Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting.
Cho, In Sun; Logar, Manca; Lee, Chi Hwan; Cai, Lili; Prinz, Fritz B; Zheng, Xiaolin
2014-01-08
We report a new flame reduction method to generate controllable amount of oxygen vacancies in TiO2 nanowires that leads to nearly three times improvement in the photoelectrochemical (PEC) water-splitting performance. The flame reduction method has unique advantages of a high temperature (>1000 °C), ultrafast heating rate, tunable reduction environment, and open-atmosphere operation, so it enables rapid formation of oxygen vacancies (less than one minute) without damaging the nanowire morphology and crystallinity and is even applicable to various metal oxides. Significantly, we show that flame reduction greatly improves the saturation photocurrent densities of TiO2 nanowires (2.7 times higher), α-Fe2O3 nanowires (9.4 times higher), ZnO nanowires (2.0 times higher), and BiVO4 thin film (4.3 times higher) in comparison to untreated control samples for PEC water-splitting applications.
Giant onsite electronic entropy enhances the performance of ceria for water splitting.
Naghavi, S Shahab; Emery, Antoine A; Hansen, Heine A; Zhou, Fei; Ozolins, Vidvuds; Wolverton, Chris
2017-08-18
Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Ce 4+ /Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.Solid-state entropy of reduction increases the thermodynamic efficiency of ceria for two-step thermochemical water splitting. Here, the authors report a large and different source of entropy, the onsite electronic configurational entropy arising from coupling between orbital and spin angular momenta in f orbitals.
Li, Fei; Yu, Fengshou; Du, Jian; Wang, Yong; Zhu, Yong; Li, Xiaona; Sun, Licheng
2017-10-18
Water splitting mediated by electron-coupled-proton buffer (ECPB) provides an efficient way to avoid gas mixing by separating oxygen evolution from hydrogen evolution in space and time. Though electrochemical and photoelectrochemcial water oxidation have been incorporated in such a two-step water splitting system, alternative ways to reduce the cost and energy input for decoupling two half-reactions are desired. Herein, we show the feasibility of photocatalytic oxygen evolution in a powder system with BiVO 4 as a photocatalyst and polyoxometalate H 3 PMo 12 O 40 as an electron and proton acceptor. The resulting reaction mixture was allowed to be directly used for the subsequent hydrogen evolution with the reduced H 3 PMo 12 O 40 as electron and proton donors. Our system exhibits excellent stability in repeated oxygen and hydrogen evolution, which brings considerable convenience to decoupled water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Giant onsite electronic entropy enhances the performance of ceria for water splitting
Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine A.; ...
2017-08-18
Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Cemore » 4+/Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.« less
Kinetic Coupling of Water Splitting and Photoreforming on SrTiO 3 -Based Photocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanwald, Kai E.; Berto, Tobias F.; Jentys, Andreas
Coupling the anodic half-reactions of overall water splitting and oxygenate photoreforming (i.e., proton reduction and oxygenate oxidations) on Al-doped SrTiO3 decorated with a co-catalyst enables efficient photocatalytic H2 generation along with oxygenate conversion without accumulating undesired intermediates such as formaldehyde. The net H2-evolution rates result from the interplay between water oxidation, oxygenate oxidation, and the back-reaction of H2 and O2 to water. When the latter pathway is quantitatively suppressed (e.g., on RhCrOx co-catalyst or in excess of oxygenated hydrocarbons), the initial H2-evolution rates are independent of the oxygenate nature and concentration. This is a consequence of the reduction equivalents formore » H2-evolution provided by water oxidation compensating changes in the rates of oxygenate conversion. Thus, under conditions of suppressed back-reaction, water and oxygenate oxidations have equal quantum efficiencies. The selectivities to water and oxygenate oxidation depend on oxygenate nature and concentration. Transformations mediated by indirect hole transfer dominate as a result of the water oxidation at the anode and the associated intermediates generated in O2-evolution catalysis (e.g. ·OH, ·O and ·OOH). On the undecorated semiconductor, the O2 produced during overall water splitting is reductively activated to participate in glycerol oxidation without consuming evolved H2. Acknowledgements The authors would like to thank ESRF in Grenoble, France, for providing beam time at the ID26 station for XAFS experiments. K.E.S. gratefully acknowledges financial support by the Fond der Chemischen Industrie (FCI). J.A.L. and O.Y.G. acknowledge support for his contribution by the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. The authors thank Xaver Hecht for BET measurements, Martin Neukamm for SEM and AAS measurements and Dr. Udishnu Sanyal for TEM imaging. Christine Schwarz is acknowledged for technical assistance in NMR experiments.« less
Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme
Zhang, Junshe; Haribal, Vasudev; Li, Fanxing
2017-01-01
We report iron-containing mixed-oxide nanocomposites as highly effective redox materials for thermochemical CO2 splitting and methane partial oxidation in a cyclic redox scheme, where methane was introduced as an oxygen “sink” to promote the reduction of the redox materials followed by reoxidation through CO2 splitting. Up to 96% syngas selectivity in the methane partial oxidation step and close to complete conversion of CO2 to CO in the CO2-splitting step were achieved at 900° to 980°C with good redox stability. The productivity and production rate of CO in the CO2-splitting step were about seven times higher than those in state-of-the-art solar-thermal CO2-splitting processes, which are carried out at significantly higher temperatures. The proposed approach can potentially be applied for acetic acid synthesis with up to 84% reduction in CO2 emission when compared to state-of-the-art processes. PMID:28875171
Chen, Tsun-Ren; Wu, Fang-Siou; Lee, Hsiu-Pen; Chen, Kelvin H-C
2016-03-23
A pair of diiridium bimetallic complexes exhibit a special type of oxidation-reduction reaction that could directly split carbonate into carbon monoxide and molecular oxygen via a low-energy pathway needing no sacrificial reagent. One of the bimetallic complexes, Ir(III)(μ-Cl)2Ir(III), can catch carbonato group from carbonate and reduce it to CO. The second complex, the rare bimetallic complex Ir(IV)(μ-oxo)2Ir(IV), can react with chlorine to release O2 by the oxidation of oxygen ions with synergistic oxidative effect of iridium ions and chlorine atoms. The activation energy needed for the key reaction is quite low (∼20 kJ/mol), which is far less than the dissociation energy of the C═O bond in CO2 (∼750 kJ/mol). These diiridium bimetallic complexes could be applied as a redox switch to split carbonate or combined with well-known processes in the chemical industry to build up a catalytic system to directly split CO2 into CO and O2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young
2011-08-29
Oxygen-deficient BaTiO 3-δ exhibits an insulator-metal transition with increasing δ. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO 3-δ. Despite its significant impact on resistivity, slight oxygen reduction (δ=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (δ=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in themore » highly oxygen-reduced BaTiO 3-δ is due to the appearance of nonferroelectric cubic lattice.« less
Aijaz, Arshad; Masa, Justus; Rösler, Christoph; Xia, Wei; Weide, Philipp; Botz, Alexander J R; Fischer, Roland A; Schuhmann, Wolfgang; Muhler, Martin
2016-03-14
Efficient reversible oxygen electrodes for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are vitally important for various energy conversion devices, such as regenerative fuel cells and metal-air batteries. However, realization of such electrodes is impeded by insufficient activity and instability of electrocatalysts for both water splitting and oxygen reduction. We report highly active bifunctional electrocatalysts for oxygen electrodes comprising core-shell Co@Co3O4 nanoparticles embedded in CNT-grafted N-doped carbon-polyhedra obtained by the pyrolysis of cobalt metal-organic framework (ZIF-67) in a reductive H2 atmosphere and subsequent controlled oxidative calcination. The catalysts afford 0.85 V reversible overvoltage in 0.1 m KOH, surpassing Pt/C, IrO2 , and RuO2 and thus ranking them among one of the best non-precious-metal electrocatalysts for reversible oxygen electrodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis.
Liu, Chong; Colón, Brendan C; Ziesack, Marika; Silver, Pamela A; Nocera, Daniel G
2016-06-03
Artificial photosynthetic systems can store solar energy and chemically reduce CO2 We developed a hybrid water splitting-biosynthetic system based on a biocompatible Earth-abundant inorganic catalyst system to split water into molecular hydrogen and oxygen (H2 and O2) at low driving voltages. When grown in contact with these catalysts, Ralstonia eutropha consumed the produced H2 to synthesize biomass and fuels or chemical products from low CO2 concentration in the presence of O2 This scalable system has a CO2 reduction energy efficiency of ~50% when producing bacterial biomass and liquid fusel alcohols, scrubbing 180 grams of CO2 per kilowatt-hour of electricity. Coupling this hybrid device to existing photovoltaic systems would yield a CO2 reduction energy efficiency of ~10%, exceeding that of natural photosynthetic systems. Copyright © 2016, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine A.
Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Cemore » 4+/Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.« less
Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO 3 Perovskites
Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; ...
2016-02-11
Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. Still, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO 3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting ofmore » the e g orbitals, which can customize orbital asymmetry at the surface. Lastly, analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides.« less
Roper, Jaimie A; Stegemöller, Elizabeth L; Tillman, Mark D; Hass, Chris J
2013-03-01
During split-belt treadmill walking the speed of the treadmill under one limb is faster than the belt under the contralateral limb. This unique intervention has shown evidence of acutely improving gait impairments in individuals with neurologic impairment such as stroke and Parkinson's disease. However, oxygen use, heart rate and perceived effort associated with split-belt treadmill walking are unknown and may limit the utility of this locomotor intervention. To better understand the intensity of this new intervention, this study was undertaken to examine the oxygen consumption, oxygen cost, heart rate, and rating of perceived exertion associated with split-belt treadmill walking in young healthy adults. Fifteen participants completed three sessions of treadmill walking: slow speed with belts tied, fast speed with belts tied, and split-belt walking with one leg walking at the fast speed and one leg walking at the slow speed. Oxygen consumption, heart rate, and rating of perceived exertion were collected during each walking condition and oxygen cost was calculated. Results revealed that oxygen consumption, heart rate, and perceived effort associated with split-belt walking were higher than slow treadmill walking, but only oxygen consumption was significantly lower during both split-belt walking than fast treadmill walking. Oxygen cost associated with slow treadmill walking was significantly higher than fast treadmill walking. These findings have implications for using split-belt treadmill walking as a rehabilitation tool as the cost associated with split-belt treadmill walking may not be higher or potentially more detrimental than that associated with previously used treadmill training rehabilitation strategies.
Greenbaum, Elias
1987-01-01
The invention is primarily a metallized chloroplast composition for use in a photosynthetic reaction. A catalytic metal is precipitated on a chloroplast membrane at the location where a catalyzed reduction reaction occurs. This metallized chloroplast is stabilized by depositing it on a support medium such as fiber so that it can be easily handled. A possible application of this invention is the splitting of water to form hydrogen and oxygen that can be used as a renewable energy source.
Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy
NASA Technical Reports Server (NTRS)
Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.
1991-01-01
Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.
Exposing the Complex III Qo semiquinone radical
Zhang, Haibo; Osyczka, Artur; Dutton, P. L.; Moser, Christopher C.
2012-01-01
Complex III Qo site semiquinone has been assigned pivotal roles in productive energy-conversion and destructive superoxide generation. After a 30 year search, a genetic heme bH knockout arrests this transient semiquinone EPR radical, revealing the natural engineering balance pitting energy-conserving, short-circuit minimizing, split electron transfer and catalytic speed against damaging oxygen reduction. PMID:17560537
Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO 3 oxides
Montoya, Joseph H.; Doyle, Andrew D.; Nørskov, Jens K.; ...
2018-01-19
The reactivity of solid oxide surfaces towards adsorption of oxygen and hydrogen is a key metric for the design of new catalysts for electrochemical water splitting. Here, in this paper, we report on trends in the adsorption energy of different adsorbed intermediates derived from the oxidation and reduction of water for ternary ABO 3 oxides in the cubic perovskite structure. Our findings support a previously reported trend that rationalizes the observed lower bound in oxygen evolution (OER) overpotentials from correlations in OH* and OOH* adsorption energies. In addition, we report hydrogen adsorption energies that may be used to estimate hydrogenmore » evolution (HER) overpotentials along with potential metrics for electrochemical metastability in reducing environments. Finally, we also report and discuss trends between atom-projected density of states and adsorption energies, which may enable a design criteria from the local electronic structure of the active site.« less
Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO 3 oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montoya, Joseph H.; Doyle, Andrew D.; Nørskov, Jens K.
The reactivity of solid oxide surfaces towards adsorption of oxygen and hydrogen is a key metric for the design of new catalysts for electrochemical water splitting. Here, in this paper, we report on trends in the adsorption energy of different adsorbed intermediates derived from the oxidation and reduction of water for ternary ABO 3 oxides in the cubic perovskite structure. Our findings support a previously reported trend that rationalizes the observed lower bound in oxygen evolution (OER) overpotentials from correlations in OH* and OOH* adsorption energies. In addition, we report hydrogen adsorption energies that may be used to estimate hydrogenmore » evolution (HER) overpotentials along with potential metrics for electrochemical metastability in reducing environments. Finally, we also report and discuss trends between atom-projected density of states and adsorption energies, which may enable a design criteria from the local electronic structure of the active site.« less
Calcium Ligation in Photosystem II under Inhibiting Conditions
Barry, Bridgette A.; Hicks, Charles; De Riso, Antonio; Jenson, David L.
2005-01-01
In oxygenic photosynthesis, PSII carries out the oxidation of water and reduction of plastoquinone. The product of water oxidation is molecular oxygen. The water splitting complex is located on the lumenal side of the PSII reaction center and contains manganese, calcium, and chloride. Four sequential photooxidation reactions are required to generate oxygen from water; the five sequentially oxidized forms of the water splitting complex are known as the Sn states, where n refers to the number of oxidizing equivalents stored. Calcium plays a role in water oxidation; removal of calcium is associated with an inhibition of the S state cycle. Although calcium can be replaced by other cations in vitro, only strontium maintains activity, and the steady-state rate of oxygen evolution is decreased in strontium-reconstituted PSII. In this article, we study the role of calcium in PSII that is limited in water content. We report that strontium substitution or 18OH2 exchange causes conformational changes in the calcium ligation shell. The conformational change is detected because of a perturbation to calcium ligation during the S1 to S2 and S2 to S3 transition under water-limited conditions. PMID:15985425
Interfacial dynamics and solar fuel formation in dye-sensitized photoelectrosynthesis cells.
Song, Wenjing; Chen, Zuofeng; Glasson, Christopher R K; Hanson, Kenneth; Luo, Hanlin; Norris, Michael R; Ashford, Dennis L; Concepcion, Javier J; Brennaman, M Kyle; Meyer, Thomas J
2012-08-27
Dye-sensitized photoelectrosynthesis cells (DSPECs) represent a promising approach to solar fuels with solar-energy storage in chemical bonds. The targets are water splitting and carbon dioxide reduction by water to CO, other oxygenates, or hydrocarbons. DSPECs are based on dye-sensitized solar cells (DSSCs) but with photoexcitation driving physically separated solar fuel half reactions. A systematic basis for DSPECs is available based on a modular approach with light absorption/excited-state electron injection, and catalyst activation assembled in integrated structures. Progress has been made on catalysts for water oxidation and CO(2) reduction, dynamics of electron injection, back electron transfer, and photostability under conditions appropriate for water splitting. With added reductive scavengers, as surrogates for water oxidation, DSPECs have been investigated for hydrogen generation based on transient absorption and photocurrent measurements. Detailed insights are emerging which define kinetic and thermodynamic requirements for the individual processes underlying DSPEC performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical, electrochemical and photochemical molecular water oxidation catalysts.
Bofill, Roger; García-Antón, Jordi; Escriche, Lluís; Sala, Xavier
2015-11-01
Hydrogen release from the splitting of water by simply using sunlight as the only energy source is an old human dream that could finally become a reality. This process involves both the reduction and oxidation of water into hydrogen and oxygen, respectively. While the first process has been fairly overcome, the conversion of water into oxygen has been traditionally the bottleneck process hampering the development of a sustainable hydrogen production based on water splitting. Fortunately, a revolution in this field has occurred during the past decade, since many research groups have been conducting an intense research in this area. Thus, while molecular, well-characterized catalysts able to oxidize water were scarce just five years ago, now a wide range of transition metal based compounds has been reported as active catalysts for this transformation. This review reports the most prominent key advances in the field, covering either examples where the catalysis is triggered chemically, electrochemically or photochemically. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Wei-Liang; Chiou, Tzung-Wen; Chen, Chien-Hong; Yu, Yi-Ju; Chu, Li-Kang; Liaw, Wen-Feng
2018-05-29
In artificial photosynthesis, water splitting plays an important role for the conversion and storage of renewable energy sources. Here, we report a study on the electrocatalytic properties of the electrodeposited-film electrodes derived from irreversible electro-reduction/-oxidation of a molecular dinitrosyl iron complex (DNIC) {Fe(NO)2}9 [(Me6tren)Fe(NO)2]+ (Me6tren = tris[2-(dimethylamino)ethyl]amine) for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline solution, individually. For HER, the overpotential and Tafel slope for the electrodeposited-film cathode are lower than those of the equiv.-weight Pt/C electrode. The electrodeposited-film anode for the OER is stable for 139 h. Integration of the electrodeposited-film cathode and anode into a single electrode-pair device for electrocatalytic water splitting exhibits an onset voltage of 1.77 V, achieving a geometrical current density of 10 mA cm-2.
ERIC Educational Resources Information Center
Zhang, Ruinan; Liu, Song; Yuan, Hongyan; Xiao, Dan; Choi, Martin M. F.
2012-01-01
Photocatalytic water splitting by semiconductor photocatalysts has attracted considerable attention in the past few decades. In this experiment, nanosized titanium dioxide (nano-TiO[subscript 2]) particles are used to photocatalytically split water, which is then monitored by an oxygen sensor. Sacrificial reagents such as organics (EDTA) and metal…
Zhang, Mingdao; Dai, Quanbin; Zheng, Hegen; Chen, Mindong; Dai, Liming
2018-03-01
Metal-organic frameworks (MOFs) and MOF-derived materials have recently attracted considerable interest as alternatives to noble-metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N-C materials (C-MOF-C2-T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C-MOF-C2-900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N-doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO 2 , respectively. Primary Zn-air batteries based on C-MOF-900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h g Zn -1 under 10 mA cm -2 . Rechargeable Zn-air batteries based on C-MOF-C2-900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm -2 ), along with an excellent cycling stability with no increase in polarization even after 120 h - outperform their counterparts based on noble-metal-based air electrodes. The resultant rechargeable Zn-air batteries are used to efficiently power electrochemical water-splitting systems, demonstrating promising potential as integrated green energy systems for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Barber, James
2017-01-01
The biological energy cycle of our planet is driven by photosynthesis whereby sunlight is absorbed by chlorophyll and other accessory pigments. The excitation energy is then efficiently transferred to a reaction centre where charge separation occurs in a few picoseconds. In the case of photosystem II (PSII), the energy of the charge transfer state is used to split water into oxygen and reducing equivalents. This is accomplished by the relatively low energy content of four photons of visible light. PSII is a large multi-subunit membrane protein complex embedded in the lipid environment of the thylakoid membranes of plants, algae and cyanobacteria. Four high energy electrons, together with four protons (4H+), are used to reduce plastoquinone (PQ), the terminal electron acceptor of PSII, to plastoquinol (PQH2). PQH2 passes its reducing equivalents to an electron transfer chain which feeds into photosystem I (PSI) where they gain additional reducing potential from a second light reaction which is necessary to drive CO2 reduction. The catalytic centre of PSII consists of a cluster of four Mn ions and a Ca2+ linked by oxo bonds. In addition, there are seven amino acid ligands. In this Article, I discuss the structure of this metal cluster, its stability and the probability that an acid-base (nucleophilic-electrophilic) mechanism catalyses the water splitting reaction on the surface of the metal-cluster. Evidence for this mechanism is presented from studies on water splitting catalysts consisting of organo-complexes of ruthenium and manganese and also by comparison with the enzymology of carbon monoxide dehydrogenase (CODH). Finally the relevance of our understanding of PSII is discussed in terms of artificial photosynthesis with emphasis on inorganic water splitting catalysts as oxygen generating photoelectrodes.
Ghosh, Srabanti; Basu, Rajendra N
2018-06-21
Electrocatalytic oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) have attracted widespread attention because of their important role in the application of various energy storage and conversion devices, such as fuel cells, metal-air batteries and water splitting devices. However, the sluggish kinetics of the HER/OER/ORR and their dependency on expensive noble metal catalysts (e.g., Pt) obstruct their large-scale application. Hence, the development of efficient and robust bifunctional or trifunctional electrocatalysts in nanodimension for both oxygen reduction/evolution and hydrogen evolution reactions is highly desired and challenging for their commercialization in renewable energy technologies. This review describes some recent developments in the discovery of bifunctional or trifunctional nanostructured catalysts with improved performances for application in rechargeable metal-air batteries and fuel cells. The role of the electronic structure and surface redox chemistry of nanocatalysts in the improvement of their performance for the ORR/OER/HER under an alkaline medium is highlighted and the associated reaction mechanisms developed in the recent literature are also summarized.
Bui, Hoa Thi; Shrestha, Nabeen K; Khadtare, Shubhangi; Bathula, Chinna D; Giebeler, Lars; Noh, Yong-Young; Han, Sung-Hwan
2017-05-31
One of the challenges in obtaining hydrogen economically by electrochemical water splitting is to identify and substitute cost-effective earth-abundant materials for the traditionally used precious-metal-based water-splitting electrocatalysts. Herein, we report the electrochemical formation of a thin film of nickel-based Prussian blue analogue hexacyanoferrate (Ni-HCF) through the anodization of a nickel substrate in ferricyanide electrolyte. As compared to the traditionally used Nafion-binder-based bulk film, the anodically obtained binder-free Ni-HCF film demonstrates superior performance in the electrochemical hydrogen evolution reaction (HER), which is highly competitive with that shown by a Pt-plate electrode. The HER onset and the benchmark cathodic current density of 10 mA cm -2 were achieved at small overpotentials of 15 mV and 0.2 V (not iR-corrected), respectively, in 1 M KOH electrolyte, together with the long-term electrochemical durability of the film. Further, a metal-HCF-electrode-based full water-splitting device consisting of the binder-free Ni-HCF film on a Ni plate and a one-dimensional Co-HCF film on carbon paper as the electrodes for the HER and the oxygen evolution reaction (OER), respectively, was designed and was found to demonstrate very promising performance for overall water splitting.
Sharma, Vivek; Enkavi, Giray; Vattulainen, Ilpo; Róg, Tomasz; Wikström, Mårten
2015-01-01
Molecular oxygen acts as the terminal electron sink in the respiratory chains of aerobic organisms. Cytochrome c oxidase in the inner membrane of mitochondria and the plasma membrane of bacteria catalyzes the reduction of oxygen to water, and couples the free energy of the reaction to proton pumping across the membrane. The proton-pumping activity contributes to the proton electrochemical gradient, which drives the synthesis of ATP. Based on kinetic experiments on the O–O bond splitting transition of the catalytic cycle (A → PR), it has been proposed that the electron transfer to the binuclear iron–copper center of O2 reduction initiates the proton pump mechanism. This key electron transfer event is coupled to an internal proton transfer from a conserved glutamic acid to the proton-loading site of the pump. However, the proton may instead be transferred to the binuclear center to complete the oxygen reduction chemistry, which would constitute a short-circuit. Based on atomistic molecular dynamics simulations of cytochrome c oxidase in an explicit membrane–solvent environment, complemented by related free-energy calculations, we propose that this short-circuit is effectively prevented by a redox-state–dependent organization of water molecules within the protein structure that gates the proton transfer pathway. PMID:25646428
Multilayer Ni/Fe thin films as oxygen evolution catalysts for solar fuel production
NASA Astrophysics Data System (ADS)
Biset-Peiró, M.; Murcia-López, S.; Fàbrega, C.; Morante, J. R.; Andreu, T.
2017-03-01
The slow kinetics and high overpotential of the oxygen evolution reaction is one of the main limiting factors to achieve the minimum required performances of the so-called photoelectrochemical water splitting systems. An oxygen evolution catalyst (OEC) becomes essential in order to perform this process with higher efficiency. Herein, we report the physical, optical and electrochemical characterization of multilayer Ni/Fe thin films as earth-abundant OEC, to avoid the use of platinum group metals (PGM). Uniform films of thicknesses ranging from 1 to 10 nm were fabricated by sequential and alternate thermal evaporation of Ni and Fe. It was found that the successive deposition allows the fabrication of a Ni terminated surface that does not need activation due to the Fe underlayer. The lowest overpotential achieved for NiFe was 370 mV at 10 mA cm-2 and a Tafel slope of 37 mV dec-1 with 1 nm thickness and 95% transmittance. Finally, NiFe OEC was implemented on top of Mo:BiVO4 photoanodes which resulted in a reduction of the open circuit potential of 0.2 V and up to five fold increase of the oxidation efficiency at 0.7 VRHE. The results presented facilitate the practical implementation of BiVO4 photoanodes in tandem configuration for bias free photoassisted water splitting.
Stability and migration of large oxygen clusters in UO(2+x): density functional theory calculations.
Andersson, D A; Espinosa-Faller, F J; Uberuaga, B P; Conradson, S D
2012-06-21
Using ab initio molecular dynamics simulations and nudged elastic band calculations we examine the finite temperature stability, transition pathways, and migration mechanisms of large oxygen clusters in UO(2+x). Here we specifically consider the recently proposed split quad-interstitial and cuboctahedral oxygen clusters. It is shown that isolated cuboctahedral clusters may transform into more stable configurations that are closely linked to the split quad-interstitial. The split quad-interstitial is stable with respect to single interstitials occupying the empty octahedral holes of the UO(2) lattice. In order to better understand discrepancies between theory and experiments, the simulated atomic pair distribution functions for the split quad-interstitial structures are analyzed with respect to the distribution function for U(4)O(9) previously obtained from neutron diffraction data. Our nudged elastic band calculations suggest that the split quad-interstitial may migrate by translating one of its constituent di-interstitial clusters via a barrier that is lower than the corresponding barrier for individual interstitials, but higher than the barrier for the most stable di-interstitial cluster.
Decades After Developing Technology, NREL Sets New Solar-to-Hydrogen Record
recently achieved 16.2% solar-to-hydrogen conversion efficiency. Photo by Dennis Schroeder Innovation is to split water into hydrogen and oxygen. Photo by Dennis Schroeder Photo shows a photoelectrochemical device to split water into hydrogen and oxygen. Photo by Dennis Schroeder Second Look Leads to Record
Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis.
Zhu, Yinlong; Zhou, Wei; Shao, Zongping
2017-03-01
Oxygen electrocatalysis, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), plays an extremely important role in oxygen-based renewable-energy technologies such as rechargeable metal-air batteries, regenerative fuel cells and water splitting. Perovskite oxides have recently attracted increasing interest and hold great promise as efficient ORR and OER catalysts to replace noble-metal-based catalysts, owing to their high intrinsic catalytic activity, abundant variety, low cost, and rich resources. The introduction of perovskite-carbon interfaces by forming perovskite/carbon composites may bring a synergistic effect between the two phases, thus benefiting the oxygen electrocatalysis. This review provides a comprehensive overview of recent advances in perovskite/carbon composites for oxygen electrocatalysis in alkaline media, aiming to provide insights into the key parameters that influence the ORR/OER performance of the composites, including the physical/chemical properties and morphologies of the perovskites, the multiple roles of carbon, the synthetic method and the synergistic effect. A special emphasis is placed on the origin of the synergistic effect associated with the interfacial interaction between the perovskite and the carbon phases for enhanced ORR/OER performance. Finally, the existing challenges and the future directions for the synthesis and development of more efficient oxygen catalysts based on perovskite/carbon composites are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Semin, Boris K; Davletshina, Lira N; Rubin, Andrei B
2015-08-01
Effects of pH, Ca(2+), and Cl(-) ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous reductants hydroquinone (H2Q) and H2O2 were studied. Two of 4 Mn cations are released by H2Q and H2O2 at pHs 5.7, 6.5, and 7.5, and their extraction does not depend on the presence of Ca(2+) and Cl(-) ions. One of Mn cations ("resistant" Mn cation) cannot be extracted by H2Q and H2O2 at any pH. Extraction of 4th Mn ion ("flexible" Mn cation) is sensitive to pH, Ca(2+), and Cl(-). This Mn cation is released by reductants at pH 6.5 but not at pHs 5.7 and 7.5. A pH dependence curve of the oxygen-evolving activity in PSII(-Ca) membranes (in the presence of exogenous Ca(2+)) has a bell-shaped form with the maximum at pH 6.5. Thus, the increase in the resistance of flexible Mn cation in OEC to the action of reductants at acidic and alkaline pHs coincides with the decrease in oxygen evolution activity at these pHs. Exogenous Ca(2+) protects the extraction of flexible Mn cation at pH 6.5. High concentration of Cl(-) anions (100 mM) shifts the pH optimum of oxygen evolution to alkaline region (around pH 7.5), while the pH of flexible Mn extraction is also shifted to alkaline pH. This result suggests that flexible Mn cation plays a key role in the water-splitting reaction. The obtained results also demonstrate that only one Mn cation in Mn4 cluster is under strong control of calcium. The change in the flexible Mn cation resistance to exogenous reductants in the presence of Ca(2+) suggests that Ca(2+) can control the redox potential of this cation.
'water splitting' by titanium exchanged zeolite A. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznicki, S.M.; Eyring, E.M.
1978-09-01
Visually detectable and chromatographically and mass spectrally identified hydrogen gas evolves from titanium (III) exchanged zeolite A immersed in water and illuminated with visible light. Titanium(III) exchanged zeolite X and zeolite Y do not produce this reaction. A photochemically produced, oxygenated titanium free radical (detected by electron spin resonance) not previously described is the species in the zeolite that reduces protons to molecular hydrogen. The other product of this reduction step is a nonradical, oxygenated titanium species of probable empirical formula TiO4. Heating the spent oxygenated titanium containing zeolite A under vacuum at 375 C restores over fifty percent ofmore » the free radical. Unlike previously reported systems, heating does not restore the original aquotitanium(III) species in the zeolite. Thus a means other than heating must be found to achieve a closed photochemical cycle that harnesses visible solar energy in the production of molecular hydrogen. The titanium exchanged zeolite A does, however, lend itself to a thermolysis of water previously described by Kasai and Bishop. (Author)« less
NASA Astrophysics Data System (ADS)
Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine
2017-09-01
Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.
The role of metals in production and scavenging of reactive oxygen species in photosystem II.
Pospíšil, Pavel
2014-07-01
Metal ions play a crucial role in enzymatic reactions in all photosynthetic organisms such as cyanobacteria, algae and plants. It well known that metal ions maintain the binding of substrate in the active site of the metalloenzymes and control the redox activity of the metalloenzyme in the enzymatic reaction. A large pigment-protein complex, PSII, known to serve as a water-plastoquinone oxidoreductase, contains three metal centers comprising non-heme iron, heme iron of Cyt b559 and the water-splitting manganese complex. Metal ions bound to PSII proteins maintain the electron transport from water to plastoquinone and regulate the pro-oxidant and antioxidant activity in PSII. In this review, attention is focused on the role of PSII metal centers in (i) the formation of superoxide anion and hydroxyl radicals by sequential one-electron reduction of molecular oxygen and the formation of hydrogen peroxide by incomplete two-electron oxidation of water; and (ii) the elimination of superoxide anion radical by one-electron oxidation and reduction (superoxide dismutase activity) and of hydrogen peroxide by two-electron oxidation and reduction (catalase activity). The balance between the formation and elimination of reactive oxygen species by PSII metal centers is discussed as an important aspect in the prevention of photo-oxidative damage of PSII proteins and lipids. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Carbon-doped BN nanosheets for metal-free photoredox catalysis
Huang, Caijin; Chen, Cheng; Zhang, Mingwen; Lin, Lihua; Ye, Xinxin; Lin, Sen; Antonietti, Markus; Wang, Xinchen
2015-01-01
The generation of sustainable and stable semiconductors for solar energy conversion by photoredox catalysis, for example, light-induced water splitting and carbon dioxide reduction, is a key challenge of modern materials chemistry. Here we present a simple synthesis of a ternary semiconductor, boron carbon nitride, and show that it can catalyse hydrogen or oxygen evolution from water as well as carbon dioxide reduction under visible light illumination. The ternary B–C–N alloy features a delocalized two-dimensional electron system with sp2 carbon incorporated in the h-BN lattice where the bandgap can be adjusted by the amount of incorporated carbon to produce unique functions. Such sustainable photocatalysts made of lightweight elements facilitate the innovative construction of photoredox cascades to utilize solar energy for chemical conversion. PMID:26159752
Photoelectrochemical water splitting in separate oxygen and hydrogen cells
NASA Astrophysics Data System (ADS)
Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner
2017-06-01
Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.
Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program
NASA Technical Reports Server (NTRS)
Kish, Jules G.
1993-01-01
The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.
Nanostructured hematite for photoelectrochemical water splitting
NASA Astrophysics Data System (ADS)
Ling, Yichuan
Solar water splitting is an environmentally friendly reaction of producing hydrogen gas. Since Honda and Fujishima first demonstrated solar water splitting in 1972 by using semiconductor titanium dioxide (TiO2) as photoanode in a photoelectrochemical (PEC) cell, extensive efforts have been invested into improving the solar-to-hydrogen (STH) conversion efficiency and lower the production cost of photoelectrochemical devices. In the last few years, hematite (alpha-Fe2O3) nanostructures have been extensively studied as photoanodes for PEC water splitting. Although nanostructured hematite can improve its photoelectrochemical water splitting performance to some extent, by increasing active sites for water oxidation and shortening photogenerated hole path length to semiconductor/electrolyte interface, the photoactivity of pristine hematite nanostructures is still limited by a number of factors, such as poor electrical conductivities and slow oxygen evolution reaction kinetics. Previous studies have shown that tin (Sn) as an n-type dopant can substantially enhance the photoactivity of hematite photoanodes by modifying their optical and electrical properties. In this thesis, I will first demonstrate an unintentional Sn-doping method via high temperature annealing of hematite nanowires grown on fluorine-doped tin oxide (FTO) substrate to enhance the donor density. In addition to introducing extrinsic dopants into semiconductors, the carrier densities of hematite can also be enhanced by creating intrinsic defects. Oxygen vacancies function as shallow donors for a number of hematite. In this regard, I have investigated the influence of oxygen content on thermal decomposition of FeOOH to induce oxygen vacancies in hematite. In the end, I have studied low temperature activation of hematite nanostructures.
Shi, Li; Zhou, Wei; Li, Zhao; Koul, Supriya; Kushima, Akihiro; Yang, Yang
2018-06-18
Nonmetallic materials with localized surface plasmon resonance (LSPR) have a great potential for solar energy harvesting applications. Exploring nonmetallic plasmonic materials is desirable yet challenging. Herein, an efficient nonmetallic plasmonic perovskite photoelectrode, namely, SrTiO 3 , with a periodically ordered nanoporous structure showing an intense LSPR in the visible light region is reported. The crystalline-core@amorphous-shell structure of the SrTiO 3 photoelectrode enables a strong LSPR due to the high charge carrier density induced by oxygen vacancies in the amorphous shell. The reversible tunability in LSPR of the SrTiO 3 photoelectrode was observed by oxidation/reduction treatment and incident angle adjusting. Such a nonmetallic plasmonic SrTiO 3 photoelectrode displays a dramatic plasmon-enhanced photoelectrochemical water splitting performance with a photocurrent density of 170.0 μA cm -2 under visible light illumination and a maximum incident photon-to-current-conversion efficiency of 4.0% in the visible light region, which are comparable to the state-of-the-art plasmonic noble metal sensitized photoelectrodes.
Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges.
Xie, Junfeng; Xie, Yi
2016-03-07
Electrocatalytic energy conversion has been considered as one of the most efficient and promising pathways for realizing energy storage and energy utilization in modern society. To improve electrocatalytic reactions, specific catalysts are needed to lower the overpotential. In the search for efficient alternatives to noble metal catalysts, transition metal nitrides have attracted considerable interest due to their high catalytic activity and unique electronic structure. Over the past few decades, numerous nitride-based catalysts have been explored with respect to their ability to drive various electrocatalytic reactions, such as the hydrogen evolution reaction and the oxygen evolution reaction to achieve water splitting and the oxygen reduction reaction coupled with the methanol oxidation reaction to construct fuel cells or rechargeable Li-O2 batteries. This Minireview provides a brief overview of recent progress on electrocatalysts based on transition metal nitrides, and outlines the current challenges and future opportunities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth.
Catling, D C; Zahnle, K J; McKay, C
2001-08-03
The low O2 content of the Archean atmosphere implies that methane should have been present at levels approximately 10(2) to 10(3) parts per million volume (ppmv) (compared with 1.7 ppmv today) given a plausible biogenic source. CH4 is favored as the greenhouse gas that countered the lower luminosity of the early Sun. But abundant CH4 implies that hydrogen escapes to space (upward arrow space) orders of magnitude faster than today. Such reductant loss oxidizes the Earth. Photosynthesis splits water into O2 and H, and methanogenesis transfers the H into CH4. Hydrogen escape after CH4 photolysis, therefore, causes a net gain of oxygen [CO2 + 2H2O --> CH4 + 2O2 --> CO2 + O2 + 4H(upward arrow space)]. Expected irreversible oxidation (approximately 10(12) to 10(13) moles oxygen per year) may help explain how Earth's surface environment became irreversibly oxidized.
Ezbiri, M.; Takacs, M.; Theiler, D.; Steinfeld, A.
2017-01-01
Nonstoichiometric metal oxides with variable valence are attractive redox materials for thermochemical and electrochemical fuel processing. To guide the design of advanced redox materials for solar-driven splitting of CO2 and/or H2O to produce CO and/or H2 (syngas), we investigate the equilibrium thermodynamics of the LaxSr1–xMnyAl1–yO3–δ perovskite family (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) and La0.6Ca0.4Mn0.8Al0.2O3–δ, and compare them to those of CeO2 as the baseline. Oxygen nonstoichiometry measurements from 1573 to 1773 K and from 0.206 to 180 mbar O2 show a tunable reduction extent, increasing with increasing Sr content. Maximal nonstoichiometry of 0.32 is established with La0.2Sr0.8Mn0.8Al0.2O3–δ at 1773 K and 2.37 mbar O2. As a trend, we find that oxygen capacities are most sensitive to the A-cation composition. Partial molar enthalpy, entropy and Gibbs free energy changes for oxide reduction are extracted from the experimental data using defect models for Mn4+/Mn3+ and Mn3+/Mn2+ redox couples. We find that perovskites exhibit typically decreasing enthalpy changes with increasing nonstoichiometries. This desirable characteristic is most pronounced by La0.6Sr0.4Mn0.4Al0.6O3–δ, rendering it attractive for CO2 and H2O splitting. Generally, perovskites show lower enthalpy and entropy changes than ceria, resulting in more favorable reduction but less favorable oxidation equilibria. The energy penalties due to larger temperature swings and excess oxidants are discussed in particular. Using electronic structure theory, we conclude with a practical methodology estimating thermodynamic activity to rationally design perovskites with variable stoichiometry and valence. PMID:28580143
Method for increasing steam decomposition in a coal gasification process
Wilson, Marvin W.
1988-01-01
The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.
Method for increasing steam decomposition in a coal gasification process
Wilson, M.W.
1987-03-23
The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.
Multispectral fundus imaging for early detection of diabetic retinopathy
NASA Astrophysics Data System (ADS)
Beach, James M.; Tiedeman, James S.; Hopkins, Mark F.; Sabharwal, Yashvinder S.
1999-04-01
Functional imaging of the retina and associated structures may provide information for early assessment of risks of developing retinopathy in diabetic patients. Here we show results of retinal oximetry performed using multi-spectral reflectance imaging techniques to assess hemoglobin (Hb) oxygen saturation (OS) in blood vessels of the inner retina and oxygen utilization at the optic nerve in diabetic patients without retinopathy and early disease during experimental hyperglycemia. Retinal images were obtained through a fundus camera and simultaneously recorded at up to four wavelengths using image-splitting modules coupled to a digital camera. Changes in OS in large retinal vessels, in average OS in disk tissue, and in the reduced state of cytochrome oxidase (CO) at the disk were determined from changes in reflectance associated with the oxidation/reduction states of Hb and CO. Step to high sugar lowered venous oxygen saturation to a degree dependent on disease duration. Moderate increase in sugar produced higher levels of reduced CO in both the disk and surrounding tissue without a detectable change in average tissue OS. Results suggest that regulation of retinal blood supply and oxygen consumption are altered by hyperglycemia and that such functional changes are present before clinical signs of retinopathy.
Ulman, Kanchan; Nguyen, Manh-Thuong; Seriani, Nicola; Gebauer, Ralph
2016-03-07
There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski-Krastanov) growth mode with a critical layer thickness of 1-2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.
NASA Astrophysics Data System (ADS)
Lv, Xiaowei; Xiao, Xin; Cao, Minglei; Bu, Yi; Wang, Chuanqing; Wang, Mingkui; Shen, Yan
2018-05-01
Modification of semiconductor photoanodes with oxygen evolution catalyst (OEC) is an effective approach for improving photoelectrochemical (PEC) water splitting efficiency. In the configuration, how to increase the activity of OEC is crucial to further improve PEC performance. Herein, a ternary photoanode system was designed to enhance PEC efficiency of photoelectrodes through introducing carbon dots (CDs), NiFe-layered double hydroxide (NiFe-LDH) nanosheets on BiVO4 particles. Systematic research shows that NiFe-LDH serves as an OEC which accelerates oxygen evolution kinetics, while the introduction of CDs can further reduce charge transfer resistance and overpotential for oxygen evolution. Under the synergistic effect of NiFe-LDH and CDs, the photocurrent and incident photon to current conversion efficiency (IPCE) of the resulting CDs/NiFe-LDH/BiVO4 photoanode is improved significantly than those of the NiFe-LDH/BiVO4 electrode. Consequently, such a ternary heterostructure could be an alternative way to further enhance PEC water splitting performance.
On the tunneling splitting in a cyclic water trimer
NASA Astrophysics Data System (ADS)
Mandziuk, Margaret
2016-09-01
We propose an alternative explanation of the "bifurcation" splittings observed for the water trimer in the VRT experiments of Saykally's group [Chem. Rev. 103 (2003) 2533]. In our interpretation, the splittings originate from the quantum delocalization of hydrogen bonded protons in the mean field potential between two oxygen neighbors. The pattern and the order of our calculated splittings is in the range of experimentally observed values. Consequently, quantum delocalization of protons should be considered seriously as the origin of experimentally observed fine splittings. The presented model can be extended to a water pentamer and, hopefully, advance our understanding of liquid water.
Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity
NASA Astrophysics Data System (ADS)
Wang, Xiangdong; Fu, Rong; Yin, Qianqian; Wu, Han; Guo, Xiaoling; Xu, Ruohan; Zhong, Qianyun
2018-04-01
Utilizing solar energy for hydrogen evolution is a great challenge for its insufficient visible-light power conversion. In this paper, we report a facile magnesiothermic reduction of commercial TiO2 nanoparticles under Ar atmosphere and at 550 °C followed by acid treatment to synthesize reduced black TiO2 powders, which possesses a unique crystalline core-amorphous shell structure composed of disordered surface and oxygen vacancies and shows significantly improved optical absorption in the visible region. The unique core-shell structure and high absorption enable the reduced black TiO2 powders to exhibit enhanced photocatalytic activity, including splitting of water in the presence of Pt as a cocatalyst and degradation of methyl blue (MB) under visible light irradiation. Photocatalytic evaluations indicate that the oxygen vacancies play key roles in the catalytic process. The maximum hydrogen production rates are 16.1 and 163 μmol h-1 g-1 under the full solar wavelength range of light and visible light, respectively. This facile and versatile method could be potentially used for large scale production of colored TiO2 with remarkable enhancement in the visible light absorption and solar-driven hydrogen production.
Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting
NASA Astrophysics Data System (ADS)
Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan
2018-04-01
We report the design, fabrication and characterization of novel TiO2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO2 nanotube photonic crystals are fabricated by annealing of anodized TiO2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm-2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.
Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting.
Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan
2018-04-02
We report the design, fabrication and characterization of novel TiO 2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO 2 nanotube photonic crystals are fabricated by annealing of anodized TiO 2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO 2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm -2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO 2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.
Zheng, Xuerong; Han, Xiaopeng; Liu, Hui; Chen, Jianjun; Fu, Dongju; Wang, Jihui; Zhong, Cheng; Deng, Yida; Hu, Wenbin
2018-04-25
The development of earth-abundant, highly active, and corrosion-resistant electrocatalysts to promote the oxygen reduction reaction (ORR) and oxygen and hydrogen evolution reactions (OER/HER) for rechargeable metal-air batteries and water-splitting devices is urgently needed. In this work, Ni x Se (0.5 ≤ x ≤ 1) nanocrystals with different crystal structures and compositions have been controllably synthesized and investigated as potential electrocatalysts for multifunctional ORR, OER, and HER in alkaline conditions. A novel hot-injection process at ambient pressure was developed to control the phase and composition of a series of Ni x Se by simply adjusting the added molar ratio of the nickel resource to triethylenetetramine. Electrochemical analysis reveals that Ni 0.5 Se nanocrystalline exhibits superior OER activity compared to its counterparts and is comparable to RuO 2 in terms of the low overpotential required to reach a current density of 10 mA cm -2 (330 mV), which may benefit from the pyrite-type crystal structure and Se enrichment in Ni 0.5 Se. For the ORR and HER, Ni 0.75 Se nanoparticles achieve the best performance including lower overpotentials and larger apparent current densities. Further investigations demonstrate that Ni 0.75 Se could not only provide an enhanced electrochemical active area but also facilitate electron transfer during the electrocatalytic process, thus contributing to the remarkable catalytic activity. As a practical application, the Ni 0.75 Se electrode enables rechargeable Zn-air battery with a considerable performance including a long cycling lifetime (200 cycles), high specific capacity (609 mA h g -1 based on the consumed Zn), and low overpotential (0.75 V) at 10 mA cm -2 . Meanwhile, the water-splitting cell setup with an anode of Ni 0.5 Se for the HER and a cathode of Ni 0.75 Se for the OER exhibits a considerable performance with low decay in activity of 12.9% under continuous polarization for 10 h. These results suggest the promising potential of nickel selenide nanocrystals as earth-abundant and high-performance electrocatalysts for metal-air batteries and alkaline water splitting.
Ezbiri, M; Takacs, M; Theiler, D; Michalsky, R; Steinfeld, A
2017-02-28
Nonstoichiometric metal oxides with variable valence are attractive redox materials for thermochemical and electrochemical fuel processing. To guide the design of advanced redox materials for solar-driven splitting of CO 2 and/or H 2 O to produce CO and/or H 2 (syngas), we investigate the equilibrium thermodynamics of the La x Sr 1- x Mn y Al 1- y O 3- δ perovskite family (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) and La 0.6 Ca 0.4 Mn 0.8 Al 0.2 O 3- δ , and compare them to those of CeO 2 as the baseline. Oxygen nonstoichiometry measurements from 1573 to 1773 K and from 0.206 to 180 mbar O 2 show a tunable reduction extent, increasing with increasing Sr content. Maximal nonstoichiometry of 0.32 is established with La 0.2 Sr 0.8 Mn 0.8 Al 0.2 O 3- δ at 1773 K and 2.37 mbar O 2 . As a trend, we find that oxygen capacities are most sensitive to the A-cation composition. Partial molar enthalpy, entropy and Gibbs free energy changes for oxide reduction are extracted from the experimental data using defect models for Mn 4+ /Mn 3+ and Mn 3+ /Mn 2+ redox couples. We find that perovskites exhibit typically decreasing enthalpy changes with increasing nonstoichiometries. This desirable characteristic is most pronounced by La 0.6 Sr 0.4 Mn 0.4 Al 0.6 O 3- δ , rendering it attractive for CO 2 and H 2 O splitting. Generally, perovskites show lower enthalpy and entropy changes than ceria, resulting in more favorable reduction but less favorable oxidation equilibria. The energy penalties due to larger temperature swings and excess oxidants are discussed in particular. Using electronic structure theory, we conclude with a practical methodology estimating thermodynamic activity to rationally design perovskites with variable stoichiometry and valence.
NASA Astrophysics Data System (ADS)
Li, Haoyi; Chen, Shuangming; Jia, Xiaofan; Xu, Biao; Lin, Haifeng; Yang, Haozhou; Song, Li; Wang, Xun
2017-05-01
Highly active and robust eletcrocatalysts based on earth-abundant elements are desirable to generate hydrogen and oxygen as fuels from water sustainably to replace noble metal materials. Here we report an approach to synthesize porous hybrid nanostructures combining amorphous nickel-cobalt complexes with 1T phase molybdenum disulfide (MoS2) via hydrazine-induced phase transformation for water splitting. The hybrid nanostructures exhibit overpotentials of 70 mV for hydrogen evolution and 235 mV for oxygen evolution at 10 mA cm-2 with long-term stability, which have superior kinetics for hydrogen- and oxygen-evolution with Tafel slope values of 38.1 and 45.7 mV dec-1. Moreover, we achieve 10 mA cm-2 at a low voltage of 1.44 V for 48 h in basic media for overall water splitting. We propose that such performance is likely due to the complete transformation of MoS2 to metallic 1T phase, high porosity and stabilization effect of nickel-cobalt complexes on 1T phase MoS2.
NASA Astrophysics Data System (ADS)
Cui, Xingkai; Yang, Xiaofei; Xian, Xiaozhai; Tian, Lin; Tang, Hua; Liu, Qinqin
2018-04-01
Oxygen evolution has been considered as the rate-determining step in photocatalytic water splitting due to its sluggish four-electron half-reaction rate, the development of oxygen-evolving photocatalysts with well-defined morphologies and superior interfacial contact is highly important for achieving high-performance solar water splitting. Herein, we report the fabrication of Ag3PO4/MoS2 nanocomposites and, for the first time, their use in photocatalytic water splitting into oxygen under LED light illumination. Ag3PO4 nanoparticles were found to be anchored evenly on the surface of MoS2 nanosheets, confirming an efficient hybridization of two semiconductor materials. A maximum oxygen-generating rate of 201.6 mol L-1 g-1 h-1 was determined when 200 mg MoS2 nanosheets were incorporated into Ag3PO4 nanoparticles, which is around 5 times higher than that of bulk Ag3PO4. Obvious enhancements in light-harvesting property, as well as electron-hole separation and charge transportation are revealed by the combination of different characterizations. ESR analysis verified that more active oxygen-containing radicals generate over illuminated Ag3PO4/MoS2 composite photocatalysts rather than irradiated Ag3PO4. The improvement in oxygen evolution performance of Ag3PO4/MoS2 composite photocatalysts is ascribed to wide spectra response in the visible-light region, more efficient charge separation and enhanced oxidation capacity in the valence band (VB). This study provides new insights into the design and development of novel composite photocatalytic materials for solar-to-fuel conversion.
The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting
Zhai, Shang; Rojas, Jimmy; Ahlborg, Nadia; ...
2018-01-01
We report the discovery of a new class of oxides – poly-cation oxides (PCOs) – that consist of multiple cations and can thermochemically split water in a two-step cycle to produce hydrogen (H 2 ) and oxygen (O 2 ).
NASA Astrophysics Data System (ADS)
Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping
2017-03-01
Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co0.54Fe0.46OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co0.54Fe0.46OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.
Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping
2017-03-08
Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co 0.54 Fe 0.46 OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co 0.54 Fe 0.46 OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.
Manganese-oxidizing photosynthesis before the rise of cyanobacteria.
Johnson, Jena E; Webb, Samuel M; Thomas, Katherine; Ono, Shuhei; Kirschvink, Joseph L; Fischer, Woodward W
2013-07-09
The emergence of oxygen-producing (oxygenic) photosynthesis fundamentally transformed our planet; however, the processes that led to the evolution of biological water splitting have remained largely unknown. To illuminate this history, we examined the behavior of the ancient Mn cycle using newly obtained scientific drill cores through an early Paleoproterozoic succession (2.415 Ga) preserved in South Africa. These strata contain substantial Mn enrichments (up to ∼17 wt %) well before those associated with the rise of oxygen such as the ∼2.2 Ga Kalahari Mn deposit. Using microscale X-ray spectroscopic techniques coupled to optical and electron microscopy and carbon isotope ratios, we demonstrate that the Mn is hosted exclusively in carbonate mineral phases derived from reduction of Mn oxides during diagenesis of primary sediments. Additional observations of independent proxies for O2--multiple S isotopes (measured by isotope-ratio mass spectrometry and secondary ion mass spectrometry) and redox-sensitive detrital grains--reveal that the original Mn-oxide phases were not produced by reactions with O2, which points to a different high-potential oxidant. These results show that the oxidative branch of the Mn cycle predates the rise of oxygen, and provide strong support for the hypothesis that the water-oxidizing complex of photosystem II evolved from a former transitional photosystem capable of single-electron oxidation reactions of Mn.
NASA Technical Reports Server (NTRS)
Korzennik, Sylvain G.
1997-01-01
We have carried out the data reduction and analysis of Mt. Wilson 60' solar tower high spatial resolution observations. The reduction of the 100-day-long summer of 1990 observation campaign in terms of rotational splittings was completed leading to an excess of 600,000 splittings. The analysis of these splittings lead to a new inference of the solar internal rotation rate as a function of depth and latitude.
Maeda, Kazuhiko; Teramura, Kentaro; Takata, Tsuyoshi; Hara, Michikazu; Saito, Nobuo; Toda, Kenji; Inoue, Yasunobu; Kobayashi, Hisayoshi; Domen, Kazunari
2005-11-03
The physical and photocatalytic properties of a novel solid solution between GaN and ZnO, (Ga(1-x)Zn(x))(N(1-x)O(x)), are investigated. Nitridation of a mixture of Ga(2)O(3) and ZnO at 1123 K for 5-30 h under NH(3) flow results in the formation of a (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution with x = 0.05-0.22. With increasing nitridation time, the zinc and oxygen concentrations decrease due to reduction of ZnO and volatilization of zinc, and the crystallinity and band gap energy of the product increase. The highest activity for overall water splitting is obtained for (Ga(1-x)Zn(x))(N(1-x)O(x)) with x = 0.12 after nitridation for 15 h. The crystallinity of the catalyst is also found to increase with increasing the ratio of ZnO to Ga(2)O(3) in the starting material, resulting in an increase in activity.
Photosynthetic water splitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenbaum, E.
1981-01-01
The photosynthetic unit of hydrogen evolution, the turnover time of photosynthetic hydrogen production, and hydrogenic photosynthesis are discussed in the section on previous work. Recent results are given on simultaneous photoproduction of hydrogen and oxygen, kinetic studies, microscopic marine algae-seaweeds, and oxygen profiles.
Radiation damage in cubic ZrO 2 and yttria-stabilized zirconia from molecular dynamics simulations
Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.
2014-11-20
Here, we perform molecular dynamics simulation on cubic ZrO 2 and yttria-stabilized zirconia (YSZ) to elucidate defect cluster formation resulting from radiation damage, and evaluate the impact of Y-dopants. Interstitial clusters composed of split-interstitial building blocks, i.e., Zr-Zr or Y-Zr are formed. Moreover, oxygen vacancies control cation defect migration; in their presence, Zr interstitials aggregate to form split-interstitials whereas in their absence Zr interstitials remain immobile, as isolated single-interstitials. Y-doping prevents interstitial cluster formation due to sequestration of oxygen vacancies.
Earthy and musty off-flavor episodes in catfish split-pond aquaculture systems
USDA-ARS?s Scientific Manuscript database
The interest and use of variations of partitioned aquaculture systems (PAS) by the southeastern U.S. catfish farming industry continues to grow. Split-pond systems, one type of PAS, are designed to improve management of dissolved oxygen levels and fish waste products (e.g., ammonia) compared to conv...
Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Kubicek, Markus; Götsch, Thomas; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Klötzer, Bernhard; Fleig, Jürgen
2017-10-18
Any substantial move of energy sources from fossil fuels to renewable resources requires large scale storage of excess energy, for example, via power to fuel processes. In this respect electrochemical reduction of CO 2 may become very important, since it offers a method of sustainable CO production, which is a crucial prerequisite for synthesis of sustainable fuels. Carbon dioxide reduction in solid oxide electrolysis cells (SOECs) is particularly promising owing to the high operating temperature, which leads to both improved thermodynamics and fast kinetics. Additionally, compared to purely chemical CO formation on oxide catalysts, SOECs have the outstanding advantage that the catalytically active oxygen vacancies are continuously formed at the counter electrode, and move to the working electrode where they reactivate the oxide surface without the need of a preceding chemical (e.g., by H 2 ) or thermal reduction step. In the present work, the surface chemistry of (La,Sr)FeO 3-δ and (La,Sr)CrO 3-δ based perovskite-type electrodes was studied during electrochemical CO 2 reduction by means of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) at SOEC operating temperatures. These measurements revealed the formation of a carbonate intermediate, which develops on the oxide surface only upon cathodic polarization (i.e., under sufficiently reducing conditions). The amount of this adsorbate increases with increasing oxygen vacancy concentration of the electrode material, thus suggesting vacant oxygen lattice sites as the predominant adsorption sites for carbon dioxide. The correlation of carbonate coverage and cathodic polarization indicates that an electron transfer is required to form the carbonate and thus to activate CO 2 on the oxide surface. The results also suggest that acceptor doped oxides with high electron concentration and high oxygen vacancy concentration may be particularly suited for CO 2 reduction. In contrast to water splitting, the CO 2 electrolysis reaction was not significantly affected by metallic particles, which were exsolved from the perovskite electrodes upon cathodic polarization. Carbon formation on the electrode surface was only observed under very strong cathodic conditions, and the carbon could be easily removed by retracting the applied voltage without damaging the electrode, which is particularly promising from an application point of view.
2017-01-01
Any substantial move of energy sources from fossil fuels to renewable resources requires large scale storage of excess energy, for example, via power to fuel processes. In this respect electrochemical reduction of CO2 may become very important, since it offers a method of sustainable CO production, which is a crucial prerequisite for synthesis of sustainable fuels. Carbon dioxide reduction in solid oxide electrolysis cells (SOECs) is particularly promising owing to the high operating temperature, which leads to both improved thermodynamics and fast kinetics. Additionally, compared to purely chemical CO formation on oxide catalysts, SOECs have the outstanding advantage that the catalytically active oxygen vacancies are continuously formed at the counter electrode, and move to the working electrode where they reactivate the oxide surface without the need of a preceding chemical (e.g., by H2) or thermal reduction step. In the present work, the surface chemistry of (La,Sr)FeO3−δ and (La,Sr)CrO3−δ based perovskite-type electrodes was studied during electrochemical CO2 reduction by means of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) at SOEC operating temperatures. These measurements revealed the formation of a carbonate intermediate, which develops on the oxide surface only upon cathodic polarization (i.e., under sufficiently reducing conditions). The amount of this adsorbate increases with increasing oxygen vacancy concentration of the electrode material, thus suggesting vacant oxygen lattice sites as the predominant adsorption sites for carbon dioxide. The correlation of carbonate coverage and cathodic polarization indicates that an electron transfer is required to form the carbonate and thus to activate CO2 on the oxide surface. The results also suggest that acceptor doped oxides with high electron concentration and high oxygen vacancy concentration may be particularly suited for CO2 reduction. In contrast to water splitting, the CO2 electrolysis reaction was not significantly affected by metallic particles, which were exsolved from the perovskite electrodes upon cathodic polarization. Carbon formation on the electrode surface was only observed under very strong cathodic conditions, and the carbon could be easily removed by retracting the applied voltage without damaging the electrode, which is particularly promising from an application point of view. PMID:28933825
Oxygen Pathways and Budget for the Eastern South Pacific Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Llanillo, P. J.; Pelegrí, J. L.; Talley, L. D.; Peña-Izquierdo, J.; Cordero, R. R.
2018-03-01
Ventilation of the eastern South Pacific Oxygen Minimum Zone (ESP-OMZ) is quantified using climatological Argo and dissolved oxygen data, combined with reanalysis wind stress data. We (1) estimate all oxygen fluxes (advection and turbulent diffusion) ventilating this OMZ, (2) quantify for the first time the oxygen contribution from the subtropical versus the traditionally studied tropical-equatorial pathway, and (3) derive a refined annual-mean oxygen budget for the ESP-OMZ. In the upper OMZ layer, net oxygen supply is dominated by tropical-equatorial advection, with more than one-third of this supply upwelling into the Ekman layer through previously unevaluated vertical advection, within the overturning component of the regional Subtropical Cell (STC). Below the STC, at the OMZ's core, advection is weak and turbulent diffusion (isoneutral and dianeutral) accounts for 89% of the net oxygen supply, most of it coming from the oxygen-rich subtropical gyre. In the deep OMZ layer, net oxygen supply occurs only through turbulent diffusion and is dominated by the tropical-equatorial pathway. Considering the entire OMZ, net oxygen supply (3.84 ± 0.42 µmol kg-1 yr-1) is dominated by isoneutral turbulent diffusion (56.5%, split into 32.3% of tropical-equatorial origin and 24.2% of subtropical origin), followed by isoneutral advection (32.0%, split into 27.6% of tropical-equatorial origin and 4.4% of subtropical origin) and dianeutral diffusion (11.5%). One-quarter (25.8%) of the net oxygen input escapes through dianeutral advection (most of it upwelling) and, assuming steady state, biological consumption is responsible for most of the oxygen loss (74.2%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siriwardane, Ranjani; Benincosa, William; Riley, Jarrett
This paper presents data on conversion of two different coals with a chemical looping oxygen carrier, CuO-Fe 2O 3-alumina, and over a range of conditions including steam and various levels of reduction of the oxygen carrier. Reactions of coal/steam/CuO-Fe 2O 3-alumina oxygen carrier and coal/steam/partially reduced CuO-Fe 2O 3-alumina oxygen carrier were investigated with Wyodak coal and Illinois #6 coal in a fluidized bed reactor. Temperature programmed reaction studies indicated that the oxygen carrier enhanced the steam gasification/combustion rates of both coals. Rates of gasification/combustion were higher with Wyodak coal (sub bituminous) than that with Illinois #6 coal (bituminous). Inmore » addition to the increase in reaction rates, the total moles of carbon that were gasified and combusted from coal/steam increased in the presence of the oxygen carrier. The reduced oxygen carrier promoted the water-gas shift reaction when reacted with synthesis gas in the presence of steam, but the reverse water gas shift reaction was observed when steam was not present. The partially reduced oxygen carrier enhanced the production of H 2 from coal/steam, which was different from the observations with un-reduced oxygen carrier. Water splitting reaction to produce H 2 was also observed with the reduced oxygen carrier. CuO-Fe 2O 3-alumina reacted with coal during the temperature ramp to 850 °C even in the absence of steam due to the chemical-looping oxygen uncoupling (CLOU) reaction. Here, the fourier transform infra-red (FTIR) analysis indicated the presence of volatile aromatics during the temperature ramp and these may have also contributed to the reactions with the oxygen carrier in the absence of steam. Increasing steam concentration had a negative effect on the CLOU reaction.« less
Siriwardane, Ranjani; Benincosa, William; Riley, Jarrett; ...
2016-10-06
This paper presents data on conversion of two different coals with a chemical looping oxygen carrier, CuO-Fe 2O 3-alumina, and over a range of conditions including steam and various levels of reduction of the oxygen carrier. Reactions of coal/steam/CuO-Fe 2O 3-alumina oxygen carrier and coal/steam/partially reduced CuO-Fe 2O 3-alumina oxygen carrier were investigated with Wyodak coal and Illinois #6 coal in a fluidized bed reactor. Temperature programmed reaction studies indicated that the oxygen carrier enhanced the steam gasification/combustion rates of both coals. Rates of gasification/combustion were higher with Wyodak coal (sub bituminous) than that with Illinois #6 coal (bituminous). Inmore » addition to the increase in reaction rates, the total moles of carbon that were gasified and combusted from coal/steam increased in the presence of the oxygen carrier. The reduced oxygen carrier promoted the water-gas shift reaction when reacted with synthesis gas in the presence of steam, but the reverse water gas shift reaction was observed when steam was not present. The partially reduced oxygen carrier enhanced the production of H 2 from coal/steam, which was different from the observations with un-reduced oxygen carrier. Water splitting reaction to produce H 2 was also observed with the reduced oxygen carrier. CuO-Fe 2O 3-alumina reacted with coal during the temperature ramp to 850 °C even in the absence of steam due to the chemical-looping oxygen uncoupling (CLOU) reaction. Here, the fourier transform infra-red (FTIR) analysis indicated the presence of volatile aromatics during the temperature ramp and these may have also contributed to the reactions with the oxygen carrier in the absence of steam. Increasing steam concentration had a negative effect on the CLOU reaction.« less
Li, Haoyi; Chen, Shuangming; Jia, Xiaofan; Xu, Biao; Lin, Haifeng; Yang, Haozhou; Song, Li; Wang, Xun
2017-01-01
Highly active and robust eletcrocatalysts based on earth-abundant elements are desirable to generate hydrogen and oxygen as fuels from water sustainably to replace noble metal materials. Here we report an approach to synthesize porous hybrid nanostructures combining amorphous nickel-cobalt complexes with 1T phase molybdenum disulfide (MoS2) via hydrazine-induced phase transformation for water splitting. The hybrid nanostructures exhibit overpotentials of 70 mV for hydrogen evolution and 235 mV for oxygen evolution at 10 mA cm−2 with long-term stability, which have superior kinetics for hydrogen- and oxygen-evolution with Tafel slope values of 38.1 and 45.7 mV dec−1. Moreover, we achieve 10 mA cm−2 at a low voltage of 1.44 V for 48 h in basic media for overall water splitting. We propose that such performance is likely due to the complete transformation of MoS2 to metallic 1T phase, high porosity and stabilization effect of nickel-cobalt complexes on 1T phase MoS2. PMID:28485395
ERIC Educational Resources Information Center
Renderos, Genesis; Aquino, Tawanda; Gutierrez, Kristian; Badiei, Yosra M.
2017-01-01
Artificial photosynthesis (AP) is a synthetic chemical process that replicates natural photosynthesis to mass produce hydrogen as a clean fuel from sunlight-driven water splitting (2H[subscript 2]O [right arrow] O[subscript 2] + H[subscript 2]). In both natural and artificial photosynthesis, an oxygen-evolving catalyst (OEC) is needed to catalyze…
Visible-light driven nitrogen-doped petal-morphological ceria nanosheets for water splitting
NASA Astrophysics Data System (ADS)
Qian, Junchao; Zhang, Wenya; Wang, Yaping; Chen, Zhigang; Chen, Feng; Liu, Chengbao; Lu, Xiaowang; Li, Ping; Wang, Kaiyuan; Chen, Ailian
2018-06-01
Water splitting is a promising sustainable technology for solar-to-chemical energy conversion. Herein, we successfully fabricated nitrogen-doped ultrathin CeO2 nanosheets by using field poppy petals as templates, which exhibit an efficiently catalytic activity for water splitting. Abundant oxygen vacancies and substitutional N atoms were experimentally observed in the film due to its unique biomorphic texture. In view of high efficiency and long durability of the as-prepared photocatalyst, this biotemplate method may provide an alternative technique for using biomolecules to assemble 2D nanomaterials.
Sjöholm, Johannes; Styring, Stenbjörn; Havelius, Kajsa G V; Ho, Felix M
2012-03-13
Cryogenic illumination of Photosystem II (PSII) can lead to the trapping of the metastable radical Y(Z)(•), the radical form of the redox-active tyrosine residue D1-Tyr161 (known as Y(Z)). Magnetic interaction between this radical and the CaMn(4) cluster of PSII gives rise to so-called split electron paramagnetic resonance (EPR) signals with characteristics that are dependent on the S state. We report here the observation and characterization of a split EPR signal that can be directly induced from PSII centers in the S(2) state through visible light illumination at 10 K. We further show that the induction of this split signal takes place via a Mn-centered mechanism, in the same way as when using near-infrared light illumination [Koulougliotis, D., et al. (2003) Biochemistry 42, 3045-3053]. On the basis of interpretations of these results, and in combination with literature data for other split signals induced under a variety of conditions (temperature and light quality), we propose a unified model for the mechanisms of split signal induction across the four S states (S(0), S(1), S(2), and S(3)). At the heart of this model is the stability or instability of the Y(Z)(•)(D1-His190)(+) pair that would be formed during cryogenic oxidation of Y(Z). Furthermore, the model is closely related to the sequence of transfers of protons and electrons from the CaMn(4) cluster during the S cycle and further demonstrates the utility of the split signals in probing the immediate environment of the oxygen-evolving center in PSII.
Linear aerospike engine study. [for reusable launch vehicles
NASA Technical Reports Server (NTRS)
Diem, H. G.; Kirby, F. M.
1977-01-01
Parametric data on split-combustor linear engine propulsion systems are presented for use in mixed-mode single-stage-to-orbit (SSTO) vehicle studies. Preliminary design data for two selected engine systems are included. The split combustor was investigated for mixed-mode operations with oxygen/hydrogen propellants used in the inner combustor in Mode 2, and in conjunction with either oxygen/RP-1, oxygen/RJ-5, O2/CH4, or O2/H2 propellants in the outer combustor for Mode 1. Both gas generator and staged combustion power cycles were analyzed for providing power to the turbopumps of the inner and outer combustors. Numerous cooling circuits and cooling fluids (propellants) were analyzed and hydrogen was selected as the preferred coolant for both combustors and the linear aerospike nozzle. The maximum operating chamber pressure was determined to be limited by the availability of hydrogen coolant pressure drop in the coolant circuit.
NASA Technical Reports Server (NTRS)
Freund, F.; Batllo, F.; Leroy, R. C.; Lersky, S.; Masuda, M. M.; Chang, S.
1991-01-01
It is difficult to prove the presence of molecular H2 and reduced C in minerals containing dissolved H2 and CO2. A technique was developed which unambiguously shows that minerals grown in viciously reducing environments contain peroxy in their crystal structures. The peroxy represent interstitial oxygen atoms left behind when the solute H2O and/or CO2 split off H2 and C as a result of internal redox reactions, driven by the crystal field. The observation of peroxy affirms the presence of H2 and reduced C. It shows that the solid state is indeed an unusual reaction medium.
Stocking rate and fuels reduction effects on beef cattle diet composition and quality
Abe Clark; Tim DelCurto; Martin Vavra; Brian L. Dick
2013-01-01
An experiment was conducted to evaluate the influence of forest fuels reduction on diet quality, botanical composition, relative preference, and foraging efficiency of beef cattle grazing at different stocking rates. A split plot factorial design was used, with whole plots (3 ha) being fuel reduced or no treatment (control), and split plots (1 ha) within whole plots...
Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo
2017-06-01
To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P < 0.001 and r = 0.94, P < 0.001). The preoperative and postoperative split estimated glomerular filtration rate of the operated kidney showed a moderate correlation with split renal function (r = 0.39, P = 0.004 and r = 0.49, P < 0.001). The correlation between reductions in split renal function and split renal volume of the operated kidney (r = 0.87, P < 0.001) was stronger than that between split renal function and percent reduction in split estimated glomerular filtration rate (r = 0.64, P < 0.001). The split renal volume calculated using computed tomography-based renal volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.
Wang, Qian; Hisatomi, Takashi; Katayama, Masao; Takata, Tsuyoshi; Minegishi, Tsutomu; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari
2017-04-28
Water splitting using semiconductor photocatalysts has been attracting growing interest as a means of solar energy based conversion of water to hydrogen, a clean and renewable fuel. Z-scheme photocatalytic water splitting based on the two-step excitation of an oxygen evolution photocatalyst (OEP) and a hydrogen evolution photocatalyst (HEP) is a promising approach toward the utilisation of visible light. In particular, a photocatalyst sheet system consisting of HEP and OEP particles embedded in a conductive layer has been recently proposed as a new means of obtaining efficient and scalable redox mediator-free Z-scheme solar water splitting. In this paper, we discuss the advantages and disadvantages of the photocatalyst sheet approach compared to conventional photocatalyst powder suspension and photoelectrochemical systems through an examination of the water splitting activity of Z-scheme systems based on SrTiO 3 :La,Rh as the HEP and BiVO 4 :Mo as the OEP. This photocatalyst sheet was found to split pure water much more efficiently than the powder suspension and photoelectrochemical systems, because the underlying metal layer efficiently transfers electrons from the OEP to the HEP. The photocatalyst sheet also outperformed a photoelectrochemical parallel cell during pure water splitting. The effects of H + /OH - concentration overpotentials and of the IR drop are reduced in the case of the photocatalyst sheet compared to photoelectrochemical systems, because the HEP and OEP are situated in close proximity to one another. Therefore, the photocatalyst sheet design is well-suited to efficient large-scale applications. Nevertheless, it is also noted that the photocatalytic activity of these sheets drops markedly with increasing background pressure because of reverse reactions involving molecular oxygen under illumination as well as delays in gas bubble desorption. It is shown that appropriate surface modifications allow the photocatalyst sheet to maintain its water splitting activity at elevated pressure. Accordingly, we conclude that the photocatalyst sheet system is a viable option for the realisation of efficient solar fuel production.
Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang
2016-01-01
Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge. PMID:26755070
Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang
2016-01-12
Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.
An Advanced Helium Buffer Seal for the SSME, ATD Oxygen Pump
NASA Technical Reports Server (NTRS)
Shapiro, Wilbur
2006-01-01
The present configuration of Helium Buffer Seal on the ATD oxygen pump consists of a pair of opposed carbon rings are forced axially against their containment housings. Leakage occurs through the clearance between the rings and the shaft. The total helium leakage through both sides is approximately 239 SCFM. A reduction in leakage to 50 SCFM will result in less helium storage and consequently permit a substantial increase in payload. Under Phase 1 NASA SBIR, a solid T-Ring seal was analyzed and designed that could satisfy the criteria of reducing leakage to 50 SCFM or less. The design makes maximum use of available length and employs a mid length row of hydrostatic orifaces that feed buffer helium directly into a 2 to 3 mil clearance region. The flow splits into opposite paths to buffer oxygen gas on one side and hydrogen gas on the turbine side. The seal employs opposed hydrostatic tapered land secondary seals that provide friction free support of the primary seal and allows the primary seal to follow rotor excursion and maintain concentric operating clearance . The predicted performance of the T-seal is excellent with operation at a safe film thickness of 2 to 2.5 mils and leakage less than 50 SCFM.
NASA Astrophysics Data System (ADS)
Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang
2016-01-01
Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.
Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery
Kim, Gonu; Oh, Misol; Park, Yiseul
2016-01-01
As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a “solar water battery”. The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E0 (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge. PMID:27629362
Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery.
Kim, Gonu; Oh, Misol; Park, Yiseul
2016-09-15
As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a "solar water battery". The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E(0) (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.
Wang, Wei; Xu, Xiaomin; Zhou, Wei
2017-01-01
The development of clean and renewable energy materials as alternatives to fossil fuels is foreseen as a potential solution to the crucial problems of environmental pollution and energy shortages. Hydrogen is an ideal energy material for the future, and water splitting using solar/electrical energy is one way to generate hydrogen. Metal‐organic frameworks (MOFs) are a class of porous materials with unique properties that have received rapidly growing attention in recent years for applications in water splitting due to their remarkable design flexibility, ultra‐large surface‐to‐volume ratios and tunable pore channels. This review focuses on recent progress in the application of MOFs in electrocatalytic and photocatalytic water splitting for hydrogen generation, including both oxygen and hydrogen evolution. It starts with the fundamentals of electrocatalytic and photocatalytic water splitting and the related factors to determine the catalytic activity. The recent progress in the exploitation of MOFs for water splitting is then summarized, and strategies for designing MOF‐based catalysts for electrocatalytic and photocatalytic water splitting are presented. Finally, major challenges in the field of water splitting are highlighted, and some perspectives of MOF‐based catalysts for water splitting are proposed. PMID:28435777
Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wei-Ping; Cao, Yan
2012-11-30
Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improvesmore » the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen carriers in the system by using the high-sulfur-laden asphalt fuels. In all, the scaled-up test in 10 kW CLC facility demonstrated that the preparation method of copper-based oxygen carrier not only help to maintain its good reactivity, also largely minimize its agglomeration tendency.« less
Wang, Hua; Ming, Mei; Hu, Min; Xu, Caili; Wang, Yi; Zhang, Yun; Gao, Daojiang; Bi, Jian; Fan, Guangyin; Hu, Jin-Song
2018-06-14
Developing efficient catalytic materials for electrochemical water splitting is important. Herein, uniformly dispersed and size-controllable iridium (Ir) nanoparticles (NPs) were prepared using a nitrogen-functionalized carbon (Ir/CN) as the support. We found that nitrogen function can simultaneously modulate the size of Ir NPs to substantially enhance the catalytically active sites and adjust the electronic structure of Ir, thereby promoting electrocatalytic activity for water splitting. Consequently, the as-synthesized Ir/CN shows excellent electrocatalytic performance with overpotentials of 12 and 265 mV for hydrogen and oxygen evolution reactions in basic medium, respectively. These findings may pave a way for designing and synthesizing other similar materials as efficient catalysts for electrochemical water splitting.
A Structure Design Method for Reduction of MRI Acoustic Noise.
Nan, Jiaofen; Zong, Nannan; Chen, Qiqiang; Zhang, Liangliang; Zheng, Qian; Xia, Yongquan
2017-01-01
The acoustic problem of the split gradient coil is one challenge in a Magnetic Resonance Imaging and Linear Accelerator (MRI-LINAC) system. In this paper, we aimed to develop a scheme to reduce the acoustic noise of the split gradient coil. First, a split gradient assembly with an asymmetric configuration was designed to avoid vibration in same resonant modes for the two assembly cylinders. Next, the outer ends of the split main magnet were constructed using horn structures, which can distribute the acoustic field away from patient region. Finally, a finite element method (FEM) was used to quantitatively evaluate the effectiveness of the above acoustic noise reduction scheme. Simulation results found that the noise could be maximally reduced by 6.9 dB and 5.6 dB inside and outside the central gap of the split MRI system, respectively, by increasing the length of one gradient assembly cylinder by 20 cm. The optimized horn length was observed to be 55 cm, which could reduce noise by up to 7.4 dB and 5.4 dB inside and outside the central gap, respectively. The proposed design could effectively reduce the acoustic noise without any influence on the application of other noise reduction methods.
Hadač, Otto; Kohout, Martin; Havlica, Jaromír; Schreiber, Igor
2015-03-07
A model describing simultaneous catalytic oxidation of CO and C2H2 and reduction of NOx in a cross-flow tubular reactor is explored with the aim of relating spatiotemporal patterns to specific pathways in the mechanism. For that purpose, a detailed mechanism proposed for three-way catalytic converters is split into two subsystems, (i) simultaneous oxidation of CO and C2H2, and (ii) oxidation of CO combined with NOx reduction. The ability of these two subsystems to display mechanism-specific dynamical effects is studied initially by neglecting transport phenomena and applying stoichiometric network and bifurcation analyses. We obtain inlet temperature - inlet oxygen concentration bifurcation diagrams, where each region possessing specific dynamics - oscillatory, bistable and excitable - is associated with a dominant reaction pathway. Next, the spatiotemporal behaviour due to reaction kinetics combined with transport processes is studied. The observed spatiotemporal patterns include phase waves, travelling fronts, pulse waves and spatiotemporal chaos. Although these types of pattern occur generally when the kinetic scheme possesses autocatalysis, we find that some of their properties depend on the underlying dominant reaction pathway. The relation of patterns to specific reaction pathways is discussed.
Hydrogen production by high-temperature water splitting using electron-conducting membranes
Lee, Tae H.; Wang, Shuangyan; Dorris, Stephen E.; Balachandran, Uthamalingam
2004-04-27
A device and method for separating water into hydrogen and oxygen is disclosed. A first substantially gas impervious solid electron-conducting membrane for selectively passing hydrogen is provided and spaced from a second substantially gas impervious solid electron-conducting membrane for selectively passing oxygen. When steam is passed between the two membranes at disassociation temperatures the hydrogen from the disassociation of steam selectively and continuously passes through the first membrane and oxygen selectively and continuously passes through the second membrane, thereby continuously driving the disassociation of steam producing hydrogen and oxygen.
NASA Astrophysics Data System (ADS)
Garcia-Castro, A. C.; Vergniory, M. G.; Bousquet, E.; Romero, A. H.
2016-01-01
The electronic structure of SrTiO3 and SrHfO3 (001) surfaces with oxygen vacancies is studied by means of first-principles calculations. We reveal how oxygen vacancies within the first atomic layer of the SrTiO3 surface (i) induce a large antiferrodistortive motion of the oxygen octahedra at the surface, (ii) drive localized magnetic moments on the Ti 3 d orbitals close to the vacancies, and (iii) form a two-dimensional electron gas localized within the first layers. The analysis of the spin texture of this system exhibits a splitting of the energy bands according to the Zeeman interaction, lowering of the Ti 3 dx y level in comparison with dx z and dy z, and also an in-plane precession of the spins. No Rashba-like splitting for the ground state or for the ab initio molecular dynamics trajectory at 400 K is recognized as suggested recently by A. F. Santander-Syro et al. [Nat. Mater. 13, 1085 (2014), 10.1038/nmat4107]. Instead, a sizable Rashba-like splitting is observed when the Ti atom is replaced by a heavier Hf atom with a much larger spin-orbit interaction. However, we observe the disappearance of the magnetism and the surface two-dimensional electron gas when full structural optimization of the SrHfO3 surface is performed. Our results uncover the sensitive interplay of spin-orbit coupling, atomic relaxations, and magnetism when tuning these Sr-based perovskites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Xin; Kim, Yusung, E-mail: yusung-kim@uiowa.edu; Bayouth, John E.
2013-04-01
To develop an optimal field-splitting algorithm of minimal complexity and verify the algorithm using head-and-neck (H and N) and female pelvic intensity-modulated radiotherapy (IMRT) cases. An optimal field-splitting algorithm was developed in which a large intensity map (IM) was split into multiple sub-IMs (≥2). The algorithm reduced the total complexity by minimizing the monitor units (MU) delivered and segment number of each sub-IM. The algorithm was verified through comparison studies with the algorithm as used in a commercial treatment planning system. Seven IMRT, H and N, and female pelvic cancer cases (54 IMs) were analyzed by MU, segment numbers, andmore » dose distributions. The optimal field-splitting algorithm was found to reduce both total MU and the total number of segments. We found on average a 7.9 ± 11.8% and 9.6 ± 18.2% reduction in MU and segment numbers for H and N IMRT cases with an 11.9 ± 17.4% and 11.1 ± 13.7% reduction for female pelvic cases. The overall percent (absolute) reduction in the numbers of MU and segments were found to be on average −9.7 ± 14.6% (−15 ± 25 MU) and −10.3 ± 16.3% (−3 ± 5), respectively. In addition, all dose distributions from the optimal field-splitting method showed improved dose distributions. The optimal field-splitting algorithm shows considerable improvements in both total MU and total segment number. The algorithm is expected to be beneficial for the radiotherapy treatment of large-field IMRT.« less
Wang, Nan; Li, Ligui; Zhao, Dengke; Kang, Xiongwu; Tang, Zhenghua; Chen, Shaowei
2017-09-01
Nitrogen and sulfur-codoped graphene composites with Co 9 S 8 (NS/rGO-Co) are synthesized by facile thermal annealing of graphene oxides with cobalt nitrate and thiourea in an ammonium atmosphere. Significantly, in 0.1 m KOH aqueous solution the best sample exhibits an oxygen evolution reaction (OER) activity that is superior to that of benchmark RuO 2 catalysts, an oxygen reduction reaction (ORR) activity that is comparable to that of commercial Pt/C, and an overpotential of only -0.193 V to reach 10 mA cm -2 for hydrogen evolution reaction (HER). With this single catalyst for oxygen reversible electrocatalysis, a potential difference of only 0.700 V is observed in 0.1 m KOH solution between the half-wave potential in ORR and the potential to reach 10 mA cm -2 in OER; in addition, an overpotential of only 450 mV is needed to reach 10 mA cm -2 for full water splitting in the same electrolyte. The present trifunctional catalytic activities are markedly better than leading results reported in recent literature, where the remarkable trifunctional activity is attributed to the synergetic effects between N,S-codoped rGO, and Co 9 S 8 nanoparticles. These results highlight the significance of deliberate structural engineering in the preparation of multifunctional electrocatalysts for versatile electrochemical reactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Freitas, Andre L. M.; Souza, Flavio L.
2017-11-01
This work describes the design of a microwave-assisted method using hydrothermal conditions to fabricate pure and Sn-doped hematite photoelectrodes with varied synthesis time and additional thermal treatment under air and N2 atmosphere. The hematite photoelectrode formed under N2 atmosphere, with Sn deposited on its surface—which is represented by material synthesized at 4 h —exhibits the highest performance. Hence, Sn addition followed by high temperature annealing conducted in an oxygen-deficient atmosphere seems to create oxygen vacancies, and to prevent the segregation of dopant to form the SnO2 phase at the hematite crystal surface, reducing its energy and suppressing the grain growth. The increased donor number density provided by the oxygen vacancies (confirmed by x-ray photoelectron data), and a possible reduction in the grain boundary energy or hematite crystal interface might favor charge separation, and increase the electron transfer through the hematite into the back contact (FTO substrate). In consequence, the light-induced water oxidation reaction efficiency of Sn-hematite photoelectrodes was significantly increased in comparison with pure ones, even though the vertical rod morphology was not preserved. This finding provides a novel insight into intentional Sn addition, revealing that dopant segregation at the hematite crystal surface (or at the grain boundaries) could—by increasing the electron mobility—be the more relevant factor in developing active hematite photoelectrodes than the control of columnar morphology.
Sandhu, Gurkirat; Khinda, Paramjit Kaur; Gill, Amarjit Singh; Singh Khinda, Vineet Inder; Baghi, Kamal; Chahal, Gurparkash Singh
2017-01-01
Periodontal surgical procedures produce varying degree of stress in all patients. Nitrous oxide-oxygen inhalation sedation is very effective for adult patients with mild-to-moderate anxiety due to dental procedures and needle phobia. The present study was designed to perform periodontal surgical procedures under nitrous oxide-oxygen inhalation sedation and assess whether this technique actually reduces stress physiologically, in comparison to local anesthesia alone (LA) during lengthy periodontal surgical procedures. This was a randomized, split-mouth, cross-over study. A total of 16 patients were selected for this randomized, split-mouth, cross-over study. One surgical session (SS) was performed under local anesthesia aided by nitrous oxide-oxygen inhalation sedation, and the other SS was performed on the contralateral quadrant under LA. For each session, blood samples to measure and evaluate serum cortisol levels were obtained, and vital parameters including blood pressure, heart rate, respiratory rate, and arterial blood oxygen saturation were monitored before, during, and after periodontal surgical procedures. Paired t -test and repeated measure ANOVA. The findings of the present study revealed a statistically significant decrease in serum cortisol levels, blood pressure and pulse rate and a statistically significant increase in respiratory rate and arterial blood oxygen saturation during periodontal surgical procedures under nitrous oxide inhalation sedation. Nitrous oxide-oxygen inhalation sedation for periodontal surgical procedures is capable of reducing stress physiologically, in comparison to LA during lengthy periodontal surgical procedures.
2013-01-01
There is an increasing level of interest in the use of black TiO2 prepared by thermal hydrogen treatments (H:TiO2) due to the potential to enhance both the photocatalytic and the light-harvesting properties of TiO2. Here, we examine oxygen-deficient H:TiO2 nanotube arrays that have previously achieved very high solar-to-hydrogen (STH) efficiencies due to incident photon-to-current efficiency (IPCE) values of >90% for photoelectrochemical water splitting at only 0.4 V vs RHE under UV illumination. Our transient absorption (TA) mechanistic study provides strong evidence that the improved electrical properties of oxygen-deficient TiO2 enables remarkably efficient spatial separation of electron–hole pairs on the submicrosecond time scale at moderate applied bias, and this coupled to effective suppression of microsecond to seconds charge carrier recombination is the primary factor behind the dramatically improved photoelectrochemical activity. PMID:24376902
Graphene-Based Photocatalysts for Solar-Fuel Generation.
Xiang, Quanjun; Cheng, Bei; Yu, Jiaguo
2015-09-21
The production of solar fuel through photocatalytic water splitting and CO2 reduction using photocatalysts has attracted considerable attention owing to the global energy shortage and growing environmental problems. During the past few years, many studies have demonstrated that graphene can markedly enhance the efficiency of photocatalysts for solar-fuel generation because of its unique 2D conjugated structure and electronic properties. Herein we summarize the recent advances in the application of graphene-based photocatalysts for solar-fuel production, including CO2 reduction to hydrocarbon fuel and water splitting to H2. A brief overview of the fundamental principles for splitting of water and reduction of CO2 is given. The different roles of graphene in these graphene-based photocatalysts for improving photocatalytic performance are discussed. Finally, the perspectives on the challenges and opportunities for future research in this promising area are also presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adsorption of oxygen on low-index surfaces of the TiAl{sub 3} alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latyshev, A. M.; Bakulin, A. V.; Kulkova, S. E., E-mail: kulkova@ms.tsc.ru
Method of the projector augmented waves in the plane-wave basis within the generalized-gradient approximation for the exchange-correlation functional has been used to study oxygen adsorption on (001), (100), and (110) low-index surfaces of the TiAl{sub 3} alloy. It has been established that the sites that are most energetically preferred for the adsorption of oxygen are hollow (H) positions on the (001) surface and bridge (B) positions on the (110) and (100) surfaces. Structural and electronic factors that define their energy preference have been discussed. Changes in the atomic and electronic structure of subsurface layers that occur as the oxygen concentrationmore » increases to three monolayers have been analyzed. It has been shown that the formation of chemical bonds of oxygen with both components of the alloy leads to the appearance of states that are split-off from the bottoms of their valence bands, which is accompanied by the formation of a forbidden gap at the Fermi level and by a weakening of the Ti–Al metallic bonds in the alloy. On the Al-terminated (001) and (110) surfaces, the oxidation of aluminum dominates over that of titanium. On the whole, the binding energy of oxygen on the low-index surfaces with a mixed termination is higher than that at the aluminum-terminated surface. The calculation of the diffusion of oxygen in the TiAl{sub 3} alloy has shown that the lowest barriers correspond to the diffusion between tetrahedral positions in the (001) plane; the diffusion of oxygen in the [001] direction occurs through octahedral and tetrahedral positions. An increase in the concentration of aluminum in the alloy favors a reduction in the height of the energy barriers as compared to the corresponding barriers in the γ-TiAl alloy.« less
Du, Shichao; Ren, Zhiyu; Zhang, Jun; Wu, Jun; Xi, Wang; Zhu, Jiaqing; Fu, Honggang
2015-05-11
A large-area, self-supported Co3O4 nanocrystal/carbon fiber electrode for oxygen and hydrogen evolution reaction was fabricated via thermal decomposition of the [Co(NH3)n](2+)-oleic acid complex and subsequent spray deposition. Due to the exposed active sites and good electrical conductivity, its operate voltage for overall water splitting is nearly the same as commercial Pt/C.
2018-01-01
Visible light-driven water splitting using cheap and robust photocatalysts is one of the most exciting ways to produce clean and renewable energy for future generations. Cutting edge research within the field focuses on so-called “Z-scheme” systems, which are inspired by the photosystem II–photosystem I (PSII/PSI) coupling from natural photosynthesis. A Z-scheme system comprises two photocatalysts and generates two sets of charge carriers, splitting water into its constituent parts, hydrogen and oxygen, at separate locations. This is not only more efficient than using a single photocatalyst, but practically it could also be safer. Researchers within the field are constantly aiming to bring systems toward industrial level efficiencies by maximizing light absorption of the materials, engineering more stable redox couples, and also searching for new hydrogen and oxygen evolution cocatalysts. This review provides an in-depth survey of relevant Z-schemes from past to present, with particular focus on mechanistic breakthroughs, and highlights current state of the art systems which are at the forefront of the field. PMID:29676566
NASA Astrophysics Data System (ADS)
Lee, Dong Ki; Choi, Kyoung-Shin
2018-01-01
As the performance of photoelectrodes used for solar water splitting continues to improve, enhancing the long-term stability of the photoelectrodes becomes an increasingly crucial issue. In this study, we report that tuning the composition of the electrolyte can be used as a strategy to suppress photocorrosion during solar water splitting. Anodic photocorrosion of BiVO4 photoanodes involves the loss of V5+ from the BiVO4 lattice by dissolution. We demonstrate that the use of a V5+-saturated electrolyte, which inhibits the photooxidation-coupled dissolution of BiVO4, can serve as a simple yet effective method to suppress anodic photocorrosion of BiVO4. The V5+ species in the solution can also incorporate into the FeOOH/NiOOH oxygen-evolution catalyst layer present on the BiVO4 surface during water oxidation, further enhancing water-oxidation kinetics. The effect of the V5+ species in the electrolyte on both the long-term photostability of BiVO4 and the performance of the FeOOH/NiOOH oxygen-evolution catalyst layer is systematically elucidated.
Wang, Yiou; Suzuki, Hajime; Xie, Jijia; Tomita, Osamu; Martin, David James; Higashi, Masanobu; Kong, Dan; Abe, Ryu; Tang, Junwang
2018-05-23
Visible light-driven water splitting using cheap and robust photocatalysts is one of the most exciting ways to produce clean and renewable energy for future generations. Cutting edge research within the field focuses on so-called "Z-scheme" systems, which are inspired by the photosystem II-photosystem I (PSII/PSI) coupling from natural photosynthesis. A Z-scheme system comprises two photocatalysts and generates two sets of charge carriers, splitting water into its constituent parts, hydrogen and oxygen, at separate locations. This is not only more efficient than using a single photocatalyst, but practically it could also be safer. Researchers within the field are constantly aiming to bring systems toward industrial level efficiencies by maximizing light absorption of the materials, engineering more stable redox couples, and also searching for new hydrogen and oxygen evolution cocatalysts. This review provides an in-depth survey of relevant Z-schemes from past to present, with particular focus on mechanistic breakthroughs, and highlights current state of the art systems which are at the forefront of the field.
[How did the earth's oxygen atmosphere originate?].
Schäfer, G
2004-09-01
The planet earth did not carry an oxygen atmosphere from the beginning. Though oxygen could arise from radiation mediated water splitting, these processes were not efficient enough to create a global gas atmosphere. Oxygen in the latter is a product of the photosynthetic activity of early green organisms. Only after biological mass-formation of oxygen the UV-protective ozone layer could develop, then enabeling life to move from water onto land. This took billions of years. The basics of the processes of biological oxygen liberation and utilization are described in the following as well as the importance of their steady state equilibrium. Also a hint is given to oxygen as a toxic compound though being a chemical prerequisite for aerobic life on earth.
Water-splitting using photocatalytic porphyrin-nanotube composite devices
Shelnutt, John A [Tijeras, NM; Miller, James E [Albuquerque, NM; Wang, Zhongchun [Albuquerque, NM; Medforth, Craig J [Winters, CA
2008-03-04
A method for generating hydrogen by photocatalytic decomposition of water using porphyrin nanotube composites. In some embodiments, both hydrogen and oxygen are generated by photocatalytic decomposition of water.
Song, Fang; Bai, Lichen; Moysiadou, Aliki; Lee, Seunghwa; Hu, Chao; Liardet, Laurent; Hu, Xile
2018-06-27
Water splitting is the essential chemical reaction to enable the storage of intermittent energies such as solar and wind in the form of hydrogen fuel. The oxygen evolution reaction (OER) is often considered as the bottleneck in water splitting. Though metal oxides had been reported as OER electrocatalysts more than half a century ago, the recent interest in renewable energy storage has spurred a renaissance of the studies of transition metal oxides as Earth-abundant and nonprecious OER catalysts. This Perspective presents major progress in several key areas of the field such as theoretical understanding, activity trend, in situ and operando characterization, active site determination, and novel materials. A personal overview of the past achievements and future challenges is also provided.
NASA Astrophysics Data System (ADS)
Hu, Qianqian; Huang, Jiquan; Li, Guojing; Jiang, Yabin; Lan, Hai; Guo, Wang; Cao, Yongge
2016-09-01
Cu incorporated TiO2 has been regarded as a low-cost photocatalyst with excellent photocatalytic performance for water splitting. Here we try to exploit the origin of its high reactivity by fabricating a series of Cu incorporated TiO2 films with the same Cu content under different atmosphere. Based on the comprehensive structure and surface characterizations, it is found that CuO is unstable and will be reduced to Cu2O or even to metallic Cu under light irradiation during the photocatalytic reaction, and Cu2O is an efficient co-catalyst that promotes the separation of photogenerated carriers while metallic Cu can further boost the photocatalytic activity. Besides, it is also noticed that the chemisorbed oxygen on the particle surface blocks the water splitting. By depositing TiO2 films under oxygen rich condition, oxygen vacancy is decreased greatly, which facilitates the removal of chemisorbed oxygen and the formation of metallic Cu during photocatalytic reaction, resulting in an ultra-high H2 evolution rate of 2.80 μmol cm-2 h-1, which is about 55 times higher than that of pure TiO2.
Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor
2016-01-01
We report on the experimental demonstration of an aerosol solar reactor for the thermal reduction of ceria, as part of a thermochemical redox cycle for splitting H2O and CO2. The concept utilizes a cavity-receiver enclosing an array of alumina tubes, each containing a downward gravity-driven aerosol flow of ceria particles countercurrent to an inert sweep gas flow for intrinsic separation of reduced ceria and oxygen. A 2 kWth lab-scale prototype with a single tube was tested under radiative fluxes approaching 4000 suns, yielding reaction extents of up to 53% of the thermodynamic equilibrium at 1919 K within residence times below 1 s. Upon thermal redox cycling, fresh primary particles of 2.44 μm mean size initially formed large agglomerates of 1000 μm mean size, then sintered into stable particles of 150 μm mean size. The reaction extent was primarily limited by heat transfer for large particles/agglomerates (mean size > 200 μm) and by the gas phase advection of product O2 for smaller particles. PMID:27853339
Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor.
Welte, Michael; Barhoumi, Rafik; Zbinden, Adrian; Scheffe, Jonathan R; Steinfeld, Aldo
2016-10-12
We report on the experimental demonstration of an aerosol solar reactor for the thermal reduction of ceria, as part of a thermochemical redox cycle for splitting H 2 O and CO 2 . The concept utilizes a cavity-receiver enclosing an array of alumina tubes, each containing a downward gravity-driven aerosol flow of ceria particles countercurrent to an inert sweep gas flow for intrinsic separation of reduced ceria and oxygen. A 2 kW th lab-scale prototype with a single tube was tested under radiative fluxes approaching 4000 suns, yielding reaction extents of up to 53% of the thermodynamic equilibrium at 1919 K within residence times below 1 s. Upon thermal redox cycling, fresh primary particles of 2.44 μm mean size initially formed large agglomerates of 1000 μm mean size, then sintered into stable particles of 150 μm mean size. The reaction extent was primarily limited by heat transfer for large particles/agglomerates (mean size > 200 μm) and by the gas phase advection of product O 2 for smaller particles.
Fominykh, Ksenia; Chernev, Petko; Zaharieva, Ivelina; Sicklinger, Johannes; Stefanic, Goran; Döblinger, Markus; Müller, Alexander; Pokharel, Aneil; Böcklein, Sebastian; Scheu, Christina; Bein, Thomas; Fattakhova-Rohlfing, Dina
2015-05-26
Efficient electrochemical water splitting to hydrogen and oxygen is considered a promising technology to overcome our dependency on fossil fuels. Searching for novel catalytic materials for electrochemical oxygen generation is essential for improving the total efficiency of water splitting processes. We report the synthesis, structural characterization, and electrochemical performance in the oxygen evolution reaction of Fe-doped NiO nanocrystals. The facile solvothermal synthesis in tert-butanol leads to the formation of ultrasmall crystalline and highly dispersible FexNi1-xO nanoparticles with dopant concentrations of up to 20%. The increase in Fe content is accompanied by a decrease in particle size, resulting in nonagglomerated nanocrystals of 1.5-3.8 nm in size. The Fe content and composition of the nanoparticles are determined by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy measurements, while Mössbauer and extended X-ray absorption fine structure analyses reveal a substitutional incorporation of Fe(III) into the NiO rock salt structure. The excellent dispersibility of the nanoparticles in ethanol allows for the preparation of homogeneous ca. 8 nm thin films with a smooth surface on various substrates. The turnover frequencies (TOF) of these films could be precisely calculated using a quartz crystal microbalance. Fe0.1Ni0.9O was found to have the highest electrocatalytic water oxidation activity in basic media with a TOF of 1.9 s(-1) at the overpotential of 300 mV. The current density of 10 mA cm(-2) is reached at an overpotential of 297 mV with a Tafel slope of 37 mV dec(-1). The extremely high catalytic activity, facile preparation, and low cost of the single crystalline FexNi1-xO nanoparticles make them very promising catalysts for the oxygen evolution reaction.
NASA Astrophysics Data System (ADS)
Fang, Yiyun; Li, Xinzhe; Li, Feng; Lin, Xiaoqing; Tian, Min; Long, Xuefeng; An, Xingcai; Fu, Yan; Jin, Jun; Ma, Jiantai
2016-09-01
Metal organic frameworks (MOF) derived carbonaceous materials have emerged as promising bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts for electrochemical energy conversion and storage. But previous attempts to overcome the poor electrical conductivity of MOFs hybrids involve a harsh high-template pyrolytic process to in situ form carbon, which suffer from extremely complex operation and inevitable carbon corrosion at high positive potentials when OER is operated. Herein, a self-assembly approach is presented to synthesize a non-precious metal-based, high active and strong durable Co-MOF@CNTs bifunctional catalyst for OER and ORR. CNTs not only improve the transportation of the electrons but also can sustain the harsh oxidative environment of OER without carbon corrosion. Meanwhile, the unique 3D hierarchical structure offers a large surface area and stable anchoring sites for active centers and CNTs, which enables the superior durability of hybrid. Moreover, a synergistic catalysis of Co(II), organic ligands and CNTs will enhance the bifunctional electrocatalytic performance. Impressively, the hybrid exhibits comparable OER and ORR catalytic activity to RuO2 and 20 wt% Pt/C catalysts and superior stability. This facile and versatile strategy to fabricating MOF-based hybrids may be extended to other electrode materials for fuel cell and water splitting applications.
Nickel-based anodic electrocatalysts for fuel cells and water splitting
NASA Astrophysics Data System (ADS)
Chen, Dayi
Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel-based catalysts, methanol oxidation suffers from high overpotential and catalyst poisoning by high concentration of substrates, so current nickel-based catalysts are more suitable to be used as oxygen evolution catalysts. A photoanode design that applies nickel oxides to a semiconductor that is incorporated with surface-plasmonic metal electrodes to do solar water oxidation with visible light is proposed.
Natural and Artificial Mn4 Ca Cluster for the Water Splitting Reaction.
Chen, Changhui; Li, Yanxi; Zhao, Guoqing; Yao, Ruoqing; Zhang, Chunxi
2017-11-23
The oxygen-evolving center (OEC) in photosystem II (PSII) is a unique biological catalyst that splits water into electrons, protons, and O 2 by using solar energy. Recent crystallographic studies have revealed that the structure of the OEC is an asymmetric Mn 4 Ca cluster, which provides a blueprint to develop man-made water-splitting catalysts for artificial photosynthesis. Although it is a great challenge to mimic the whole structure and function of the OEC in the laboratory, significant advances have recently been achieved. In this Minireview, recent progress on mimicking the natural OEC is discussed. New strategies are suggested to construct more stable and efficient new generation of catalytic materials for the water splitting reaction based on the artificial Mn 4 Ca cluster in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sandhu, Gurkirat; Khinda, Paramjit Kaur; Gill, Amarjit Singh; Singh Khinda, Vineet Inder; Baghi, Kamal; Chahal, Gurparkash Singh
2017-01-01
Context: Periodontal surgical procedures produce varying degree of stress in all patients. Nitrous oxide-oxygen inhalation sedation is very effective for adult patients with mild-to-moderate anxiety due to dental procedures and needle phobia. Aim: The present study was designed to perform periodontal surgical procedures under nitrous oxide-oxygen inhalation sedation and assess whether this technique actually reduces stress physiologically, in comparison to local anesthesia alone (LA) during lengthy periodontal surgical procedures. Settings and Design: This was a randomized, split-mouth, cross-over study. Materials and Methods: A total of 16 patients were selected for this randomized, split-mouth, cross-over study. One surgical session (SS) was performed under local anesthesia aided by nitrous oxide-oxygen inhalation sedation, and the other SS was performed on the contralateral quadrant under LA. For each session, blood samples to measure and evaluate serum cortisol levels were obtained, and vital parameters including blood pressure, heart rate, respiratory rate, and arterial blood oxygen saturation were monitored before, during, and after periodontal surgical procedures. Statistical Analysis Used: Paired t-test and repeated measure ANOVA. Results: The findings of the present study revealed a statistically significant decrease in serum cortisol levels, blood pressure and pulse rate and a statistically significant increase in respiratory rate and arterial blood oxygen saturation during periodontal surgical procedures under nitrous oxide inhalation sedation. Conclusion: Nitrous oxide-oxygen inhalation sedation for periodontal surgical procedures is capable of reducing stress physiologically, in comparison to LA during lengthy periodontal surgical procedures. PMID:29386796
1994-07-27
of the split-flow and recirculation modifications in typical Air Force painting operations; itwas a proof-of- concept study only. It is recognized...recirculating ventilation. 4 To Implement this flow-reduction concept , it must first be established that recirculation does not cause an accumulation of toxic...ventilation concept . The concentration gradient is determined by height and direction of paint application. If the concentration in the top portion is
Visible light water splitting using dye-sensitized oxide semiconductors.
Youngblood, W Justin; Lee, Seung-Hyun Anna; Maeda, Kazuhiko; Mallouk, Thomas E
2009-12-21
Researchers are intensively investigating photochemical water splitting as a means of converting solar to chemical energy in the form of fuels. Hydrogen is a key solar fuel because it can be used directly in combustion engines or fuel cells, or combined catalytically with CO(2) to make carbon containing fuels. Different approaches to solar water splitting include semiconductor particles as photocatalysts and photoelectrodes, molecular donor-acceptor systems linked to catalysts for hydrogen and oxygen evolution, and photovoltaic cells coupled directly or indirectly to electrocatalysts. Despite several decades of research, solar hydrogen generation is efficient only in systems that use expensive photovoltaic cells to power water electrolysis. Direct photocatalytic water splitting is a challenging problem because the reaction is thermodynamically uphill. Light absorption results in the formation of energetic charge-separated states in both molecular donor-acceptor systems and semiconductor particles. Unfortunately, energetically favorable charge recombination reactions tend to be much faster than the slow multielectron processes of water oxidation and reduction. Consequently, visible light water splitting has only recently been achieved in semiconductor-based photocatalytic systems and remains an inefficient process. This Account describes our approach to two problems in solar water splitting: the organization of molecules into assemblies that promote long-lived charge separation, and catalysis of the electrolysis reactions, in particular the four-electron oxidation of water. The building blocks of our artificial photosynthetic systems are wide band gap semiconductor particles, photosensitizer and electron relay molecules, and nanoparticle catalysts. We intercalate layered metal oxide semiconductors with metal nanoparticles. These intercalation compounds, when sensitized with [Ru(bpy)(3)](2+) derivatives, catalyze the photoproduction of hydrogen from sacrificial electron donors (EDTA(2-)) or non-sacrificial donors (I(-)). Through exfoliation of layered metal oxide semiconductors, we construct multilayer electron donor-acceptor thin films or sensitized colloids in which individual nanosheets mediate light-driven electron transfer reactions. When sensitizer molecules are "wired" to IrO(2).nH(2)O nanoparticles, a dye-sensitized TiO(2) electrode becomes the photoanode of a water-splitting photoelectrochemical cell. Although this system is an interesting proof-of-concept, the performance of these cells is still poor (approximately 1% quantum yield) and the dye photodegrades rapidly. We can understand the quantum efficiency and degradation in terms of competing kinetic pathways for water oxidation, back electron transfer, and decomposition of the oxidized dye molecules. Laser flash photolysis experiments allow us to measure these competing rates and, in principle, to improve the performance of the cell by changing the architecture of the electron transfer chain.
Quantification of photocatalytic oxygenation of human blood.
Subrahmanyam, Aryasomayajula; Thangaraj, Paul R; Kanuru, Chandrasekhar; Jayakumar, Albert; Gopal, Jayashree
2014-04-01
Photocatalytic oxygenation of human blood is an emerging concept based on the principle of photocatalytic splitting of water into oxygen and hydrogen. This communication reports: (i) a design of a photocatalytic cell (PC) that separates the blood from UV (incident) radiation source, (ii) a pH, temperature and flow controlled circuit designed for quantifying the oxygenation of human blood by photocatalysis and (iii) measuring the current efficacy of ITO/TiO2 nano thin films in oxygenating human blood in a dynamic circuit in real time. The average increase in oxygen saturation was around 5% above baseline compared to control (p<0.0005). We believe this is one of the first attempts to quantify photocatalytic oxygenation of human blood under controlled conditions. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bak, Daegil; Kim, Jung Hyeun
2018-06-01
Zinc type photocatalysts attract great attentions in solar hydrogen production due to their easy availability and benign environmental characteristics. Spherical ZnS particles are synthesized with a facile hydrothermal method, and they are further used as core materials to introduce ZnO shell layer surrounding the core part by partial oxidation under controlled oxygen contents. The resulting ZnS core-ZnO shell photocatalysts represent the heterostructural type II band alignment. The existence of oxide layer also influences on proton adsorption power with an aid of strong base cites derived from highly electronegative oxygen atoms in ZnO shell layer. Photocatalytic water splitting reaction is performed to evaluate catalyst efficiency under standard one sun condition, and the highest hydrogen evolution rate (1665 μmolg-1h-1) is achieved from the sample oxidized at 16.2 kPa oxygen pressure. This highest hydrogen production rate is achieved in cooperation with increased light absorption and promoted charge separations. Photoluminescence analysis reveals that the improved visible light response is obtained after thermal oxidation process due to the oxygen vacancy states in the ZnO shell layer. Therefore, overall photocatalytic efficiency in solar hydrogen production is enhanced by improved charge separations, crystallinity, and visible light responses from the ZnS core-ZnO shell structures induced by thermal oxidation.
Mateo, Diego; Esteve-Adell, Iván; Albero, Josep; Royo, Juan F. Sánchez; Primo, Ana; Garcia, Hermenegildo
2016-01-01
Development of renewable fuels from solar light appears as one of the main current challenges in energy science. A plethora of photocatalysts have been investigated to obtain hydrogen and oxygen from water and solar light in the last decades. However, the photon-to-hydrogen molecule conversion is still far from allowing real implementation of solar fuels. Here we show that 111 facet-oriented gold nanoplatelets on multilayer graphene films deposited on quartz is a highly active photocatalyst for simulated sunlight overall water splitting into hydrogen and oxygen in the absence of sacrificial electron donors, achieving hydrogen production rate of 1.2 molH2 per gcomposite per h. This photocatalytic activity arises from the gold preferential orientation and the strong gold–graphene interaction occurring in the composite system. PMID:27264495
Mateo, Diego; Esteve-Adell, Iván; Albero, Josep; Royo, Juan F Sánchez; Primo, Ana; Garcia, Hermenegildo
2016-06-06
Development of renewable fuels from solar light appears as one of the main current challenges in energy science. A plethora of photocatalysts have been investigated to obtain hydrogen and oxygen from water and solar light in the last decades. However, the photon-to-hydrogen molecule conversion is still far from allowing real implementation of solar fuels. Here we show that 111 facet-oriented gold nanoplatelets on multilayer graphene films deposited on quartz is a highly active photocatalyst for simulated sunlight overall water splitting into hydrogen and oxygen in the absence of sacrificial electron donors, achieving hydrogen production rate of 1.2 molH2 per gcomposite per h. This photocatalytic activity arises from the gold preferential orientation and the strong gold-graphene interaction occurring in the composite system.
Zhu, Mingchao; Zhang, Zhongyi; Zhang, Hu; Zhang, Hui; Zhang, Xiaodong; Zhang, Lixue; Wang, Shicai
2018-01-01
Hydrophilic medium and precursors were used to synthesize a hydrophilic electro-catalyst for overall water splitting. The cobalt sulfide (Co 3 S 4 ) catalyst exhibits a layered nanosheet structure with a hydrophilic surface, which can facilitate the diffusion of aqueous substrates into the electrode pores and towards the active sites. The Co 3 S 4 catalyst shows excellent bifunctional catalytic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline solution. The assembled water electrolyzer based on Co 3 S 4 exhibits better performance and stability than that of Pt/C-RuO 2 catalyst. Thereforce the hydrophilic Co 3 S 4 is a highly promising bifunctional catalyst for the overall water splitting reaction. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coker, Eric Nicholas; Rodriguez, Mark A.; Ambrosini, Andrea
Hydrogen and carbon monoxide may be produced using solar-thermal energy in two-stage reactions of water and carbon dioxide, respectively, over certain metal oxide materials. The most active materials observed experimentally for these processes are complex mixtures of ferrite and zirconia based solids, and it is not clear how far the ferrites, the zirconia, or a solid solution between the two participate in the change of oxidation state during the cycling. Identification of the key phases in the redox material that enable splitting is of paramount importance to developing a working model of the materials. A three-pronged approach was adopted here:more » computer modeling to determine thermodynamically favorable materials compositions, bench reactor testing to evaluate materials’ performance, and in-situ characterization of reactive materials to follow phase changes and identify the phases active for splitting. For the characterization and performance evaluation thrusts, cobalt ferrites were prepared by co-precipitation followed by annealing at 1400 °C. An in-situ X-ray diffraction capability was developed and tested, allowing phase monitoring in real time during thermochemical redox cycling. Key observations made for an un-supported cobalt ferrite include: 1) ferrite phases partially reduce to wustite upon heating to 1400 °C in helium; 2) exposing the material to air at 1100 °C causes immediate re-oxidation; 3) the re-oxidized material may be thermally reduced at 1400 °C under inert; 4) exposure of a reduced material to CO 2 results in gradual re-oxidation at 1100 °C, but minimization of background O 2-levels is essential; 5) even after several redox cycles, the lattice parameters of the ferrites remain constant, indicating that irreversible phase separation does not occur, at least over the first five cycles; 6) substituting chemical (hydrogen) reduction for thermal reduction resulted in formation of a CoFe metallic alloy. Materials were also evaluated for their CO 2-splitting performance in bench reactor systems utilizing chemical reduction in place of thermal reduction. These tests lead to the following general conclusions: 1) despite over-reduction of the cobalt ferrite phase to CoFe alloy on chemical reduction, splitting of CO 2 still occurs; 2) the kinetics of chemical reduction follow the sequence: un-supported < ZrO 2-supported < yttria-stabilized ZrO 2 (YSZ)-supported ferrite; 3) ferrite/YSZ re-oxidizes faster than ferrite/ZrO 2 under CO 2 in the range 400 – 700 °C. The temperature and pressure regimes in which the thermal reduction and water-splitting steps are thermodynamically favorable in terms of the enthalpy and entropy of oxide reduction, were determined. These metrics represent a useful design goal for any proposed water-splitting cycle. Applying this theoretical framework to available thermodynamic data, it was shown that none of the 105 binary oxide redox couples that were screened possess both energetically favorable reduction and oxidation steps. However, several driving forces, including low pressure and a large positive solid-state entropy of reduction of the oxide, have the potential to enable thermodynamically-favored two-step cycles.« less
Structure of the Photo-catalytically Active Surface of SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plaza, Manuel; Huang, Xin; Ko, J. Y. Peter
2016-06-29
A major goal of energy research is to use visible light to cleave water directly, without an applied voltage, into hydrogen and oxygen. Although SrTiO3 requires ultraviolet light, after four decades, it is still the “gold standard” for the photo-catalytic splitting of water. It is chemically robust and can carry out both hydrogen and oxygen evolution reactions without an applied bias. While ultrahigh vacuum surface science techniques have provided useful insights, we still know relatively little about the structure of these electrodes in contact with electrolytes under operating conditions. Here, we report the surface structure evolution of a n-SrTiO3 electrodemore » during water splitting, before and after “training” with an applied positive bias. Operando high-energy X-ray reflectivity measurements demonstrate that training the electrode irreversibly reorders the surface. Scanning electrochemical microscopy at open circuit correlates this training with a 3-fold increase of the activity toward the photo-induced water splitting. A novel first-principles joint density functional theory simulation, constrained to the X-ray data via a generalized penalty function, identifies an anatase-like structure as the more active, trained surface.« less
Structure of the Photo-catalytically Active Surface of SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plaza, Manuel; Huang, Xin; Ko, J. Y. Peter
2016-06-29
A major goal of energy research is to use visible light to cleave water directly, without an applied voltage, into hydrogen and oxygen. Although SrTiO 3 requires ultraviolet light, after four decades, it is still the "gold standard" for the photo-catalytic splitting of water. It is chemically robust and can carry out both hydrogen and oxygen evolution reactions without an applied bias. While ultrahigh vacuum surface science techniques have provided useful insights, we still know relatively little about the structure of these electrodes in contact with electrolytes under operating conditions. Here, we report the surface structure evolution of a n-SrTiOmore » 3 electrode during water splitting, before and after "training" with an applied positive bias. Operando high-energy X-ray reflectivity measurements demonstrate that training the electrode irreversibly reorders the surface. Scanning electrochemical microscopy at open circuit correlates this training with a 3-fold increase of the activity toward the photo-induced water splitting. A novel first-principles joint density functional theory simulation, constrained to the X-ray data via a generalized penalty function, identifies an anatase-like structure as the more active, trained surface.« less
NREL Establishes World Record for Solar Hydrogen Production | News | News |
acid/water solution (electrolyte) where the water-splitting reaction occurs to form hydrogen and oxygen efficiency and to partially protect the critical underlying layers from the corrosive electrolyte solution
Antioxidant Effect of Xanthan Gum on Ram Sperm after Freezing and Thawing.
Gastal, G DA; Silva, E F; Mion, B; Varela Junior, A S; Rosa, C E; Corcini, C D; Mondadori, R G; Vieira, A D; Bianchi, I; Lucia, T
Xanthan gum is used as thickener in media to preserve food products, having cryoprotectant and antioxidant properties that may be relevant for sperm cryopreservation. To evaluate the effects of adding xanthan gum to freezing extenders on post-thawing quality and oxidant activity of ram sperm. Ejaculates from seven rams extended TRIS-egg yolk-glycerol were split in three treatments including xanthan gum (0.15%; 0.20%; and 0.25%) and a control with no xanthan gum. After thawing, motility and production of reactive oxygen species (ROS) with 0.20% and 0.25% xanthan gum were lower than for the control (P < 0.05), but mitochondrial functionality and integrity of membrane, acrosome and DNA did not differ (P > 0.05). Xanthan gum at 0.20% and 0.25% may be an efficient antioxidant for frozen-thawed ram sperm, due to the reduction in ROS production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickner, Michael A.; Matranga, Christopher S.
This project will use bipolar membranes to produce efficient vapor-phase electrolysis cells for splitting CO 2 to CO and oxygen. CO is a valuable chemical feedstock that can be combined catalytically with hydrogen in the Fischer-Tropsch process to make liquid fuels. CO is arguably the best target for CO 2 reduction since, as a gaseous product, it is easily collected and is relatively immune to membrane crossover losses. The keys to success in this project are to design and synthesize hydrophilic, low resistance bipolar membranes and to create optimized electrode/catalyst/ electrolyte architectures based on these new membranes and advanced catalystsmore » in order to achieve high current density at low overpotentials for CO 2 conversion. High current density is key to achieving industrially-relevant throughput for the process and low overpotentials maintain high overall efficiency for the process.« less
Ezbiri, Miriam; Takacs, Michael; Stolz, Boris; Lungthok, Jeffrey; Steinfeld, Aldo
2017-01-01
Perovskites are attractive redox materials for thermo/electrochemical fuel synthesis. To design perovskites with balanced redox energetics for thermochemically splitting CO2, the activity of lattice oxygen vacancies and stability against crystal phase changes and detrimental carbonate formation are predicted for a representative range of perovskites by electronic structure computations. Systematic trends in these materials properties when doping with selected metal cations are described in the free energy range defined for isothermal and temperature-swing redox cycles. To confirm that the predicted materials properties root in the bulk chemical composition, selected perovskites are synthesized and characterized by X-ray diffraction, transmission electron microscopy, and thermogravimetric analysis. On one hand, due to the oxidation equilibrium, none of the investigated compositions outperforms non-stoichiometric ceria – the benchmark redox material for CO2 splitting with temperature-swings in the range of 800–1500 °C. On the other hand, certain promising perovskites remain redox-active at relatively low oxide reduction temperatures at which ceria is redox-inactive. This trade-off in the redox energetics is established for YFeO3, YCo0.5Fe0.5O3 and LaFe0.5Ni0.5O3, identified as stable against phase changes and capable to convert CO2 to CO at 600 °C and 10 mbar CO in CO2, and to being decomposed at 1400 °C and 0.1 mbar O2 with an enthalpy change of 440–630 kJ mol–1 O2. PMID:29456856
Li, Yuxuan; Yin, Jie; An, Li; Lu, Min; Sun, Ke; Zhao, Yong-Qin; Gao, Daqiang; Cheng, Fangyi; Xi, Pinxian
2018-05-28
Electrochemical water splitting to produce hydrogen and oxygen, as an important reaction for renewable energy storage, needs highly efficient and stable catalysts. Herein, FeS 2 /CoS 2 interface nanosheets (NSs) as efficient bifunctional electrocatalysts for overall water splitting are reported. The thickness and interface disordered structure with rich defects of FeS 2 /CoS 2 NSs are confirmed by atomic force microscopy and high-resolution transmission electron microscopy. Furthermore, extended X-ray absorption fine structure spectroscopy clarifies that FeS 2 /CoS 2 NSs with sulfur vacancies, which can further increase electrocatalytic performance. Benefiting from the interface nanosheets' structure with abundant defects, the FeS 2 /CoS 2 NSs show remarkable hydrogen evolution reaction (HER) performance with a low overpotential of 78.2 mV at 10 mA cm -2 and a superior stability for 80 h in 1.0 m KOH, and an overpotential of 302 mV at 100 mA cm -2 for the oxygen evolution reaction (OER). More importantly, the FeS 2 /CoS 2 NSs display excellent performance for overall water splitting with a voltage of 1.47 V to achieve current density of 10 mA cm -2 and maintain the activity for at least 21 h. The present work highlights the importance of engineering interface nanosheets with rich defects based on transition metal dichalcogenides for boosting the HER and OER performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluation of Proposed Rocket Engines for Earth-to-Orbit Vehicles
NASA Technical Reports Server (NTRS)
Martin, James A.; Kramer, Richard D.
1990-01-01
The objective is to evaluate recently analyzed rocket engines for advanced Earth-to-orbit vehicles. The engines evaluated are full-flow staged combustion engines and split expander engines, both at mixture ratios at 6 and above with oxygen and hydrogen propellants. The vehicles considered are single-stage and two-stage fully reusable vehicles and the Space Shuttle with liquid rocket boosters. The results indicate that the split expander engine at a mixture ratio of about 7 is competitive with the full-flow staged combustion engine for all three vehicle concepts. A key factor in this result is the capability to increase the chamber pressure for the split expander as the mixture ratio is increased from 6 to 7.
Yan, Yibo; Chen, Jie; Li, Nan; Tian, Jingqi; Li, Kaixin; Jiang, Jizhou; Liu, Jiyang; Tian, Qinghua; Chen, Peng
2018-04-24
Graphene quantum dots (GQDs), which is the latest addition to the nanocarbon material family, promise a wide spectrum of applications. Herein, we demonstrate two different functionalization strategies to systematically tailor the bandgap structures of GQDs whereby making them snugly suitable for particular applications. Furthermore, the functionalized GQDs with a narrow bandgap and intramolecular Z-scheme structure are employed as the efficient photocatalysts for water splitting and carbon dioxide reduction under visible light. The underlying mechanisms of our observations are studied and discussed.
Lewis, Nathan S.; West, William C.
2017-01-17
The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.
NASA Technical Reports Server (NTRS)
West, William C. (Inventor); Lewis, Nathan S. (Inventor)
2017-01-01
The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.
New Snapshots of Photosynthesis Captured by SLACâs X-ray Laser
None
2018-06-13
The machinery responsible for photosynthesis â while commonplace and essential to life on Earth â is still not fully understood. One of its molecular mysteries involves how a protein complex, photosystem II, harvests energy from light and uses it to split water into hydrogen and oxygen. The process generates the oxygen in the air that we breathe. New X-ray methods at the Department of Energyâs SLAC National Accelerator Laboratory have captured the first detailed image of this protein complex at room temperature, which allows scientists to closely watch how water is split during photosynthesis at the temperature at which it occurs naturally. The research team took the images using the bright, fast pulses of light at SLACâs X-ray free-electron laser â the Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility.
Advanced engine study for mixed-mode orbit-transfer vehicles
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1978-01-01
Engine design, performance, weight and envelope data were established for three mixed-mode orbit-transfer vehicle engine candidates. Engine concepts evaluated are the tripropellant, dual-expander and plug cluster. Oxygen, RP-1 and hydrogen are the propellants considered for use in these engines. Theoretical performance and propellant properties were established for bipropellant and tripropellant mixes of these propellants. RP-1, hydrogen and oxygen were evaluated as coolants and the maximum attainable chamber pressures were determined for each engine concept within the constraints of the propellant properties and the low cycle thermal fatigue (300 cycles) requirement. The baseline engine design and component operating characteristics are determined at a thrust level of 88,964N (20,000 lbs) and a thrust split of 0.5. The parametric data is generated over ranges of thrust and thrust split of 66.7 to 400kN (15 to 90 klb) and 0.4 to 0.8, respectively.
New Snapshots of Photosynthesis Captured by SLAC’s X-ray Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-11-22
The machinery responsible for photosynthesis – while commonplace and essential to life on Earth – is still not fully understood. One of its molecular mysteries involves how a protein complex, photosystem II, harvests energy from light and uses it to split water into hydrogen and oxygen. The process generates the oxygen in the air that we breathe. New X-ray methods at the Department of Energy’s SLAC National Accelerator Laboratory have captured the first detailed image of this protein complex at room temperature, which allows scientists to closely watch how water is split during photosynthesis at the temperature at which itmore » occurs naturally. The research team took the images using the bright, fast pulses of light at SLAC’s X-ray free-electron laser – the Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility.« less
Oxygen related recombination defects in Ta{sub 3}N{sub 5} water splitting photoanode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Gao; Yu, Tao, E-mail: yscfei@nju.edu.cn, E-mail: yutao@nju.edu.cn; Zou, Zhigang
2015-10-26
A key route to improving the performance of Ta{sub 3}N{sub 5} photoelectrochemical film devices in solar driving water splitting to hydrogen is to understand the nature of the serious recombination of photo-generated carriers. Here, by using the temperature-dependent photoluminescence (PL) spectrum, we confirmed that for the Ta{sub 3}N{sub 5} films prepared by nitriding Ta{sub 2}O{sub 5} precursor, one PL peak at 561 nm originates from deep-level defects recombination of the oxygen-enriched Ta{sub 3}N{sub 5} phases, and another one at 580 nm can be assigned to band recombination of Ta{sub 3}N{sub 5} itself. Both of the two bulk recombination processes may decrease themore » photoelectrochemical performance of Ta{sub 3}N{sub 5}. It was difficult to remove the oxygen-enriched impurities in Ta{sub 3}N{sub 5} films by increasing the nitriding temperatures due to their high thermodynamically stability. In addition, a broadening PL peak between 600 and 850 nm resulting from oxygen related surface defects was observed by the low-temperature PL measurement, which may induce the surface recombination of photo-generated carriers and can be removed by increasing the nitridation temperature. Our results provided direct experimental evidence to understand the effect of oxygen-related crystal defects in Ta{sub 3}N{sub 5} films on its photoelectric performance.« less
NASA Technical Reports Server (NTRS)
Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.
1992-01-01
The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.
Efficient generation of H2 by splitting water with an isothermal redox cycle.
Muhich, Christopher L; Evanko, Brian W; Weston, Kayla C; Lichty, Paul; Liang, Xinhua; Martinek, Janna; Musgrave, Charles B; Weimer, Alan W
2013-08-02
Solar thermal water-splitting (STWS) cycles have long been recognized as a desirable means of generating hydrogen gas (H2) from water and sunlight. Two-step, metal oxide-based STWS cycles generate H2 by sequential high-temperature reduction and water reoxidation of a metal oxide. The temperature swings between reduction and oxidation steps long thought necessary for STWS have stifled STWS's overall efficiency because of thermal and time losses that occur during the frequent heating and cooling of the metal oxide. We show that these temperature swings are unnecessary and that isothermal water splitting (ITWS) at 1350°C using the "hercynite cycle" exhibits H2 production capacity >3 and >12 times that of hercynite and ceria, respectively, per mass of active material when reduced at 1350°C and reoxidized at 1000°C.
Solar photochemical and thermochemical splitting of water.
Rao, C N R; Lingampalli, S R; Dey, Sunita; Roy, Anand
2016-02-28
Artificial photosynthesis to carry out both the oxidation and the reduction of water has emerged to be an exciting area of research. It has been possible to photochemically generate oxygen by using a scheme similar to the Z-scheme, by using suitable catalysts in place of water-oxidation catalyst in the Z-scheme in natural photosynthesis. The best oxidation catalysts are found to be Co and Mn oxides with the e(1) g configuration. The more important aspects investigated pertain to the visible-light-induced generation of hydrogen by using semiconductor heterostructures of the type ZnO/Pt/Cd1-xZnxS and dye-sensitized semiconductors. In the case of heterostructures, good yields of H2 have been obtained. Modifications of the heterostructures, wherein Pt is replaced by NiO, and the oxide is substituted with different anions are discussed. MoS2 and MoSe2 in the 1T form yield high quantities of H2 when sensitized by Eosin Y. Two-step thermochemical splitting of H2O using metal oxide redox pairs provides a strategy to produce H2 and CO. Performance of the Ln0.5A0.5MnO3 (Ln = rare earth ion, A = Ca, Sr) family of perovskites is found to be promising in this context. The best results to date are found with Y0.5Sr0.5MnO3. © 2016 The Author(s).
Narzi, Daniele; Capone, Matteo; Bovi, Daniele; Guidoni, Leonardo
2018-04-16
Water oxidation in the early steps of natural photosynthesis is fulfilled by photosystem II, which is a protein complex embedded in the thylakoid membrane inside chloroplasts. The water oxidation reaction occurs in the catalytic core of photosystem II, which consists of a Mn4Ca metal cluster, at which, after the accumulation of four oxidising equivalents through five steps (S0-S4) of the Kok-Joliot cycle, two water molecules are split into electrons, protons, and molecular oxygen. In recent years, by combining experimental and theoretical approaches, new insights have been achieved into the structural and electronic properties of different steps of the catalytic cycle. Nevertheless, the exact catalytic mechanism, especially concerning the final stages of the cycle, remains elusive and greatly debated. Herein, by means of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations, from the structural, electronic, and magnetic points of view, the S 3 state before and upon oxidation has been characterised. In contrast with the S 2 state, the oxidation of the S 3 state is not followed by a spontaneous proton-coupled electron-transfer event. Nevertheless, upon modelling the reduction of the tyrosine residue in photosystem II (Tyr Z ) and the protonation of Asp61, spontaneous proton transfer occurs, leading to the deprotonation of an oxygen atom bound to Mn1; thus making it available for O-O bond formation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Q.L.; Xiao, R.; Deng, Z.Y.
2008-12-15
Chemical-looping combustion (CLC) is a promising combustion technology for gaseous and solid fuel with efficient use of energy and inherent separation of CO{sub 2}. The concept of a coal-fueled CLC system using, calcium sulfate (CaSO{sub 4}) as oxygen carrier is proposed in this study. Reduction tests of CaSO{sub 4} oxygen carrier with simulated coal gas were performed in a laboratory-scale fluidized bed reactor in the temperature range of 890-950{degree}C. A high concentration of CO{sub 2} was obtained at the initial reduction period. CaSO{sub 4} oxygen carrier exhibited high reactivity initially and decreased gradually at the late period of reduction. Themore » sulfur release during the reduction of CaSO{sub 4} as oxygen carrier was also observed and analyzed. H{sub 2} and CO{sub 2} conversions were greatly influenced by reduction temperature. The oxygen carrier conversion and mass-based reaction rates during the reduction at typical temperatures were compared. Higher temperatures would enhance reaction rates and result in high conversion of oxygen carrier. An XRD patterns study indicated that CaS was the dominant product of reduction and the variation of relative intensity with temperature is in agreement with the solid conversion. ESEM analysis indicated that the surface structure of oxygen carrier particles changed significantly from impervious to porous after reduction. EDS analysis also demonstrated the transfer of oxygen from the oxygen carrier to the fuel gas and a certain amount of sulfur loss and CaO formation on the surface at higher temperatures. The reduction kinetics of CaSO{sub 4} oxygen carrier was explored with the shrinking unreacted-core model. The apparent kinetic parameters were obtained, and the kinetic equation well predicted the experimental data. Finally, some basic considerations on the use of CaSO{sub 4} oxygen carrier in a CLC system for solid fuels were discussed.« less
Effect of Bombardment with Oxygen Ions on the Surface Composition of Polycrystalline Silver
NASA Astrophysics Data System (ADS)
Ashkhotov, O. G.; Khubezhov, S. A.; Aleroev, M. A.; Magkoev, T. T.; Grigorkina, G. S.
2018-07-01
Surface layers of polycrystalline silver bombarded with oxygen ions having energies from 100 to 300 eV are studied via Auger electron and X-ray photoelectron spectroscopies. Atomic and molecular oxygen together with silver in the zero-valence state are found in AgO and Ag2O after such treatment in silver surface layers. In addition, there is positive displacement of the Ag 3 d 3/2 peak by 0.5 eV, indicating an increase in spin-orbit splitting for Ag 3 d 5/2-Ag 3 d 3/2.
Kozuleva, Marina A; Ivanov, Boris N
2016-07-01
The review is dedicated to ascertainment of the roles of the electron transfer cofactors of the pigment-protein complex of PSI, ferredoxin (Fd) and ferredoxin-NADP reductase in oxygen reduction in the photosynthetic electron transport chain (PETC) in the light. The data regarding oxygen reduction in other segments of the PETC are briefly analyzed, and it is concluded that their participation in the overall process in the PETC under unstressful conditions should be insignificant. Data concerning the contribution of Fd to the oxygen reduction in the PETC are examined. A set of collateral evidence as well as results of direct measurements of the involvement of Fd in this process in the presence of isolated thylakoids led to the inference that this contribution in vivo is negligible. The increase in oxygen reduction rate in the isolated thylakoids in the presence of either Fd or Fd plus NADP + under increasing light intensity was attributed to the increase in oxygen reduction executed by the membrane-bound oxygen reductants. Data are presented which imply that a main reductant of the O 2 molecule in the terminal reducing segment of the PETC is the electron transfer cofactor of PSI, phylloquinone. The physiological significance of characteristic properties of oxygen reductants in this segment of the PETC is discussed. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Jadaun, Priyamvada; Nair, Hari P.; Bank, Seth R.; Banerjee, Sanjay K.
2012-02-01
We present an ab-initio density functinal theory study of dilute-nitride GaSb. Adding dilute quantities of nitrogen causes rapid reduction in bandgap of GaSb (˜300 meV for 2% N). Due to this rapid reduction in bandgap, dilute-nitrides provide a pathway for extending the emission of GaSb based type-I diode lasers into the mid-infrared wavelength region (3-5 micron). In this study we look at the effect of substitutional N impurity on the electronic properties of our system and compare it with the band-anticrossing model, a phenomenological model, which has been used to explain giant band bowing observed in dilute-nitride alloys. We also study the effect of Sb-N split interstitials which are known to be non-radiative recombination centers. Furthermore we also discuss the stability of the Sb-N split interstitial relative to substitutional nitrogen to determine if the split interstitials can be annihilated using post-growth annealing to improve the radiative lifetime of the material which essential for laser operation.
Regenerative Gas Dryer for In-Situ Propellant Production
NASA Technical Reports Server (NTRS)
Paz, Aaron
2017-01-01
Rocket propellant can be produced anywhere that water is found by splitting it into hydrogen and oxygen, potentially saving several tons of mass per mission and enabling the long term presence of humans in space beyond LEO. When water is split into hydrogen and oxygen, the gaseous products can be very humid (several thousand ppm). Propellant-grade gases need to be extremely dry before being converted into cryogenic liquids (less than 26 ppm water for grade B Oxygen). The primary objective of this project is to design, build and test a regenerative gas drying system that can take humid gas from a water electrolysis system and provide dry gas (less than 26ppm water) to the inlet of a liquefaction system for long durations. State of the art work in this area attempted to use vacuum as a means to regenerate desiccant, but it was observed that water would migrate to the dry zone without a sweep gas present to direct the desorbed vapor. Further work attempted to use CO2 as a sweep gas, but this resulted in a corrosive carbonic acid. In order for in-situ propellant production to work, we need a way to continuously dry humid gas that addresses these issues.
Hydrogen production by high temperature water splitting using electron conducting membranes
Balachandran, Uthamalingam; Wang, Shuangyan; Dorris, Stephen E.; Lee, Tae H.
2006-08-08
A device and method for separating water into hydrogen and oxygen is disclosed. A first substantially gas impervious solid electron-conducting membrane for selectively passing protons or hydrogen is provided and spaced from a second substantially gas impervious solid electron-conducting membrane for selectively passing oxygen. When steam is passed between the two membranes at dissociation temperatures the hydrogen from the dissociation of steam selectively and continuously passes through the first membrane and oxygen selectively and continuously passes through the second membrane, thereby continuously driving the dissociation of steam producing hydrogen and oxygen. The oxygen is thereafter reacted with methane to produce syngas which optimally may be reacted in a water gas shift reaction to produce CO2 and H2.
Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream
Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.
2016-09-27
A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.
NASA Astrophysics Data System (ADS)
Hara, Akito; Awano, Teruyoshi
2017-06-01
Ultrashallow thermal donors (USTDs), which consist of light element impurities such as carbon, hydrogen, and oxygen, have been found in Czochralski silicon (CZ Si) crystals. To the best of our knowledge, these are the shallowest hydrogen-like donors with negative central-cell corrections in Si. We observed the ground-state splitting of USTDs by far-infrared optical absorption at different temperatures. The upper ground-state levels are approximately 4 meV higher than the ground-state levels. This energy level splitting is also consistent with that obtained by thermal excitation from the ground state to the upper ground state. This is direct evidence that the wave function of the USTD ground state is made up of a linear combination of conduction band minimums.
Chen, Qian-Qian; Hou, Chun-Chao; Wang, Chuan-Jun; Yang, Xiao; Shi, Rui; Chen, Yong
2018-06-06
NiFe-layered double hydroxide (NiFe LDH) is a state-of-the-art oxygen evolution reaction (OER) electrocatalyst, yet it suffers from rather poor catalytic activity for the hydrogen evolution reaction (HER) due to its extremely sluggish water dissociation kinetics, severely restricting its application in overall water splitting. Herein, we report a novel strategy to expedite the HER kinetics of NiFe LDH by an Ir4+-doping strategy to accelerate the water dissociation process (Volmer step), and thus this catalyst exhibits superior and robust catalytic activity for finally oriented overall water splitting in 1 M KOH requiring only a low initial voltage of 1.41 V delivering at 20 mA cm-2 for more than 50 h.
Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction
NASA Astrophysics Data System (ADS)
Jang, Youn Jeong; Jang, Ji-Wook; Choi, Sun Hee; Kim, Jae Young; Kim, Ju Hun; Youn, Duck Hyun; Kim, Won Yong; Han, Suenghoon; Sung Lee, Jae
2015-04-01
Highly efficient tree branch-shaped CuO photocathodes are fabricated using the hybrid microwave annealing process with a silicon susceptor within 10 minutes. The unique hierarchical, one-dimensional structure provides more facile charge transport, larger surface areas, and increased crystallinity and crystal ordering with less defects compared to irregular-shaped CuO prepared by conventional thermal annealing. As a result, the photocathode fabricated with the tree branch-shaped CuO produces an unprecedently high photocurrent density of -4.4 mA cm-2 at 0 VRHE under AM 1.5 G simulated sunlight compared to -1.44 mA cm-2 observed for a photocathode fabricated by thermal annealing. It is also confirmed that stoichiometric hydrogen and oxygen are produced from photoelectrochemical water splitting on the tree branch-shaped CuO photocathode and a platinum anode.Highly efficient tree branch-shaped CuO photocathodes are fabricated using the hybrid microwave annealing process with a silicon susceptor within 10 minutes. The unique hierarchical, one-dimensional structure provides more facile charge transport, larger surface areas, and increased crystallinity and crystal ordering with less defects compared to irregular-shaped CuO prepared by conventional thermal annealing. As a result, the photocathode fabricated with the tree branch-shaped CuO produces an unprecedently high photocurrent density of -4.4 mA cm-2 at 0 VRHE under AM 1.5 G simulated sunlight compared to -1.44 mA cm-2 observed for a photocathode fabricated by thermal annealing. It is also confirmed that stoichiometric hydrogen and oxygen are produced from photoelectrochemical water splitting on the tree branch-shaped CuO photocathode and a platinum anode. Electronic supplementary information (ESI) available: The detailed schematic diagram for the HMA process, XRD results, the temperature profile during HMA, derivative XANES results, TEM images, J-V curves, lists of previously reported copper oxide photocathode, and parameters extracted from EIS. See DOI: 10.1039/c5nr00208g
Surendranath, Yogesh; Bediako, D. Kwabena; Nocera, Daniel G.
2012-01-01
An artificial leaf can perform direct solar-to-fuels conversion. The construction of an efficient artificial leaf or other photovoltaic (PV)-photoelectrochemical device requires that the power curve of the PV material and load curve of water splitting, composed of the catalyst Tafel behavior and cell resistances, be well-matched near the thermodynamic potential for water splitting. For such a condition, we show here that the current density-voltage characteristic of the catalyst is a key determinant of the solar-to-fuels efficiency (SFE). Oxidic Co and Ni borate (Co-Bi and Ni-Bi) thin films electrodeposited from solution yield oxygen-evolving catalysts with Tafel slopes of 52 mV/decade and 30 mV/decade, respectively. The consequence of the disparate Tafel behavior on the SFE is modeled using the idealized behavior of a triple-junction Si PV cell. For PV cells exhibiting similar solar power-conversion efficiencies, those displaying low open circuit voltages are better matched to catalysts with low Tafel slopes and high exchange current densities. In contrast, PV cells possessing high open circuit voltages are largely insensitive to the catalyst’s current density-voltage characteristics but sacrifice overall SFE because of less efficient utilization of the solar spectrum. The analysis presented herein highlights the importance of matching the electrochemical load of water-splitting to the onset of maximum current of the PV component, drawing a clear link between the kinetic profile of the water-splitting catalyst and the SFE efficiency of devices such as the artificial leaf. PMID:22689962
Development of Inorganic Nanomaterials as Photocatalysts for the Water Splitting Reaction
NASA Astrophysics Data System (ADS)
Frame, Fredrick Andrew
The photochemical water splitting reaction is of great interest for converting solar energy into usable fuels. This dissertation focuses on the development of inorganic nanoparticle catalysts for solar energy driven conversion of water into hydrogen and oxygen. The results from these selected studies have allowed greater insight into nanoparticle chemistry and the role of nanoparticles in photochemical conversion of water in to hydrogen and oxygen. Chapter 2 shows that CdSe nanoribbons have photocatalytic activity for hydrogen production from water in the presence of Na2S/Na2SO 3 as sacrificial electron donors in both UV and visible light. Quantum confinement of this material leads to an extended bandgap of 2.7 eV and enables the photocatalytic activity of this material. We report on the photocatalytic H2 evolution, and its dependence on platinum co-catalysts, the concentration of the electron donor, and the wavelength of incident radiation. Transient absorption measurements reveal decay of the excited state on multiple timescales, and an increase of lifetimes of trapped electrons due to the sacrificial electron donors. In chapter 3, we explore the catalytic activity of citrate-capped CdSe quantum dots. We show that the process is indeed catalytic for these dots in aqueous 0.1 M Na2S:Na2SO3, but not in pure water. Furthermore, optical spectroscopy was used to report electronic transitions in the dots and electron microscopy was used to obtain morphology of the catalyst. Interestingly, an increasing catalytic rate is noted for undialyzed catalyst. Dynamic light scattering experiments show an increased hydrodynamic radius in the case of undialyzed CdSe dots in donor solution. In chapter 4 we show that CdSe:MoS2 nanoparticle composites with improved catalytic activity can be assembled from CdSe and MoS2 nanoparticle building units. We report on the photocatalytic H 2 evolution, quantum efficiency using LED irriadiation, and its dependence on the co-catalyst loading. Furthermore, optical spectroscopy, cyclic voltammetry, and electron microscopy were used to obtain morphology, optical properties, and electronic structure of the catalysts. In chapter 5, illumination with visible light (lambda > 400 nm) photoconverts a red V2O5 gel in aqueous methanol solution into a green VO2 gel. The presence of V(4+) in the green VO2 gel is supported by Electron Energy Loss Spectra. High-resolution electron micrographs, powder X-ray diffraction, and selective area electron diffraction (SAED) data show that the crystalline structure of the V2O5 gel is retained upon reduction. After attachment of colloidal Pt nanoparticles, H2 evolution proceeds catalytically on the VO2 gel. The Pt nanoparticles reduce the H2 evolution overpotential. However, the activity of the new photocatalyst remains limited by the VO2 conduction band edge just below the proton reduction potential. Chapter 6 studies the ability of IrO2 to evolve oxygen from aqueous solutions under UV irradiation. We show that visible illumination (lambda > 400 nm) of iridium dioxide (IrO2) nanocrystals capped in succinic acid in aqueous sodium persulfate solution leads to catalytic oxygen evolution. While the majority of catalytic hydrogen evolution comes from UV light, the process can still be driven with visible light. Morphology, optical properties, surface photovoltage measurements, and oxygen evolution rates are discussed.
NASA Astrophysics Data System (ADS)
Alajmi, Mohamed F.; Ahmed, Jahangeer; Hussain, Afzal; Ahamad, Tansir; Alhokbany, Norah; Amir, Samira; Ahmad, Tokeer; Alshehri, Saad M.
2018-04-01
Iron oxide (Fe3O4) nanoparticles (NPs) were prepared at room temperature by one-step synthesis via green chemistry using aqueous extracts of Pandanus odoratissimus leaves. Fe3O4 NPs show uniform particle size distribution with an average diameter of 5.0 nm. BET surface area and average pore diameter of the nanoparticles were found to be 150 m2/g and 3.0 nm, respectively. FTIR, Raman, EDAX and XPS studies were also carried out to confirm the phase purity of the prepared materials. Electrochemical water splitting reactions have been carried out using Fe3O4 NPs as electrocatalysts in 0.1 M KOH electrolyte solution. Polarization studies confirm dual nature of Fe3O4 electro-catalysts in water electrolysis for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Potentiodynamic polarization curves reveal low Tafel values of 295 and 126 mV/dec (± 2) for OER and ORR, respectively. The overpotential for water oxidation reaction was found to be 390 mV (± 5) at the current density of 1 mA/cm2 in 0.1 M KOH. Chronoamperometry and chronopotentiometry experiments were conducted for stability tests of the electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Shaofang; Song, Junhua; Zhu, Chengzhou
Nickel iron hydroxides are the most promising non-noble electrocatalysts for oxygen evolution reaction (OER) in alkaline media. By in situ reduction of metal precursors, compositionally controlled three-dimensional (3D) NixFeyB nanofoams (NFs) are synthesized with high surface area and uniformly distributed bimetallic networks. The resultant ultrafine amorphous Ni2Fe1B NFs exhibit extraordinary electrocatalytic performance toward OER and overall water splitting in alkaline media. At a potential as low as 1.42 V (vs. RHE), Ni2Fe1B NFs can deliver a current density of 10 mA/cm2 and show negligible activity loss after 12 hours’ stability test. Even at large current flux of 100 mA/cm2, anmore » ultralow overpotential of 0.27 V is achieved, which is about 0.18 V more negative than benchmark RuO2. Both ex-situ Mӧssbauer spectroscopy and X-ray Absorption Spectroscopy (XAS) reveal a phase separation and transformation for the Ni2Fe1B catalyst during OER process. The evolution of oxidation state and disordered structure of Ni2Fe1B might be a key to the high catalytic performance for OER.« less
Symmetry-Based Variance Reduction Applied to 60Co Teletherapy Unit Monte Carlo Simulations
NASA Astrophysics Data System (ADS)
Sheikh-Bagheri, D.
A new variance reduction technique (VRT) is implemented in the BEAM code [1] to specifically improve the efficiency of calculating penumbral distributions of in-air fluence profiles calculated for isotopic sources. The simulations focus on 60Co teletherapy units. The VRT includes splitting of photons exiting the source capsule of a 60Co teletherapy source according to a splitting recipe and distributing the split photons randomly on the periphery of a circle, preserving the direction cosine along the beam axis, in addition to the energy of the photon. It is shown that the use of the VRT developed in this work can lead to a 6-9 fold improvement in the efficiency of the penumbral photon fluence of a 60Co beam compared to that calculated using the standard optimized BEAM code [1] (i.e., one with the proper selection of electron transport parameters).
Hybrid bio-photo-electro-chemical cells for solar water splitting
Pinhassi, Roy I.; Kallmann, Dan; Saper, Gadiel; Dotan, Hen; Linkov, Artyom; Kay, Asaf; Liveanu, Varda; Schuster, Gadi; Adir, Noam; Rothschild, Avner
2016-01-01
Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated illumination, water oxidation takes place and electrons are shuttled by the ferri/ferrocyanide redox couple from the thylakoids to a transparent electrode serving as the anode, yielding a photocurrent density of 0.5 mA cm−2. Hydrogen evolution occurs at the cathode at a bias as low as 0.8 V. A tandem cell comprising the BPEC cell and a Si photovoltaic module achieves overall water splitting with solar to hydrogen efficiency of 0.3%. These results demonstrate the promise of combining natural photosynthetic membranes and man-made photovoltaic cells in order to convert solar power into hydrogen fuel. PMID:27550091
Hybrid bio-photo-electro-chemical cells for solar water splitting.
Pinhassi, Roy I; Kallmann, Dan; Saper, Gadiel; Dotan, Hen; Linkov, Artyom; Kay, Asaf; Liveanu, Varda; Schuster, Gadi; Adir, Noam; Rothschild, Avner
2016-08-23
Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated illumination, water oxidation takes place and electrons are shuttled by the ferri/ferrocyanide redox couple from the thylakoids to a transparent electrode serving as the anode, yielding a photocurrent density of 0.5 mA cm(-2). Hydrogen evolution occurs at the cathode at a bias as low as 0.8 V. A tandem cell comprising the BPEC cell and a Si photovoltaic module achieves overall water splitting with solar to hydrogen efficiency of 0.3%. These results demonstrate the promise of combining natural photosynthetic membranes and man-made photovoltaic cells in order to convert solar power into hydrogen fuel.
NASA Technical Reports Server (NTRS)
Parthasarathy, Arvind; Dave, Bhasker; Srinivasan, Supramaniam; Appleby, John A.; Martin, Charles R.
1992-01-01
The objectives of this study were to use electrochemical impedance spectroscopy (EIS) to study the oxygen-reduction reaction under lower humidification conditions than previously studied. The EIS technique permits the discrimination of electrode kinetics of oxygen reduction, mass transport of O2 in the membrane, and the electrical characteristics of the membrane. Electrode-kinetic parameters for the oxygen-reduction reaction, corrosion current densities for Pt, and double-layer capacitances were calculated. The production of water due to electrochemical reduction of oxygen greatly influenced the EIS response and the electrode kinetics at the Pt/Nafion interface. From the finite-length Warburg behavior, a measure of the diffusion coefficient of oxygen in Nafion and diffusion-layer thickness was obtained. An analysis of the EIS data in the high-frequency domain yielded membrane and interfacial characteristics such as ionic conductivity of the membrane, membrane grain-boundary capacitance and resistance, and uncompensated resistance.
Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun
2018-01-31
The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.
Reduction of Dissolved Oxygen at a Copper Rotating Disc Electrode
ERIC Educational Resources Information Center
Kear, Gareth; Albarran, Carlos Ponce-de-Leon; Walsh, Frank C.
2005-01-01
Undergraduates from chemical engineering, applied chemistry, and environmental science courses, together with first-year postgraduate research students in electrochemical technology, are provided with an experiment that demonstrates the reduction of dissolved oxygen in aerated seawater at 25°C. Oxygen reduction is examined using linear sweep…
Aerobic sulfate reduction in microbial mats
NASA Technical Reports Server (NTRS)
Canfield, Donald E.; Des Marais, David J.
1991-01-01
Measurements of bacterial sulfate reduction and dissolved oxygen (O2) in hypersaline bacterial mats from Baja California, Mexico, revealed that sulfate reduction occurred consistently within the well-oxygenated photosynthetic zone of the mats. This evidence that dissimilatory sulfate reduction can occur in the presence of O2 challenges the conventional view that sulfate reduction is a strictly anaerobic process. At constant temperature, the rates of sulfate reduction in oxygenated mats during daytime were similar to rates in anoxic mats at night: thus, during a 24-hour cycle, variations in light and O2 have little effect on rates of sulfate reduction in these mats.
Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.
Torella, Joseph P; Gagliardi, Christopher J; Chen, Janice S; Bediako, D Kwabena; Colón, Brendan; Way, Jeffery C; Silver, Pamela A; Nocera, Daniel G
2015-02-24
Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations.
Process for photosynthetically splitting water
Greenbaum, Elias
1984-01-01
The invention is an improved process for producing gaseous hydrogen and oxygen from water. The process is conducted in a photolytic reactor which contains a water-suspension of a photoactive material containing a hydrogen-liberating catalyst. The reactor also includes a volume for receiving gaseous hydrogen and oxygen evolved from the liquid phase. To avoid oxygen-inactivation of the catalyst, the reactor is evacuated continuously by an external pump which circulates the evolved gases through means for selectively recovering hydrogen therefrom. The pump also cools the reactor by evaporating water from the liquid phase. Preferably, product recovery is effected by selectively diffusing the hydrogen through a heated semipermeable membrane, while maintaining across the membrane a magnetic field gradient which biases the oxygen away from the heated membrane. This promotes separation, minimizes the back-reaction of hydrogen and oxygen, and protects the membrane.
Kozuleva, Marina A; Ivanov, Boris N
2010-07-01
The contribution to reduction of oxygen by ferredoxin (Fd) to the overall reduction of oxygen in isolated pea thylakoids was studied in the presence of Fd versus Fd + NADP(+). The overall rate of electron transport was measured using a determination of Photosystem II quantum yield from chlorophyll fluorescence parameters, and the rate of oxidation of Fd was measured from the light-induced redox changes of Fd. At low light intensity, increasing Fd concentration from 5 to 30 microM in the absence of NADP(+) increased the proportion of oxygen reduction by Fd from 25-35 to 40-60% in different experiments. This proportion decreased with increasing light intensity. When NADP(+) was added in the presence of 15 microM Fd, which was optimal for the NADP(+) reduction rate, the participation of Fd in the reduction of oxygen was low, no more than 10%, and it also decreased with increasing light intensity. At high light intensity, the overall oxygen reduction rates in the presence of Fd + NADP(+) and in the presence of Fd alone were comparable. The significance of reduction of dioxygen either by water-soluble Fd or by the membrane-bound carriers of the photosynthetic electron transport chain for redox signaling under different light intensities is discussed.
Reduction of Biomass Moisture by Crushing/Splitting - A Concept
Paul E. Barnett; Donald L. Sirois; Colin Ashmore
1986-01-01
A biomass crusher/splitter concept is presented as a possible n&ant of tsafntainfng rights-of-way (ROW) or harvesting energy wood plantations. The conceptual system would cut, crush, and split small woody biomass leaving it in windrows for drying. A subsequent operation would bale and transport the dried material for use as an energy source. A survey of twenty...
Martins, Fabiana; Simões, Alyne; Oliveira, Marcio; Luiz, Ana Claudia; Gallottini, Marina; Pannuti, Claudio
2016-12-01
Down syndrome (DS) has characteristics that include mental retardation, a characteristic phenotype, congenital heart defects, immune disorders, and increased risk of periodontal disease (PD). Antimicrobial photodynamic therapy (aPDT) is the combined use of photosensitizers associated with low-level laser (LLL) and oxygen, leading to singlet oxygen formation, which contributes to the antibacterial activity of the phagocytes, killing bacteria. The objective of this study was to evaluate the efficacy of aPDT as an adjuvant to conventional periodontal treatment of PD in DS patients. A double-blinded, controlled, randomized, split-mouth study was conducted. A total of 13 DS subjects who were 18 years or older and who presented at least one tooth in each quadrant of the mouth with probing pocket depth (PPD) equal to or greater than 5 mm were included. The patients were evaluated at three different times: at the baseline, PPD were obtained. After 1 week, conventional scaling and root planing (SRP) was performed, and two randomly selected quadrants also received aPDT. One month after SRP, all the patients were reevaluated. Periodontal conditions were improved among all the participants. The PDT-with-SRP group presented a nonsignificant reduction in PPD (mean = 1.27 mm, median = 1.17 mm) relative to that of the SRP group (mean = 1.00 mm, median = 0.95 mm). Changes over time were compared using the Wilcoxon test. A significant reduction in median PPD was observed in both groups (p = 0.001). Both types of periodontal treatment, with and without PDT, were similarly effective and were associated with good clinical response.
Numerical Study of the Reduction Process in an Oxygen Blast Furnace
NASA Astrophysics Data System (ADS)
Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng
2016-02-01
Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.
NASA Astrophysics Data System (ADS)
Zeller, Robert August
Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa values. The mechanism of oxygen reduction in ionic liquids is introduced by way of the protic ionic liquid (pIL) triethylammonium triflate (TEATf) which shares some similarities with aqueous acid solutions. Oxygen reduction in TEATf begins as the one electron rate limited step to form superoxide, O2 *-, which is then rapidly protonated by the pIL cation forming the perhydroxyl radical, HO2*. The perhydroxyl radical is further reduced to peroxidate (HO2-) and hydrogen peroxide in proportions in accordance with their pKa. The reaction does not proceed beyond this point due to the adsorption of the conjugate base triethylammine interfering with the disproportionation of hydrogen peroxide. This work demonstrates that this mechanism is consistent across Pt, Au, Pd, and Ag electrodes. Two related sets of experiments were performed in the inherently aprotic ionic liquid 1-butyl-2,3-dimethylimidazolium triflate (C4dMImTf). The first involved the titration of acidic species of varying aqueous pKa into the IL while monitoring the extent of oxygen reduction as a function of pKa and potential on Pt and glassy carbon (GC) electrodes. These experiments confirmed the greater propensity of Pt to reduce oxygen by its immediate and abrupt transition from one electron reduction to four electron reduction, while oxygen reduction on GC gradually approaches four electron reduction as the potentials were driven more cathodic. The potential at which oxygen reduction initiates shows general agreement with the Nernst equation and the acid's tabulated aqueous pKa value, however at the extremely acidic end, a small deviation is observed. The second set of experiments in C4dMImTf solicited water as the proton donor for oxygen reduction in an approximation of the aqueous alkaline case. The water content was varied between extremely dry (<0.1 mol% H2O) and saturated (approximately 15.8 mol% H2O). As the water content increased so too did the extent of oxygen reduction eventually approach two electrons on both Pt and GC. However, additional water led to a linear increase in the Tafel slope under enhanced mass transport conditions up to the point of 10 mol% water. This inhibition of oxygen adsorption is the result of the interaction between superoxide and water and more specifically is proposed to be associated with decomposition of theC4dMIm + cation by hydroxide at the elevated temperatures required for the experiment. Oxygen reduction on both Pt and GC follows Nernstian behavior as the water content is increased. Separate mechanisms for oxygen reduction on Pt and GC are proposed based on the nature of the Nernstian response in these systems.
NASA Astrophysics Data System (ADS)
Lomonosov, V. I.; Gordienko, Yu. A.; Sinev, M. Yu.; Rogov, V. A.; Sadykov, V. A.
2018-03-01
Mixed NaWMn/SiO2 oxide, samples containing individual components (Na, W, Mn) and their double combinations (Na-W, Na-Mn, W-Mn) supported on silica were studied by temperature programmed reduction (TPR) and desorption (TPD), and heat flow calorimetry during their reoxidation with molecular oxygen in pulse mode. The NaWMn/SiO2 mixed oxide was shown to contain two different types of reactive lattice oxygen. The weakly-bonded oxygen can be reversibly released from the oxide in a flow of inert gas in the temperature range of 575‒900°C, while the strongly-bonded oxygen can be removed during the reduction of the sample with hydrogen at 700-900°C. The measured thermal effect of oxygen consumption for these two oxygen forms are 185 and 350 kJ/mol, respectively. The amount of oxygen removed at reduction ( 443 μmol/g) considerably exceeded the amount desorbed in an inert gas flow ( 56 μmol/g). The obtained results suggest that the reversible oxygen desorption is due to the redox process in which manganese ions are involved, while during the temperature programmed reduction, mainly oxygen bonded with tungsten is removed.
Barber, James
2016-01-01
About 3 billion years ago an enzyme emerged which would dramatically change the chemical composition of our planet and set in motion an unprecedented explosion in biological activity. This enzyme used solar energy to power the thermodynamically and chemically demanding reaction of water splitting. In so doing it provided biology with an unlimited supply of reducing equivalents needed to convert carbon dioxide into the organic molecules of life while at the same time produced oxygen to transform our planetary atmosphere from an anaerobic to an aerobic state. The enzyme which facilitates this reaction and therefore underpins virtually all life on our planet is known as Photosystem II (PSII). It is a pigment-binding, multisubunit protein complex embedded in the lipid environment of the thylakoid membranes of plants, algae and cyanobacteria. Today we have detailed understanding of the structure and functioning of this key and unique enzyme. The journey to this level of knowledge can be traced back to the discovery of oxygen itself in the 18th-century. Since then there has been a sequence of mile stone discoveries which makes a fascinating story, stretching over 200 years. But it is the last few years that have provided the level of detail necessary to reveal the chemistry of water oxidation and O-O bond formation. In particular, the crystal structure of the isolated PSII enzyme has been reported with ever increasing improvement in resolution. Thus the organisational and structural details of its many subunits and cofactors are now well understood. The water splitting site was revealed as a cluster of four Mn ions and a Ca ion surrounded by amino-acid side chains, of which seven provide direct ligands to the metals. The metal cluster is organised as a cubane structure composed of three Mn ions and a Ca2+ linked by oxo-bonds with the fourth Mn ion attached to the cubane. This structure has now been synthesised in a non-protein environment suggesting that it is a totally inorganic precursor for the evolution of the photosynthetic oxygen-evolving complex. In summary, the overall structure of the catalytic site has given a framework on which to build a mechanistic scheme for photosynthetic dioxygen generation and at the same time provide a blue-print and incentive to develop catalysts for artificial photo-electrochemical systems to split water and generate renewable solar fuels.
NASA Astrophysics Data System (ADS)
Ma, Jin-fang; Wang, Guang-wei; Zhang, Jian-liang; Li, Xin-yu; Liu, Zheng-jian; Jiao, Ke-xin; Guo, Jian
2017-05-01
In this work, the reduction behavior of vanadium-titanium sinters was studied under five different sets of conditions of pulverized coal injection with oxygen enrichment. The modified random pore model was established to analyze the reduction kinetics. The results show that the reduction rate of sinters was accelerated by an increase of CO and H2 contents. Meanwhile, with the increase in CO and H2 contents, the increasing range of the medium reduction index (MRE) of sinters decreased. The increasing oxygen enrichment ratio played a diminishing role in improving the reduction behavior of the sinters. The reducing process kinetic parameters were solved using the modified random role model. The results indicated that, with increasing oxygen enrichment, the contents of CO and H2 in the reducing gas increased. The reduction activation energy of the sinters decreased to between 20.4 and 23.2 kJ/mol.
Local structure and defects in ion irradiated KTaO3
NASA Astrophysics Data System (ADS)
Zhang, F. X.; Xi, J.; Zhang, Y.; Tong, Yang; Xue, H.; Huang, R.; Trautmann, C.; Weber, W. J.
2018-04-01
The modification of the local structure in cubic perovskite KTaO3 irradiated with 3 MeV and 1.1 GeV Au ions is studied by Raman and x-ray absorption spectroscopy, complemented by density functional theory (DFT) calculations. In the case of irradiation with 3 MeV Au ions where displacement cascade processes are dominant, the Ta L3-edge x-ray absorption measurements suggest that a peak corresponding to the Ta-O bonds in the TaO6 octahedra splits, which is attributed to the formation of TaK antisite defects that are coupled with oxygen vacancies, V O. This finding is consistent with the DFT calculations. Under irradiation with 1.1 GeV ions, the intense ionization and electronic energy deposition lead to a blue shift and an intensity reduction of active Raman bands. In the case of sequential irradiations, extended x-ray absorption fine structure measurements reveal a decrease in concentration of coupled TaK-V O defects under subsequent irradiation with 1.1 GeV Au ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Piaopiao; Hood, Zachary D.; Oak Ridge National Lab.
Introducing defects into semiconductors with well-controlled exposed facets offers an effective route for the development of photocatalytic materials with greatly improved properties. Here, we report a facile ethylene glycol reduction procedure to make anatase titanium dioxide (TiO 2) with different concentrations of exposed {001} and {101} facets, leading to different surficial defects. TiO 2 with increased concentrations of {101} facets shows a 5-fold improvement in photocurrent generation as well as improved photocatalytic activity towards water splitting under visible light irradiation. Thus, the improved activity is ascribed to the oxygen vacancies as well as the variable surface chemical states, which collectivelymore » induce a slower recombination rate of photo-induced electron-hole pairs. This work also highlights a feasible strategy to obtain the defective TiO 2 and explore the synergistic effect of surface defects and different concentrations of exposed {001} and {101} facets for photocurrent and photocatalytic properties under visible light irradiation.« less
Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.
Highfield, James
2015-04-15
In the context of a future renewable energy system based on hydrogen storage as energy-dense liquid alcohols co-synthesized from recycled CO2, this article reviews advances in photocatalysis and photoelectrocatalysis that exploit solar (photonic) primary energy in relevant endergonic processes, viz., H2 generation by water splitting, bio-oxygenate photoreforming, and artificial photosynthesis (CO2 reduction). Attainment of the efficiency (>10%) mandated for viable techno-economics (USD 2.00-4.00 per kg H2) and implementation on a global scale hinges on the development of photo(electro)catalysts and co-catalysts composed of earth-abundant elements offering visible-light-driven charge separation and surface redox chemistry in high quantum yield, while retaining the chemical and photo-stability typical of titanium dioxide, a ubiquitous oxide semiconductor and performance "benchmark". The dye-sensitized TiO2 solar cell and multi-junction Si are key "voltage-biasing" components in hybrid photovoltaic/photoelectrochemical (PV/PEC) devices that currently lead the field in performance. Prospects and limitations of visible-absorbing particulates, e.g., nanotextured crystalline α-Fe2O3, g-C3N4, and TiO2 sensitized by C/N-based dopants, multilayer composites, and plasmonic metals, are also considered. An interesting trend in water splitting is towards hydrogen peroxide as a solar fuel and value-added green reagent. Fundamental and technical hurdles impeding the advance towards pre-commercial solar fuels demonstration units are considered.
NASA Astrophysics Data System (ADS)
Feng, Xiaogeng; Bo, Xiangjie; Guo, Liping
2018-06-01
Rational synthesis and development of earth-abundant materials with efficient electrocatalytic activity and stability for water splitting is a critical but challenging step for sustainable energy application. Herein, a family of bimetal (CoFe, CoCu, CoNi) embedded nitrogen-doped carbon frameworks is developed through a facile and simple thermal conversion strategy of metal-doped zeolitic imidazolate frameworks. Thanks to collaborative superiorities of abundant M-N-C species, modulation action of secondary metal, cobalt-based electroactive phases, template effect of MOFs and unique porous structure, bimetal embedded nitrogen-doped carbon frameworks materials manifest good oxygen and hydrogen evolution catalytic activity. Especially, after modulating the species and molar ratio of metal sources, optimal Co0.75Fe0.25 nitrogen-doped carbon framework catalyst just requires a low overpotential of 303 mV to achieve 10 mA cm-2 with a low Tafel slope (39.49 mV dec-1) for oxygen evolution reaction, which even surpasses that of commercial RuO2. In addition, the optimal catalyst can function as an efficient bifunctional electrocatalyst for overall water splitting with satisfying activity and stability. This development offers an attractive direction for the rational design and fabrication of porous carbon materials for electrochemical energy applications.
Ab initio simulations of water splitting on hematite
NASA Astrophysics Data System (ADS)
Seriani, Nicola
2017-11-01
In recent years, hematite has attracted great interest as a photocatalyst for water splitting, but many questions remain unanswered about the mechanisms and the main limiting factors. For this reason, density functional theory has been used to understand the optical, electronic and chemical properties of this material at an atomistic level. Bulk doping can be used to reduce the band gap, and to increase photoabsorption and charge mobility. Charge transport takes place through adiabatic polaron hopping. The stable (0 0 0 1) surface has a stoichiometric termination when exposed to oxygen, it becomes hydroxylated in water, and it has an oxygen-rich termination under illumination in a photoelectrochemical setup. On the oxygen-rich termination, surface states are present that might act as recombination centres for electrons and holes. On the contrary, on the hydroxylated termination surface states appear only on reaction intermediates. The intrinsic surface states disappear in the presence of an overlayer of gallium oxide. The reaction of water oxidation is assumed to proceed by four proton-coupled electron transfers and it is shown to involve a nucleophilic attack with the formation of an OOH group. Calculated overpotentials are in the range of 0.5-0.6 V. Open questions and future research directions are briefly discussed.
Zhou, Jinqiu; Wang, Mengfan; Qian, Tao; Liu, Sisi; Cao, Xuecheng; Yang, Tingzhou; Yang, Ruizhi; Yan, Chenglin
2017-09-08
It is highly challenging to explore high-performance bi-functional oxygen electrode catalysts for their practical application in next-generation energy storage and conversion devices. In this work, we synthesize hierarchical N-doped carbon microspheres with porous yolk-shell structure (NCYS) as a metal-free electrocatalyst toward efficient oxygen reduction through a template-free route. The enhanced oxygen reduction performances in both alkaline and acid media profit well from the porous yolk-shell structure as well as abundant nitrogen functional groups. Furthermore, such yolk-shell microspheres can be used as precursor materials to motivate the oxygen reduction activity of oxygen evolution oriented materials to obtain a desirable bi-functional electrocatalyst. To verify its practical utility, Zn-air battery tests are conducted and exhibit satisfactory performance, indicating that this constructed concept for preparation of bi-functional catalyst will afford a promising strategy for exploring novel metal-air battery electrocatalysts.
NASA Astrophysics Data System (ADS)
Zhou, Jinqiu; Wang, Mengfan; Qian, Tao; Liu, Sisi; Cao, Xuecheng; Yang, Tingzhou; Yang, Ruizhi; Yan, Chenglin
2017-09-01
It is highly challenging to explore high-performance bi-functional oxygen electrode catalysts for their practical application in next-generation energy storage and conversion devices. In this work, we synthesize hierarchical N-doped carbon microspheres with porous yolk-shell structure (NCYS) as a metal-free electrocatalyst toward efficient oxygen reduction through a template-free route. The enhanced oxygen reduction performances in both alkaline and acid media profit well from the porous yolk-shell structure as well as abundant nitrogen functional groups. Furthermore, such yolk-shell microspheres can be used as precursor materials to motivate the oxygen reduction activity of oxygen evolution oriented materials to obtain a desirable bi-functional electrocatalyst. To verify its practical utility, Zn-air battery tests are conducted and exhibit satisfactory performance, indicating that this constructed concept for preparation of bi-functional catalyst will afford a promising strategy for exploring novel metal-air battery electrocatalysts.
Stokes, Tracey H; Follmar, Keith E; Silverstein, Ari D; Weizer, Alon Z; Donatucci, Craig F; Anderson, Everett E; Erdmann, Detlev
2006-06-01
From 1988 to 2005, 8 men who presented with penoscrotal elephantiasis underwent penile shaft degloving and reduction scrotoplasty, followed by transplantation of a split-thickness skin graft (STSG) to the penile shaft. The etiology of elephantiasis in these patients included self-injection of viscous fluid and postsurgical obstructive lymphedema. In the 6 most recent cases, negative-pressure dressings were applied over the STSG to promote graft take, and STSG take rate was 100%. The results of our series corroborate those of a previous report, which showed circumferential negative-pressure dressings to be safe and efficacious in bolstering STSGs to the penile shaft. Furthermore, these results suggest that the use of negative-pressure dressings may improve graft take in this patient population.
Elsenbruch, Sigrid; Kotsis, Vassilios; Benson, Sven; Rosenberger, Christina; Reidick, Daniel; Schedlowski, Manfred; Bingel, Ulrike; Theysohn, Nina; Forsting, Michael; Gizewski, Elke R
2012-02-01
This functional magnetic resonance imaging study analysed the behavioural and neural responses during expectation-mediated placebo analgesia in a rectal pain model in healthy subjects. In N=36 healthy subjects, the blood oxygen level-dependent (BOLD) response during cued anticipation and painful rectal stimulation was measured. Using a within-subject design, placebo analgesia was induced by changing expectations regarding the probability of receiving an analgesic drug to 0%, 50%, and 100%. Placebo responders were identified by median split based on pain reduction (0% to 100% conditions), and changes in neural activation correlating with pain reduction in the 0% and 100% conditions were assessed in a regions-of-interest analysis. Expectation of pain relief resulted in overall reductions in pain and urge to defecate, and this response was significantly more pronounced in responders. Within responders, pain reduction correlated with reduced activation of dorsolateral and ventrolateral prefrontal cortices, somatosensory cortex, and thalamus during cued anticipation (paired t tests on the contrast 0%>100%); during painful stimulation, pain reduction correlated with reduced activation of the thalamus. Compared with nonresponders, responders demonstrated greater placebo-induced decreases in activation of dorsolateral prefrontal cortex during anticipation and in somatosensory cortex, posterior cingulate cortex, and thalamus during pain. In conclusion, the expectation of pain relief can substantially change perceived painfulness of visceral stimuli, which is associated with activity changes in the thalamus, prefrontal, and somatosensory cortices. Placebo analgesia constitutes a paradigm to elucidate psychological components of the pain response relevant to the pathophysiology and treatment of chronic abdominal pain. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode
NASA Astrophysics Data System (ADS)
Casalongue, Hernan Sanchez; Kaya, Sarp; Viswanathan, Venkatasubramanian; Miller, Daniel J.; Friebel, Daniel; Hansen, Heine A.; Nørskov, Jens K.; Nilsson, Anders; Ogasawara, Hirohito
2013-12-01
The performance of polymer electrolyte membrane fuel cells is limited by the reduction at the cathode of various oxygenated intermediates in the four-electron pathway of the oxygen reduction reaction. Here we use ambient pressure X-ray photoelectron spectroscopy, and directly probe the correlation between the adsorbed species on the surface and the electrochemical potential. We demonstrate that, during the oxygen reduction reaction, hydroxyl intermediates on the cathode surface occur in several configurations with significantly different structures and reactivities. In particular, we find that near the open-circuit potential, non-hydrated hydroxyl is the dominant surface species. On the basis of density functional theory calculations, we show that the removal of hydration enhances the reactivity of oxygen species. Tuning the hydration of hydroxyl near the triple phase boundary will be crucial for designing more active fuel cell cathodes.
Gadkari, Jennifer; Goris, Tobias; Schiffmann, Christian L; Rubick, Raffael; Adrian, Lorenz; Schubert, Torsten; Diekert, Gabriele
2018-01-01
Reductive dehalogenation of organohalides is carried out by organohalide-respiring bacteria (OHRB) in anoxic environments. The tetrachloroethene (PCE)-respiring Epsilonproteobacterium Sulfurospirillum multivorans is one of few OHRB able to respire oxygen. Therefore, we investigated the organism's capacity to dehalogenate PCE in the presence of oxygen, which would broaden the applicability to use S. multivorans, unlike other commonly oxygen-sensitive OHRB, for bioremediation, e.g. at oxic/anoxic interphases. Additionally, this has an impact on our understanding of the global halogen cycle. Sulfurospirillum multivorans performs dehalogenation of PCE to cis-1,2-dichloroethene at oxygen concentrations below 0.19 mg/L. The redox potential of the medium electrochemically adjusted up to +400 mV had no influence on reductive dehalogenation by S. multivorans in our experiments, suggesting that higher levels of oxygen impair PCE dechlorination by inhibiting or inactivating involved enzymes. The PCE reductive dehalogenase remained active in cell extracts of S. multivorans exposed to 0.37 mg/L oxygen for more than 96 h. Analysis of the proteome revealed that superoxide reductase and cytochrome peroxidase amounts increased with 5% oxygen in the gas phase, while the response to atmospheric oxygen concentrations involved catalase and hydrogen peroxide reductase. Taken together, our results demonstrate that reductive dehalogenation by OHRB is not limited to anoxic conditions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The 2010 Field Demonstration of the Solar Carbothermal Reduction of Regolith to Produce Oxygen
NASA Technical Reports Server (NTRS)
Muscatello, Anthony; Gustafson, Robert (Bob)
2010-01-01
This slide presentation reviews a demonstration of the use of solar carbothermal reduction processing of regolith to produce oxygen and silicon from silica. A contractor developed the Carbothermal Regolith Reduction Module to demonstrate the extraction of oxygen from lunar regolith simulant using concentrated solar energy at a site that has similar terrain to the moon and Mars.
Strain Rate Behavior of HTPB-Based Magnetorheological Materials
NASA Astrophysics Data System (ADS)
Stoltz, Chad; Seminuk, Kenneth; Joshi, Vasant
2013-06-01
It is of particular interest to determine whether the mechanical properties of binder systems can be manipulated by adding ferrous or Magnetostrictive particulates. Strain rate response of two HTPB/Fe (Hydroxyl-terminated Polybutadiene/Iron) compositions under electromagnetic fields has been investigated using a Split Hopkinson Pressure bar arrangement equipped with aluminum bars. Two HTPB/Fe compositions were developed, the first without plasticizer and the second containing plasticizer. Samples were tested with and without the application of a 0.01 Tesla magnetic field coil. Strain gauge data taken from the Split Hopkinson Pressure bar has been used to determine what mechanical properties were changed by inducing a mild electromagnetic field onto each sample. The data reduction method to obtain stress-strain plots included dispersion corrections for deciphering minute changes due to compositional alterations. Data collected from the Split Hopkinson Pressure bar indicate changes in the Mechanical Stress-Strain curves and suggest that the impedance of a binder system can be altered by means of a magnetic field. We acknowledge the Defense Threat Reduction Agency for funding.
Xin, Yanmei; Kan, Xiang; Gan, Li-Yong; Zhang, Zhonghai
2017-10-24
Solar-driven overall water splitting is highly desirable for hydrogen generation with sustainable energy sources, which need efficient, earth-abundant, robust, and bifunctional electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, we propose a heterogeneous bimetallic phosphide/sulfide nanocomposite electrocatalyst of NiFeSP on nickel foam (NiFeSP/NF), which shows superior electrocatalytic activity of low overpotentials of 91 mV at -10 mA cm -2 for HER and of 240 mV at 50 mA cm -2 for OER in 1 M KOH solution. In addition, the NiFeSP/NF presents excellent overall water splitting performance with a cell voltage as low as 1.58 V at a current density of 10 mA cm -2 . Combining with a photovoltaic device of a Si solar cell or integrating into photoelectrochemical (PEC) systems, the bifunctional NiFeSP/NF electrocatalyst implements unassisted solar-driven water splitting with a solar-to-hydrogen conversion efficiency of ∼9.2% and significantly enhanced PEC performance, respectively.
Hydrogen from renewable energy - Photovoltaic/water electrolysis as an exemplary approach
NASA Technical Reports Server (NTRS)
Sprafka, R. J.; Tison, R. R.; Escher, W. J. D.
1984-01-01
A feasibility study has been conducted for a NASA Kennedy Space Center liquid hydrogen/liquid oxygen production facility using solar cell arrays as the power source for electrolysis. The 100 MW output of the facility would be split into 67.6 and 32 MW portions for electrolysis and liquefaction, respectively. The solar cell array would cover 1.65 sq miles, and would be made up of 249 modular 400-kW arrays. Hydrogen and oxygen are generated at either dispersed or centralized water electrolyzers. The yearly hydrogen output is projected to be 5.76 million lbs, with 8 times that much oxygen; these fuel volumes can support approximately 18 Space Shuttle launches/year.
Costi, Ronny; Young, Elizabeth R; Bulović, Vladimir; Nocera, Daniel G
2013-04-10
Integration of water splitting catalysts with visible-light-absorbing semiconductors would enable direct solar-energy-to-fuel conversion schemes such as those based on water splitting. A disadvantage of some common semiconductors that possess desirable optical bandgaps is their chemical instability under the conditions needed for oxygen evolution reaction (OER). In this study, we demonstrate the dual benefits gained from using a cobalt metal thin-film as the precursor for the preparation of cobalt-phosphate (CoPi) OER catalyst on cadmium chalcogenide photoanodes. The cobalt layer protects the underlying semiconductor from oxidation and degradation while forming the catalyst and simultaneously facilitates the advantageous incorporation of the cadmium chalcogenide layer into the CoPi layer during continued processing of the electrode. The resulting hybrid material forms a stable photoactive anode for light-assisted water splitting.
Giant switchable Rashba effect in oxide heterostructures
Zhong, Zhicheng; Si, Liang; Zhang, Qinfang; ...
2015-03-01
One of the most fundamental phenomena and a reminder of the electron’s relativistic nature is the Rashba spin splitting for broken inversion symmetry. Usually this splitting is a tiny relativistic correction. Interfacing ferroelectric BaTiO₃ and a 5d (or 4d) transition metal oxide with a large spin-orbit coupling, Ba(Os,Ir,Ru)O₃, we show that giant Rashba spin splittings are indeed possible and even controllable by an external electric field. Based on density functional theory and a microscopic tight binding understanding, we conclude that the electric field is amplified and stored as a ferroelectric Ti-O distortion which, through the network of oxygen octahedra, inducesmore » a large (Os,Ir,Ru)-O distortion. The BaTiO₃/Ba(Os,Ru,Ir)O₃ heterostructure is hence the ideal test station for switching and studying the Rashba effect and allows applications at room temperature.« less
Study of distorted octahedral structure in 3d transition metal complexes using XAFS
NASA Astrophysics Data System (ADS)
Gaur, A.; Nitin Nair, N.; Shrivastava, B. D.; Das, B. K.; Chakrabortty, Monideepa; Jha, S. N.; Bhattacharyya, D.
2018-01-01
Distortion in octahedral structure of 3d transition metal complexes (Mn, Fe, Co, Ni, Cu, Zn) has been studied using XAFS showing divergent nature of Cu complex. EXAFS analysis showed elongated metal-oxygen bonds for Cu complex leading to more distorted structure. Derivative XANES spectrum at Cu K-edge exhibits splitting of main edge which is correlated to elongated Cu-O bond length. Using these coordination geometry around metal centers, theoretical XANES spectra have been generated and features observed have been correlated to the corresponding metals p-DOS. It has been shown that distorted octahedral field in Cu complex is responsible for splitting of p-DOS.
Modeling of the oxygen reduction reaction for dense LSM thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tao; Liu, Jian; Yu, Yang
In this study, the oxygen reduction reaction mechanism is investigated using numerical methods on a dense thin (La 1-xSr x) yMnO 3±δ film deposited on a YSZ substrate. This 1-D continuum model consists of defect chemistry and elementary oxygen reduction reaction steps coupled via reaction rates. The defect chemistry model contains eight species including cation vacancies on the A- and B-sites. The oxygen vacancy is calculated by solving species transportation equations in multiphysics simulations. Due to the simple geometry of a dense thin film, the oxygen reduction reaction was reduced to three elementary steps: surface adsorption and dissociation, incorporation onmore » the surface, and charge transfer across the LSM/YSZ interface. The numerical simulations allow for calculation of the temperature- and oxygen partial pressure-dependent properties of LSM. The parameters of the model are calibrated with experimental impedance data for various oxygen partial pressures at different temperatures. The results indicate that surface adsorption and dissociation is the rate-determining step in the ORR of LSM thin films. With the fine-tuned parameters, further quantitative analysis is performed. The activation energy of the oxygen exchange reaction and the dependence of oxygen non-stoichiometry on oxygen partial pressure are also calculated and verified using the literature results.« less
Modeling of the oxygen reduction reaction for dense LSM thin films
Yang, Tao; Liu, Jian; Yu, Yang; ...
2017-10-17
In this study, the oxygen reduction reaction mechanism is investigated using numerical methods on a dense thin (La 1-xSr x) yMnO 3±δ film deposited on a YSZ substrate. This 1-D continuum model consists of defect chemistry and elementary oxygen reduction reaction steps coupled via reaction rates. The defect chemistry model contains eight species including cation vacancies on the A- and B-sites. The oxygen vacancy is calculated by solving species transportation equations in multiphysics simulations. Due to the simple geometry of a dense thin film, the oxygen reduction reaction was reduced to three elementary steps: surface adsorption and dissociation, incorporation onmore » the surface, and charge transfer across the LSM/YSZ interface. The numerical simulations allow for calculation of the temperature- and oxygen partial pressure-dependent properties of LSM. The parameters of the model are calibrated with experimental impedance data for various oxygen partial pressures at different temperatures. The results indicate that surface adsorption and dissociation is the rate-determining step in the ORR of LSM thin films. With the fine-tuned parameters, further quantitative analysis is performed. The activation energy of the oxygen exchange reaction and the dependence of oxygen non-stoichiometry on oxygen partial pressure are also calculated and verified using the literature results.« less
NASA Astrophysics Data System (ADS)
Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.
2016-12-01
Long-term oceanic oxygen change due to global warming is still unclear; most future projections (such as CMIP5) are only performed until 2100. Indeed, few previous studies using conceptual models project oxygen change in the next thousands of years, showing persistent global oxygen reduction by about 30% in the next 2000 years, even after atmospheric carbon dioxide stops rising. Yet, these models cannot sufficiently represent the ocean circulation change: the key driver of oxygen change. Moreover, considering serious effect oxygen reduction has on marine life and biogeochemical cycling, long-term oxygen change should be projected for higher validity. Therefore, we used a coupled atmosphere-ocean general circulation model (AOGCM) and an offline ocean biogeochemical model, investigating realistic long-term changes in oceanic oxygen concentration and ocean circulation. We integrated these models for 2000 years under atmospheric CO2 doubling and quadrupling. After global oxygen reduction in the first 500 years, oxygen concentration in deep ocean globally recovers and overshoots, despite surface oxygen decrease and weaker Atlantic Meridional Overturning Circulation. Deep ocean convection in the Weddell Sea recovers and overshoots, after initial cessation. Thus, enhanced deep convection and associated Antarctic Bottom Water supply oxygen-rich surface waters to deep ocean, resulting global deep ocean oxygenation. We conclude that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in the deep ocean; contrary to past reported long-term oxygen reduction and general expectation. In presentation, we will discuss the mechanism of response of deep ocean convection in the Weddell Sea and show the volume changes of hypoxic waters.
The Concept Design of a Split Flow Liquid Hydrogen Turbopump
2008-03-01
Oxygen Boost Pump OTP Oxygen Turbopump O/B Overboard b Passage depth inches Lp Passage loss Kp Passage loss constant Recommended value = 0.3...user or a diffusion model is selected . 2 1 2p tW W DR= ∗ (1.49) 39 There are eight methods within Pumpal® to estimate the value of the...allows the user to select a tip model secondary mass flow fraction. The mass fraction was set to 0.05. This value is within the range (0.02-0.10
Organic radicals for the enhancement of oxygen reduction reaction in Li-O2 batteries.
Tesio, A Y; Blasi, D; Olivares-Marín, M; Ratera, I; Tonti, D; Veciana, J
2015-12-25
We examine for the first time the ability of inert carbon free-radicals as soluble redox mediators to catalyze and enhance the oxygen reduction reaction in a (TEGDME)-based electrolyte. We demonstrate that the tris(2,4,6-trichlorophenyl)methyl (TTM) radical is capable of chemically favoring the oxygen reduction reaction improving significantly the Li-O2 battery performance.
NASA Technical Reports Server (NTRS)
Cohen, Y.
1985-01-01
Stratified water bodies allow the development of several microbial plates along the water column. The microbial plates develop in relation to nutrient availability, light penetration, and the distribution of oxygen and sulfide. Sulfide is initially produced in the sediment by sulfate-reducing bacteria. It diffuses along the water column creating a zone of hydrogen sulfide/oxygen interface. In the chemocline of Solar Lake oxygen and sulfide coexist in a 0 to 10 cm layer that moves up and down during a diurnal cycle. The microbial plate at the chemocline is exposed to oxygen and hydrogen sulfide, alternating on a diurnal basis. The cyanobacteria occupying the interface switch from anoxygenic photosynthesis in the morning to oxygenic photosynthesis during the rest of the day which results in a temporal build up of elemental sulfur during the day and disappears at night due to both oxidation to thiosulfate and sulfate by thiobacilli, and reduction to hydrogen sulfide by Desulfuromonas sp. and anaerobically respiring cyanobacteria. Sulfate reduction was enhanced in the light at the surface of the cyanobacterial mats. Microsulfate reduction measurements showed enhanced activity of sulfate reduction even under high oxygen concentrations of 300 to 800 micrometer. Apparent aerobic SO sub 4 reduction activity is explained by the co-occurrence of H sub 2. The physiology of this apparent sulfate reduction activity is studied.
Kim, Hyoung Jun; Kim, Tae Oh; Shin, Bong Chul; Woo, Jae Gon; Seo, Eun Hee; Joo, Hee Rin; Heo, Nae-Yun; Park, Jongha; Park, Seung Ha; Yang, Sung Yeon; Moon, Young Soo; Shin, Jin-Yong; Lee, Nae Young
2012-01-01
Currently, a split-dose of polyethylene glycol (PEG) is the mainstay of bowel preparation due to its tolerability, bowel-cleansing action, and safety. However, bowel preparation with PEG is suboptimal because residual fluid reduces the polyp detection rate and requires a more thorough colon inspection. The aim of our study was to demonstrate the efficacy of a sufficient dose of prokinetics on bowel cleansing together with split-dose PEG. A prospective endoscopist-blinded study was conducted. Patients were randomly allocated to two groups: prokinetic with split-dose PEG or split-dose PEG alone. A prokinetic [100 mg itopride (Itomed)], was administered twice simultaneously with each split-dose of PEG. Bowel-cleansing efficacy was measured by endoscopists using the Ottawa scale and the segmental fluidity scale score. Each participant completed a bowel preparation survey. Mean scores from the Ottawa scale, segmental fluid scale, and rate of poor preparation were compared between both groups. Patients in the prokinetics with split-dose PEG group showed significantly lower total Ottawa and segmental fluid scores compared with patients in the split-dose of PEG alone group. A sufficient dose of prokinetics with a split-dose of PEG showed efficacy in bowel cleansing for morning colonoscopy, largely due to the reduction in colonic fluid. Copyright © 2012 S. Karger AG, Basel.
Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system
Torella, Joseph P.; Gagliardi, Christopher J.; Chen, Janice S.; Bediako, D. Kwabena; Colón, Brendan; Way, Jeffery C.; Silver, Pamela A.; Nocera, Daniel G.
2015-01-01
Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations. PMID:25675518
Zhao, Yixin; Swierk, John R.; Megiatto, Jackson D.; Sherman, Benjamin; Youngblood, W. Justin; Qin, Dongdong; Lentz, Deanna M.; Moore, Ana L.; Moore, Thomas A.; Gust, Devens; Mallouk, Thomas E.
2012-01-01
Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light. PMID:22547794
Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia.
Campbell, Matthew A; Van Leuven, James T; Meister, Russell C; Carey, Kaitlin M; Simon, Chris; McCutcheon, John P
2015-08-18
Comparative genomics from mitochondria, plastids, and mutualistic endosymbiotic bacteria has shown that the stable establishment of a bacterium in a host cell results in genome reduction. Although many highly reduced genomes from endosymbiotic bacteria are stable in gene content and genome structure, organelle genomes are sometimes characterized by dramatic structural diversity. Previous results from Candidatus Hodgkinia cicadicola, an endosymbiont of cicadas, revealed that some lineages of this bacterium had split into two new cytologically distinct yet genetically interdependent species. It was hypothesized that the long life cycle of cicadas in part enabled this unusual lineage-splitting event. Here we test this hypothesis by investigating the structure of the Ca. Hodgkinia genome in one of the longest-lived cicadas, Magicicada tredecim. We show that the Ca. Hodgkinia genome from M. tredecim has fragmented into multiple new chromosomes or genomes, with at least some remaining partitioned into discrete cells. We also show that this lineage-splitting process has resulted in a complex of Ca. Hodgkinia genomes that are 1.1-Mb pairs in length when considered together, an almost 10-fold increase in size from the hypothetical single-genome ancestor. These results parallel some examples of genome fragmentation and expansion in organelles, although the mechanisms that give rise to these extreme genome instabilities are likely different.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Zhenye; Mo, Jingke; Yang, Gaoqiang
We present that a proton exchange membrane electrolyzer cell (PEMEC) is one of the most promising devices for high-efficiency and low-cost energy storage and ultrahigh purity hydrogen production. As one of the critical components in PEMECs, the titanium thin/tunable LGDL (TT-LGDL) with its advantages of small thickness, planar surface, straight-through pores, and well-controlled pore morphologies, achieved superior multifunctional performance for hydrogen and oxygen production from water splitting even at low temperature. Different thin film surface treatments on the novel TT-LGDLs for enhancing the interfacial contacts and PEMEC performance were investigated both in-situ and ex-situ for the first time. Surface modifiedmore » TT-LGDLs with about 180 nm thick Au thin film yielded performance improvement (voltage reduction), from 1.6849 V with untreated TT-LGDLs to only 1.6328 V with treated TT-LGDLs at 2.0 A/cm 2 and 80°C. Furthermore, the hydrogen/oxygen production rate was increased by about 28.2% at 1.60 V and 80°C. The durability test demonstrated that the surface treated TT-LGDL has good stability as well. Finally, the gold electroplating surface treatment is a promising method for the PEMEC performance enhancement and titanium material protection even in harsh environment.« less
Chen, Wei; Wang, Haotian; Li, Yuzhang; ...
2015-07-15
The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt–nickel–iron oxides grown directly on the three-dimensionalmore » carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm –2, small Tafel slope of 37.6 mV dec –1, and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Li, Qi; Wen, Peng
Highly efficient and stable electrocatalysts, particularly those that are capable of multifunctionality in the same electrolyte, are in high demand for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this paper, highly monodisperse CoP and Co 2P nanocrystals (NCs) are synthesized using a robust solution-phase method. The highly exposed (211) crystal plane and abundant surface phosphide atoms make the CoP NCs efficient catalysts toward ORR and HER, while metal-rich Co 2P NCs show higher OER performance owing to easier formation of plentiful Co 2P@COOH heterojunctions. Density functional theory calculation results indicate that themore » desorption of OH* from cobalt sites is the rate-limiting step for both CoP and Co 2P in ORR and that the high content of phosphide can lower the reaction barrier. A water electrolyzer constructed with a CoP NC cathode and a Co 2P NC anode can achieve a current density of 10 mA cm -2 at 1.56 V, comparable even to the noble metal-based Pt/C and RuO 2/C pair. Finally and furthermore, the CoP NCs are employed as an air cathode in a primary zinc–air battery, exhibiting a high power density of 62 mW cm -2 and good stability.« less
Li, Hui; Li, Qi; Wen, Peng; ...
2018-01-15
Highly efficient and stable electrocatalysts, particularly those that are capable of multifunctionality in the same electrolyte, are in high demand for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this paper, highly monodisperse CoP and Co 2P nanocrystals (NCs) are synthesized using a robust solution-phase method. The highly exposed (211) crystal plane and abundant surface phosphide atoms make the CoP NCs efficient catalysts toward ORR and HER, while metal-rich Co 2P NCs show higher OER performance owing to easier formation of plentiful Co 2P@COOH heterojunctions. Density functional theory calculation results indicate that themore » desorption of OH* from cobalt sites is the rate-limiting step for both CoP and Co 2P in ORR and that the high content of phosphide can lower the reaction barrier. A water electrolyzer constructed with a CoP NC cathode and a Co 2P NC anode can achieve a current density of 10 mA cm -2 at 1.56 V, comparable even to the noble metal-based Pt/C and RuO 2/C pair. Finally and furthermore, the CoP NCs are employed as an air cathode in a primary zinc–air battery, exhibiting a high power density of 62 mW cm -2 and good stability.« less
Kang, Zhenye; Mo, Jingke; Yang, Gaoqiang; ...
2017-09-14
We present that a proton exchange membrane electrolyzer cell (PEMEC) is one of the most promising devices for high-efficiency and low-cost energy storage and ultrahigh purity hydrogen production. As one of the critical components in PEMECs, the titanium thin/tunable LGDL (TT-LGDL) with its advantages of small thickness, planar surface, straight-through pores, and well-controlled pore morphologies, achieved superior multifunctional performance for hydrogen and oxygen production from water splitting even at low temperature. Different thin film surface treatments on the novel TT-LGDLs for enhancing the interfacial contacts and PEMEC performance were investigated both in-situ and ex-situ for the first time. Surface modifiedmore » TT-LGDLs with about 180 nm thick Au thin film yielded performance improvement (voltage reduction), from 1.6849 V with untreated TT-LGDLs to only 1.6328 V with treated TT-LGDLs at 2.0 A/cm 2 and 80°C. Furthermore, the hydrogen/oxygen production rate was increased by about 28.2% at 1.60 V and 80°C. The durability test demonstrated that the surface treated TT-LGDL has good stability as well. Finally, the gold electroplating surface treatment is a promising method for the PEMEC performance enhancement and titanium material protection even in harsh environment.« less
Blakely, Colin K; Bruno, Shaun R; Poltavets, Viktor V
2011-07-18
A chimie douce solvothermal reduction method is proposed for topotactic oxygen deintercalation of complex metal oxides. Four different reduction techniques were employed to qualitatively identify the relative reduction activity of each including reduction with H(2) and NaH, solution-based reduction using metal hydrides at ambient pressure, and reduction under solvothermal conditions. The reduction of the Ruddlesden-Popper nickelate La(4)Ni(3)O(10) was used as a test case to prove the validity of the method. The completely reduced phase La(4)Ni(3)O(8) was produced via the solvothermal technique at 150 °C--a lower temperature than by other more conventional solid state oxygen deintercalation methods.
Xu, Xi-Jun; Chen, Chuan; Wang, Ai-Jie; Guo, Hong-Liang; Yuan, Ye; Lee, Duu-Jong; Ren, Nan-Qi
2014-07-01
The biological degradation of nitrate and sulfate was investigated using a mixed microbial culture and lactate as the carbon source, with or without limited-oxygen fed. It was found that sulfate reduction was slightly inhibited by nitrate, since after nitrate depletion the sulfate reduction rate increased from 0.37 mg SO4 (2-)/mg VSS d to 0.71 mg SO4 (2-)/mg VSS d, and the maximum rate of sulfate reduction in the presence of nitrate corresponded to 56 % of the non-inhibited sulfate reduction rate determined after nitrate depleted. However, simultaneous but not sequential reduction of both oxy-anions was observed in this study, unlike some literature reports in which sulfate reduction starts only after depletion of nitrate, and this case might be due to the fact that lactate was always kept above the limiting conditions. At limited oxygen, the inhibited effect on sulfate reduction by nitrate was relieved, and the sulfate reduction rate seemed relatively higher than that obtained without limited-oxygen fed, whereas kept almost constant (0.86-0.89 mg SO4 (2-)/mg VSS d) cross the six ROS states. In contrast, nitrate reduction rates decreased substantially with the increase in the initial limited-oxygen fed, showing an inhibited effect on nitrate reduction by oxygen. Kinetic parameters determined for the mixed microbial culture showed that the maximum specific sulfate utilization rate obtained (0.098 ± 0.022 mg SO4 (2-)/(mg VSS h)) was similar to the reported typical value (0.1 mg SO4 (2-)/(mg VSS h)), also indicating a moderate inhibited effect by nitrate.
31 CFR 29.346 - Reduction for survivor benefits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Reduction for survivor benefits. 29.346 Section 29.346 Money and Finance: Treasury Office of the Secretary of the Treasury FEDERAL BENEFIT PAYMENTS UNDER CERTAIN DISTRICT OF COLUMBIA RETIREMENT PROGRAMS Split Benefits Calculation of the Amount of...
Microbial Fuel Cell Performance with a Pressurized Cathode Chamber
USDA-ARS?s Scientific Manuscript database
Microbial fuel cell (MFC) power densities are often constrained by the oxygen reduction reaction rate on the cathode electrode. One important factor for this is the normally low solubility of oxygen in the aqueous cathode solution creating mass transport limitations, which hinder oxygen reduction a...
Najafpour, Mohammad Mahdi
2011-01-01
The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.
Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles
NASA Astrophysics Data System (ADS)
Niether, Christiane; Faure, Stéphane; Bordet, Alexis; Deseure, Jonathan; Chatenet, Marian; Carrey, Julian; Chaudret, Bruno; Rouet, Alain
2018-06-01
Water electrolysis enables the storage of renewable electricity via the chemical bonds of hydrogen. However, proton-exchange-membrane electrolysers are impeded by the high cost and low availability of their noble-metal electrocatalysts, whereas alkaline electrolysers operate at a low power density. Here, we demonstrate that electrocatalytic reactions relevant for water splitting can be improved by employing magnetic heating of noble-metal-free catalysts. Using nickel-coated iron carbide nanoparticles, which are prone to magnetic heating under high-frequency alternating magnetic fields, the overpotential (at 20 mA cm-2) required for oxygen evolution in an alkaline water-electrolysis flow-cell was decreased by 200 mV and that for hydrogen evolution was decreased by 100 mV. This enhancement of oxygen-evolution kinetics is equivalent to a rise of the cell temperature to 200 °C, but in practice it increased by 5 °C only. This work suggests that, in the future, water splitting near the equilibrium voltage could be possible at room temperature, which is currently beyond reach in the classic approach to water electrolysis.
A review on g-C3N4 for photocatalytic water splitting and CO2 reduction
NASA Astrophysics Data System (ADS)
Ye, Sheng; Wang, Rong; Wu, Ming-Zai; Yuan, Yu-Peng
2015-12-01
Solar fuel generation through water splitting and CO2 photoreduction is an ideal route to provide the renewable energy sources and mitigate global warming. The main challenge in photocatalysis is finding a low-cost photocatalyst that can work efficiently to split water into hydrogen and reduce CO2 to hydrocarbon fuels. Metal-free g-C3N4 photocatalyst shows great potentials for solar fuel production. In this mini review, we summarize the most current advances on novel design idea and new synthesis strategy for g-C3N4 preparation, insightful ideas on extending optical absorption of pristine g-C3N4, overall water splitting and CO2 photoreduction over g-C3N4 based systems. The research challenges and perspectives on g-C3N4 based photocatalysts were also suggested.
Flavins secreted by bacterial cells of Shewanella catalyze cathodic oxygen reduction.
Liu, Huan; Matsuda, Shoichi; Hashimoto, Kazuhito; Nakanishi, Shuji
2012-06-01
On Her Majesty's Secrete Service: Oxygen reduction is an important process for microbial fuel cells (MFCs) and microbiologically-influenced corrosion (MIC). We demonstrate that flavins secreted by anode-respiring Shewanella cells can catalyze cathodic oxygen reduction via adsorption on the cathode. The findings will provide new insight for developing methods to improve MFC performance and to prevent MIC. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes
NASA Technical Reports Server (NTRS)
Chin, D. T.; Hsueh, K. L.; Chang, H. H.
1983-01-01
Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. A theoretical expression for the rotating ring-disk electrode technique; the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; oxygen reduction mechanism in trifluoromethanesulfonic acid (TFMSA), considered as an alternate electrolyte for the acid fuel cells; and transport properties of the phosphoric acid electrolyte at high concentrations and temperatures are covered.
Xuan, Cuijuan; Wang, Jie; Xia, Weiwei; ...
2017-07-18
Exploring nonprecious metal electrocatalysts to replace the noble metal-based catalysts for full water electrocatalysis is still an ongoing challenge. In this work, porous structured ternary nickel–iron–phosphide (Ni–Fe–P) nanocubes were synthesized through one-step phosphidation of a Ni–Fe-based Prussian blue analogue. The Ni–Fe–P nanocubes exhibit a rough and loose porous structure on their surface under suitable phosphating temperature, which is favorable for the mass transfer and oxygen diffusion during the electrocatalysis process. As a result, Ni–Fe–P obtained at 350 °C with poorer crystallinity offers more unsaturated atoms as active sites to expedite the absorption of reactants. Additionally, the introduction of nickel improvedmore » the electronic structure and then reduced the charge-transfer resistance, which would result in a faster electron transport and an enhancement of the intrinsic electrocatalytic activities. Benefiting from the unique porous nanocubes and the chemical composition, the Ni–Fe–P nanocubes exhibit excellent hydrogen evolution reaction and oxygen evolution reaction activities in alkaline medium, with low overpotentials of 182 and 271 mV for delivering a current density of 10 mA cm–2, respectively. Moreover, the Ni–Fe–P nanocubes show outstanding stability for sustained water splitting in the two-electrode alkaline electrolyzer. Furthermore, this work not only provides a facile approach for designing bifunctional electrocatalysts but also further extends the application of metal–organic frameworks in overall water splitting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xuan, Cuijuan; Wang, Jie; Xia, Weiwei
Exploring nonprecious metal electrocatalysts to replace the noble metal-based catalysts for full water electrocatalysis is still an ongoing challenge. In this work, porous structured ternary nickel–iron–phosphide (Ni–Fe–P) nanocubes were synthesized through one-step phosphidation of a Ni–Fe-based Prussian blue analogue. The Ni–Fe–P nanocubes exhibit a rough and loose porous structure on their surface under suitable phosphating temperature, which is favorable for the mass transfer and oxygen diffusion during the electrocatalysis process. As a result, Ni–Fe–P obtained at 350 °C with poorer crystallinity offers more unsaturated atoms as active sites to expedite the absorption of reactants. Additionally, the introduction of nickel improvedmore » the electronic structure and then reduced the charge-transfer resistance, which would result in a faster electron transport and an enhancement of the intrinsic electrocatalytic activities. Benefiting from the unique porous nanocubes and the chemical composition, the Ni–Fe–P nanocubes exhibit excellent hydrogen evolution reaction and oxygen evolution reaction activities in alkaline medium, with low overpotentials of 182 and 271 mV for delivering a current density of 10 mA cm–2, respectively. Moreover, the Ni–Fe–P nanocubes show outstanding stability for sustained water splitting in the two-electrode alkaline electrolyzer. Furthermore, this work not only provides a facile approach for designing bifunctional electrocatalysts but also further extends the application of metal–organic frameworks in overall water splitting.« less
NASA Astrophysics Data System (ADS)
Gao, Lingyuan; Demkov, Alexander A.
2018-03-01
Using first-principles calculations we predict the existence of a spin-polarized two-dimensional electron gas (2DEG) at the interface of a ferromagnetic insulator EuO and oxygen-deficient SrTi O3 . The carriers are generated by oxygen vacancies in SrTi O3 near the interface and have predominantly Ti-t2 g orbital character. At the interface, the split-off dx y-derived conduction band of SrTi O3 is fully spin-polarized and the in-gap vacancy-induced state, found below the conduction-band edge, is aligned ferromagnetically with EuO. The calculations suggest a possible mechanism for generating spin-polarized 2DEG for spintronic applications.
An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.
Gong, Ming; Li, Yanguang; Wang, Hailiang; Liang, Yongye; Wu, Justin Z; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie
2013-06-12
Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.
NASA Astrophysics Data System (ADS)
Dembinska, Beata; Kiliszek, Malgorzata; Elzanowska, Hanna; Pisarek, Marcin; Kulesza, Pawel J.
2013-12-01
Electrocatalytic activity of carbon (Vulcan XC-72) supported selenium-modified ruthenium, RuSex/C, nanoparticles for reduction of oxygen was enhanced through intentional decoration with iridium nanostructures (dimensions, 2-3 nm). The catalytic materials were characterized in oxygenated 0.5 mol dm-3 H2SO4 using cyclic and rotating ring disk voltammetric techniques as well as using transmission electron microscopy and scanning electron microscopy equipped with X-ray dispersive analyzer. Experiments utilizing gas diffusion electrode aimed at mimicking conditions existing in the low-temperature fuel cell. Upon application of our composite catalytic system, the reduction of oxygen proceeded at more positive potentials, and higher current densities were observed when compared to the behavior of the simple iridium-free system (RuSex/C) investigated under the analogous conditions. The enhancement effect was more pronounced than that one would expect from simple superposition of voltammetric responses for the oxygen reduction at RuSex/C and iridium nanostructures studied separately. Nanostructured iridium acted here as an example of a powerful catalyst for the reduction of H2O2 (rather than O2) and, when combined with such a moderate catalyst as ruthenium-selenium (for O2 reduction), it produced an integrated system of increased electrocatalytic activity in the oxygen reduction process. The proposed system retained its activity in the presence of methanol that could appear in a cathode compartment of alcohol fuel cell.
Electrons and phonons in layered and monolayer vanadium pentoxide
NASA Astrophysics Data System (ADS)
Lambrecht, Walter R. L.
Vanadium pentoxide (V2O5) is a layered material with the potential for interesting new properties when made in 2D mono- or few-layer form. Its band structure is characterized by a split-off conduction band. The lowest conduction band is separated from the rest of the conduction bands by about 1 eV and consists of V-dxy orbitals, non-bonding to the oxygens by symmetry. This narrow band has dispersion essentially along the direction of chains occurring in the layer. When this band becomes half-filled by doping, spin-splitting occurs accompanied by an antiferromagnetic coupling between nearest neighbors along the chain direction. This situation is well known to occur in the so-called ladder compound NaV2O5 , which was extensively studied in the late 90s as a potential spin-Peierls or charge ordering compound. However, the monolayer form of V2O5 may allow for other ways to control the doping by gating, removing vanadyl oxygens, adsorption of alkali metals, nanoribbon formation, etc. Our calculations predict a switch from antiferromagnetic to ferromagnetic coupling for doping slightly less than half filling of the split-off band. In this talk we will discuss our recent work on the electronic band structure of both bulk and monolayer V2O5 as well as the phonons. We find that the quasi-particle self-consistent GW method strongly overestimates the band gap. Lattice polarization corrections of the screening are required because of the large LO/TO phonon frequency ratios. Excitonic effects may also be expected to be fairly large. We find that some of the vibrational modes, notably the vanadyl-oxygen bond stretch perpendicular to the layer, unexpectedly shows a strong blue shift. This is explained in terms of reduced screening affecting the long-range dipole components of the force constants. Supported by AFOSR and DOE. Work done with Churna Bhandari, Mark van Schilfgaarde and Andre Schleiffe.
Reverse electron transport effects on NADH formation and metmyoglobin reduction.
Belskie, K M; Van Buiten, C B; Ramanathan, R; Mancini, R A
2015-07-01
The objective was to determine if NADH generated via reverse electron flow in beef mitochondria can be used for electron transport-mediated reduction and metmyoglobin reductase pathways. Beef mitochondria were isolated from bovine hearts (n=5) and reacted with combinations of succinate, NAD, and mitochondrial inhibitors to measure oxygen consumption and NADH formation. Mitochondria and metmyoglobin were reacted with succinate, NAD, and mitochondrial inhibitors to measure electron transport-mediated metmyoglobin reduction and metmyoglobin reductase activity. Addition of succinate and NAD increased oxygen consumption, NADH formation, electron transport-mediated metmyoglobin reduction, and reductase activity (p<0.05). Addition of antimycin A prevented electron flow beyond complex III, therefore, decreasing oxygen consumption and electron transport-mediated metmyoglobin reduction. Addition of rotenone prevented reverse electron flow, increased oxygen consumption, increased electron transport-mediated metmyoglobin reduction, and decreased NADH formation. Succinate and NAD can generate NADH in bovine tissue postmortem via reverse electron flow and this NADH can be used by both electron transport-mediated and metmyoglobin reductase pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
Andersson, D A; Baldinozzi, G; Desgranges, L; Conradson, D R; Conradson, S D
2013-03-04
Formation of hyperstoichiometric uranium dioxide, UO2+x, derived from the fluorite structure was investigated by means of density functional theory (DFT) calculations. Oxidation was modeled by adding oxygen atoms to UO2 fluorite supercells. For each compound ab initio molecular dynamics simulations were performed to allow the ions to optimize their local geometry. A similar approach was used for studying the reduction of U3O8. In agreement with the experimental phase diagram we identify stable line compounds at the U4O9-y and U3O7 stoichiometries. Although the transition from fluorite to the layered U3O8 structure occurs at U3O7 (UO2.333) or U3O7.333 (UO2.444), our calculated low temperature phase diagram indicates that the fluorite derived compounds are favored up to UO2.5, that is, as long as the charge-compensation for adding oxygen atoms occurs via formation of U(5+) ions, after which the U3O8-y phase becomes more stable. The most stable fluorite UO2+x phases at low temperature (0 K) are based on ordering of split quad-interstitial oxygen clusters. Most existing crystallographic models of U4O9 and U3O7, however, apply the cuboctahedral cluster. To better understand these discrepancies, the new structural models are analyzed in terms of existing neutron diffraction data. DFT calculations were also performed on the experimental cuboctahedral based U4O9-y structure, which enable comparisons between the properties of this phase with the quad-interstitial ones in detail.
NASA Astrophysics Data System (ADS)
Lipschultz, F.; Wofsy, S. C.; Ward, B. B.; Codispoti, L. A.; Friedrich, G.; Elkins, J. W.
1990-10-01
Rates of transformations of inorganic nitrogen were measured in the low oxygen, subsurface waters (50-450 m) of the Eastern Tropical South Pacific during February 1985, using 15N tracer techniques. Oxygen concentrations over the entire region were in a range (O 2 < 2.5 μM) that allowed both oxidation and reduction of nitrogen to occur. A wide range of rates was observed for the lowest oxygen levels, indicating that observed oxygen concentration was not a primary factor regulating nitrogen metabolism. High values for subsurface metabolic rates correspond with high levels for surface primary production, both apparently associated with mesoscale features observed in satellite imagery and with mesoscale features of the current field. Measured rates of nitrate reduction and estimated rates of denitrification were sufficient to respire nearly all of the surface primary production that might be transported into the oxygen deficient zone. These results imply that the supply of labile organic material, especially from the surface, was more important than oxygen concentration in modulating the rates of nitrogen transformations within the low oxygen water mass of the Eastern Tropical South Pacific. The pattern of nitrite oxidation and nitrite reduction activities in the oxygen minimum zone supports the hypothesis ( ANDERSONet al., 1982, Deep-Sea Research, 29, 1113-1140) that nitrite, produced from nitrate reduction, can be recycled by oxidation at the interface between low and high oxygen waters. Rates for denitrification, estimated from nitrate reduction rates, were in harmony with previous estimates based on electron transport system (ETS) measurements and analysis of the nitrate deficit and water residence times. Assimilation rates of NH 4+ were substantial, providing evidence for heterotrophic bacterial growth in low oxygen waters. Ambient concentrations of ammonium were maintained at low values primarily by assimilation; ammonium oxidation was an important mechanism at the surface boundary of the low oxygen zone.
Physical principle of airway design in human lungs
NASA Astrophysics Data System (ADS)
Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young
2014-11-01
From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.
Two component-three dimensional catalysis
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2002-01-01
This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.
NASA Astrophysics Data System (ADS)
Ishii, Masashi; Crowe, Iain F.; Halsall, Matthew P.; Hamilton, Bruce; Hu, Yongfeng; Sham, Tsun-Kong; Harako, Susumu; Zhao, Xin-Wei; Komuro, Shuji
2013-10-01
The local structure of luminescent Sm dopants was investigated using an X-ray absorption fine-structure technique with X-ray-excited optical luminescence. Because this technique evaluates X-ray absorption from luminescence, only optically active sites are analyzed. The Sm L3 near-edge spectrum contains split 5d states and a shake-up transition that are specific to luminescent Sm. Theoretical calculations using cluster models identified an atomic-scale distortion that can reproduce the split 5d states. The model with C4v local symmetry and compressive bond length of Sm-O of a six-fold oxygen (SmO6) cluster is most consistent with the experimental results.
Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2.
Miner, Elise M; Fukushima, Tomohiro; Sheberla, Dennis; Sun, Lei; Surendranath, Yogesh; Dincă, Mircea
2016-03-08
Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni3(HITP)2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N4 sites are structurally reminiscent of the highly active and widely studied non-platinum group metal electrocatalysts containing M-N4 units. Ni3(HITP)2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. Such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications.
Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2
Miner, Elise M.; Fukushima, Tomohiro; Sheberla, Dennis; Sun, Lei; Surendranath, Yogesh; Dincă, Mircea
2016-01-01
Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni3(HITP)2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N4 sites are structurally reminiscent of the highly active and widely studied non-platinum group metal electrocatalysts containing M-N4 units. Ni3(HITP)2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. Such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications. PMID:26952523
Electrochemical oxygen reduction catalysed by Ni 3(hexaiminotriphenylene) 2
Miner, Elise M.; Fukushima, Tomohiro; Sheberla, Dennis; ...
2016-03-08
Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni 3(HITP) 2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni 3(HITP) 2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N 4 sites are structurally reminiscent of the highly active and widely studied non-platinum groupmore » metal electrocatalysts containing M-N 4 units. Ni 3(HITP) 2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. As a result, such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications.« less
Bioinspired Electrocatalysis of Oxygen Reduction Reaction in Fuel Cells Using Molecular Catalysts.
Zion, Noam; Friedman, Ariel; Levy, Naomi; Elbaz, Lior
2018-04-23
One of the most important chemical reactions for renewable energy technologies such as fuel cells and metal-air batteries today is oxygen reduction. Due to the relatively sluggish reaction kinetics, catalysts are necessary to generate high power output. The most common catalyst for this reaction is platinum, but its scarcity and derived high price have raised the search for abundant nonprecious metal catalysts. Inspired from enzymatic processes which are known to catalyze oxygen reduction reaction efficiently, employing transition metal complexes as their catalytic centers, many are working on the development of bioinspired and biomimetic catalysts of this class. This research news article gives a glimpse of the recent progress on the development of bioinspired molecular catalyst for oxygen reduction, highlighting the importance of the molecular structure of the catalysts, from advancements in porphyrins and phthalocyanines to the most recent work on corroles, and 3D networks such as metal-organic frameworks and polymeric networks, all with nonpyrolyzed, well-defined molecular catalysts for oxygen reduction reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari
2017-02-01
Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.
NASA Astrophysics Data System (ADS)
Yao, Lihua; Zhang, Nan; Wang, Yin; Ni, Yuanman; Yan, Dongpeng; Hu, Changwen
2018-01-01
Exploring efficient non-precious electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for many renewable energy conversion processes. In this work, we report that 2D Co2P@Co3O4 microsheets can be prepared through an in-situ toptactic conversion from single-crystal β-Co(OH)2 microplatelets, associated with a surface phosphatization and corrosion process. The resultant Co2P@Co3O4 2D hybrid materials can further serve as self-supported bifunctional catalytic electrodes to drive the overall water splitting for HER and OER simultaneously, with low overpotentials and high long-term stability. Furthermore, a water electrolyzer based on Co2P@Co3O4 hybrid as both anode and cathode is fabricated, which achieves 10 mA cm-2 current at only 1.57 V during water splitting process. Therefore, this work provides a facile strategy to obtain 2D Co2P-based micro/nanostructures, which act as low-cost and highly active electrocatalysts towards overall water splitting application.
Thermochemical generation of hydrogen
NASA Technical Reports Server (NTRS)
Lawson, D. D.; Petersen, G. R. (Inventor)
1982-01-01
The direct fluid contact heat exchange with H2SO4 at about 330 C prior to high temperature decomposition at about 830 C in the oxygen release step of several thermochemical cycles for splitting water into hydrogen and oxygen provides higher heat transfer rates, savings in energy and permits use of cast vessels rather than expensive forged alloy indirect heat exchangers. Among several candidate perfluorocarbon liquids tested, only perfluoropropylene oxide polymers having a degree of polymerization from about 10 to 60 were chemically stable, had low miscibility and vapor pressure when tested with sulfuric acid at temperatures from 300 C to 400 C.
Ertem, Mehmed Z.; Kharche, Neerav; Batista, Victor S.; ...
2015-03-12
Photoeclectrochemical water splitting plays a key role in a promising path to the carbon-neutral generation of solar fuels. Wurzite GaN and its alloys ( e.g., GaN/ZnO and InGaN) are demonstrated photocatalysts for water oxidation, and they can drive the overall water splitting reaction when coupled with co-catalysts for proton reduction. In the present work, we investigate the water oxidation mechanism on the prototypical GaN (101¯0) surface using a combined ab initio molecular dynamics and molecular cluster model approach taking into account the role of water dissociation and hydrogen bonding within the first solvation shell of the hydroxylated surface. The investigationmore » of free-energy changes for the four proton-coupled electron-transfer (PCET) steps of the water oxidation mechanism shows that the first PCET step for the conversion of –Ga-OH to –Ga-O˙⁻ requires the highest energy input. We further examine the sequential PCETs, with the proton transfer (PT) following the electron transfer (ET), and find that photo-generated holes localize on surface –NH sites is thermodynamically more favorable than –OH sites. However, proton transfer from –OH sites with subsequent localization of holes on oxygen atoms is kinetically favored owing to hydrogen bonding interactions at the GaN (101¯0)–water interface. We find that the deprotonation of surface –OH sites is the limiting factor for the generation of reactive oxyl radical ion intermediates and consequently for water oxidation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilsson, A.; LaRue, J.; Öberg, H.
Here, we describe how the unique temporal and spectral characteristics of X-ray free-electron lasers (XFEL) can be utilized to follow chemical transformations in heterogeneous catalysis in real time. We highlight the systematic study of CO oxidation on Ru(0 0 0 1), which we initiate either using a femtosecond pulse from an optical laser or by activating only the oxygen atoms using a THz pulse. We find that CO is promoted into an entropy-controlled precursor state prior to desorbing when the surface is heated in the absence of oxygen, whereas in the presence of oxygen, CO desorbs directly into the gasmore » phase. We monitor the activation of atomic oxygen explicitly by the reduced split between bonding and antibonding orbitals as the oxygen comes out of the strongly bound hollow position. Applying these novel XFEL techniques to the full oxidation reaction resulted in the surprising observation of a significant fraction of the reactants at the transition state through the electronic signature of the new bond formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guenzburger, D.; Ellis, D.E.; Montano, P.A.
1985-10-01
Electronic structure calculations were performed for clusters representing the Chevrel-phase SnMo/sub 6/S/sub 8/, with and without oxygen doping. In order to obtain the local structure around the Sn atom, extended x-ray-absorption fine-structure (EXAFS) measurements were made with synchro- tron radiation. The interatomic distances obtained experimentally were used in the calculations. The effect of oxygen doping on the Moessbauer isomer shift and quadrupole splitting values of /sup 119/Sn was investigated theoretically and compared with reported experimental values. The effect of oxygen substitution on the density of states at the Fermi energy of the (Mo/sub 6/S/sub 8/)/sup 2 -/ cluster was alsomore » studied. The results suggest that oxygen doping does not alter significantly the electronic structure of SnMo/sub 6/S/sub 8/.« less
Catalysis in real time using x-ray lasers
Nilsson, A.; LaRue, J.; Öberg, H.; ...
2017-02-14
Here, we describe how the unique temporal and spectral characteristics of X-ray free-electron lasers (XFEL) can be utilized to follow chemical transformations in heterogeneous catalysis in real time. We highlight the systematic study of CO oxidation on Ru(0 0 0 1), which we initiate either using a femtosecond pulse from an optical laser or by activating only the oxygen atoms using a THz pulse. We find that CO is promoted into an entropy-controlled precursor state prior to desorbing when the surface is heated in the absence of oxygen, whereas in the presence of oxygen, CO desorbs directly into the gasmore » phase. We monitor the activation of atomic oxygen explicitly by the reduced split between bonding and antibonding orbitals as the oxygen comes out of the strongly bound hollow position. Applying these novel XFEL techniques to the full oxidation reaction resulted in the surprising observation of a significant fraction of the reactants at the transition state through the electronic signature of the new bond formation.« less
Space-Confined Earth-Abundant Bifunctional Electrocatalyst for High-Efficiency Water Splitting.
Tang, Yanqun; Fang, Xiaoyu; Zhang, Xin; Fernandes, Gina; Yan, Yong; Yan, Dongpeng; Xiang, Xu; He, Jing
2017-10-25
Hydrogen generation from water splitting could be an alternative way to meet increasing energy demands while also balancing the impact of energy being supplied by fossil-based fuels. The efficacy of water splitting strongly depends on the performance of electrocatalysts. Herein, we report a unique space-confined earth-abundant electrocatalyst having the bifunctionality of simultaneous hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), leading to high-efficiency water splitting. Outperforming Pt/C or RuO 2 catalysts, this mesoscopic, space-confined, bifunctional configuration is constructed from a monolithic zeolitic imidazolate framework@layered double hydroxide (ZIF@LDH) precursor on Ni foam. Such a confinement leads to a high dispersion of ultrafine Co 3 O 4 nanoparticles within the N-doped carbon matrix by temperature-dependent calcination of the ZIF@LDH. We demonstrate that the OER has an overpotential of 318 mV at a current density of 10 mA cm -2 , while that of HER is -106 mV @ -10 mA cm -2 . The voltage applied to a two-electrode cell for overall water splitting is 1.59 V to achieve a stable current density of 10 mA cm -2 while using the monolithic catalyst as both the anode and the cathode. It is anticipated that our space-confined method, which focuses on earth-abundant elements with structural integrity, may provide a novel and economically sound strategy for practical energy conversion applications.
Representativeness of laboratory sampling procedures for the analysis of trace metals in soil.
Dubé, Jean-Sébastien; Boudreault, Jean-Philippe; Bost, Régis; Sona, Mirela; Duhaime, François; Éthier, Yannic
2015-08-01
This study was conducted to assess the representativeness of laboratory sampling protocols for purposes of trace metal analysis in soil. Five laboratory protocols were compared, including conventional grab sampling, to assess the influence of sectorial splitting, sieving, and grinding on measured trace metal concentrations and their variability. It was concluded that grinding was the most important factor in controlling the variability of trace metal concentrations. Grinding increased the reproducibility of sample mass reduction by rotary sectorial splitting by up to two orders of magnitude. Combined with rotary sectorial splitting, grinding increased the reproducibility of trace metal concentrations by almost three orders of magnitude compared to grab sampling. Moreover, results showed that if grinding is used as part of a mass reduction protocol by sectorial splitting, the effect of sieving on reproducibility became insignificant. Gy's sampling theory and practice was also used to analyze the aforementioned sampling protocols. While the theoretical relative variances calculated for each sampling protocol qualitatively agreed with the experimental variances, their quantitative agreement was very poor. It was assumed that the parameters used in the calculation of theoretical sampling variances may not correctly estimate the constitutional heterogeneity of soils or soil-like materials. Finally, the results have highlighted the pitfalls of grab sampling, namely, the fact that it does not exert control over incorrect sampling errors and that it is strongly affected by distribution heterogeneity.
Oxygen, pH, and mitochondrial oxidative phosphorylation.
Wilson, David F; Harrison, David K; Vinogradov, Sergei A
2012-12-15
The oxygen dependence of mitochondrial oxidative phosphorylation was measured in suspensions of isolated rat liver mitochondria using recently developed methods for measuring oxygen and cytochrome c reduction. Cytochrome-c oxidase (energy conservation site 3) activity of the mitochondrial respiratory chain was measured using an artificial electron donor (N,N,N',N'-tetramethyl-p-phenylenediamine) and ascorbate to directly reduce the cytochrome c, bypassing sites 1 and 2. For mitochondrial suspensions with added ATP, metabolic conditions approximating those in intact cells and decreasing oxygen pressure both increased reduction of cytochrome c and decreased respiratory rate. The kinetic parameters [K(M) and maximal rate (V(M))] for oxygen were determined from the respiratory rates calculated for 100% reduction of cytochrome c. At 22°C, the K(M) for oxygen is near 3 Torr (5 μM), 12 Torr (22 μM), and 18 Torr (32 μM) at pH 6.9, 7.4, and 7.9, respectively, and V(M) corresponds to a turnover number for cytochrome c at 100% reduction of near 80/s and is independent of pH. Uncoupling oxidative phosphorylation increased the respiratory rate at saturating oxygen pressures by twofold and decreased the K(M) for oxygen to <2 Torr at all tested pH values. Mitochondrial oxidative phosphorylation is an important oxygen sensor for regulation of metabolism, nutrient delivery to tissues, and cardiopulmonary function. The decrease in K(M) for oxygen with acidification of the cellular environment impacts many tissue functions and may give transformed cells a significant survival advantage over normal cells at low-pH, oxygen-limited environment in growing tumors.
Hydrogen and Fuel Cells | Chemistry and Nanoscience Research | NREL
Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion,"" , "Benchmarking the Oxygen Reduction Reaction Activity of Pt-Based Catalysts Using Standardized , B.S. Pivovar, S.S. Kocha. ""Suppression of Oxygen Reduction Reaction Activity on Pt-Based
2014-01-01
Background A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission. Results Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A 15N-labeling experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to 175 nmol 15NH4+ g-1 protein h-1. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores (up to 6–8 μmol NO3- g-1 protein) for dissimilatory nitrate reduction. Conclusions Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide. PMID:24517718
Stief, Peter; Fuchs-Ocklenburg, Silvia; Kamp, Anja; Manohar, Cathrine-Sumathi; Houbraken, Jos; Boekhout, Teun; de Beer, Dirk; Stoeck, Thorsten
2014-02-11
A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission. Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A ¹⁵N-labeling experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to 175 nmol ¹⁵NH₄⁺ g⁻¹ protein h⁻¹. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores (up to 6-8 μmol NO₃⁻ g⁻¹ protein) for dissimilatory nitrate reduction. Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide.
Thermodynamic evaluation of oxygen behavior in Ti powder deoxidized by Ca reductant
NASA Astrophysics Data System (ADS)
Kim, Sun-Joong; Oh, Jung-Min; Lim, Jae-Won
2016-07-01
To produce low oxygen Ti powder of less than 1000 mass ppm, commercial Ti powder was deoxidized by two types of Ca reductants: a solid Ca and a Ca vapor. Compared with the iso-oxygen partial pressure in the Ti-O binary phase diagram, the PO2 in the raw Ti powder increased with temperature compared to the reduction reaction of Ca. Therefore, the O2 content in the Ti powder decreased as the deoxidation temperature increased from 873 K, showing a local minima at 1273 K. The oxygen concentration at 1373 K was greater than that at 1273 K because the oxygen solubility of the Ti powder was increased by the equilibrium relation between Ca and CaO. On the basis of the thermodynamic assessment, the deoxidation of Ti powder can be improved by increasing the temperature and lowering the oxygen solubility with the saturation of CaO.
Venous saturation and blood flow behavior during laser-induced photodissociation of oxyhemoglobin
NASA Astrophysics Data System (ADS)
Mamilov, S. A.; Yesman, S. S.; Asimov, M. M.; Gisbrecht, A. I.
2013-03-01
The value of relative oxyhemoglobin concentration (saturation) in arterial (SаO2) and venous blood (SvO2) plays a significant role in the oxygen exchange in tissue and is used as criterion of delivery of oxygen adequate to the needs of tissue cells. Reduction of the volume of blood flows as well as reduction of oxygen concentration in arterial blood causes hypoxia - deficit of oxygen in tissue. One of the main mechanisms of elimination of hypoxia is based on compensation of the oxygen deficit by increasing the oxygen extraction from arterial blood, which leads to reduction of oxygen in the venous blood 1. In this report two optical techniques for measurement of venous blood saturation are presented. The first one is based on the pulseoximetry with artificial mechanical modulation of the tissue volume and the second one on the spectrophotometry of human respiratory rhythm. Good correlation between the results obtained with both techniques is observed.
NASA Astrophysics Data System (ADS)
Khnayzer, Rony S.
Due to the expected increases on energy demand in the near future, the development of new catalytic molecular compositions and materials capable of directly converting water, with the aid of solar photons, into hydrogen becomes obviated. Hydrogen is a combustible fuel and precious high-energy feedstock chemical. However, for the water-splitting reaction to proceed efficiently and economically enough for large-scale application, efficient light-absorbing sensitizers and water splitting catalysts are required. To study the kinetics of the water reduction reaction, we have used titania (TiO2) nanoparticles as a robust scaffold to photochemically grow platinum (Pt) nanoparticles from a unique surface-anchored molecular precursor Pt(dcbpy)Cl2 [dcbpy = 4,4'-dicarboxylic acid-2,2'-bipyridine]. The hybrid Pt/TiO 2 nanomaterials obtained were shown to be a superior water reduction catalyst (WRC) in aqueous suspensions when compared with the benchmark platinized TiO2. In addition, cobalt phosphate (CoPi) water oxidation catalyst (WOC) was photochemically assembled on the surface of TiO2, and its structure and mechanism of activity showed resemblance to the established electrochemically grown CoPi material. Both WRC and WOC described above possessed near unity Faradaic efficiency for hydrogen and oxygen production respectively, and were fully characterized by electron microscopy, x-ray absorption spectroscopy, electrochemistry and photochemistry. While there are established materials and molecules that are able to drive water splitting catalysis, some of these efficient semiconductors, including titanium dioxide (TiO2) and tungsten trioxide (WO3), are only able to absorb high-energy (ultraviolet or blue) photons. This high-energy light represents merely a fraction of the solar spectrum that strikes the earth and the energy content of those remaining photons is simply wasted. A strategy to mitigate this problem has been developed over the years in our laboratory. Briefly, photons of low energy are converted into higher energy light using a process termed photon upconversion. Using this technique, low energy photons supplied by the sun can be converted into light of appropriate energy to trigger electronic transitions in high energy absorbing photoactive materials without any chemical modification of the latter. We have shown, that this technology is capable of upconverting visible sunlight to sensitize wide-bandgap semiconductors such as WO3, subsequently extending the photoaction of these materials to cover a larger portion of the solar spectrum. Besides the engineering of different compositions that serve as either sensitizers or catalysts in these solar energy conversion schemes, we have designed an apparatus for parallel high-throughput screening of these photocatalytic compositions. This combinatorial approach to solar fuels photocatalysis has already led to unprecedented fundamental understanding of the generation of hydrogen gas from pure water. The activity of a series of new Ru(II) sensitizers along with Co(II) molecular WRCs were optimized under visible light excitation utilizing different experimental conditions. The multi-step mechanism of activity of selected compositions was further elucidated by pump-probe transient absorption spectroscopy.
Interpreting the paleo-redox record: Mn enrichment factors
NASA Astrophysics Data System (ADS)
Chun, C. O.; Delaney, M. L.
2006-12-01
Redox-sensitive metal enrichment factors (EF), have the ability to describe the redox chemistry of the overlying water and marine sediments at time of burial. Manganese (Mn) precipitates as Mn-rich oxyhydroxides in oxic environments, leading to sedimentary EF > 1 calculated relative to average continental crust as the presumed detrital source. Mn EF can also occur from source changes that are unrelated to redox changes. We compared bulk sediment digestions to sample splits treated with a reductive cleaning step prior to sediment digestion, to test whether the Mn EF are from oxyhydroxides. We measured sedimentary Mn EF for the past 30 m.y. for a Nazca Ridge site in the southeast Pacific (ODP Site 1237). The site is marked by a pronounced color change at 162 mcd, within an interval dominated by calcareous-rich lithology, prompting questions of source versus paleo-redox changes. Mn EF were measured across the Paleocene-Eocene Thermal Maximum (PETM) at three sites on Walvis Ridge in the southeast Atlantic (ODP Sites 1262, 1266, and 1263). The PETM global warming event leads to questions of redox changes. At Nazca Ridge Mn EF range from 10-70 prior to the change with decrease to crustal averages after the boundary. After two reductive cleanings on sediments exhibiting Mn EF >1, Mn EF were at crustal averages. Mn EF prior to the color change are oxyhydroxides and not a major input of detrital material. We suggest the color change represents a paleo-redox boundary, more oxygenated depositional setting prior to the change and more reducing depositional setting afterwards. Walvis Ridge PETM sections exhibit Mn EF values ranging between 4 and 12 prior to the warming, values at crustal averages during the warming, return to pre-event values in the recovery period. After the reductive cleaning procedure the deep (1262) and intermediate (1266) sites with Mn EF >1 before and after the warming event reduced to crustal averages with no change to Mn EF during the event. Bottom waters at those two sites were most likely oxygenated prior to the event, reducing at the onset of the warming, and returned to pre-event conditions in the recovery. Future studies of Mn EF as a paleo-redox indicator should include the reductive cleaning procedure to verify Mn-oxyhydroxides.
Ma, Yuanyuan; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao
2018-03-05
Hydrogen production through water splitting is considered a promising approach for solar energy harvesting. However, the variable and intermittent nature of solar energy and the co-production of H 2 and O 2 significantly reduce the flexibility of this approach, increasing the costs of its use in practical applications. Herein, using the reversible n-type doping/de-doping reaction of the solid-state polytriphenylamine-based battery electrode, we decouple the H 2 and O 2 production in acid water electrolysis. In this architecture, the H 2 and O 2 production occur at different times, which eliminates the issue of gas mixing and adapts to the variable and intermittent nature of solar energy, facilitating the conversion of solar energy to hydrogen (STH). Furthermore, for the first time, we demonstrate a membrane-free solar water splitting through commercial photovoltaics and the decoupled acid water electrolysis, which potentially paves the way for a new approach for solar water splitting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Artificial photosynthesis: understanding water splitting in nature
Cox, Nicholas; Pantazis, Dimitrios A.; Neese, Frank; Lubitz, Wolfgang
2015-01-01
In the context of a global artificial photosynthesis (GAP) project, we review our current work on nature's water splitting catalyst. In a recent report (Cox et al. 2014 Science 345, 804–808 (doi:10.1126/science.1254910)), we showed that the catalyst—a Mn4O5Ca cofactor—converts into an ‘activated’ form immediately prior to the O–O bond formation step. This activated state, which represents an all MnIV complex, is similar to the structure observed by X-ray crystallography but requires the coordination of an additional water molecule. Such a structure locates two oxygens, both derived from water, in close proximity, which probably come together to form the product O2 molecule. We speculate that formation of the activated catalyst state requires inherent structural flexibility. These features represent new design criteria for the development of biomimetic and bioinspired model systems for water splitting catalysts using first-row transition metals with the aim of delivering globally deployable artificial photosynthesis technologies. PMID:26052426
Electrodeposition of Ni-Mo alloy coatings for water splitting reaction
NASA Astrophysics Data System (ADS)
Shetty, Akshatha R.; Hegde, Ampar Chitharanjan
2018-04-01
The present study reports the development of Ni-Mo alloy coatings for water splitting applications, using a citrate bath the inducing effect of Mo (reluctant metal) on electrodeposition, its relationship with their electrocatalytic efficiency were studied. The alkaline water splitting efficiency of Ni-Mo alloy coatings, for both hydrogen evolution reaction (HER) and oxygen evolution reaction were tested using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Moreover, the practical utility of these electrode materials were evaluated by measuring the amount of H2 and O2 gas evolved. The variation in electrocatalytic activity with composition, structure, and morphology of the coatings were examined using XRD, SEM, and EDS analyses. The experimental results showed that Ni-Mo alloy coating is the best electrode material for alkaline HER and OER reactions, at lower and higher deposition current densities (c. d.'s) respectively. This behavior is attributed by decreased Mo and increased Ni content of the alloy coating and the number of electroactive centers.
Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.
Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi
2017-01-17
Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO 2 , SrTiO 3 , (Ga 1-x Zn x )(N 1-x O x ), CdS, and g-C 3 N 4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N 2 . This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses.
Zheng, Dong; Zhang, Xuran; Qu, Deyu; ...
2015-04-21
Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O 2/O 2 •- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O 2 reduction reaction is from mass diffusion. Li 2O 2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O 2 2- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings revealmore » an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.« less
Saroff, Harry A
Analyses of the binding of oxygen to monomers such as myoglobin employ the Mass Action equation. The Mass Action equation, as such, is not directly applicable for the analysis of the binding of oxygen to oligomers such as hemoglobin. When the binding of oxygen to hemoglobin is analyzed, models incorporating extensions of mass action are employed. Oxidation-reduction reactions of the heme group in myoglobin and hemoglobin involve the binding and dissociation of electrons. This reaction is described with the Nernst equation. The Nernst equation is applicable only to a monomeric species even if the number of electrons involved is greater than unity. To analyze the oxidation-reduction reaction in a molecule such as hemoglobin a model is required which incorporates extensions of the Nernst equation. This communication develops models employing the Nernst equation for oxidation-reduction reactions analogous to those employed for hemoglobin in the analysis of the oxygenation (binding of oxygen) reaction.
Oxygen reduction on a Pt(111) catalyst in HT-PEM fuel cells by density functional theory
NASA Astrophysics Data System (ADS)
Sun, Hong; Li, Jie; Almheiri, Saif; Xiao, Jianyu
2017-08-01
The oxygen reduction reaction plays an important role in the performance of high-temperature proton exchange membrane (HT-PEM) fuel cells. In this study, a molecular dynamics model, which is based on the density functional theory and couples the system's energy, the exchange-correlation energy functional, the charge density distribution function, and the simplified Kohn-Sham equation, was developed to simulate the oxygen reduction reaction on a Pt(111) surface. Additionally, an electrochemical reaction system on the basis of a four-electron reaction mechanism was also developed for this simulation. The reaction path of the oxygen reduction reaction, the product structure of each reaction step and the system's energy were simulated. It is found that the first step reaction of the first hydrogen ion with the oxygen molecule is the controlling step of the overall reaction. Increasing the operating temperature speeds up the first step reaction rate and slightly decreases its reaction energy barrier. Our results provide insight into the working principles of HT-PEM fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yao; Chen, Josephine; Leary, Celeste I.
Radiation of the low neck can be accomplished using split-field intensity-modulated radiation therapy (sf-IMRT) or extended-field intensity-modulated radiation therapy (ef-IMRT). We evaluated the effect of these treatment choices on target coverage and thyroid and larynx doses. Using data from 14 patients with cancers of the oropharynx, we compared the following 3 strategies for radiating the low neck: (1) extended-field IMRT, (2) traditional split-field IMRT with an initial cord-junction block to 40 Gy, followed by a full-cord block to 50 Gy, and (3) split-field IMRT with a full-cord block to 50 Gy. Patients were planned using each of these 3 techniques.more » To facilitate comparison, extended-field plans were normalized to deliver 50 Gy to 95% of the neck volume. Target coverage was assessed using the dose to 95% of the neck volume (D{sub 95}). Mean thyroid and larynx doses were computed. Extended-field IMRT was used as the reference arm; the mean larynx dose was 25.7 ± 7.4 Gy, and the mean thyroid dose was 28.6 ± 2.4 Gy. Split-field IMRT with 2-step blocking reduced laryngeal dose (mean larynx dose 15.2 ± 5.1 Gy) at the cost of a moderate reduction in target coverage (D{sub 95} 41.4 ± 14 Gy) and much higher thyroid dose (mean thyroid dose 44.7 ± 3.7 Gy). Split-field IMRT with initial full-cord block resulted in greater laryngeal sparing (mean larynx dose 14.2 ± 5.1 Gy) and only a moderately higher thyroid dose (mean thyroid dose 31 ± 8 Gy) but resulted in a significant reduction in target coverage (D{sub 95} 34.4 ± 15 Gy). Extended-field IMRT comprehensively covers the low neck and achieves acceptable thyroid and laryngeal sparing. Split-field IMRT with a full-cord block reduces laryngeal doses to less than 20 Gy and spares the thyroid, at the cost of substantially reduced coverage of the low neck. Traditional 2-step split-field IMRT similarly reduces the laryngeal dose but also reduces low-neck coverage and delivers very high doses to the thyroid.« less
Light Absorbers and Catalysts for Solar to Fuel Conversion
NASA Astrophysics Data System (ADS)
Kornienko, Nikolay I.
Increasing fossil fuel consumption and the resulting consequences to the environment has propelled research into means of utilizing alternative, clean energy sources. Solar power is among the most promising of renewable energy sources but must be converted into an energy dense medium such as chemical bonds to render it useful for transport and energy storage. Photoelectrochemistry (PEC), the splitting of water into oxygen and hydrogen fuel or reducing CO 2 to hydrocarbon fuels via sunlight is a promising approach towards this goal. Photoelectrochemical systems are comprised of several components, including light absorbers and catalysts. These parts must all synergistically function in a working device. Therefore, the continual development of each component is crucial for the overall goal. For PEC systems to be practical for large scale use, the must be efficient, stable, and composed of cost effective components. To this end, my work focused on the development of light absorbing and catalyst components of PEC solar to fuel converting systems. In the direction of light absorbers, I focused of utilizing Indium Phosphide (InP) nanowires (NWs) as photocathodes. I first developed synthetic techniques for InP NW solution phase and vapor phase growth. Next, I developed light absorbing photocathodes from my InP NWs towards PEC water splitting cells. I studied cobalt sulfide (CoSx) as an earth abundant catalyst for the reductive hydrogen evolution half reaction. Using in situ spectroscopic techniques, I elucidated the active structure of this catalyst and offered clues to its high activity. In addition to hydrogen evolution catalysts, I established a new generation of earth abundant catalysts for CO2 reduction to CO fuel/chemical feedstock. I first worked with molecularly tunable homogeneous catalysts that exhibited high selectivity for CO2 reduction in non-aqueous media. Next, in order to retain molecular tunability while achieving stability and efficiency in aqueous solvents, I aimed to heterogenize a class of molecular porphyrin catalysts into a 3D mesoscopic porous catalytic structure in the form of a metal-organic framework (MOF). To do so, I initially developed a growth for thin film MOFs that were embedded with catalytic groups in their linkers. Next, I utilized these thin film MOFs grown on conductive substrates and functionalized with cobalt porphyrin units as 3D porous CO2 reduction catalysts. This new class of catalyst exhibited high efficiency, selectivity, and stability in neutral pH aqueous electrolytes. Finally, as a last chapter of my work, I explored hybrid inorganic/biological CO2 reduction pathways. Specifically, I used time-resolved spectroscopic and biochemical techniques to investigate charge transfer pathways from light absorber to CO2-derived acetate in acetogenic self-sensitized bacteria.
Local Upper Mantle Upwelling beneath New England: Evidence from Seismic Anisotropy.
NASA Astrophysics Data System (ADS)
Levin, V. L.; Long, M. D.; Lopez, I.; Li, Y.; Skryzalin, P. A.
2017-12-01
The upper mantle beneath eastern North America contains regions where seismic wave speed is significantly reduced. As they cut across the trend of the Appalachian terranes, these anomalies likely post-date the Paleozoic assembly of Pangea. Most prominent of them, the North Appalachian Anomaly (NAA), has been alternatively explained by the localized disruption of lithospheric fabric, the passage of the Great Meteor Hot Spot, and the current local upwelling of the asthenosphere. Comprehensive mapping of shear wave splitting identified a local perturbation of an otherwise uniform regional pattern, with no apparent splitting occurring at a site within the NAA. To evaluate the reality of this apparent localized disruption in the anisotropic fabric of the upper mantle beneath northeastern North America we used observations of shear wave splitting from a set of long-running observatories not included in previous studies. Three methods of evaluating shear wave splitting (rotation-correlation, minimization of the transverse component, and the splitting intensity) yield complementary results. We show that splitting of core-refracted shear waves within the outline of the NAA is significantly weaker than towards its edges and beyond them (Figure 1). Average fast orientations are close to the absolute plate motion in the hot-spot reference frame, thus we can attribute a large fraction of this signal to the coherently sheared sub-lithospheric upper mantle. A decrease in average delay we observe, from 1 s outside the NAA to under 0.2 s within it, translates into a reduction of the vertical extent of the sheared layer from 130 km to 16 km (assuming 4% anisotropy), or alternatively into a weakening of the azimuthal anisotropy from 5% to 0.6% (assuming a 100 km thick layer). The splitting reduction within the NAA is consistent with a localized change in anisotropic fabric that would be expected in case of geologically recent sub-vertical flow overprinting the broadly uniform upper mantle fabric detected throughout the region. Figure 1. Splitting intensity (red circles) plotted over best-fitting sinusoidal functions (blue, parameters in upper right) and predictions based on average delays and fast polarizations (green, parameters in upper left). Outlines of the NAA at 200 km depth from tomographic studies using Earthscope data.
NASA Astrophysics Data System (ADS)
Seferlis, Andreas K.; Neophytides, Stylianos G.
2014-08-01
Solar photoelectrochemical water splitting on TiO2 for H2 production has been investigated for many years and is still considered very promising. Despite the many advantages, Titania's UV-only absorption, limits its terrestrial practical applications. In space though, with the lack of ozone's natural UV filter, this handicap is lifted, rendering TiO2 an attractive candidate as photoelectrocatalyst in space applications. Reductive doping of TiO2 has been investigated over the years for its impressive results but, till now, without practical application due to the impermanent nature of the doping. In this work we present a method that not only multiplies TiO2 water splitting efficiency, but also is facile, stable and easily applied in working conditions.
NASA Astrophysics Data System (ADS)
Tian, Lin; Xian, Xiaozhai; Cui, Xingkai; Tang, Hua; Yang, Xiaofei
2018-02-01
Semiconductor-based photocatalysis has been considered as one of the most effective techniques to achieve the conversion of clean and sustainable sunlight to solar fuel, in which the construction of novel solar-driven photocatalytic systems is the key point. Here, we report initially the synthesis of modified graphitic carbon nitride (g-C3N4) nanorods via the calcination of intermediates obtained from the co-polymerization of precursors, and the in-situ hybridization of Ag3PO4 with as-prepared modified g-C3N4 to produce g-C3N4 nanorod/Ag3PO4 composite materials. The diameter of modified rod-like g-C3N4 materials is determined to be around 1 μm. Subsequently the morphological features, crystal and chemical structures of the assembled g-C3N4 nanorod/Ag3PO4 composites were systematically investigated by SEM, XRD, XPS, UV-vis diffuse reflectance spectra (DRS). Furthermore, the use of as-prepared composite materials as the catalyst for photocatalytic oxygen evolution from water splitting was studied. The oxygen-generating results showed that the composite photocatalyst modified with 600 mg rod-like g-C3N4 demonstrates 2.5 times higher efficiency than that of bulk Ag3PO4. The mechanism behind the enhancement in the oxygen-evolving activity is proposed on the basis of in-situ electron spin resonance (ESR) measurement as well as theoretical analysis. The study provides new insights into the design and development of new photocatalytic composite materials for energy and environmental applications.
Solar Powered CO.Sub.2 Conversion
NASA Technical Reports Server (NTRS)
Chen, Bin (Inventor)
2016-01-01
Methods and devices for reducing CO.sub.2 to produce hydrocarbons are disclosed. A device comprises a photoanode capable of splitting H.sub.2O into electrons, protons, and oxygen; an electrochemical cell cathode comprising an electro-catalyst capable of reducing CO.sub.2; H.sub.2O in contact with the surface of the photoanode; CO.sub.2 in contact with the surface of the cathode; and a proton-conducting medium positioned between the photoanode and the cathode. Electrical charges associated with the protons and the electrons move from the photoanode to the cathode, driven in part by a chemical potential difference sufficient to drive the electrochemical reduction of CO.sub.2 at the cathode. A light beam is the sole source of energy used to drive chemical reactions. The photoanode can comprise TiO.sub.2 nanowires or nanotubes, and can also include WO.sub.3 nanowires or nanotubes, quantum dots of CdS or PbS, and Ag or Au nanostructures. The cathode can comprise a conductive gas diffusion layer with nanostructures of an electro-catalyst such as Cu or Co.
Local structure and defects in ion irradiated KTaO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang; Xi, Jianqi; Zhang, Yanwen
Here, the modification of the local structure in cubic perovskite KTaO 3 irradiated with 3 MeV and 1.1 GeV Au ions is studied by Raman and x-ray absorption spectroscopy, complemented by density functional theory (DFT) calculations. In the case of irradiation with 3 MeV Au ions where displacement cascade processes are dominant, the Ta L 3-edge x-ray absorption measurements suggest that a peak corresponding to the Ta–O bonds in the TaO 6 octahedra splits, which is attributed to the formation of Ta K antisite defects that are coupled with oxygen vacancies, V O. This finding is consistent with the DFTmore » calculations. Under irradiation with 1.1 GeV ions, the intense ionization and electronic energy deposition lead to a blue shift and an intensity reduction of active Raman bands. In the case of sequential irradiations, extended x-ray absorption fine structure measurements reveal a decrease in concentration of coupled Ta K-V O defects under subsequent irradiation with 1.1 GeV Au ions.« less
Local structure and defects in ion irradiated KTaO 3
Zhang, Fuxiang; Xi, Jianqi; Zhang, Yanwen; ...
2018-03-12
Here, the modification of the local structure in cubic perovskite KTaO 3 irradiated with 3 MeV and 1.1 GeV Au ions is studied by Raman and x-ray absorption spectroscopy, complemented by density functional theory (DFT) calculations. In the case of irradiation with 3 MeV Au ions where displacement cascade processes are dominant, the Ta L 3-edge x-ray absorption measurements suggest that a peak corresponding to the Ta–O bonds in the TaO 6 octahedra splits, which is attributed to the formation of Ta K antisite defects that are coupled with oxygen vacancies, V O. This finding is consistent with the DFTmore » calculations. Under irradiation with 1.1 GeV ions, the intense ionization and electronic energy deposition lead to a blue shift and an intensity reduction of active Raman bands. In the case of sequential irradiations, extended x-ray absorption fine structure measurements reveal a decrease in concentration of coupled Ta K-V O defects under subsequent irradiation with 1.1 GeV Au ions.« less
John B. Loomis; Hung Le Trong; Armando González-Cabán
2009-01-01
We estimate a marginal benefit function for using prescribed burning and mechanical fuel reduction programs to reduce acres burned by wildfire in three states. Since each state had different acre reductions, a statistically significant coefficient on the reduction in acres burned is also a split sample scope test frequently used as an indicator of the internal validity...
NASA Astrophysics Data System (ADS)
Ramos-Méndez, José; Schuemann, Jan; Incerti, Sebastien; Paganetti, Harald; Schulte, Reinhard; Faddegon, Bruce
2017-08-01
Flagged uniform particle splitting was implemented with two methods to improve the computational efficiency of Monte Carlo track structure simulations with TOPAS-nBio by enhancing the production of secondary electrons in ionization events. In method 1 the Geant4 kernel was modified. In method 2 Geant4 was not modified. In both methods a unique flag number assigned to each new split electron was inherited by its progeny, permitting reclassification of the split events as if produced by independent histories. Computational efficiency and accuracy were evaluated for simulations of 0.5-20 MeV protons and 1-20 MeV u-1 carbon ions for three endpoints: (1) mean of the ionization cluster size distribution, (2) mean number of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) classified with DBSCAN, and (3) mean number of SSBs and DSBs classified with a geometry-based algorithm. For endpoint (1), simulation efficiency was 3 times lower when splitting electrons generated by direct ionization events of primary particles than when splitting electrons generated by the first ionization events of secondary electrons. The latter technique was selected for further investigation. The following results are for method 2, with relative efficiencies about 4.5 times lower for method 1. For endpoint (1), relative efficiency at 128 split electrons approached maximum, increasing with energy from 47.2 ± 0.2 to 66.9 ± 0.2 for protons, decreasing with energy from 51.3 ± 0.4 to 41.7 ± 0.2 for carbon. For endpoint (2), relative efficiency increased with energy, from 20.7 ± 0.1 to 50.2 ± 0.3 for protons, 15.6 ± 0.1 to 20.2 ± 0.1 for carbon. For endpoint (3) relative efficiency increased with energy, from 31.0 ± 0.2 to 58.2 ± 0.4 for protons, 23.9 ± 0.1 to 26.2 ± 0.2 for carbon. Simulation results with and without splitting agreed within 1% (2 standard deviations) for endpoints (1) and (2), within 2% (1 standard deviation) for endpoint (3). In conclusion, standard particle splitting variance reduction techniques can be successfully implemented in Monte Carlo track structure codes.
Kumar, Ravinder; Singh, Lakhveer; Wahid, Zularisam Ab; Mahapatra, Durga Madhab; Liu, Hong
2018-04-01
The aim of this work was to evaluate the comparative performance of hybrid metal oxide nanorods i.e. MnCo 2 O 4 nanorods (MCON) and single metal oxide nanorods i.e. Co 3 O 4 nanorods (CON) as oxygen reduction catalyst in microbial fuel cells (MFC). Compared to the single metal oxide, the hybrid MCON exhibited a higher BET surface area and provided additional positively charged ions, i.e., Co 2+ /Co 3+ and Mn 3+ /Mn 4+ on its surfaces, which increased the electro-conductivity of the cathode and improved the oxygen reduction kinetics significantly, achieved an i o of 6.01 A/m 2 that was 12.4% higher than CON. Moreover, the porous architecture of MCON facilitated the diffusion of electrolyte, reactants and electrons during the oxygen reduction, suggested by lower diffusion (R d ), activation (R act ) and ohmic resistance (R ohm ) values. This enhanced oxygen reduction by MCON boosted the power generation in MFC, achieving a maximum power density of 587 mW/m 2 that was ∼29% higher than CON. Published by Elsevier Ltd.
Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions
NASA Astrophysics Data System (ADS)
Liu, Rongji; Liu, Huibiao; Li, Yuliang; Yi, Yuanping; Shang, Xinke; Zhang, Shuangshuang; Yu, Xuelian; Zhang, Suojiang; Cao, Hongbin; Zhang, Guangjin
2014-09-01
Fuel cells and metal-air batteries will only become widely available in everyday life when the expensive platinum-based electrocatalysts used for the oxygen reduction reactions are replaced by other efficient, low-cost and stable catalysts. We report here the use of nitrogen-doped graphdiyne as a metal-free electrode with a comparable electrocatalytic activity to commercial Pt/C catalysts for the oxygen reduction reaction in alkaline fuel cells. Nitrogen-doped graphdiyne has a better stability and increased tolerance to the cross-over effect than conventional Pt/C catalysts.Fuel cells and metal-air batteries will only become widely available in everyday life when the expensive platinum-based electrocatalysts used for the oxygen reduction reactions are replaced by other efficient, low-cost and stable catalysts. We report here the use of nitrogen-doped graphdiyne as a metal-free electrode with a comparable electrocatalytic activity to commercial Pt/C catalysts for the oxygen reduction reaction in alkaline fuel cells. Nitrogen-doped graphdiyne has a better stability and increased tolerance to the cross-over effect than conventional Pt/C catalysts. Electronic supplementary information (ESI) available: Detailed RDE and RRDE experiments, additional tables and figures. See DOI: 10.1039/c4nr03185g
NASA Astrophysics Data System (ADS)
Jurzinsky, Tilman; Kurzhals, Philipp; Cremers, Carsten
2018-06-01
The oxygen reduction reaction is in research focus since several decades due to its importance for the overall fuel cell performance. In direct methanol fuel cells, the crossover of methanol and its subsequent parasitic oxidation are main issues when it comes to preventing fuel cell performance losses. In this work, we present a novel differential electrochemical mass spectrometry method to evaluate oxygen reduction reaction catalysts on their tolerance to methanol being present at the cathode. Besides this, the setup allows to measure under more realistic fuel cell conditions than typical rotating disc electrode measurements, because the oxygen reduction reaction is evaluated in gaseous phase and a gas diffusion electrode is used as working electrode. Due to the new method, it was possible to investigate the oxygen reduction reaction on two commonly used catalysts (Pt/C and Pt3Co/C) in absence and presence of methanol. It was found, that Pt3Co/C is less prone to parasitic current losses due to methanol oxidation reaction. By connecting a mass spectrometer to the electrochemical cell, the new method allows to determine the products formed on the catalysts due to parasitic methanol electrooxidation.
NASA Astrophysics Data System (ADS)
Ju, Lin; Dai, Ying; Wei, Wei; Li, Mengmeng; Huang, Baibiao
2018-03-01
Recently, extensive attention has been paid to the direct Z-scheme systems for photocatalytic water splitting where carriers migrate directly between the two semiconductors without a redox mediator. In the present work, the electronic structure and related properties of two-dimensional (2D) van de Waals (vdW) GeS/WX2 (X = O, S, Se, Te) heterojunction are systematically investigated by first-principles calculations. Our results demonstrate that, the GeS/WS2 heterojunction could form a direct Z-scheme system for photocatalytic water splitting, whereas the GeS/WX2 (X = O, Se, Te) can't, because of their respective unsuitable electronic structures. For the GeS/WS2 heterojunction, the GeS and WS2 monolayers serve as photocatalysts for the hydrogen evolution reactionand oxygen evolution reaction, respectively. The internal electric field induced by the electron transfer at the interface can promote the separation of photo-generated charge carriers and formation of the interface Z-scheme electron transfer. Remarkably, the designed GeS/WS2 heterojunction not only enhances the hydrogen production activity of GeS and the oxygen production ability of WS2 but also improves the light absorption of the two monolayers by reducing the band gaps. Moreover, it is found that narrowing the interlayer distance could enhance the internal electric field, improving the photocatalytic ability of the vdW heterojunction. This work provides fundamental insights for further design and preparation of emergent metal dichalcogenide catalysts, beneficial for the development in clean energy.
One-pot fabrication of NiFe2O4 nanoparticles on α-Ni(OH)2 nanosheet for enhanced water oxidation
NASA Astrophysics Data System (ADS)
Chen, Hong; Yan, Junqing; Wu, Huan; Zhang, Yunxia; Liu, Shengzhong (Frank)
2016-08-01
Water splitting has been intensively investigated as a promising solution to resolve the future environmental and energy crises. The oxygen evolution reaction (OER) of the photo- and electric field-induced water splitting limits the development of other reactions, including hydrogen evolution reaction (HER). Fe, Ni and NiFe (hydro) oxide-based catalysts are generally acknowledged among the best candidates of OER catalysts for water splitting. Herein, we developed a one-pot simple hydrothermal process to assemble NiFe2O4 nanoparticles onto the α-Ni(OH)2 nanosheets. The first formed NiFe2O4 under high temperature and pressure environment induces and assists the α-Ni(OH)2 formation without any further additives, because the distance between the neighboring Ni atoms in the cubic NiFe2O4 is similar to that in the α-Ni(OH)2 {003} facets. We have synthesized a series of NiFe2O4/α-Ni(OH)2 compounds and find that the overpotential decreases with the increase of Ni(OH)2 content while the OER kinetics stays unchanged, suggesting that Ni(OH)2 plays a major role in overpotential while NiFe2O4 mainly affects the OER kinetics. The obtained NiFe2O4/α-Ni(OH)2 compounds is also found to be a promising co-catalyst for the photocatalytic water oxidation. In fact, it is even more active than the noble PtOx with acceptable stability for the oxygen generation.
Early light reduction for preventing retinopathy of prematurity in very low birth weight infants.
Jorge, Eliane C; Jorge, Edson N; El Dib, Regina P
2013-08-06
Retinopathy of prematurity (ROP) is a complex condition of the developing retinal blood vessels and is one of the leading causes of preventable childhood blindness. Several risk factors for ROP have been studied over the past 50 years. Among them, general immaturity (low birth weight and low gestational age) and prolonged oxygen therapy have been consistently related to disease onset. However, it is understood that the progression of the disease is multifactorial and may be associated with others risk factors, such as multiple gestation, apnoea, intracranial haemorrhage, anaemia, sepsis, prolonged mechanical ventilation, multiple transfusions and light exposure. Furthermore, the precise role of these individual factors in the development of the disease has not yet been well established. To determine whether the reduction of early environmental light exposure reduces the incidence of retinopathy of prematurity (ROP) or poor ROP outcomes among very low birth weight infants. We searched the following databases: the Cochrane Neonatal Group Specialised Register, CENTRAL (The Cochrane Library), MEDLINE, EMBASE, CINAHL, HealthSTAR, Science Citation Index Database, CANCERLIT, the Oxford Database of Perinatal Trials and www.clinicaltrials.gov. We also searched previous reviews including cross-references, abstracts, conference and symposia proceedings, and contacted expert informants. This search was updated in October 2012. Randomised or quasi-randomised controlled trials that reduced light exposure to premature infants within the first seven days following birth were considered for this review. We also considered cluster-randomised controlled trials. Data on clinical outcomes including any acute ROP and poor ROP outcome were extracted by both review authors independently and consensus reached. We conducted data analysis according to the standards of the Cochrane Neonatal Review Group. Data from four randomised trials with a total of 897 participants failed to show any reduction in acute ROP or poor ROP outcome with the reduction of ambient light to premature infants' retinas. The overall methodological quality of the included studies was about evenly split between those in which the classification was unclear and those in which the studies were categorised as low risk of bias. There was no report on the secondary outcomes considered in this review: quality of life measures; and time of exposure to oxygen. The evidence shows that bright light is not the cause of retinopathy of prematurity and that the reduction of exposure of the retinas of premature infants to light has no effect on the incidence of the disease.
Focusing the view on nature's water-splitting catalyst.
Zein, Samir; Kulik, Leonid V; Yano, Junko; Kern, Jan; Pushkar, Yulia; Zouni, Athina; Yachandra, Vittal K; Lubitz, Wolfgang; Neese, Frank; Messinger, Johannes
2008-03-27
Nature invented a catalyst about 3Gyr ago, which splits water with high efficiency into molecular oxygen and hydrogen equivalents (protons and electrons). This reaction is energetically driven by sunlight and the active centre contains relatively cheap and abundant metals: manganese and calcium. This biological system therefore forms the paradigm for all man-made attempts for direct solar fuel production, and several studies are underway to determine the electronic and geometric structures of this catalyst. In this report we briefly summarize the problems and the current status of these efforts and propose a density functional theory-based strategy for obtaining a reliable high-resolution structure of this unique catalyst that includes both the inorganic core and the first ligand sphere.
NASA Astrophysics Data System (ADS)
Gibson, Gregory; Morgan, Ashley; Hu, P.; Lin, Wen-Feng
2016-06-01
The viable mechanisms for O3 generation via the electrocatalytic splitting of H2O over β-PbO2 catalyst were identified through Density Functional Theory calculations. H2O adsorbed onto the surface was oxidized to form OH then O; the latter reacted with a surface bridging O to form O2 which in turn reacted with another surface O to form O3. The final step of the mechanisms occurs via an Eley-Rideal style interaction where surface O2 desorbs and then attacks the surface bridging oxygen, forming O3. A different reaction pathway via an O3H intermediate was found less favoured both thermodynamically and kinetically.
Focusing the view on nature's water-splitting catalyst
Zein, Samir; Kulik, Leonid V; Yano, Junko; Kern, Jan; Pushkar, Yulia; Zouni, Athina; Yachandra, Vittal K; Lubitz, Wolfgang; Neese, Frank; Messinger, Johannes
2007-01-01
Nature invented a catalyst about 3 Gyr ago, which splits water with high efficiency into molecular oxygen and hydrogen equivalents (protons and electrons). This reaction is energetically driven by sunlight and the active centre contains relatively cheap and abundant metals: manganese and calcium. This biological system therefore forms the paradigm for all man-made attempts for direct solar fuel production, and several studies are underway to determine the electronic and geometric structures of this catalyst. In this report we briefly summarize the problems and the current status of these efforts and propose a density functional theory-based strategy for obtaining a reliable high-resolution structure of this unique catalyst that includes both the inorganic core and the first ligand sphere. PMID:17989003
Imaging nanobubble nucleation and hydrogen spillover during electrocatalytic water splitting.
Hao, Rui; Fan, Yunshan; Howard, Marco D; Vaughan, Joshua C; Zhang, Bo
2018-06-05
Nucleation and growth of hydrogen nanobubbles are key initial steps in electrochemical water splitting. These processes remain largely unexplored due to a lack of proper tools to probe the nanobubble's interfacial structure with sufficient spatial and temporal resolution. We report the use of superresolution microscopy to image transient formation and growth of single hydrogen nanobubbles at the electrode/solution interface during electrocatalytic water splitting. We found hydrogen nanobubbles can be generated even at very early stages in water electrolysis, i.e., ∼500 mV before reaching its thermodynamic reduction potential. The ability to image single nanobubbles on an electrode enabled us to observe in real time the process of hydrogen spillover from ultrathin gold nanocatalysts supported on indium-tin oxide.
Passive Biobarrier for Treating Co-mingled Perchlorate and RDX in Groundwater at an Active Range
2016-05-12
and Groundwater Temperature ............................. 102 6.1.2 Dissolved Oxygen (DO) and Oxidation Reduction Potential (ORP...22 or equivalent). Parameters, including temperature , conductivity, dissolved oxygen , oxidation-reduction potential (ORP), turbidity, and pH were...3% for temperature and specific conductivity, and % for dissolved oxygen , ORP, and turbidity. When parameters were stable according to the above
Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes
NASA Technical Reports Server (NTRS)
Chin, D. T.; Hsueh, K. L.; Chang, H. H.
1984-01-01
Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. The areas covered were: (1) development of a theoretical expression for the rotating ring disk electrode technique; (2) determination of the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; (3) determination of oxygen reduction mechanism in trifluoreomethanesulfonic acid (TFMSA) which was considered as an alternate electrolyte for the acid fuel cells; and (4) the measurement of transport properties of the phosphoric acid electrolyte at high concentrations and temperatures.
Boron and oxygen-codoped porous carbon as efficient oxygen reduction catalysts
NASA Astrophysics Data System (ADS)
Lei, Zhidan; Chen, Hongbiao; Yang, Mei; Yang, Duanguang; Li, Huaming
2017-12-01
A low-cost boron- and oxygen-codoped porous carbon electrocatalyst towards oxygen reduction reaction (ORR) has been fabricated by a facile one-step pyrolysis approach, while a boron- and oxygen-rich polymer network was used as precursor. The boron- and oxygen-codoped carbon catalyst with high ORR electrocatalytic activity is comparable to that of Pt/C and is superior to that of catalysts doped solely with boron atoms or with oxygen atoms. Furthermore, the optimized boron- and oxygen-codoped carbon catalyst possesses excellent methanol tolerance and long-term durability in alkaline media. The high electrocatalytic activity of the dual-doped carbon catalysts can be attributed to the synergistic effects of high surface area, predominant mesostructure, abundant active oxygen-containing groups, and effective boron doping. The present results show that this boron- and oxygen-codoping strategy could be as a promising way for the preparation of highly efficient ORR catalysts.
Azaceta, Eneko; Lutz, Lukas; Grimaud, Alexis; Vicent-Luna, Jose Manuel; Hamad, Said; Yate, Luis; Cabañero, German; Grande, Hans-Jurgen; Anta, Juan A; Tarascon, Jean-Marie; Tena-Zaera, Ramon
2017-04-10
Metal-air batteries are intensively studied because of their high theoretical energy-storage capability. However, the fundamental science of electrodes, electrolytes, and reaction products still needs to be better understood. In this work, the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) was chosen to study the influence of a wide range of metal cations (M n+ ) on the electrochemical behavior of oxygen. The relevance of the theory of Lewis hard and soft acids and bases to predict satisfactorily the reduction potential of oxygen in electrolytes containing metal cations is demonstrated. Systems with soft and intermediate M n+ acidity are shown to facilitate oxygen reduction and metal oxide formation, whereas oxygen reduction is hampered by hard acid cations such as sodium and lithium. Furthermore, DFT calculations on the energy of formation of the resulting metal oxides rationalize the effect of M n+ on oxygen reduction. A case study on the Na-O 2 system is described in detail. Among other things, the Na + concentration of the electrolyte is shown to control the electrochemical pathway (solution precipitation vs. surface deposition) by which the discharge product grows. All in all, fundamental insights for the design of advanced electrolytes for metal-air batteries, and Na-air batteries in particular, are provided. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Xiaoyun; Hu, Haihua; Xu, Lingbo; Cui, Can; Qian, Degui; Li, Shuang; Zhu, Wenzhe; Wang, Peng; Lin, Ping; Pan, Jiaqi; Li, Chaorong
2018-05-01
Artificial Z-scheme system inspired by the natural photosynthesis in green plants has attracted extensive attention owing to its advantages such as simultaneously wide range light absorption, highly efficient charge separation and strong redox ability. In this paper, we report the synthesis of a novel all-solid-state direct Z-scheme photocatalyst of Ag3PO4/CeO2/TiO2 by depositing Ag3PO4 nanoparticles (NPs) on CeO2/TiO2 hierarchical branched nanowires (BNWs), where the CeO2/TiO2 BNWs act as a novel substrate for the well dispersed nano-size Ag3PO4. The Ag3PO4/CeO2/TiO2 photocatalyst exhibits excellent ability of photocatalytic oxygen evolution from pure water splitting. It is suggested that the Z-scheme charge transfer route between CeO2/TiO2 and Ag3PO4 improves the redox ability. On the other hand, the cascade energy level alignment in CeO2/TiO2 BNWs expedites the spatial charge separation, and hence suppresses photocatalytic backward reaction. However, it is difficult to realize a perfect excitation balance in Ag3PO4/CeO2/TiO2 and the composite still surfers photo-corrosion in photocatalysis reaction. Nevertheless, our results provide an innovative strategy of constructing a Z-scheme system from a type-II heterostructure and a highly efficient oxygen evolution catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, M
1977-08-31
The biophotolysis of water by photosynthetic cells resulting in the formation of hydrogen gas is of prime concern. That algal cells require both photosystems to complete this process is established. That a reduced carbon source can be photoxidized to release hydrogen and carbon dioxide has been proven. On the other hand, whether water is split to hydrogen and oxygen by the intact cell adapted to a hydrogen metabolism is an open question. A reconstituted preparation of higher plants can split water into its two components. A reconstituted algal preparation will be evaluated with respect to a similar reaction. If hydrogenmore » and oxygen are produced in vitro, what then regulates the cell into controlling this reaction during the onset of a hydrogen metabolism. The substrate for photorespiration is glycolic acid. The synthesis of this simple acid remain controversial. A new preparation of the spinach chloroplast has been developed which allows many compounds hitherto uncapable of crossing the organelle envelope to affect directly the carbon metabolism. We plan to use this preparation to evaluate the many proposed mechanisms of glycolate formation. Thus ribulose-1,5-diphosphate, hydroxypyruvate, hydroxypyruvate phosphate, oxaloacetate, and fructose-6-phosphate will be incubated under varying conditions and glycolate yields will be monitored. Conditions such as pH, substrate concentration, and oxygen partial pressure will be varied to determine accordance with in vivo conditions.« less
NASA Astrophysics Data System (ADS)
Kodre, A.; Tellier, J.; Arčon, I.; Malič, B.; Kosec, M.
2009-06-01
Following an x-ray diffraction study of phase transitions of the piezoelectric perovskite K0.5Na0.5NbO3 the structural changes of the material are studied using extended x-ray absorption fine structure analysis, whereby the neighborhood of Nb atom is determined in the temperature range of monoclinic, tetragonal, and cubic phases. Within the entire range Nb atom is displaced from the center of the octahedron of its immediate oxygen neighbors, as witnessed by the splitting of Nb-O distance. The model shows high prevalence of the displacement in the (111) crystallographic direction of the simple perovskite cell. The corresponding splitting of the Nb-Nb distance is negligible. There is no observable disalignment of the linear Nb-O-Nb bonds from the ideal cubic arrangement, judging from the intensity of the focusing of the photoelectron wave on the Nb-Nb scattering path by the interposed oxygen atom. As a general result, the phase transitions are found as an effect of the long-range order, while the placement of the atoms in the immediate vicinity remains largely unaffected.
Shah, Manish M.; Campbell, James A.
1998-01-01
A method for the controlled reduction of nitroaromatic compounds such as nitrobenzene and 2,4,6-trinitrotoluene by enzymatic reaction with oxygen sensitive nitroreductase enzymes, such as ferredoxin NADP oxidoreductase.
Wang, Jing; Huang, Zhengqing; Liu, Wei; Chang, Chunran; Tang, Haolin; Li, Zhijun; Chen, Wenxing; Jia, Chunjiang; Yao, Tao; Wei, Shiqiang; Wu, Yuen; Li, Yadong
2017-12-06
We develop a host-guest strategy to construct an electrocatalyst with Fe-Co dual sites embedded on N-doped porous carbon and demonstrate its activity for oxygen reduction reaction in acidic electrolyte. Our catalyst exhibits superior oxygen reduction reaction performance, with comparable onset potential (E onset , 1.06 vs 1.03 V) and half-wave potential (E 1/2 , 0.863 vs 0.858 V) than commercial Pt/C. The fuel cell test reveals (Fe,Co)/N-C outperforms most reported Pt-free catalysts in H 2 /O 2 and H 2 /air. In addition, this cathode catalyst with dual metal sites is stable in a long-term operation with 50 000 cycles for electrode measurement and 100 h for H 2 /air single cell operation. Density functional theory calculations reveal the dual sites is favored for activation of O-O, crucial for four-electron oxygen reduction.
Gan, Patrick; Foord, John S; Compton, Richard G
2015-10-01
Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur.
Meyer, Thomas; Melin, Frédéric; Richter, Oliver-M H; Ludwig, Bernd; Kannt, Aimo; Müller, Hanne; Michel, Hartmut; Hellwig, Petra
2015-02-27
Two different pathways through which protons access cytochrome c oxidase operate during oxygen reduction from the mitochondrial matrix, or the bacterial cytoplasm. Here, we use electrocatalytic current measurements to follow oxygen reduction coupled to proton uptake in cytochrome c oxidase isolated from Paracoccus denitrificans. Wild type enzyme and site-specific variants with defects in both proton uptake pathways (K354M, D124N and K354M/D124N) were immobilized on gold nanoparticles, and oxygen reduction was probed electrochemically in the presence of varying concentrations of Zn(2+) ions, which are known to inhibit both the entry and the exit proton pathways in the enzyme. Our data suggest that under these conditions substrate protons gain access to the oxygen reduction site via the exit pathway. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, R.
2015-12-01
The early diagenesis of organic matter is the major energy source of marine sedimentary biosphere and thus controls its population size; however, the vertical distribution of any functional groups along with the diagenesis of organic matter is remained unclear, especially for those microbes involved in nitrogen transformation which serve as a major control on the nitrogen flux between reservoirs. Here we investigated the vertical distributions of various functional groups in five sediment cores retrieved from Arctic Mid-Ocean Ridge (AMOR), with emphasis on the nitrifiers, denitrifiers and anaerobic ammonium oxidizing bacteria (anammox). We observed the clear geochemical zonation associated with organic matter diagenesis in the sediments based on the pore water profiles of oxygen, nitrate, ammonium, manganese and sulfate, with distinct geochemical transition zones at the boundaries of geochemical zones, including oxic-anoxic transition zone (OATZ) and nitrate-manganese reduction zone (NMTZ). Nitrate was produced in surface oxygenated sediments and nitrate consumption mainly took place at the NMTZ, splitted between re-oxidation of ammonium and manganese (II). Abundances of ammonia oxidizers, nitrite oxidizers, and denitrifiers, estimated through quantitative PCR targeting their respective functional genes, generally decrease with depth, but constantly elevated around the OATZ, NMTZ, and manganese-reduction zone as well. Anammox bacteria were only detected around the NMTZ where both nitrate/nitrite and ammonium are available. These depth profiles of functional groups were also confirmed by the community structure profiling by prokaryotic 16S rRNA gene tag pyrosequencing. Cell-specific rates of nitrification and denitrification, calculated from the bulk net reaction rates divided by functional group abundances, were similar to those values from oligotrophic sediments like North Pond and thus suggested that nitrifiers and denitirifiers populations were in maintenance state. This study illustrated the microbial nitrogen transformation accompanying the early diagenesis of organic matter in marine sediments, which scenario might be occurring in a wide range of stratified environments on Earth.
Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis
2016-01-01
Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic relationship. PMID:26872267
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, C.N.R., E-mail: cnrrao@jncasr.ac.in; Dey, Sunita
Generation of H{sub 2} and CO by splitting H{sub 2}O and CO{sub 2} respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H{sub 2}O or CO{sub 2} over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H{sub 2}O or CO{sub 2}. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites ofmore » the type Ln{sub 1−x}A{sub x}Mn{sub 1−y}M{sub y}O{sub 3} (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H{sub 2} and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y{sub 0.5}Sr{sub 0.5}MnO{sub 3} which releases 483 µmol/g of O{sub 2} at 1673 K and produces 757 µmol/g of CO from CO{sub 2} at 1173 K. The production of H{sub 2} from H{sub 2}O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H{sub 2} based on the Mn{sub 3}O{sub 4}/NaMnO{sub 2} cycle briefly. - Graphical abstract: Ln{sub 0.5}A{sub 0.5}Mn{sub 1−x}M{sub x}O{sub 3} (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO{sub 2} and H{sub 2}O for the generation of CO and H{sub 2}. - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO{sub 2} and H{sub 2}O. • In Ln{sub 1−x}A{sub x}MnO{sub 3} perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H{sub 2}O splitting is also achieved by the use of the Mn{sub 3}O{sub 4}-sodium carbonate system. • Thermochemical splitting of CO{sub 2} and H{sub 2}O using perovskite oxides is explained. • Mn based perovskites.« less
Nam, Gyutae; Park, Joohyuk; Choi, Min; Oh, Pilgun; Park, Suhyeon; Kim, Min Gyu; Park, Noejung; Cho, Jaephil; Lee, Jang-Soo
2015-06-23
Understanding the interaction between a catalyst and oxygen has been a key step in designing better electrocatalysts for the oxygen reduction reaction (ORR) as well as applying them in metal-air batteries and fuel cells. Alloying has been studied to finely tune the catalysts' electronic structures to afford proper binding affinities for oxygen. Herein, we synthesized a noble-metal-free and nanosized transition metal CuFe alloy encapsulated with a graphitic carbon shell as a highly efficient and durable electrocatalyst for the ORR in alkaline solution. Theoretical models and experimental results demonstrated that the CuFe alloy has a more moderate binding strength for oxygen molecules as well as the final product, OH(-), thus facilitating the oxygen reduction process. Furthermore, the nitrogen-doped graphitic carbon-coated layer, formed catalytically under the influence of iron, affords enhanced charge transfer during the oxygen reduction process and superior durability. These benefits were successfully confirmed by realizing the catalyst application in a mechanically rechargeable Zn-air battery.
Gibbons, William T; Venstrom, Luke J; De Smith, Robert M; Davidson, Jane H; Jackson, Gregory S
2014-07-21
Zirconium-doped ceria (Ce(1-x)Zr(x)O2) was synthesized through a controlled electrospinning process as a promising approach to cost-effective, sinter-resistant material structures for high-temperature, solar-driven thermochemical redox cycles. To approximate a two-step redox cycle for solar fuel production, fibrous Ce(1-x)Zr(x)O2 with relatively low levels of Zr-doping (0 < x < 0.1) were cycled in an infrared-imaging furnace with high-temperature (up to 1500 °C) partial reduction and lower-temperature (∼800 °C) reoxidation via CO2 splitting to produce CO. Increases in Zr content improve reducibility and sintering resistance, and, for x≤ 0.05, do not significantly slow reoxidation kinetics for CO production. Cycle stability of the fibrous Ce(1-x)Zr(x)O2 (with x = 0.025) was assessed for a range of conditions by measuring rates of O2 release during reduction and CO production during reoxidation and by assessing post-cycling fiber crystallite sizes and surface areas. Sintering increases with reduction temperature but occurs primarily along the fiber axes. Even after 108 redox cycles with reduction at 1400 °C and oxidation with CO2 at 800 °C, the fibers maintain their structure with surface areas of ∼0.3 m(2) g(-1), higher than those observed in the literature for other ceria-based structures operating at similarly high temperature conditions. Total CO production and peak production rate stabilize above 3.0 mL g(-1) and 13.0 mL min(-1) g(-1), respectively. The results show the potential for electrospun oxides as sinter-resistant material structures with adequate surface area to support rapid CO2 splitting in solar thermochemical redox cycles.
Oxygenates from Electrochemical Reduction of CO2.
Feng, Guanghui; Chen, Wei; Wang, Baiyin; Song, Yanfang; Li, Guihua; Fang, Jianhui; Wei, Wei; Sun, Yuhan
2018-05-29
Electrochemical reduction of carbon dioxide (CO2) driven by renewable electricity to chemicals and fuels is considered as an ideal approach that can alleviate both carbon emission and energy tension stresses. High-value chemicals such as oxygenates can be effectively produced from CO2 electroreduction, which is highly attractive for the great promotion of the economy and applicability of CO2 utilization. This review focuses the recent advancements on the CO2 electrochemical reduction to formic acid, methanol, ethanol, acetic acid, and other oxygenates. The related principles, influence factors, and typical catalysts are summarized. On the basis of the aforementioned discussions, we present the future prospects for further development of CO2 electroreduction to oxygenates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Augmented Oxygen-Dependent Killing of Leishmania.
1992-06-30
reduction-oxidation cycling drugs: amphotericin B, menadione , and phenazine methosulfate. Promastigotes were exposed to the above drugs under...P02 = 2]..1 kPa) or hyperoxic conditions(P02 - 91.7 kPa). High oxygen tensions did not alter the lethal effects of either menadione or phenazine...effects of high oxygen tensions on the lethal effects of three reduction-oxidation cycling drugs: amphotericin B, menadione , and phenazine
Wang, Hao; Cao, Yingjie; Sun, Cheng; Zou, Guifu; Huang, Jianwen; Kuai, Xiaoxiao; Zhao, Jianqing; Gao, Lijun
2017-09-22
High-performance and affordable electrocatalysts from earth-abundant elements are desirably pursued for water splitting involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Here, a bifunctional electrocatalyst of highly crystalline Mo 2 C nanoparticles supported on carbon sheets (Mo 2 C/CS) was designed toward overall water splitting. Owing to the highly active catalytic nature of Mo 2 C nanoparticles, the high surface area of carbon sheets and efficient charge transfer in the strongly coupled composite, the designed catalysts show excellent bifunctional behavior with an onset potential of -60 mV for HER and an overpotential of 320 mV to achieve a current density of 10 mA cm -2 for OER in 1 m KOH while maintaining robust stability. Moreover, the electrolysis cell using the catalyst only requires a low cell voltage of 1.73 V to achieve a current density of 10 mA cm -2 and maintains the activity for more than 100 h when employing the Mo 2 C/CS catalyst as both anode and cathode electrodes. Such high performance makes Mo 2 C/CS a promising electrocatalyst for practical hydrogen production from water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Parthasarathy, Arvind; Srinivasan, Supramanian; Appleby, A. J.; Martin, Charles R.
1992-01-01
Results of a study of the temperature dependence of the oxygen reduction kinetics at the Pt/Nafion interface are presented. This study was carried out in the temperature range of 30-80 C and at 5 atm of oxygen pressure. The results showed a linear increase of the Tafel slope with temperature in the low current density region, but the Tafel slope was found to be independent of temperature in the high current density region. The values of the activation energy for oxygen reduction at the platinum/Nafion interface are nearly the same as those obtained at the platinum/trifluoromethane sulfonic acid interface but less than values obtained at the Pt/H3PO4 and Pt/HClO4 interfaces. The diffusion coefficient of oxygen in Nafion increases with temperature while its solubility decreases with temperature. These temperatures also depend on the water content of the membrane.
Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis
NASA Astrophysics Data System (ADS)
Ward, Lewis M.; Kirschvink, Joseph L.; Fischer, Woodward W.
2016-03-01
Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis—autotrophic growth by splitting water with sunlight—by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.
Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis.
Ward, Lewis M; Kirschvink, Joseph L; Fischer, Woodward W
2016-03-01
Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis-autotrophic growth by splitting water with sunlight-by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.
Three-part head-splitting proximal humerus fracture through a unicameral bone cyst.
Younghein, John A; Eskander, Mark S; DeAngelis, Nicola A; Wixted, John J
2012-06-01
Unicameral bone cysts are rare in adults and are most often found incidentally on radiographs. However, they can persist from the adolescent period and may be present in locations that predispose to or exacerbate fractures.This article describes a case of a healthy 40-year-old woman who sustained a proximal humerus trauma that involved a large unicameral bone cyst, resulting in a 3-part head-splitting fracture. The epiphyseal location of the cyst contributed to the severity and extent of the fracture that resulted from a simple fall. Given the age of the patient, open reduction and internal fixation with a locking plate and lag screws was performed. The patient chose open reduction and internal fixation to preserve a hemiarthroplasty procedure in case of future revision. Successful humeral head reconstruction was achieved, and the patient fully recovered. One year postoperatively, the patient underwent arthroscopic debridement to alleviate subjective stiffness and decreased range of motion.Multipart head-splitting fractures require complex repair strategies. The gold standard for the treatment of these injuries is hemiarthroplasty. However, the decision process is difficult in a young patient given the average survival of autoplastic prostheses and the added difficulty of later revision. The current case demonstrates the complexity of decision making resulting from a rare injury in a young, healthy patient and shows that open reduction and internal fixation can provide acceptable reconstruction in such situations. Copyright 2012, SLACK Incorporated.
Shah, M.M.; Campbell, J.A.
1998-07-07
A method is described for the controlled reduction of nitroaromatic compounds such as nitrobenzene and 2,4,6-trinitrotoluene by enzymatic reaction with oxygen sensitive nitroreductase enzymes, such as ferredoxin NADP oxidoreductase. 6 figs.
Dimitrakis, Dimitrios A; Syrigou, Maria; Lorentzou, Souzana; Kostoglou, Margaritis; Konstandopoulos, Athanasios G
2017-10-11
This study aims at developing a kinetic model that can adequately describe solar thermochemical water and carbon dioxide splitting with nickel ferrite powder as the active redox material. The kinetic parameters of water splitting of a previous study are revised to include transition times and new kinetic parameters for carbon dioxide splitting are developed. The computational results show a satisfactory agreement with experimental data and continuous multicycle operation under varying operating conditions is simulated. Different test cases are explored in order to improve the product yield. At first a parametric analysis is conducted, investigating the appropriate duration of the oxidation and the thermal reduction step that maximizes the hydrogen yield. Subsequently, a non-isothermal oxidation step is simulated and proven as an interesting option for increasing the hydrogen production. The kinetic model is adapted to simulate the production yields in structured solar reactor components, i.e. extruded monolithic structures, as well.
Dynamics of a split torque helicopter transmission
NASA Technical Reports Server (NTRS)
Rashidi, Majid; Krantz, Timothy
1992-01-01
A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.
Hamling, A E; Jenschke, B E; Calkins, C R
2008-04-01
The objective of this study was to determine the retail shelf stability of beef chuck and round muscles enhanced with ammonium hydroxide, salt, and carbon monoxide. A split plot design was used for each of 3 muscles [triceps brachii (TB), biceps femoris (BF), and rectus femoris (RF)] with 2 treatments (0 and 20% pump), 3 dark storage periods (1, 2, and 3 wk), and 3 replications in the whole plot and retail display period as the split plot. There were a total of 12 subprimals per treatment per dark storage period (n = 72 each). Individual steaks were cut to a thickness of 2.54 cm and packaged in a modified-atmosphere package (MAP). The TB was packaged in a high-oxygen MAP (80% oxygen, 20% carbon dioxide). The BF and RF were packaged in a low-oxygen MAP (100% carbon dioxide). At the completion of each dark storage period, steaks were subjected to 7 d of simulated retail display. Steaks were used for objective and subjective color measurements, total plate counts, and determination of retail purge and oxidation. For all muscles, total plate counts were always numerically greater in injected steaks. Triceps brachii steaks held in dark storage for 3 wk and displayed at retail for 4 or more days all exceeded 10(7) log of cfu/cm(2) for aerobic plate count. Biceps femoris and RF steaks packaged in a low-oxygen MAP had much lower bacterial counts, with levels below 4.2 log of cfu/cm(2), even after 7 d of retail display. Oxidation values for the TB were extremely high (ranging from 12.3 to 26.6), whereas the BF and RF had values that were much lower (< or =1.0 mg of malonaldehyde/kg of muscle), likely due to the oxidation occurring in a high-oxygen MAP for the TB. Enhanced TB steaks proved to have greater color stability (less discoloration) than nonenhanced TB steaks. In addition, the BF and RF (low-oxygen MAP) steaks had better color stability (more stable redness values) than TB (high-oxygen MAP) steaks, although TB steaks initially exhibited a brighter red color. Retail display life was enhanced by packaging in 100% carbon dioxide, and enhanced steaks exhibited greater color stability in retail display than control steaks.
Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.
Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing
2018-01-01
The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Xunyu; Zhao, Chuan
2015-01-01
Large-scale industrial application of electrolytic splitting of water has called for the development of oxygen evolution electrodes that are inexpensive, robust and can deliver large current density (>500 mA cm−2) at low applied potentials. Here we show that an efficient oxygen electrode can be developed by electrodepositing amorphous mesoporous nickel–iron composite nanosheets directly onto macroporous nickel foam substrates. The as-prepared oxygen electrode exhibits high catalytic activity towards water oxidation in alkaline solutions, which only requires an overpotential of 200 mV to initiate the reaction, and is capable of delivering current densities of 500 and 1,000 mA cm−2 at overpotentials of 240 and 270 mV, respectively. The electrode also shows prolonged stability against bulk water electrolysis at large current. Collectively, the as-prepared three-dimensional structured electrode is the most efficient oxygen evolution electrode in alkaline electrolytes reported to the best of our knowledge, and can potentially be applied for industrial scale water electrolysis. PMID:25776015
Unifying the 2e(-) and 4e(-) Reduction of Oxygen on Metal Surfaces.
Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan; Nørskov, Jens K
2012-10-18
Understanding trends in selectivity is of paramount importance for multi-electron electrochemical reactions. The goal of this work is to address the issue of 2e(-) versus 4e(-) reduction of oxygen on metal surfaces. Using a detailed thermodynamic analysis based on density functional theory calculations, we show that to a first approximation an activity descriptor, ΔGOH*, the free energy of adsorbed OH*, can be used to describe trends for the 2e(-) and 4e(-) reduction of oxygen. While the weak binding of OOH* on Au(111) makes it an unsuitable catalyst for the 4e(-) reduction, this weak binding is optimal for the 2e(-) reduction to H2O2. We find quite a remarkable agreement between the predictions of the model and experimental results spanning nearly 30 years.
[Competition between redox mediator and oxygen in the microbial fuel cell].
Alferov, S V; Vozchikova, S V; Arlyapov, V A; Alferov, V A; Reshetilov, A N
2017-01-01
The maximal rates and effective constants of 2,6-dichlorphenolindophenol and oxygen reduction by bacterim Gluconobacter oxydans in bacterial fuel cells under different conditions were evaluated. In an open-circuit mode, the rate of 2,6-dichlorphenolindophenol reduction coupled with ethanol oxidation under oxygen and nirogen atmospheres were 1.0 and 1.1 μM s–1 g–1, respectively. In closed-circuit mode, these values were 0.4 and 0.44 μM s–1 g–1, respectively. The initial rate of mediator reduction with the use of membrane fractions of bacteria in oxygen and nitrogen atmospheres in open-circuit mode were 6.3 and 6.9 μM s–1 g–1, whereas these values in closed-circuit mode comprised 2.2 and 2.4 μM s–1 g–1, respectively. The oxygen reduction rates in the presence and absence of 2,6-dichlorphenolindophenol were 0.31 and 0.32 μM s–1 g–1, respectively. The data obtained in this work demonstrated independent electron transfer from bacterial redox centers to the mediator and the absence of competition between the redox mediator and oxygen. The results can make it possible to reduce costs of microbial fuel cells based on activity of acetic acid bacteria G. oxydans.
Optical splitter design for telecommunication access networks with triple-play services
NASA Astrophysics Data System (ADS)
Agalliu, Rajdi; Burtscher, Catalina; Lucki, Michal; Seyringer, Dana
2018-01-01
In this paper, we present various designs of optical splitters for access networks, such as GPON and XG-PON by ITU-T with triple-play services (ie data, voice and video). The presented designs exhibit a step forward, compared to the solutions recommended by the ITU, in terms of performance in transmission systems using WDM. The quality of performance is represented by the bit error rate and the Q-factor. Besides the standard splitter design, we propose a new length-optimized splitter design with a smaller waveguide core, providing some reduction of non-uniformity of the power split between the output waveguides. The achieved splitting parameters are incorporated in the simulations of passive optical networks. For this purpose, the OptSim tool employing Time Domain Split Step method was used.
Al Control in High Titanium Ferro with Low Oxygen Prepared by Thermite Reaction
NASA Astrophysics Data System (ADS)
Dou, Zhi-he; Wang, Cong; Fan, Shi-gang; Shi, Guan-yong; Zhang, Ting-an
Based on the pre-works, this paper proposed a new short stage process of the intensify aluminothermy reduction by the stage to prepare high titanium ferroalloy with low O and Al contents. We investigated the effects of Al and Ca and Si combination reduction agent, slag type and step-up reduction conditions on the Al content and distribution in the alloy. The results show that the step-up reduction can not only reduce effectively the oxygen content in the alloy, but also reduce effectively Al content. For instance, the oxygen content in high titanium ferroalloy is within 1%˜4%, and the Al content is within 1%˜5%. Its quality reaches the requirement of high titanium ferroalloy prepared by remelting process.
Adaptive control of dynamic balance in human gait on a split-belt treadmill.
Buurke, Tom J W; Lamoth, Claudine J C; Vervoort, Danique; van der Woude, Lucas H V; den Otter, Rob
2018-05-17
Human bipedal gait is inherently unstable and staying upright requires adaptive control of dynamic balance. Little is known about adaptive control of dynamic balance in reaction to long-term, continuous perturbations. We examined how dynamic balance control adapts to a continuous perturbation in gait, by letting people walk faster with one leg than the other on a treadmill with two belts (i.e. split-belt walking). In addition, we assessed whether changes in mediolateral dynamic balance control coincide with changes in energy use during split-belt adaptation. In nine minutes of split-belt gait, mediolateral margins of stability and mediolateral foot roll-off changed during adaptation to the imposed gait asymmetry, especially on the fast side, and returned to baseline during washout. Interestingly, no changes in mediolateral foot placement (i.e. step width) were found during split-belt adaptation. Furthermore, the initial margin of stability and subsequent mediolateral foot roll-off were strongly coupled to maintain mediolateral dynamic balance throughout the gait cycle. Consistent with previous results net metabolic power was reduced during split-belt adaptation, but changes in mediolateral dynamic balance control were not correlated with the reduction of net metabolic power during split-belt adaptation. Overall, this study has shown that a complementary mechanism of relative foot positioning and mediolateral foot roll-off adapts to continuously imposed gait asymmetry to maintain dynamic balance in human bipedal gait. © 2018. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Prabir K.
2001-09-30
Aluminosilicate zeolites provide an excellent host for photochemical charge separation. Because of the constraints provided by the zeolite, the back electron transfer from the reduced acceptor to the oxidized sensitizer is slowed down. This provides the opportunity to separate the charge and use it in a subsequent reaction for water oxidation and reduction. Zeolite-based ruthenium oxide catalysts have been found to be efficient for the water splitting process. This project has demonstrated the usefulness of zeolite hosts for photolytic splitting of water.
Investigating dynamic underground coal fires by means of numerical simulation
NASA Astrophysics Data System (ADS)
Wessling, S.; Kessels, W.; Schmidt, M.; Krause, U.
2008-01-01
Uncontrolled burning or smoldering of coal seams, otherwise known as coal fires, represents a worldwide natural hazard. Efficient application of fire-fighting strategies and prevention of mining hazards require that the temporal evolution of fire propagation can be sufficiently precise predicted. A promising approach for the investigation of the temporal evolution is the numerical simulation of involved physical and chemical processes. In the context of the Sino-German Research Initiative `Innovative Technologies for Detection, Extinction and Prevention of Coal Fires in North China,' a numerical model has been developed for simulating underground coal fires at large scales. The objective of such modelling is to investigate observables, like the fire propagation rate, with respect to the thermal and hydraulic parameters of adjacent rock. In the model, hydraulic, thermal and chemical processes are accounted for, with the last process complemented by laboratory experiments. Numerically, one key challenge in modelling coal fires is to circumvent the small time steps resulting from the resolution of fast reaction kinetics at high temperatures. In our model, this problem is solved by means of an `operator-splitting' approach, in which transport and reactive processes of oxygen are independently calculated. At high temperatures, operator-splitting has the decisive advantage of allowing the global time step to be chosen according to oxygen transport, so that time-consuming simulation through the calculation of fast reaction kinetics is avoided. Also in this model, because oxygen distribution within a coal fire has been shown to remain constant over long periods, an additional extrapolation algorithm for the coal concentration has been applied. In this paper, we demonstrate that the operator-splitting approach is particularly suitable for investigating the influence of hydraulic parameters of adjacent rocks on coal fire propagation. A study shows that dynamic propagation strongly depends on permeability variations. For the assumed model, no fire exists for permeabilities k < 10-10m2, whereas the fire propagation velocity ranges between 340ma-1 for k = 10-8m2, and drops to lower than 3ma-1 for k = 5 × 10-10m2. Additionally, strong temperature variations are observed for the permeability range 5 × 10-10m2 < k < 10-8m2.
The 2010 Field Demonstration of the Solar Carbothermal Reduction of Regolith to Produce Oxygen
NASA Technical Reports Server (NTRS)
Gustafson, R. J.; White, B. C.; Fidler, M. J.; Muscatello, Anthony C.
2010-01-01
The Moon and other space exploration destinations are comprised of a variety of oxygen-bearing minerals, providing a virtually unlimited quantity of raw material which can be processed to produce oxygen. One attractive method to extract oxygen from the regolith is the carbothermal reduction process, which is not sensitive to variations in the mineral composition of the regolith. It also creates other valuable resources within the processed regolith, such as iron and silicon metals. Using funding from NASA, ORBITEC recently built and tested the Carbothermal Regolith Reduction Module to process lunar regolith simulants using concentrated solar energy. This paper summarizes the experimental test results obtained during a demonstration of the system at a lunar analog test site on the Mauna Kea volcano on Hawaii in February 2010.
Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts
Chlistunoff, Jerzy; Sansinena, Jose -Maria
2016-11-17
We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less
Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chlistunoff, Jerzy; Sansinena, Jose -Maria
We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less
Oxygen Generation from Carbon Dioxide for Advanced Life Support
NASA Technical Reports Server (NTRS)
Bishop, Sean; Duncan, Keith; Hagelin-Weaver, Helena; Neal, Luke; Sanchez, Jose; Paul, Heather L.; Wachsman, Eric
2007-01-01
The partial electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied. However, complete reduction of metabolically produced CO2 (into carbon and oxygen) has the potential of reducing oxygen storage weight for life support if the oxygen can be recovered. Recently, the University of Florida devel- oped novel ceramic oxygen generators employing a bilayer elec- trolyte of gadolinia-doped ceria and erbia-stabilized bismuth ox- ide (ESB) for NASA's future exploration of Mars. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. The strategy discussed here for advanced life support systems employs a catalytic layer com- bined with a COG cell so that CO2 is reduced all the way to solid carbon and oxygen without carbon buildup on the COG cell and subsequent deactivation.
2013-01-01
One-dimensional anodic titanium oxide (ATO) nanotube arrays hold great potential as photoanode for photoelectrochemical (PEC) water splitting. In this work, we report a facile and eco-friendly electrochemical hydrogenation method to modify the electronic and PEC properties of ATO nanotube films. The hydrogenated ATO (ATO-H) electrodes present a significantly improved photocurrent of 0.65 mA/cm2 in comparison with that of pristine ATO nanotubes (0.29 mA/cm2) recorded under air mass 1.5 global illumination. The incident photon-to-current efficiency measurement suggests that the enhanced photocurrent of ATO-H nanotubes is mainly ascribed to the improved photoactivity in the UV region. We propose that the electrochemical hydrogenation induced surface oxygen vacancies contribute to the substantially enhanced electrical conductivity and photoactivity. PMID:24047205
Li, Haoyi; Chen, Shuangming; Zhang, Ying; Zhang, Qinghua; Jia, Xiaofan; Zhang, Qi; Gu, Lin; Sun, Xiaoming; Song, Li; Wang, Xun
2018-06-22
Great attention has been focused on the design of electrocatalysts to enable electrochemical water splitting-a technology that allows energy derived from renewable resources to be stored in readily accessible and non-polluting chemical fuels. Herein we report a bifunctional nanotube-array electrode for water splitting in alkaline electrolyte. The electrode requires the overpotentials of 58 mV and 184 mV for hydrogen and oxygen evolution reactions respectively, meanwhile maintaining remarkable long-term durability. The prominent performance is due to the systematic optimization of chemical composition and geometric structure principally-that is, abundant electrocatalytic active sites, excellent conductivity of metallic 1T' MoS 2 , synergistic effects among iron, cobalt, nickel ions, and the superaerophobicity of electrode surface for fast mass transfer. The electrode is also demonstrated to function as anode and cathode, simultaneously, delivering 10 mA cm -2 at a cell voltage of 1.429 V. Our results demonstrate substantial improvement in the design of high-efficiency electrodes for water electrolysis.
Sahasrabudhe, Atharva; Dixit, Harsha; Majee, Rahul; Bhattacharyya, Sayan
2018-05-22
Herein, we present an innovative approach for transforming commonly available cellulose paper into a flexible and catalytic current collector for overall water splitting. A solution processed soak-and-coat method of electroless plating was used to render a piece of paper conducting by conformably depositing metallic nickel nanoparticles, while still retaining the open macroporous framework. Proof-of-concept paper-electrodes are realized by modifying nickel-paper current collector with model electrocatalysts nickel-iron oxyhydroxide and nickel-molybdenum bimetallic alloy through electrodeposition route. The paper-electrodes demonstrate exceptional activities towards oxygen evolution reaction and hydrogen evolution reaction, requiring overpotentials of 240 and 32 mV at 50 and -10 mA cm -2 , respectively, even as they endure extreme mechanical stress. The generality of this approach is demonstrated by fabricating similar electrodes on cotton fabric, which also show high activity. Finally, a two-electrode paper-electrolyzer is constructed which can split water with an efficiency of 98.01%, and exhibits robust stability for more than 200 h.
Colloidal nanocrystals for photoelectrochemical and photocatalytic water splitting
NASA Astrophysics Data System (ADS)
Gadiyar, Chethana; Loiudice, Anna; Buonsanti, Raffaella
2017-02-01
Colloidal nanocrystals (NCs) are among the most modular and versatile nanomaterial platforms for studying emerging phenomena in different fields thanks to their superb compositional and morphological tunability. A promising, yet challenging, application involves the use of colloidal NCs as light absorbers and electrocatalysts for water splitting. In this review we discuss how the tunability of these materials is ideal to understand the complex phenomena behind storing energy in chemical bonds and to optimize performance through structural and compositional modification. First, we describe the colloidal synthesis method as a means to achieve a high degree of control over single material NCs and NC heterostructures, including examples of the role of the ligands in modulating size and shape. Next, we focus on the use of NCs as light absorbers and catalysts to drive both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), together with some of the challenges related to the use of colloidal NCs as model systems and/or technological solution in water splitting. We conclude with a broader prospective on the use of colloidal chemistry for new material discovery.
QSAR models for anti-malarial activity of 4-aminoquinolines.
Masand, Vijay H; Toropov, Andrey A; Toropova, Alla P; Mahajan, Devidas T
2014-03-01
In the present study, predictive quantitative structure - activity relationship (QSAR) models for anti-malarial activity of 4-aminoquinolines have been developed. CORAL, which is freely available on internet (http://www.insilico.eu/coral), has been used as a tool of QSAR analysis to establish statistically robust QSAR model of anti-malarial activity of 4-aminoquinolines. Six random splits into the visible sub-system of the training and invisible subsystem of validation were examined. Statistical qualities for these splits vary, but in all these cases, statistical quality of prediction for anti-malarial activity was quite good. The optimal SMILES-based descriptor was used to derive the single descriptor based QSAR model for a data set of 112 aminoquinolones. All the splits had r(2)> 0.85 and r(2)> 0.78 for subtraining and validation sets, respectively. The three parametric multilinear regression (MLR) QSAR model has Q(2) = 0.83, R(2) = 0.84 and F = 190.39. The anti-malarial activity has strong correlation with presence/absence of nitrogen and oxygen at a topological distance of six.
McCool, Nicholas S; Swierk, John R; Nemes, Coleen T; Saunders, Timothy P; Schmuttenmaer, Charles A; Mallouk, Thomas E
2016-07-06
Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) utilize a sensitized metal oxide and a water oxidation catalyst in order to generate hydrogen and oxygen from water. Although the Faradaic efficiency of water splitting is close to unity, the recombination of photogenerated electrons with oxidized dye molecules causes the quantum efficiency of these devices to be low. It is therefore important to understand recombination mechanisms in order to develop strategies to minimize them. In this paper, we discuss the role of proton intercalation in the formation of recombination centers. Proton intercalation forms nonmobile surface trap states that persist on time scales that are orders of magnitude longer than the electron lifetime in TiO2. As a result of electron trapping, recombination with surface-bound oxidized dye molecules occurs. We report a method for effectively removing the surface trap states by mildly heating the electrodes under vacuum, which appears to primarily improve the injection kinetics without affecting bulk trapping dynamics, further stressing the importance of proton control in WS-DSPECs.
Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Yu, Hao; Zhou, Xu; Guo, Hong-liang; Yuan, Ye; Lee, Duu-jong; Zhou, Jizhong; Ren, Nan-qi
2014-08-15
Limited-oxygen mediated synergistic relationships between sulfate-reducing bacteria (SRB), nitrate-reducing bacteria (NRB) and sulfide-oxidizing bacteria (SOB, including nitrate-reducing, sulfide-oxidizing bacteria NR-SOB) were predicted to simultaneously remove contaminants of nitrate, sulfate and high COD, and eliminate sulfide generation. A lab-scale experiment was conducted to examine the impact of limited oxygen on these oxy-anions degradation, sulfide oxidation and associated microbial functional responses. In all scenarios tested, the reduction of both nitrate and sulfate was almost complete. When limited-oxygen was fed into bioreactors, S(0) formation was significantly improved up to ∼ 70%. GeoChip 4.0, a functional gene microarray, was used to determine the microbial gene diversity and functional potential for nitrate and sulfate reduction, and sulfide oxidation. The diversity of the microbial community in bioreactors was increased with the feeding of limited oxygen. Whereas the intensities of the functional genes involved in sulfate reduction did not show a significant difference, the abundance of the detected denitrification genes decreased in limited oxygen samples. More importantly, sulfide-oxidizing bacteria may alter their populations/genes in response to limited oxygen potentially to function more effectively in sulfide oxidation, especially to elemental sulfur. The genes fccA/fccB from nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB), such as Paracoccus denitrificans, Thiobacillus denitrificans, Beggiatoa sp., Thiomicrospira sp., and Thioalkalivibrio sp., were more abundant under limited-oxygen condition. Copyright © 2014 Elsevier B.V. All rights reserved.
Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation.
You, Bo; Han, Guanqun; Sun, Yujie
2018-06-08
Renewable energy-driven hydrogen production from electrocatalytic and photocatalytic water splitting has been widely recognized as a promising approach to utilize green energy resources and hence reduces our dependence on legacy fossil fuels as well as alleviates net carbon dioxide emissions. The realization of large-scale water splitting, however, is mainly impeded by its slow kinetics, particularly because of its sluggish anodic half reaction, the oxygen evolution reaction (OER), whose product O2 is ironically not of high value. In fact, the co-production of H2 and O2 in conventional water electrolysis may result in the formation of explosive H2/O2 gas mixtures due to gas crossover and reactive oxygen species (ROS); both pose safety concerns and shorten the lifetimes of water splitting cells. With these considerations in mind, replacing the OER with thermodynamically more favorable organic oxidation reactions is much more preferred, which will not only substantially reduce the voltage input for H2 evolution from water and avoid the generation of H2/O2 gas mixtures and ROS, but also possibly lead to the co-production of value-added organic products on the anode. Indeed, such an innovative strategy for H2 production integrated with valuable organic oxidation has attracted increasing attention in both electrocatalysis and photocatalysis. This feature article showcases the most recent examples along this endeavor. As exemplified in the main text, the oxidative transformation of a variety of organic substrates, including alcohols, ammonia, urea, hydrazine, and biomass-derived intermediate chemicals, can be integrated with energy-efficient H2 evolution. We specifically highlight the importance of oxidative biomass valorization coupled with H2 production, as biomass is the only green carbon source whose scale is comparable to fossil fuels. Finally, the remaining challenges and future opportunities are also discussed.
Tang, Tang; Jiang, Wen-Jie; Niu, Shuai; Liu, Ning; Luo, Hao; Chen, Yu-Yun; Jin, Shi-Feng; Gao, Feng; Wan, Li-Jun; Hu, Jin-Song
2017-06-21
Developing bifunctional efficient and durable non-noble electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is highly desirable and challenging for overall water splitting. Herein, Co-Mn carbonate hydroxide (CoMnCH) nanosheet arrays with controllable morphology and composition were developed on nickel foam (NF) as such a bifunctional electrocatalyst. It is discovered that Mn doping in CoCH can simultaneously modulate the nanosheet morphology to significantly increase the electrochemical active surface area for exposing more accessible active sites and tune the electronic structure of Co center to effectively boost its intrinsic activity. As a result, the optimized Co 1 Mn 1 CH/NF electrode exhibits unprecedented OER activity with an ultralow overpotential of 294 mV at 30 mA cm -2 , compared with all reported metal carbonate hydroxides. Benefited from 3D open nanosheet array topographic structure with tight contact between nanosheets and NF, it is able to deliver a high and stable current density of 1000 mA cm -2 at only an overpotential of 462 mV with no interference from high-flux oxygen evolution. Despite no reports about effective HER on metal carbonate hydroxides yet, the small overpotential of 180 mV at 10 mA cm -2 for HER can be also achieved on Co 1 Mn 1 CH/NF by the dual modulation of Mn doping. This offers a two-electrode electrolyzer using bifunctional Co 1 Mn 1 CH/NF as both anode and cathode to perform stable overall water splitting with a cell voltage of only 1.68 V at 10 mA cm -2 . These findings may open up opportunities to explore other multimetal carbonate hydroxides as practical bifunctional electrocatalysts for scale-up water electrolysis.
Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations.
Brazy, J E; Lewis, D V; Mitnick, M H; Jöbsis vander Vliet, F F
1985-02-01
A noninvasive optical method for bedside monitoring of cerebral oxygenation in small preterm infants was evaluated. Through differential absorbance of near infrared light, changes in the oxidation-reduction level of cytochrome aa3, in the oxygenation state of hemoglobin and in tissue blood volume were assessed in the transilluminated anterior cerebral field. Overall, cerebral oxygenated hemoglobin correlated significantly with transcutaneous oxygen, r = .44 p less than .0001; however, correlation was best in the absence of cardiorespiratory disease. Hypoxia with or without bradycardia led to hemoglobin deoxygenation and a shift in cytochrome aa3 to a more reduced state. When hypoxic episodes came in series or were prolonged, aa3 reduction occurred simultaneous with hemoglobin deoxygenation but its recovery to base-line values sometimes lagged behind the return of hemoglobin oxygenation. In one infant with a large patent ductus arteriosus, even brief episodes of mild bradycardia caused precipitous reduction of cytochrome aa3 before any shift to greater hemoglobin deoxygenation. This response disappeared after ductal ligation. In general, the antecedent state of cerebral oxygenation, the severity and duration of deoxygenation, and the presence or absence of circulatory abnormalities all influenced the aa3 response to hypoxia. Continuous noninvasive near infrared monitoring of cerebral oxygenation can be performed on sick preterm infants at the bedside.
Design Principles for Metal Oxide Redox Materials for Solar-Driven Isothermal Fuel Production.
Michalsky, Ronald; Botu, Venkatesh; Hargus, Cory M; Peterson, Andrew A; Steinfeld, Aldo
2015-04-01
The performance of metal oxides as redox materials is limited by their oxygen conductivity and thermochemical stability. Predicting these properties from the electronic structure can support the screening of advanced metal oxides and accelerate their development for clean energy applications. Specifically, reducible metal oxide catalysts and potential redox materials for the solar-thermochemical splitting of CO 2 and H 2 O via an isothermal redox cycle are examined. A volcano-type correlation is developed from available experimental data and density functional theory. It is found that the energy of the oxygen-vacancy formation at the most stable surfaces of TiO 2 , Ti 2 O 3 , Cu 2 O, ZnO, ZrO 2 , MoO 3 , Ag 2 O, CeO 2 , yttria-stabilized zirconia, and three perovskites scales with the Gibbs free energy of formation of the bulk oxides. Analogously, the experimental oxygen self-diffusion constants correlate with the transition-state energy of oxygen conduction. A simple descriptor is derived for rapid screening of oxygen-diffusion trends across a large set of metal oxide compositions. These general trends are rationalized with the electronic charge localized at the lattice oxygen and can be utilized to predict the surface activity, the free energy of complex bulk metal oxides, and their oxygen conductivity.
NASA Astrophysics Data System (ADS)
Xie, Kaiyu; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen
2017-10-01
Aluminothermic reduction-electrolysis using an inert anode process is proposed to extract oxygen and metals from Minnesota Lunar Simulant-1 (MLS-1). Effective aluminothermic reduction between dissolved MLS-1 and dissolved metal aluminum was achieved in cryolite salt media. The product phases obtained by aluminothermic reduction at 980°C for 4 h were Al, Si, and Al5FeSi, while the chemical components were 79.71 mass% aluminum, 12.03 mass% silicon, 5.91 mass% iron, and 2.35 mass% titanium. The cryolite salt containing Al2O3 was subsequently electrolyzed with Fe0.58-Ni0.42 inert anode at 960°C for 4 h. Oxygen was evolved at the anode with an anodic current efficiency of 78.28%. The results demonstrate that this two-step process is remarkably feasible for the extraterrestrial extraction of oxygen and metals. This process will help expand the existing in situ resource utilization methods.
High performance platinum single atom electrocatalyst for oxygen reduction reaction
NASA Astrophysics Data System (ADS)
Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan
2017-07-01
For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.
Gan, Patrick; Foord, John S; Compton, Richard G
2015-01-01
Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur. PMID:26491640
Tiwari, Jitendra N.; Nath, Krishna; Kumar, Susheel; Tiwari, Rajanish N.; Kemp, K. Christian; Le, Nhien H.; Youn, Duck Hyun; Lee, Jae Sung; Kim, Kwang S.
2013-01-01
Nanosize platinum clusters with small diameters of 2–4 nm are known to be excellent catalysts for the oxygen reduction reaction. The inherent catalytic activity of smaller platinum clusters has not yet been reported due to a lack of preparation methods to control their size (<2 nm). Here we report the synthesis of platinum clusters (diameter ≤1.4 nm) deposited on genomic double-stranded DNA–graphene oxide composites, and their high-performance electrocatalysis of the oxygen reduction reaction. The electrochemical behaviour, characterized by oxygen reduction reaction onset potential, half-wave potential, specific activity, mass activity, accelerated durability test (10,000 cycles) and cyclic voltammetry stability (10,000 cycles) is attributed to the strong interaction between the nanosize platinum clusters and the DNA–graphene oxide composite, which induces modulation in the electronic structure of the platinum clusters. Furthermore, we show that the platinum cluster/DNA–graphene oxide composite possesses notable environmental durability and stability, vital for high-performance fuel cells and batteries. PMID:23900456
He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong
2016-08-09
The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.
High performance platinum single atom electrocatalyst for oxygen reduction reaction
Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan
2017-01-01
For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm−2 at 80 °C with a low platinum loading of 0.09 mgPt cm−2, corresponding to a platinum utilization of 0.13 gPt kW−1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction. PMID:28737170
NASA Astrophysics Data System (ADS)
Liang, Hai-Wei; Zhuang, Xiaodong; Brüller, Sebastian; Feng, Xinliang; Müllen, Klaus
2014-09-01
Development of efficient, low-cost and stable electrocatalysts as the alternative to platinum for the oxygen reduction reaction is of significance for many important electrochemical devices, such as fuel cells, metal-air batteries and chlor-alkali electrolysers. Here we report a highly active nitrogen-doped, carbon-based, metal-free oxygen reduction reaction electrocatalyst, prepared by a hard-templating synthesis, for which nitrogen-enriched aromatic polymers and colloidal silica are used as precursor and template, respectively, followed by ammonia activation. Our protocol allows for the simultaneous optimization of both porous structures and surface functionalities of nitrogen-doped carbons. Accordingly, the prepared catalysts show the highest oxygen reduction reaction activity (half-wave potential of 0.85 V versus reversible hydrogen electrode with a low loading of 0.1 mg cm-2) in alkaline media among all reported metal-free catalysts. Significantly, when used for constructing the air electrode of zinc-air battery, our metal-free catalyst outperforms the state-of the-art platinum-based catalyst.
Varnell, Jason A.; Tse, Edmund C. M.; Schulz, Charles E.; Fister, Tim T.; Haasch, Richard T.; Timoshenko, Janis; Frenkel, Anatoly I.; Gewirth, Andrew A.
2016-01-01
The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites. PMID:27538720
Illathvalappil, Rajith; Unni, Sreekuttan M; Kurungot, Sreekumar
2015-10-28
A significant improvement in the electrochemical oxygen reduction reaction (ORR) activity of molybdenum sulphide (MoS2) could be accomplished by its layer separated dispersion on graphene mediated by cobalt hydroxide (Co(OH)2) through a hydrothermal process (Co(OH)2-MoS2/rGO). The activity makeover in this case is found to be originated from a controlled interplay of the favourable modulations achieved in terms of electrical conductivity, more exposure of the edge planes of MoS2 and a promotional role played by the coexistence of Co(OH)2 in the proximity of MoS2. Co(OH)2-MoS2/rGO displays an oxygen reduction onset potential of 0.855 V and a half wave potential (E1/2) of 0.731 V vs. RHE in 0.1 M KOH solution, which are much higher than those of the corresponding values (0.708 and 0.349 V, respectively) displayed by the as synthesized pristine MoS2 (P-MoS2) under identical experimental conditions. The Tafel slope corresponding to oxygen reduction for Co(OH)2-MoS2/rGO is estimated to be 63 mV dec(-1) compared to 68 mV dec(-1) displayed by the state-of-the-art Pt/C catalyst. The estimated number of electrons transferred during oxygen reduction for Co(OH)2-MoS2/rGO is in the range of 3.2-3.6 in the potential range of 0.77 V to 0.07 V, which again stands out as valid evidence on the much favourable mode of oxygen reduction accomplished by the system compared to its pristine counterpart. Overall, the present study, thus, demonstrates a viable strategy of tackling the inherent limitations, such as low electrical conductivity and limited access to the active sites, faced by the layered structures like MoS2 to position them among the group of potential Pt-free electrocatalysts for oxygen reduction.
Oxygen Extraction from Minerals
NASA Technical Reports Server (NTRS)
Muscatello, Tony
2017-01-01
Oxygen, whether used as part of rocket bipropellant or for astronaut life support, is a key consumable for space exploration and commercialization. In Situ Resource Utilization (ISRU) has been proposed many times as a method for making space exploration more cost effective and sustainable. On planetary and asteroid surfaces the presence of minerals in the regolith that contain oxygen is very common, making them a potential oxygen resource. The majority of research and development for oxygen extraction from minerals has been for lunar regolith although this work would generally be applicable to regolith at other locations in space. This presentation will briefly survey the major methods investigated for oxygen extraction from regolith with a focus on the current status of those methods and possible future development pathways. The major oxygen production methods are (1) extraction from lunar ilmenite (FeTiO3) with either hydrogen or carbon monoxide, (2) carbothermal reduction of iron oxides and silicates with methane, and (3) molten regolith electrolysis (MRE) of silicates. Methods (1) and (2) have also been investigated in a two-step process using CO reduction and carbon deposition followed by carbothermal reduction. All three processes have byproducts that could also be used as resources. Hydrogen or carbon monoxide reduction produce iron metal in small amounts that could potentially be used as construction material. Carbothermal reduction also makes iron metal along with silicon metal and a glass with possible applications. MRE produces iron, silicon, aluminum, titanium, and glass, with higher silicon yields than carbothermal reduction. On Mars and possibly on some moons and asteroids, water is present in the form of mineral hydrates, hydroxyl (-OH) groups on minerals, andor water adsorbed on mineral surfaces. Heating of the minerals can liberate the water which can be electrolyzed to provide a source of oxygen as well. The chemistry of these processes, some key development and demonstration projects, the challenges remaining to be overcome, and possible future directions will be discussed with a goal of increased understanding of these important ISRU technologies and their potential applications to space exploration and settlement.
Brijs, Jeroen; Jutfelt, Fredrik; Clark, Timothy D; Gräns, Albin; Ekström, Andreas; Sandblom, Erik
2015-08-01
A progressive inability of the cardiorespiratory system to maintain systemic oxygen supply at elevated temperatures has been suggested to reduce aerobic scope and the upper thermal limit of aquatic ectotherms. However, few studies have directly investigated the dependence of thermal limits on oxygen transport capacity. By manipulating oxygen availability (via environmental hyperoxia) and blood oxygen carrying capacity (via experimentally induced anaemia) in European perch (Perca fluviatilis Linneaus), we investigated the effects of oxygen transport capacity on aerobic scope and the critical thermal maximum (CT(max)). Hyperoxia resulted in a twofold increase in aerobic scope at the control temperature of 23°C, but this did not translate to an elevated CT(max) in comparison with control fish (34.6±0.1 versus 34.0±0.5°C, respectively). Anaemia (∼43% reduction in haemoglobin concentration) did not cause a reduction in aerobic scope or CT(max) (33.8±0.3°C) compared with control fish. Additionally, oxygen consumption rates of anaemic perch during thermal ramping increased in a similar exponential manner to that in control fish, highlighting that perch have an impressive capacity to compensate for a substantial reduction in blood oxygen carrying capacity. Taken together, these results indicate that oxygen limitation is not a universal mechanism determining the CT(max) of fishes. © 2015. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.
2016-12-01
Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.
The Role of Subsurface Oxygen on Cu Surfaces for CO 2 Electrochemical Reduction
Fields, Meredith; Hong, Xin; Norskov, Jens K.; ...
2018-06-12
Under ambient conditions, copper with oxygen near the surface displays strengthened CO 2 and CO adsorption energies. This finding is often used to rationalize differences seen in product distributions between Cu-oxide and pure Cu electrodes during electrochemical CO 2 reduction. However, little evidence exists to confirm the presence of oxygen within first few layers of the Cu matrix under relevant experimental reducing conditions. As a result, using density functional theory calculations, we discuss the stability of subsurface oxygen from thermodynamic and kinetic perspectives, and show that under reducing potentials, subsurface oxygen alone should have negligible effects on the activity ofmore » crystalline Cu.« less
The Role of Subsurface Oxygen on Cu Surfaces for CO 2 Electrochemical Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Meredith; Hong, Xin; Norskov, Jens K.
Under ambient conditions, copper with oxygen near the surface displays strengthened CO 2 and CO adsorption energies. This finding is often used to rationalize differences seen in product distributions between Cu-oxide and pure Cu electrodes during electrochemical CO 2 reduction. However, little evidence exists to confirm the presence of oxygen within first few layers of the Cu matrix under relevant experimental reducing conditions. As a result, using density functional theory calculations, we discuss the stability of subsurface oxygen from thermodynamic and kinetic perspectives, and show that under reducing potentials, subsurface oxygen alone should have negligible effects on the activity ofmore » crystalline Cu.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORY Fatty Acid Manufacturing by Fat Splitting Subcategory § 417.22 Effluent limitations guidelines... pollutant properties, controlled by this section and attributable to the hydrogenation of fatty acids, which...
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORY Fatty Acid Manufacturing by Fat Splitting Subcategory § 417.22 Effluent limitations guidelines... pollutant properties, controlled by this section and attributable to the hydrogenation of fatty acids, which...
NASA Astrophysics Data System (ADS)
Xie, Ying Peng; Liu, Gang; Lu, Gao Qing (Max); Cheng, Hui-Ming
2012-02-01
Here we show that B2O3-xNx nanoclusters can be formed on the surface of WO3 particles by a combination of thermal oxidation of tungsten boride (WB) in air and the subsequent nitriding process in gaseous ammonia. The resultant nanoclusters are found to play an apparent role in improving the photocatalytic oxygen evolution of WO3 by promoting the surface separation of photoexcited charge-carriers.Here we show that B2O3-xNx nanoclusters can be formed on the surface of WO3 particles by a combination of thermal oxidation of tungsten boride (WB) in air and the subsequent nitriding process in gaseous ammonia. The resultant nanoclusters are found to play an apparent role in improving the photocatalytic oxygen evolution of WO3 by promoting the surface separation of photoexcited charge-carriers. Electronic supplementary information (ESI) available: (1) Experimental section. (2) XRD patterns, FT-IR and Raman spectra of B2O3@WO3 and B2O3-xNx@WO3. (3) Time course of O2 evolution from water splitting using B2O3@WO3 and B2O3-xNx@WO3. (4) XRD pattern and SEM image of pure WO3, UV-visible absorption spectra of pure WO3 and N-WO3. (5) UV-visible absorption spectra of bulk B2O3 and schematic of band edges of WO3, bulk B2O3, and B2O3-xNx nanocluster. See DOI: 10.1039/c2nr11846g
Fuel Cells | Hydrogen and Fuel Cells | NREL
Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion, Electrochimica Acta (2016) Suppression of Oxygen Reduction Reaction Activity on Pt-Based Electrocatalysts from Ionomer Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction, Journal of the Electrochemical Society
NASA Astrophysics Data System (ADS)
Wang, Ying; Liu, Qing; Hu, Tianjun; Zhang, Limin; Deng, Youquan
2017-05-01
The catalyst MnO2-CoFe2O4/C was firstly synthesized via a two-step process and applied as a bifunctional electrocatalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media. The composite exhibits better bifunctional activity than CoFe2O4/C and MnO2/C. Moreover, superior durability and high methanol tolerance in alkaline media outperforms the commercial Pt/C electrocatalyst, which signifying its excellent potential for applications in metal-air batteries and alkaline fuel cells.
Brely, Lucas; Bosia, Federico; Pugno, Nicola M
2018-06-20
Contact unit size reduction is a widely studied mechanism as a means to improve adhesion in natural fibrillar systems, such as those observed in beetles or geckos. However, these animals also display complex structural features in the way the contact is subdivided in a hierarchical manner. Here, we study the influence of hierarchical fibrillar architectures on the load distribution over the contact elements of the adhesive system, and the corresponding delamination behaviour. We present an analytical model to derive the load distribution in a fibrillar system loaded in shear, including hierarchical splitting of contacts, i.e. a "hierarchical shear-lag" model that generalizes the well-known shear-lag model used in mechanics. The influence on the detachment process is investigated introducing a numerical procedure that allows the derivation of the maximum delamination force as a function of the considered geometry, including statistical variability of local adhesive energy. Our study suggests that contact splitting generates improved adhesion only in the ideal case of extremely compliant contacts. In real cases, to produce efficient adhesive performance, contact splitting needs to be coupled with hierarchical architectures to counterbalance high load concentrations resulting from contact unit size reduction, generating multiple delamination fronts and helping to avoid detrimental non-uniform load distributions. We show that these results can be summarized in a generalized adhesion scaling scheme for hierarchical structures, proving the beneficial effect of multiple hierarchical levels. The model can thus be used to predict the adhesive performance of hierarchical adhesive structures, as well as the mechanical behaviour of composite materials with hierarchical reinforcements.
A novel additive for the reduction of acid gases and NO(x) in municipal waste incinerator flue gas.
Hall, William J; Williams, Paul T
2006-08-01
The reduction of SO2, HCl, and NO(x) concentrations using calcium magnesium acetate (CMA) as a novel sorbent in a simulated municipal waste incinerator flue gas was investigated. The reduction of individual SO2, HCl, and NO(x) concentrations was tested at 850 degrees C and it was found that CMA could reduce the SO2 concentration by 74%, HCl concentration by 64%, or NO(x) concentration by 94%. It was observed that individual SO2 or HCl capture increased with increasing initial oxygen concentration in the reacting gas or increasing sorbent input. NO(x) reduction decreased with increasing initial oxygen concentration in the reacting gas. The simultaneous reduction of SO2, HCl, and NO(x) concentrations by CMA was also investigated. It was found that CMA could simultaneously capture 60% SO2 and 61% HCl and reduce NO(x) concentrations by 26%, when the initial oxygen concentration in the reacting gas was 4%. During the simultaneous reduction of SO2, HCl, and NO(x), it was noted that as the initial oxygen concentration in the reacting gas increased, the efficiency of SO2 capture increased too, but the efficiency of HCl capture and the efficiency of NO(x) destruction decreased.
Toxin detection using a tyrosinase-coupled oxygen electrode.
Smit, M H; Rechnitz, G A
1993-02-15
An enzyme-based "electrochemical canary" is described for the detection of cyanide. The sensing system imitates cyanide's site of toxicity in the mitochondria. The terminal sequence of electron transfer in aerobic respiration is mimicked by mediator coupling of tyrosinase catalysis to an electro-chemical system. An enzyme-coupled oxygen electrode is created which is sensitive to selective poisoning. Biocatalytic reduction of oxygen is promoted by electrochemically supplying tyrosinase with electrons. Thus, ferrocyanide is generated at a cathode and mediates the enzymatic reduction of oxygen to water. An enzyme-dependent reductive current can be monitored which is inhibited by cyanide in a concentration-dependent manner. Oxygen depletion in the reaction layer can be minimized by addressing enzyme activity using a potential pulsing routine. Enzyme activity is electrochemically initiated and terminated and the sensor becomes capable of continuous monitoring. Cyanide poisoning of the biological component is reversible, and it can be reused after rinsing. The resulting sensor detects cyanide based on its biological activity rather than its physical or chemical properties.
Active and stable Ir@Pt core–shell catalysts for electrochemical oxygen reduction
Strickler, Alaina L.; Jackson, Ariel; Jaramillo, Thomas F.
2016-12-28
Electrochemical oxygen reduction is an important reaction for many sustainable energy technologies, such as fuel cells and metal–air batteries. Kinetic limitations of this reaction, expensive electrocatalysts, and catalyst instability, however, limit the commercial viability of such devices. Herein, we report an active Ir@Pt core–shell catalyst that combines platinum overlayers with nanostructure effects to tune the oxygen binding to the Pt surface, thereby achieving enhanced activity and stability for the oxygen reduction reaction. Ir@Pt nanoparticles with several shell thicknesses were synthesized in a scalable, inexpensive, one-pot polyol method. Electrochemical analysis demonstrates the activity and stability of the Ir@Pt catalyst, with specificmore » and mass activities increasing to 2.6 and 1.8 times that of commercial Pt/C (TKK), respectively, after 10 000 stability cycles. Furthermore, activity enhancement of the Ir@Pt catalyst is attributed to weakening of the oxygen binding to the Pt surface induced by the Ir core.« less
Effect of polymer additives on hydrodynamics and oxygen transfer in a bubble column bioreactor.
Kawase, Y
1993-01-01
The influence of polymer additives (polyethylene oxide and polyacrylamide) on the hydrodynamics and oxygen transfer in a bubble column bioreactor was examined. The addition of small amounts of these polymers has been known to cause significant drag reduction in turbulent flow circumstances. The gas hold-up was slightly decreased and the liquid-phase mixing was somewhat enhanced due to the addition of the polymers. The addition of polymer additives brought about a reduction of the volumetric oxygen transfer coefficient by about 40%. In dilute polymer solutions, large bubbles formed by bubble coalescence moved with high rise velocities in the presence of many small bubbles and the bubble size distributions were less uniform compared with those in water. The complicated changes in bubble hydrodynamic characteristics were examined to give possible explanations for oxygen transfer reduction.
Oxygen evolution reaction in nanoconfined carbon nanotubes
NASA Astrophysics Data System (ADS)
Li, Ying; Lu, Xuefeng; Li, Yunfang; Zhang, Xueqing
2018-05-01
Improving oxygen electrochemistry through nanoscopic confinement has recently been highlighted as a promising strategy. In-depth understanding the role of confinement is therefore required. In this study, we simulate the oxygen evolution reaction (OER) on iron oxide nanoclusters under confinement of (7,7) and (8,8) armchair carbon nanotubes (CNTs). The free energies of the four proton coupled electron transfer (PCET) steps and the OER overpotentials are calculated. The Fe4O6 nanocluster confined in (7,7) CNT is found to be the most active for OER among the systems considered in this work. This leads to an increase in catalytic efficiency of OER compared to the hematite (110) surface, which was reported recently as an active surface towards OER. The calculated results show that the OER overpotential depends strongly on the magnetic properties of the iron oxide nanocluster. These findings are helpful for experimental design of efficient catalyst for water splitting applications.
Najafpour, Mohammad Mahdi; Isaloo, Mohsen Abbasi; Eaton-Rye, Julian J; Tomo, Tatsuya; Nishihara, Hiroshi; Satoh, Kimiyuki; Carpentier, Robert; Shen, Jian-Ren; Allakhverdiev, Suleyman I
2014-09-01
The water-oxidizing complex (WOC), also known as the oxygen-evolving complex (OEC), of photosystem II in oxygenic photosynthetic organisms efficiently catalyzes water oxidation. It is, therefore, responsible for the presence of oxygen in the Earth's atmosphere. The WOC is a manganese-calcium (Mn₄CaO₅(H₂O)₄) cluster housed in a protein complex. In this review, we focus on water exchange chemistry of metal hydrates and discuss the mechanisms and factors affecting this chemical process. Further, water exchange rates for both the biological cofactor and synthetic manganese water splitting are discussed. The importance of fully unveiling the water exchange mechanism to understand the chemistry of water oxidation is also emphasized here. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2014 Elsevier B.V. All rights reserved.
One Dimensional Graphitic Carbon Nitrides as Effective Metal-Free Oxygen Reduction Catalysts
Tahir, Muhammad; Mahmood, Nasir; Zhu, Jinghan; Mahmood, Asif; Butt, Faheem K.; Rizwan, Syed; Aslam, Imran; Tanveer, M.; Idrees, Faryal; Shakir, Imran; Cao, Chuanbao; Hou, Yanglong
2015-01-01
To explore the effect of morphology on catalytic properties of graphitic carbon nitride (GCN), we have studied oxygen reduction reaction (ORR) performance of two different morphologies of GCN in alkaline media. Among both, tubular GCN react with dissolved oxygen in the ORR with an onset potential close to commercial Pt/C. Furthermore, the higher stability and excellent methanol tolerance of tubular GCN compared to Pt/C emphasizes its suitability for fuel cells. PMID:26201998
Oxygen reduction reaction: A framework for success
Allendorf, Mark D.
2016-05-06
Oxygen reduction at the cathode of fuel cells typically requires a platinum-based material to catalyse the reaction, but lower-cost, more stable catalysts are sought. Here, an intrinsically conductive metal–organic framework based on cheaper elements is shown to be a durable, structurally well-defined catalyst for this reaction.
Del Rosso, Sebastián; Barros, Edilberto; Tonello, Laís; Oliveira-Silva, Iransé; Behm, David G.; Foster, Carl; Boullosa, Daniel A.
2016-01-01
Purpose Given the co-existence of post-activation potentiation (PAP) and fatigue within muscle, it is not known whether PAP could influence performance and pacing during distance running by moderating fatigue. The aim of this study was to assess the influence of PAP on pacing, jumping and other physiological measures during a self-paced 30 km trial. Methods Eleven male endurance-trained runners (half-marathon runners) volunteered to participate in this study. Runners participated in a multi-stage 30 km trial. Before the trial started, determination of baseline blood lactate (bLa) and countermovement jump (CMJ) height was performed. The self-paced 30 km trial consisted of 6 × 5 km splits. At the end of each 5 km split (60 s break), data on time to complete the split, CMJ height, Rating of Perceived Exertion (RPE) and blood lactate were collected while heart rate was continuously monitored. Results There was a significant decrease in speed (e.g. positive pacing strategy after the 4th split, p<0.05) with a progressive increase in RPE throughout the trial. Compared with baseline, CMJ height was significantly (p<0.05) greater than baseline and was maintained until the end of the trial with an increase after the 5th split, concomitant with a significant reduction in speed and an increase in RPE. Significant correlations were found between ΔCMJ and ΔSPEED (r = 0.77 to 0.87, p<0.05) at different time points as well as between RPE and speed (r = -0.61 to -0.82, p<0.05). Conclusion Our results indicates that fatigue and potentiation co-exist during long lasting endurance events, and that the observed increase in jump performance towards the end of the trial could be reflecting a greater potentiation potentially perhaps counteracting the effects of fatigue and preventing further reductions in speed. PMID:26934357
TH-E-BRF-01: Exploiting Tumor Shrinkage in Split-Course Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unkelbach, J; Craft, D; Hong, T
2014-06-15
Purpose: In split-course radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated by radiobiological considerations. However, using modern image-guidance, it also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. In this work, we consider the optimal design of split-course treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. Methods: We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cellmore » repopulation. The design of splitcourse radiotherapy is formulated as a mathematical optimization problem in which the total dose to the liver is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. Results: We analyze treatments consisting of two stages in detail. The analysis confirms the intuition that the second stage should be delivered just before the tumor size reaches a minimum and repopulation overcompensates shrinking. Furthermore, it was found that, for a large range of model parameters, approximately one third of the dose should be delivered in the first stage. The projected benefit of split-course treatments in terms of liver sparing depends on model assumptions. However, the model predicts large liver dose reductions by more than a factor of two for plausible model parameters. Conclusion: The analysis of the tumor model suggests that substantial reduction in normal tissue dose can be achieved by exploiting tumor shrinkage via an optimal design of multi-stage treatments. This suggests taking a fresh look at split-course radiotherapy for selected disease sites where substantial tumor regression translates into reduced target volumes.« less
NASA Astrophysics Data System (ADS)
Velasco-Vélez, J. J.; Jones, Travis E.; Pfeifer, Verena; Dong, Chung-Li; Chen, Yu-Xun; Chen, Chieh-Ming; Chen, Hsin-Yu; Lu, Ying-Rui; Chen, Jin-Ming; Schlögl, R.; Knop-Gericke, A.; Chuang, C.-H.
2017-01-01
We activated gold electrodes for their use as electrocatalyst for water splitting by electrodepositing Cu, Ni and Co. A combination of operando x-ray absorption spectroscopy and potentiometric control under aqueous conditions revealed the trends in reactivity yielded by these electrodes, which are directly associated with the cross- and overpotentials as well as the occupancy of the 3d orbitals. It was found that under anodic polarization the materials electrodeposited on gold suffer from a lack of stability, while under cathodic polarization they exhibit stable behavior. The observed activity is strongly related to the lack of stability shown by these composites under anodic polarization revealing a dynamic process ruled by corrosion. By operando x-ray absorption, we established that the overall enhancement of the activity for the oxygen evolution reaction is directly attributable to the cross-potential and corrosion process of the electrodeposited materials. It is associated with the high potential deposition, which is the origin of the incipient oxidation-corrosion resistance of the lattice. We conclude that the observed trends in the total current are directly associated with the loss of oxygen in the metal-oxide lattice and the subsequent dissolution of metallic ions in the electrolyte under anodic polarization.
Mechanisms of ilmenite reduction and their impact on the design of effective reactor systems
NASA Technical Reports Server (NTRS)
Briggs, R. A.; Sacco, A.
1991-01-01
One of the first activities at a lunar base could be oxygen recovery from ilmenite (FeTiO3). Oxygen produced from lunar soils could be used to fuel transportation vehicles operating in near-earth space. The first step in developing a suitable reactor system for lunar operation is to determine the mechanisms and rates of oxygen removal from ilmenite. In-situ gravimetric measurements and microscopic examinations were used to determine the hydrogen reduction mechanisms of synthetic ilmenite discs between 823 to 1353 K. A shrinking core reaction model, modified to account for the growth of an iron film on the surface of discs, was capable of predicting experimentally observed conversion-time relationships. The observed reduction mechanism, kinetic rates, and associated activation energy established a base line from which comparisons could be made to improve oxygen yield and removal rates. One proposed technique to improve the rate and extent of oxygen removal was to preoxidize ilmenite. Preoxidation is commonly used during the reduction of ilmenite ores in the iron industry and has been employed for many years to lower operating temperatures and increase reduction rates. This technology could prove beneficial for oxygen production facilities on the Moon as less massive reactor vessels and/or less energy could be associated with a process including preoxidation. X ray diffraction and energy dispersive spectroscopy were utilized to follow the progression of ilmenite oxidation at 1123 and 1140 K and the reduction of pseudobrookite (Fe2TiO5) at 873 and 973 K. Structures formed during the progress of oxidation were related to the system's phase diagrams. Results indicated that after initially producing ilmenite-hematite solutions and rutile (TiO2), pseudobrookite was the end product of oxidation at all temperatures examined (1049 to 1273 K). Initial results from the reduction of pseudobrookite indicate a series of phases are produced including ferropseudobrookite (FeTi2O5), ulvospinel (Fe2TiO4), and ilmenite. Rates of pseudobrookite reduction were typically 50 to 200 times that of ilmenite.
Kirkness, Jason P.; Grote, Ludger; Fricke, Kathrin; Schwartz, Alan R.; Smith, Philip; Schneider, Hartmut
2017-01-01
Patients with chronic obstructive pulmonary disease (COPD) endure excessive resistive and elastic loads leading to chronic respiratory failure. Oxygen supplementation corrects hypoxemia but is not expected to reduce mechanical loads. Nasal high-flow (NHF) therapy supports breathing by reducing dead space, but it is unclear how it affects mechanical loads of patients with COPD. The objective of this study was to compare the effects of low-flow oxygen and NHF therapy on ventilation and work of breathing (WOB) in patients with COPD and controls during sleep. Patients with COPD (n = 12) and controls (n = 6) were recruited and submitted to polysomnography to measure sleep parameters and ventilation in response to administration of oxygen and NHF. A subset of six patients also had an esophageal catheter inserted for the purpose of measuring WOB. Patients with COPD had similar minute ventilation (V̇e) but lower tidal volumes than matched controls. With oxygen, SaO2was increased and V̇e was reduced in both controls and patients with COPD, but there was an increase in transcutaneous CO2 levels. NHF produced a greater reduction in V̇e and was associated with a reduction in CO2 levels. Although NHF halved WOB, oxygen produced only a minor reduction in this parameter. We conclude that oxygen produced little change in WOB, which was associated with CO2 elevations. On the other hand, NHF produced a large reduction in V̇e and WOB with a concomitant decrease in CO2 levels. Our data indicate that NHF improves alveolar ventilation during sleep compared with oxygen and room air in patients with COPD and therefore can decrease their cost of breathing. NEW & NOTEWORTHY Nasal high-flow (NHF) therapy can support ventilation in patients with chronic obstructive pulmonary disease during sleep by decreasing the work of breathing and improving CO2 levels. On the other hand, oxygen supplementation corrects hypoxemia, but it produces only a minimal reduction in work of breathing and is associated with increased CO2 levels. Therefore, NHF can be a useful method to assist ventilation in patients with increased respiratory mechanical loads. PMID:27815367
Zhang, Dawei; Li, Jingwei; Luo, Jiaxian; Xu, Peiman; Wei, Licheng; Zhou, Dan; Xu, Weiming; Yuan, Dingsheng
2018-06-15
It is essential to synthesize low-cost, earth-abundant bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) for water electrolysis. Herein, we present a one-step sulfurization method to fabricate Ni 3 S 2 nanowires directly grown on Ni foam (Ni 3 S 2 NWs/Ni) as such an electrocatalyst. This synthetic strategy has several advantages including facile preparation, low cost and can even be expanded to large-scale preparation for practical applications. The as-synthesized Ni 3 S 2 NWs/Ni exhibits a low overpotential of 81 and 317 mV to render a current density of 10 mA cm -2 for the HER and OER, respectively, in 1.0 mol l -1 KOH solution. The Ni 3 S 2 NWs/Ni was integrated to be the cathode and the anode in the alkaline electrolyzer for overall water splitting with a current density of 10 mA cm -2 afforded at a cell voltage of 1.63 V. More importantly, this electrolyzer maintained its electrocatalytic activity even after continual water splitting for 30 h. Owing to its simple synthesis process, the earth-abundant electrocatalyst and high performance, this versatile Ni 3 S 2 NWs/Ni electrode will become a promising electrocatalyst for water splitting.
NASA Astrophysics Data System (ADS)
Wu, Chengrong; Liu, Bitao; Wang, Jun; Su, Yongyao; Yan, Hengqing; Ng, Chuntan; Li, Cheng; Wei, Jumeng
2018-05-01
Searching for a cost-effective, high efficient and stable bifunctional electrocatalyst for overall water-splitting is critical to renewable energy systems. In this study, three-dimensional (3D) curved nanosheets of Mo-doped Ni3S2 grown on nickel foam were successfully synthesized via a one-step hydrothermal process. The hydrogen-evolution reaction (HER) and the oxygen-evolution reaction (OER) in alkaline environment of this 3D catalyst are investigated in detail. The results show that it possesses lower overpotential, high current densities and small Tafel slopes both in OER and HER. For HER, the catalysts show excellent electrochemical performance, demonstrating a low over-potential of 212 mV at 10 mA cm-2 with a large decrease of 127 mV compared to the undoped Ni3S2. And it also shows a lower overpotential of 260 mV at 10 mA cm-2 which decreases 30 mV for OER. In addition, it is only need 1.67 V for the overall water splitting at 10 mA cm-2 which is 70 mV. It found that the Mo element would change the morphology of Ni3S2 and induce much more active sites for HER and OER. The as-prepared Mo-doped Ni3S2 bi-functional electrocatalyst could act as the promising electrode materials for water splitting.
NASA Astrophysics Data System (ADS)
Zhang, Dawei; Li, Jingwei; Luo, Jiaxian; Xu, Peiman; Wei, Licheng; Zhou, Dan; Xu, Weiming; Yuan, Dingsheng
2018-06-01
It is essential to synthesize low-cost, earth-abundant bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) for water electrolysis. Herein, we present a one-step sulfurization method to fabricate Ni3S2 nanowires directly grown on Ni foam (Ni3S2 NWs/Ni) as such an electrocatalyst. This synthetic strategy has several advantages including facile preparation, low cost and can even be expanded to large-scale preparation for practical applications. The as-synthesized Ni3S2 NWs/Ni exhibits a low overpotential of 81 and 317 mV to render a current density of 10 mA cm‑2 for the HER and OER, respectively, in 1.0 mol l‑1 KOH solution. The Ni3S2 NWs/Ni was integrated to be the cathode and the anode in the alkaline electrolyzer for overall water splitting with a current density of 10 mA cm‑2 afforded at a cell voltage of 1.63 V. More importantly, this electrolyzer maintained its electrocatalytic activity even after continual water splitting for 30 h. Owing to its simple synthesis process, the earth-abundant electrocatalyst and high performance, this versatile Ni3S2 NWs/Ni electrode will become a promising electrocatalyst for water splitting.
Effects of Zn2+ and Pb2+ dopants on the activity of Ga2O3-based photocatalysts for water splitting.
Wang, Xiang; Shen, Shuai; Jin, Shaoqing; Yang, Jingxiu; Li, Mingrun; Wang, Xiuli; Han, Hongxian; Li, Can
2013-11-28
Zn-doped and Pb-doped β-Ga2O3-based photocatalysts were prepared by an impregnation method. The photocatalyst based on the Zn-doped β-Ga2O3 shows a greatly enhanced activity in water splitting while the Pb-doped β-Ga2O3 one shows a dramatic decrease in activity. The effects of Zn(2+) and Pb(2+) dopants on the activity of Ga2O3-based photocatalysts for water splitting were investigated by HRTEM, XPS and time-resolved IR spectroscopy. A ZnGa2O4-β-Ga2O3 heterojunction is formed in the surface region of the Zn-doped β-Ga2O3 and a slower decay of photogenerated electrons is observed. The ZnGa2O4-β-Ga2O3 heterojunction exhibits type-II band alignment and facilitates charge separation, thus leading to an enhanced photocatalytic activity for water splitting. Unlike Zn(2+) ions, Pb(2+) ions are coordinated by oxygen atoms to form polyhedra as dopants, resulting in distorted surface structure and fast decay of photogenerated electrons of β-Ga2O3. These results suggest that the Pb dopants act as charge recombination centers expediting the recombination of photogenerated electrons and holes, thus decreasing the photocatalytic activity.
Semiconductor-based photoelectrochemical water splitting at the limit of very wide depletion region
Liu, Mingzhao; Lyons, John L.; Yan, Danhua H.; ...
2015-11-23
In semiconductor-based photoelectrochemical (PEC) water splitting, carrier separation and delivery largely relies on the depletion region formed at the semiconductor/water interface. As a Schottky junction device, the trade-off between photon collection and minority carrier delivery remains a persistent obstacle for maximizing the performance of a water splitting photoelectrode. Here, it is demonstrated that the PEC water splitting efficiency for an n-SrTiO 3 (n-STO) photoanode is improved very significantly despite its weak indirect band gap optical absorption (α < 10⁴ cm⁻¹), by widening the depletion region through engineering its doping density and profile. Graded doped n-SrTiO 3 photoanodes are fabricated withmore » their bulk heavily doped with oxygen vacancies but their surface lightly doped over a tunable depth of a few hundred nanometers, through a simple low temperature re-oxidation technique. The graded doping profile widens the depletion region to over 500 nm, thus leading to very efficient charge carrier separation and high quantum efficiency (>70%) for the weak indirect transition. As a result, this simultaneous optimization of the light absorption, minority carrier (hole) delivery, and majority carrier (electron) transport by means of a graded doping architecture may be useful for other indirect band gap photocatalysts that suffer from a similar problem of weak optical absorption.« less
Yu, Haixiang; Canoura, Juan; Guntupalli, Bhargav; Lou, Xinhui; Xiao, Yi
2017-01-01
Sensors employing split aptamers that reassemble in the presence of a target can achieve excellent specificity, but the accompanying reduction of target affinity mitigates any overall gains in sensitivity. We for the first time have developed a split aptamer that achieves enhanced target-binding affinity through cooperative binding. We have generated a split cocaine-binding aptamer that incorporates two binding domains, such that target binding at one domain greatly increases the affinity of the second domain. We experimentally demonstrate that the resulting cooperative-binding split aptamer (CBSA) exhibits higher target binding affinity and is far more responsive in terms of target-induced aptamer assembly compared to the single-domain parent split aptamer (PSA) from which it was derived. We further confirm that the target-binding affinity of our CBSA can be affected by the cooperativity of its binding domains and the intrinsic affinity of its PSA. To the best of our knowledge, CBSA-5335 has the highest cocaine affinity of any split aptamer described to date. The CBSA-based assay also demonstrates excellent performance in target detection in complex samples. Using this CBSA, we achieved specific, ultra-sensitive, one-step fluorescence detection of cocaine within fifteen minutes at concentrations as low as 50 nM in 10% saliva without signal amplification. This limit of detection meets the standards recommended by the European Union's Driving under the Influence of Drugs, Alcohol and Medicines program. Our assay also demonstrates excellent reproducibility of results, confirming that this CBSA-platform represents a robust and sensitive means for cocaine detection in actual clinical samples.
Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy
NASA Astrophysics Data System (ADS)
Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S. V.
2001-10-01
The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below Ec) and at 415 K (0.9 below Ec); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below Ec known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below Ec is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.
Blood banking-induced alteration of red blood cell oxygen release ability
Li, Yaojin; Xiong, Yanlian; Wang, Ruofeng; Tang, Fuzhou; Wang, Xiang
2016-01-01
Background Current blood banking procedures may not fully preserve red blood cell (RBC) function during storage, contributing to the decrease of RBC oxygen release ability. This study was undertaken to evaluate the impact of routine cold storage on RBC oxygen release ability. Materials and methods RBC units were collected from healthy donors and each unit was split into two parts (whole blood and suspended RBC) to exclude possible donor variability. Oxygen dissociation measurements were performed on blood units stored at 4 °C during a 5-week period. 2,3-diphosphoglycerate levels and fluorescent micrographs of erythrocyte band 3 were also analysed. Results P50 and oxygen release capacity decreased rapidly during the first 3 weeks, and then did not change significantly. In contrast, the kinetic properties (PO2-t curve and T*50) of oxygen release changed slowly during the first 3 weeks of storage, but then decreased significantly in the last 2 weeks. 2,3-diphosphoglycerate decreased quickly during the first 3 weeks of storage to almost undetectable levels. Band 3 aggregated significantly during the last 2 weeks of storage. Discussion RBC oxygen release ability appears to be sensitive to routine cold storage. The thermodynamic characteristics of RBC oxygen release ability changed mainly in the first 3 weeks of storage, due to the decrease of 2,3-diphosphoglycerate, whereas the kinetic characteristics of RBC oxygen release ability decreased significantly at the end of storage, probably affected by alterations of band 3. PMID:26674824
Blood banking-induced alteration of red blood cell oxygen release ability.
Li, Yaojin; Xiong, Yanlian; Wang, Ruofeng; Tang, Fuzhou; Wang, Xiang
2016-05-01
Current blood banking procedures may not fully preserve red blood cell (RBC) function during storage, contributing to the decrease of RBC oxygen release ability. This study was undertaken to evaluate the impact of routine cold storage on RBC oxygen release ability. RBC units were collected from healthy donors and each unit was split into two parts (whole blood and suspended RBC) to exclude possible donor variability. Oxygen dissociation measurements were performed on blood units stored at 4 °C during a 5-week period. 2,3-diphosphoglycerate levels and fluorescent micrographs of erythrocyte band 3 were also analysed. P50 and oxygen release capacity decreased rapidly during the first 3 weeks, and then did not change significantly. In contrast, the kinetic properties (PO2-t curve and T*50) of oxygen release changed slowly during the first 3 weeks of storage, but then decreased significantly in the last 2 weeks. 2,3-diphosphoglycerate decreased quickly during the first 3 weeks of storage to almost undetectable levels. Band 3 aggregated significantly during the last 2 weeks of storage. RBC oxygen release ability appears to be sensitive to routine cold storage. The thermodynamic characteristics of RBC oxygen release ability changed mainly in the first 3 weeks of storage, due to the decrease of 2,3-diphosphoglycerate, whereas the kinetic characteristics of RBC oxygen release ability decreased significantly at the end of storage, probably affected by alterations of band 3.
Slat templated formation of efficient oxygen reduction electrocatalyst with a fluidic precursor
NASA Astrophysics Data System (ADS)
Tan, Yao
2018-05-01
Development of cost-effective and efficient oxygen reduction catalyst is critical for the commercialization of proton exchange membrane fuel cell. Metal and nitrogen co-doped carbon is recognized as a promising alternative to traditional platinum-based oxygen reduction catalyst. Herein, we report a novel metal and nitrogen co-doped carbon catalyst with an ionic liquid precursor. Salt template, which can be easily removed with mild treatment after the synthesis, is used to generate abundant mesopores in the resulting catalyst. We show that the novel catalyst shows a superior activity comparable to commercial Pt/C catalyst. Furthermore, the important role of the mesopore for the activity of the catalyst is demonstrated.
Hydrogen Reduction of Lunar Regolith Simulants for Oxygen Production
NASA Technical Reports Server (NTRS)
Hegde, U.; Balasubramaniam, R.; Gokoglu, S. A.; Rogers, K.; Reddington, M.; Oryshchyn, L.
2011-01-01
Hydrogen reduction of the lunar regolith simulants JSC-1A and LHT-2M is investigated in this paper. Experiments conducted at NASA Johnson Space Center are described and are analyzed utilizing a previously validated model developed by the authors at NASA Glenn Research Center. The effects of regolith sintering and clumping, likely in actual production operations, on the oxygen production rate are studied. Interpretations of the obtained results on the basis of the validated model are provided and linked to increase in the effective particle size and reduction in the intra-particle species diffusion rates. Initial results on the pressure dependence of the oxygen production rate are also presented and discussed
[Vitamin K3-induced activation of molecular oxygen in glioma cells].
Krylova, N G; Kulagova, T A; Semenkova, G N; Cherenkevich, S N
2009-01-01
It has been shown by the method of fluorescent analysis that the rate of hydrogen peroxide generation in human U251 glioma cells under the effect of lipophilic (menadione) or hydrophilic (vikasol) analogues of vitamin K3 was different. Analyzing experimental data we can conclude that menadione underwent one- and two-electron reduction by intracellular reductases in glioma cells. Reduced forms of menadione interact with molecular oxygen leading to reactive oxygen species (ROS) generation. The theoretical model of ROS generation including two competitive processes of one- and two-electron reduction of menadione has been proposed. Rate constants of ROS generation mediated by one-electron reduction process have been estimated.
Wang, Meng; Hou, Yuyang; Slade, Robert C. T.; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Huakun; Chen, Jun
2016-01-01
Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C. PMID:27597939
Koebernick, Nicolai; Huber, Katrin; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vereecken, Harry; Vetterlein, Doris
2015-01-01
Split root experiments have the potential to disentangle water transport in roots and soil, enabling the investigation of the water uptake pattern of a root system. Interpretation of the experimental data assumes that water flow between the split soil compartments does not occur. Another approach to investigate root water uptake is by numerical simulations combining soil and root water flow depending on the parameterization and description of the root system. Our aim is to demonstrate the synergisms that emerge from combining split root experiments with simulations. We show how growing root architectures derived from temporally repeated X-ray CT scanning can be implemented in numerical soil-plant models. Faba beans were grown with and without split layers and exposed to a single drought period during which plant and soil water status were measured. Root architectures were reconstructed from CT scans and used in the model R-SWMS (root-soil water movement and solute transport) to simulate water potentials in soil and roots in 3D as well as water uptake by growing roots in different depths. CT scans revealed that root development was considerably lower with split layers compared to without. This coincided with a reduction of transpiration, stomatal conductance and shoot growth. Simulated predawn water potentials were lower in the presence of split layers. Simulations showed that this was related to an increased resistance to vertical water flow in the soil by the split layers. Comparison between measured and simulated soil water potentials proved that the split layers were not perfectly isolating and that redistribution of water from the lower, wetter compartments to the drier upper compartments took place, thus water losses were not equal to the root water uptake from those compartments. Still, the layers increased the resistance to vertical flow which resulted in lower simulated collar water potentials that led to reduced stomatal conductance and growth. PMID:26074935
Hikita, Yasuyuki; Nishio, Kazunori; Seitz, Linsey C.; ...
2016-01-22
One of the crucial parameters dictating the efficiency of photoelectrochemical water-splitting is the semiconductor band edge alignment with respect to hydrogen and oxygen redox potentials. Despite the importance of metal oxides in their use as photoelectrodes, studies to control the band edge alignment in aqueous solution have been limited predominantly to compound semiconductors with modulation ranges limited to a few hundred mV. The ability to modulate the flat band potential of oxide photoanodes by as much as 1.3 V, using the insertion of subsurface electrostatic dipoles near a Nb-doped SrTiO 3/aqueous electrolyte interface is reported. Lastly, the tunable range achievedmore » far exceeds previous reports in any semiconductor/aqueous electrolyte system and suggests a general design strategy for highly efficient oxide photoelectrodes.« less
A hybrid water-splitting cycle using copper sulfate and mixed copper oxides
NASA Technical Reports Server (NTRS)
Schreiber, J. D.; Remick, R. J.; Foh, S. E.; Mazumder, M. M.
1980-01-01
The Institute of Gas Technology has derived and developed a hybrid thermochemical water-splitting cycle based on mixed copper oxides and copper sulfate. Similar to other metal oxide-metal sulfate cycles that use a metal oxide to 'concentrate' electrolytically produced sulfuric acid, this cycle offers the advantage of producing oxygen (to be vented) and sulfur dioxide (to be recycled) in separate steps, thereby eliminating the need of another step to separate these gases. The conceptual process flow-sheet efficiency of the cycle promises to exceed 50%. It has been completely demonstrated in the laboratory with recycled materials. Research in the electrochemical oxidation of sulfur dioxide to produce sulfuric acid and hydrogen performed at IGT indicates that the cell performance goals of 200 mA/sq cm at 0.5 V will be attainable using relatively inexpensive electrode materials.
Dey, Sunita; Naidu, B S; Govindaraj, A; Rao, C N R
2015-01-07
Perovskite oxides of the composition La1-xCaxMnO3 (LCM) have been investigated for the thermochemical splitting of H2O and CO2 to produce H2 and CO, respectively. The study was carried out in comparison with La1-xSrxMnO3, CeO2 and other oxides. The LCM system exhibits superior characteristics in high-temperature evolution of oxygen, and in reducing CO2 to CO and H2O to H2. The best results were obtained with La0.5Ca0.5MnO3 whose performance is noteworthy compared to that of other oxides including ceria. The orthorhombic structure of LCM seems to be a crucial factor.
Cellular structure of lean hydrogen flames in microgravity
NASA Technical Reports Server (NTRS)
Patnaik, G.; Kailasanath, K.
1990-01-01
Detailed, time-dependent, two-dimensional numerical simulations of premixed laminar flames have been used to study the initiation and subsequent development of cellular structures in lean hydrogen-air flames. The model includes detailed hydrogen-oxygen combustion with 24 elementary reactions of eight reactive species and a nitrogen diluent, molecular diffusion of all species, thermal conduction, viscosity, and convection. This model has been used to study the nonlinear evolution of cellular flame structure and shows that cell splitting, as observed in experiments, can be predicted numerically for sufficiently reactive mixtures. The structures that evolved also resembled the cellular structures observed in experiments. The present study shows that the 'cell-split limit' postulated from experimental observations is an intrinsic property of the mixture and that external factors such as heat losses are not necessary to cause this limit.
Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells.
Vargas-Barbosa, Nella M; Geise, Geoffrey M; Hickner, Michael A; Mallouk, Thomas E
2014-11-01
Membranes are important in water-splitting solar cells because they prevent crossover of hydrogen and oxygen. Here, bipolar membranes (BPMs) were tested as separators in water electrolysis cells. Steady-state membrane and solution resistances, electrode overpotentials, and pH gradients were measured at current densities relevant to solar photoelectrolysis. Under forward bias conditions, electrodialysis of phosphate buffer ions creates a pH gradient across a BPM. Under reverse bias, the BPM can maintain a constant buffer pH on both sides of the cell, but a large membrane potential develops. Thus, the BPM does not present a viable solution for electrolysis in buffered electrolytes. However, the membrane potential is minimized when the anode and cathode compartments of the cell contain strongly basic and acidic electrolytes, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis.
Hu, Liwen; Song, Yang; Jiao, Shuqiang; Liu, Yingjun; Ge, Jianbang; Jiao, Handong; Zhu, Jun; Wang, Junxiang; Zhu, Hongmin; Fray, Derek J
2016-03-21
Producing graphene through the electrochemical reduction of CO2 remains a great challenge, which requires precise control of the reaction kinetics, such as diffusivities of multiple ions, solubility of various gases, and the nucleation/growth of carbon on a surface. Here, graphene was successfully created from the greenhouse gas CO2 using molten salts. The results showed that CO2 could be effectively fixed by oxygen ions in CaCl2-NaCl-CaO melts to form carbonate ions, and subsequently electrochemically split into graphene on a stainless steel cathode; O2 gas was produced at the RuO2-TiO2 inert anode. The formation of graphene in this manner can be ascribed to the catalysis of active Fe, Ni, and Cu atoms at the surface of the cathode and the microexplosion effect through evolution of CO in between graphite layers. This finding may lead to a new generation of proceedures for the synthesis of high value-added products from CO2, which may also contribute to the establishment of a low-carbon and sustainable world. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matanovic, Ivana; Kent, Paul; Garzon, Fernando
2012-10-10
We use density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5- 1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, nonhollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity towards the oxygen reduction reaction of platinum nanowires was addressed by studying the change in the chemisorption energies of oxygen and hydroxyl groups, inducedmore » by inserting the inner chain of platinum atoms into the hollow nanotubes. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Nanotubes with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matanovic, Ivana; Kent, Paul; Garzon, Fernando
2013-03-14
We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, inducedmore » by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less
NASA Astrophysics Data System (ADS)
Vorndran, Shelby D.; Wu, Yuechen; Ayala, Silvana; Kostuk, Raymond K.
2015-09-01
Concentrating and spectrum splitting photovoltaic (PV) modules have a limited acceptance angle and thus suffer from optical loss under off-axis illumination. This loss manifests itself as a substantial reduction in energy yield in locations where a significant portion of insulation is diffuse. In this work, a spectrum splitting PV system is designed to efficiently collect and convert light in a range of illumination conditions. The system uses a holographic lens to concentrate shortwavelength light onto a smaller, more expensive indium gallium phosphide (InGaP) PV cell. The high efficiency PV cell near the axis is surrounded with silicon (Si), a less expensive material that collects a broader portion of the solar spectrum. Under direct illumination, the device achieves increased conversion efficiency from spectrum splitting. Under diffuse illumination, the device collects light with efficiency comparable to a flat-panel Si module. Design of the holographic lens is discussed. Optical efficiency and power output of the module under a range of illumination conditions from direct to diffuse are simulated with non-sequential raytracing software. Using direct and diffuse Typical Metrological Year (TMY3) irradiance measurements, annual energy yield of the module is calculated for several installation sites. Energy yield of the spectrum splitting module is compared to that of a full flat-panel Si reference module.
Brassard, Patrice; Pelletier, Claudine; Martin, Mickaël; Gagné, Nathalie; Poirier, Paul; Ainslie, Philip N; Caouette, Manon; Bussières, Jean S
2014-06-01
Although utilization of vasopressors recently has been associated with reduced cerebral oxygenation, the influence of vasopressors on cerebral oxygenation during cardiopulmonary bypass in patients with diabetes is unknown. The aim of this study was to document the impact of norepinephrine and phenylephrine utilization on cerebral oxygenation in patients with and without diabetes during cardiopulmonary bypass. Prospective, clinical study. Academic medical center. Fourteen patients with diabetes and 17 patients without diabetes undergoing cardiac surgery. During cardiopulmonary bypass, norepinephrine (diabetics n = 6; non-diabetics n = 8) or phenylephrine (diabetics n = 8; non-diabetics n = 9) was administered intravenously to maintain mean arterial pressure above 60 mmHg. Mean arterial pressure, venous temperature, arterial oxygenation, and frontal lobe oxygenation (monitored by near-infrared spectroscopy) were recorded before anesthesia induction (baseline) and continuously during cardiopulmonary bypass. Frontal lobe oxygenation was lowered to a greater extent in diabetics versus non-diabetics with administration of norepinephrine (-14±13 v 3±12%; p<0.05). There was also a trend towards a greater reduction in cerebral oxygenation in diabetics versus non-diabetics with administration of phenylephrine (-12±8 v -6±7%; p = 0.1) during cardiopulmonary bypass. Administration of norepinephrine to restore mean arterial pressure during cardiopulmonary bypass is associated with a reduction in frontal lobe oxygenation in diabetics but not in patients without diabetes. Administration of phenylephrine also were associated with a trend towards a greater reduction in frontal lobe oxygenation in diabetics. The clinical implications of these findings deserve future consideration. © 2013 Elsevier Inc. All rights reserved.
Method for oxygen reduction in a uranium-recovery process. [US DOE patent application
Hurst, F.J.; Brown, G.M.; Posey, F.A.
1981-11-04
An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous iron and accumulation of complex iron phosphates or cruds.
Wang, Tobias; Lefevre, Sjannie; Iversen, Nina K; Findorf, Inge; Buchanan, Rasmus; McKenzie, David J
2014-12-15
To address how the capacity for oxygen transport influences tolerance of acute warming in fishes, we investigated whether a reduction in haematocrit, by means of intra-peritoneal injection of the haemolytic agent phenylhydrazine, lowered the upper critical temperature of sea bass. A reduction in haematocrit from 42±2% to 20±3% (mean ± s.e.m.) caused a significant but minor reduction in upper critical temperature, from 35.8±0.1 to 35.1±0.2°C, with no correlation between individual values for haematocrit and upper thermal limit. Anaemia did not influence the rise in oxygen uptake between 25 and 33°C, because the anaemic fish were able to compensate for reduced blood oxygen carrying capacity with a significant increase in cardiac output. Therefore, in sea bass the upper critical temperature, at which they lost equilibrium, was not determined by an inability of the cardio-respiratory system to meet the thermal acceleration of metabolic demands. © 2014. Published by The Company of Biologists Ltd.
High performance platinum single atom electrocatalyst for oxygen reduction reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jing; Jiao, Menggai; Lu, Lanlu
For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm –2 at 80 °C with a low platinum loading of 0.09 mgPt cm –2, corresponding to a platinum utilization of 0.13 gPt kWmore » –1 in the fuel cell. Good fuel cell durability is also observed. As a result, theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.« less
High performance platinum single atom electrocatalyst for oxygen reduction reaction
Liu, Jing; Jiao, Menggai; Lu, Lanlu; ...
2017-07-24
For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm –2 at 80 °C with a low platinum loading of 0.09 mgPt cm –2, corresponding to a platinum utilization of 0.13 gPt kWmore » –1 in the fuel cell. Good fuel cell durability is also observed. As a result, theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.« less
Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.
Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn
2015-08-26
In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.
Charge doping and large lattice expansion in oxygen-deficient heteroepitaxial WO3
NASA Astrophysics Data System (ADS)
Mattoni, Giordano; Filippetti, Alessio; Manca, Nicola; Zubko, Pavlo; Caviglia, Andrea D.
2018-05-01
Tungsten trioxide (WO3) is a versatile material with widespread applications ranging from electrochromics and optoelectronics to water splitting and catalysis of chemical reactions. For technological applications, thin films of WO3 are particularly appealing, taking advantage from a high surface-to-volume ratio and tunable physical properties. However, the growth of stoichiometric crystalline thin films is challenging because the deposition conditions are very sensitive to the formation of oxygen vacancies. In this paper, we show how background oxygen pressure during pulsed laser deposition can be used to tune the structural and electronic properties of WO3 thin films. By performing x-ray diffraction and low-temperature electrical transport measurements, we find changes in the WO3 lattice volume of up to 10% concomitantly with a resistivity drop of more than five orders of magnitude at room temperature as a function of increased oxygen deficiency. We use advanced ab initio calculations to describe in detail the properties of the oxygen vacancy defect states and their evolution in terms of excess charge concentration. Our results depict an intriguing scenario where structural, electronic, optical, and transport properties of WO3 single-crystal thin films can all be purposely tuned by controlling the oxygen vacancy formation during growth.
Optical oxygen concentration monitor
Kebabian, P.
1997-07-22
A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.
NASA Technical Reports Server (NTRS)
Whidby, J. F.
1973-01-01
Paper is impregnated with mixture of methylene blue and ethylenediaminetetraacetic acid. Methylene blue is photo-reduced to leuco-form. Paper is kept isolated from oxygen until ready for use. Paper can be reused by photo-reduction after oxygen exposure.
Liu, Xian-Wei; Sun, Xue-Fei; Huang, Yu-Xi; Sheng, Guo-Ping; Zhou, Kang; Zeng, Raymond J; Dong, Fang; Wang, Shu-Guang; Xu, An-Wu; Tong, Zhong-Hua; Yu, Han-Qing
2010-10-01
Microbial fuel cells (MFCs) provide new opportunities for the simultaneous wastewater treatment and electricity generation. Enhanced oxygen reduction capacity of cost-effective metal-based catalysts in an air cathode is essential for the scale-up and commercialization of MFCs in the field of wastewater treatment. We demonstrated that a nano-structured MnO(x) material, prepared by an electrochemically deposition method, could be an effective catalyst for oxygen reduction in an MFC to generate electricity with the maximum power density of 772.8 mW/m(3) and remove organics when the MFC was fed with an acetate-laden synthetic wastewater. The nano-structured MnO(x) with the controllable size and morphology could be readily obtained with the electrochemical deposition method. Both morphology and manganese oxidation state of the nano-scale catalyst were largely dependent on the electrochemical preparation process, and they governed its catalytic activity and the cathodic oxygen reduction performance of the MFC accordingly. Furthermore, cyclic voltammetry (CV) performed on each nano-structured material suggests that the MnO(x) nanorods had an electrochemical activity towards oxygen reduction reaction via a four-electron pathway in a neutral pH solution. This work provides useful information on the facile preparation of cost-effective cathodic catalysts in a controllable way for the single-chamber air-cathode MFC for wastewater treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Emerging climate change signals in the interior ocean oxygen content
NASA Astrophysics Data System (ADS)
Tjiputra, Jerry; Goris, Nadine; Schwinger, Jörg; Lauvset, Siv
2017-04-01
Earth System Models (ESMs) indicate that human-induced climate change will introduce spatially heterogeneous modifications of dissolved oxygen in the North Atlantic. In the upper ocean, an increase (decrease) is predicted at low (high) latitude. Oxygen increase is driven by a reduction of the oxygen consumption for biological remineralization while warming-induced reduction in air-sea fluxes and increase in remineralization due to weaker overturning circulation lead to the projected decrease. In the interior ocean, modifications in the apparent oxygen utilization (AOU) dominate the overall oxygen changes. Moreover, for the southern subpolar gyre, both observations and model hindcast indicate a close relationship between interior ocean oxygen and the subpolar gyre index. Over the 21st century, all ESMs consistently project a steady weakening of this index and consequently the oxygen. Our finding shows that climate change-induced oxygen depletion in the interior has likely occurred and can already be detected. Nevertheless, considering the observational uncertainties, we show that in the proximity of southern subpolar gyre the projected interior trend is sufficiently large enough for early detection.
Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.
2016-01-01
Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290
Luganskaia, A N; Krasnovskiĭ, A A
1975-01-01
Dependence of chlorophyll "a" photosensitized reduction of methylviologene with tiourea on the temperature of reaction mixture was studied in aerobic conditions in triton X-100 aqueous solution. It was found that the reaction consisted of two stages: the light and dark ones. Photosensitized oxidation of tiourea with air oxygen proceeds at the temperatures up to -70 degrees C. Reduction of methylviologen is a dark stage for which diffusion processes are necessary. The role of hydrogen peroxide in the reaction studied has been investigated. It has been shown that hydrogen peroxide is not the "initiator" of the reaction which results in the reduction of methylviologen. Reduced glutation and the mixture of reduced and oxidized glutations were used as electron donors in photosensitized reaction in the presence of air oxygen. An increase of the depth and rate of the reduction of methylviologen under aerobic conditions as compared to anaerobic ones points to the formation of more active reducers than the initial electron donor.
Cerberus to Mind: Media as Sentinel in the Fight against Terrorism
2006-05-01
splits. First, unfiltered signals arrive directly at the amygdala . The amygdala , as the evolutionary and memory-induced warehouse of fear, makes a...and detailed evaluation. The cortically-processed sensory inputs then arrive at the amygdala (with a time detail relative to the direct inputs from...the victims themselves.[4] Terror and the Media Democratic nations must try to find ways to starve the terrorist and the hijacker of the oxygen of
Interrelation between Structure Magnetic Properties in La0.5Sr0.5CoO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biegalski, Michael D; Takamura, Y; Mehta, A
Differing anisotropic strain induced from the underlying substrates not only control the long-range structural symmetries in La0.5Sr0.5CoO3 but also impact the magnetic properties of these epitaxial thin films. The two dominant structural distortions: oxygen octahedral tilts and epitaxial strain, however, have complex and non-intuitive effects on the splitting of the t2g states and consequently on magnetization.
Direct Coupling of Thermo- and Photocatalysis for Conversion of CO2 -H2 O into Fuels.
Zhang, Li; Kong, Guoguo; Meng, Yaping; Tian, Jinshu; Zhang, Lijie; Wan, Shaolong; Lin, Jingdong; Wang, Yong
2017-12-08
Photocatalytic CO 2 reduction into renewable hydrocarbon solar fuels is considered as a promising strategy to simultaneously address global energy and environmental issues. This study focused on the direct coupling of photocatalytic water splitting and thermocatalytic hydrogenation of CO 2 in the conversion of CO 2 -H 2 O into fuels. Specifically, it was found that direct coupling of thermo- and photocatalysis over Au-Ru/TiO 2 leads to activity 15 times higher (T=358 K; ca. 99 % CH 4 selectivity) in the conversion of CO 2 -H 2 O into fuels than that of photocatalytic water splitting. This is ascribed to the promoting effect of thermocatalytic hydrogenation of CO 2 by hydrogen atoms generated in situ by photocatalytic water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Libo; Zhou, Gang, E-mail: gzhou@mail.buct.edu.cn
2016-04-14
The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO{sub 2} is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximatemore » to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.« less
NASA Astrophysics Data System (ADS)
Riegg, S.; Müller, T.; Ebbinghaus, S. G.
2013-06-01
The oxygen stoichiometries of pure and rare-earth substituted La2RuO5 have been investigated by thermogravimetry (TG) in reducing atmosphere. Assuming that the observed total weight loss is caused by the reduction of Ru4+ to Ru-metal, remarkable oxygen deficiencies were calculated. These would correspond to ruthenium oxidation states significantly lower than the ones experimentally observed by XANES. To explain this discrepancy we investigated the reduction products by X-ray absorption spectroscopy (XAS). EXAFS measurements at the Ru-K edge revealed the presence of an X-ray amorphous ruthenium oxide, indicating an incomplete reduction. The apparent oxygen deficiencies obtained for pure and rare-earth substituted samples correlate with the amount of remaining ruthenium oxide. The presence of a ruthenium oxide species was furthermore verified by Ru-LIII XANES investigations. Our results show that the determination of oxygen contents by thermogravimetry might fail even for the easily reducable nobel metal oxides and therefore has to be applied with caution if the reaction products cannot be identified unambiguously.
Blanchet, Elise; Pécastaings, Sophie; Erable, Benjamin; Roques, Christine; Bergel, Alain
2014-12-01
Reversible bioelectrodes were designed by alternating acetate and oxygen supply. It was demonstrated that the protons produced and accumulated inside the biofilm during the anodic phase greatly favored the oxygen reduction reaction when the electrode was switched to become the biocathode. Protons accumulation, which hindered the bioanode operation, thus became an advantage for the biocathode. The bioanodes, formed from garden compost leachate under constant polarization at -0.2 V vs. SCE, were able to support long exposure to forced aeration, with only a slight alteration of their anodic efficiency. They produced a current density of 16±1.7 A/m2 for acetate oxidation and up to -0.4 A/m2 for oxygen reduction. Analysis of the microbial communities by 16S rRNA pyrosequencing revealed strong selection of Chloroflexi (49±1%), which was not observed for conventional bioanodes not exposed to oxygen. Chloroflexi were found as the dominant phylum of electroactive biofilms for the first time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Single crystal X-ray diffraction study of the HgBa2CuO4+δ superconducting compound
NASA Astrophysics Data System (ADS)
Bordet, P.; Duc, F.; Lefloch, S.; Capponi, J. J.; Alexandre, E.; Rosa-Nunes, M.; Antipov, E. V.; Putilin, S.
1996-02-01
A high precision X-ray diffraction analysis up to sin θ/λ = 1.15 of a HgBa2CuO4+δ single crystal having a Tc of ~ 90 K is presented. The cell parameters are a = 3.8815(4), c = 9.485 (7) Å. The refinements indicate the existence of a split barium site due to the presence of excess oxygen in the mercury layer. The position of this excess oxygen might be slightly displaced from the (1/2 1/2 0) position. A 6% mercury deficiency is observed. Models, including mercury defects, substitution by copper cations, or carbonate groups, are compared. However, we obtain no definite evidence for either of the three models. A possible disorder of the Hg position, due to the formation of chemical bonds with neighbouring extra oxygen anions, could correlate to the refinements of mixed species at the Hg site. A low temperature single crystal x-ray diffraction study, and comparison of refinements for the same single crystal with different extra oxygen contents, are in progress to help clarify this problem.
Apparatus and method for the electrolysis of water
Greenbaum, Elias
2015-04-21
An apparatus for the electrolytic splitting of water into hydrogen and/or oxygen, the apparatus comprising: (i) at least one lithographically-patternable substrate having a surface; (ii) a plurality of microscaled catalytic electrodes embedded in said surface; (iii) at least one counter electrode in proximity to but not on said surface; (iv) means for collecting evolved hydrogen and/or oxygen gas; (v) electrical powering means for applying a voltage across said plurality of microscaled catalytic electrodes and said at least one counter electrode; and (vi) a container for holding an aqueous electrolyte and housing said plurality of microscaled catalytic electrodes and said at least one counter electrode. Electrolytic processes using the above electrolytic apparatus or functional mimics thereof are also described.
Koehler, U; Hildebrandt, O; Jerrentrup, L; Koehler, K-I; Kianinejad, P; Sohrabi, K; Schäfer, H; Kenn, K
2014-03-01
Long-term oxygen treatment (LTOT) has been demonstrated to improve prognosis in patients with chronic respiratory insufficiency. In terms of pathogenesis, improved oxygenation, reduction of pulmonary artery pressure as well as reduction of respiratory work are important. Since there are considerable differences between the LTOT systems, individually tailored therapy is needed. In particular, the mobility aspects of the patients must be taken into consideration. It is important to distinguish between stationary/mobile devices with a liquid oxygen system and stationary/mobile devices with oxygen concentrator. Oxygen titration should be performed in relation to rest and activity phases (e. g. 6 minute walk test) as well as in relation to the sleep phase. Employing devices with demand-controlled valves should be critically examined. This can be undertaken only under physician orders and requires continuous monitoring. © Georg Thieme Verlag KG Stuttgart · New York.
The onsite manufacture of propellant oxygen from lunar resources
NASA Technical Reports Server (NTRS)
Rosenberg, Sanders D.; Beegle, Robert L., Jr.; Guter, Gerald A.; Miller, Frederick E.; Rothenberg, Michael
1992-01-01
The Aerojet carbothermal process for the manufacture of oxygen from lunar materials has three essential steps: the reduction of silicate with methane to form carbon monoxide and hydrogen; the reduction of carbon monoxide with hydrogen to form methane and water; and the electrolysis of water to form hydrogen and oxygen. The reactions and the overall process are shown. It is shown with laboratory experimentation that the carbothermal process is feasible. Natural silicates can be reduced with carbon or methane. The important products are carbon monoxide, metal, and slag. The carbon monoxide can be completely reduced to form methane and water. The water can be electrolyzed to produce hydrogen and oxygen. A preliminary engineering study shows that the operation of plants using this process for the manufacture of propellant oxygen has a large economic advantage when the cost of the plant and its operation is compared to the cost of delivering oxygen from Earth.
The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries.
Cao, Ruiguo; Walter, Eric D; Xu, Wu; Nasybulin, Eduard N; Bhattacharya, Priyanka; Bowden, Mark E; Engelhard, Mark H; Zhang, Ji-Guang
2014-09-01
A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium-oxygen (Li-O2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of the ORR/OER reactions in nonaqueous Li-O2 batteries by using electron paramagnetic resonance (EPR) spectroscopy, using 5,5-dimethyl-pyrroline N-oxide as a spin trap. The study provides direct verification of the formation of the superoxide radical anion (O2(˙-)) as an intermediate in the ORR during the discharge process, while no O2(˙-) was detected in the OER during the charge process. These findings provide insight into, and an understanding of, the fundamental reaction mechanisms involving oxygen and guide the further development of this field. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Workshop on Oxygen in Asteroids and Meteorites
NASA Technical Reports Server (NTRS)
2005-01-01
Contents include the following: Constraints on the detection of solar nebula's oxidation state through asteroid observation. Oxidation/Reduction Processes in Primitive Achondrites. Low-Temperature Chemical Processing on Asteroids. On the Formation Location of Asteroids and Meteorites. The Spectral Properties of Angritic Basalts. Correlation Between Chemical and Oxygen Isotopic Compositions in Chondrites. Effect of In-Situ Aqueous Alteration on Thermal Model Heat Budgets. Oxidation-Reduction in Meteorites: The Case of High-Ni Irons. Ureilite Atmospherics: Coming up for Air on a Parent Body. High Temperature Effects Including Oxygen Fugacity, in Pre-Planetary and Planetary Meteorites and Asteroids. Oxygen Isotopic Variation of Asteroidal Materials. High-Temperature Chemical Processing on Asteroids: An Oxygen Isotope Perspective. Oxygen Isotopes and Origin of Opaque Assemblages from the Ningqiang Carbonaceous Chondrite. Water Distribution in the Asteroid Belt. Comparative Planetary Mineralogy: V Systematics in Planetary Pyroxenes and fo 2 Estimates for Basalts from Vesta.
Nocera, Daniel G
2012-05-15
To convert the energy of sunlight into chemical energy, the leaf splits water via the photosynthetic process to produce molecular oxygen and hydrogen, which is in a form of separated protons and electrons. The primary steps of natural photosynthesis involve the absorption of sunlight and its conversion into spatially separated electron-hole pairs. The holes of this wireless current are captured by the oxygen evolving complex (OEC) of photosystem II (PSII) to oxidize water to oxygen. The electrons and protons produced as a byproduct of the OEC reaction are captured by ferrodoxin of photosystem I. With the aid of ferrodoxin-NADP(+) reductase, they are used to produce hydrogen in the form of NADPH. For a synthetic material to realize the solar energy conversion function of the leaf, the light-absorbing material must capture a solar photon to generate a wireless current that is harnessed by catalysts, which drive the four electron/hole fuel-forming water-splitting reaction under benign conditions and under 1 sun (100 mW/cm(2)) illumination. This Account describes the construction of an artificial leaf comprising earth-abundant elements by interfacing a triple junction, amorphous silicon photovoltaic with hydrogen- and oxygen-evolving catalysts made from a ternary alloy (NiMoZn) and a cobalt-phosphate cluster (Co-OEC), respectively. The latter captures the structural and functional attributes of the PSII-OEC. Similar to the PSII-OEC, the Co-OEC self-assembles upon oxidation of an earth-abundant metal ion from 2+ to 3+, may operate in natural water at room temperature, and is self-healing. The Co-OEC also activates H(2)O by a proton-coupled electron transfer mechanism in which the Co-OEC is increased by four hole equivalents akin to the S-state pumping of the Kok cycle of PSII. X-ray absorption spectroscopy studies have established that the Co-OEC is a structural relative of Mn(3)CaO(4)-Mn cubane of the PSII-OEC, where Co replaces Mn and the cubane is extended in a corner-sharing, head-to-tail dimer. The ability to perform the oxygen-evolving reaction in water at neutral or near-neutral conditions has several consequences for the construction of the artificial leaf. The NiMoZn alloy may be used in place of Pt to generate hydrogen. To stabilize silicon in water, its surface is coated with a conducting metal oxide onto which the Co-OEC may be deposited. The net result is that immersing a triple-junction Si wafer coated with NiMoZn and Co-OEC in water and holding it up to sunlight can effect direct solar energy conversion via water splitting. By constructing a simple, stand-alone device composed of earth-abundant materials, the artificial leaf provides a means for an inexpensive and highly distributed solar-to-fuels system that employs low-cost systems engineering and manufacturing. Through this type of system, solar energy can become a viable energy supply to those in the non-legacy world.
Convenient synthesis of Mn-doped Zn (O,S) nanoparticle photocatalyst for 4-nitrophenol reduction
NASA Astrophysics Data System (ADS)
Susanto Gultom, Noto; Abdullah, Hairus; Kuo, Dong-Hau
2018-04-01
The conversion of 4-nitrophenol as a toxic and waste pollutant to 4-aminophenol as a non-toxic and useful compound by photocatalytic reduction is highly important. In this work, the solid-solution concept by doping was involved to synthesis earth-abundant and green material of Mn-doped Zn(O,S). Zn(O,S) with different Mn doping contents was easily synthesized at low temperature 90°C for 4-NP reduction without using the reducing agent of NaBH4. The Mn-doped Zn(O,S) catalyst exhibited the enhancements in optical and electrochemical properties compared to un-doped Zn(O,S).It was found that 10% Mn-doped Zn(O,S) had the best properties and it could totally reduce 4-NP after 2h photoreactions under low UV illumination. The hydrogen ion was proposed to involve the 4-NP reduction to 4-AP, which is hydrogen ion and electron replaced the oxygen in amino (NO2) group of 4-NP to form the nitro (NH2) group. We alsoproposed the incorporation of Mn in Zn site in the Zn(O,S) host lattice could make the oxygen surface bonding weak for easily forming the oxygen vacancy. The more oxygen vacancy for more hydrogen ion would be generated to consume for 4-NP reduction.
Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting.
Ling, Chongyi; Shi, Li; Ouyang, Yixin; Zeng, Xiao Cheng; Wang, Jinlan
2017-08-09
Nanosheet supported single-atom catalysts (SACs) can make full use of metal atoms and yet entail high selectivity and activity, and bifunctional catalysts can enable higher performance while lowering the cost than two separate unifunctional catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Here, on the basis of first-principles computations, we report a design of the first single-atom bifunctional eletrocatalyst, namely, isolated nickel atom supported on β 12 boron monolayer (Ni 1 /β 12 -BM), to achieve overall water splitting. This nanosheet supported SAC exhibits remarkable electrocatalytic performance with the computed overpotential for oxygen/hydrogen evolution reaction being just 0.40/0.06 V. The ab initio molecular dynamics simulation shows that the SAC can survive up to 800 K elevated temperature, while enacting a high energy barrier of 1.68 eV to prevent isolated Ni atoms from clustering. A viable experimental route for the synthesis of Ni 1 /β 12 -BM SAC is demonstrated from computer simulation. The desired nanosheet supported single-atom bifunctional catalysts not only show great potential for achieving overall water splitting but also offer cost-effective opportunities for advancing clean energy technology.
Magnon Splitting Induced by Charge Transfer in the Three-Orbital Hubbard Model
NASA Astrophysics Data System (ADS)
Wang, Yao; Huang, Edwin W.; Moritz, Brian; Devereaux, Thomas P.
2018-06-01
Understanding spin excitations and their connection to unconventional superconductivity have remained central issues since the discovery of cuprates. Direct measurement of the dynamical spin structure factor in the parent compounds can provide key information on important interactions relevant in the doped regime, and variations in the magnon dispersion have been linked closely to differences in crystal structure between families of cuprate compounds. Here, we elucidate the relationship between spin excitations and various controlling factors thought to be significant in high-Tc materials by systematically evaluating the dynamical spin structure factor for the three-orbital Hubbard model, revealing differences in the spin dispersion along the Brillouin zone axis and the diagonal. Generally, we find that the absolute energy scale and momentum dependence of the excitations primarily are sensitive to the effective charge-transfer energy, while changes in the on-site Coulomb interactions have little effect on the details of the dispersion. In particular, our result highlights the splitting between spin excitations along the axial and diagonal directions in the Brillouin zone. This splitting decreases with increasing charge-transfer energy and correlates with changes in the apical oxygen position, and general structural variations, for different cuprate families.
Anvari, Roozbeh; Spagnoli, Dino; Parish, Giacinta; Nener, Brett
2018-03-09
Density functional theory calculations are used to study the molecular and dissociative adsorption of water on the (-201) β-Ga 2 O 3 surface. The effect of adsorption of different water-like species on the geometry, binding energies, vibrational spectra and the electronic structure of the surface are discussed. The study shows that although the hydrogen evolution reaction requires a small amount of energy to become energetically favourable, the over potential for activating the oxygen evolution reaction is quite high. The results of our calculations provide insight as to why a high voltage is required in experiments to activate the water-splitting reaction, whereas previous studies of gallium oxide predicted very low activation energies for other energetically more favourable facets. Application of this work to studies of GaN-based chemical sensors with gallium oxide surfaces shows that it is possible to select the gate bias so that the sensors are not influenced by water-splitting reactions. It was also found that in the region where water splitting does not occur, the surface can exist in two states, that is, water or hydroxyl terminated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coker, Eric Nicholas; Miller, James E.
A thermal oxidation-reduction cycle is disclosed that uses iron titanium oxide as the reactive material. The cycle may be used for the thermal splitting of water and/or carbon dioxide to form hydrogen and/or carbon monoxide. The formed compounds may be used as syngas precursors to form fuels.
Peng, Yuelin; Govindaraju, Gokul V; Lee, Dong Ki; Choi, Kyoung-Shin; Andrew, Trisha L
2017-07-12
We report an unassisted solar water splitting system powered by a diketopyrrolopyrrole (DPP)-containing semitransparent organic solar cell. Two major merits of this fullerene-free solar cell enable its integration with a BiVO 4 photoanode. First is the high open circuit voltage and high fill factor displayed by this single junction solar cell, which yields sufficient power to effect water splitting when serially connected to an appropriate electrode/catalyst. Second, the wavelength-resolved photoaction spectrum of the DPP-based solar cell has minimal overlap with that of the BiVO 4 photoanode, thus ensuring that light collection across these two components can be optimized. The latter feature enables a new water splitting device configuration wherein the solar cell is placed first in the path of incident light, before the BiVO 4 photoanode, although BiVO 4 has a wider bandgap. This configuration is accessed by replacing the reflective top electrode of the standard DPP-based solar cell with a thin metal film and an antireflection layer, thus rendering the solar cell semitransparent. In this configuration, incident light does not travel through the aqueous electrolyte to reach the solar cell or photoanode, and therefore, photon losses due to the scattering of water are reduced. Moreover, this new configuration allows the BiVO 4 photoanode to be back-illuminated, i.e., through the BiVO 4 /back contact interface, which leads to higher photocurrents compared to front illumination. The combination of a semitransparent single-junction solar cell and a BiVO 4 photoanode coated with oxygen evolution catalysts in a new device configuration yielded an unassisted solar water splitting system with a solar-to-hydrogen conversion efficiency of 2.2% in water.
Luo, Pan; Zhang, Huijuan; Liu, Li; Zhang, Yan; Deng, Ju; Xu, Chaohe; Hu, Ning; Wang, Yu
2017-01-25
Water splitting is one of the ideal technologies to meet the ever increasing demands of energy. Many materials have aroused great attention in this field. The family of nickel-based sulfides is one of the examples that possesses interesting properties in water-splitting fields. In this paper, a controllable and simple strategy to synthesize nickel sulfides was proposed. First, we fabricated NiS 2 hollow microspheres via a hydrothermal process. After a precise heat control in a specific atmosphere, NiS porous hollow microspheres were prepared. NiS 2 was applied in hydrogen evolution reaction (HER) and shows a marvelous performance both in acid medium (an overpotential of 174 mV to achieve a current density of 10 mA/cm 2 and the Tafel slope is only 63 mV/dec) and in alkaline medium (an overpotential of 148 mV to afford a current density of 10 mA/cm 2 and the Tafel slope is 79 mV/dec). NiS was used in oxygen evolution reaction (OER) showing a low overpotential of 320 mV to deliver a current density of 10 mA/cm 2 , which is meritorious. These results enlighten us to make an efficient water-splitting system, including NiS 2 as HER catalyst in a cathode and NiS as OER catalyst in an anode. The system shows high activity and good stabilization. Specifically, it displays a stable current density of 10 mA/cm 2 with the applying voltage of 1.58 V, which is a considerable electrolyzer for water splitting.
Kadirov, M K; Knyazeva, I R; Nizameev, I R; Safiullin, R A; Matveeva, V I; Kholin, K V; Khrizanforova, V V; Ismaev, T I; Burilov, A R; Budnikova, Yu H; Sinyashin, O G
2016-10-18
The catalytic activity of the nickel complexes of thiophosphorylated calix[4]resorcinols for oxygen reduction in a polymer electrolyte membrane fuel cell (PEMFC) has been studied. The conformation of the macrocyclic ligand determines the morphology and catalytic properties of the resulting organometallic species.
Trend in the Catalytic Activity of Transition Metals for the Oxygen Reduction Reaction by Lithium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dathar, Gopi Krishna Phani; Shelton Jr, William Allison; Xu, Ye
2012-01-01
Periodic density functional theory (DFT) calculations indicate that the intrinsic activity of Au, Ag, Pt, Pd, Ir, and Ru for the oxygen reduction reaction by Li (Li-ORR) forms a volcano-like trend with respect to the adsorption energy of oxygen, with Pt and Pd being the most active. The trend is based on two mechanisms: the reduction of molecular O{sub 2} on Au and Ag and of atomic O on the remaining metals. Step edges are found to be more active for catalyzing the Li-ORR than close-packed surfaces. Our findings identify important considerations in the design of catalyst-promoted air cathodes formore » nonaqueous Li-air batteries.« less
NASA Astrophysics Data System (ADS)
Zeng, Han; Huo, Wen-Shan; Zhao, Shu-Xian; Zhang, Yu-He
2017-11-01
Amino group surface tailored multi-wall carbon nano-tubes were covalently tethered to the gold disk electrode and Laccase molecules were covalently coupled to nano-tubes to prepare Lac-based electrode. Derivative of 3-ferrocenyl dihydropyrazole (FDPFFP) was proposed to be electron mediator for mediated oxygen reduction reaction. Investigation in electro-chemical behavior and catalytic performance to enzymatic reaction of FDPFFP indicated that it displayed quasi-reversible characteristics of electro-chemical reaction with rapid dynamics of electron shuttle and had apparent catalytic effect in oxygen reduction (onset potential for catalysis at 450 mV vs NHE). This enzymatic catalysis was restrained by the step in diffusion of substrate.
Jespersen, Sune N; Østergaard, Leif
2012-01-01
Normal brain function depends critically on moment-to-moment regulation of oxygen supply by the bloodstream to meet changing metabolic needs. Neurovascular coupling, a range of mechanisms that converge on arterioles to adjust local cerebral blood flow (CBF), represents our current framework for understanding this regulation. We modeled the combined effects of CBF and capillary transit time heterogeneity (CTTH) on the maximum oxygen extraction fraction (OEFmax) and metabolic rate of oxygen that can biophysically be supported, for a given tissue oxygen tension. Red blood cell velocity recordings in rat brain support close hemodynamic–metabolic coupling by means of CBF and CTTH across a range of physiological conditions. The CTTH reduction improves tissue oxygenation by counteracting inherent reductions in OEFmax as CBF increases, and seemingly secures sufficient oxygenation during episodes of hyperemia resulting from cortical activation or hypoxemia. In hypoperfusion and states of blocked CBF, both lower oxygen tension and CTTH may secure tissue oxygenation. Our model predicts that disturbed capillary flows may cause a condition of malignant CTTH, in which states of higher CBF display lower oxygen availability. We propose that conditions with altered capillary morphology, such as amyloid, diabetic or hypertensive microangiopathy, and ischemia–reperfusion, may disturb CTTH and thereby flow-metabolism coupling and cerebral oxygen metabolism. PMID:22044867
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favaro, Marco; Yang, Jinhui; Nappini, Silvia
Photoelectrochemical water splitting is a promising approach for renewable production of hydrogen from solar energy and requires interfacing advanced water-splitting catalysts with semiconductors. Understanding the mechanism of function of such electrocatalysts at the atomic scale and under realistic working conditions is a challenging, yet important, task for advancing efficient and stable function. This is particularly true for the case of oxygen evolution catalysts and, here, we study a highly active Co 3O 4/Co(OH) 2 biphasic electrocatalyst on Si by means of operando ambient-pressure X-ray photoelectron spectroscopy performed at the solid/liquid electrified interface. Spectral simulation and multiplet fitting reveal that themore » catalyst undergoes chemical-structural transformations as a function of the applied anodic potential, with complete conversion of the Co(OH) 2 and partial conversion of the spinel Co 3O 4 phases to CoO(OH) under precatalytic electrochemical conditions. Furthermore, we observe new spectral features in both Co 2p and O 1s core-level regions to emerge under oxygen evolution reaction conditions on CoO(OH). The operando photoelectron spectra support assignment of these newly observed features to highly active Co 4+ centers under catalytic conditions. Comparison of these results to those from a pure phase spinel Co 3O 4 catalyst supports this interpretation and reveals that the presence of Co(OH) 2 enhances catalytic activity by promoting transformations to CoO(OH). The direct investigation of electrified interfaces presented in this work can be extended to different materials under realistic catalytic conditions, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.« less
Kharche, Neerav; Hybertsen, Mark S; Muckerman, James T
2014-06-28
The GaN/ZnO alloy functions as a visible-light photocatalyst for splitting water into hydrogen and oxygen. As a first step toward understanding the mechanism and energetics of water-splitting reactions, we investigate the microscopic structure of the aqueous interfaces of the GaN/ZnO alloy and compare them with the aqueous interfaces of pure GaN and ZnO. Specifically, we have studied the (101̄0) surface of GaN and ZnO and the (101̄0) and (12̄10) surfaces of the 1 : 1 GaN/ZnO alloy. The calculations are carried out using first-principles density functional theory based molecular dynamics (DFT-MD). The structure of water within a 3 Å distance from the semiconductor surface is significantly altered by the acid/base chemistry of the aqueous interface. Water adsorption on all surfaces is substantially dissociative such that the surface anions (N or O) act as bases accepting protons from dissociated water molecules while the corresponding hydroxide ions bond with surface cations (Ga or Zn). Additionally, the hard-wall interface presented by the semiconductor imparts ripples in the density of water. Beyond a 3 Å distance from the semiconductor surface, water exhibits a bulk-like hydrogen bond network and oxygen-oxygen radial distribution function. Taken together, these characteristics represent the resting (or "dark") state of the catalytic interface. The electronic structure analysis of the aqueous GaN/ZnO interface suggests that the photogenerated holes may get trapped on interface species other than the adsorbed OH(-) ions. This suggests additional dynamical steps in the water oxidation process.
Favaro, Marco; Yang, Jinhui; Nappini, Silvia; ...
2017-06-09
Photoelectrochemical water splitting is a promising approach for renewable production of hydrogen from solar energy and requires interfacing advanced water-splitting catalysts with semiconductors. Understanding the mechanism of function of such electrocatalysts at the atomic scale and under realistic working conditions is a challenging, yet important, task for advancing efficient and stable function. This is particularly true for the case of oxygen evolution catalysts and, here, we study a highly active Co 3O 4/Co(OH) 2 biphasic electrocatalyst on Si by means of operando ambient-pressure X-ray photoelectron spectroscopy performed at the solid/liquid electrified interface. Spectral simulation and multiplet fitting reveal that themore » catalyst undergoes chemical-structural transformations as a function of the applied anodic potential, with complete conversion of the Co(OH) 2 and partial conversion of the spinel Co 3O 4 phases to CoO(OH) under precatalytic electrochemical conditions. Furthermore, we observe new spectral features in both Co 2p and O 1s core-level regions to emerge under oxygen evolution reaction conditions on CoO(OH). The operando photoelectron spectra support assignment of these newly observed features to highly active Co 4+ centers under catalytic conditions. Comparison of these results to those from a pure phase spinel Co 3O 4 catalyst supports this interpretation and reveals that the presence of Co(OH) 2 enhances catalytic activity by promoting transformations to CoO(OH). The direct investigation of electrified interfaces presented in this work can be extended to different materials under realistic catalytic conditions, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siriwardane, Ranjani; Riley, Jarrett; Tian, Hanjing
Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe2O4) and calcium ferrite (CaFe2O4). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe2O4 and CaFe2O4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H2) and carbon monoxide (CO), but carbon dioxide (CO2) remained low because these oxygenmore » carriers have minimal reactivity with H2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.« less
Evidence of alloy formation during reduction of platinized tin oxide surfaces
NASA Technical Reports Server (NTRS)
Gardner, Steven D.; Hoflund, Gar B.; Davidson, Mark R.; Schryer, David R.
1989-01-01
Ion scattering spectroscopy, Auger electron spectroscopy, and electron spectroscopy for chemical analysis have been used to examine a platinized tin oxide catalyst surface before, during, and after reduction by annealing under vacuum at 250 to 450 C. These techniques were then used to examine the reduced surface after a room-temperature, low-pressure oxygen exposure. The spectral results and the behavior of the reduced surface toward oxygen exposure both indicate that a Pt/Sn alloy is produced during reduction.
Lee, Gileung; Lee, Kang-Ie; Lee, Yunjoo; Kim, Backki; Lee, Dongryung; Seo, Jeonghwan; Jang, Su; Chin, Joong Hyoun; Koh, Hee-Jong
2018-07-01
The split-hull phenotype caused by reduced lemma width and low lignin content is under control of SPH encoding a type-2 13-lipoxygenase and contributes to high dehulling efficiency. Rice hulls consist of two bract-like structures, the lemma and palea. The hull is an important organ that helps to protect seeds from environmental stress, determines seed shape, and ensures grain filling. Achieving optimal hull size and morphology is beneficial for seed development. We characterized the split-hull (sph) mutant in rice, which exhibits hull splitting in the interlocking part between lemma and palea and/or the folded part of the lemma during the grain filling stage. Morphological and chemical analysis revealed that reduction in the width of the lemma and lignin content of the hull in the sph mutant might be the cause of hull splitting. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive gene, sph (Os04g0447100), which encodes a type-2 13-lipoxygenase. SPH knockout and knockdown transgenic plants displayed the same split-hull phenotype as in the mutant. The sph mutant showed significantly higher linoleic and linolenic acid (substrates of lipoxygenase) contents in spikelets compared to the wild type. It is probably due to the genetic defect of SPH and subsequent decrease in lipoxygenase activity. In dehulling experiment, the sph mutant showed high dehulling efficiency even by a weak tearing force in a dehulling machine. Collectively, the results provide a basis for understanding of the functional role of lipoxygenase in structure and maintenance of hulls, and would facilitate breeding of easy-dehulling rice.
The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture.
Morales, Pilar; Rojas, Virginia; Quirós, Manuel; Gonzalez, Ramon
2015-05-01
We have developed a wine fermentation procedure that takes advantage of the metabolic features of a previously characterized Metschnikowia pulcherrima strain in order to reduce ethanol production. It involves the use of M. pulcherrima/Saccharomyces cerevisiae mixed cultures, controlled oxygenation conditions during the first 48 h of fermentation, and anaerobic conditions thereafter. The influence of different oxygenation regimes and initial inoculum composition on yeast physiology and final ethanol content was studied. The impact of oxygenation on yeast physiology goes beyond the first aerated step and influences yields and survival rates during the anaerobic stage. The activity of M. pulcherrima in mixed oxygenated cultures resulted in a clear reduction in ethanol yield, as compared to S. cerevisiae. Despite relatively low initial cell numbers, S. cerevisiae always predominated in mixed cultures by the end of the fermentation process. Strain replacement was faster under low oxygenation levels. M. pulcherrima confers an additional advantage in terms of dissolved oxygen, which drops to zero after a few hours of culture, even under highly aerated conditions, and this holds true for mixed cultures. Alcohol reduction values about 3.7 % (v/v) were obtained for mixed cultures under high aeration, but they were associated to unacceptable volatile acidity levels. In contrast, under optimized conditions, only 0.35 g/L acetic acid was produced, for an alcohol reduction of 2.2 % (v/v), and almost null dissolved oxygen during the process.
NASA Astrophysics Data System (ADS)
Douplik, Alexandre Y.; Kessler, Manfred D.; Kakihana, Yasuyuki; Krug, Alfons
1997-08-01
Functional evaluation of local hemoglobin concentration and hemoglobin oxygenation based on back scattering spectra from human skin in vivo have been obtained in visible range (502 - 628 nm) by a rapid microlightguide spectrometer (EMPHO II) with step 250 micrometer. Analysis of received results has shown that during local cooling there is two nearly simultaneous reactions: reduction of hemoglobin concentration and increase of hemoglobin oxygenation level. In a case when one has used previous heating of planning place for cooling, reduction of hemoglobin concentration is expressed higher by 22 - 33%.
Computational study: Reduction of iron corrosion in lead coolant of fast nuclear reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arkundato, Artoto; Su'ud, Zaki; Abdullah, Mikrajuddin
2012-06-20
In this paper we report molecular dynamics simulation results of iron (cladding) corrosion in interaction with lead coolant of fast nuclear reactor. The goal of this work is to study effect of oxygen injection to the coolant to reduce iron corrosion. By evaluating diffusion coefficients, radial distribution functions, mean-square displacement curves and observation of crystal structure of iron before and after oxygen injection, we concluded that a significant reduction of corrosion can be achieved by issuing about 2% of oxygen atoms into lead coolant.
Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions.
Chen, Dengjie; Chen, Chi; Zhang, Zhenbao; Baiyee, Zarah Medina; Ciucci, Francesco; Shao, Zongping
2015-04-29
Mixed conducting perovskite oxides are promising catalysts for high-temperature oxygen reduction reaction. Pristine SrCoO(3-δ) is a widely used parent oxide for the development of highly active mixed conductors. Doping a small amount of redox-inactive cation into the B site (Co site) of SrCoO(3-δ) has been applied as an effective way to improve physicochemical properties and electrochemical performance. Most findings however are obtained only from experimental observations, and no universal guidelines have been proposed. In this article, combined experimental and theoretical studies are conducted to obtain fundamental understanding of the effect of B-site doping concentration with redox-inactive cation (Sc) on the properties and performance of the perovskite oxides. The phase structure, electronic conductivity, defect chemistry, oxygen reduction kinetics, oxygen ion transport, and electrochemical reactivity are experimentally characterized. In-depth analysis of doping level effect is also undertaken by first-principles calculations. Among the compositions, SrCo0.95Sc0.05O(3-δ) shows the best oxygen kinetics and corresponds to the minimum fraction of Sc for stabilization of the oxygen-vacancy-disordered structure. The results strongly support that B-site doping of SrCoO(3-δ) with a small amount of redox-inactive cation is an effective strategy toward the development of highly active mixed conducting perovskites for efficient solid oxide fuel cells and oxygen transport membranes.
Campbell, Andrew; Minniti, Caterina P.; Nouraie, Mehdi; Arteta, Manuel; Rana, Sohail; Onyekwere, Onyinye; Sable, Craig; Ensing, Gregory; Dham, Niti; Luchtman-Jones, Lori; Kato, Gregory J.; Gladwin, Mark T.; Castro, Oswaldo L.; Gordeuk, Victor R.
2009-01-01
Summary Low steady state haemoglobin oxygen saturation in patients with sickle cell anaemia has been associated with the degree of anaemia and haemolysis. How much pulmonary dysfunction contributes to low saturation is not clear. In a prospective study of children and adolescents with sickle cell disease aged 3–20 years at steady state and matched controls, 52% of 391 patients versus 24% of 63 controls had steady state oxygen saturation <99% (P < 0·0001), 9% of patients versus no controls had saturation <95% (P = 0·008) and 8% of patients versus no controls had exercise-induced reduction in saturation ≥3%. Decreasing haemoglobin concentration (P ≤ 0·001) and increasing haemolysis (P ≤ 0·003) but not pulmonary function tests were independent predictors of both lower steady-state saturation and exercise-induced reduction in saturation. Neither history of stroke nor history of acute chest syndrome was significantly associated with lower steady-state oxygen saturation or exercise-induced reduction in saturation. Tricuspid regurgitation velocity was higher in patients with lower steady state haemoglobin oxygen saturation (P = 0·003) and with greater decline in oxygen saturation during the six-minute walk (P = 0·022). In conclusion, lower haemoglobin oxygen saturation is independently associated with increasing degrees of anaemia and haemolysis but not pulmonary function abnormalities among children and adolescents with sickle cell disease. PMID:19694721
NASA Astrophysics Data System (ADS)
Albrecht, Kevin J.
Decarbonization of the electric grid is fundamentally limited by the intermittency of renewable resources such as wind and solar. Therefore, energy storage will play a significant role in the future of grid-scale energy generation to overcome the intermittency issues. For this reason, concentrating solar power (CSP) plants have been a renewable energy generation technology of interest due to their ability to participate in cost effective and efficient thermal energy storage. However, the ability to dynamically dispatch a CSP plant to meet energy demands is currently limited by the large quantities of sensible thermal energy storage material needed in a molten salt plant. Perovskite oxides have been suggested as a thermochemical energy storage material to enhance the energy storage capabilities of particle-based CSP plants, which combine sensible and chemical modes of energy storage. In this dissertation, computational models are used to establish the thermochemical energy storage potential of select perovskite compositions, identify system configurations that promote high values of energy storage and solar-to-electric efficiency, assess the kinetic and transport limitation of the chemical mode of energy storage, and create receiver and reoxidation reactor models capable of aiding in component design. A methodology for determining perovskite thermochemical energy storage potential is developed based on point defect models to represent perovskite non-stoichiometry as a function of temperature and gas phase oxygen partial pressure. The thermodynamic parameters necessary for the model are extracted from non-stoichiometry measurements by fitting the model using an optimization routine. The procedure is demonstrated for Ca0.9Sr0.1MnO 3-d which displayed combined energy storage values of 705.7 kJ/kg -1 by cycling between 773 K and 0.21 bar oxygen to 1173 K and 10 -4 bar oxygen. Thermodynamic system-level models capable of exploiting perovskite redox chemistry for energy storage in CSP plants are presented. Comparisons of sweep gas and vacuum pumping reduction as well as hot storage conditions indicate that solar-to-electric efficiencies are higher for sweep gas reduction system at equivalent values of energy storage if the energy parasitics of commercially available devices are considered. However, if vacuum pump efficiency between 15% and 30% can be achieved, the reduction methods will be approximately equal. Reducing condition oxygen partial pressures below 10-3 bar for sweep gas reduction and 10-2 bar for vacuum pumping reduction result in large electrical parasitics, which significantly reduce solar-to-electric efficiency. A model based interpretation of experimental measurements made for perovskite redox cycling using sweep gas in a packed bed is presented. The model indicates that long reduction times for equilibrating perovskites with low oxygen partial pressure sweep gas, compared to reoxidation, are primarily due to the oxygen carrying capacity of high purity sweep gas and not surface kinetic limitations. Therefore, achieving rapid reduction in the limited receiver residence time will be controlled by the quantity of sweep gas introduced. Effective kinetic parameters considering surface reaction and radial particle diffusion are fit to the experimental data. Variable order rate expressions without significant particle radial diffusion limitations are shown to be capable of representing the reduction and oxidation data. Modeling of a particle reduction receiver using continuous flow of perovskite solid and sweep gas in counter-flow configuration has identified issues with managing the oxygen evolved by the solid as well as sweep gas flow rates. Introducing sweep gas quantities necessary for equilibrating the solid with oxygen partial pressures below 10-2 are shown to result in gas phase velocities above the entrainment velocity of 500 um particles. Receiver designs with considerations for gas management are investigated and the results indicate that degrees of reduction corresponding to only oxygen partial pressures of 10-2 bar are attained. Numerical investigation into perovskite thermochemical energy storage indicates that achieving high levels of reduction through sweep gas or vacuum pumping to lower gas phase oxygen partial pressure below 10-2 bar display issues with parasitic energy consumption and gas phase management. Therefore, focus on material development should place a premium on thermal reduction and reduction by shifting oxygen partial pressure between ambient and 10-2 bar. Such a material would enable the development of a system with high solar-to-electric efficiencies and degrees of reduction which are attainable in realistic component geometries.
The effect of diet, temperature and intermittent low oxygen on the metabolism of rainbow trout.
Stiller, Kevin T; Vanselow, Klaus H; Moran, Damian; Riesen, Guido; Koppe, Wolfgang; Dietz, Carsten; Schulz, Carsten
2017-03-01
An automated respirometer system was used to measure VO2, protein catabolism as ammonia quotient and the energy budget to evaluate whether the crude protein content of a standard protein (SP) diet (42·5 %) or a high-protein (HP) diet (49·5 %) influences metabolism in rainbow trout under challenging intermittent, low dissolved oxygen concentrations. In total, three temperature phases (12, 16, 20°C) were tested sequentially, each of which were split into two oxygen periods with 5 d of unmanipulated oxygen levels (50-70 %), followed by a 5d manipulated oxygen period (16.00-08.00 hours) with low oxygen (40-50 %) levels. For both diets, catabolic protein usage was lowest at 16°C and was not altered under challenging oxygen conditions. Low night-time oxygen elevated mean daily VO2 by 3-14 % compared with the unmanipulated oxygen period for both diets at all temperatures. The relative change in VO2 and retained energy during the intermittent low oxygen period was smaller for the HP diet compared with the SP diet. However, in absolute terms, the SP diet was superior to the HP diet as the former demonstrated 30-40 % lower protein fuel use rates, higher retained energy (1-4 % digestible energy) and slightly lowered VO2 (0-8 %) over the range of conditions tested. The decrease in retained energy under low oxygen conditions suggests that there is scope to improve the performance of SP diets under challenging conditions; however, this study suggests that simply increasing the dietary protein content is not a remedy, and other strategies need to be explored.
Rooting Responses of Three Oak Species to Low Oxygen Stress
Karel A. Jacobs; James D. MacDonald; Alison M. Berry; Laurence R. Costello
1997-01-01
Rooting characteristics were compared in blue (Q. douglasii), valley (Q. lobata), and cork oak (Q. suber) seedlings under hypoxic (low oxygen) conditions. A 50 percent reduction in root growth occurred in all species at an oxygen level of 4 percent, or an oxygen diffusion rate of 0.3 mg cm-2...
Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells.
Shiratsuki, Shogo; Hara, Tomotaka; Munakata, Yasuhisa; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka
2016-12-05
The present study addresses molecular backgrounds underlying low oxygen induced metabolic changes and 1.2-fold change in bovine granulosa cell (GCs) proliferation. RNA-seq revealed that low oxygen (5%) upregulated genes associated with HIF-1 and glycolysis and downregulated genes associated with mitochondrial respiration than that in high oxygen level (21%). Low oxygen level induced high glycolytic activity and low mitochondrial function and biogenesis. Low oxygen level enhanced GC proliferation with high expression levels of HIF-1, VEGF, AKT, mTOR, and S6RP, whereas addition of anti-VEGF antibody decreased cellular proliferation with low phosphorylated AKT and mTOR expression levels. Low oxygen level reduced SIRT1, whereas activation of SIRT1 by resveratrol increased mitochondrial replication and decreased cellular proliferation with reduction of phosphorylated mTOR. These results suggest that low oxygen level stimulates the HIF1-VEGF-AKT-mTOR pathway and up-regulates glycolysis, which contributes to GC proliferation, and downregulation of SIRT1 contributes to hypoxia-associated reduction of mitochondria and cellular proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mechanisms and detectability of oxygen depletion in the North Atlantic
NASA Astrophysics Data System (ADS)
Tjiputra, J. F.; Goris, N.; Lauvset, S. K.; Schwinger, J.
2016-12-01
Dissolved oxygen is a key tracer in models used to represent the tight interaction between ocean biogeochemical cycle and circulation. Future ocean warming and stratification are projected, leading to a reduced oxygen concentration. Reduction in export production, in contrast, is projected to increase subsurface concentration by lowering the oxygen consumption during organic matter remineralization. In this exercise, we use a suite of CMIP5 models to study the oxygen evolution under the RCP8.5 scenario focusing on the North Atlantic, a region of rapid and steady circulation change. Most models agree with a large reduction in the deep North Atlantic (north of 40N), whereas an increase is projected in the upper subtropical ocean region. We attribute the former to weakening of the net primary production due to stronger stratification and the latter to less air-sea oxygen flux owing to less ventilation. The models also show that interior oxygen could provide earlier indicator of climate change than surface tracers. Sustained observation of oxygen is therefore crucial to reaffirm the ongoing circulation change due to global warming.
Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.
Tatin, Arnaud; Comminges, Clément; Kokoh, Boniface; Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
2016-05-17
Low-cost, efficient CO2-to-CO+O2 electrochemical splitting is a key step for liquid-fuel production for renewable energy storage and use of CO2 as a feedstock for chemicals. Heterogeneous catalysts for cathodic CO2-to-CO associated with an O2-evolving anodic reaction in high-energy-efficiency cells are not yet available. An iron porphyrin immobilized into a conductive Nafion/carbon powder layer is a stable cathode producing CO in pH neutral water with 90% faradaic efficiency. It is coupled with a water oxidation phosphate cobalt oxide anode in a home-made electrolyzer by means of a Nafion membrane. Current densities of approximately 1 mA/cm(2) over 30-h electrolysis are achieved at a 2.5-V cell voltage, splitting CO2 and H2O into CO and O2 with a 50% energy efficiency. Remarkably, CO2 reduction outweighs the concurrent water reduction. The setup does not prevent high-efficiency proton transport through the Nafion membrane separator: The ohmic drop loss is only 0.1 V and the pH remains stable. These results demonstrate the possibility to set up an efficient, low-voltage, electrochemical cell that converts CO2 into CO and O2 by associating a cathodic-supported molecular catalyst based on an abundant transition metal with a cheap, easy-to-prepare anodic catalyst oxidizing water into O2.
High-Performance Rh 2 P Electrocatalyst for Efficient Water Splitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Haohong; Li, Dongguo; Tang, Yan
2017-04-05
The search for active, stable, and cost-efficient electrocatalysts for hydrogen production via water splitting could make a substantial impact on energy technologies that do not rely on fossil fuels. Here we report the synthesis of rhodium phosphide electrocatalyst with low metal loading in the form of nanocubes (NCs) dispersed in high-surface-area carbon (Rh2P/C) by a facile solvo-thermal approach. The Rh2P/C NCs exhibit remarkable performance for hydrogen evolution reaction and oxygen evolution reaction compared to Rh/C and Pt/C catalysts. The atomic structure of the Rh2P NCs was directly observed by annular dark-field scanning transmission electron microscopy, which revealed a phosphorus-rich outermostmore » atomic layer. Combined experimental and computational studies suggest that surface phosphorus plays a crucial role in determining the robust catalyst properties.« less
High-Performance Rh 2 P Electrocatalyst for Efficient Water Splitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Haohong; Li, Dongguo; Tang, Yan
2017-04-05
Search for active, stable and cost-efficient electrocatalysts for hydrogen production via water splitting could make substantial impact to the energy technologies that do not rely on fossil fuels. Here we report the synthesis of rhodium phosphide electrocatalyst with low metal loading in the form of nanocubes (NCs) dispersed in high surface area carbon (Rh2P/C) by a facile solvo-thermal approach. The Rh2P/C NCs exhibit remarkable performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) compared to Rh/C and Pt/C catalysts. The atomic structure of the rhodium phosphide nanocubes was directly observed by annular dark-field scanning transmission electron microscopy (ADF-STEM),more » which revealed phosphorous-rich outermost atomic layer. Combined experimental and computational studies suggest that surface phosphorous plays crucial role in determining the robust catalyst properties.« less
Zou, Xiaoxin; Huang, Xiaoxi; Goswami, Anandarup; Silva, Rafael; Sathe, Bhaskar R; Mikmeková, Eliška; Asefa, Tewodros
2014-04-22
Despite being technically possible, splitting water to generate hydrogen is still practically unfeasible due mainly to the lack of sustainable and efficient catalysts for the half reactions involved. Herein we report the synthesis of cobalt-embedded nitrogen-rich carbon nanotubes (NRCNTs) that 1) can efficiently electrocatalyze the hydrogen evolution reaction (HER) with activities close to that of Pt and 2) function well under acidic, neutral or basic media alike, allowing them to be coupled with the best available oxygen-evolving catalysts-which also play crucial roles in the overall water-splitting reaction. The materials are synthesized by a simple, easily scalable synthetic route involving thermal treatment of Co(2+) -embedded graphitic carbon nitride derived from inexpensive starting materials (dicyandiamide and CoCl2 ). The materials' efficient catalytic activity is mainly attributed to their nitrogen dopants and concomitant structural defects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yoshinaga, Taizo; Saruyama, Masaki; Xiong, Anke; Ham, Yeilin; Kuang, Yongbo; Niishiro, Ryo; Akiyama, Seiji; Sakamoto, Masanori; Hisatomi, Takashi; Domen, Kazunari; Teranishi, Toshiharu
2018-06-14
The effect of cobalt doping into a manganese oxide (tetragonal spinel Mn 3 O 4 ) nanoparticle cocatalyst up to Co/(Co + Mn) = 0.4 (mol/mol) on the activity of photocatalytic water oxidation was studied. Monodisperse ∼10 nm Co y Mn 1-y O (0 ≤y≤ 0.4) nanoparticles were uniformly loaded onto photocatalysts and converted to Co x Mn 3-x O 4 nanoparticles through calcination. 40 mol% cobalt-doped Mn 3 O 4 nanoparticle-loaded Rh@Cr 2 O 3 /SrTiO 3 photocatalyst exhibited 1.8 times-higher overall water splitting activity than that with pure Mn 3 O 4 nanoparticles. Investigation on the band structure and electrocatalytic water oxidation activity of Co x Mn 3-x O 4 nanoparticles revealed that the Co doping mainly contributes to the improvement of water oxidation kinetics on the surface of the cocatalyst nanoparticles.
Water splitting on semiconductor catalysts under visible-light irradiation.
Navarro Yerga, Rufino M; Alvarez Galván, M Consuelo; del Valle, F; Villoria de la Mano, José A; Fierro, José L G
2009-01-01
Sustainable hydrogen production is a key target for the development of alternative, future energy systems that will provide a clean and affordable energy supply. The Sun is a source of silent and precious energy that is distributed fairly all over the Earth daily. However, its tremendous potential as a clean, safe, and economical energy source cannot be exploited unless the energy is accumulated or converted into more useful forms. The conversion of solar energy into hydrogen via the water-splitting process, assisted by photo-semiconductor catalysts, is one of the most promising technologies for the future because large quantities of hydrogen can potentially be generated in a clean and sustainable manner. This Minireview provides an overview of the principles, approaches, and research progress on solar hydrogen production via the water-splitting reaction on photo-semiconductor catalysts. It presents a survey of the advances made over the last decades in the development of catalysts for photochemical water splitting under visible-light irradiation. The Minireview also analyzes the energy requirements and main factors that determine the activity of photocatalysts in the conversion of water into hydrogen and oxygen using sunlight. Remarkable progress has been made since the pioneering work by Fujishima and Honda in 1972, but he development of photocatalysts with improved efficiencies for hydrogen production from water using solar energy still faces major challenges. Research strategies and approaches adopted in the search for active and efficient photocatalysts, for example through new materials and synthesis methods, are presented and analyzed.
Photoelectrochemical devices for solar water splitting - materials and challenges.
Jiang, Chaoran; Moniz, Savio J A; Wang, Aiqin; Zhang, Tao; Tang, Junwang
2017-07-31
It is widely accepted within the community that to achieve a sustainable society with an energy mix primarily based on solar energy we need an efficient strategy to convert and store sunlight into chemical fuels. A photoelectrochemical (PEC) device would therefore play a key role in offering the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The past five years have seen a surge in the development of promising semiconductor materials. In addition, low-cost earth-abundant co-catalysts are ubiquitous in their employment in water splitting cells due to the sluggish kinetics of the oxygen evolution reaction (OER). This review commences with a fundamental understanding of semiconductor properties and charge transfer processes in a PEC device. We then describe various configurations of PEC devices, including single light-absorber cells and multi light-absorber devices (PEC, PV-PEC and PV/electrolyser tandem cell). Recent progress on both photoelectrode materials (light absorbers) and electrocatalysts is summarized, and important factors which dominate photoelectrode performance, including light absorption, charge separation and transport, surface chemical reaction rate and the stability of the photoanode, are discussed. Controlling semiconductor properties is the primary concern in developing materials for solar water splitting. Accordingly, strategies to address the challenges for materials development in this area, such as the adoption of smart architectures, innovative device configuration design, co-catalyst loading, and surface protection layer deposition, are outlined throughout the text, to deliver a highly efficient and stable PEC device for water splitting.
Use of pulse oximeter placed on a gastroschisis silo to monitor intestinal oxygen saturation.
Kim, Sunghoon; Betts, James; Yedlin, Steve; Rowe, Richard; Idowu, Olajire
2006-09-01
The use of a silo for temporary coverage of exposed viscera for newborns with gastroschisis has allowed gradual reduction of the externalized intestine into the abdominal cavity. However, there has not been an easy way to monitor blood perfusion to the intestine within the silo other than with visual examination. In addition, visual examination of bowel through the silo is sometimes difficult for medical staff due to serositis and peel over the bowel. We have adopted an approach to monitor oxygen saturation of silo-contained intestine by placing a pulse oximeter sensor on the surface of the transparent silo to detect intestinal ischemia. Pulse oximeter sensors were applied on both a patient's distal extremity and the silo on five consecutive patients who were born with gastroschisis. The sensor was left on the silo during the entire period of gradual reduction. Perfusion index, pulse and oxygen saturation were observed and checked against the sensor placed on a peripheral extremity. The silo-placed pulse oximeter and peripheral pulse oximeter sensors showed a similar pulse and oxygen saturation throughout the reduction period in all five patients. In general, perfusion index was higher from the silo pulse oximeter compared to the peripheral pulse oximeter reading. A pulse oximeter can be used to monitor intestinal oxygen saturation contained within a silo and help modulate the rate of manual reduction of intestine.
Si-H induced synthesis of Si/Cu2O nanowire arrays for photoelectrochemical water splitting
NASA Astrophysics Data System (ADS)
Zhang, Shaoyang; She, Guangwei; Li, Shengyang; Mu, Lixuan; Shi, Wensheng
2018-01-01
We report a facile and low-cost method to synthesize Si/Cu2O heterojunction nanowire arrays, without SiOx, at the Si/Cu2O interface. The reductive Si-H bonds on the surface of Si nanowires plays a key role in situ by reducing Cu(II) ions to Cu2O nanocubes and avoiding the SiOx interface layer. Different pH values would vary the electrochemical potential of reactions and as a result, different products would be formed. Utilized as a photoanode for water splitting, Si/Cu2O nanowire arrays exhibit good photoelectrochemical performance.
A Construction of Rigid Analytic Cohomology Classes for Split Reductive Algebraic Groups
NASA Astrophysics Data System (ADS)
Graham, Bonita Lynn
The cohomology groups H1(Gamma 0(N), Vk) completely describe the space of classical cusp forms of weight k and level N. We study a generalization, Hn(Gamma, Vlambda), where some algebraic group G plays a role analogous to that of GL2 in the classical case. Ash and Stevens proved that certain classes in Hn(Gamma, Vlambda) may be lifted through the natural map rho lambda : Hn(Gamma, D lambda) → Hn(Gamma, Vlambda) to overconvergent classes in H n(Gamma, Dlambda). Pollack and Pollack were able to prove this result constructively in the case of G = GL3, by providing a filtration on the distribution space D?. We construct a general filtration FilN D lambda, for a split reductive algebraic group G. Using this filtration, we are able to lift classes in Hn(Gamma, Vlambda) to the finite dimensional spaces H n(Gamma, Dlambda / FilN Dlambda). These lifts approximate the lifts into Hn(Gamma, Dlambda ) and improve as N → infinity.
Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas
2015-12-01
The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods. Copyright © 2015 Elsevier B.V. All rights reserved.
Helical Face Gear Development Under the Enhanced Rotorcraft Drive System Program
NASA Technical Reports Server (NTRS)
Heath, Gregory F.; Slaughter, Stephen C.; Fisher, David J.; Lewicki, David G.; Fetty, Jason
2011-01-01
U.S. Army goals for the Enhanced Rotorcraft Drive System Program are to achieve a 40 percent increase in horsepower to weight ratio, a 15 dB reduction in drive system generated noise, 30 percent reduction in drive system operating, support, and acquisition cost, and 75 percent automatic detection of critical mechanical component failures. Boeing s technology transition goals are that the operational endurance level of the helical face gearing and related split-torque designs be validated to a TRL 6, and that analytical and manufacturing tools be validated. Helical face gear technology is being developed in this project to augment, and transition into, a Boeing AH-64 Block III split-torque face gear main transmission stage, to yield increased power density and reduced noise. To date, helical face gear grinding development on Northstar s new face gear grinding machine and pattern-development tests at the NASA Glenn/U.S. Army Research Laboratory have been completed and are described.
The 3600 hp split-torque helicopter transmission
NASA Technical Reports Server (NTRS)
White, G.
1985-01-01
Final design details of a helicopter transmission that is powered by GE twin T 700 engines each rated at 1800 hp are presented. It is demonstrated that in comparison with conventional helicopter transmission arrangements the split torque design offers: weight reduction of 15%; reduction in drive train losses of 9%; and improved reliability resulting from redundant drive paths between the two engines and the main shaft. The transmission fits within the NASA LeRC 3000 hp Test Stand and accepts the existing positions for engine inputs, main shaft, connecting drive shafts, and the cradle attachment points. One necessary change to the test stand involved gear trains of different ratio in the tail drive gearbox. Progressive uprating of engine input power from 3600 to 4500 hp twin engine rating is allowed for in the design. In this way the test transmission will provide a base for several years of analytical, research, and component development effort targeted at improving the performance and reliability of helicopter transmission.
A Brief Study of the Speed Reduction of Overtaking Airplanes by Means of Air Brakes, Special Report
NASA Technical Reports Server (NTRS)
Pearson, H. A.; Amderspm. R. F.
1942-01-01
As an aid to airplane designers interested in providing pursuit airplanes with decelerating devices intended to increase the firing time when overtaking another airplane, formulas are given relating the pertinent distances and speeds in horizontal flight to the drag increase required. Charts are given for a representative parasite-drag coefficient from which the drag increase, the time gained, and the closing distance may be found. The charts are made up for three values of the ratio of the final speed of the pursuing airplane to the speed of the pursued airplane and for several values of the ratio of the speed of the pursued airplane to the initial speed of the pursuing airplane. Charts are also given indicating the drag increases obtainable with double split flaps and with conventional propellers. The use of the charts is illustrated by an example in which it is indicated that either double split flaps or, under certain ideal conditions, reversible propellers should provide the speed reductions required.
Preventing Corrosion by Controlling Cathodic Reaction Kinetics
2016-03-25
electrochemical reaction rates of processes that drive corrosion, e.g. the oxygen reduction reaction (ORR). To this end, we have used reactive...elements on the kinetics of oxygen reduction reaction catalyzed on titanium oxide in order to develop new approaches for controlling galvanic corrosion... consumption of anions in reactions with metal cations can deplete the electrolyte. However, in the atmospheric electrolyte, the electrolyte
NASA Astrophysics Data System (ADS)
Suo, Ni; Huang, Hao; Wu, Aimin; Cao, Guozhong; Hou, Xiaoduo; Zhang, Guifeng
2018-05-01
Porous boron doped diamonds (BDDs) were obtained on foam nickel substrates with a porosity of 80%, 85%, 90% and 95% respectively by hot filament chemical vapor deposition (HFCVD) technology. Scanning electron microscopy (SEM) reveals that uniform and compact BDDs with a cauliflower-like morphology have covered the overall frame of the foam nickel substrates. Raman spectroscopy shows that the BDDs have a poor crystallinity due to heavily doping boron. X-ray photoelectron spectroscopy (XPS) analysis effectively demonstrates that boron atoms can be successfully incorporated into the crystal lattice of diamonds. Electrochemical measurements indicate that the oxygen reduction potential is unaffected by the specific surface area (SSA), and both the onset potential and the limiting diffusion current density are enhanced with increasing SSA. It is also found that the durability and methanol tolerance of the boron doped diamond catalysts are attenuated as the increasing of SSA. The SSA of the catalyst is directly proportional to the oxygen reduction activity and inversely to the durability and methanol resistance. These results provide a reference to the application of porous boron doped diamonds as potential cathodic catalysts for the oxygen reduction reaction in alkaline solution by adjusting the SSA.
NASA Astrophysics Data System (ADS)
Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Kano, Hiroyuki; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru
2016-09-01
We recently have established ultrahigh-speed synthesis method of nanographene materials employing in-liquid plasma, and reported high durability of Pt/nanographene composites as a fuel cell catalyst. Crystallinity and domain size of nanographene materials were essential to their durability. However, their mechanism is not clarified yet. In this study, we investigated the oxygen reduction reaction using three-types of nanographene materials with different crystallinity and domain sizes, which were synthesized using ethanol, 1-propanol and 1-butanol, respectively. According to our previous studies, the nanographene material synthesized using the lower molecular weight alcohol has the higher crystallinity and larger domain size. Pt nanoparticles were supported on the nanographene surfaces by reducing 8 wt% H2PtCl6 diluted with H2O. Oxygen reduction current densities at a potential of 0.2 V vs. RHE were 5.43, 5.19 and 3.69 mA/cm2 for the samples synthesized using ethanol, 1-propanol and 1-butanol, respectively. This means that the higher crystallinity nanographene showed the larger oxygen reduction current density. The controls of crystallinity and domain size of nanographene materials are essential to not only their durability but also highly efficiency as catalyst electrodes.
Solar Energy Systems for Lunar Oxygen Generation
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.
2010-01-01
An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagstaff, N.; Prins, R.
1979-10-15
Temperature-programmed reduction has been used to characterize the finely dispersed metal compounds in a series of Pt-Re/..gamma..-Al/sub 2/O/sub 3/ catalysts. Strong evidence has been obtained that zerovalent Pt and Re atoms are in intimate contact with each other after catalyst reduction. The formation of bimetallic clusters supports the alloy explanation for the improved performance of this type of bimetallic reforming catalyst. Treatment of the reduced catalysts with oxygen above about 200/sup 0/C causes segregation of platinum and rhenium oxides. Adsorption of oxygen at temperatures up to 100/sup 0/C leaves the bimetallic clusters largely intact, but subsequent high-temperature treatment in themore » absence of extra oxygen leads to segregation of Pt and Re species. This suggests that in the presence of adsorbed oxygen the Pt-Re clusters are thermodynamically unstable, but that under mild conditions the rate of segregation is slow. 10 figures, 4 tables.« less
Fluid-electrolyte shifts and maximal oxygen uptake in man at simulated altitude /2,287 m/
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Bernauer, E. M.; Adams, W. C.; Juhos, L.
1978-01-01
Experiments were conducted on six trained distance runners (21-23 yr) subjected to an eight-day dietary control at sea level, followed by an eight-day stay in an altitude chamber (2287-m altitude) and a four-day recovery at sea level. Fluid and electrolyte shifts during exercise at altitude were evaluated to gain insight into the mechanism of reduction in working capacity. The results are discussed in terms of resting fluid volumes and blood constituents, maximal exercise variables, and maximal exercise fluid-electrolyte shifts. Since there are no significant changes in fluid balance or resting plasma volume (PV) at altitude, it is concluded that neither these nor the excessive PV shifts with exercise contribute to the reduction in maximal oxygen uptake at altitude. During altitude exposure the percent loss in PV is found to follow the percent reduction in maximal oxygen uptake; however, on the first day of recovery the percent change in PV remains depressed while maximal oxygen uptake returns to control levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhn, M., E-mail: kuhnm@mit.edu; Hashimoto, S.; Sato, K.
The oxygen nonstoichiometry of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} has been the topic of various reports in the literature, but has been exclusively measured at high oxygen partial pressures, pO{sub 2}, and/or elevated temperatures. For applications of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}}, such as solid oxide fuel cell cathodes or oxygen permeation membranes, knowledge of the oxygen nonstoichiometry and thermo-chemical stability over a wide range of pO{sub 2} is crucial, as localized low pO{sub 2} could trigger failure of the material and device. By employing coulometric titration combined with thermogravimetry, the oxygen nonstoichiometry of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} was measured at highmore » and intermediate pO{sub 2} until the material decomposed (at log(pO{sub 2}/bar) Almost-Equal-To -4.5 at 1073 K). For a gradually reduced sample, an offset in oxygen content suggests that La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} forms a 'super-reduced' solid solution before decomposing. When the sample underwent alternate reduction-oxidation, a hysteresis-like pO{sub 2} dependence of the oxygen content in the decomposition pO{sub 2} range was attributed to the reversible formation of ABO{sub 3} and A{sub 2}BO{sub 4} phases. Reduction enthalpy and entropy were determined for the single-phase region and confirmed interpolated values from the literature. - Graphical abstract: Oxygen nonstoichiometry (shown as 3-{delta}) of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} as a function of pO{sub 2} at 773-1173 K. The experimental data were obtained by thermogravimetric analysis (TG) and coulometric titration (measured either by a simple reduction (CT1) or a 'two-step-forward one-step-back' reduction-oxidation (CT2) procedure). D1 and D2 denote the decomposition pO{sub 2}. The solid lines are the fit to the thermogravimetry and CT1 data. The dashed lines represent the non-equilibrium region where the sample shows a super-reduced state. Highlights: Black-Right-Pointing-Pointer Oxygen nonstoichiometry of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} at intermediate temperatures and p(O2). Black-Right-Pointing-Pointer Experimental confirmation of previously interpolated reduction enthalpy. Black-Right-Pointing-Pointer Decomposition p(O2) assessed by coulometric titration. Black-Right-Pointing-Pointer Hysteresis-like p(O2) dependence of oxygen content at decomposition p(O2).« less
Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist; Jespersen, Lene
2015-03-01
Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Leuconostoc mesenteroides ssp. cremoris, by the DL-starter culture, and by the type strains. High and low levels of oxygen were produced by flushing milk with oxygen or nitrogen, respectively. The kinetics of milk acidification was characterized by the maximum rate and time of acidification (Vamax and Tamax), the maximum rate and time of reduction (Vrmax and Trmax), the minimum redox potential (Eh7 final), and time of reaching Eh7 final (Trfinal). Variations in kinetic parameters were observed at both the species and strain levels. Two of the Lc. lactis ssp. lactis strains were not able to lower redox potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum) and after (anaerobic maximum) oxygen depletion. The redox potential decreased concurrently with oxygen consumption and continued to decrease at slower rate until reaching the final values, indicating involvement of both oxygen and microbiological activity in the redox state of milk. Oxygen flushing had a negative effect on reduction and acidification capacity of tested LAB. Reduction was significantly delayed at high initial oxygen, exhibiting longer Trmax, Trfinal, or both. Concurrently, anaerobic acidification rate maximum Vamax was decreased and Tamax was extended. Fermentation kinetics in nitrogen-flushed milk was not statistically different from that in untreated milk except for Lc. lactis ssp. lactis CHCC D2, which showed faster reduction time after nitrogen flushing. This study clarifies the relationship between the redox state in milk and acidification kinetics of the predominant subspecies in DL-starter cultures. This knowledge is important for dairies to ensure optimized, fast, and controlled milk fermentations, leading to greater standardization of dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Acosta-Mora, P; Domen, K; Hisatomi, T; Lyu, H; Méndez-Ramos, J; Ruiz-Morales, J C; Khaidukov, N M
2018-02-15
Spectral up-conversion (UC) has been attracting growing interest for the effective harvesting of the near-infrared (NIR) part of sunlight for photocatalytic hydrogen production and environmental purification. We present evidence of NIR-to-UV-VIS photon conversion for degradation of organic dyes and hydrogen and oxygen evolution via water-splitting by TiO 2 and Rh-Cr oxide-loaded SrTiO 3 :Al photocatalysts, respectively.
Innovative solar thermochemical water splitting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.
2008-02-01
Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximitymore » and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.« less
Majumder, Samit; Abdel Haleem, Ashraf; Nagaraju, Perumandla; Naruta, Yoshinori
2017-07-18
The development of low-cost, stable bifunctional electrocatalysts, which operate in the same electrolyte with a low overpotential for water splitting, including the oxygen evolution reaction and the hydrogen evolution reaction, remains an attractive prospect and a great challenge. In this study, a water soluble Robson-type macrocyclic dicopper(ii) complex has been used for the first time as a catalyst precursor for the generation of a copper-based bifunctional heterogeneous catalyst film, which can be used for both HER and OER at a near neutral pH. In sodium borate buffer at pH 9.20, this complex decomposed to give a Cu(OH) 2 /Cu 2 O-based thin film on FTO that catalyzes both hydrogen production and water oxidation. The morphology, nature and composition of the thin film were fully characterized by scanning electron microscopy, powder X-ray diffraction, X-ray photoelectron, and energy dispersive X-ray spectroscopies. The catalyst film showed high stability during the course of electrolysis in either the cathodic or the anodic direction for more than 4 h. Faradaic efficiencies of ∼92% for HER and ∼96% for OER were achieved. The switch between the two half-reactions of catalytic water splitting was fully reversible in nature.
NASA Astrophysics Data System (ADS)
Hameer, Sameer
Rotorcraft transmission design is limited by empirical weight trends that are proportional to the power/torque raised to the two-thirds coupled with the relative inexperience industry has with the employment of variable speed transmission to heavy lift helicopters of the order of 100,000 lbs gross weight and 30,000 installed horsepower. The advanced rotorcraft transmission program objectives are to reduce transmission weight by at least 25%, reduce sound pressure levels by at least 10 dB, have a 5000 hr mean time between removal, and also incorporate the use of split torque technology in rotorcraft drivetrains of the future. The major obstacle that challenges rotorcraft drivetrain design is the selection, design, and optimization of a variable speed transmission in the goal of achieving a 50% reduction in rotor speed and its ability to handle high torque with light weight gears, as opposed to using a two-speed transmission which has inherent structural problems and is highly unreliable due to the embodiment of the traction type transmission, complex clutch and brake system. This thesis selects a nontraction pericyclic continuously variable transmission (P-CVT) as the best approach for a single main rotor heavy lift helicopter. The objective is to target and overcome the above mentioned obstacle for drivetrain design. Overcoming this obstacle provides advancement in the state of the art of drivetrain design over existing planetary and split torque transmissions currently used in helicopters. The goal of the optimization process was to decrease weight, decrease noise, increase efficiency, and increase safety and reliability. The objective function utilized the minimization of the weight and the major constraint is the tooth bending stress of the facegears. The most important parameters of the optimization process are weight, maintainability, and reliability which are cross-functionally related to each other, and these parameters are related to the torques and operating speeds. The analysis of the split torque type P-CVT achieved a weight reduction of 42.5% and 40.7% over planetary and split torque transmissions respectively. In addition, a 19.5 dB sound pressure level reduction was achieved using active gear struts, and also the use of fabricated steel truss like housing provided a higher maintainability and reliability, low cost, and low weight over cast magnesium housing currently employed in helicopters. The static finite element analysis of the split torque type P-CVT, both 2-D and 3-D, yielded stresses below the allowable bending stress of the material. The goal of the finite element analysis is to see if the designed product has met its functional requirements. The safety assessment of the split torque type P-CVT yielded a 99% probability of mission success based on a Monte Carlo simulation using stochastic-petri net analysis and a failure hazard analysis. This was followed by an FTA/RBD analysis which yielded an overall system failure rate of 140.35 failures per million hours, and a preliminary certification and time line of certification was performed. The use of spherical facegears and pericyclic kinematics has advanced the state of the art in drivetrain design primarily in the reduction of weight and noise coupled with high safety, reliability, and efficiency.
Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction
Lv, Haifeng; Li, Dongguo; Strmcnik, Dusan; ...
2016-04-11
In the past decade, polymer electrolyte membrane fuels (PEMFCs) have been evaluated for both automotive and stationary applications. One of the main obstacles for large scale commercialization of this technology is related to the sluggish oxygen reduction reaction that takes place on the cathode side of fuel cell. Consequently, ongoing research efforts are focused on the design of cathode materials that could improve the kinetics and durability. Majority of these efforts rely on novel synthetic approaches that provide control over the structure, size, shape and composition of catalytically active materials. This article highlights the most recent advances that have beenmore » made to tailor critical parameters of the nanoscale materials in order to achieve more efficient performance of the oxygen reduction reaction (ORR).« less
NASA Astrophysics Data System (ADS)
Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang
2018-04-01
The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.
NASA Astrophysics Data System (ADS)
Yuasa, H.; Hara, M.; Murakami, S.; Fuji, Y.; Fukuzawa, H.; Zhang, K.; Li, M.; Schreck, E.; Wang, P.; Chen, M.
2010-09-01
We have enhanced magnetoresistance (MR) for current-perpendicular-to-plane giant-magnetoresistive (CPP-GMR) films with a current-confined-path nano-oxide layer (CCP-NOL). In order to realize higher purity in Cu for CCPs, hydrogen ion treatment (HIT) was applied as the CuOx reduction process. By applying the HIT process, an MR ratio was increased to 27.4% even in the case of using conventional FeCo magnetic layer, from 13.0% for a reference without the HIT process. Atom probe tomography data confirmed oxygen reduction by the HIT process in the CCP-NOL. The relationship between oxygen counts and MR ratio indicates that further oxygen reduction would realize an MR ratio greater than 50%.
Doan-Nguyen, Vicky V.T.; Su, Dong; Zhang, Sen; ...
2015-07-14
Low temperature fuel cells are clean, effective alternative fuel conversion technology. Oxygen reduction reaction (ORR) at the fuel cell cathode has required Pt as the electrocatalyst for high activity and selectivity of the four-electron reaction pathway. Targeting a less expensive, earth abundant alternative, we have developed the synthesis of cobalt phosphide (Co₂P) nanorods for ORR. Characterization techniques that include total X-ray scattering and extended X-ray absorption fine structure revealed a deviation of the nanorods from bulk crystal structure with a contraction along the b orthorhombic lattice parameter. The carbon supported nanorods have comparable activity but are remarkably more stable thanmore » conventional Pt catalysts for the oxygen reduction reaction in alkaline environments.« less
Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid
NASA Technical Reports Server (NTRS)
Jalan, V.; Taylor, E. J.
1983-01-01
A correlation between the nearest-neighbor distance and the oxygen reduction activity of various platinum alloys is reported. It is proposed that the distance between nearest-neighbor Pt atoms on the surface of a supported catalyst is not ideal for dual site absorption of O2 or 'HO2' and that the introduction of foreign atoms which reduce the Pt nearest-neighbor spacing would result in higher oxygen reduction activity. This may allow the critical 0-0 bond interatomic distance and hence the optimum Pt-Pt separation for bond rupture to be determined from quantum chemical calculations. A composite analysis shows that the data on supported Pt alloys are consistent with Appleby's (1970) data on bulk metals with respect to specific activity, activation energy, preexponential factor, and percent d-band character.
Duan, Tran Hoa; Adrian, Lorenz
2013-07-01
Bacterial cultures were enriched from sediments in Germany and Vietnam reductively dechlorinating hexachlorobenzene and the highly persistent 1,3,5-trichlorobenzene to monochlorobenzene. The main products of the reductive dechlorination of hexachlorobenzene were monochlorobenzene and dichlorobenzenes (1,2-; 1,3- and 1,4-dichlorobenzene) while no trichlorobenzenes accumulated. For the reductive dechlorination of 1,3,5-trichlorobenzene with the mixed culture from Vietnam sediment, 1,3- dichlorobenzene and monochlorobenzene were produced as intermediate and final end-product, respectively. The pattern of dechlorination did not change when the cultures were repeatedly exposed to oxygen over seven transfers demonstrating oxygen tolerance of the dechlorinating bacteria. However, reductive dechlorination of 1,3,5-trichlorobenzene was inhibited by vancomycin at a concentration of 5 mg L(-1). Vancomycin delayed reductive dechlorination of hexachlorobenzene in mixed cultures by about 6 months. When repeatedly applied, vancomycin completely abolished the ability of the mixed culture to transform hexachlorobenzene. Sensitivity to vancomycin and insensitivity to brief exposure of oxygen indicates that the dechlorinating bacteria in the mixed cultures did not belong to the genus Dehalococcoides.
Wu, Jiajia; Liu, Huaiqun; Wang, Peng; Zhang, Dun; Sun, Yan; Li, Ee
2017-09-01
Sulfate-reducing bacteria (SRB) were found to be capable of tolerating a certain amount of oxygen (O 2 ), but how they affect oxygen reduction reaction (ORR) has not been clear. The present work investigated the impact of SRB on ORR in 3.5 wt% sodium chloride solution with the cyclic voltammetry method. The addition of SRB culture solution hampered both the reduction of O 2 to superoxide (O 2 ·- ) and hydrogen peroxide (H 2 O 2 ) to water (H 2 O), and the influence of SRB metabolites was much larger than that of bacterial cells. Sulfide and extracellular polymeric substances (EPS), typical inorganic and organic metabolic products, had great impact on ORR. Sulfide played an important role in the decrease of cathodic current for H 2 O 2 reduction due to its hydrolysis and chemical reaction activity with H 2 O 2 . EPS were sticky, easy to adsorb on the electrode surface and abundant in functional groups, which hindered the transformation of O 2 into O 2 ·- and favored the reduction of H 2 O 2 to H 2 O.
PROFILING GLYCOL-SPLIT HEPARINS BY HPLC/MS ANALYSIS OF THEIR HEPARINASE-GENERATED OLIGOSACCHARIDES1
Alekseeva, Anna; Casu, Benito; Torri, Giangiacomo; Pierro, Sabrina; Naggi, Annamaria
2012-01-01
Glycol-split (gs) heparins, obtained by periodate oxidation / borohydride reduction of heparin currently used as anticoagulant and antithrombotic drug, are arousing increasing interest in anti-cancer and anti-inflammation therapies. These new medical uses are favored by the loss of anticoagulant activity associated with glycol-splitting-induced inactivation of the antithrombin III (AT) binding site. The structure of gs-heparins has not been studied yet in detail. In this work, an ion-pair reversed-phase chromatography (IPRP-HPLC) coupled with electrospray ionization mass spectrometry (ESI-MS) widely used for unmodified heparin has been adapted to the analysis of oligosaccharides generated by digestion with heparinases of gs-heparins usually prepared from porcine mucosal heparin. The method has been also found very effective in analyzing glycol-split derivatives obtained from heparins of different animal and tissue origin. Besides the major 2-O-sulfated disaccharides, heparinase digests of gs-heparins mainly contain tetra- and hexasaccharides incorporating one or two gs residues, with distribution patterns typical for individual gs-heparins. A heptasulfated, mono-N-acetylated hexasaccharide with two gs residues has been shown to be a marker of the gs-modified AT binding site within heparin chains. PMID:23201389
In Situ Splitting of a Rib Bone Graft for Reconstruction of Orbital Floor and Medial Wall.
Uemura, Tetsuji; Yanai, Tetsu; Yasuta, Masato; Harada, Yoshimi; Morikawa, Aya; Watanabe, Hidetaka; Kurokawa, Masato
2017-06-01
In situ splitting of rib bone graft was conducted in 22 patients for the repair of orbital fracture with no other complicating fractures. A bone graft was harvested from the sixth or seventh rib in the right side. The repair of the orbital floor and medial wall was successful in all the cases. Ten patients had bone grafting to the orbital floor, eight had it done onto medial wall, and 4 onto both floor and wall after reduction. The mean length of in situ rib bone graft was 40.9 mm (range, 20-70 mm), the mean width of these was 14.9 mm (range, 8-20 mm). The bone grafting was done by one leaf for 15 cases and two leafs for 7 cases in size of defects. The technique of in situ splitting of a rib bone graft for the repair of the orbital floor and medial wall is a simple and safe procedure, easily taking out the in situ splitting of a rib, and less pain in donor site. It has proved to be an optimal choice in craniofacial reconstruction, especially the defects of orbital floor and medial wall.
Zhang, Peili; Li, Lin; Nordlund, Dennis; Chen, Hong; Fan, Lizhou; Zhang, Biaobiao; Sheng, Xia; Daniel, Quentin; Sun, Licheng
2018-01-26
Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2 . The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.
Frydendal, Rasmus; Seitz, Linsey C.; Sokaras, Dimosthenis; ...
2017-01-20
The electrochemical splitting of water holds great potential as a method for producing clean fuels by storing electricity from intermittent energy sources. The efficiency of such a process would be greatly facilitated by incorporating more active catalysts based on abundant materials for the oxygen evolution reaction. Manganese oxides are promising as catalysts for this reaction. Recent reports show that their activity can be drastically enhanced when modified with gold. Herein, we investigate highly active mixed Au-MnO x thin films for the oxygen evolution reaction, which exhibit more than five times improvement over pure MnO x. These films are characterized withmore » operando X-ray Absorption Spectroscopy, which reveal that Mn assumes a higher oxidation state under reaction conditions when Au is present. As a result, the magnitude of the enhancement is correlated to the size of the Au domains, where larger domains are the more beneficial.« less
Barber, James
2016-10-05
Photosystem II is the chlorophyll containing enzyme in which the very first chemical energy storing reaction of photosynthesis occurs. It does so by splitting water into molecular oxygen and hydrogen equivalents at a catalytic centre composed of four Mn ions and one Ca2+. All the oxygen in the atmosphere is derived from this reaction and without it the biosphere, as we know it, would not exist. Indeed its appearance about 3 billion years ago gave rise to the "big bang of evolution". Thus understanding the structure and functioning of this metal cluster is a major topic in science and here I discuss it in terms of research over of the last twelve years dating back to when it was first proposed to be a Mn3CaO4 cubane with the fourth Mn attached to cubane by one of its oxo bridging bonds. In so doing a number of novel properties emerge for this metallo-protein with implications for its mechanism and evolutionary origin.
NASA Astrophysics Data System (ADS)
Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K.
2015-02-01
Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g-1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of -0.045 V and a half-wave potential of -0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ˜5% as compared to ˜14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance.
Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K
2015-01-01
Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g−1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of −0.045 V and a half-wave potential of −0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ∼5% as compared to ∼14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance. PMID:27877746
NASA Astrophysics Data System (ADS)
Kumar, Surender; Kumar, Divyaratan; Kishore, Brij; Ranganatha, Sudhakar; Munichandraiah, Nookala; Venkataramanan, Natarajan S.
2017-10-01
Nanoparticles of Co3Fe alloy is prepared on reduced graphene oxide (RGO) sheets by modified polyol method. Synthesized alloy particles are characterized by various physicochemical techniques. TEM and SEM pictures showed homogeneously dispersed alloy nanoparticles on the RGO sheets. Electrochemistry of alloy nanoparticles is investigated in alkaline medium. The result shows that oxygen evaluation reaction (OER) activity of Co3Fe-RGO is higher than Pt-black particles. RDE studies in alkaline medium shows that oxygen reduction reaction (ORR) follow four electron pathway. It is suggest that Co3Fe-RGO is an efficient non-precious catalyst for oxygen (ORR/OER) reactions in alkaline electrolyte for PEMFC applications.
Sorption of Molecular Oxygen by Metal-Ion Exchanger Nanocomposites
NASA Astrophysics Data System (ADS)
Krysanov, V. A.; Plotnikova, N. V.; Kravchenko, T. A.
2018-03-01
Kinetic features are studied of the chemisorption and reduction of molecular oxygen from water by metal-ion exchanger nanocomposites that differ in the nature of the dispersed metal and state of oxidation. In the Pd < Ag < Cu series, the increasing chemical activity of metal nanoparticles raises the degree of oxygen sorption due to its chemisorption and subsequent reduction, while the role of the molecular chemisorption stage increases in the Cu < Ag < Pd series. Metal particles or their oxides are shown to act as adsorption sites on the surface and in the pores of the ion-exchanger matrix; the equilibrium sorption coefficient for oxygen dissolved in water ranges from 20 to 50, depending on the nature and oxidation state of the metal component.
To, John W. F.; Ng, Jia Wei Desmond; Siahrostami, Samira; ...
2016-11-30
The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O 2-H 2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH 3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of amore » regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. As a result, this work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
To, John W. F.; Ng, Jia Wei Desmond; Siahrostami, Samira
The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O 2-H 2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH 3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of amore » regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. As a result, this work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.« less
Use of ion conductors in the pyrochemical reduction of oxides
Miller, William E.; Tomczuk, Zygmunt
1994-01-01
An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO.sub.2 oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a .beta.-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca.degree. used for reducing UO.sub.2 and PuO.sub.2 to U and Pu.
NASA Astrophysics Data System (ADS)
Xiong, Xiaolei
Recent research of Solid oxide fuel cells (SOFCs) is aimed to lower the operating temperature to an intermediate temperature (IT) range of 500 to 700°C, while maintaining a proper performance. This Ph.D. research project investigates the promotional effects of alkaline carbonate eutectics on the proton conductivity of proton conducting electrolytes and cathodic ORR reactivity in SOFCs by both experimental and computational methods. The ionic conductivity of the MC-BZY composite above 500°C increases with the higher loading of MC. The sample exhibited nearly a factor of two higher conductivity in H2-containing atmosphere than in air. First-principles DFT modeling further investigated proton transfer at the interface of BaZrO 3 and molten carbonate. With the presence of carbonate ion, the energy barrier for proton migration becomes as low as 0.332 eV. The modeling indicates the reduction of energy barrier is resulted from the change of rate-determining step from proton transfer between oxygen atoms to proton rotation around oxygen atom. Infiltration of MC into porous cathode can reduce the polarization of resistance (Rp), i.e., enhance the oxygen reduction reaction (ORR) activity. The EIS analysis shows that MC has a beneficial effect on reducing Rp for different cathodes including Au, La0.8Sr 0.2MnO3-delta(LSM), La0.6Sr0.4Co 0.2Fe0.8O3-delta(LSCF) and La2NiO 4+delta (LNO). Specifically, the study on MC loading effect was carried out on LSCF cathode. It shows that a higher loading makes a greater reduction on Rp and the degree of reduction is the same from 500 to 600°C. As the loading increases to 1.4 wt%, the degree of Rp reduction tends to reach a limit. First-principles DFT modeling was further used to investigate the incorporation of oxygen into MC. The formation of CO 52- in molten carbonate was considered as a chemisorption of gas oxygen on the surface of MC infiltrated cathodes. After the formation of CO52-, it reacts with another CO3 2- to form two CO42-, which is a rate-limiting step on potential energy surface. After dissociation, oxygen atoms migrate in molten carbonate, which is energetically favor by intermolecular pathways. An O-O-O linkage is formed between carbonate ions, which facilitates the oxygen migration between carbonate ions.
Topical oxygen emulsion: a novel wound therapy.
Davis, Stephen C; Cazzaniga, Alejandro L; Ricotti, Carlos; Zalesky, Paul; Hsu, Li-Chien; Creech, Jeffrey; Eaglstein, William H; Mertz, Patricia M
2007-10-01
To investigate the use of a topical oxygen emulsion (TOE), consisting of a supersaturated oxygen suspension using perfluorocarbon components, on second-degree burns and partial-thickness wounds. Oxygen is a required substance for various aspects of wound repair, and increased oxygen tension in a wound has been shown to stimulate phagocytosis and to reduce the incidence of wound infection. Second-degree burns and partial-thickness wounds were created on the backs of specific pathogen-free pigs. Wounds were then randomly assigned to 1 of the following treatment groups: TOE, TOE vehicle, or air-exposed control. Wounds were assessed for complete epithelialization using a salt-split technique. The TOE was able to significantly (P = .001) enhance the rate of epithelialization compared with both vehicle and untreated control. These data suggest that topical oxygen may be beneficial for acute and burn wounds. The results obtained from this double-blind, control, in vivo study demonstrate that TOE can significantly enhance the rate of epithelialization of partial-thickness excisional wounds and second-degree burns. These findings could have considerable clinical implications for patients with surgical and burn wounds by providing functional skin at an earlier date to act as a barrier against environmental factors, such as bacteria invasion. Other types of wounds may also benefit from this therapy (eg, chronic wounds and surgical incisions). Additional studies, including clinical studies, are warranted.
Computational Studies of Protein Hydration Methods
NASA Astrophysics Data System (ADS)
Morozenko, Aleksandr
It is widely appreciated that water plays a vital role in proteins' functions. The long-range proton transfer inside proteins is usually carried out by the Grotthuss mechanism and requires a chain of hydrogen bonds that is composed of internal water molecules and amino acid residues of the protein. In other cases, water molecules can facilitate the enzymes catalytic reactions by becoming a temporary proton donor/acceptor. Yet a reliable way of predicting water protein interior is still not available to the biophysics community. This thesis presents computational studies that have been performed to gain insights into the problems of fast and accurate prediction of potential water sites inside internal cavities of protein. Specifically, we focus on the task of attainment of correspondence between results obtained from computational experiments and experimental data available from X-ray structures. An overview of existing methods of predicting water molecules in the interior of a protein along with a discussion of the trustworthiness of these predictions is a second major subject of this thesis. A description of differences of water molecules in various media, particularly, gas, liquid and protein interior, and theoretical aspects of designing an adequate model of water for the protein environment are widely discussed in chapters 3 and 4. In chapter 5, we discuss recently developed methods of placement of water molecules into internal cavities of a protein. We propose a new methodology based on the principle of docking water molecules to a protein body which allows to achieve a higher degree of matching experimental data reported in protein crystal structures than other techniques available in the world of biophysical software. The new methodology is tested on a set of high-resolution crystal structures of oligopeptide-binding protein (OppA) containing a large number of resolved internal water molecules and applied to bovine heart cytochrome c oxidase in the fully oxidized state and photosystem II from thermophilic cyanobacterium Thermosynechococcus vulcanus, which both are indispensable for sustaining life on Earth. Cytochrome c oxidase (CcO) is the terminal enzyme of the respiratory electron transport chain responsible for biological reduction over ninety percent of atmospheric oxygen by means of pumping protons across the inner mitochondrial or bacterial plasma membrane with the use of energy derived from the reduction of O 2 to H2O. Photosystem II (PSII) is a membrane protein complex located in the thylakoid membranes of oxygenic photosynthetic organisms, and performs a series of light-induced electron transfer reactions leading to the splitting of water into protons and molecular oxygen.
Dimeric chlorite dismutase from the nitrogen‐fixing cyanobacterium C yanothece sp. PCC7425
Schaffner, Irene; Hofbauer, Stefan; Krutzler, Michael; Pirker, Katharina F.; Bellei, Marzia; Stadlmayr, Gerhard; Mlynek, Georg; Djinovic‐Carugo, Kristina; Battistuzzi, Gianantonio; Furtmüller, Paul G.; Daims, Holger
2015-01-01
Summary It is demonstrated that cyanobacteria (both azotrophic and non‐azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite ‘dismutase’, Cld). Beside the water‐splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen–oxygen bond. All cyanobacterial Clds have a truncated N‐terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from C yanothece sp. PCC7425 (CCld) was recombinantly produced in E scherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [k cat 1144 ± 23.8 s−1, KM 162 ± 10.0 μM, catalytic efficiency (7.1 ± 0.6) × 106 M−1 s−1]. The resting ferric high‐spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of −126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low‐spin complex with k on = (1.6 ± 0.1) × 105 M−1 s−1 and k off = 1.4 ± 2.9 s−1 (KD ∼ 8.6 μM). Both, thermal and chemical unfolding follows a non‐two‐state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure–function relationships of Clds. We ask for the physiological substrate and putative function of these O2‐producing proteins in (nitrogen‐fixing) cyanobacteria. PMID:25732258
Rahman, M; Dang, B H Q; McDonnell, K; MacElroy, J M D; Dowling, D P
2012-06-01
The photocatalytic splitting of water into hydrogen and oxygen using a photoelectrochemical (PEC) cell containing titanium dioxide (TiO2) photoanode is a potentially renewable source of chemical fuels. However, the size of the band gap (-3.2 eV) of the TiO2 photocatalyst leads to its relatively low photoactivity toward visible light in a PEC cell. The development of materials with smaller band gaps of approximately 2.4 eV is therefore necessary to operate PEC cells efficiently. This study investigates the effect of dopant (C or N) and co-dopant (C+N) on the physical, structural and photoactivity of TiO2 nano thick coating. TiO2 nano-thick coatings were deposited using a closed field DC reactive magnetron sputtering technique, from titanium target in argon plasma with trace addition of oxygen. In order to study the influence of doping such as C, N and C+N inclusions in the TiO2 coatings, trace levels of CO2 or N2 or CO2+N2 gas were introduced into the deposition chamber respectively. The properties of the deposited nano-coatings were determined using Spectroscopic Ellipsometry, SEM, AFM, Optical profilometry, XPS, Raman, X-ray diffraction UV-Vis spectroscopy and tri-electrode potentiostat measurements. Coating growth rate, structure, surface morphology and roughness were found to be significantly influenced by the types and amount of doping. Substitutional type of doping in all doped sample were confirmed by XPS. UV-vis measurement confirmed that doping (especially for C doped sample) facilitate photoactivity of sputtered deposited titania coating toward visible light by reducing bandgap. The photocurrent density (indirect indication of water splitting performance) of the C-doped photoanode was approximately 26% higher in comparison with un-doped photoanode. However, coating doped with nitrogen (N or N+C) does not exhibit good performance in the photoelectrochemical cell due to their higher charge recombination properties.
Tu, Jiguo; Lei, Haiping; Yu, Zhijing; Jiao, Shuqiang
2018-02-01
In this work, we have synthesized ordered WO 3 nanorods via a facile hydrothermal process. And the series WO 3-x nanorods with oxygen vacancies are obtained via a subsequent thermal reduction process. The formation mechanisms of WO 3-x nanorods with different oxygen vacancies are proposed. And the electrochemical results reveal that the WO 3-x nanorods exhibit the improved specific capacity due to the oxygen vacancies caused by the thermal reduction. More importantly, the reaction mechanism of the WO 3-x nanorods as cathodes for aluminum-ion batteries has been proved.
Sulfur cycling in plays an important role in the development of Ocean Anoxic Events
NASA Astrophysics Data System (ADS)
Gomes, M. L.; Raven, M. R.; Fike, D. A.; Gill, B. C.; Johnston, D. T.
2017-12-01
Ocean Anoxic Events (OAEs) are major carbon cycle perturbations marked by enhanced organic carbon deposition in the marine realm and carbon isotope excursions in organic and inorganic carbon. Although not as severe as the "big five" mass extinctions, OAEs had dire consequences for marine ecosystems and thus influenced Mesozoic evolutionary patterns. Sulfur cycle reconstructions provide insight into the biogeochemical processes that played a role in the development of OAEs because the sulfur cycle is linked with the carbon and oxygen cycles. We present sulfur and oxygen isotope records from carbonate-associated sulfate from the Toarcian OAE that documents a positive sulfate-oxygen isotope excursion of +6‰, which is similar to the magnitude of the positive sulfur isotope excursion documented at the same site and other globally distributed sites. This high-resolution record allows us to explore temporal variability in the onset of the isotopic excursions: the onset of the positive sulfate-oxygen isotope excursion occurs at the same stratigraphic interval as the onset of the positive carbon isotope excursion and both precede the onset of the positive sulfate-sulfur isotope excursion. Because oxygen is rapidly recycled during oxidative sulfur cycling, changes in oxidative sulfur cycling affect oxygen isotope values of sulfate without impacting sulfur isotope values. Thus, the early onset of the sulfate-oxygen isotope excursion implies a change in oxidative sulfur cycling, which is likely due to a shoaling of the zone of sulfate reduction. We explore the consequences of sulfate reduction zone shoaling for organic carbon preservation. Specifically, the sulfurization of organic matter, which makes organic matter less susceptible to degradation, occurs more rapidly when the top of the zone of sulfate reduction is near or above the sediment water interface. Therefore, we suggest that the shoaling of the sulfate reduction zone locally changed pathways of oxidative sulfur cycling and enhanced organic carbon preservation. Given synchronous changes in similar, globally-distributed depositional environments, this impacted the global biogeochemical cycles of oxygen, carbon, and nutrients in ways that sustained decreased oxygen availability and influenced extinction patterns of marine organisms.
Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors
NASA Astrophysics Data System (ADS)
Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre
2018-03-01
NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.
Esperança, M N; Cunha, F M; Cerri, M O; Zangirolami, T C; Farinas, C S; Badino, A C
2014-05-01
Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S < 10.0 g L−1 and QAIR > 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.
Rising levels of atmospheric oxygen and evolution of Nrf2.
Gacesa, Ranko; Dunlap, Walter C; Barlow, David J; Laskowski, Roman A; Long, Paul F
2016-06-14
In mammals, the master transcription regulator of antioxidant defences is provided by the Nrf2 protein. Phylogenetic analyses of Nrf2 sequences are used here to derive a molecular clock that manifests persuasive evidence that Nrf2 orthologues emerged, and then diverged, at two time points that correlate with well-established geochemical and palaeobiological chronologies during progression of the 'Great Oxygenation Event'. We demonstrate that orthologues of Nrf2 first appeared in fungi around 1.5 Ga during the Paleoproterozoic when photosynthetic oxygen was being absorbed into the oceans. A subsequent significant divergence in Nrf2 is seen during the split between fungi and the Metazoa approximately 1.0-1.2 Ga, at a time when oceanic ventilation released free oxygen to the atmosphere, but with most being absorbed by methane oxidation and oxidative weathering of land surfaces until approximately 800 Ma. Atmospheric oxygen levels thereafter accumulated giving rise to metazoan success known as the Cambrian explosion commencing at ~541 Ma. Atmospheric O2 levels then rose in the mid Paleozoic (359-252 Ma), and Nrf2 diverged once again at the division between mammals and non-mammalian vertebrates during the Permian-Triassic boundary (~252 Ma). Understanding Nrf2 evolution as an effective antioxidant response may have repercussions for improved human health.
Optical oxygen concentration monitor
Kebabian, Paul
1997-01-01
A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.
Highly-active oxygen evolution electrocatalyzed by an Fe-doped NiCr2O4 nanoparticle film.
Zhao, Jinxiu; Li, Xianghong; Cui, Guanwei; Sun, Xuping
2018-05-11
Alkaline water splitting offers a simple method for the mass production of hydrogen but suffers from the sluggish kinetics of the anodic oxygen evolution reaction (OER). Here, we report on the development of an Fe-doped NiCr2O4 nanoparticle film on Ni foam (Fe-NiCr2O4/NF) as a non-noble-metal OER electrocatalyst with superior catalytic activity at alkaline pH. Such Fe-NiCr2O4/NF demands overpotentials as low as 228 and 318 mV to drive current densities of 20 and 500 mA cm-2, respectively, in 1.0 M KOH. Notably, it also shows strong long-term electrochemical durability with its activity being retained for at least 60 h.
Zhao, Zhi-Gang; Zhang, Jing; Yuan, Yinyin; Lv, Hong; Tian, Yuyu; Wu, Dan; Li, Qing-Wen
2013-01-01
Oxygen conversion process between O2 and H2O by means of electrochemistry or photochemistry has lately received a great deal of attention. Cobalt-phosphate (Co-Pi) catalyst is a new type of cost-effective artificial oxygen-evolving complex (OEC) with amorphous features during photosynthesis. However, can such Co-Pi OEC also act as oxygen reduction reaction (ORR) catalyst in electrochemical processes? The question remains unanswered. Here for the first time we demonstrate that Co-Pi OEC does be rather active for the ORR. Particularly, Co-Pi OEC anchoring on reduced graphite oxide (rGO) nanosheet is shown to possess dramatically improved electrocatalytic activities. Differing from the generally accepted role of rGO as an “electron reservoir”, we suggest that rGO serves as “peroxide cleaner” in enhancing the electrocatalytic behaviors. The present study may bridge the gap between photochemistry and electrochemistry towards oxygen conversion. PMID:23877331
Chisholm, K I; Ida, K K; Davies, A L; Papkovsky, D B; Singer, M; Dyson, A; Tachtsidis, I; Duchen, M R; Smith, K J
2016-01-01
Live imaging of mitochondrial function is crucial to understand the important role played by these organelles in a wide range of diseases. The mitochondrial redox potential is a particularly informative measure of mitochondrial function, and can be monitored using the endogenous green fluorescence of oxidized mitochondrial flavoproteins. Here, we have observed flavoprotein fluorescence in the exposed murine cerebral cortex in vivo using confocal imaging; the mitochondrial origin of the signal was confirmed using agents known to manipulate mitochondrial redox potential. The effects of cerebral oxygenation on flavoprotein fluorescence were determined by manipulating the inspired oxygen concentration. We report that flavoprotein fluorescence is sensitive to reductions in cortical oxygenation, such that reductions in inspired oxygen resulted in loss of flavoprotein fluorescence with the exception of a preserved 'halo' of signal in periarterial regions. The findings are consistent with reports that arteries play an important role in supplying oxygen directly to tissue in the cerebral cortex, maintaining mitochondrial function.
Ultrasonically assisted drilling of rocks
NASA Astrophysics Data System (ADS)
Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.
2018-05-01
Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.
Zhang, Qian; Qin, Xixi; Duanmu, Fanpeng; Ji, Huiming; Shen, Zhurui; Han, Xiaopeng; Hu, Wenbin
2018-06-05
Oxygen activation plays a crucial role in many important chemical reactions such as organics oxidation and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in-situ formed amorphous H2WO4 out-layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6] and water of H2WO4, consequently leading to optimized surface electronic configuration and strong metal support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long-term durability. This work will provide insight on the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom-based catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hao, Ying-Juan; Liu, Bing; Tian, Li-Gang; Li, Fa-Tang; Ren, Jie; Liu, Shao-Jia; Liu, Ying; Zhao, Jun; Wang, Xiao-Jing
2017-04-12
Seeking a simple and moderate route to generate reactive oxygen species (ROS) for antibiosis is of great interest and challenge. This work demonstrates that molecule transition and electron rearrangement processes can directly occur only through chemisorption interaction between the adsorbed O 2 and high-energy {111} facet-exposed MgO with abundant surface oxygen vacancies (SOVs), hence producing singlet oxygen and superoxide anion radicals without light irradiation. These ROS were confirmed by electron paramagnetic resonance, in situ Raman, and scavenger experiments. Furthermore, heat plays a crucial role for the electron transfer process to accelerate the formation of ·O 2 - , which is verified by temperature kinetic experiments of nitro blue tetrazolium reduction in the dark. Therefore, the presence of oxygen vacancy can be considered as an intensification of the activation process. The designed MgO is acquired in one step via constructing a reduction atmosphere during the combustion reaction process, which has an ability similar to that of noble metal Pd to activate molecular oxygen and can be used as an effective bacteriocide in the dark.
Tang, Jijun; Ou, Zhongping; Guo, Rui; Fang, Yuanyuan; Huang, Dong; Zhang, Jing; Zhang, Jiaoxia; Guo, Song; McFarland, Frederick M; Kadish, Karl M
2017-08-07
A cobalt triphenylcorrole (CorCo) was covalently bonded to graphene oxide (GO), and the resulting product, represented as GO-CorCo, was characterized by UV-vis, FT-IR, and micro-Raman spectroscopy as well as by HRTEM, TGA, XRD, XPS, and AFM. The electrocatalytic activity of GO-CorCo toward the oxygen reduction reaction (ORR) was then examined in air-saturated 0.1 M KOH and 0.5 M H 2 SO 4 solutions by cyclic voltammetry and linear sweep voltammetry using a rotating disk electrode and/or a rotating ring-disk electrode. An overall 4-electron reduction of O 2 is obtained in alkaline media while under acidic conditions a 2-electron process is seen. The ORR results thus indicate that covalently bonded GO-CoCor can be used as a selective catalyst for either the 2- or 4-electron reduction of oxygen, the prevailing reaction depending upon the acidity of the solution.
Aardahl, Christopher L [Richland, WA; Balmer-Miller, Mari Lou [West Richland, WA; Chanda, Ashok [Peoria, IL; Habeger, Craig F [West Richland, WA; Koshkarian, Kent A [Peoria, IL; Park, Paul W [Peoria, IL
2006-07-25
The present disclosure pertains to a system and method for treatment of oxygen rich exhaust and more specifically to a method and system that combines non-thermal plasma with a metal doped .gamma.-alumina catalyst. Current catalyst systems for the treatment of oxygen rich exhaust are capable of achieving only approximately 7 to 12% NO.sub.x reduction as a passive system and only 25 40% reduction when a supplemental hydrocarbon reductant is injected into the exhaust stream. It has been found that treatment of an oxygen rich exhaust initially with a non-thermal plasma and followed by subsequent treatment with a metal doped .gamma.-alumina prepared by the sol gel method is capable of increasing the NO.sub.x reduction to a level of approximately 90% in the absence of SO.sub.2 and 80% in the presence of 20 ppm of SO.sub.2. Especially useful metals have been found to be indium, gallium, and tin.
Wang, Zejie; Deng, Huan; Chen, Lihui; Xiao, Yong; Zhao, Feng
2013-03-01
Biofilms are the core component of bioelectrochemical systems (BESs). To understand the polarization effects on biocathode performance of BES, dissolved oxygen concentrations, pHs and oxidation-reduction potentials of biofilm microenvironments were determined in situ. The results showed that lower polarization potentials resulted in the generation of larger currents and higher pH values, as well as the consumption of more oxygen. Oxidation-reduction potentials of biofilms were mainly affected by polarization potentials of the electrode rather than the concentration of dissolved oxygen or pH value, and its changes in the potentials corresponded to the electric field distribution of the electrode surface. The results demonstrated that a sufficient supply of dissolved oxygen and pH control of the biocathode are necessary to obtain optimal performance of BESs; a lower polarization potential endowed microorganisms with a higher electrochemical activity. Copyright © 2012 Elsevier Ltd. All rights reserved.