ratios of carbohydrate food sources. The model was tested using isotope ratios of human hair (an omnivore) from across the USA. We discuss the application of this model as a tool for providing spatially integrated information about the quality of primary productivity relevant to mammalian herbivores over time, through the effects of varying primary productivity on protein nitrogen balance of the herbivore.

  8. Controls, variation, and a record of climate change in detailed stable isotope record in a single bryozoan skeleton

    NASA Astrophysics Data System (ADS)

    Smith, Abigail M.; Key, Marcus M., Jr.

    2004-03-01

    The long-lived (about 20 yr) bryozoan Adeonellopsis sp. from Doubtful Sound, New Zealand, precipitates aragonite in isotopic equilibrium with seawater, exerting no metabolic or kinetic effects. Oxygen isotope ratios (δ 18O) in 61 subsamples (along three branches of a single unaltered colony) range from -0.09 to +0.68‰ PDB (mean = +0.36‰ PDB). Carbon isotope ratios (δ 13C) range from +0.84 to +2.18‰ PDB (mean = +1.69‰ PDB). Typical of cool-water carbonates, δ 18O-derived water temperatures range from 14.2 to 17.5 °C. Adeonellopsis has a minimum temperature growth threshold of 14 °C, recording only a partial record of environmental variation. By correlating seawater temperatures derived from δ 18O with the Southern Oscillation Index, however, we were able to detect major events such as the 1983 El Niño. Interannual climatic variation can be recorded in skeletal carbonate isotopes. The range of within-colony isotopic variability found in this study (0.77‰ in δ 18O and 1.34 in δ 13C) means that among-colony variation must be treated cautiously. Temperate bryozoan isotopes have been tested in less than 2% of described extant species — this highly variable phylum is not yet fully understood.

  9. Oxygen-18 Content of Atmospheric Oxygen Does Not Affect the Oxygen Isotope Relationship between Environmental Water and Cellulose in a Submerged Aquatic Plant, Egeria densa Planch.

    PubMed

    Cooper, L W; Deniro, M J

    1989-10-01

    We determined that the oxygen isotopic composition of cellulose synthesized by a submerged plant, Egeria densa Planch., is related to the isotopic composition of environmental water by a linear function, delta(18)O cellulose = 0.48 delta(18)O water + 24.1% per thousand. The observation of a slope of less than 1 indicates that a portion of cellulose oxygen is derived from an isotopically constant source other than water. We tested whether this source might be molecular oxygen by growing plants in the presence of high concentrations of (18)O in the form of O(2) bubbled into the bottom of an aquarium. Cellulose synthesized during this experiment did not have significantly different oxygen isotope ratios than that synthesized by control plants exposed to O(2) of normal (18)O abundance. We propose that oxygen in organic matter recycled from senescent portions of the plant is incorporated into cellulose. Our findings indicate that paleoclimatic models linking the oxygen isotope composition of environmental water to cellulose from fossil plants will have to be modified to account for contributions of oxygen from this or other sources besides water.

  10. Oxygen-18 Content of Atmospheric Oxygen Does Not Affect the Oxygen Isotope Relationship between Environmental Water and Cellulose in a Submerged Aquatic Plant, Egeria densa Planch 1

    PubMed Central

    Cooper, Lee W.; DeNiro, Michael J.

    1989-01-01

    We determined that the oxygen isotopic composition of cellulose synthesized by a submerged plant, Egeria densa Planch., is related to the isotopic composition of environmental water by a linear function, δ18O cellulose = 0.48 δ18O water + 24.1%‰. The observation of a slope of less than 1 indicates that a portion of cellulose oxygen is derived from an isotopically constant source other than water. We tested whether this source might be molecular oxygen by growing plants in the presence of high concentrations of 18O in the form of O2 bubbled into the bottom of an aquarium. Cellulose synthesized during this experiment did not have significantly different oxygen isotope ratios than that synthesized by control plants exposed to O2 of normal 18O abundance. We propose that oxygen in organic matter recycled from senescent portions of the plant is incorporated into cellulose. Our findings indicate that paleoclimatic models linking the oxygen isotope composition of environmental water to cellulose from fossil plants will have to be modified to account for contributions of oxygen from this or other sources besides water. PMID:16667066

  11. Oxygen-18 content of atmospheric oxygen does not affect the oxygen isotope relationship between environmental water and cellulose in a submerged aquatic plant, Egeria densa Planch

    SciTech Connect

    Cooper, L.W.; DeNiro, M.J. )

    1989-10-01

    We determined that the oxygen isotopic composition of cellulose synthesized by a submerged plant, Egeria densa Planch., is related to the isotopic composition of environmental water by a linear function, {delta}{sup 18}O cellulose = 0.48 {delta}{sup 18}O water + 24.1{per thousand}. The observation of a slope of less than 1 indicates that a portion of cellulose oxygen is derived from an isotopically constant source other than water. We tested whether this source might be molecular oxygen by growing plants in the presence of high concentrations of {sup 18}O in the form of O{sub 2} bubbled into the bottom of an aquarium. Cellulose synthesized during this experiment did not have significantly different oxygen isotope ratios than that synthesized by control plants exposed to O{sub 2} of normal {sup 18}O abundance. We propose that oxygen in organic matter recycled from senescent portions of the plant is incorporated into cellulose. Our findings indicate that paleoclimatic models linking the oxygen isotope composition of environmental water to cellulose from fossil plants will have to be modified to account for contributions of oxygen from this or other sources besides water.

  12. Variability in magnesium, carbon and oxygen isotope compositions, and trace element contents of brachiopod shells: implications for paleoceanographic studies

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, Claire; Saulnier, Ségolène; Vigier, Nathalie; Schumacher, Aimryc; Chaussidon, Marc; Lécuyer, Christophe

    2016-04-01

    Magnesium content in the ocean is ≈ 1290 ppm and is one of the most abundant elements. It is involved in the carbon cycle via the dissolution and precipitation of carbonates, especially Mg-rich carbonates as dolomites. The Mg/Ca ratio of the ocean is believed to have changed through time. The causes of these variations, i.e. hydrothermal activity change or enhanced precipitation of dolomite, could be constrained using the magnesium isotope composition (δ26Mg) of carbonates. Brachiopods, as marine environmental proxies, have the advantage to occur worldwide in a depth range from intertidal to abyssal, and have been found in the geological record since the Cambrian. Moreover, as their shell is in low-Mg calcite, they are quite resistant to diagenetic processes. Here we report δ26Mg, δ18O, δ13C values along with trace element contents of one modern brachiopod specimen (Terebratalia transversa) and one fossil specimen (Terebratula scillae, 2.3 Ma). We combined δ26Mg values with oxygen and carbon isotope compositions and trace element contents to look for possible shell geochemical heterogeneities in order to investigate the processes that control the Mg isotope composition of brachiopod shells. We also evaluate the potential of brachiopods as a proxy of past seawater δ26Mg values. The two investigated brachiopod shells present the same range of δ26Mg variation (up to 2 ‰)). This variation cannot be ascribed to changes in environmental parameters, i.e. temperature or pH. As previously observed, the primary layer of calcite shows the largest degree of oxygen and carbon isotope disequilibrium relative to seawater. In contrast, the δ26Mg value of this layer is comparable to that of the secondary calcite layer value. In both T. scillae and T. transversa, negative trends are observable between magnesium isotopic compositions and oxygen and carbon isotopic compositions. These trends, combined to linear relationships between δ26Mg values and REE contents, are best

  13. Carbon, Hydrogen, and Oxygen Isotope Ratios of Cellulose from Plants Having Intermediary Photosynthetic Modes 1

    PubMed Central

    Sternberg, Leonel O'Reilly; Deniro, Michael J.; Ting, Irwin P.

    1984-01-01

    Carbon and hydrogen isotope ratios of cellulose nitrate and oxygen isotope ratios of cellulose from species of greenhouse plants having different photosynthetic modes were determined. When hydrogen isotope ratios are plotted against carbon isotope ratios, four clusters of points are discernible, each representing different photosynthetic modes: C3 plants, C4 plants, CAM plants, and C3 plants that can shift to CAM or show the phenomenon referred to as CAM-cycling. The combination of oxygen and carbon isotope ratios does not distinguish among the different photosynthetic modes. Analysis of the carbon and hydrogen isotope ratios of cellulose nitrate should prove useful for screening different photosynthetic modes in field specimens that grew near one another. This method will be particularly useful for detection of plants which show CAM-cycling. PMID:16663360

  14. Stable H and O isotope variations reveal sources of recharge in Dhofar, Sultanate of Oman.

    PubMed

    Strauch, Gerhard; Al-Mashaikhi, Khalid S; Bawain, Abdullah; Knöller, Kay; Friesen, Jan; Müller, Thomas

    2014-01-01

    Due to the ability of stable water isotopes to characterize the origin of water and connected processes of groundwater recharge, we used the isotope variations of hydrogen and oxygen in different water sources for assessing the recharge process in the Dhofar region. δ(18)O and δ(2)H of precipitation, spring water, and groundwater cover a range from -10 to +2 and from -70 to +7 ‰ (vs Vienna Standard Mean Ocean Water), respectively, and correlate in a linear relationship close to the Global Meteoric Water Line. No obvious evaporation processes are detected. A clear signal of the recent precipitation is given by the annual monsoon. The monsoon signal is confirmed by several springs existing in the south at the foot of the Dhofar mountains and sources at Gogub above 450 m and Tawi Atir at 650 m above sea level. They occur here first in the form of water intercepted by trees as stemflow and throughflow. The isotope signature of groundwater in the Dhofar mountains reflects the climatic conditions at the time of recharge and the lithological features of the limestone matrix. To the north, the isotope patterns of the groundwater are continuously depleted from the monsoon signal along the outcropping aquifer D (Lower Umm Er Radhuma). Here, a more negative signature towards the wells in the Najd desert region was observed. Cyclone water that flooded wadis in the Dhofar region occasionally, as observed in November 2011, falls isotopically into the same range as we observed in the fossil groundwater. Taking into account the different sources of precipitation and groundwater and thus a clear distinction of the isotopic composition of the water sources, we conclude a recharge process divided into a southward and a northward component in the Dhofar region.

  15. Comparing Stable Water Isotope Variation in Atmospheric Moisture Observed over Coastal Water and Forests

    NASA Astrophysics Data System (ADS)

    Lai, C. T.; Rambo, J. P.; Welp, L. R.; Bible, K.; Hollinger, D. Y.

    2014-12-01

    Stable oxygen (δ18O) and hydrogen (δD) isotopologues of atmospheric moisture are strongly influenced by large-scale synoptic weather cycles, surface evapotranspiration and boundary layer mixing. Atmospheric water isotope variation has been shown to empirically relate to relative humidity (Rh) of near surface moisture, and to a less degree, air temperature. Continuous δ18O and δD measurements are becoming more available, providing new opportunities to investigate processes that control isotope variability. This study shows the comparison of δ18O and δD measured at a continental location and over coastal waters for 3 seasons (spring to fall, 2014). The surface moisture isotope measurements were made using two LGR spectroscopy water vapor isotope analyzers (Los Gatos Research Inc.), one operated in an old-growth coniferous forest at Wind River field station, WA (45.8205°N, 121.9519°W), and another sampling marine air over seawater at the Scripps Pier in San Diego, CA (32.8654°N, 117.2536°W), USA. Isotope variations were measured at 1Hz and data were reported as hourly averages with an overall accuracy of ±0.1‰ for δ18O, ±0.5‰ for δ2H. Day-to-day variations in δ18O and δD are shown strongly influenced by synoptic weather events at both locations. Boundary layer mixing between surface moisture and the dry air entrained from the free troposphere exerts a midday maximum and a consistent diel pattern in deuterium excess (dx). At the forest site, surface moisture also interacts with leaf water through transpiration during the day and re-equilibration at night. The latter occurs by retro-diffusion of atmospheric H2O molecules into leaf intercellular space, which becomes intensified as Rh increaes after nightfall, and continues until sunrise, to counter-balance the evaporative isotopic enrichment in leaf water on a daily basis. These vegetation effects lead to negative dx values consistently observed at nighttime in this continental location that were not

  16. Oxygen isotopes as a tracer of phosphate sources and cycling in aquatic systems (Invited)

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Paytan, A.

    2013-12-01

    The oxygen isotopic composition of phosphate can provide valuable information about sources and processes affecting phosphorus as it moves through hydrologic systems. Applications of this technique in soil and water have become more common in recent years due to improvements in extraction methods and instrument capabilities, and studies in multiple aquatic environments have demonstrated that some phosphorus sources may have distinct isotopic compositions within a given system. Under normal environmental conditions, the oxygen-phosphorus bonds in dissolved inorganic phosphate (DIP) can only be broken by enzymatic activity. Biological cycling of DIP will bring the phosphate oxygen into a temperature-dependent equilibrium with the surrounding water, overprinting any existing isotopic source signals. However, studies conducted in a wide range of estuarine, freshwater, and groundwater systems have found that the phosphate oxygen is often out of biological equilibrium with the water, suggesting that it is common for at least a partial isotopic source signal to be retained in aquatic systems. Oxygen isotope analysis on various potential phosphate sources such as synthetic and organic fertilizers, animal waste, detergents, and septic/wastewater treatment plant effluents show that these sources span a wide range of isotopic compositions, and although there is considerable overlap between the source groups, sources may be isotopically distinct within a given study area. Recent soil studies have shown that isotopic analysis of phosphate oxygen is also useful for understanding microbial cycling across different phosphorus pools, and may provide insights into controls on phosphorus leaching. Combining stable isotope information from soil and water studies will greatly improve our understanding of complex phosphate cycling, and the increasing use of this isotopic technique across different environments will provide new information regarding anthropogenic phosphate inputs and

  17. Oxygen isotope composition as a tracer for the origins of rubies and sapphires

    NASA Astrophysics Data System (ADS)

    Giuliani, Gaston; Fallick, Anthony E.; Garnier, Virginie; France-Lanord, Christian; Ohnenstetter, Daniel; Schwarz, Dietmar

    2005-04-01

    Oxygen isotopic compositions of rubies and sapphires from 106 deposits worldwide, as well as heated natural corundum, have been measured in this study. Artificially heated corundums have the same oxygen isotopic composition as unheated material. The 18O/16O ratio of natural corundum is a good indicator of its geological environment of formation. The consistently restricted δ18O range found for each type of deposit is explained by host-rock buffering during fluid-rock interaction. The δ18O constrains the geological source of the major type of gem-quality rubies sold on the market and brings new insight to gems found in placers. High-quality blue sapphires from Kashmir, Andranondambo, and Sri Lanka have specific oxygen isotopic ranges, but they overlap those of Mogok in Myanmar. Combined with traditional gemology techniques, oxygen isotope analysis will contribute toward defining the origin of some commercial high-value blue sapphires, especially from Kashmir.

  18. Oxygen Isotope Analysis of a Genesis Solar Wind Concentrator Sample With MegaSIMS

    NASA Astrophysics Data System (ADS)

    Kallio, A. P.; McKeegan, K. D.; Mao, P. H.; Jarzebinski, G.; Coath, C. D.; Kunihiro, T.; Wiens, R. C.; Allton, J.; Callaway, M.; Rodriguez, M.; Burnett, D.

    2008-05-01

    The determination of the oxygen isotopic composition of the sun is the highest priority science objective of the GENESIS mission. We have performed the first oxygen isotopic analyses of the GENESIS solar wind concentrator sample #60001 using the UCLA MegaSIMS instrument. The MegaSIMS is a hybrid secondary ionisation and accelerator multicollector mass spectrometer. The problems of instrumental background, sample surface contamination (both adsorbed and particulate) and detector cross-talk can now be dealt with and we can measure consistently solar wind oxygen depth profiles. Our preliminary oxygen isotope data indicate that the solar wind sample is 16O enriched compared to terrestrial but the details of isotopic fractionation in the concentrator and in the solar wind itself have to be worked out before a value for the sun can be calculated.

  19. New Oxygen Isotope Measurements of Four Stardust Impact Crater Residues Show IDP-Like Compositions

    NASA Astrophysics Data System (ADS)

    Snead, C. J.; McKeegan, K. D.

    2015-07-01

    We have measured the oxygen isotope compositions of four Stardust impact crater residues. These analyses reveal compositions that are similar to those found in interplanetary dust particles, antarctic micrometeorites and CI chondrite components.

  20. Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign

    NASA Astrophysics Data System (ADS)

    Savarino, J.; Vicars, W. C.; Legrand, M.; Preunkert, S.; Jourdain, B.; Frey, M. M.; Kukui, A.; Caillon, N.; Gil Roca, J.

    2015-09-01

    Variations in the stable oxygen isotope composition of atmospheric nitrate act as novel tools for studying oxidative processes taking place in the troposphere. They provide both qualitative and quantitative constraints on the pathways determining the fate of atmospheric nitrogen oxides (NO + NO2 = NOx). The unique and distinctive 17O-excess (Δ17O = δ17O - 0.52 × δ18O) of ozone, which is transferred to NOx via oxidation, is a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O-excess within the NOx cycle is critical in polar areas where there exists the possibility of extending atmospheric investigations to the glacial/interglacial time scale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C (East Antarctic plateau) during the austral summer of 2011/12. Nitrate isotope analysis has been here combined for the first time with key precursors involved in nitrate production (NOx, O3, OH, HO2, RO2, etc.) and direct observations of the transferrable Δ17O of surface ozone, which was measured at Dome C throughout 2012 using our recently developed analytical approach. Assuming that nitrate is mainly produced in Antarctica in summer through the OH + NO2 pathway and using concurrent measurements of OH and NO2, we calculated a Δ17O signature for nitrate in the order of (21-22 ± 3) ‰. These values are lower than the measured values that ranged between 27 and 31 ‰. This discrepancy between expected and observed Δ17O(NO3-) values suggests the existence of an unknown process that contributes significantly to the atmospheric nitrate budget over this east Antarctic region.

  1. The oxygen isotopic composition of phosphate in Elkhorn Slough, California: A tracer for phosphate sources

    NASA Astrophysics Data System (ADS)

    McLaughlin, Karen; Cade-Menun, Barbara J.; Paytan, Adina

    2006-11-01

    Elkhorn Slough, a small seasonal estuary in central California, has been subjected to increased nutrient loading from agricultural and other non-point sources. However, because nutrients do not behave conservatively, tracing nutrient sources and cycling in ecosystems like Elkhorn Slough has been difficult to assess. This is particularly true of phosphorus (P), which has only one stable isotope and cannot be used as an isotopic tracer. However, isotopic fractionation of oxygen in phosphate at surface water temperatures only occurs as a result of enzyme-mediated, biochemical reactions. Thus, if phosphate demand is low relative to input and is not heavily cycled within the ecosystem, the δ18O of phosphate will reflect the isotopic composition of phosphate sources to the system. We utilized the δ18O of dissolved inorganic phosphate (DIP) within the main channel of the slough and nearby Moss Landing Harbor and the δ18O of reactive phosphate from sediment and soil samples collected within the watershed to understand phosphate sources and cycling within Elkhorn Slough. Trends in the δ18O of DIP were seasonally consistent with high values near the mouth reflecting oceanic phosphate (19.1‰-20.3‰), dropping to a minimum value near Hummingbird Island in the central slough (point source, 14.1‰-14.4‰), and increasing again near the head of the slough, reflecting fertilizer input (18.9‰-19.3‰). Reactive phosphate δ18O values extracted from sediments and soils in the watershed range from 10.6‰ in a drainage ditch to 22.3‰ in creek sediments near agriculture fields. The wide range in phosphate δ18O values reflects the variations in land use and application of different fertilizers in this agriculturally dominated landscape. These data suggest that phosphate δ18O can be an effective tool for identifying P sources and understanding phosphate dynamics in estuarine ecosystems.

  2. Oxygen isotopic variability associated with multiple stages of serpentinization, Duke Island Complex, southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Thakurta, Joyashish; Ripley, Edward M.; Li, Chusi

    2009-10-01

    Ultramafic rocks of the Duke Island Complex in southeastern Alaska crystallized in a supra-subduction zone setting, but the serpentinization of olivine-bearing rocks involved the incursion of late-stage meteoric waters. Three textural types of serpentine (primarily lizardite) have been identified which in part reflect progress in reactions during multiple stages of fluid infiltration. The overall mesh texture of serpentine has been subdivided into a massive-type, found in dunites and wehrlites, and a dendritic-type found in wehrlites and olivine clinopyroxenites. Serpentine veins represent a late-stage in the hydrothermal alteration process. Both FeO contents and δ 18O values of the three textural types of serpentine are variable at the centimeter scale. Magnetite abundance in association with serpentine is also variable with up to 5 vol% of magnetite found in samples with dendritic serpentine. Continued reaction of FeO-bearing serpentine with fluid appears to control the formation of most magnetite. Oxygen isotope ratios of the three textural types of serpentine are distinct, with the massive variety characterized by δ 18O values between -3‰ and 3‰, the dendritic variety showing values between 2‰ and 6‰ and the veins having the highest values between 4‰ and 10‰. Although the δ 18O values may vary by as much as 5‰ on the centimeter scale, δ D values tend to show relatively less variation with over 90% of the measured values between -100‰ and -120‰. The O and H isotopic values are consistent with the involvement of meteoric water that had undergone variable degrees of isotopic exchange with country rocks prior to reacting with olivine in the Duke Island Complex. Small-scale variability in both serpentine FeO content and δ 18O values suggests that chemical and isotopic equilibria may have not been attained at larger than centimeter scales. Oxygen isotopic variability in serpentine produced during relatively low-temperature hydrothermal

  3. Do oxygen stable isotopes track precipitation moisture source in vascular plant dominated peatlands?

    NASA Astrophysics Data System (ADS)

    Charman, D.; Amesbury, M. J.; Newnham, R.; Loader, N.; Goodrich, J. P.; Gallego-Sala, A. V.; Royles, J.; Keller, E. D.; Baisden, W. T.

    2014-12-01

    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature and humidity dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives. Exploitation of this record from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, has been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with limited application in the Southern Hemisphere (SH) or in peatlands dominated by vascular plants. Throughout New Zealand (NZ), the preserved root matrix of the restionaceous wire rush (Empodisma spp.) forms deep peat deposits. NZ provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because sites are ideally suited to single taxon analysis, preserve potentially high resolution full Holocene palaeoclimate records and are situated in the climatically sensitive SH mid-latitudes. Crucially, large gradients exist in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. We test the capacity for δ18O analysis of Empodisma alpha cellulose from ombrotrophic restiad peatlands in NZ to provide a methodology for developing palaeoclimate records. We took surface plant, water and precipitation samples over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. We found a strong link between the isotopic compositions of surface root water, the most likely source water for plant growth, and precipitation in both datasets. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in surface root water. The link between source water and plant

  4. Seasonal variation in stable carbon and nitrogen isotope values of bats reflect environmental baselines.

    PubMed

    Popa-Lisseanu, Ana G; Kramer-Schadt, Stephanie; Quetglas, Juan; Delgado-Huertas, Antonio; Kelm, Detlev H; Ibáñez, Carlos

    2015-01-01

    The stable carbon and nitrogen isotope composition of animal tissues is commonly used to trace wildlife diets and analyze food chains. Changes in an animal's isotopic values over time are generally assumed to indicate diet shifts or, less frequently, physiological changes. Although plant isotopic values are known to correlate with climatic seasonality, only a few studies restricted to aquatic environments have investigated whether temporal isotopic variation in consumers may also reflect environmental baselines through trophic propagation. We modeled the monthly variation in carbon and nitrogen isotope values in whole blood of four insectivorous bat species occupying different foraging niches in southern Spain. We found a common pattern of isotopic variation independent of feeding habits, with an overall change as large as or larger than one trophic step. Physiological changes related to reproduction or to fat deposition prior to hibernation had no effect on isotopic variation, but juvenile bats had higher δ13C and δ15N values than adults. Aridity was the factor that best explained isotopic variation: bat blood became enriched in both 13C and 15N after hotter and/or drier periods. Our study is the first to show that consumers in terrestrial ecosystems reflect seasonal environmental dynamics in their isotope values. We highlight the danger of misinterpreting stable isotope data when not accounting for seasonal isotopic baselines in food web studies. Understanding how environmental seasonality is integrated in animals' isotope values will be crucial for developing reliable methods to use stable isotopes as dietary tracers.

  5. Carbon and oxygen isotopes in apatite CO/sub 2/ and co-existing calcite

    SciTech Connect

    Kolodny, Y.; Kaplan, I. R.

    1981-04-01

    Carbon and oxygen isotopes were analyzed in carbonate apatite CO/sub 2/ and in co-existing calcite. Both C and O in apatite CO/sub 2/ are enriched in the respective light isotopes relative to calcite. These results confirm the proposition that carbonate is part of the apatite structure.

  6. Spatial and Temporal Trends in Stable Carbon and Oxygen Isotope Ratios of Juvenile Winter Flounder

    EPA Science Inventory

    Isotopic ratios of fish otoliths have been used in numerous studies as natural tags or markers to aid the study of connectivity among fish populations. We investigated the use of spatial and temporal changes in the stable carbon and oxygen isotope ratios of otoliths to different...

  7. Stable carbon and oxygen isotopes reveal Sahel drought events and ground water fluctuations in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Gebrekirstos, Aster

    2014-05-01

    Tree rings are important proxies for paleoclimate studies because they contain continuous historical records of inter-annual and intra-annual time resolutions, which range over hundreds of years. This study uses stable carbon and oxygen isotopes in tree rings to understand the drivers and impacts of climate change in sub-Saharan Africa and their ability to reconstruct past regional climate variability and climatic trends. Our approach considers large scale climate gradients and different temporal scales (inter-annual and intra-annual variations) and combines multi- parameter measurements (carbon and oxygen isotopes, whole wood and cellulose measurements). The study species are Faidherbia albida and Sclerocarya birrea from south and West Africa, respectively. Both are very important deciduous trees, and widely distributed in sub-Saharan Africa. Particularly, F. albida has a distinctive phenology; it bears leaves and flowers during the dry season and sheds its leaves during the rainy season. Stable carbon (δ13C) and oxygen (δ18O) mean values showed similar inter annual patterns. In general, both δ13C and δ18O show negative correlations with rainfall, humidity and PDSI. On the contrary, they are positively correlated with sunshine hours, maximum temperature and evaporation. The reverse phenology of Faidherbia and intra seasonal resolution measurements reveals seasonal ground water fluctuations. Both carbon and oxygen stable isotopes showed strong climatic signals including the long Sahel drought events and climatic recovery phases.

  8. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology

    SciTech Connect

    Kohn, M.J.; Valley, J.W.; Schoeninger, M.J.

    1996-10-01

    The applicability of rapid and precise laser probe analysis of tooth enamel for {delta}{sup 18}O has been verified, and the method has been applied to different modern herbivores in East Africa. Sampling and pretreatment procedures involve initial bleaching and grinding of enamel to <75 {mu}m, and elimination of adsorbed water and organic compounds with BrF{sub 5}. Typical analytical reproducibilities for 0.5-2 mg samples are {+-}0.08{per_thousand} ({+-} 1{sigma}). Chemical and spectroscopic characterization of pretreated but unanalyzed samples show no alteration compared to fresh enamel. Solid reaction products are nearly pure CaF{sub 2} with little evidence for residual O{sub 2}. Because laser probe fluorination extracts oxygen from all sites in the apatite structure (phosphate, structural carbonate, and hydroxyl), only unaltered tooth enamel ( >95% apatite) can be analyzed reliably. Different East African herbivores exhibit previously unsuspected compositional differences. Average enamel {delta}{sup 18}O values (V-SMOW) are approximately: 25{per_thousand} (goat). 27{per_thousand} (oryx), 28{per_thousand} (dikdik and zebra), 29{per_thousand} (topi), 30{per_thousand} (gerenuk), and 32{per_thousand} (gazelle). These compositions differ from generalized theoretical models, but are broadly consistent with expected isotope effects associated with differences in how much each animal (a) drinks, (b) eats C3 vs. C4 plants, and (c) pants vs. sweats. Consideration of diet, water turnover. and animal physiology will allow the most accurate interpretation of ancient teeth and targeting of environmentally-sensitive animals in paleoclimate studies. 66 refs., 2 figs., 2 tabs.

  9. Soil phosphate stable oxygen isotopes across rainfall and bedrock gradients.

    PubMed

    Angert, Alon; Weiner, Tal; Mazeh, Shunit; Sternberg, Marcelo

    2012-02-21

    The stable oxygen isotope compositions of soil phosphate (δ(18)O(p)) were suggested recently to be a tracer of phosphorus cycling in soils and plants. Here we present a survey of bioavailable (resin-extractable or resin-P) inorganic phosphate δ(18)O(p) across natural and experimental rainfall gradients, and across soil formed on sedimentary and igneous bedrock. In addition, we analyzed the soil HCl-extractable inorganic δ(18)O(p), which mainly represents calcium-bound inorganic phosphate. The resin-P values were in the range 14.5-21.2‰. A similar range, 15.6-21.3‰, was found for the HCl-extractable inorganic δ(18)O(p), with the exception of samples from a soil of igneous origin that show lower values, 8.2-10.9‰, which indicate that a large fraction of the inorganic phosphate in this soil is still in the form of a primary mineral. The available-P δ(18)O(p) values are considerably higher than the values we calculated for extracellular hydrolysis of organic phosphate, based on the known fractionation from lab experiments. However, these values are close to the values expected for enzymatic-mediated phosphate equilibration with soil-water. The possible processes that can explain this observation are (1) extracellular equilibration of the inorganic phosphate in the soil; (2) fractionations in the soil are different than the ones measured at the lab; (3) effect of fractionation during uptake; and (4) a flux of intercellular-equilibrated inorganic phosphate from the soil microbiota, which is considerably larger than the flux of hydrolyzed organic-P.

  10. Strontium isotopic variations of Neoproterozoic seawater: implications for crustal evolution.

    PubMed

    Asmerom, Y; Jacobsen, S B; Knoll, A H; Butterfield, N J; Swett, K

    1991-01-01

    We report high precision Sr isotopic data on carbonates from the Neoproterozoic Shaler Group, Victoria Island, Northwest Territories, Canada. Lithostratigraphic correlations with the relatively well-dated Mackenzie Mountains Supergroup constrain Shaler deposition to approximately 770-880 Ma, a range corroborated by 723 +/- 3 Ma lavas that disconformably overlie Shaler carbonates and by Late Riphean microfossils within the section. Samples with low 87Rb/86Sr ratios (<0.01) were selected for Sr isotopic analysis. Delta 18O, Mn, Ca, Mg, and Sr data were used to recognize altered samples. The altered samples are characterized by high Mn/Sr (> or = 2) and variable delta 18O; most are dolomites. The data indicate that between ca. 790-850 Ma the 87Sr/86Sr ratio of seawater varied between 0.70676 and 0.70561. The samples show smooth and systematic variation, with the lowest 87Sr/86Sr value of 0.70561 at ca. 830 Ma. The low 87Sr/86Sr ratio of carbonates from the lower parts of our section is similar to a value reported for one sample from the Adrar of Mauritania (approximately 900 Ma), West African Craton. Isotopic ratios from the upper part of the Shaler section are identical to values from the lower part of the Neoproterozoic Akademikerbreen Group, Spitsbergen. Although a paucity of absolute age determinations hinders attempts at the precise correlation of Neoproterozoic successions, it is possible to draw a broad outline of the Sr isotopic composition of seawater for this period. Indeed, the Sr isotope data themselves provide a stratigraphic tool of considerable potential. Data from this study and the literature are used to construct a curve of the 87Sr/86Sr ratio of Neoproterozoic seawater. The new data reported in this study substantially improve the isotopic record of Sr in seawater for the period 790-850 Ma. The Sr isotope composition of seawater reflects primarily the balance between continental Sr input through river input and mantle input via hydrothermal

  11. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  12. Biochemical effects of salinity on oxygen isotope fractionation during cellulose synthesis.

    PubMed

    Ellsworth, Patricia V; Sternberg, Leonel S L

    2014-05-01

    The current isotope tree ring model assumes that 42% of the sucrose oxygen exchanges with stem water during cellulose synthesis and that the oxygen isotope biochemical fractionation is c. 27‰. However, previous studies have indicated that this model can overestimate the cellulose oxygen isotope ratio of plants under salinity or water stress. Saline stress increases soluble carbohydrates and osmolytes, which can alter exchange and biochemical fractionation during cellulose synthesis. To test the effect of salinity as well as the synthesis of osmolytes on exchange and biochemical fractionation, we grew wild-type and a transgenic mannitol synthesizer Arabidopsis thaliana hydroponically with fresh and saline water. We then measured the oxygen isotope ratios of leaf water, stem water and stem cellulose to determine the effects on exchange and biochemical fractionation. Biochemical fractionation did not change, but oxygen isotope exchange was twice as high for plants grown in saline water relative to freshwater-treated plants (0.64 and 0.3, respectively). Mannitol (osmolyte) synthesis did not affect exchange or biochemical fractionation regardless of salinity. Increases in salinity increased oxygen isotope exchange during cellulose synthesis, which may explain the overestimation of cellulose δ(18) O values under saline conditions.

  13. Oxygen Isotope in Phosphate an Indicator of Phosphorous Cycling in the Ocean - Controls, and Applications

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Roberts, K.; Defforey, D.; McLaughlin, K.; Lomas, M. W.; Church, M. J.; Mackey, K. R.

    2012-12-01

    In order to better constrain the parameters affecting oxygen isotope exchange between water and phosphate via biochemical reactions a set of culture experiments were conducted. Different species of phytoplankton were grown in seawater at various temperatures, light levels, and phosphate concentrations. The oxygen isotopic composition in the phosphate source, algal cells, and the isotopic composition oxygen in the dissolved inorganic phosphate (DIP) were measured. Results showing the effect of species, temperature, light and P availability on intracellular oxygen isotope exchange between phosphorus compounds and water will be presented. The effect of these parameters on the utility of the oxygen isotopic composition of phosphate as a tracer of phosphate utilization rate in the ocean will be discussed. This information is fundamental to any application of isotopic composition of oxygen of dissolved inorganic or organic phosphate to quantify the dynamics of phosphorus cycling in aquatic systems. The data will be utilized to investigate seasonal changes in phosphate sources and cycling in the open ocean and how these relate to phytoplankton abundance, hydrography, and nutrient concentrations.

  14. Oxygen isotope fractionation during N2O production by soil denitrification

    NASA Astrophysics Data System (ADS)

    Lewicka-Szczebak, Dominika; Dyckmans, Jens; Kaiser, Jan; Marca, Alina; Augustin, Jürgen; Well, Reinhard

    2016-02-01

    The isotopic composition of soil-derived N2O can help differentiate between N2O production pathways and estimate the fraction of N2O reduced to N2. Until now, δ18O of N2O has been rarely used in the interpretation of N2O isotopic signatures because of the rather complex oxygen isotope fractionations during N2O production by denitrification. The latter process involves nitrate reduction mediated through the following three enzymes: nitrate reductase (NAR), nitrite reductase (NIR) and nitric oxide reductase (NOR). Each step removes one oxygen atom as water (H2O), which gives rise to a branching isotope effect. Moreover, denitrification intermediates may partially or fully exchange oxygen isotopes with ambient water, which is associated with an exchange isotope effect. The main objective of this study was to decipher the mechanism of oxygen isotope fractionation during N2O production by soil denitrification and, in particular, to investigate the relationship between the extent of oxygen isotope exchange with soil water and the δ18O values of the produced N2O. In our soil incubation experiments Δ17O isotope tracing was applied for the first time to simultaneously determine the extent of oxygen isotope exchange and any associated oxygen isotope effect. We found that N2O formation in static anoxic incubation experiments was typically associated with oxygen isotope exchange close to 100 % and a stable difference between the 18O / 16O ratio of soil water and the N2O product of δ18O(N2O / H2O) = (17.5 ± 1.2) ‰. However, flow-through experiments gave lower oxygen isotope exchange down to 56 % and a higher δ18O(N2O / H2O) of up to 37 ‰. The extent of isotope exchange and δ18O(N2O / H2O) showed a significant correlation (R2 = 0.70, p < 0.00001). We hypothesize that this observation was due to the contribution of N2O from another production process, most probably fungal denitrification. An oxygen isotope fractionation model was used to test various scenarios with

  15. Petrology, mineralogy and geochemistry of oxide minerals in polymict xenoliths from the Bultfontein kimberlites, South Africa: implication for low bulk-rock oxygen isotopic ratios

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Fu; Menzies, Martin A.; Mattey, Dave P.; Hinton, Richard W.; Gurney, John J.

    2001-06-01

    Polymict mantle xenoliths from the Bultfontein kimberlites, South Africa, contain abundant ilmenites (30% in BD2666, 15% in JJG1414, 3% each in BD2394 and BD344). These ilmenites occur as disrupted veins or layers, coarse discrete grains, small segregations interstitial to other silicate minerals, and tiny irregular grains disseminated in the subgrains of enstatites. The vein-like ilmenite usually shows a textural zonation across the vein, in rare cases along veins. This textural zonation is coincident with chemical and oxygen isotopic variations, with the margins being finer in grain sizes and richer in incompatible elements. The chemical and isotopic compositions also vary between different occurrences of ilmenite grains. In general, the smaller grains are richer in Cr, LREE and LILE and lighter in oxygen isotopes. Thus, chemical and oxygen isotopic disequilibria are well preserved in these ilmenites, which are also seen in the silicate minerals. These features suggest that ilmenites from the polymict xenoliths formed by magmatic and/or metasomatic processes. The invasion of the Fe-Ti-Cr-rich melt with low oxygen isotopic ratio can account for the observed low bulk oxygen isotopic ratios in the polymict xenoliths. This Fe-Ti-rich melt with high ilmenite normative could be produced by melt immiscibility during the migration of an initially homogeneous high-Ti silicate melt.

  16. Hydrogeochemistry and Oxygen and Hydrogen Isotope Compositions of Sea Water Intrusion in Masan-Jinhae Area, Korea

    NASA Astrophysics Data System (ADS)

    Chon, H.; Song, Y.; Jeong, C.; Kim, Y.; Lee, J.

    2006-12-01

    The purpose of this study is to investigate the geochemical characteristics of the sea water intrusion in Masan - Jinhae area that is bounded by the South Sea of the Korean Peninsula. Sampling of precipitation, stream water, groundwater and sea water in the hydrologic cycle, measurement in field, and the analysis of dissolved ions and oxygen and hydrogen stable isotopes were carried out in order to understand hydrogeochemical property, and to analyze the mixing status of sea water with fresh water. The most appropriate parameters for understanding the status of sea water intrusion were also discussed in this study. Electric conductivity value shows outlier over 1000 §Á/§¯ in some groundwater, which suggests the evidence of sea water intrusion around the well. Groundwater is divided into three types; (Ca,Mg)-(HCO3) type, (Ca,Mg)-(Cl,SO4) type, and (Na+K)-(Cl,SO4) type. In particular, the second type could be due to geochemical evolution through reverse ion exchange reaction with sea water, and third type is chemically similar to sea water. Oxygen and hydrogen isotope compositions of precipitation, stream water, groundwater and sea water show that precipitation reflects seasonal variation, and that stream water is more affected by groundwater rather than surface water. The origin of groundwater is also related to the meteoric water. The oxygen and hydrogen isotope compositions of the collected sea water are lower than normal sea water. In order to understand the source of salinity in saline groundwater, hydrogeochemical parameters, and oxygen and hydrogen isotope compositions were introduced in this stduy. All the parameters and isotope composition data indicate that the salinity was originated from sea water intrusion. The mixing ratios of sea water was determined by using Br, Cl concentration and ¥ä18O. Mixing ratio of sea water in saline groundwater shows scarce changes in most of the wells.

  17. Oxygen Isotope Records in Modern Oyster Shells from Chi Ku, Tainan and Their Implication of Seasonality

    NASA Astrophysics Data System (ADS)

    Chen, Y. C.; Mii, H. S.; Li, K. T.

    2015-12-01

    To exam whether oxygen isotope records of Crassostrea gigasoysters can be used as proxies of environment, 133 cultivated oysters and 21 water samples were collected from Chi Ku area, Tainan City, southern Taiwan in December of 2012, and from March, 2013 to July, 2014. Instrumental air and water temperatures and precipitation records were obtained from a nearest Central Weather Bureau (CWB) station roughly 16 km north of Chi Ku. The oxygen and carbon isotope values of the ligamental area of the modern oyster shells are from -6.92‰ to -0.08‰ (-3.05 ± 1.17‰, N = 2280; 1σ; VPDB) and from -5.57‰ to 0.63‰ (-1.88 ± 0.81‰), respectively. Oxygen isotope values of the water samples are mainly between -0.28‰ and 0.74‰ (0.18 ± 0.29‰, N = 20; 1σ; VSMOW). However, water oxygen isotope value of -2.75‰ was observed for the water sample collected immediately after a typhoon heavy rainfall. Seasonal temperature fluctuation pattern of estimated oxygen isotope temperatures from modern shells is similar to that of CWB instrumental records. However, the oxygen isotope temperatures are respectively about 3 °C and 10°C higher than those of instrumental records for winter and summer. Higher estimated oxygen isotope temperatures are most likely caused by underestimated fraction of freshwater. We analyzed 5 archaeological oyster shells of Siraya culture (500~250B.P.) collected from Wu Chien Tuso North (WCTN) archaeological site of Tainan branch of Southern Taiwan Science Park to infer the harvest season of mollusks. Oxygen isotope values of the ligamental area of the archaeological oyster shells are between -5.98‰ and -1.26‰ (-3.34 ± 1.37‰, N = 60; 1σ), and carbon isotope values are between -3.21‰ and 0.60‰ (-2.04‰ ± 0.55‰). The oxygen isotope records of archaeological oyster shells also showed clear seasonality. Most of the oysters were collected in autumn and winter. Oxygen isotope values of archaeological oyster shells was 1‰ greater than that

  18. Biosynthesis of gallic acid in Rhus typhina: discrimination between alternative pathways from natural oxygen isotope abundance.

    PubMed

    Werner, Roland A; Rossmann, Andreas; Schwarz, Christine; Bacher, Adelbert; Schmidt, Hanns-Ludwig; Eisenreich, Wolfgang

    2004-10-01

    The biosynthetic pathway of gallic acid in leaves of Rhus typhina is studied by oxygen isotope ratio mass spectrometry at natural oxygen isotope abundance. The observed delta18O-values of gallic acid indicate an 18O-enrichment of the phenolic oxygen atoms of more than 30 per thousand above that of the leaf water. This enrichment implies biogenetical equivalence with oxygen atoms of carbohydrates but not with oxygen atoms introduced by monooxygenase activation of molecular oxygen. It can be concluded that all phenolic oxygen atoms of gallic acid are retained from the carbohydrate-derived precursor 5-dehydroshikimate. This supports that gallic acid is synthesized entirely or predominantly by dehydrogenation of 5-dehydroshikimate.

  19. Oxygen isotope composition of diatoms as Late Holocene climate proxy at Two-Yurts Lake, Central Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Meyer, Hanno; Chapligin, Bernhard; Hoff, Ulrike; Nazarova, Larisa; Diekmann, Bernhard

    2015-11-01

    Especially in combination with other proxies, the oxygen isotope composition of diatom silica (δ18Odiatom) from lake sediments is useful for interpreting past climate conditions. This paper presents the first oxygen isotope data of fossil diatoms from Kamchatka, Russia, derived from sediment cores from Two-Yurts Lake (TYL). For reconstructing Late Holocene climate change, palaeolimnological investigations also included diatom, pollen and chironomid analysis. The most recent diatom sample (δ18Odiatom = + 23.3‰) corresponds well with the present day isotopic composition of the TYL water (mean δ18O = - 14.8‰) displaying a reasonable isotope fractionation in the system silica-water. Nonetheless, the TYL δ18Odiatom record is mainly controlled by changes in the isotopic composition of the lake water. TYL is considered as a dynamic system triggered by differential environmental changes closely linked with lake-internal hydrological factors. The diatom silica isotope record displays large variations in δ18Odiatom from + 27.3‰ to + 23.3‰ from about ~ 4.5 kyr BP until today. A continuous depletion in δ18Odiatom of 4.0‰ is observed in the past 4.5 kyr, which is in good accordance with other hemispheric environmental changes (i.e. a summer insolation-driven Mid- to Late Holocene cooling). The overall cooling trend is superimposed by regional hydrological and atmospheric-oceanic changes. These are related to the interplay between Siberian High and Aleutian Low as well as to the ice dynamics in the Sea of Okhotsk. Additionally, combined δ18Odiatom and chironomid interpretations provide new information on changes related to meltwater input to lakes. Hence, this diatom isotope study provides further insight into hydrology and climate dynamics of this remote, rarely investigated area.

  20. Oxygen isotopic abundances in calcium- aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity.

    PubMed

    McKeegan, K D; Leshin, L A; Russell, S S; MacPherson, G J

    1998-04-17

    The oxygen isotopic compositions of two calcium-aluminum-rich inclusions (CAIs) from the unequilibrated ordinary chondrite meteorites Quinyambie and Semarkona are enriched in 16O by an amount similar to that in CAIs from carbonaceous chondrites. This may indicate that most CAIs formed in a restricted region of the solar nebula and were then unevenly distributed throughout the various chondrite accretion regions. The Semarkona CAI is isotopically homogeneous and contains highly 16O-enriched melilite, supporting the hypothesis that all CAI minerals were originally 16O-rich, but that in most carbonaceous chondrite inclusions some minerals exchanged oxygen isotopes with an external reservoir following crystallization.

  1. Behaviour of Structural Carbonate Stable Carbon and Oxygen Isotope Compositions in Bioapatite During Burning of Bone

    NASA Astrophysics Data System (ADS)

    Munro, L. E.; Longstaffe, F. J.; White, C. D.

    2003-12-01

    Bioapatite, the principal inorganic phase comprising bone, commonly contains a small fraction of carbonate, which has been substituted into the phosphate structure during bone formation. The isotopic compositions of both the phosphate oxygen and the structural carbonate oxygen are now commonly used in palaeoclimatological and bioarchaeological investigations. The potential for post-mortem alteration of these isotopic compositions, therefore, is of interest, with the behaviour of structural carbonate being of most concern. In bioarchaeological studies, alteration of bone isotopic compositions has the potential to occur not only during low-temperature processes associated with burial but also during food preparation involving heating (burning, boiling). Here, we examine the stable isotopic behaviour of structural carbonate oxygen and carbon, and coexisting phosphate oxygen during the burning of bone. Freshly deceased (6<8 months) white-tailed deer leg bones (Odocoileus virginianus) were collected from Pinery Provincial Park, Ontario, Canada. Each long bone was sectioned and incrementally heated from 25 to 900° C, in 25° intervals. The samples were then ground to a standardized grain-size (45<63μ m), and changes in bioapatite crystallinity (CI) were determined using powder X-ray diffraction (pXRD), and Fourier transform infra-red spectroscopy (FTIR). Combined differential thermal and thermogravimetric analyses (DTA/TG) were used to evaluate weight loss and associated reactions during heating. Stable carbon isotope compositions of the bioapatite remain relatively constant (+/-1‰ ) during heating to 650° C. A 4‰ increase in stable carbon isotopic composition then occurs between 650-750° C, accompanied by an increase in CI, followed by a 10‰ decline at temperatures above 800° C, as carbonate carbon is lost. Carbonate and phosphate oxygen isotopic compositions are correlated over the entire heating range, with carbonate being enriched relative to phosphate by

  2. O-18/O-16 and Si-30/Si-28 studies of some Apollo 15, 16, and 17 samples. [oxygen and silicon isotope ratios

    NASA Technical Reports Server (NTRS)

    Taylor, H. P., Jr.; Epstein, S.

    1973-01-01

    A study of lunar rock samples from eight sites on the near side of the moon showed oxygen isotope abundance variations much smaller than those in meteorites and earth material. The grain-surface coatings of the lunar fines were found to be generally depleted in oxygen relative to silicon. The lunar soils, on the other hand, were somewhat richer in both O18 and Si30 than the lunar crystalline rock.

  3. Analysis of the interdecadal variability of summer precipitation in central Japan using a reconstructed 106 year long oxygen isotope record from tree ring cellulose

    NASA Astrophysics Data System (ADS)

    Kurita, Naoyuki; Nakatsuka, Takeshi; Ohnishi, Keiko; Mitsutani, Takumi; Kumagai, Tomo'omi

    2016-10-01

    We present a unique proxy for reconstructing the interannual variability of summer precipitation associated with the quasi-stationary front (Baiu front) in central Japan. The rainfall from the Baiu front has a relatively lower oxygen isotopic composition than other types of nonfrontal precipitation. The variability in the oxygen isotopes in summer rainfall is closely related to the Baiu frontal activity. In this study we used a mechanistic tree ring isotope model to reconstruct a 106 year long oxygen isotopic composition of precipitation during the early rainy season (June) based on the oxygen isotopic compositions of the annual rings of Chamaecyparis obtusa Endl trees from central Japan. The year-to-year variations of the isotopes over the most recent 25 years are associated with several teleconnection patterns that often lead to the Baiu precipitation anomalies in central Japan (such as the Pacific-Japan (PJ) pattern, Silk Road pattern, and wave train pattern along the polar jet). Yet none of these external forcing mechanisms apply further back in time. From the 1950s to 1980s, the interannual isotopic variability is predominantly related to local factors such as anomalous intensification/weakening of the Bonin High. Before the 1950s, the variability of the oxygen isotopic composition of precipitation is mainly associated with a wave train pattern along the polar jet. The isotopic variability is predominantly linked to the PJ pattern, while the PJ index is correlated with El Niño-Southern Oscillation. These findings suggest that the teleconnection patterns influencing Baiu precipitation variability vary according to interdecadal time scales during the twentieth century.

  4. Paired oxygen isotope records reveal modern North American atmospheric dynamics during the Holocene.

    PubMed

    Liu, Zhongfang; Yoshimura, Kei; Bowen, Gabriel J; Buenning, Nikolaus H; Risi, Camille; Welker, Jeffrey M; Yuan, Fasong

    2014-04-16

    The Pacific North American (PNA) teleconnection has a strong influence on North American climate. Instrumental records and century-scale reconstructions indicate an accelerating tendency towards the positive PNA state since the mid-1850s, but much less is known about long-term PNA variability. Here we reconstruct PNA-like climate variability during the mid- and late Holocene using paired oxygen isotope records from two regions in North America with robust, anticorrelated isotopic response to the modern PNA. We identify mean states of more negative and positive PNA-like climate during the mid- and late Holocene, respectively. Superimposed on the secular change between states is a robust, quasi-200-year oscillation, which we associate with the de Vries solar cycle. These findings suggest the persistence of PNA-like climate variability throughout the mid- and late Holocene, provide evidence for modulation of PNA over multiple timescales and may help researchers de-convolve PNA pattern variation from other factors reflected in palaeorecords.

  5. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  6. Theoretical and Experimental Approaches to Understanding the Anomalous Distribution of Oxygen Isotopes in the Solar System

    NASA Astrophysics Data System (ADS)

    Dominguez, Gerardo; Christensen, Elizabeth; Boyer, Charisa; Park, Manesseh; Benitez, Ezra; Nunn, Morgan; Thiemens, Mark H.; Jackson, Terri

    2016-06-01

    Decades of careful laboratory analysis of primitive meteorites have revealed an intriguing and unexplained pattern in the distribution of oxygen isotopes in the solar system. With the recent analysis of solar wind oxygen by NASA’s Genesis mission, it appears that the Sun has a distinct oxygen isotopic composition from the terrestrial planets, asteroids, and comets. These differences cannot be explained by mass-dependent diffusion and require a physical-chemical mechanism or mechanisms that separate oxygen isotopes in a non-mass dependent manner.Several hypothesis have been proposed to explain the anomalous distribution. Photochemical self-shielding of CO may explain the anomalous distribution, however, this mechanism has key weaknesses including the requirement of a very fine tuned timescale to explain the isotopic differences between the Sun and bulk of the terrestrial planets. Recently, attention has been directed at understanding specific chemical reactions that occur on interstellar dust grains due to their similarities with non-equilibrium photochemical reactions believed to be responsible for the mass-independent isotopic fractionation patterns observed in Earth’s atmosphere. A specific focus has been directed towards understanding the formation of H2O because some of its precursor (HO2, and O3) are well-known to acquire mass-independent isotopic signatures when formed in the gas-phase.In this presentation, I describe a series of laboratory astrophysical experiments whose goal is to understand the distribution of oxygen isotopes in the solar system and perhaps, by extension, the distribution in other planetary systems. Preliminary results for the isotopic composition of O3 formed at 5K will be presented as well as the first, to our knowledge, measurements of the isotopic composition of H2O (18O/16O, 17O/16O, D/H) formed at 32K. We find that H2O formed in the astrophysical conditions we simulated acquired an anomalous isotopic composition with a triple-oxygen

  7. Oxygen isotope variability within Nautilus shell growth bands

    SciTech Connect

    Linzmeier, Benjamin J.; Kozdon, Reinhard; Peters, Shanan E.; Valley, John W.

    2016-04-21

    Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. In addition, to create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth

  8. Oxygen isotope systematics of gem corundum deposits in Madagascar: relevance for their geological origin

    NASA Astrophysics Data System (ADS)

    Giuliani, Gaston; Fallick, Anthony; Rakotondrazafy, Michel; Ohnenstetter, Daniel; Andriamamonjy, Alfred; Ralantoarison, Théogène; Rakotosamizanany, Saholy; Razanatseheno, Marie; Offant, Yohann; Garnier, Virginie; Dunaigre, Christian; Schwarz, Dietmar; Mercier, Alain; Ratrimo, Voahangy; Ralison, Bruno

    2007-02-01

    comparison with oxygen isotope data obtained on gem corundum from Eastern Africa, India, and Sri Lanka is presented. Giant placer deposits from Sri Lanka, Madagascar, and Tanzania have a large variety of colored sapphires and rubies with a large variation in δ18O due to mingling of corundum of different origin: mafic and ultramafic rocks for ruby, desilicated pegmatites for blue sapphire, syenite for yellow, green, and blue sapphire, and skarn in marbles for blue sapphire.

  9. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method

    USGS Publications Warehouse

    Casciotti, K.L.; Sigman, D.M.; Hastings, M. Galanter; Böhlke, J.K.; Hilkert, A.

    2002-01-01

    We report a novel method for measurement of the oxygen isotopic composition (18O/16O) of nitrate (NO3-) from both seawater and freshwater. The denitrifier method, based on the isotope ratio analysis of nitrous oxide generated from sample nitrate by cultured denitrifying bacteria, has been described elsewhere for its use in nitrogen isotope ratio (15N/14N) analysis of nitrate.1Here, we address the additional issues associated with 18O/16O analysis of nitrate by this approach, which include (1) the oxygen isotopic difference between the nitrate sample and the N2O analyte due to isotopic fractionation associated with the loss of oxygen atoms from nitrate and (2) the exchange of oxygen atoms with water during the conversion of nitrate to N2O. Experiments with 18O-labeled water indicate that water exchange contributes less than 10%, and frequently less than 3%, of the oxygen atoms in the N2O product for Pseudomonas aureofaciens. In addition, both oxygen isotope fractionation and oxygen atom exchange are consistent within a given batch of analyses. The analysis of appropriate isotopic reference materials can thus be used to correct the measured 18O/16O ratios of samples for both effects. This is the first method tested for 18O/16O analysis of nitrate in seawater. Benefits of this method, relative to published freshwater methods, include higher sensitivity (tested down to 10 nmol and 1 μM NO3-), lack of interference by other solutes, and ease of sample preparation.

  10. Oxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Spicuzza, Michael J.; Craddock, Paul R.; Day, James M. D.; Valley, John W.; Dauphas, Nicolas; Taylor, Lawrence A.

    2010-11-01

    Oxygen and iron isotope analyses of low-Ti and high-Ti mare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 17 missions. High-precision whole-rock δ 18O values (referenced to VSMOW) of low-Ti and high-Ti basalts correlate with major-element compositions (Mg#, TiO 2, Al 2O 3). The observed oxygen isotope variations within low-Ti and high-Ti basalts are consistent with crystal fractionation and match the results of mass-balance models assuming equilibrium crystallization. Whole-rock δ 56Fe values (referenced to IRMM-014) of high-Ti and low-Ti basalts range from 0.134‰ to 0.217‰ and 0.038‰ to 0.104‰, respectively. Iron isotope compositions of both low-Ti and high-Ti basalts do not correlate with indices of crystal fractionation, possibly owing to small mineral-melt iron fractionation factors anticipated under lunar reducing conditions. The δ 18O and δ 56Fe values of low-Ti and the least differentiated high-Ti mare basalts are negatively correlated, which reflects their different mantle source characteristics (e.g., the presence or absence of ilmenite). The average δ 56Fe values of low-Ti basalts (0.073 ± 0.018‰, n = 8) and high-Ti basalts (0.191 ± 0.020‰, n = 7) may directly record that of their parent mantle sources. Oxygen isotope compositions of mantle sources of low-Ti and high-Ti basalts are calculated using existing models of lunar magma ocean crystallization and mixing, the estimated equilibrium mantle olivine δ 18O value, and equilibrium oxygen-fractionation between olivine and other mineral phases. The differences between the calculated whole-rock δ 18O values for source regions, 5.57‰ for low-Ti and 5.30‰ for high-Ti mare basalt mantle source regions

  11. Determining the nitrogen and oxygen isotope effects of microbial denitrification

    NASA Astrophysics Data System (ADS)

    Philp, C.; Martin, T. S.; Casciotti, K. L.

    2013-12-01

    The nitrogen cycle describes how nitrogen, a critical nutrient for life, moves throughout the ground, oceans, and atmosphere. An essential component of the nitrogen cycle is denitrification, in which bioavailable nitrogen is transformed into nitrous oxide and nitrogen gas and can no longer be harnessed by most organisms. We can further understand the importance of this nitrogen cycle process by examining the N and O isotope effects of microbial denitrification. We have cultured four denitrifying bacteria: P. stutzeri, P. putida, P. aureofaciens, and P. aeruginosa. After providing them with an initial amount of nitrite we tracked the rate at which each type of bacteria consumed the nitrite through a time series experiment. We then measured the N and O isotope ratios of the nitrite at each time point using a gas-source isotope ratio mass spectrometer. The subsequent isotope effects calculated using the Rayleigh equation provide an important tool for modeling denitrification in the environment.

  12. A Delayed Noeproterozoic Oceanic Oxygenation: Evidence from the Mo Isotope of the Cryogenian Datangpo Formation

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Li, C.; Algeo, T. J.; Zhou, L.; Liu, X. D.; Feng, L. J.

    2015-12-01

    The onset of the Neoproterozoic oxygenation event (NOE) is usually considered to be at 750-800Ma, which was supposed to have triggered the subsequent oxygenation of the earth's atmosphere-ocean system, thus removing the barrier for the emergence and rapid diversification of animals. However, the subsequent oceanic redox responses in the Cryogenian are poorly constrained. Here, we conducted an integrated Fe-S-C-Mo biogeochemical study on black shales of the Cryogenian Datangpo Formation (~660Ma, Nanhua Basin, South China). Iron speciation data indicate that these black shales were deposited under euxinic water conditions. Co-variation between Mo and TOC suggests an increasing isolation of the basin from open ocean during the deposition of the black shales. Correspondingly, the Datangpo black shales show higher δ98Mo values (+0.97‰ to +1.12‰) for the lower part (0-10m) and lower δ98Mo values (+0.44‰ to +0.53‰) for the upper part (10-20m) consistent with a global scale seawater δ98Mo recorded in the lower part but only a basin scale seawater δ98Mo recorded in the upper part. Accordingly, we estimate the seawater Mo isotope closed to +1.1‰ at ~660 Ma, which suggests substantial oceanic anoxia compared to modern oceans (+2.3‰). The seawater δ98Mo reconstructed by the Datangpo black shales is exactly the same to previously reported seawater δ98Mo at ~750 Ma and ~640 Ma, indicating a continuous oceanic anoxia throughout the Cryogenian although widespread oceanic oxygenation was suggested for the subsequent Ediacaran by multiple geochemical records. Thus, in light of previous studies, our findings indicate a delayed oceanic oxygenation relative to the onset of NOE, which may help to explain the first presence of metazoa in Cryogenian but rapid diversification occurred in Ediacaran.

  13. Oxygen and strontium isotopic studies of basaltic lavas from the Snake River plain, Idaho

    USGS Publications Warehouse

    Leeman, William P.; Whelan, Joseph F.

    1983-01-01

    The Snake Creek-Williams Canyon pluton of the southern Snake Range crops out over an area of about 30 km2, about 60 km southeast of Ely, Nev. This Jurassic intrusion displays large and systematic chemical and mineralogical zonation over a horizontal distance of 5 km. Major-element variations compare closely with Dalyls average andesite-dacite-rhyolite over an SiO2 range of 63 to 76 percent. For various reasons it was originally thought that assimilation played a dominant role in development of the Snake Creek-Williams Canyon pluton. However, based on modeling of more recently obtained trace element and isotopic data, we have concluded that the zonation is the result of in-situ fractional crystallization, with little assimilation at the level of crystallization. This report summarizes data available for each of the mineral species present in the zoned intrusion. Special attention has been paid to trends We present oxygen and strontium isotopic data for olivine tholeiites, evolved (that is, differentiated and (or) contaminated) lavas, rhyolites, and crustal- derived xenoliths from the Snake River Plain. These data show that the olivine tholeiites are fairly uniform in d80 (5.1 to 6.2) and 87Sr/86Sr (0.7056 to 0.7076) and reveal no correlation between these ratios. The tholeiites are considered representative of mantle-derived magmas that have not interacted significantly with crustal material or meteoric water. The evolved lavas display a wider range in d 80 (5.6 to 7.6) and 87Sr/86Sr (0.708 to 0.717) with positive correlations between these ratios in some suites but not in others. Crustal xenoliths have high and variable 8?Sr/86Sr (0.715 to 0.830) and d80 values that vary widely (6.7 to 9.2) and are a few permil greater than d80 values of the Snake River basalts. Thus, isotopic data for the evolved lavas are permissive of small degrees of contamination by crustal rocks similar to the most d80-depleted xenoliths. The d80 enrichments in some evolved lavas also are

  14. Ab initio study of nitrogen and position-specific oxygen kinetic isotope effects in the NO + O3 reaction

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2016-12-01

    Ab initio calculations have been carried out to investigate nitrogen (k15/k14) and position-specific oxygen (k17/k16O & k18/k16) kinetic isotope effects (KIEs) for the reaction between NO and O3 using CCSD(T)/6-31G(d) and CCSD(T)/6-311G(d) derived frequencies in the complete Bigeleisen equations. Isotopic enrichment factors are calculated to be -6.7‰, -1.3‰, -44.7‰, -14.1‰, and -0.3‰ at 298 K for the reactions involving the 15N16O, 14N18O, 18O16O16O, 16O18O16O, and 16O16O18O isotopologues relative to the 14N16O and 16O3 isotopologues, respectively (CCSD(T)/6-311G(d)). Using our oxygen position-specific KIEs, a kinetic model was constructed using Kintecus, which estimates the overall isotopic enrichment factors associated with unreacted O3 and the oxygen transferred to NO2 to be -19.6‰ and -22.8‰, respectively, (CCSD(T)/6-311G(d)) which tends to be in agreement with previously reported experimental data. While this result may be fortuitous, this agreement suggests that our model is capturing the most important features of the underlying physics of the KIE associated with this reaction (i.e., shifts in zero-point energies). The calculated KIEs will useful in future NOx isotopic modeling studies aimed at understanding the processes responsible for the observed tropospheric isotopic variations of NOx as well as for tropospheric nitrate.

  15. Oxygen and carbon isotopic composition of limestones and dolomites, bikini and eniwetok atolls.

    PubMed

    Gross, M G; Tracey, J I

    1966-03-04

    Aragonitic, unconsolidated sediments from the borings on the Eniwetok and Bikini atolls are isotopically identical with unaltered skeletal fragments, whereas the recrystallized limestones exhibit isotopic variations resulting from alteration in meteoric waters during periods of emergence. Dolomites and associated calcites are enriched in O(18), perhaps because of interaction with hypersaline brines.

  16. Stable isotope analysis of molecular oxygen from silicates and oxides using CO2 laser extraction

    NASA Technical Reports Server (NTRS)

    Perry, Eugene

    1996-01-01

    A laser-excited system for determination of the oxygen isotope composition of small quantities of silicate and oxide minerals was constructed and tested at JSC. This device is the first reported to use a commercially available helium cryostat to transfer and purify oxygen gas quantitatively within the system. The system uses oxygen gas instead of the conventional CO2 for mass spectrometer analyses. This modification of technique permits determination of all three stable oxygen isotopes, an essential requirement for oxygen isotope analysis of meteoritic material. Tests of the system included analysis of standard silicate materials NBS 28 and UWMG2 garnet, six SNC meteorites, and inclusions and chondrules from the Allende meteorite. Calibration with terrestrial standards was excellent. Meteorite values are close to published values and show no evidence of terrestrial oxygen contamination. The one limitation observed is that, in some runs on fine-grained SNC matrix material, sample results were affected by other samples in the sample holder within the reaction chamber. This reemphasizes the need for special precautions in dealing with fine-grained, reactive samples. Performance of the JSC instrument compares favorably with that of any other instrument currently producing published oxygen isotope data.

  17. Toward forward modeling for paleoclimatic proxy signal calibration: A case study with oxygen isotopic composition of tropical woods

    NASA Astrophysics Data System (ADS)

    Evans, M. N.

    2007-07-01

    A forward model of the oxygen isotopic composition (δ18O) of wood cellulose is parameterized for time series prediction in tropical environments and driven with meteorological data observed at La Selva Biological Research Station, Costa Rica, for 1985-2001. Monthly-resolution model results correlate modestly (r = 0.34, p < 0.05) with observed isotopic data, with higher correlation (r = 0.45, p < 0.01) over the earliest 10 years of comparison and nonsignificant correlation over the most recent 6 years of record. Analysis of model output for La Selva suggests that isotopic variations are strongly controlled by rainfall amount. The model simulates an analogous but stronger than observed negative isotopic anomaly associated with positive July-September rainfall anomalies during El Niño-Southern Oscillation (ENSO) warm phase event years. Simulated tree isotope data for the global tropics suggest that a network of well-replicated data series from selected locations may resolve the large-scale precipitation anomaly pattern associated with ENSO.

  18. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands).

    PubMed

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ(18)Ocalc and δ(13)Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ(18)Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in (18)O relative to (16)O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ(18)Ocalc value of eggshell calcite to the δ(18)Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ(13)Ccalc and δ(18)Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ(13)Ccalc and high δ(18)Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  19. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ18Ocalc and δ13Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ18Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in 18O relative to 16O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ18Ocalc value of eggshell calcite to the δ18Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ13Ccalc and δ18Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ13Ccalc and high δ18Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  20. The effect of phosphomonoesterases on the oxygen isotope composition of phosphate

    NASA Astrophysics Data System (ADS)

    von Sperber, Christian; Kries, Hajo; Tamburini, Federica; Bernasconi, Stefano M.; Frossard, Emmanuel

    2014-01-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. During the enzymatic hydrolysis an isotopic fractionation (ε) occurs leaving an imprint on the oxygen isotope composition of the released Pi which might be used to trace phosphorus in the environment. Therefore, enzymatic assays with acid phosphatases from wheat germ and potato tuber and alkaline phosphatase from Escherichia coli were prepared in order to determine the oxygen isotope fractionation caused by these enzymes. Adenosine 5‧ monophosphate and glycerol phosphate were used as substrates. The oxygen isotope fractionation caused by acid phosphatases is 20-30‰ smaller than for alkaline phosphatases, resulting in a difference of 5-7.5‰ in δ18O of Pi depending on the enzyme. We attribute the enzyme dependence of the isotopic fractionation to distinct reaction mechanisms of the two types of phosphatases. The observed difference is large enough to distinguish between the two enzymatic processes in environmental samples. These findings show that the oxygen isotope composition of Pi can be used to trace different enzymatic processes, offering an analytical tool that might contribute to a better understanding of the P-cycle in the environment.

  1. High Precision Oxygen Three Isotope Analysis of Wild-2 Particles and Anhydrous Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Nakashima, D.; Ushikubo, T.; Zolensky, Michael E.; Weisberg, M. K.; Joswiak, D. J.; Brownlee, D. E.; Matrajt, G.; Kita, N. T.

    2011-01-01

    One of the most important discoveries from comet Wild-2 samples was observation of crystalline silicate particles that resemble chondrules and CAIs in carbonaceous chondrites. Previous oxygen isotope analyses of crystalline silicate terminal particles showed heterogeneous oxygen isotope ratios with delta(sup 18)O to approx. delta(sup 17)O down to -50% in the CAI-like particle Inti, a relict olivine grain in Gozen-sama, and an olivine particle. However, many Wild-2 particles as well as ferromagnesian silicates in anhydrous interplanetary dust particles (IDPs) showed Delta(sup 17)O values that cluster around -2%. In carbonaceous chondrites, chondrules seem to show two major isotope reservoirs with Delta(sup 17)O values at -5% and -2%. It was suggested that the Delta(sup 17)O = -2% is the common oxygen isotope reservoir for carbonaceous chondrite chondrules and cometary dust, from the outer asteroid belt to the Kuiper belt region. However, a larger dataset with high precision isotope analyses (+/-1-2%) is still needed to resolve the similarities or distinctions among Wild-2 particles, IDPs and chondrules in meteorites. We have made signifi-cant efforts to establish routine analyses of small particles (< or =10micronsm) at 1-2% precision using IMS-1280 at WiscSIMS laboratory. Here we report new results of high precision oxygen isotope analyses of Wild-2 particles and anhydrous chondritic IDPs, and discuss the relationship between the cometary dust and carbonaceous chondrite chondrules.

  2. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    SciTech Connect

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid; Jackson, Teresa L.; Thiemens, Mark H.

    2012-01-03

    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasing synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.

  3. Oxygen isotopic composition of relict olivine grains in cosmic spherules: Links to chondrules from carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Prasad, M. Shyam; Nagashima, K.; Jones, R. H.

    2015-09-01

    Most olivine relict grains in cosmic spherules selected for the present study are pristine and have not been disturbed during their atmospheric entry, thereby preserving their chemical, mineralogical and isotopic compositions. In order to understand the origin of the particles, oxygen isotope compositions of relict olivine grains in twelve cosmic spherules collected from deep sea sediments of the Indian Ocean were studied using secondary ion mass spectrometry. Most of the data lie close to the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line, with Δ17O ranging from -5‰ to 0‰. The data overlap oxygen isotopic compositions of chondrules from carbonaceous chondrites such as CV, CK, CR and CM, which suggests that chondrules from carbonaceous chondrites are the source of relict grains in cosmic spherules. Chemical compositions of olivine in cosmic spherules are also very similar to chondrule olivine from carbonaceous chondrites. Several olivine relict grains in three cosmic spherules are 16O-rich (Δ17O -21.9‰ to -18.7‰), similar to oxygen isotopic compositions observed in calcium aluminum rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), and some porphyritic chondrules from carbonaceous chondrites. These grains appear to have recorded the initial oxygen isotopic composition of the inner solar nebula. Three olivine grains from two cosmic spherules have δ18O values >+20‰, which could be interpreted as mixing with stratospheric oxygen during atmospheric entry.

  4. Triple isotopic composition of oxygen in surface snow and water vapor at NEEM (Greenland)

    NASA Astrophysics Data System (ADS)

    Landais, A.; Steen-Larsen, H. C.; Guillevic, M.; Masson-Delmotte, V.; Vinther, B.; Winkler, R.

    2012-01-01

    The isotopic composition of water in polar ice cores is commonly used to reconstruct the climatic conditions both at the site of precipitation and at the site of oceanic source region. Theoretical studies have suggested that the variability of the parameter 17Oexcess resulting from the triple isotopic composition of oxygen in water should be driven by the relative humidity of the oceanic source region. Our new 17Oexcess measurements in surface water vapor and snow at the Greenland NEEM camp demonstrate the potential of 17Oexcess as a marker of source relative humidity. Using concomitant measurements of water vapor and precipitation, we first confirm the theoretical relationship between the fractionation coefficients at vapor-solid equilibrium α17eq_vap_sol and α18eq_vap_sol associated respectively with δ17O and δ18O: ln (α17eq_vap_sol)/ln (α18eq_vap_sol) = 0.528. Our data reveal 17Oexcess seasonal variations in Greenland firn over the years 2003-2005. Their magnitude is of the order of 25 ppm, with a minimum in July leading d-excess maximum level reached ∼3 months later. This is in agreement with our understanding of 17Oexcess and d-excess variations in polar regions with minima in 17Oexces in phase with maxima in source relative humidity and maxima in d-excess largely influenced by source temperature increase. In a large northern Atlantic sector, relative humidity reaches its seasonal maximum in summer, earlier than the sea surface temperature maximum which takes place in fall.

  5. Validation of Chlorine and Oxygen Isotope Ratio Analysis to Differentiate Perchlorate Sources and to Document Perchlorate Biodegradation

    DTIC Science & Technology

    2011-12-01

    Guidance Document Validation of Chlorine and Oxygen Isotope Ratio Analysis To Differentiate Perchlorate Sources and to Document Perchlorate...Manual for Forensic Analysis of Perchlorate in Grotmdwater using W912-HQ-0 5-C-0022 Chlorine and Oxygen Isotopic Analyses 5b. GRANT NUMBER NA 5c...natural. Chlorine and oxygen isotopic analyses of perchlorate provide the primaty direct approach whereby different sources of perchlorate can be

  6. Tracing the oxygen triple isotopic composition of tropospheric molecular oxygen in biogenic apatite - a new tool for palaeoclimatology

    NASA Astrophysics Data System (ADS)

    Pack, A.; Süssenberger, A.; Gehler, A.; Wotzlaw, J.

    2009-04-01

    (Sus scrofa). Samples were analyzed between 5 and 7 times in order to reduce the analytical uncertainty to ±0.012-0.025‰. Our data confirm the prediction from mass balance that animals inherit a ∆17O signature from anomalous air O2. We have developed a detailed mass balance for mammals with respect to ∆17O. The mass balance considers the oxygen fluxes (drinking and food water, respired O2, metabolic water, excrements, evaporated water and exhaled CO2). The fractionation in δ18O and ∆17O (from associated β-value) was considered for each of the fluxes. The result is an allometric scaling model for ∆17O as function of log Mb. Predicted and measured data agree within the uncertainty of the model and the measurements, respectively. Small mammals with their high specific metabolic rate show the greatest portion of oxygen from air O2 in their body water and in their bones and teeth. With this approach, ∆17O of air O2 can be determined with an uncertainty in the range of 0.05-0.1‰. This is more precise than what can be obtained from analyses of terrigene sulfate. With well-preserved fossil material, it may be possible to determine ∆17O of air O2 beyond the time limit of ice core data. The high precision of our approach may allow identifying variations in ∆17O of air O2 between glacial and interglacial periods. With mammal material, we will construct a ∆17O-profile of tropospheric O2 back to the Palaeogene. Using the same approach with reptile apatite, we expect to be able to extend the database beyond the Cretaceous/Palaeogene boundary. Correct interpretation of ∆17O of biogenic apatite, however, requires knowledge of the metabolic parameters for the analyzed groups as well as the β-values for all isotope fractionation processes involved. [1] Luz B. et al. (1999) Nature, 400, 547-550. [2] Pack A. et al. (2007) Rapid Communications in Mass Spectrometry, 21, 3721-3728. [3] Rumble D. et al. (2007) Geochimica et Cosmochimica Acta, 71, 3592-3600. [4] Bao H

  7. Comparison of oxygen isotope values from bulk lake sediment and ostracod valves

    NASA Astrophysics Data System (ADS)

    Teng, J.; Blisniuk, P.

    2012-12-01

    The oxygen isotope composition of the water in a lake is largely controlled by the isotopic composition of precipitation in the lake's catchment area, which is, in turn, controlled by a variety of geographic and climatic factors. Accordingly, the potential to reconstruct past isotopic compositions of lake water using authigenic minerals formed in isotopic equilibrium with the lake water makes lake sediments a promising target for paleoclimate reconstructions. Several different materials can be utilized to reconstruct the oxygen isotope composition of paleo-lake water. These include biogenic carbonates, such as shells of macrofossils (e.g., clams and snails), microfossils, (e.g., ostracods) and chemically precipitated carbonates in bulk lake sediment. To evaluate the suitability of different materials for the reconstruction of oxygen isotope values of past precipitation, we compared the oxygen isotope values of bulk lake sediments and ostracod microfossils that were extracted from an 800 meters thick sequence of sediments in the Zada Basin, southwestern Tibet. The sediment was wet-sieved for grain size separation, and the <63 um size fraction was used for the analysis of the bulk lake sediment. The ostracod microfossils were typically separated from the 125-500 um size fraction. Ostracod valves were cleaned using deionized water and ultrasound. When this did not successfully clean them, we used a brush under a microscope. Preliminary results of our work yielded oxygen isotope values of -2 to -22 permil for bulk lake sediment and a narrower range of -4 to -15 permil for ostracod valves (relative to PDB). In some stratigraphic levels, the oxygen isotope values differed by as much as 10 permil. These differences are significantly higher than offsets of several permil which are commonly observed as the result of species specific vital effects during biogenic calcite precipitation. A plausible explanation for this is that the lake sediment contains a significant portion

  8. Hydrogen and oxygen isotope exchange reactions between clay minerals and water

    USGS Publications Warehouse

    O'Neil, J.R.; Kharaka, Y.K.

    1976-01-01

    The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100-350?? for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100??. Exchange rates were 3-5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure. Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange. At 350?? kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor. ?? 1976.

  9. Constraints on the vital effect in coccolithophore and dinoflagellate calcite by oxygen isotopic modification of seawater

    NASA Astrophysics Data System (ADS)

    Hermoso, Michaël; Horner, Tristan J.; Minoletti, Fabrice; Rickaby, Rosalind E. M.

    2014-09-01

    In this study, we show that there are independent controls of 18O/16O and 13C/12C fractionation in coccolithophore and dinoflagellate calcite due to the contrasting kinetics of each isotope system. We demonstrate that the direction and magnitude of the oxygen isotope fractionation with respect to equilibrium is related to the balance between calcification rate and the replenishment of the internal pool of dissolved inorganic carbon (DIC). As such, in fast growing cells, such as those of Emiliania huxleyi and Gephyrocapsa oceanica (forming the so-called “heavy group”), calcification of the internal carbon pool occurs faster than complete isotopic re-adjustment of the internal DIC pool with H2O molecules. Hence, coccoliths reflect the heavy oxygen isotope signature of the CO2 overprinting the whole DIC pool. Conversely, in large and slow growing cells, such as Coccolithus pelagicus ssp. braarudii, complete re-equilibration is achieved due to limited influx of CO2 leading to coccoliths that are precipitated in conditions close to isotopic equilibrium (“equilibrium group”). Species exhibiting the most negative oxygen isotope composition, such as Calcidiscus leptoporus (“light group”), precipitate coccolith under increased pH in the coccolith vesicle, as previously documented by the “carbonate ion effect”. We suggest that, for the carbon isotope system, any observed deviation from isotopic equilibrium is only “apparent”, as the carbon isotopic composition in coccolith calcite is controlled by a Rayleigh fractionation originating from preferential incorporation of 12C into organic matter. Therefore, species with low PIC/POC ratios as E. huxleyi and G. oceanica are shifted towards positive carbon isotope values as a result of predominant carbon fixation into the organic matter. By contrast, cells with higher PIC/POC as C. braarudii and C. leptoporus maintain, to some extent, the original negative isotopic composition of the CO2. The calcareous

  10. Stable isotopic variations in precipitation in Southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Xinping; Jin, Huijun; Sun, Weizhen

    2006-12-01

    This study analyzes the relationships of stable isotopes in precipitation with temperature, air pressure and humidity at different altitudes, and the potential influencing mechanisms of control factors on the stable isotopes in precipitation in Southwest China. There appear marked negative correlations of the δ 18O in precipitation with precipitation amount, vapor pressure and atmospheric precipitable water (PW) at the Mengzi, Simao and Tengchong stations on the synoptic timescale; the marked negative correlations between the δ 18O in precipitation and the diurnal mean temperature at 400 hPa, 500 hPa, 700 hPa and 850 hPa are different from the temperature effect in middle-high-latitude inland areas. In addition, the notable positive correlation between the δ 18O in precipitation and the dew-point deficit Δ T d at different altitudes is found at the three stations. Precipitation is not the only factor generating an amount effect. Probably, the amount effect is related to the variations of atmospheric circulation and vapor origins. On the annual timescale, the annual precipitation amount weighted-mean δ 18O displays negative correlations not only with annual precipitation but also with annual mean temperature at 500 hPa. It can be deduced that, in the years with an abnormally strong summer monsoon, more warm and wet air from low-latitude oceans is transported northward along the vapor channel located in Southwest China and generates abnormally strong rainfall on the way. Meanwhile, the abnormally strong condensation process will release more condensed latent heat in the atmosphere, and this will lead to a rise of atmospheric temperature during rainfall but a decline of δ 18O in the precipitation. On the other hand, in the years with an abnormally weak summer monsoon, the precipitation and the atmospheric temperature during rainfalls decrease abnormally but the δ 18O in precipitation increases.

  11. Coupled variations in helium isotopes and fluid chemistry: Shoshone Geyser Basin, Yellowstone National Park

    USGS Publications Warehouse

    Hearn, E.H.; Kennedy, B.M.; Truesdell, A.H.

    1990-01-01

    Early studies of 3He/4He variations in geothermal systems have generally attributed these fluctuations to either differences in the source of the magmatic 3He-rich helium or to local differences in the deep flux of magmatic 3He-rich helium. Kennedy et al. (1987), however, show that near-surface processes such as boiling and dilution may also drastically affect 3He 4He ratios of geothermal vapors. Helium isotope ratios were determined for several hot springs at Shoshone Geyser Basin of Yellowstone National Park for this study, along with other noble gas data. Stable isotope data and water and gas chemistry data for each spring were also compiled. The water chemistry indicates that there is one deep, hot thermal water in the area which is mixing with dilute meteoric water that has entered the system at depth. Spring HCO3- concentrations correlate with 3He 4He values, as in nearby Lower Geyser Basin. This correlation is attributed to variable amounts of deep dilution of thermal waters with a relatively cool water that inhibits boiling at depth, thus preventing the loss of CO2 (and therefore HCO3-) and magmatic He in the most diluted samples. Oxygen and hydrogen isotope data also support a boiling and dilution model, but to produce the observed fractionations, the boiling event would have to be extensive, with steam loss at the surface, whereas the boiling that affected the helium isotope ratios was probably a small scale event with steam loss at depth. It is possible that deep boiling occurred in the basin and that small amounts of steam escaped along fractures at about 500 m below the surface while all subsequently produced steam was lost near or at the surface. ?? 1990.

  12. Coupled variations in helium isotopes and fluid chemistry: Shoshone Geyser Basin, Yellowstone National Park

    SciTech Connect

    Hearn, E.H.; Kennedy, B.M. ); Truesdell, A.H. )

    1990-11-01

    Early studies of {sup 3}He/{sup 4}He variations in geothermal systems have generally attributed these fluctuations to either differences in the source of the magmatic {sup 3}He-rich helium or to local differences in the deep flux of magmatic {sup 3}He-rich helium. Kennedy et al, however, show that near-surface processes such as boiling and dilution may also drastically affect {sup 3}He/{sup 4}He ratios of geothermal vapors. Helium isotope ratios were determined for several hot springs at Shoshone Geyser Basin of Yellowstone National Park for this study, along with other noble gas data. Stable isotope data and water and gas chemistry data for each spring were also compiled. The water chemistry indicates that there is one deep, hot thermal water in the area which is mixing with dilute meteoric water that has entered the system at depth. Spring HCO{sub 3}{sup {minus}} concentrations correlate with {sup 3}He/{sup 4}He values, as in nearby Lower Geyser Basin. This correlation is attributed to variable amounts of deep dilution of thermal waters with a relatively cool water that inhibits boiling at depth, thus preventing the loss of CO{sub 2} and magmatic He in the most diluted samples. Oxygen and hydrogen isotope data also support a boiling and dilution model, but to produce the observed fractionations, the boiling event would have to be extensive, with steam loss at the surface, whereas the boiling that affected the helium isotope ratios was probably a small scale event with steam loss at depth. It is possible that deep boiling occurred in the basin and that small amounts of steam escaped along fractures at about 500 m below the surface while all subsequently produced steam was lost near or at the surface.

  13. Can isotopic variations in structural water of gypsum reveal paleoclimatic changes?

    NASA Astrophysics Data System (ADS)

    Gatti, E.; Bustos, D.; Coleman, M. L.

    2015-12-01

    Water of crystallization in gypsum can be used as paleo-environmental proxy to study large scale climatic variability in arid areas. This is because changes in the isotopic composition of water of crystallization are due to isotopic variations in the mother brine from which the mineral precipitated, and the brine isotopic composition is linked to evaporation processes and humidity. This is particularly important when the salts are the only traces left of the original water, i.e. in modern arid areas. This study aims to prove that the 2-D/18-O compositions of the water of crystallization extracted from successive precipitates or even different growth zones of natural gypsum (CaSO4·H2O) can reconstruct the evaporation history and paleo-humidity of the source water basin. The method was tested in a laboratory experiment that evaporated CaSO4 brines under controlled temperature and humidity conditions. The brine was left to evaporate for five days at two different humidities (45 and 75 RH%); subsequently, brines and precipitated gypsum were sampled at 24 hour intervals. In this way we simulated zoned growth of gypsum. The samples were then analyzed for oxygen and hydrogen isotopic composition using a Thermo Scientific TC/EA with modified column, coupled to a MAT 253 Thermo Finnigan mass spectrometer at JPL. If preliminary results validate the novel hypothesis that changes in mineral composition can reveal details of paleo-environmental conditions the theory will be tested on natural gypsum collected from selected areas in White Sands National Monument, New Mexico. The study is currently ongoing but the full dataset will be presented at the conference.

  14. Deep drilling at the Siljan Ring impact structure: oxygen-isotope geochemistry of granite

    USGS Publications Warehouse

    Komor, S.C.; Valley, J.W.

    1990-01-01

    The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, ??18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5??? at 5760 m depth. In contrast, feldspar ??18O values decrease with depth from near 10 at the surface to 7.1??? at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of ??18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar ??18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100-300?? C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500?? C) exchange between alkali feldspar and fluids. The high

  15. Carbon, hydrogen, and oxygen isotope studies of the regional metamorphic complex at Naxos, Greece

    USGS Publications Warehouse

    Rye, R.O.; Schuiling, R.D.; Rye, D.M.; Jansen, J.B.H.

    1976-01-01

    At Naxos, Greece, a migmatite dome is surrounded by schists and marbles of decreasing metamorphic grade. Sillimanite, kyanite, biotite, chlorite, and glaucophane zones are recognized at successively greater distances from the migmatite dome. Quartz-muscovite and quartz-biotite oxygen isotope and mineralogie temperatures range from 350 to 700??C. The metamorphic complex can be divided into multiple schist-rich (including migmatites) and marblerich zones. The ??18O values of silicate minerals in migmatite and schist units and quartz segregations in the schist-rich zones decrease with increase in metamorphic grades. The calculated ??18OH2O values of the metamorphic fluids in the schist-rich zones decrease from about 15??? in the lower grades to an average of about 8.5??? in the migmatite. The ??D values of OH-minerals (muscovite, biotite, chlorite, and glaucophane) in the schist-rich zones also decrease with increase in grade. The calculated ??DH2O values for the metamorphic fluid decrease from -5??? in the glaucophane zone to an average of about -70??? in the migmatite. The ??D values of water in fluid inclusions in quartz segregations in the higher grade rocks are consistent with this trend. The??18O values of silicate minerals and quartz segregations in marble-rich zones are usually very large and were controlled by exchange with the adjacent marbles. The ??D values of the OH minerals in some marble-rich zones may reflect the value of water contained in the rocks prior to metamorphism. Detailed data on 20 marble units show systematic variations of ??18O values which depend upon metamorphic grade. Below the 540??C isograd very steep ??18O gradients at the margins and large ??18O values in the interior of the marbles indicate that oxygen isotope exchange with the adjacent schist units was usually limited to the margins of the marbles with more exchange occurring in the stratigraphic bottom than in the top margins. Above the 540??C isograd lower ??18O values occur in

  16. Lake Louise Water (USGS47): A new isotopic reference water for stable hydrogen and oxygen isotope measurements

    USGS Publications Warehouse

    Qi, Haiping; Lorenz, Jennifer M.; Coplen, Tyler B.; Tarbox, Lauren V.; Mayer, Bernhard; Taylor, Steve

    2014-01-01

    RESULTS: The δ2H and δ18O values of this reference water are –150.2 ± 0.5 ‰ and –19.80 ± 0.02 ‰, respectively, relative to VSMOW on scales normalized such that the δ2H and δ18O values of SLAP reference water are, respectively, –428 and –55.5 ‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95-percent probability of encompassing the true value. CONCLUSION: This isotopic reference material, designated as USGS47, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and stable oxygen isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. "

  17. Microbial cycling, oxidative weathering, and the triple oxygen isotope consequences for marine sulfate

    NASA Astrophysics Data System (ADS)

    Johnston, D. T.; Cowie, B.; Turchyn, A. V.; Antler, G.; Gill, B. C.; Berelson, W.

    2015-12-01

    Microorganisms are responsible for most geochemical sulfur cycling in the ocean. On both modern and geological time scales, stable isotope ratios often serve as a mechanism to track conspicuous or coupled microbial processes, which in turn inform burial fluxes. The most common example of this approach is the use of sulfur isotopes in sulfate and sulfide (both aqueous and in mineral form) to track everything from rates of microbial processes through to the presence/absence of certain metabolic processes in a given environment. The use of oxygen isotope ratios in sulfate has developed in a similar fashion, providing complementary information to that of sulfur isotopes. Through our current work, we will extend the application of oxygen isotopes to include the trace stable oxygen isotope, 17O. These data are facilitated by a new laser F2 fluorination technique running at Harvard, and accompanied by the calibration of a suite of common sulfate standards. At first blush, 16O - 17O - 18O systematics should carry mass-dependent microbial fractionations with process-specific mass laws that are resolvable at the level of our analytical precision. We look to calibrate these biogeochemical effects through the integrated picture captured in marine pore water sulfate profiles, where the 18O/16O is known to evolve. In compliment, riverine sulfate (the sulfate input to the ocean) is an oxidative weathering product and is posited to carry a memory effect of tropospheric O2. Interestingly, the 17O/16O of that O2 carries a mass-independent signal reflecting the balance between stratospheric reactions and Earth surface biospheric fluxes. Through this presentation, we look to calibrate the controls on the balance between biospheric and atmospheric contributions to the marine sulfate reservoir. This is enabled by a series of isotope mass-balance models and with the ultimate goal of developing the geological triple oxygen isotope records of sulfate as a new environmental proxy for paleo

  18. Multiple taxon multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs

    NASA Astrophysics Data System (ADS)

    Fricke, Henry C.; Rogers, Raymond R.

    2000-09-01

    Oxygen isotope ratios of fossil remains of coexisting taxa from several different localities can be used to help investigate dinosaur thermoregulation. Focusing on the Late Cretaceous, oxygen isotope ratios of crocodile tooth enamel from four separate localities exhibit less of a decrease with latitude than do ratios of tooth enamel from coexisting theropod dinosaurs. A shallower latitudinal gradient for crocodiles is consistent with how oxygen isotope ratios should vary for heterothermic animals having body temperatures coupled with their environments (“cold blooded”), while a steeper gradient for theropods is consistent with how these ratios should vary for homeothermic animals having constant body temperatures independent of their environments (“warm blooded”). This inferred homoethermy in theropods is likely due to higher rates of metabolic heat production relative to crocodiles and is not an artifact of body size.

  19. Tales of volcanoes and El-Nino southern oscillations with the oxygen isotope anomaly of sulfate aerosol.

    PubMed

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L; McCabe, Justin; Savarino, Joel; Thiemens, Mark H

    2013-10-29

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth's system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980-2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher (17)O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and (17)O = 3.3‰, OEI = 11 and (17)O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that (17)O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations.

  20. Tales of volcanoes and El-Niño southern oscillations with the oxygen isotope anomaly of sulfate aerosol

    PubMed Central

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L.; McCabe, Justin; Savarino, Joel; Thiemens, Mark H.

    2013-01-01

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth’s system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980–2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher ∆17O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and ∆17O = 3.3‰, OEI = 11 and ∆17O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that ∆17O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations. PMID:23447567

  1. Oxygen isotope records of Holocene climate variability in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Steinman, Byron A.; Pompeani, David P.; Abbott, Mark B.; Ortiz, Joseph D.; Stansell, Nathan D.; Finkenbinder, Matthew S.; Mihindukulasooriya, Lorita N.; Hillman, Aubrey L.

    2016-06-01

    Oxygen isotope (δ18O) measurements of authigenic carbonate from Cleland Lake (southeastern British Columbia), Paradise Lake (central British Columbia), and Lime Lake (eastern Washington) provide a ∼9000 year Holocene record of precipitation-evaporation balance variations in the Pacific Northwest. Both Cleland Lake and Paradise Lake are small, surficially closed-basin systems with no active inflows or outflows. Lime Lake is surficially open with a seasonally active overflow. Water isotope values from Cleland and Paradise plot along the local evaporation line, indicating that precipitation-evaporation balance is a strong influence on lake hydrology. In contrast, Lime Lake water isotope values plot on the local meteoric water line, signifying minimal influence by evaporation. To infer past hydrologic balance variations at a high temporal resolution, we sampled the Cleland, Paradise, and Lime Lake sediment cores at 1-60 mm intervals (∼3-33 years per sample on average) and measured the isotopic composition of fine-grained (<63 μm) authigenic CaCO3 in each sample. Negative δ18O values, which indicate wetter conditions in closed-basin lakes, occur in Cleland Lake sediment from 7600 to 2200 years before present (yr BP), and are followed by more positive δ18O values, which suggest drier conditions, after 2200 yr BP. Highly negative δ18O values in the Cleland Lake record centered on ∼2400 yr BP suggest that lake levels were high (and that the lake may have been overflowing) at this time as a result of a substantially wetter climate. Similarly, Paradise Lake sediment δ18O values are relatively low from 7600 to 4000 yr BP and increase from ∼4000 to 3000 yr BP and from ∼2000 yr BP to present, indicating that climate became drier from the middle through the late Holocene. The δ18O record from Lime Lake, which principally reflects changes in the isotopic composition of precipitation, exhibits less variability than the closed-basin lake records and follows a

  2. Variations of the isotopic composition of sulfur in enstatite and ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Gao, Xia; Thiemens, Mark H.

    1993-01-01

    High-precision sulfur isotopic analyses (delta S-33, delta S-34, and delta S-36) of bulk ordinary and enstatite chondrites demonstrate that systematic variations exist. The average delta S-34 values are -0.26 +/- 0.07, -0.02 +/- 0.06, and 0.49 +/- 0.16 percent for enstatite and ordinary and carbonaceous chondrites, respectively. Isotopic variations of different sample specimens of primitive meteorites, e.g., Qingzhen and Abee, were observed which may be attributed to heterogeneity in the early solar nebula. Sulfur isotopic fractionations in both bulk samples and mineral separates are mass-dependent, and no nuclear isotopic anomalies were detected. The sulfur isotopic compositions of both mineral and density separates were measured. The sulfur isotopic compositions of separated chondrules from Chainpur and Bjurbole are reported. Significant isotopic difference for the chondrules from the bulk meteorite are noted for both meteorites.

  3. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  4. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    NASA Astrophysics Data System (ADS)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for

  5. Genetic relations among basic lavas and ultramafic nodules: Evidence from oxygen isotope compositions

    USGS Publications Warehouse

    Kyser, T.K.; O'Neil, J.R.; Carmichael, I.S.E.

    1982-01-01

    ??18O values of unaltered basic lavas range from 4.9 to 8.3 but different types of basalts are usually restricted to narrow and distinct ranges of isotopic composition. The average ??18O values for Hawaiian tholeiites, mid-ocean ridge tholeiites, and alkali basalts are 5.4, 5.7, and 6.2 permil, respectively. Potassic lavas and andesites tend to be more 18O rich with ??18O values between 6.0 and 8.0 permil. The differences among the oxygen isotopic compositions of most of these lavas can be attributed to partial melting of isotopically distinct sources. The oxygen isotope compositions of the sources may be a function of prior melting events which produce 18O-depleted partial melts and 18O-enriched residues as a consequence of relatively large isotopic fractionations that exist at high temperatures. It is proposed that lavas with relatively low ??18O values are derived from primitive, 18O-depleted sources whereas 18O-rich basalts are produced from refractory sources that have already produced partial melts. High temperature fractionations among silicate liquids and coexisting minerals can be used in conjunction with the oxygen isotope compositions of ultramafic nodules to place constraints on the genetic relations between some nodules and different types of basic lavas. ?? 1982 Springer-Verlag.

  6. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    NASA Astrophysics Data System (ADS)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  7. Impact of Tibetan Plateau uplift on Asian climate and stable oxygen isotopes in precipitation

    NASA Astrophysics Data System (ADS)

    Botsyun, Svetlana; Sepulchre, Pierre; Risi, Camille; Donnadieu, Yannick

    2016-04-01

    Surface elevation provides crucial information for understanding both geodynamic mechanisms of Earth's interior and influence of mountains growth on climate. Stable oxygen isotopes paleoaltimetry is considered to be a very efficient technic for reconstruction of the elevation history of mountains belts, including Tibetan Plateau and the Himalayas. This method relies on the difference between δ18O of paleo-precipitation reconstructed using the natural archives, and modern measured values for the point of interest. However, stable-isotope paleoaltimetry is potentially hampered by the fact that the presumed constancy of altitude-δ18O relationships through time might not be valid and climate changes affects δ18O in precipitation. We use the isotope-equipped atmospheric general circulation model LMDZ-iso for modeling Asia climate variations and associated δ18O in precipitation linked with Himalayas and Tibetan Plateau uplift. Experiments with reduced height over the Tibetan Plateau and the Himalayas have been designed. For the purpose of understanding where and how simulated complex climatic changes linked with the growth of mountains affect δ18O in precipitation we develop a theoretical expression for the precipitation composition. Our results show that modifying Tibetan Plateau height alters large-scale atmospheric dynamics including monsoon circulation and subsidence and associated climate variables, namely temperature, precipitation, relative humidity and cloud cover. In turn, δ18O signal decomposition results show that the isotopic signature of rainfall is very sensitive to climate changes related with the growth of the Himalayas and Tibetan Plateau, notably changes in relative humidity and precipitation amount. Topography appears to be the main controlling factor for only 40{%} of the sites where previous paleoelevation studies have been performed. Change of moisture sources linked with Asian topography uplift is shown to be not sufficient to yield a strong

  8. Ultrafiltration by a compacted clay membrane-I. Oxygen and hydrogen isotopic fractionation

    USGS Publications Warehouse

    Coplen, T.B.; Hanshaw, B.B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01 N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disc compacted to a porosity of 35 per cent by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5%. and in O18 by 0.8%. relative to the residual solution. No additional isotopic fractionation due to a salt filtering mechanism was observed at NaCl concentrations up to 0.01 N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. ?? 1973.

  9. Baseline shifts in coral skeletal oxygen isotopic composition: a signature of symbiont shuffling?

    NASA Astrophysics Data System (ADS)

    Carilli, J. E.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2013-06-01

    Decades-long records of the stable isotopic composition of coral skeletal cores were analyzed from four sites on the Mesoamerican Reef. Two of the sites exhibited baseline shifts in oxygen isotopic composition after known coral bleaching events. Changes in pH at the calcification site caused by a change in the associated symbiont community are invoked to explain the observed shift in the isotopic composition. To test the hypothesis that changes in symbiont clade could affect skeletal chemistry, additional coral samples were collected from Belize for paired Symbiodinium identification and skeletal stable isotopic analysis. We found some evidence that skeletal stable isotopic composition may be affected by symbiont clade and suggest this is an important topic for future investigation. If different Symbiodinium clades leave consistent signatures in skeletal geochemical composition, the signature will provide a method to quantify past symbiont shuffling events, important for understanding how corals are likely to respond to climate change.

  10. Recrystallization-induced oxygen isotope changes in inclusion-hosted water of speleothems - paleoclimatological implications

    NASA Astrophysics Data System (ADS)

    Demény, Attila; Czuppon, György; Leél-Őssy, Szabolcs; Németh, Péter; Szabó, Máté; Tóth, Mária; Németh, Tibor

    2016-04-01

    Stable hydrogen and oxygen isotope data of water trapped in fluid inclusions were collected for recently forming stalagmites and flowstones in order to determine how dripwater compositions are reflected and preserved in the inclusion water compositions. The samples were collected from different cave sites (with temperatures around 10 ± 1 °C) from the central and north-eastern parts of Hungary. Hydrogen isotope compositions were found to reflect dripwater values, whereas the oxygen isotope data were increasingly shifted from the local dripwater compositions with the time elapsed after deposition. The δ18O data are correlated with X-Ray diffraction full width at half maximum values (related to crystal domain size and lattice strain), suggesting that the oxygen isotope shift is related to recrystallization of calcite. Transmission electron microscope analyses detected the presence of nanocrystalline (<50 nm) calcite, whose crystallization to coarser-grained calcite crystals (>200 nm) may have induced re-equilibration between the carbonate and the trapped inclusion water. Additional data indicated that amorphous calcium carbonate (ACC) may have formed as a precursor of nanocrystalline calcite. ACC-calcite transformation followed by Ostwald ripening process provides an explanation for unexpectedly low oxygen isotope compositions in the inclusion water, especially in cold caves where carbonate may form first as an amorphous phase. This research was supported by the National Office for Research and Technology of Hungary (GVOP-3.2.1-2004-04-0235/3.0), the Hungarian Scientific Research Fund (OTKA CK 80661 and OTKA NK 101664).

  11. Geologic implications of the oxygen isotope profile of the Toa Baja drill hole, Puerto Rico

    SciTech Connect

    Smith, B.M. )

    1991-03-01

    The whole-rock O-isotopic compositions of volcanic and volcaniclastic samples from the Toa Baja drill hole demonstrate that low-temperature (< 200C) processes have strongly enriched the island arc materials in {sup 18}O. Subsequent to eruption, processes such as subaerial weathering, alteration during transport and deposition in volcaniclastic aprons, submarine weathering, burial diagenesis, and prograde regional metamorphism through the beginning of the prehnite-pumpellyite facies have raised average whole-rock {delta}{sup 18}O values by {approximately}4% for basalt and andesite lava flows, and by {approximately}8% for volcaniclastic sandstones. These O-isotopic disturbances were probably caused by oxygen exchange with regionally circulating seawater under rather high-water/rock conditions. The processes associated with ageing' of volcanic and volcaniclastic materials in the oceanic environment are probably more important to the global budgets of the oxygen isotopes than has been assumed in the past. Integration of these results into global models for the oxygen isotopes awaits analysis of more varied oceanic terranes, to determine the generality of the O-isotopic conclusions proferred here, and to more carefully evaluate the relative sizes of volcanic, volcaniclastic, and oceanic oxygen reservoirs and their variabilities in time.

  12. Enhancement of ferromagnetism by oxygen isotope substitution in strontium ruthenate SrRuO3

    PubMed Central

    Kawanaka, Hirofumi; Aiura, Yoshihiro; Hasebe, Takayuki; Yokoyama, Makoto; Masui, Takahiko; Nishihara, Yoshikazu; Yanagisawa, Takashi

    2016-01-01

    The oxygen isotope effect of the ferromagnetic transition in itinerant ferromagnet strontium ruthenate SrRuO3 with a Curie temperature Tc of 160 K is studied. We observed for the first time a shift of ∆Tc ~ 1 K by oxygen isotope substitution of 16O → 18O in SrRuO3 by precise measurements of DC and AC magnetizations. The results surprisingly lead to the noteworthy inverse isotope effect with negative coefficient α = −∂ lnTc/∂ lnM. The Raman spectra indicate that the main vibration frequency of 16O at 363 cm−1 shifts to 341 cm−1 following oxygen isotope substitution 18O. This shift is remarkably consistent with the Debye frequency being proportional to ∝ 1√M where M is the mass of an oxygen atom. The positive isotope shift of ∆Tc can be understood by taking account of the electron-phonon interaction. PMID:27739475

  13. Steady-State Oxygen Isotope Effects of N2O Production in Paracoccus denitrificans.

    PubMed

    Barford, Carol; Montoya, Joseph; Altabet, Mark; Mitchell, Ralph

    2017-03-21

    Knowledge of isotopic discrimination, or fractionation, by denitrifying bacteria can benefit agricultural fertilizer management, wastewater treatment, and other applications. However, the complexity of N transformation pathways in the environment and the sensitivity of denitrification to environmental conditions warrant better isotopic distinction between denitrification and other processes, especially for oxygen isotopes. Here, we present a dataset of δ(18)O measurements in continuous culture of Paracoccus denitrificans. The authors hope that it will be useful in further studies of N2O in the environment.

  14. Intracellular phosphorous compounds and the reversibility of dissimilatory sulfate reduction: what do we learn from oxygen isotopes?

    NASA Astrophysics Data System (ADS)

    Brunner, B.

    2012-12-01

    Dissimilatory sulfate reduction (DSR) leads to an overprint of the oxygen isotope composition of sulfate by the oxygen isotope composition of water. This overprint is assumed to occur via cell-internally formed sulfuroxy intermediates in the sulfate reduction pathway. Unlike sulfate, the sulfuroxy intermediates can readily exchange oxygen isotopes with water. Subsequent to the oxygen isotope exchange, these intermediates, e.g. sulfite, are re-oxidized by reversible enzymatic reactions to sulfate, incorporating the oxygen used for the re-oxidation of the sulfur intermediates. Consequently, the rate and expression of DSR-mediated oxygen isotope exchange between sulfate and water depends not only on the oxygen isotope exchange between sulfuroxy intermediates and water, but also on cell-internal forward and backward reactions. The latter are the very same processes that control the extent of sulfur isotope fractionation expressed by DSR. In the stepwise reduction of sulfate to sulfide, intracellular phosphorous compounds are pivotal for the conversion of intracellular sulfate to sulfite. Because of thermodynamics, the concentration of thereby produced intracellular phosphorous compounds affects the reversibility of this reduction step and thereby impacts the oxygen isotope composition of sulfate. Consequently, there should be a link between cell-internal management of phosphorous pools and the expression of sulfur and oxygen isotope effects. The measurement of multiple sulfur isotope fractionation has successfully been applied to obtain information on the reversibility of individual enzymatically catalyzed steps in DSR. Similarly, also the oxygen isotope signature of sulfate reveals information on the reversibility of DSR. High reversibility (i.e. large isotope effects) is generally assumed to be tied to low energy availability. This raises the question if and how cell-internal management of phosphorous pools could be tied to survival strategies under energy limitation.

  15. Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact.

    PubMed

    Young, Edward D; Kohl, Issaku E; Warren, Paul H; Rubie, David C; Jacobson, Seth A; Morbidelli, Alessandro

    2016-01-29

    Earth and the Moon are shown here to have indistinguishable oxygen isotope ratios, with a difference in Δ'(17)O of -1 ± 5 parts per million (2 standard error). On the basis of these data and our new planet formation simulations that include a realistic model for primordial oxygen isotopic reservoirs, our results favor vigorous mixing during the giant impact and therefore a high-energy, high-angular-momentum impact. The results indicate that the late veneer impactors had an average Δ'(17)O within approximately 1 per mil of the terrestrial value, limiting possible sources for this late addition of mass to the Earth-Moon system.

  16. The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; McKeegan, K. D.; Sharp, Z. D.

    2012-01-01

    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite.

  17. Strontium and oxygen isotopic profiles through 3 km of hydrothermally altered oceanic crust in the Reykjanes Geothermal System, Iceland

    NASA Astrophysics Data System (ADS)

    Marks, N. E.; Zierenberg, R. A.; Schiffman, P.

    2010-12-01

    The Iceland Deep Drilling Program well of opportunity RN-17 was drilled 3 km into a section of hydrothermally altered basaltic crust in the Reykjanes geothermal system in Iceland. The system is located on the landward extension of the Mid-Atlantic Ridge, and the circulating hydrothermal fluid is modified seawater, making Reykjanes a useful analogue for mid-oceanic ridge hydrothermal systems. Whole rock oxygen isotope ratios range from -0.13 to 3.61‰, which are significantly depleted relative to fresh MORB (5.8±0.2‰). If oxygen isotope exchange between fluid and rock proceeded under equilibrium in a closed system, the bulk of the exchange must have occurred in the presence of a meteoric- as opposed to seawater-derived fluid. The concentrations of Sr in the altered basalt range from well below to well above concentrations in fresh rock, and appear to be strongly correlated with the dominant alteration mineralogy, although there is no correlation with 87Sr/86Sr isotopic ratios. Whole rock Sr isotopic ratios ranged from 0.70329 in the least altered crystalline basalt, to 0.70609 in the most altered hyaloclastite samples; there is no correlation with depth. Sr isotopic variation in epidote grains measured by laser ablation MC-ICP-MS ranged from 0.70353 to 0.70731. Three depth intervals have distinctive isotopic signatures, at 1000 m, 1350 m, and 2000 m depth, where 87Sr/86Sr ratios are elevated (mean value >0.7050) relative to background levels (mean altered basalt value ~0.7042). These areas are proximal to feed zones, and the 1350 m interval directly overlies the transition from dominantly extrusive to intrusive lithologies. Strontium and oxygen isotope data indicate that the greenschist-altered basalts were in equilibrium with modified hydrothermal fluids at a relatively high mean water/rock mass ratios (generally in the range 1-3), and require the presence of both meteoric- and seawater-derived recharge fluids at various stages in the hydrothermal history.

  18. The oxygen isotope composition of nitrate generated by nitrification in acid forest floors

    NASA Astrophysics Data System (ADS)

    Mayer, Bernhard; Bollwerk, Sandra M.; Mansfeldt, Tim; Hütter, Birgit; Veizer, Jan

    2001-09-01

    The oxygen isotope composition of nitrate is used increasingly for identifying the origin of nitrate in terrestrial and aquatic ecosystems. This novel isotope tracer technique is based on the fact that nitrate in atmospheric deposition, in fertilizers, and nitrate generated by nitrification in soils appear to have distinct oxygen isotope ratios. While the typical ranges of δ 18O values of nitrate in atmospheric deposition and fertilizers are comparatively well known, few experimental data exist for the oxygen isotope composition of nitrate generated by nitrification in soils. The objective of this study was to determine δ 18O values of nitrate formed by microbial nitrification in acid forest floors. Evidence from laboratory incubation experiments and field studies suggests that during microbial nitrification in acid forest floor horizons, up to two of the three oxygen atoms in newly formed nitrate are derived from water, particularly if ammonium is abundant and nitrification rates are high. It was, however, also observed that in ammonium-limited systems with low nitrification rates, significantly less than two thirds of the oxygen in newly formed nitrate can be derived from water oxygen, presumably as a result of heterotrophic nitrification. It can be concluded from the presented data that the δ 18O values of nitrate formed by microbial nitrification in acid forest floors typically range between +2 and +14‰, assuming that soil water δ 18O values vary between -15 and -5‰. Hence, oxygen isotope ratios of nitrate formed by nitrification in forest floors are usually distinct from those of other nitrate sources such as atmospheric deposition and synthetic fertilizers and, therefore, constitute a valuable qualitative tracer for distinguishing among these sources of nitrate. A quantitative source apportionment appears, however, difficult because of the wide range of δ 18O values, particularly for atmospheric nitrate deposition and for nitrate from microbial

  19. Analysis of the hydrogen and oxygen stable isotope ratios of beverage waters without prior water extraction using isotope ratio infrared spectroscopy.

    PubMed

    Chesson, Lesley A; Bowen, Gabriel J; Ehleringer, James R

    2010-11-15

    Hydrogen (δ(2)H) and oxygen (δ(18)O) stable isotope analysis is useful when tracing the origin of water in beverages, but traditional analytical techniques are limited to pure or extracted waters. We measured the isotopic composition of extracted beverage water using both isotope ratio infrared spectroscopy (IRIS; specifically, wavelength-scanned cavity ring-down spectroscopy) and isotope ratio mass spectrometry (IRMS). We also analyzed beer, sodas, juices, and milk 'as is' using IRIS. For IRIS analysis, four sequential injections of each sample were measured and data were corrected for sample-to-sample memory using injections (a) 1-4, (b) 2-4, and (c) 3-4. The variation between δ(2)H and δ(18)O values calculated using the three correction methods was larger for unextracted (i.e., complex) beverages than for waters. The memory correction was smallest when using injections 3-4. Beverage water δ(2)H and δ(18)O values generally fit the Global Meteoric Water Line, with the exception of water from fruit juices. The beverage water stable isotope ratios measured using IRIS agreed well with the IRMS data and fit 1:1 lines, with the exception of sodas and juices (δ(2)H values) and beers (δ(18)O values). The δ(2)H and δ(18)O values of waters extracted from beer, soda, juice, and milk were correlated with complex beverage δ(2)H and δ(18)O values (r = 0.998 and 0.997, respectively) and generally fit 1:1 lines. We conclude that it is possible to analyze complex beverages, without water extraction, using IRIS although caution is needed when analyzing beverages containing sugars, which can clog the syringe and increase memory, or alcohol, a known spectral interference.

  20. Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: Oxygen and sulfur isotope fractionation

    USGS Publications Warehouse

    Thurston, R.S.; Mandernack, K.W.; Shanks, Wayne C.

    2010-01-01

    Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (??18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ?? 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate-water oxygen isotope fractionation, ??18OSO4-H2O, of ~ 3.8??? for the anaerobic experiments. Aerobic oxidation produced apparent ??SO4-H2O values (6.4???) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. ??34SSO4 values are ~ 4??? lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in ??34SSO4 of ~- 1.5 ?? 0.2??? was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions. ?? 2009 Elsevier B.V.

  1. Tropical Cyclone Activity and Climate Fluctuations Captured by Oxygen Isotopes in Tree-Ring Cellulose From the Southeastern US

    NASA Astrophysics Data System (ADS)

    Miller, D. L.; Mora, C. I.; Grissino-Mayer, H. D.; Mock, C. J.; Uhle, M. E.

    2003-12-01

    Tropical cyclone activity in the Atlantic Ocean and Gulf of Mexico fluctuates on seasonal to century scales. Large climate oscillations, such as the El Nino Southern Oscillation, Atlantic Multidecadal Oscillation, and the Pacific Decadal Oscillation may affect this tropical cyclone activity. To better discern and understand factors influencing long-term trends in hurricane occurrence, proxies are needed that extend the record beyond historical documents. Tree rings preserve excellent records of climate that can be tracked on an intra-annual scale. Two trees in southern Georgia, slash and longleaf pine, were collected and dated using dendrochronological techniques and a 156- year record (1840-1997) was examined. The tree rings were processed to alpha cellulose, with intra-annual resolution, for examination of oxygen isotopes from both earlywood (EW) and latewood (LW) growing seasons. In the southeastern U.S., temperature variation across the growing season for slash and longleaf pines is modest (27-33° C) and oxygen isotope compositions largely reflect the composition of precipitation. Tropical cyclones produce precipitation that is significantly depleted in 18O compared to average seasonal rainfall and generally occur during the LW growing season. The relatively depleted oxygen isotope ratios are incorporated into LW cellulose and thus the annual ring set is marked by a large difference between EW and LW δ 18O values. For years without a significant event, EW-LW differences are expected to be nominal. The 156-year long tree-ring oxygen isotope record of major hurricane occurrence corresponds well with known tropical cyclone occurrence in the study area. The record also captures evidence of EW drought. The tropical cyclone record appears to be overprinted upon a much larger climate oscillation that is characterized by periods of relative separation (i.e., apart from the larger differences due to hurricanes) vs. coincidence of the EW/LW oxygen isotope compositions

  2. Oxygen Isotope Systematics of Chondrules from the Least Equilibrated H Chondrite

    NASA Technical Reports Server (NTRS)

    Kita, N. T.; Kimura, M.; Ushikubo, T.; Valley, J. W.; Nyquist, L. E.

    2008-01-01

    Oxygen isotope compositions of bulk chondrules and their mineral separates in type 3 ordinary chondrites (UOC) show several % variability in the oxygen three isotope diagram with slope of approx.0.7 [1]. In contrast, ion microprobe analyses of olivine and pyroxene phenocrysts in ferromagnesian chondrules from LL 3.0-3.1 chondrites show mass dependent isotopic fractionation as large as 5% among type I (FeO-poor) chondrules, while type II (FeO-rich) chondrules show a narrow range (less than or equal to 1%) of compositions [2]. The .Delta(exp 17)O (=delta(exp 17)O-0.52xdelta(exp 18)O) values of olivine and pyroxene in these chondrules show a peak at approx.0.7% that are systematically lower than those of bulk chondrule analyses as well as the bulk LL chondrites [2]. Further analyses of glass in Semarkona chondrules show .17O values as high as +5% with highly fractionated d18O (max +18%), implying O-16-poor glass in chondrules were altered as a result of hydration in the parent body at low temperature [3]. Thus, chondrules in LL3.0-3.1 chondrites do not provide any direct evidence of oxygen isotope exchange between solid precursor and O-16-depleted gas during chondrule melting events. To compare the difference and/or similarity between chondrules from LL and H chondrites, we initiated systematic investigations of oxygen isotopes in chondrules from Yamato 793408 (H3.2), one of the least equilibrated H chondrite [4]. In our preliminary study of 4 chondrules, we reported distinct oxygen isotope ratios from dusty olivine and refractory forsterite (RF) grains compared to their host chondrules and confirmed their relict origins [5].

  3. Positive precipitation-evaporation budget from AD 460 to 1090 in the Saloum Delta (Senegal) indicated by mollusk oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Azzoug, Moufok; Carré, Matthieu; Chase, Brian M.; Deme, Abdoulaye; Lazar, Alban; Lazareth, Claire E.; Schauer, Andrew J.; Mandeng-Yogo, Magloire; Simier, Monique; Thierno-Gaye, Amadou; de Morais, Luis Tito

    2012-12-01

    There is a critical need to document the long-term variability of the West African Monsoon (WAM) in the Sahel region. We present here a multidecadal proxy record of the past hydrology from AD 460 to 1090 in the Saloum Delta, Senegal. The Saloum Delta is a hypersaline estuary where the salinity and the water isotopic composition are highly sensitive to rainfall variations. The past hydrology was studied using the oxygen isotopic ratio of Anadara senilis fossil shells, since mollusk shell isotopic composition (δ18O) in this environment is primarily determined by the precipitation-evaporation budget. Successive samples of shells were taken along the stratigraphy of the massive Dioron Boumak fossil shell middens for new insights into the past WAM multi-decadal to centennial variability. The averaged δ18O value of fossil shells was more negative by 1.4‰ compared to modern shells' isotopic signature. This result indicates substantially fresher mean conditions in the Saloum Delta, that was likely not hypersaline as it is today. The precipitation-evaporation budget was thus more positive in response to a more intense and/or longer monsoon season during the studied period. Our record suggests that strong multidecadal droughts as observed in the Sahel in the late 20th century did likely not occur in Senegal during this ~ 600-yr time period.

  4. Carbon and oxygen isotope signatures in conifers from the Swiss National Park

    NASA Astrophysics Data System (ADS)

    Churakova (Sidorova), Olga; Saurer, Matthias; Siegwolf, Rolf; Bryukhanova, Marina; Bigler, Christof

    2015-04-01

    Our study investigates the physiological response and plasticity of trees under climatic changes for larch (Larix decidua) and mountain pine (Pinus mugo var. uncinata) in the Swiss National Park.This research was done in the context of investigation tree mortality and their potential to survive under the harsh mountainous conditions. For the stable isotope analysis we selected four mountain pine and four larch trees from each a south- and north-facing slope. Oxygen isotope ratios can give insight into water sources and evaporative processes. To understand the differential response of mountain pine and larch to short-term climatic changes we measured 18O/16O in water extracted from twigs and needles as well as soil samples for each species at both sites. The seasonal variabilities in 18O/16O needles and twigs of mountain pine and larch trees as well as soil samples were related to changes in climate conditions from end of May until middle of October. To reveal the main climatic factors driving tree growth of pine and larch trees in the long-term, tree-ring width chronologies were built and bulk 18O/16O, 13C/12C wood chronologies were analyzed and correlated with climatic parameters over the last 100 years. The results indicate a strong influence of spring and summer temperatures for larch trees, while variation of spring and summer precipitations is more relevant for mountain pine trees. This work is supported by the Swiss National Science Foundation, Marie-Heim Vögtlin Program PMPDP-2 145507

  5. Individual variation of isotopic niches in grazing and browsing desert ungulates.

    PubMed

    Lehmann, D; Mfune, J K E; Gewers, E; Brain, C; Voigt, C C

    2015-09-01

    Ungulates often adjust their diet when food availability varies over time. However, it is poorly understood when and to what extent individuals change their diet and, if they do so, if all individuals of a population occupy distinct or similar dietary niches. In the arid Namibian Kunene Region, we studied temporal variations of individual niches in grazing gemsbok (Oryx gazella gazella) and predominantly browsing springbok (Antidorcas marsupialis). We used variation in stable C and N isotope ratios of tail hair increments as proxies to estimate individual isotopic dietary niches and their temporal plasticity. Isotopic dietary niches of populations of the two species were mutually exclusive, but similar in breadth. Isotopic niche breadth of gemsbok was better explained by within-individual variation than by between-individual variation of stable isotope ratios, indicating that gemsbok individuals were facultative specialists in using isotopically distinct local food resources. In contrast, inter- and intra-individual variations contributed similarly to the isotopic niche breadth of the springbok population, suggesting a higher degree of individual isotopic segregation in a more generalist ungulate. In both species, between-individual variation was neither explained by changes in plant primary productivity, sex, geographical position nor by group size. Within species, individual dietary niches overlapped partially, suggesting that both populations included individuals with distinct isotopic dietary niches. Our study provides the first evidence for isotopic dietary niche segregation in individuals of two distinct desert ungulates. Similar, yet isotopically distinct dietary niches of individuals may facilitate partitioning of food resources and thus individual survival in desert ecosystems.

  6. Stable oxygen and carbon isotope characteristics in speleothems from Southern Africa - how good are they?

    NASA Astrophysics Data System (ADS)

    Holmgren, K.

    2009-04-01

    Much remains to be understood about the interaction between the African climate system, its surrounding ocean-atmosphere climate variability and the global climate system. A better understanding of the regional climate evolution is crucial for understanding global climate dynamics and issues surrounding environmental change throughout Africa and a prerequisite for increasing climate forecasting capabilities for the region. As part of developing this understanding, a longer term perspective that reaches beyond the information available from instrumental records is required. Speleothems are frequently abundant in southern Africa. Quite a few records are now available, reporting significant changes in climate and environmental conditions over longer and shorter time scales. Conclusions are mainly based on the stable isotopic composition of the speleothems. The interpretation of the stable isotope data is, however, not always straight-forward, since many processes contribute to the observed signal in the speleothem and these processes may influence the signal differently at different spatial and temporal scales. For example was the Makapansgat speleothem oxygen isotope record, originally interpreted as being generally determined by shifts in atmospheric circulation pattern (Lee-Thorp et al. 2001, Holmgren et al. 2003), recently challenged and re-interpreted by Partin et al. (2008) to reflect annual rainfall amounts. Historically, less attention has been paid to the stable carbon isotope composition in speleothems. Today, an increasing number of studies demonstrate the potential of stable carbon variations as providing additional information on climate and environment. Measured variations can be a function of the amount of C3 versus C4 vegetation, vegetation cover and soil biological activity, bedrock proportion, rainfall amount and the drip rate. Clearly the multitudes of plausible processes behind the isotopic composition of speleothems in southern Africa (as well as

  7. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland

    NASA Astrophysics Data System (ADS)

    Yde, Jacob C.; Knudsen, Niels T.; Steffensen, Jørgen P.; Carrivick, Jonathan L.; Hasholt, Bent; Ingeman-Nielsen, Thomas; Kronborg, Christian; Larsen, Nicolaj K.; Mernild, Sebastian H.; Oerter, Hans; Roberts, David H.; Russell, Andrew J.

    2016-03-01

    Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of δ18O variations in Greenlandic rivers, we examined two contrasting glacierised catchments disconnected from the Greenland Ice Sheet (GrIS). At the Mittivakkat Gletscher river, a small river draining a local temperate glacier in southeast Greenland, diurnal oscillations in δ18O occurred with a 3 h time lag to the diurnal oscillations in run-off. The mean annual δ18O was -14.68 ± 0.18 ‰ during the peak flow period. A hydrograph separation analysis revealed that the ice melt component constituted 82 ± 5 % of the total run-off and dominated the observed variations during peak flow in August 2004. The snowmelt component peaked between 10:00 and 13:00 local time, reflecting the long travel time and an inefficient distributed subglacial drainage network in the upper part of the glacier. At the Kuannersuit Glacier river on the island Qeqertarsuaq in west Greenland, the δ18O characteristics were examined after the major 1995-1998 glacier surge event. The mean annual δ18O was -19.47 ± 0.55 ‰. Despite large spatial variations in the δ18O values of glacier ice on the newly formed glacier tongue, there were no diurnal oscillations in the bulk meltwater emanating from the glacier in the post-surge years. This is likely a consequence of a tortuous subglacial drainage system consisting of linked cavities, which formed during the surge event. Overall, a comparison of the δ18O compositions from glacial river water in Greenland shows distinct differences between water draining local glaciers and ice caps (between -23.0 and -13.7 ‰) and the GrIS (between -29.9 and -23.2 ‰). This study demonstrates that water isotope analyses can be used to obtain important information on water sources and the subglacial drainage system structure that is highly desired for understanding glacier hydrology.

  8. Oxygen isotope record of the 1997-1998 El Niño in Peruvian sea catfish (Galeichthys peruvianus) otoliths

    NASA Astrophysics Data System (ADS)

    Andrus, C. Fred T.; Crowe, Douglas E.; Romanek, Christopher S.

    2002-12-01

    Sagittal otoliths of the Peruvian sea catfish Galeichthys peruvianus were collected from the north coast of Peru during and after the 1997-1998 El Niño. The otoliths were analyzed via laser microprobe and micromilling techniques for oxygen isotope composition through ontogeny to document their use as an El Niño-Southern Oscillation (ENSO) proxy. Results were compared to theoretical calculations for the δ18O of otolith aragonite using measured sea surface temperatures (SST) and δ18O values for local seawater assuming equilibrium oxygen isotope fractionation was achieved. All otoliths recorded the 1997-1998 El Niño event as well as seasonal temperature variations. These ENSO events were recorded in otolith aragonite as significant negative excursions in δ18O that reflected the increased temperature of local marine waters. The combined otolith data were used to create a 10-year SST record, including ENSO events and local seasonal temperature variation, validating the use of otolith δ18O as a temperature proxy.

  9. Variation of the oxygen content of lead-containing cuprates

    NASA Astrophysics Data System (ADS)

    Hauck, J.; Altenburg, H.; Bischof, B.; Denker, S.; Droste, E.; Ipta, S.; Plewa, J.

    1991-08-01

    The variation of oxygen content with temperature and oxygen partial pressure has been studied by DTA, TGA, X-ray diffraction and iodometry for Pb 0.5SrLaCu 1.5O x, x∼5, (La, Pb) 2 SrCu 2O x, x∼5.6, Pb 2SrLaCu 2O x, x=6-7.9, Pb 2Sr 2Y 0.5Ca 0.5Cu 3O x, x=8-9.6 and PbBaSrYCu 3O x, x=7-8. The compounds Pb 2SrLaCu 2O x and Pb 2Sr 2Y 0.5Ca 0.5Cu 3O x containing CuO chains as in Ba 2YCu 3O 7 behave differently - they are semiconducting at high oxygen content. Pb 0.5SrLaCu 1.5O x and (La, Pb) 2SrCu 2O x with little volatilization of PbO can be used as precursors for the preparation of Pb 2SrLaCu 2O x.

  10. Evaluation of Community Respiratory Mechanisms With Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Luz, B.; Barkan, E.

    Oxygen uptake in the surface waters of oceans and lakes takes place by ordinary dark respiration as well as by cyanide resistant respiration in both dark and light conditions, and by photorespiration and Mehler reaction that occur only during illumination. Thus in order to study the overall discrimination in aquatic systems it is necessary to eval- uate its effects in both light and dark conditions and to separate the effect of photo- synthetic production of oxygen. Such separation is possible if gross rates of oxygen production and consumption are known. We have estimated these rates from in situ incubation experiments and from the natural distribution of O-16, O-17, O-18 and the ratio of dissolved oxygen/argon. We have studied the respiration mechanisms in L. Kinneret, in the Atlantic Ocean near Bermuda and in the Southern Ocean. The over- all respiratory fractionation, which represents both light and dark consumption, was greater than the fractionation found in dark incubations of surface waters. We suggest that the only mechanism that can explain the strong overall fractionation is significant O2 uptake by cyanide resistant respiration in illuminated plankton. Our study shows that cyanide resistant respiration, which is known to strongly fractionate against O-18, is widespread in aquatic systems.

  11. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia

    NASA Technical Reports Server (NTRS)

    Baur, M. E.; Hayes, J. M.; Studley, S. A.; Walter, M. R.

    1985-01-01

    Several diamond drill cores from formations within the Hamersley Group of Western Australia have been studied for evidence of short-range variations in the isotopic compositions of the carbonates. For a set of 32 adjacent microbands analyzed in a specimen from the Marra Mamba Iron Formation, carbon isotope compositions of individual microbands ranged from -2.8 to -19.8 per mil compared to PDB and oxygen isotope compositions ranged from 10.2 to 20.8 per mil compared to SMOW. A pattern of alternating abundances was present, with the average isotopic contrasts between adjacent microbands being 3.0 per mil for carbon and 3.1 per mil for oxygen. Similar results were obtained for a suite of 34 microbands (in four groups) from the Bruno's Band unit of the Mount Sylvia Formation. Difficulties were experienced in preparing samples of single microbands from the Dales Gorge Member of the Brockman Iron Formation, but overall isotopic compositions were in good agreement with values reported by previous authors. Chemical analyses showed that isotopically light carbon and oxygen were correlated with increased concentrations of iron. The preservation of these millimeter-scale variations in isotopic abundances is interpreted as inconsistent with a metamorphic origin for the isotopically light carbon in the BIF carbonates. A biological origin is favored for the correlated variations in 13C and Fe, and it is suggested that the 13C-depleted carbonates may derive either from fermentative metabolism or from anaerobic respiration. A model is presented in which these processes occur near the sediment-water interface and are coupled with an initial oxidative precipitation of the iron.

  12. Theoretical analysis of isotope effects on ozone formation in oxygen photochemistry

    NASA Technical Reports Server (NTRS)

    Kaye, J. A.

    1986-01-01

    In situ measurements of stratospheric ozone and laboratory studies of ozone production in electric discharge through oxygen have shown previously that ozone containing heavy isotopes of oxygen (O-17, O-18) may be formed preferentially. In order to assess the relevance of thee latter experiment to the stratospheric measurements, detailed understanding of the effect of isotopic substitution on the O3 formation reaction O + O2 + M yields O3 + M and on the O atom exchange reaction O + O2 + O yields O2 + O is necessary. In this work, an estimate of the effect of isotopic substitution on the recombination rate is made by us of approximate dynamical theories and statistical mechanics. The results indicate the possibility of isotope effects on the O + O2 recombination rate of the order of several percent at stratospheric temperatures. In general, recombination reactions involving heavy (mass 49, 50) O3 formation are found to be slower than the reaction leading to normal (mass 48) O3 formation. The calculated isotope effects are sufficiently small that the uncertainties in the model input and the approximations in the dynamical theories will probably make the quantitative nature of these results subject to considerable uncertainty. This isotope effect should not be observable in the atmosphere given the precision of the current measurements but may be crucial in the understanding of the laboratory experiments, where observed enhancements are only of the order of several percent. Possible reasons for this discrepancy between the observed enhancement and predicted depletion are presented.

  13. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream

    PubMed Central

    Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-01-01

    ABSTRACT Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ15NNO2− and δ18ONO2−, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of “Candidatus Nitrosocaldus.” The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ18O value of nitrite produced from ammonia oxidation varied with the δ18O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ18ONO2− in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. IMPORTANCE Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying

  14. Determining the Impactor of the Ordovician Lockne Crater: Oxygen Isotopes in Chromite Versus Sedimentary PGE Signatures

    NASA Astrophysics Data System (ADS)

    Schmitz, B.; Heck, P. R.; Alwmark, C.; Kita, N. T.; Peucker-Ehrenbrink, B.; Ushikubo, T.; Valley, J. W.

    2009-03-01

    Oxygen isotopic results for chromite from the Lockne cCater and new PGE results show that the claims by Tagle and Schmitt (2008, LPSC abstr. #1418) that the Lockne Crater was caused by a nonmagmatic iron meteorite lacks substance entirely.

  15. Stabel Carbon and Oxygen Isotope Ratios of Otoliths from Juvenile and Adult Winter Flounder

    EPA Science Inventory

    This study was designed to determine if stable carbon (13C) and oxygen (18O) isotope ratios in otoliths could be used to differentiate the locations that serve as important nursery areas for winter flounder along the Rhode Island, USA coastline. In recent years the populations ...

  16. Stable Carbon and Oxygen Isotope Ratios of Otoliths Differentiate Winter Flounder (Pseudopleuonectes americanus) Habitats

    EPA Science Inventory

    Stable carbon (13C) and oxygen (18O) isotope ratios were measured in otoliths of juvenile winter flounder (Pseudopleuronectes americanus) collected from 18 nursery areas along the coast of Rhode Island, USA. Samples were obtained during June and July of 2002 from locations tha...

  17. Bulk Oxygen-Isotope Compositions of Different Lithologies in Sutter's Mill

    NASA Astrophysics Data System (ADS)

    Ziegler, K.; Garvie, L. A. J.

    2013-09-01

    We correlate mineralogy data with bulk oxygen-isotope data of the clay-rich and the ol-rich lithologies in order to assess the possibility of more than one parent material, and the possibility of different alteration environments on the parent body.

  18. A Quantitative, Time-Dependent Model of Oxygen Isotopes in the Solar Nebula: Step one

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Paquette, J. A.; Farquhar, A.; Johnson, N. M.

    2011-01-01

    The remarkable discovery that oxygen isotopes in primitive meteorites were fractionated along a line of slope I rather than along the typical slope 0,52 terrestrial fractionation line occurred almost 40 years ago, However, a satisfactory, quantitative explanation for this observation has yet to be found, though many different explanations have been proposed, The first of these explanations proposed that the observed line represented the final product produced by mixing molecular cloud dust with a nucleosynthetic component, rich in O-16, possibly resulting from a nearby supernova explosion, Donald Clayton suggested that Galactic Chemical Evolution would gradually change the oxygen isotopic composition of the interstellar grain population by steadily producing O-16 in supernovae, then producing the heavier isotopes as secondary products in lower mass stars, Thiemens and collaborators proposed a chemical mechanism that relied on the availability of additional active rotational and vibrational states in otherwise-symmetric molecules, such as CO2, O3 or SiO2, containing two different oxygen isotopes and a second, photochemical process that suggested that differential photochemical dissociation processes could fractionate oxygen , This second line of research has been pursued by several groups, though none of the current models is quantitative,

  19. The oxygen isotopic composition of the Sun inferred from captured solar wind.

    PubMed

    McKeegan, K D; Kallio, A P A; Heber, V S; Jarzebinski, G; Mao, P H; Coath, C D; Kunihiro, T; Wiens, R C; Nordholt, J E; Moses, R W; Reisenfeld, D B; Jurewicz, A J G; Burnett, D S

    2011-06-24

    All planetary materials sampled thus far vary in their relative abundance of the major isotope of oxygen, (16)O, such that it has not been possible to define a primordial solar system composition. We measured the oxygen isotopic composition of solar wind captured and returned to Earth by NASA's Genesis mission. Our results demonstrate that the Sun is highly enriched in (16)O relative to the Earth, Moon, Mars, and bulk meteorites. Because the solar photosphere preserves the average isotopic composition of the solar system for elements heavier than lithium, we conclude that essentially all rocky materials in the inner solar system were enriched in (17)O and (18)O, relative to (16)O, by ~7%, probably via non-mass-dependent chemistry before accretion of the first planetesimals.

  20. Local and regional oscillations of carbon and oxygen isotopes in terestrial carbonates

    NASA Astrophysics Data System (ADS)

    Skipitytė, Raminta; Stančikaitė, Miglė

    2014-05-01

    Stable isotope ratios of carbon and oxygen in sediment carbonates are used as a tool to identify climatic changes in the past [1], [2]. Carbon is more related to humidity whereas oxygen is thought to respond the temperature [2]. Nevertheless number of questions about local, regional and global scale impacts to these records is left. In this research work carbon and oxygen isotope ratios in lacustrine carbonates are used to identify palaeoenvironmental dynamics of different locations. Samples of lacutrine carbonates were obtained from 8 sequences of different sites in Lithuania (4), Poland (1), Belarus (1) and Kaliningrad (1). Every sequence was divided into 2 cm intervals. The study showed differences in average carbon and oxygen isotope ratios between Lithuania and other countries (Poland, Belarus and Kaliningrad). Carbon and oxygen isotope ratios in 4 sites in Lithuania are: ¯U la δ13C -4.72± 2.11, o and δ18O -9.46± 1.9, o ; Zervynos δ13C -4.79± 1.82, o and δ18O -9.57± 1.69, o ; Rudnia δ13C -4.94± 7.53, o and δ18O -9.3± 3.92, o ; Pauliai δ13C -4.15± 0.67, o and δ18O -9.94± 1.07, o : In other countries: Poland δ13C -1.07± 1.94, o and δ18O -7.69± 0.95, o ; Belarus δ13C 0.97± 1.94, o and δ18O -7.61± 1.42, o ; Kaliningrad δ13C -1.14± 1.43, o and δ18O -6.51± 1.00, o : Average stable carbon and oxygen isotope values from four sites in Lithuania were -4.65 o for carbon and -9.51 o for oxygen. Despite homogeneity of average isotope signals in these four sites there are relatively large oscillations of isotopic values in Rudnia and relatively small in Pauliai. These oscillations could be related to local characteristics of particular place such as environmental conditions, water balance, input of terrigenous materials into basin, etc. Total amount of CaCO3 could also play a significant role in reconstructing palaeoenvironment from stable isotopes and creating isomaps. The comparison of isotope records from different locations could enable to

  1. Exploring the oxygen isotope fingerprint of Dansgaard-Oeschger variability and Heinrich events

    NASA Astrophysics Data System (ADS)

    Bagniewski, Witold; Meissner, Katrin J.; Menviel, Laurie

    2017-03-01

    We present the first transient simulations of Marine Isotope Stage 3 (MIS 3) performed with an oxygen isotope-enabled climate model. Our simulations span several Dansgaard-Oeschger cycles and three Heinrich stadials and are directly compared with oxygen isotope records from 13 sediment and 2 ice cores. Our results are consistent with a 30-50% weakening of the Atlantic Meridional Overturning Circulation during Dansgaard-Oeschger stadials and a complete shutdown during Heinrich stadials. We find that the simulated δ18 O anomalies differ significantly between Heinrich stadials and non-Heinrich stadials. This difference is mainly due to different responses in ocean circulation, and therefore climate, impacting oceanic δ18 O, while the volume of 18O-depleted meltwater plays a secondary role.

  2. Paleoclimatological change in the Late Neoproterozoic: Evidence from oxygen isotopes of phosphorite in Yangtze Platform, China

    NASA Astrophysics Data System (ADS)

    Ling, H.-F.; Jiang, S.-Y.; Feng, H.-Z.; Chen, J.-H.; Chen, Y.-Q.; Yang, J.-H.

    2003-04-01

    Seawater and its isotopic composition is the most promising recorder for the climate change of the Earth. Chemical sediments such as carbonate and phosphorite has long been used to reveal the seawater chemistry in the past. The d13C of carbonate with least diagenesis has proved to be sensitive proxy for paleo-environment and paleo-productivity and for chemostratigrphy (e.g. Shen, 2002; Yang et al., 1999; Lambert et al., 1987). However, d18O of carbonate are more prone to suffering diagenesis, and therefore the implications of Phanerozoic d18O curve are controversial (cf. Veizer et al., 1999). Recent study of Wenzel et al. (2000) shows that Silurian phosphatic conodont retained primary oxygen isotopes whereas the d18O values of the coeval calcitic brachiopod shells were altered by diagenesis. Here, we presented and compared oxygen, carbon isotopic compositions and trace and rare earth element concentrations of Neoproterozoic phosphorite and coeval dolomite from the Yangtze platform in an attempt to reconstruct the paleoclimatological and paleooceanographic change during Neoproterozoic. The Yangtze platform possesses excellent record of Late Neoproterozoic-Cambrian strata. In this study, we collected samples systematically from late Neoproterozoic Doushantuo Formation at the Wengan section, Guizhou province. The Doushantuo Fm, overlying on the late Vendian tillite of Nantuo Fm and overlain by dolostone of Dengying Fm which underlain the basal Cambrian black shale, consists mainly of phosphorite and minor interbeded dolostone with total thickness of about 70 m. Our results show large variations of d18Odolo(SMOW) for the dolomite (17.6 ~ 25.9‰) which has no correlation with their d13Cdolo values and other geochemical parameters. In contrast, phosphorites display rather limited variations of the d18Ophos (SMOW) values (10.7 ~ 15.0‰). Further more, the d18Ophos and d13Cdolo values, Ce anomaly and Pb/Th ratio consistently increased from the lower to upper part of the

  3. The oxygen isotopic compositions of silica phytoliths and plant water in grasses: implications for the study of paleoclimate

    NASA Astrophysics Data System (ADS)

    Webb, Elizabeth A.; Longstaffe, Frederick J.

    2000-03-01

    Information about climatic conditions during plant growth is preserved by the oxygen-isotope composition of biogenic silica (phytoliths) deposited in grasses. The oxygen-isotope composition of phytolith silica is dependent on soil-water δ 18O values, relative humidity and evapotranspiration, and temperature during plant growth. Phytolith and plant-water δ 18O values for C3 ( A. breviligulata) and C4 ( C. longifolia) grasses from natural and greenhouse sites in southwestern Ontario were used to compare the isotopic fractionation between biogenic silica and water in various parts of these living plants. For non or weakly transpiring tissues (rhizomes, stems, sheaths) in both grass species, the Δ 18O silica-plant water remained constant at ˜34‰, and the δ 18O and δD values of plant water collected from pre-dawn and mid-day samplings showed little variation. These plant waters were only slightly enriched in 18O and D relative to water provided to the grasses. Isotopic temperatures calculated from the silica and plant-water isotopic data matched measured growing temperatures for the region. By comparison, the upper leaf water was extremely enriched in oxygen-18 and deuterium at maximum rates of transpiration relative to water from non-transpiring tissues, as were the calculated, steady-state values for leaf-water δ 18O and δD. Silica produced in the transpiring tissues (leaf, inflorescence) has higher δ 18O values than silica from non-transpiring tissues, but the enrichment is modest compared to upper leaf water under mid-day conditions. Leaf phytoliths have formed from plant water typical of average conditions in the lower leaf, where the extreme 18O-enrichment is not encountered. C. longifolia was also collected from Alberta and Nebraska, where growing conditions are different from southwestern Ontario. Phytoliths at all three sites have a similar pattern of δ 18O values within the plants, but the isotopic separation between leaf and stem silica increases

  4. Atmospheric Oxygen Variation Over the Last 100 Million Years

    NASA Astrophysics Data System (ADS)

    Watson, A. J.; Mills, B.; Daines, S. J.; Lenton, T. M.; Belcher, C.

    2014-12-01

    There is no agreement over how atmospheric oxygen has varied over recent Earth history. Our knowledge of past O2 concentrations relies on biogeochemical modelling, constrained by geochemical data and proxies. There are however few direct indicators of oxygen concentrations, though the presence of fossil charcoal indicates that levels have not strayed outside the "fire window", say below 16% or above 35%, during the last hundred million years. Different model predictions encompass both decreasing and increasing trends over this period however. These predictions are sensitive to weathering of continental rocks, which provide a sink for O2, but also a supply of phosphorus and sediment to the ocean, both of which increase carbon burial and thereby provide an oxygen source. Here we update our COPSE model with a more detailed treatment than hitherto, incorporating new input data, seafloor weathering processes, and different compositions and weatherability of granites and basalts. Our model suggests a broadly declining O2 trend over the late Mesozoic to present. An alternative forcing uses the phosphorus deposition curve of Follmi (1995), which is constructed from P measurements in ocean cores, and indicates P fluxes to the oceans that have varied over time by two orders of magnitude. Used to drive the model this also results in a declining long-term trend for atmospheric O2 over the last hundred million years, but with dramatic shorter-term variations superposed on the trend. These however stay (just) within the "fire window" for oxygen concentrations, and can be tentatively related to the evolution of fire adaptations in plants.

  5. Chromium Isotopes in Carbonate Rocks: New Insights into Proterozoic Atmospheric Oxygenation

    NASA Astrophysics Data System (ADS)

    Kah, L. C.; Gilleaudeau, G. J.; Frei, R.; Kaufman, A. J.; Azmy, K.; Bartley, J. K.; Chernyavskiy, P.; Knoll, A. H.

    2015-12-01

    There has been a long-standing debate in geobiology about the role that Earth's oxygenation played in the evolution of complex life. Temporal linkages exist between the Great Oxidation Event (GOE) and the evolution of eukaryotes, as well as Neoproterozoic rise in oxygen and the diversification of metazoans. Further advances have been hampered, however, by the lack of direct proxies that mark specific levels of atmospheric pO2 in the geologic past. Chromium (Cr) isotopes show promise in this regard because the oxidation of Cr during terrestrial weathering—which results in isotopic fractionation—is dependent on a specific threshold of atmospheric pO2 (0.1-1% of the present atmospheric level [PAL]). This threshold value broadly coincides with recent estimates of the oxygen requirements of early animals. Here we report new Cr-isotope data from four late Mesoproterozoic carbonate-dominated successions. Samples were collected from the Turukhansk Uplift (Siberia), the El Mreiti Group (Mauritania), the Vazante Group (Brazil), and the Angmaat Formation (Canada). We emphasize the application of Cr-isotopes to carbonate rocks because the broad temporal range of this lithology in the geologic record provides an opportunity to significantly expand our understanding of Proterozoic oxygenation on shorter time scales. Our data indicate that pO2 levels required to support early animals were attained long before Neoproterozoic metazoan diversification, although the large degree of isotopic heterogeneity in our dataset may indicate that pO2 > 0.1-1% PAL was only a transient phenomenon in the Mesoproterozoic. This study demonstrates the utility of Cr-isotopes as an atmospheric redox proxy in carbonate rocks and helps inform future avenues of research on Proterozoic pO2 thresholds.

  6. Moisture sources of precipitation over Postojna (Slovenia) and implication of its oxygen isotope composition

    NASA Astrophysics Data System (ADS)

    Krklec, Kristina; Domínguez-Villar, David; Lojen, Sonja

    2016-04-01

    The source of moisture is an important part of the hydrological cycle that affects climate system. Potentially, moisture sources are important controls of the isotope composition of precipitation, but their studies in the continental mid- and low-latitudes are still scarce due to the complexity of general circulation models with integrated isotope modules. We identify moisture uptake locations of precipitation over Postojna (Slovenia) for period from 2009 to 2013. By using HYSPLIT trajectory model of NOAA we did 5-day reconstruction of air mass history for the days with precipitation and determination of moisture uptake locations along back trajectories. Moisture uptake locations were identified along each trajectory using HYSPLIT output data and standard equations for saturation humidity mixing ratio, saturation vapour pressure and specific humidity. Although NNE winds were prevailing during the period 2001-2014, our analysis showed that during this period around 45% of the precipitation over Postojna originated from Mediterranean and south Atlantic area, with majority of locations originated in the Adriatic Sea. On the other hand, 41% of precipitation originated from moisture recycled over continents, predominantly from Pannonian basin. The comparison of monthly oxygen isotope composition of precipitation with the percentage of precipitation originated in different source regions shows a significant correlation only for the north Atlantic region. However, less than 7% of the variability of oxygen isotope composition of precipitation is associated with this moisture source. Multivariable analyses of source regions do not explain any additional variability of the oxygen isotope composition of precipitation over Postojna. This research shows that at this location, although significant, moisture sources are not important controls of the oxygen isotope composition of precipitation.

  7. Oxygen and Magnesium Isotopic Compositions of Asteroidal Materials Returned from Itokawa by the Hayabusa Mission

    NASA Technical Reports Server (NTRS)

    Yurimoto, H; Abe, M.; Ebihara, M.; Fujimura, A.; Hashizume, K.; Ireland, T. R.; Itoh, S.; Kawaguchi, K.; Kitajima, F.; Mukai, T.; Nagao, K.; Nakamura, T.; Naraoka, H.; Noguchi, T.; Okazaki, R.; Sakamoto, N.; Seto, Y.; Tsuchiyama, A.; Uesugi, M.; Yada, T.; Yoshikawa, M.; Zolensky, M.

    2011-01-01

    The Hayabusa spacecraft made two touchdowns on the surface of Asteroid 25143 Itokawa on November 20th and 26th, 2005. The Asteroid 25143 Itokawa is classified as an S-type asteroid and inferred to consist of materials similar to ordinary chondrites or primitive achondrites [1]. Near-infrared spectroscopy by the Hayabusa spacecraft proposed that the surface of this body has an olivine-rich mineral assemblage potentially similar to that of LL5 or LL6 chondrites with different degrees of space weathering [2]. The spacecraft made the reentry into the Earth s atmosphere on June 12th, 2010 and the sample capsule was successfully recovered in Australia on June 13th, 2010. Although the sample collection processes on the Itokawa surface had not been made by the designed operations, more than 1,500 grains were identified as rocky particles in the sample curation facility of JAXA, and most of them were judged to be of extraterrestrial origin, and definitely from Asteroid Itokawa on November 17th, 2010 [3]. Although their sizes are mostly less than 10 microns, some larger grains of about 100 microns or larger were also included. The mineral assembly is olivine, pyroxene, plagioclase, iron sulfide and iron metal. The mean mineral compositions are consistent with the results of near-infrared spectroscopy from Hayabusa spacecraft [2], but the variations suggest that the petrologic type may be smaller than the spectroscopic results. Several tens of grains of relatively large sizes among the 1,500 grains will be selected by the Hayabusa sample curation team for preliminary examination [4]. Each grain will be subjected to one set of preliminary examinations, i.e., micro-tomography, XRD, XRF, TEM, SEM, EPMA and SIMS in this sequence. The preliminary examination will start from the last week of January 2011. Therefore, samples for isotope analyses in this study will start from the last week of February 2011. By the time of the LPSC meeting we will have measured the oxygen and

  8. A cryptic record of magma mixing in diorites revealed by high-precision SIMS oxygen isotope analysis of zircons

    NASA Astrophysics Data System (ADS)

    Appleby, S. K.; Graham, C. M.; Gillespie, M. R.; Hinton, R. W.; Oliver, G. J. H.; EIMF

    2008-05-01

    High-precision in-situ ion microprobe (SIMS) oxygen isotope analysis of zircons from two diorite intrusions associated with the late Caledonian Lochnagar pluton in Scotland has revealed large differences in the degree of heterogeneity in zircon δ18O between the diorites. Zircon crystals from the Cul nan Gad diorite (CnG) show a unimodal distribution of oxygen isotope values ( δ18O = 6.0 ± 0.6‰ (2 σ)) and no or only minor grain-scale variation. Those from the Allt Darrarie diorite (AD1) show a large range in δ18O and an apparent bimodal distribution with modes of 6.6 ± 0.4‰ and 7.3 ± 0.4‰. Variations of up to 1.2‰ occur between and within grains; both an increase and decrease in δ18O with zircon growth has been observed. The δ18O composition of growing zircon can only change if open-system processes affect the magma composition, i.e. if material of contrasting δ18O composition is added to the magma. The variability in AD1 is interpreted to represent a cryptic record of magma mixing. A 'deep crustal hot zone' is a likely site for generation of the dioritic magmas which developed by mixing of residual melts and crustal partial melts or by melting of mafic lower crustal rocks. The overall small number of zircons with mantle-like δ18O values (5.3 ± 0.6‰ (2 σ)) in the Lochnagar diorites is largely the product of crustal differentiation rather than crustal growth. The δ18O of quartz from the CnG and AD1 diorites shows only minor variation (CnG: 10.9 ± 0.5‰ (2 σ), AD1: 11.7 ± 0.6‰ (2 σ)) within single populations, with no evidence of mixing. Quartz-zircon isotopic disequilibrium is consistent with later crystallisation of quartz from late magmatic fluids, and in case of the AD1 diorite after the inferred magma mixing from a homogenised, higher δ18O melt. High-precision SIMS oxygen isotope analysis of zircon provides a new approach to identifying and resolving previously undetected early-stage magma mixing and constraining the compositions

  9. Seasonally Resolved Oxygen Isotope Paleoclimate Proxy in Tree-Ring Cellulose from the Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Miller, D. L.; Mora, C. I.; Grissino-Mayer, H. D.; Mock, C. J.

    2004-12-01

    Stable isotopes in precipitation reflect changes in climate, moisture source, and extreme events such as tropical cyclones, and an oxygen isotope proxy record of these changes through time and space is preserved in tree-ring cellulose. Extreme climate events such as droughts and hurricanes are formidable natural disasters in the southeastern United States, and considerable efforts have been made to understand factors controlling their frequency, whether natural or anthropogenic. Tree rings offer an unusually well-resolved, dateable record of climate events extending beyond modern or historical (documentary) records. Oxygen isotopes in alpha-cellulose of shallowly-rooted conifers predominately reflect the composition of precipitation. Tropical storm convection results in marked 18O depletion in storm precipitation, to -15‰ relative to source seawater (~0‰ ). The depletion increases towards the eyewall of the cyclone, however, isotopically depleted precipitation may extend outward many 100's of km. Storm water 18O depletion translates to soil water 18O depletion that may persist for many weeks until ameliorated by soil water evaporation. Tree growth during that time will take up the anomalous isotopic compositions. Distinctive earlywood (EW ~March-June) versus latewood (LW ~July-October) growth allows the rings to be resolved at an intra-annual (seasonal) scale. By comparison to average soil water, droughts result in 18O-enriched soil water compositions. Seasonal drought or years of continued drought will be similarly captured in the isotope compositions of tree-ring cellulose. A 227-year (1770-1997) seasonally-resolved record of tropical cyclone and drought activity was obtained from cross-sections of felled slash pines (Pinus elliottii Engelm.) and remnant longleaf pines (Pinus palustris Mill.) from southern Georgia. Interpretations of drought or hurricane events were tested by comparison with recent, detailed meteorological records. The 227-year record reveals

  10. Oxygen isotope anomaly observed in water vapor from Alert, Canada and the implication for the stratosphere.

    PubMed

    Lin, Ying; Clayton, Robert N; Huang, Lin; Nakamura, Noboru; Lyons, James R

    2013-09-24

    To identify the possible anomalous oxygen isotope signature in stratospheric water predicted by model studies, 25 water vapor samples were collected in 2003-2005 at Alert station, Canada (82°30'N), where there is downward transport of stratospheric air to the polar troposphere, and were analyzed for δ(17)O and δ(18)O relative to Chicago local precipitation (CLP). The latter was chosen as a reference because the relatively large evaporative moisture source should erase any possible oxygen isotope anomaly from the stratosphere. A mass-dependent fractionation coefficient for meteoric waters, λMDF(H2O) = 0.529 ± 0.003 [2σ standard error (SE)], was determined from 27 CLP samples collected in 2003-2005. An oxygen isotopic anomaly of Δ(17)O = 76 ± 16 ppm (2σ SE) was found in water vapor samples from Alert relative to CLP. We propose that the positive oxygen isotope anomalies observed at Alert originated from stratospheric ozone, were transferred to water in the stratosphere, and subsequently mixed with tropospheric water at high latitudes as the stratospheric air descended into the troposphere. On the basis of this ground signal, the average Δ(17)O in stratospheric water vapor predicted by a steady-state box model is ∼40‰. Seven ice core samples (1930-1991) from Dasuopu glacier (Himalayas, China) and Standard Light Antarctic Precipitation did not show an obvious oxygen isotope anomaly, and Vienna Standard Mean Ocean Water exhibited a negative Δ(17)O relative to CLP. Six Alert snow samples collected in March 2011 and measured at Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France, had (17)Oexcess of 45 ± 5 ppm (2σ SE) relative to Vienna Standard Mean Ocean Water.

  11. Research and application of method of oxygen isotope of inorganic phosphate in Beijing agricultural soils.

    PubMed

    Tian, Liyan; Guo, Qingjun; Zhu, Yongguan; He, Huijun; Lang, Yunchao; Hu, Jian; Zhang, Han; Wei, Rongfei; Han, Xiaokun; Peters, Marc; Yang, Junxing

    2016-12-01

    Phosphorus (P) in agricultural ecosystems is an essential and limited element for plants and microorganisms. However, environmental problems caused by P accumulation as well as by P loss have become more and more serious. Oxygen isotopes of phosphate can trace the sources, migration, and transformation of P in agricultural soils. In order to use the isotopes of phosphate oxygen, appropriate extraction and purification methods for inorganic phosphate from soils are necessary. Here, we combined two different methods to analyze the oxygen isotopic composition of inorganic phosphate (δ(18)OP) from chemical fertilizers and different fractions (Milli-Q water, 0.5 mol L(-1) NaHCO3 (pH = 8.5), 0.1 mol L(-1) NaOH and 1 mol L(-1) HCl) of agricultural soils from the Beijing area. The δ(18)OP results of the water extracts and NaHCO3 extracts in most samples were close to the calculated equilibrium value. These phenomena can be explained by rapid P cycling in soils and the influence of chemical fertilizers. The δ(18)OP value of the water extracts and NaHCO3 extracts in some soil samples below the equilibrium value may be caused by the hydrolysis of organic P fractions mediated by extracellular enzymes. The δ(18)OP values of the NaOH extracts were above the calculated equilibrium value reflecting the balance state between microbial uptake of phosphate and the release of intracellular phosphate back to the soil. The HCl extracts with the lowest δ(18)OP values and highest phosphate concentrations indicated that the HCl fraction was affected by microbial activity. Hence, these δ(18)Op values likely reflected the oxygen isotopic values of the parent materials. The results suggested that phosphate oxygen isotope analyses could be an effective tool in order to trace phosphate sources, transformation processes, and its utilization by microorganisms in agricultural soils.

  12. Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios

    NASA Astrophysics Data System (ADS)

    Wunsch, Carl

    2016-06-01

    An earlier analysis of pore-water salinity (chlorinity) in two deep-sea cores, using terminal constraint methods of control theory, concluded that although a salinity amplification in the abyss was possible during the LGM, it was not required by the data. Here the same methodology is applied to δ18Ow in the upper 100 m of four deep-sea cores. An ice volume amplification to the isotopic ratio is, again, consistent with the data but not required by it. In particular, results are very sensitive, with conventional diffusion values, to the assumed initial conditions at -100 ky and a long list of noise (uncertainty) assumptions. If the calcite values of δ18O are fully reliable, then published enriched values of the ratio in seawater are necessary to preclude sub-freezing temperatures, but the seawater δ18O in pore fluids does not independently require the conclusion.

  13. The molecular physics of photolytic fractionation of sulfur and oxygen isotopes in planetary atmospheres (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Schmidt, J. A.; Hattori, S.; Danielache, S.; Meusinger, C.; Schinke, R.; Ueno, Y.; Nanbu, S.; Kjaergaard, H. G.; Yoshida, N.

    2013-12-01

    Atmospheric photochemistry is able to produce large mass independent anomalies in atmospheric trace gases that can be found in geological and cryospheric records. This talk will present theoretical and experimental investigations of the molecular mechanisms producing photolytic fractionation of isotopes with special attention to sulfur and oxygen. The zero point vibrational energy (ZPE) shift and reflection principle theories are starting points for estimating isotopic fractionation, but these models ignore effects arising from isotope-dependent changes in couplings between surfaces, excited state dynamics, line densities and hot band populations. The isotope-dependent absorption spectra of the isotopologues of HCl, N2O, OCS, CO2 and SO2 have been examined in a series of papers and these results are compared with experiment and ZPE/reflection principle models. Isotopic fractionation in planetary atmospheres has many interesting applications. The UV absorption of CO2 is the basis of photochemistry in the CO2-rich atmospheres of the ancient Earth, and of Mars and Venus. For the first time we present accurate temperature and isotope dependent CO2 absorption cross sections with important implications for photolysis rates of SO2 and H2O, and the production of a mass independent anomaly in the Ox reservoir. Experimental and theoretical results for OCS have implications for the modern stratospheric sulfur budget. The absorption bands of SO2 are complex with rich structure producing isotopic fractionation in photolysis and photoexcitation.

  14. Oxygen isotopic systematics of an open-system magma chamber:. An example from the Freetown Layered Complex of Sierra Leone

    NASA Astrophysics Data System (ADS)

    Chalokwu, Christopher I.; Ripley, Edward M.; Park, Young-Rok

    1999-03-01

    The Freetown Layered Complex of Sierra Leone is a 7-km thick, rift-related tholeiitic intrusion that formed ˜193 Ma ago during the opening of the middle Atlantic Ocean. The Complex was emplaced above Archean basement gneisses, granulites, and schists of the Kasila Group at pressures of 2.8 to 5.1 kbar. The δ 18O values of bulk cumulates (5.5-6.7), separated plagioclase (5.7-6.0), olivine (5.0-5.7), and clinopyroxene (5.1-5.8) spanning the entire stratigraphic section indicate that the Complex has preserved its primary magmatic oxygen isotopic composition. The δ 18O values of whole-rocks are uniform in Zone 1 (average = 5.74 ± 0.01) but vary widely in Zones 2 and 3 (average = 6.18 ± 0.52 and 5.71 ± 0.32, respectively). Variations in whole-rock δ 18O with stratigraphic height correlate well with plagioclase mode, with δ 18O values being highest in the strongly laminated anorthosites of Zones 2 and 3, and lowest in olivine gabbro from the cyclically layered subzone of Zone 3. The overall pattern of oxygen isotopic variation with stratigraphic height in the intrusion appears to the related to the accumulation of high-δ 18O, plagioclase-rich rocks that are overlain by low-δ 18O, olivine or pyroxene-rich rock types. Fractional crystallization in combination with mineral accumulation can explain the observed oxygen isotopic variations in the Complex. Oxygen isotopic thermometry yields equilibration temperatures of 1040 to 1290°C, which are similar to temperatures (1045 to 1381°C) estimated from the plagioclase-liquid thermometer applied to the Freetown bulk magma for each zone obtained by geochemical summation. The oxygen isotopic temperatures are highest where major influxes of new magmas have occurred, indicating negligible subsolidus resetting of mineral compositions. Contemporary diabase dikes intruding the Complex have whole-rock and plagioclase δ 18O values of 6.6 and 6.7, respectively, suggesting minimal interaction of the dikes with hydrothermal

  15. Diurnal and Interannual Variation in Absorption Lines of Isotopic Carbon Dioxide in Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Hewagama, Tilak; Kolasinski, John R.; Henning, Wade G.

    2015-11-01

    Groundbased observations of Mars in 2003, 2007, 2012, and 2014 have detected transitions of carbon dioxide containing the stable minor isotopes of oxygen and carbon as well as the primary isotopes, using the ultrahigh resolution spectrometer HIPWAC at the NASA Infrared Telescope Facility. The most well characterized minor isotope is O-18, due to strong lines and observational opportunities. The average estimated O-18/O-16 isotope ratio is roughly consistent with other in situ and remote spectroscopic measurements but demonstrates an additional feature in that the retrieved ratio appears to increase with greater ground surface temperature. These conclusions primarily come from analyzing a subset of the 2007 data. Additional observations have been acquired over a broad range of local time and meridional position to evaluate variability with respect to ground surface temperature. These additional observations include one run of measurements with C-13. These observations can be compared to local in situ measurements by the Curiosity rover to narrow the uncertainty in absolute isotope ratio and extend isotopic measurements to other regions and seasons on Mars. The relative abundance of carbon dioxide heavy isotopes on Mars is central to estimating the primordial atmospheric inventory on Mars. Preferential freeze-distillation of heavy isotopes means that any measurement of the isotope ratio can be only a lower limit on heavy isotope enrichment due to past and current loss to space.

  16. Photoneutron cross sections for unstable neutron-rich oxygen isotopes.

    PubMed

    Leistenschneider, A; Aumann, T; Boretzky, K; Cortina, D; Cub, J; Datta Pramanik, U; Dostal, W; Elze, T W; Emling, H; Geissel, H; Grünschloss, A; Hellstr, M; Holzmann, R; Ilievski, S; Iwasa, N; Kaspar, M; Kleinböhl, A; Kratz, J V; Kulessa, R; Leifels, Y; Lubkiewicz, E; Münzenberg, G; Reiter, P; Rejmund, M; Scheidenberger, C; Schlegel, C; Simon, H; Stroth, J; Sümmerer, K; Wajda, E; Walús, W; Wan, S

    2001-06-11

    The dipole response of stable and unstable neutron-rich oxygen nuclei of masses A = 17 to A = 22 has been investigated experimentally utilizing electromagnetic excitation in heavy-ion collisions at beam energies about 600 MeV/nucleon. A kinematically complete measurement of the neutron decay channel in inelastic scattering of the secondary beam projectiles from a Pb target was performed. Differential electromagnetic excitation cross sections d sigma/dE were derived up to 30 MeV excitation energy. In contrast to stable nuclei, the deduced dipole strength distribution appears to be strongly fragmented and systematically exhibits a considerable fraction of low-lying strength.

  17. Oxygen isotopes and trace elements in the Tiva Canyon Tuff, Yucca Mountain and vicinity, Nye County, Nevada

    SciTech Connect

    Marshall, B.D.; Kyser, T.K.; Peterman, Z.E.

    1996-12-31

    Yucca Mountain is being studied as a potential site for an underground repository for high-level radioactive waste. Because Yucca Mountain is located in a resource-rich geologic setting, one aspect of the site characterization studies is an evaluation of the resource potential at Yucca Mountain. The Tiva Canyon Tuff (TCT) is a widespread felsic ash-flow sheet that is well exposed in the Yucca Mountain area. Samples of the upper part of the TCT were selected to evaluate the potential for economic mineral deposits within the Miocene volcanic section. These samples of the upper cliff and caprock subunits have been analyzed for oxygen isotopes and a large suite of elements. Oxygen isotope compositions ({delta}{sup 18}O) of the TCT are typical of felsic igneous rocks but range from 6.9 to 11.8 permil, indicating some post-depositional alteration. There is no evidence of the low {delta}{sup 18}O values (less than 6 permil) that are typical of epithermal precious-metal deposits in the region. The variation in oxygen isotope ratios is probably the result of deuteric alteration during late-stage crystallization of silica and low-temperature hydration of glassy horizons; these processes are also recorded by the chemical compositions of the rocks. However, most elemental contents in the TCT reflect igneous processes, and the effects of alteration are observed only in some of the more mobile elements. These studies indicate that the TCT at Yucca Mountain has not been affected by large-scale meteoric-water hydrothermal circulation. The chemical compositions of the TCT, especially the low concentrations of most trace elements including typical pathfinder elements, show no evidence for epithermal metal deposits. Together, these data indicate that the potential for economic mineralization in this part of the volcanic section at Yucca Mountain is small.

  18. Variation in the terrestrial isotopic composition and atomic weight of argon

    USGS Publications Warehouse

    Böhlke, John Karl

    2014-01-01

    The isotopic composition and atomic weight of argon (Ar) are variable in terrestrial materials. Those variations are a source of uncertainty in the assignment of standard properties for Ar, but they provide useful information in many areas of science. Variations in the stable isotopic composition and atomic weight of Ar are caused by several different processes, including (1) isotope production from other elements by radioactive decay (radiogenic isotopes) or other nuclear transformations (e.g., nucleogenic isotopes), and (2) isotopic fractionation by physical-chemical processes such as diffusion or phase equilibria. Physical-chemical processes cause correlated mass-dependent variations in the Ar isotope-amount ratios (40Ar/36Ar, 38Ar/36Ar), whereas nuclear transformation processes cause non-mass-dependent variations. While atmospheric Ar can serve as an abundant and homogeneous isotopic reference, deviations from the atmospheric isotopic ratios in other Ar occurrences limit the precision with which a standard atomic weight can be given for Ar. Published data indicate variation of Ar atomic weights in normal terrestrial materials between about 39.7931 and 39.9624. The upper bound of this interval is given by the atomic mass of 40Ar, as some samples contain almost pure radiogenic 40Ar. The lower bound is derived from analyses of pitchblende (uranium mineral) containing large amounts of nucleogenic 36Ar and 38Ar. Within this interval, measurements of different isotope ratios (40Ar/36Ar or 38Ar/36Ar) at various levels of precision are widely used for studies in geochronology, water–rock interaction, atmospheric evolution, and other fields.

  19. Non-mass-dependent oxygen isotope effect observed in water vapor from Alert, Canada

    NASA Astrophysics Data System (ADS)

    Lin, Ying

    Twenty-seven precipitation samples from Chicago, IL and northwest part of Indiana were collected from 2003 to 2005. Twenty-five water vapor samples were collected at Alert, Canada (82° 30'N, 62° 19'W) from 2002 to 2005 by Lin Huang and her co-workers. Seven ice core samples from Dasuopu glacier, Chinese Himalayas (28° 23' N, 85° 43'W) were drilled by Lonnie G. Thompson and prepared by Mary E. Davis. Sample of Standard Light Antarctic Precipitation (SLAP) is available in the laboratory. Water samples were reacted with bromine pentafluoride to produce oxygen, which were then purified through molecular sieve and measured by Delta E gas source mass spectrometer. A lambda(MDF) = 0.529 +/- 0.003 (2sigma) for water is determined from measurement of local precipitation samples. No significant oxygen isotopic anomaly is found in SLAP and in ice core samples from Dasuopu glacier, Chinese Himalayas. Delta17O(CLP), oxygen isotopic anomaly relative to Chicago local precipitation, of -0.009‰ to 0.167‰ with a mean of 0.076‰ and a 2sigma standard error of 0.016‰ is observed in water vapor from Alert, Canada. About half of these Delta17O(CLP) data exhibit statistically significant excesses. Stacked seasonal trend of Delta17O(CLP) observed at Alert, Canada points to a maximum in late spring when the intrusion of stratospheric air is at its maximum and the height of Arctic tropopause is the lowest. However, no significant oxygen isotopic anomalies are found in ice core samples from Dasuopu and in SLAP. The positive excesses in Delta17O(CLP) seen in tropospheric water vapor at Alert, Canada could be explained by the transfer of positive oxygen isotopic anomalies through O3 → NOx → HOx → H2O chain in the stratosphere, and the subsequent mixing of this anomalous stratospheric water with tropospheric water vapor at Alert, Canada where the tropopause is low and where downward mixing of stratospheric air with tropospheric air takes place. The positive oxygen isotopic

  20. Low-temperature, non-stoichiometric oxygen isotope exchange coupled to Fe(II)-goethite interactions

    SciTech Connect

    Frierdich, Andrew J.; Beard, Brian L.; Rosso, Kevin M.; Scherer, Michelle M.; Spicuzza, Michael J.; Valley, John W.; Johnson, Clark M.

    2015-07-01

    The oxygen isotope composition of natural iron oxide minerals has been widely used as a paleoclimate proxy. Interpretation of their stable isotope compositions, however, requires accurate knowledge of isotopic fractionation factors and an understanding of their isotopic exchange kinetics, the latter of which informs us how diagenetic processes may alter their isotopic compositions. Prior work has demonstrated that crystalline iron oxides do not significantly exchange oxygen isotopes with pure water at low temperature, which has restricted studies of isotopic fractionation factors to precipitation experiments or theoretical calculations. Using a double three-isotope method (¹⁸O-¹⁷O-¹⁶O and ⁵⁷Fe-⁵⁶Fe-⁵⁴Fe) we compare O and Fe isotope exchange kinetics, and demonstrate, for the first time, that O isotope exchange between structural O in crystalline goethite and water occurs in the presence of aqueous Fe(II) (Fe(II)aq) at ambient temperature (i.e., 22–50 °C). The three-isotope method was used to extrapolate partial exchange results to infer the equilibrium, mass-dependent isotope fractionations between goethite and water. In addition, this was combined with a reversal approach to equilibrium by reacting goethite in two unique waters that vary in composition by about 16‰ in ¹⁸O/¹⁶O ratios. Our results show that interactions between Fe(II)aq and goethite catalyzes O isotope exchange between the mineral and bulk fluid; no exchange (within error) is observed when goethite is suspended in ¹⁷O-enriched water in the absence of Fe(II)aq. In contrast, Fe(II)-catalyzed O isotope exchange is accompanied by significant changes in ¹⁸O/¹⁶O ratios. Despite significant O exchange, however, we observed disproportionate amounts of Fe versus O exchange, where Fe isotope exchange in goethite was roughly three times that of O. This disparity provides novel insight into the reactivity of oxide minerals in aqueous

  1. Clumped-Isotope Thermometry and Oxygen Isotope Systematics in Speleothem Calcite From a Near Cave-Entrance Environment

    NASA Astrophysics Data System (ADS)

    Carlson, P. E.; Banner, J.; Breecker, D.; Affek, H. P.

    2015-12-01

    Speleothems that grow in well-ventilated zones of caves have not been widely used in paleoclimate studies, yet may provide paleotemperature records. These zones are characterized by low CO2 concentrations year-round and, in temperate climates, large seasonal temperature fluctuations. They are typically avoided for paleoclimate reconstruction due to concerns about kinetic isotope effects (KIE). However, speleothems in general seem to be sensitive to KIE, even in non-ventilated areas and can nonetheless provide useful paleoclimate records. At Westcave Preserve (Westcave), a shallow, well-ventilated cave in central Texas, we have found seasonal temperature differences recorded in both the oxygen isotope and clumped isotope compositions of speleothem calcite grown on glass-plate substrates harvested from active drips. Although growth rates in this cave are relatively rapid, speleothem analogs in Westcave are growing near oxygen-isotopic equilibrium with their drip waters (between the calibrations of Kim and O'Neil, 1997 and Coplen, 2007). We have tested the compatibility of the Zaarur et al. (2013) clumped isotope bulk solution thermometer calibration to glass-substrate calcite in the cave collected during various months. This technique can provide absolute temperatures, but is sensitive to kinetic isotope effects, often significantly overestimating growth temperatures of speleothems. When this thermometer was applied to calcite collected from near where the plates were impacted by drip water, it overestimated measured temperatures by 7.7 ± 4.3°C, showing moderate KIE. When applied to calcite away from the drip impact, it overestimated temperatures by 18.7 ± 4.2°C, showing KIE increasing away from the drip. Measured monthly average temperatures in the cave ranged seasonally between 8 and 28°C, and daily temperatures vary significantly. At Westcave, calcite growth rates increase with temperature, and the calcite may therefore preferentially record warmer daily or

  2. On-line determination of oxygen isotope ratios of water or ice by mass spectrometry.

    PubMed

    Leuenberger, M; Huber, C

    2002-09-15

    Oxygen isotope ratio determination on any of the water phases (water vapor, water, ice) is of great relevance in different research fields such as climate and paleoclimate studies, geological surveys, and hydrological studies. The conventional technique for oxygen isotope measurement involves equilibration with carbon dioxide gas for a given time with a subsequent isotope determination. The equilibration technique is available in different layouts, but all of them are rather time-consuming. Here we report a new on-line technique that processes water samples as well as ice samples. The same principal, CO2 hydration, is used but speeded up by (i) a direct injection and full dissolution of CO2 in the water, (ii) an increased isotope exchange temperature at 50 degrees C, and (iii) a rapid gas extraction by means of an air-permeable membrane into a continuous helium flux supplying the isotope ratio mass spectrometer with the sample gas. The precision is better than 0.1/1000 which is only slightly larger than with the conventional equilibration technique. This on-line technique allows analysis of 1 m of ice with a resolution of 1-3 cm, depending on the meltwater flux, within 1 h. Similarly, continuous and fast analysis can be performed for aqueous samples for hydrological, geological, and perhaps medical applications.

  3. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula.

    PubMed

    Lyons, J R; Young, E D

    2005-05-19

    The abundances of oxygen isotopes in the most refractory mineral phases (calcium-aluminium-rich inclusions, CAIs) in meteorites have hitherto defied explanation. Most processes fractionate isotopes by nuclear mass; that is, 18O is twice as fractionated as 17O, relative to 16O. In CAIs 17O and 18O are nearly equally fractionated, implying a fundamentally different mechanism. The CAI data were originally interpreted as evidence for supernova input of pure 16O into the solar nebula, but the lack of a similar isotope trend in other elements argues against this explanation. A symmetry-dependent fractionation mechanism may have occurred in the inner solar nebula, but experimental evidence is lacking. Isotope-selective photodissociation of CO in the innermost solar nebula might explain the CAI data, but the high temperatures in this region would have rapidly erased the signature. Here we report time-dependent calculations of CO photodissociation in the cooler surface region of a turbulent nebula. If the surface were irradiated by a far-ultraviolet flux approximately 10(3) times that of the local interstellar medium (for example, owing to an O or B star within approximately 1 pc of the protosun), then substantial fractionation of the oxygen isotopes was possible on a timescale of approximately 10(5) years. We predict that similarly irradiated protoplanetary disks will have H2O enriched in 17O and 18O by several tens of per cent relative to CO.

  4. Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts.

    PubMed

    Michalski, Greg; Kolanowski, Michelle; Riha, Krystin M

    2015-01-01

    Nitrate is a key component of synthetic fertilizers that can be beneficial to crop production in agro-ecosystems, but can also cause damage to natural ecosystems if it is exported in large amounts. Stable isotopes, both oxygen and nitrogen, have been used to trace the sources and fate of nitrate in various ecosystems. However, the oxygen isotope composition of synthetic and organic nitrates is poorly constrained. Here, we present a study on the N and O isotope composition of nitrate-based fertilizers. The δ(15)N values of synthetic and natural nitrates were 0 ± 2 ‰ similar to the air N2 from which they are derived. The δ(18)O values of synthetic nitrates were 23 ± 3 ‰, similar to air O2, and natural nitrate fertilizer δ(18)O values (55 ± 5 ‰) were similar to those observed in atmospheric nitrate. The Δ(17)O values of synthetic fertilizer nitrate were approximately zero following a mass-dependent isotope relationship, while natural nitrate fertilizers had Δ(17)O values of 18 ± 2 ‰ similar to nitrate produced photochemically in the atmosphere. These narrow ranges of values can be used to assess the amount of nitrate arising from fertilizers in mixed systems where more than one nitrate source exists (soil, rivers, and lakes) using simple isotope mixing models.

  5. A record of ozone variability in South Pole Antarctic snow: Role of nitrate oxygen isotopes

    NASA Astrophysics Data System (ADS)

    McCabe, Justin R.; Thiemens, Mark H.; Savarino, Joel

    2007-06-01

    The information contained in polar nitrate has been an unresolved issue for over a decade. Here we demonstrate that atmospheric nitrate's oxygen isotopic composition (Δ17O-NO3) reflects stratospheric chemistry in winter and tropospheric chemistry in summer. Surface snow isotope mass balance indicates that nitrate oxygen isotopic composition is the result of a mixture of 25% stratospheric and 75% tropospheric origin. Analysis of trends in Δ17O-NO3 in a 6 m snow pit that provides a 26-year record reveals a strong 2.70-year cycle that anticorrelates (R = -0.77) with October-November-December column ozone. The potential mechanisms linking the records are either denitrification or increased boundary layer photochemical ozone production. We suggest that the latter is dominating the observed trend and find that surface ozone and Δ17O-NO3 correlate well before 1991 (R = 0.93). After 1991, however, the records show no significant relationship, indicating an altered oxidative environment consistent with current understanding of a highly oxidizing atmosphere at the South Pole. The disappearance of seasonal Δ17O-NO3 trends in the surface layer at depth remain unresolved and demand further investigation of how postdepositional processes affect nitrate's oxygen isotope composition. Overall, the findings of this study present a new paleoclimate technique to investigate Antarctic nitrate records that appear to reflect trends in stratospheric ozone depletion by recording tropospheric surface ozone variability.

  6. Oxygen Isotopes in Tree Rings: A 345 Year Record of Precipitation in Amazonia

    NASA Astrophysics Data System (ADS)

    Jenkins, H. S.; Baker, P. A.; Evans, M. N.

    2008-12-01

    The Amazon basin is one of the world's key centers of atmospheric convection and acts as an engine for global hydrologic circulation. Despite its importance, a paucity of high resolution climate data exists for this region, in large part due to a poor instrumental record. The oxygen isotopic measurement of meteoric water has been used extensively to reconstruct past temperatures derived from ice cores, corals, and tree rings but is only recently recognized as a precipitation proxy in the tropics. Here we present a continuous, highly resolved (intra-annual), 345 year oxygen isotopic record from the Madre de Dios department in Southeastern Peru. Using tropical hardwood species Dipteryx micrantha, we present oxygen (and carbon) isotopic data from digested tree ring cellulose. We also present some of the first intra-annual (early wood versus late wood) isotopic data on this old growth tropical species. We demonstrate the utility of Amazon tropical tree rings to accurately record rainfall. We also identify that this meteoric water was delivered to the region via the South American Low-level Jet (SALLJ), which develops over the Atlantic and is the major water source during the South American Summer Monsoon.

  7. Stable carbon, oxygen, and nitrogen, isotope analysis of plants from a South Asian tropical forest: Implications for primatology.

    PubMed

    Roberts, Patrick; Blumenthal, Scott A; Dittus, Wolfgang; Wedage, Oshan; Lee-Thorp, Julia A

    2017-03-27

    Stable isotope analysis of primate tissues in tropical forest contexts is an increasingly popular means of obtaining information about niche distinctions among sympatric species, including preferences in feeding height, forest canopy density, plant parts, and trophism. However, issues of equifinality mean that feeding height, canopy density, as well as the plant parts and plant species consumed, may produce similar or confounding effects. With a few exceptions, researchers have so far relied largely on general principles and/or limited plant data from the study area as references for deducing the predominant drivers of primate isotope variation. Here, we explore variation in the stable carbon (δ(13) C), nitrogen (δ(15) N), and oxygen (δ(18) O) isotope ratios of 288 plant samples identified as important to the three primate species from the Polonnaruwa Nature Sanctuary, Sri Lanka, relative to plant part, season, and canopy height. Our results show that plant part and height have the greatest effect on the δ(13) C and δ(18) O measurements of plants of immediate relevance to the primates, Macaca sinica, Semnopithecus priam thersites, and Trachypithecus vetulus, living in this monsoonal tropical forest. We find no influence of plant part, height or season on the δ(15) N of measured plants. While the plant part effect is particularly pronounced in δ(13) C between fruits and leaves, differential feeding height, and plant taxonomy influence plant δ(13) C and δ(18) O differences in addition to plant organ. Given that species composition in different regions and forest types will differ, the results urge caution in extrapolating general isotopic trends without substantial local baselines studies.

  8. Nitrogen and Oxygen Isotopes of Low-Level Nitrate in Groundwater For Environmental Forensics

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2009-05-01

    Sources of nitrate in water from human activities include fertilizers, animal feedlots, septic systems, wastewater treatment lagoons, animal wastes, industrial wastes and food processing wastes. Nitrogen and Oxygen isotopic analysis of nitrate in groundwater is essential to source identification and environmental forensics as nitrate from different sources carry distinctly different N and O isotopic compositions. Nitrate is extracted from groundwater samples and converted into AgNO3 using ion exchange techniques. The purified AgNO3 is then broken down into N2 and CO for N and O isotopic measurement. Since nitrate concentrations in natural ground waters are usually less than 2 mg/L, however, such method has been limited by minimum sample size it requires, in liters, which is highly nitrate concentration dependent. Here we report a TurboVap- Denitrifier method for N and O isotopic measurement of low-level dissolved nitrate, based on sample evaporation and isotopic analysis of nitrous oxide generated from nitrate by denitrifying bacteria that lack N2O- reductase activity. For most groundwater samples with mg/L-level of nitrate direct injection of water samples in mLs is applied. The volume of sample is adjusted according to its nitrate concentration to achieve a final sample size optimal for the system. For water samples with ug/L-level of nitrate, nitrate is highly concentrated using a TurboVap evaporator, followed by isotopic measurement with Denitrifier method. Benefits of TurboVap- Denitrifier method include high sensitivity and better precision in both isotopic data. This method applies to both freshwater and seawater. The analyses of isotopic reference materials in nitrate-free de-ionized water and seawater are included as method controls to correct for any blank effects. The isotopic data from groundwater and ocean profiles demonstrate the consistency of the data produced by the TurboVap-Denitrifier method.

  9. In situ SIMS oxygen isotope analysis of olivine in the Tibetan mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Zhao, Zhidan; Zhu, Di-Cheng; Liu, Dong; Mo, Xuanxue

    2016-04-01

    Although the mantle-derived xenoliths from Lhasa terrane provide a means of directly investigating the mantle underlying the southern part of the plateau, they were rarely found in the region. The only case of mantle xenoliths came from the Sailipu ultrapotassic volcanic rocks, erupted at ˜17 Ma, which have indicated that the subcontinental mantle of southern Tibetan Plateau is hot and strongly influenced by metasomatism (Zhao et al., 2008a, b; Liu et al., 2011). A further study by Liu et al.(2014) of in-situ oxygen isotope of olivine crystals in Sailipu mantle xenoliths identify a metasomatized mantle reservoir that interpreted as the sub-arc lithospheric mantle, with anomalously enriched oxygen isotopes (δ18O=8.03). Here we present oxygen isotopes data on the Sailipu mantle xenolith olivines, using different method of sample preparation. Mantle xenoliths (less than 1 cm in diameter) together originally with their host volcanic rocks were prepared in epoxy adjacent to grains of a San Carlos olivine intralaboratory standard and then polished to a flat and smooth surface. Oxygen isotope compositions of olivines occurs both in mantle xenolith and as phenocryst in the host rock, were analyzed in situ using CAMECA SIMS-1280 ion microprobe at the Institute of Geology and Geophysics, Chinese Academy of Sciences. We also performed traditional oxygen isotope analysis on three olivine phenocrysts separates from the host lava. Our new data show: (1) The mantle xenolith olivines have typical mantle oxygen isotopic composition (δ18O=4.8-8.0‰ with average of 5.5±0.2‰ n=105) with variety Fo#(78-90), (2) Oxygen isotopes of situ olivine phenocrysts in the Sailipu lavas (δ18O=7.1-9.2‰ Fo#=70-84, n=66), are similar to that of the whole rock (δ18O=7.0-9.4‰ Fo#=64-74, n=8, Zhao et al., 2009), and three olivine phenocryst grains (δ18O=7.2-7.8); (3) The intralaboratory standard of San Carlos olivine can be a suitable standard using for analyzing olivines with Fo not only

  10. Chemistry and oxygen isotopic composition of cluster chondrite clasts and their components in LL3 chondrites

    NASA Astrophysics Data System (ADS)

    Metzler, Knut; Pack, Andreas

    2016-02-01

    Cluster chondrites are characterized by close-fit textures of deformed and indented chondrules, taken as evidence for hot chondrule accretion (Metzler). We investigated seven cluster chondrite clasts from six brecciated LL3 chondrites and measured their bulk oxygen isotopic and chemical composition, including REE, Zr, and Hf. The same parameters were measured in situ on 93 chondrules and 4 interchondrule matrix areas. The CI-normalized REE patterns of the clasts are flat, showing LL-chondritic concentrations. The mean chemical compositions of chondrules in clasts and other LL chondrites are indistinguishable and we conclude that cluster chondrite chondrules are representative of the normal LL chondrule population. Type II chondrules are depleted in MgO, Al2O3 and refractory lithophiles (REE, Zr, Hf) by factors between 0.65 and 0.79 compared to type I chondrules. The chondrule REE patterns are basically flat with slight LREE < HREE fractionations. Many chondrules exhibit negative Eu anomalies while matrix shows a complementary pattern. Chondrules scatter along a correlation line with a slope of 0.63 in the oxygen 3-isotope diagram, interpreted as the result of O-isotope exchange between chondrule melts and 18O-rich nebular components. In one clast, a distinct anticorrelation between chondrule size and δ18O is found, which may indicate a more intense oxygen isotope exchange by smaller chondrules. In some clasts the δ18O values of type I chondrules are correlated with concentrations of SiO2 and MnO and anticorrelated with MgO, possibly due to the admixture of a SiO2- and MnO-rich component to chondrule melts during oxygen isotope exchange. Two chondrules with negative anomalies in Sm, Eu, and Yb were found and may relate their precursors to refractory material known from group III CAIs. Furthermore, three chondrules with strong LREE > HREE and Zr/Hf fractionations were detected, whose formation history remains to be explained.

  11. Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment

    NASA Astrophysics Data System (ADS)

    Antler, Gilad; Turchyn, Alexandra V.; Rennie, Victoria; Herut, Barak; Sivan, Orit

    2013-10-01

    We present new sulfur and oxygen isotope data in sulfate (δ34SSO4 and δ18OSO4, respectively), from globally distributed marine and estuary pore fluids. We use this data with a model of the biochemical steps involved in bacterial sulfate reduction (BSR) to explore how the slope on a δ18OSO4 vs. δ34SSO4 plot relates to the net sulfate reduction rate (nSRR) across a diverse range of natural environments. Our data demonstrate a correlation between the nSRR and the slope of the relative evolution of oxygen and sulfur isotopes (δ18OSO4 vs. δ34SSO4) in the residual sulfate pool, such that higher nSRR results in a lower slope (sulfur isotopes increase faster relative to oxygen isotopes). We combine these results with previously published literature data to show that this correlation scales over many orders of magnitude of nSRR. Our model of the mechanism of BSR indicates that the critical parameter for the relative evolution of oxygen and sulfur isotopes in sulfate during BSR in natural environments is the rate of intracellular sulfite oxidation. In environments where sulfate reduction is fast, such as estuaries and marginal marine environments, this sulfite reoxidation is minimal, and the δ18OSO4 increases more slowly relative to the δ34SSO4. In contrast, in environments where sulfate reduction is very slow, such as deep sea sediments, our model suggests sulfite reoxidation is far more extensive, with as much as 99% of the sulfate being thus recycled; in these environments the δ18OSO4 increases much more rapidly relative to the δ34SSO4. We speculate that the recycling of sulfite plays a physiological role during BSR, helping maintain microbial activity where the availability of the electron donor (e.g. available organic matter) is low.

  12. Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology.

    PubMed

    Gannes, L Z; Martínez del Rio, C; Koch, P

    1998-03-01

    Chemical, biological, and physical processes lead to distinctive "isotopic signatures" in biological materials that allow tracing of the origins of organic substances. Isotopic variation has been extensively used by plant physiological ecologists and by paleontologists, and recently ecologists have adopted the use of stable isotopes to measure ecosystem patterns and processes. To date, animal physiological ecologists have made minimal use of naturally occurring stable isotopes as tracers. Here we provide a review of the current and potential uses of naturally occurring stable isotopes in animal physiological ecology. We outline the physical and biological processes that lead to variation in isotopic abundance in plants and animals. We summarize current uses in animal physiological ecology (diet reconstruction and animal movement patterns), and suggest areas of research where the use of stable isotopes can be fruitful (protein balance and turnover and the allocation of dietary nutrients). We argue that animal physiological ecologists can benefit from including the measurement of naturally occurring stable isotopes in their battery of techniques. We also argue that animal physiologists can make an important contribution to the emerging field of stable isotopes in biology by testing experimentally the plethora of assumptions upon which the techniques rely.

  13. Oxygen isotopes of phosphatic compounds - Application for marine particulate matter, sediments and soils

    USGS Publications Warehouse

    McLaughlin, K.; Paytan, A.; Kendall, C.; Silva, S.

    2006-01-01

    The phosphate oxygen isotopic composition in naturally occurring particulate phosphatic compounds (??18Op) can be used as a tracer for phosphate sources and to evaluate the cycling of phosphorus (P) in the environment. However, phosphatic compounds must be converted to silver phosphate prior to isotopic analysis, a process that involves digestion of particulate matter in acid. This digestion will hydrolyze some of the phosphatic compounds such that oxygen from the acid solution will be incorporated into the sample as these phosphatic compo