Science.gov

Sample records for oxygen selection based

  1. High Selectivity Oxygen Delignification

    SciTech Connect

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  2. High Selectivity Oxygen Delignification

    SciTech Connect

    Arthur J. Ragauskas Lucian A. Lucia Hasan Jameel

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in

  3. MOF-based catalysts for selective hydrogenolysis of carbon–oxygen ether bonds

    SciTech Connect

    Stavila, Vitalie; Parthasarathi, Ramakrishnan; Davis, Ryan W.; El Gabaly, Farid; Sale, Kenneth L.; Simmons, Blake A.; Singh, Seema; Allendorf, Mark D.

    2015-11-23

    We demonstrate that metal–organic frameworks (MOFs) can catalyze hydrogenolysis of aryl ether bonds under mild conditions. Mg-IRMOF-74(I) and Mg-IRMOF-74(II) are stable under reducing conditions and can cleave phenyl ethers containing β-O-4, α-O-4, and 4-O-5 linkages to the corresponding hydrocarbons and phenols. Reaction occurs at 10 bar H2 and 120 °C without added base. DFT-optimized structures and charge transfer analysis suggest that the MOF orients the substrate near Mg2+ ions on the pore walls. Ti and Ni doping further increase conversions to as high as 82% with 96% selectivity for hydrogenolysis versus ring hydrogenation. Thus repeated cycling induces no loss of activity, making this a promising route for mild aryl-ether bond scission.

  4. MOF-based catalysts for selective hydrogenolysis of carbon–oxygen ether bonds

    DOE PAGES

    Stavila, Vitalie; Parthasarathi, Ramakrishnan; Davis, Ryan W.; El Gabaly, Farid; Sale, Kenneth L.; Simmons, Blake A.; Singh, Seema; Allendorf, Mark D.

    2015-11-23

    We demonstrate that metal–organic frameworks (MOFs) can catalyze hydrogenolysis of aryl ether bonds under mild conditions. Mg-IRMOF-74(I) and Mg-IRMOF-74(II) are stable under reducing conditions and can cleave phenyl ethers containing β-O-4, α-O-4, and 4-O-5 linkages to the corresponding hydrocarbons and phenols. Reaction occurs at 10 bar H2 and 120 °C without added base. DFT-optimized structures and charge transfer analysis suggest that the MOF orients the substrate near Mg2+ ions on the pore walls. Ti and Ni doping further increase conversions to as high as 82% with 96% selectivity for hydrogenolysis versus ring hydrogenation. Thus repeated cycling induces no loss ofmore » activity, making this a promising route for mild aryl-ether bond scission.« less

  5. Selective photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1998-01-01

    A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

  6. Flammability of selected heat resistant alloys in oxygen gas mixtures

    SciTech Connect

    Zawierucha, R.; McIlroy, K.; Million, J.F.

    1995-12-31

    Within recent years, the use of oxygen has increased in applications where elevated temperatures and corrosion may be significant factors. In such situations, traditional alloys used in oxygen systems will not be adequate. Where alternative alloys must be utilized, based upon environmental requirements, it is essential that they may be characterized with respect to their ignition and combustion resistance in oxygen. Promoted ignition and promoted ignition-combustion are terms which have been used to describe a situation where a substance with low oxygen supports the combustion of a compatibility ignites and more ignition resistant material. In this paper, data will be presented on the promoted ignition-combustion behavior of selected heat resistant engineering alloys that may be considered for gaseous oxygen applications in severe environments. In this investigation, alloys have been evaluated via both flowing and static (fixed volume) approaches using a rod configuration. Oxygen-nitrogen gas mixtures with compositions ranging from approximately 40 to 99.7% oxygen at pressures of 3.55 to 34.6 MPa were used in the comparative studies.

  7. Cooperative Catalysis for Selective Alcohol Oxidation with Molecular Oxygen.

    PubMed

    Slot, Thierry K; Eisenberg, David; van Noordenne, Dylan; Jungbacker, Peter; Rothenberg, Gadi

    2016-08-22

    The activation of dioxygen for selective oxidation of organic molecules is a major catalytic challenge. Inspired by the activity of nitrogen-doped carbons in electrocatalytic oxygen reduction, we combined such a carbon with metal-oxide catalysts to yield cooperative catalysts. These simple materials boost the catalytic oxidation of several alcohols, using molecular oxygen at atmospheric pressure and low temperature (80 °C). Cobalt and copper oxide demonstrate the highest activities. The high activity and selectivity of these catalysts arises from the cooperative action of their components, as proven by various control experiments and spectroscopic techniques. We propose that the reaction should not be viewed as occurring at an 'active site', but rather at an 'active doughnut'-the volume surrounding the base of a carbon-supported metal-oxide particle.

  8. Safety Standard for Oxygen and Oxygen Systems: Guidelines for Oxygen System Design, Materials Selection, Operations, Storage, and Transportation

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's standard for oxygen system design, materials selection, operation, and transportation is presented. Minimum guidelines applicable to NASA Headquarters and all NASA Field Installations are contained.

  9. A Comparison of Atomic Oxygen Erosion Yields of Carbon and Selected Polymers Exposed in Ground Based Facilities and in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Cales, Michael

    1994-01-01

    A comparison of the relative erosion yields (volume of material removed per oxygen atom arriving) for FEP Teflon, polyethylene, and pyrolytic graphite with respect to Kapton HN was performed in an atomic oxygen directed beam system, in a plasma asher, and in space on the EOIM-III (Evaluation of Oxygen Interaction with Materials-III) flight experiment. This comparison was performed to determine the sensitivity of material reaction to atomic oxygen flux, atomic oxygen fluence, and vacuum ultraviolet radiation for enabling accurate estimates of durability in ground based facilities. The relative erosion yield of pyrolytic graphite was found not to be sensitive to these factors, that for FEP was sensitive slightly to fluence and possibly ions, and that for polyethylene was found to be partially VUV and flux sensitive but more sensitive to an unknown factor. Results indicate that the ability to use these facilities for material relative durability prediction is great as long as the sensitivity of particular materials to conditions such as VUV, and atomic oxygen flux and fluence are taken into account. When testing materials of a particular group such as teflon, it may be best to use a witness sample made of a similar material that has some available space data on it. This would enable one to predict an equivalent exposure in the ground based facility.

  10. Biofilm history and oxygen availability interact to affect habitat selection in a marine invertebrate.

    PubMed

    Lagos, Marcelo E; White, Craig R; Marshall, Dustin J

    2016-07-01

    In marine systems, oxygen availability varies at small temporal and spatial scales, such that current oxygen levels may not reflect conditions of the past. Different studies have shown that marine invertebrate larvae can select settlement sites based on local oxygen levels and oxygenation history of the biofilm, but no study has examined the interaction of both. The influence of normoxic and hypoxic water and oxygenation history of biofilms on pre-settlement behavior and settlement of the bryozoan Bugula neritina was tested. Larvae used cues in a hierarchical way: the oxygen levels in the water prime larvae to respond, the response to different biofilms is contingent on oxygen levels in the water. When oxygen levels varied throughout biofilm formation, larvae responded differently depending on the history of the biofilm. It appears that B. neritina larvae integrate cues about current and historical oxygen levels to select the appropriate microhabitat and maximize their fitness. PMID:27169475

  11. Perfluorocarbon-based oxygen delivery.

    PubMed

    Riess, Jean G

    2006-01-01

    The basic properties of perfluorocarbons (PFCs) and PFC emulsions relevant to their use as oxygen delivery systems are briefly reviewed. The key issues related to the selection of an appropriate, readily excretable PFC and the engineering of a stable injectable PFC emulsion are discussed. Oxygent, a terminally heat-sterilized, injectable 60% w/v PFC emulsion made primarily of F-octyl bromide and a few percent of F-decyl bromide, with egg phospholipids as an emulsifier, has been developed. Its efficacy in avoiding and reducing red cell transfusion during surgery has been established during a Phase III clinical evaluation. Another Phase III clinical trial in cardiopulmonary bypass surgery, with a protocol that included both augmented-acute normovolemic hemodilution and intraoperative autologous donation, has, however, been interrupted following the observation of adverse events. Data analysis assigned these events to an inappropriate study protocol. A search for possible interactions between Oxygent and fluids present during cardiopulmonary bypass surgery detected no effect of the emulsion on hemostasis, hemolysis and blood rheology. PMID:17090429

  12. Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations.

    PubMed

    Šiljić, Aleksandra; Antanasijević, Davor; Perić-Grujić, Aleksandra; Ristić, Mirjana; Pocajt, Viktor

    2015-03-01

    Biological oxygen demand (BOD) is the most significant water quality parameter and indicates water pollution with respect to the present biodegradable organic matter content. European countries are therefore obliged to report annual BOD values to Eurostat; however, BOD data at the national level is only available for 28 of 35 listed European countries for the period prior to 2008, among which 46% of data is missing. This paper describes the development of an artificial neural network model for the forecasting of annual BOD values at the national level, using widely available sustainability and economical/industrial parameters as inputs. The initial general regression neural network (GRNN) model was trained, validated and tested utilizing 20 inputs. The number of inputs was reduced to 15 using the Monte Carlo simulation technique as the input selection method. The best results were achieved with the GRNN model utilizing 25% less inputs than the initial model and a comparison with a multiple linear regression model trained and tested using the same input variables using multiple statistical performance indicators confirmed the advantage of the GRNN model. Sensitivity analysis has shown that inputs with the greatest effect on the GRNN model were (in descending order) precipitation, rural population with access to improved water sources, treatment capacity of wastewater treatment plants (urban) and treatment of municipal waste, with the last two having an equal effect. Finally, it was concluded that the developed GRNN model can be useful as a tool to support the decision-making process on sustainable development at a regional, national and international level.

  13. Copper modified carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1992-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfunctional alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  14. Copper crystallite in carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1993-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfurfuryl alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  15. Silicon and oxygen isotopes in selected Allende inclusions

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Epstein, S.

    1982-01-01

    Silicon and oxygen data are presented for a number of Allende samples. It is found that based on oxygen and silicon isotopes, Allende samples EGG-1, EGG-6, BG1a, and 3529Yc are typical, unfractionated Allende inclusions. Where magnesium data are available, they indicate the same thing. EGG-3 is fractionated in both oxygen and silicon, as it is in magnesium. Sample D7 melilite is fractionated in oxygen by several per mil along the C2-matrix line, away from typical Allende melilites. Inclusion BG10a is a FUN inclusion with an inferred original oxygen isotopic fractionation of 8-9 per mille/amu relative to the Allende line. Silicon data for two density fractions of inclusion 3A with different mineralogies show a difference of about 2 per mille, which indicates that silicon, like oxygen, has been added to at least some mineral phases in Allende inclusions from a reservoir other than the one in which the inclusion first began to form.

  16. Oxygen Selective Membranes for Li-Air (O2) Batteries

    PubMed Central

    Crowther, Owen; Salomon, Mark

    2012-01-01

    Lithium-air (Li-air) batteries have a much higher theoretical energy density than conventional lithium batteries and other metal air batteries, so they are being developed for applications that require long life. Water vapor from air must be prevented from corroding the lithium (Li) metal negative electrode during discharge under ambient conditions, i.e., in humid air. One method of protecting the Li metal from corrosion is to use an oxygen selective membrane (OSM) that allows oxygen into the cell while stopping or slowing the ingress of water vapor. The desired properties and some potential materials for OSMs for Li-air batteries are discussed and the literature is reviewed. PMID:24958173

  17. Pulsed diode laser-based monitor for singlet molecular oxygen

    PubMed Central

    Lee, Seonkyung; Zhu, Leyun; Minhaj, Ahmed M.; Hinds, Michael F.; Vu, Danthu H.; Rosen, David I.; Davis, Steven J.; Hasan, Tayyaba

    2010-01-01

    Photodynamic therapy (PDT) is a promising cancer treatment. PDT uses the affinity of photosensitizers to be selectively retained in malignant tumors. When tumors, pretreated with the photosensitizer, are irradiated with visible light, a photochemical reaction occurs and tumor cells are destroyed. Oxygen molecules in the metastable singlet delta state O2(1Δ) are believed to be the species that destroys cancerous cells during PDT. Monitoring singlet oxygen produced by PDT may lead to more precise and effective PDT treatments. Our approach uses a pulsed diode laser-based monitor with optical fibers and a fast data acquisition system to monitor singlet oxygen during PDT. We present results of in vitro singlet oxygen detection in solutions and in a rat prostate cancer cell line as well as PDT mechanism modeling. PMID:18601555

  18. Pulsed diode laser-based monitor for singlet molecular oxygen.

    PubMed

    Lee, Seonkyung; Zhu, Leyun; Minhaj, Ahmed M; Hinds, Michael F; Vu, Danthu H; Rosen, David I; Davis, Steven J; Hasan, Tayyaba

    2008-01-01

    Photodynamic therapy (PDT) is a promising cancer treatment. PDT uses the affinity of photosensitizers to be selectively retained in malignant tumors. When tumors, pretreated with the photosensitizer, are irradiated with visible light, a photochemical reaction occurs and tumor cells are destroyed. Oxygen molecules in the metastable singlet delta state O2(1Delta) are believed to be the species that destroys cancerous cells during PDT. Monitoring singlet oxygen produced by PDT may lead to more precise and effective PDT treatments. Our approach uses a pulsed diode laser-based monitor with optical fibers and a fast data acquisition system to monitor singlet oxygen during PDT. We present results of in vitro singlet oxygen detection in solutions and in a rat prostate cancer cell line as well as PDT mechanism modeling.

  19. Oxygen Concentration Flammability Thresholds of Selected Aerospace Materials Considered for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susan A.; Beeson, Harold; Pedley, Michael D.

    2007-01-01

    Materials selection for spacecraft is based on an upward flammability test conducted in a quiescent environment in the highest expected oxygen concentration environment. The test conditions and its pass/fail test logic do not provide sufficient quantitative materials flammability information for an advanced space exploration program. A modified approach has been suggested determination of materials self-extinguishment limits. The flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats. This paper provides data on oxygen concentration self-extinguishment limits under quiescent conditions for selected materials considered for the Constellation Program.

  20. Oxidizer Selection for the ISTAR Program (Liquid Oxygen versus Hydrogen Peroxide)

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene; Koelbl, Mary E. (Technical Monitor)

    2002-01-01

    This paper discusses a study of two alternate oxidizers, liquid oxygen and hydrogen peroxide, for use in a rocket based combined cycle (RBCC) demonstrator vehicle. The flight vehicle is baselined as an airlaunched self-powered Mach 0.7 to 7 demonstration of an RBCC engine through all or its air breathing propulsion modes. Selection of an alternate oxidizer has the potential to lower overall vehicle size, system complexity/ cost and ultimately the total program risk. This trade study examined the oxidizer selection effects upon the overall vehicle performance, safety and operations. After consideration of all the technical and programmatic details available at this time, 90% hydrogen peroxide was selected over liquid oxygen for use in this program.

  1. Platinum-based oxygen reduction electrocatalysts.

    PubMed

    Wu, Jianbo; Yang, Hong

    2013-08-20

    An efficient oxygen reduction reaction (ORR) offers the potential for clean energy generation in low-temperature, proton-exchange membrane fuel cells running on hydrogen fuel and air. In the past several years, researchers have developed high-performance electrocatalysts for the ORR to address the obstacles of high cost of the Pt catalyst per kilowatt of output power and of declining catalyst activity over time. Current efforts are focused on new catalyst structures that add a secondary metal to change the d-band center and the surface atomic arrangement of the catalyst, altering the chemisorption of those oxygencontaining species that have the largest impact on the ORR kinetics and improving the catalyst activity and cost effectiveness. This Account reviews recent progress in the design of Pt-based ORR electrocatalysts, including improved understanding of the reaction mechanisms and the development of synthetic methods for producing catalysts with high activity and stability. Researchers have made several types of highly active catalysts, including an extended single crystal surface of Pt and its alloy, bimetallic nanoparticles, and self-supported, low-dimensional nanostructures. We focus on the design and synthetic strategies for ORR catalysts including controlling the shape (or facet) and size of Pt and its bimetallic alloys, and controlling the surface composition and structure of core-shell, monolayer, and hollow porous structures. The strong dependence of ORR performance on facet and size suggests that synthesizing nanocrystals with large, highly reactive {111} facets could be as important, if not more important, to increasing their activity as simply making smaller nanoparticles. A newly developed carbon-monoxide (CO)-assisted reduction method produces Pt bimetallic nanoparticles with controlled facets. This CO-based approach works well to control shapes because of the selective CO binding on different, low-indexed metal surfaces. Post-treatment under

  2. Venous Oxygenation Mapping using Velocity-Selective Excitation and Arterial Nulling (VSEAN)

    PubMed Central

    Guo, Jia; Wong, Eric C.

    2011-01-01

    A new MRI technique to map the oxygenation of venous blood is presented. The method uses velocity-selective excitation and arterial nulling pulses, combined with phase sensitive signal detection to isolate the venous blood signal. The T2 of this signal along with a T2-Y calibration curve yields estimates of venous oxygenation in situ. Results from phantoms and healthy human subjects under normoxic and hypoxic conditions are shown, and venous saturation levels estimated from both sagittal sinus and grey matter based ROIs are compared to the related techniques TRUST and QUIXOTIC. In addition, combined with an additional scan without arterial nulling pulses, the oxygen saturation level on arterial side can also be estimated. PMID:22294414

  3. Intrinsic Selectivity and Structure Sensitivity of Rhodium Catalysts for C(2+) Oxygenate Production.

    PubMed

    Yang, Nuoya; Medford, Andrew J; Liu, Xinyan; Studt, Felix; Bligaard, Thomas; Bent, Stacey F; Nørskov, Jens K

    2016-03-23

    Synthesis gas (CO + H2) conversion is a promising route to converting coal, natural gas, or biomass into synthetic liquid fuels. Rhodium has long been studied as it is the only elemental catalyst that has demonstrated selectivity to ethanol and other C2+ oxygenates. However, the fundamentals of syngas conversion over rhodium are still debated. In this work a microkinetic model is developed for conversion of CO and H2 into methane, ethanol, and acetaldehyde on the Rh (211) and (111) surfaces, chosen to describe steps and close-packed facets on catalyst particles. The model is based on DFT calculations using the BEEF-vdW functional. The mean-field kinetic model includes lateral adsorbate-adsorbate interactions, and the BEEF-vdW error estimation ensemble is used to propagate error from the DFT calculations to the predicted rates. The model shows the Rh(211) surface to be ∼6 orders of magnitude more active than the Rh(111) surface, but highly selective toward methane, while the Rh(111) surface is intrinsically selective toward acetaldehyde. A variety of Rh/SiO2 catalysts are synthesized, tested for catalytic oxygenate production, and characterized using TEM. The experimental results indicate that the Rh(111) surface is intrinsically selective toward acetaldehyde, and a strong inverse correlation between catalytic activity and oxygenate selectivity is observed. Furthermore, iron impurities are shown to play a key role in modulating the selectivity of Rh/SiO2 catalysts toward ethanol. The experimental observations are consistent with the structure-sensitivity predicted from theory. This work provides an improved atomic-scale understanding and new insight into the mechanism, active site, and intrinsic selectivity of syngas conversion over rhodium catalysts and may also guide rational design of alloy catalysts made from more abundant elements. PMID:26958997

  4. 20. VIEW OF WORTHINGTON BASE LOAD OXYGEN COMPRESSOR IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF WORTHINGTON BASE LOAD OXYGEN COMPRESSOR IN THE HIGH PURITY OXYGEN BUILDING LOOKING NORTH. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  5. An Elementary Overview of the Selection of Materials for Service in Oxygen-Enriched Environments

    NASA Technical Reports Server (NTRS)

    Davis, Samuel Eddie

    2012-01-01

    The process for selecting materials for use in oxygen or oxygen-enriched environments is one that continues to be investigated by many industries due to the importance to those industries of oxygen systems. There are several excellent resources available to assist oxygen systems design engineers and end-users, with the most comprehensive being ASTM MNL-36, Safe Use of Oxygen and Oxygen Systems: Handbook for Design, Operation and Maintenance, 2nd Edition. ASTM also makes available several standards for oxygen systems. However, the ASTM publications are extremely detailed, and typically designed for professionals who already possess a working knowledge of oxygen systems. No notable resource exists, whether an ASTM or other organizational publication, which can be used to educate engineers or technicians who have no prior knowledge of the nuances of oxygen system design and safety. This paper will fill the void for information needed by organizations that design or operate oxygen systems. The information in this paper is not new information, but is a concise and easily understood summary of selecting materials for oxygen systems. This paper will serve well as an employee s first introduction to oxygen system materials selection, and probably the employee s first introduction to ASTM.

  6. Designed nitrogen doping of few-layer graphene functionalized by selective oxygenic groups

    PubMed Central

    2014-01-01

    Few-layer nitrogen doped graphene was synthesized originating from graphene oxide functionalized by selective oxygenic functional groups (hydroxyl, carbonyl, carboxyl etc.) under hydrothermal conditions, respectively. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) observation evidenced few-layer feature of the graphene oxide. X-ray diffraction (XRD) pattern confirmed phase structure of the graphene oxide and reduced graphene oxide. Nitrogen doping content and bonding configuration of the graphene was determined by X-ray photoelectron spectroscopy (XPS), which indicated that different oxygenic functional groups were evidently different in affecting the nitrogen doping process. Compared with other oxygenic groups, carboxyl group played a crucial role in the initial stage of nitrogen doping while hydroxyls exhibited more evident contribution to the doping process in the late stage of the reaction. Formation of graphitic-like nitrogen species was controlled by a synergistic effect of the involved oxygenic groups (e.g., -COOH, -OH, C-O-C, etc.). The doping mechanism of nitrogen in the graphene was scrutinized. The research in this work may not only contribute to the fundamental understandings of nitrogen doping within graphene but promote the development of producing novel graphene-based devices with designed surface functionalization. PMID:25520594

  7. (R)-Profens Are Substrate-Selective Inhibitors of Endocannabinoid Oxygenation by COX-2

    PubMed Central

    Duggan, Kelsey C.; Hermanson, Daniel J.; Musee, Joel; Prusakiewicz, Jeffery J.; Scheib, Jami L.; Carter, Bruce D.; Banerjee, Surajit; Oates, J.A.; Marnett, Lawrence J.

    2012-01-01

    Cyclooxygenase-2 (COX-2) catalyzes the oxygenation of arachidonic acid and the endocannabinoids, 2-arachidonoylglycerol and arachidonoylethanolamide. Evaluation of a series of COX-2 inhibitors revealed that many weak, competitive inhibitors of arachidonic acid oxygenation are potent inhibitors of endocannabinoid oxygenation. (R)-Enantiomers of ibuprofen, naproxen, and flurbiprofen, which are considered to be inactive as COX-2 inhibitors, are potent “substrate-selective inhibitors” of endocannabinoid oxygenation. Crystal structures of the COX-2-(R)-naproxen and COX-2-(R)-flurbiprofen complexes verified this unexpected binding and defined the orientation of the (R)-enantiomers relative to (S)-enantiomers. (R)-Profens selectively inhibited endocannabinoid oxygenation by lipopolysaccharide-stimulated dorsal root ganglion cells. Substrate-selective inhibition provides novel tools for investigating the role of COX-2 in endocannabinoid oxygenation and a possible explanation for the ability of (R)-profens to maintain endocannabinoid tone in models of neuropathic pain. PMID:22053353

  8. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, H.; Blatter, F.; Sun, H.

    1999-06-22

    A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

  9. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2001-01-01

    A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  10. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2000-01-01

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  11. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1999-01-01

    A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  12. Highly Efficient Oxygen Reduction Electrocatalysts based on Winged Carbon Nanotubes

    PubMed Central

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis. PMID:24217312

  13. Technical Note: Some Issues Related to the Selection of Polymers for Aerospace Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Beeson, Harold

    2004-01-01

    Materials intended for use in aerospace oxygen systems are commonly screened for oxygen compatibility following NASA STD 6001. This standard allows qualification of materials based on results provided by only one test method. Potential issues related to this practice are reviewed and recommendations are proposed that would lead to improved aerospace oxygen systems safety.

  14. Pressure Flammability Thresholds in Oxygen of Selected Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Harper, Susana; Beeson, Harold; Ruff, Gary; Pedley, Mike

    2010-01-01

    The experimental approach consisted of concentrating the testing in the flammability transition zone following the Bruceton Up-and-Down Method. For attribute data, the method has been shown to be very repeatable and most efficient. Other methods for characterization of critical levels (Karberand Probit) were also considered. The data yielded the upward limiting pressure index (ULPI), the pressure level where approx.50% of materials self-extinguish in a given environment.Parametric flammability thresholds other than oxygen concentration can be determined with the methodology proposed for evaluating the MOC when extinguishment occurs. In this case, a pressure threshold in 99.8% oxygen was determined with the methodology and found to be 0.4 to 0.9 psia for typical spacecraft materials. Correlation of flammability thresholds obtained with chemical, hot wire, and other ignition sources will be conducted to provide recommendations for using alternate ignition sources to evaluate flammability of aerospace materials.

  15. Calculated values of atomic oxygen fluences and solar exposure on selected surfaces of LDEF

    NASA Technical Reports Server (NTRS)

    Gillis, J. R.; Pippin, H. G.; Bourassa, R. J.; Gruenbaum, P. E.

    1995-01-01

    Atomic oxygen (AO) fluences and solar exposure have been modeled for selected hardware from the Long Duration Exposure Facility (LDEF). The atomic oxygen exposure was modeled using the microenvironment modeling code SHADOWV2. The solar exposure was modeled using the microenvironment modeling code SOLSHAD version 1.0.

  16. Dissolved oxygen sensing based on fluorescence quenching of ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Shehata, Nader; Meehan, Kathleen; Leber, Donald

    2012-10-01

    The development of oxygen sensors has positively impacted the fields of medical science, bioengineering, environmental monitoring, solar cells, industrial process control, and a number of military applications. Fluorescent quenching sensors have an inherent high sensitivity, chemical selectivity, and stability when compared to other types of sensors. While cerium oxide thin films have been used to monitor oxygen in the gas phase, the potential of cerium oxide (ceria) nanoparticles as the active material in sensor for oxygen gas has only recently been investigated. Ceria nanoparticles are one of the most unique nanomaterials that are being studied today due to the diffusion and reactivity of its oxygen vacancies, which contributes to its high oxygen storage capability. The reactivity of the oxygen vacancies, which is also related to conversion of cerium ion from the Ce+4 to Ce+3 state, affects the fluorescence properties of the ceria nanoparticles. Our research demonstrates that the ceria nanoparticles (~7 nm in diameter) have application as a fluorescence quenching sensor to measure dissolved oxygen in water. We have found a strong inverse correlation between the amplitude of the fluorescence emission (λexcitation = 430 nm and λpeak = 520 nm) and the dissolved oxygen concentration between 5 - 13 mg/L. The Stern-Volmer constant, which is an indication of the sensitivity of gas sensing is 184 M-1 for the ceria nanoparticles. The results show that ceria nanoparticles can be used in an improved, robust fluorescence sensor for dissolved oxygen in a liquid medium.

  17. Combustion in a multiburner furnace with selective flow of oxygen

    DOEpatents

    Bool, III, Lawrence E.; Kobayashi, Hisashi

    2004-03-02

    Improved operational characteristics such as improved fuel efficiency, reduction of NOx formation, reduction of the amount of unburned carbon in the ash, and lessened tendency to corrosion at the tube wall, in a multi-burner furnace are obtained by reducing the flow rate of combustion air to the burners and selectively individually feeding oxidant to only some of the burners.

  18. Oxygen transport during hemodilution with a perfluorocarbon-based oxygen carrier: effect of altitude and hyperoxia.

    PubMed

    Gardeazábal, Tatiana; Cabrera, Mariana; Cabrales, Pedro; Intaglietta, Marcos; Briceño, Juan Carlos

    2008-08-01

    Oxygen delivery and consumption after hemodilution with a perfluorocarbon-based oxygen carrier (PFCOC) was evaluated at sea level and at 2,600 m above sea level. Fifteen anesthetized rats were subjected to a two-exchange normovolemic hemodilution of 40% of the circulating blood volume each. First exchange was performed with a colloid solution. Second exchange was with 80% PFCOC and 20% colloid. Animals were then ventilated with 100% oxygen. Experiments were performed at barometric pressure of 1.0 atm (sea-level group, n=9) or 0.74 atm (2,600-m group, n=6). Blood gases, hematocrit, fluorocrit, and hemoglobin content were measured at baseline and 15 min after each exchange. After hemodilution, total arterial content was not modified by the PFCOC in either group. In contrast, arteriovenous oxygen difference increased significantly in both groups, as did the oxygen extraction ratio. In the second exchange, although total arterial content was similar between the two groups, the perfluorocarbon and plasma phases contributed significantly more at sea level. Arteriovenous oxygen difference was significantly less at sea level with a higher contribution from the perfluorocarbon and plasma phases. In conclusion, hemodilution with a PFCOC induced changes in oxygen delivery and consumption that differ with altitude. The 2,600-m group exhibited a higher oxygen extraction ratio and arteriovenous oxygen difference, with reduced oxygen delivery and unloading from both the fluorocarbon and plasma phase. Therefore, the efficacy of PFCOCs at 2,600 m above sea level is reduced, and altitude must be taken into account when PFCOCs are used.

  19. Atomic oxygen erosion considerations for spacecraft materials selection

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Kamenetzky, Rachel R.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) satellite carried 57 experiments that were designed to define the low-Earth orbit (LEO) space environment and to evaluate the impact of this environment on potential engineering materials and material processes. Deployed by the Shuttle Challenger in April of 1984, LDEF made over 32,000 orbits before being retrieved nearly 6 years later by the Shuttle Columbia in January of 1990. The Solar Array Passive LDEF Experiment (SAMPLE) AO171 contained approximately 300 specimens, representing numerous material classes and material processes. AO171 was located on LDEF in position A8 at a yaw of 38.1 degrees from the ram direction and was subjected to an atomic oxygen (AO) fluence of 6.93 x 10(exp 21) atoms/sq cm. LDEF AO171 data, as well as short-term shuttle data, will be discussed in this paper as it applies to engineering design applications of composites, bulk and thin film polymers, glassy ceramics, thermal control paints, and metals subjected to AO erosion.

  20. Chemical Sensors Based On Oxygen Detection By Optical Methods

    NASA Astrophysics Data System (ADS)

    Parker, Jennifer W.; Cox, M. E.; Dunn, Bruce S.

    1986-08-01

    Fluorescence quenching is shown to be a viable method of measuring oxygen concentration. Two oxygen/optical transducers based on fluorescence quenching have been developed and characterized: one is hydrophobic and the other is hydrophilic. The development of both transducers provides great flexibility in the application of fluorescence to oxygen measurement. One transducer is produced by entrapping a fluorophor, 9,10-diphenyl anthracene, in poly(dimethyl siloxane) to yield a homogeneous composite polymer matrix. The resulting matrix is hydrophobic. This transducer is extremely sensitive to PO2 as a result of oxygen quenching the fluorescence of 9,10-diphenyl anthracene. This quenching is utilized in the novel method employed to measure the transport properties of oxygen within Ulf 2matrix. Results show large values for the diffusion coefficient at 25°C, D = 3.5 x 10-5 cm /s. The fluorescence intensity varies inversely with P02. The second oxygen transducer is fabricated by entrapping 9,10-diphenyl anthracene in poly(hydroxy ethyl methacrylate). Free radical, room temperature polymerization is employed. This transducer is hydrophilic, and contains 37% water. The transport properties of oxygen within this transducer are compared with those of the hydrophobic transducer. The feasibility of generalizing the oxygen transducers to a wider class of chemical sensors through coupling to other chemistries is proposed. An example of such coupling is given in a glucose/oxygen transducer. The glucose transducer is produced by entrapping an enzyme, glucose oxidase, in the composite matrix of the hydrophilic oxygen transducer. Glucose oxidase catalyzes a reaction between glucose and oxygen, thereby lowering the local oxygen concentration. This transducer yields a glucose modified optical oxygen signal. The operation of this transducer and preliminary results of its characterization are presented.

  1. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    EPA Science Inventory

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen

    Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  2. Validation of oxygen saturation measurements in a canine model of hemoglobin-based oxygen carrier infusion.

    PubMed

    Jahr, Jonathan S; Lurie, Fedor; Driessen, Bernd; Tang, Zuping; Louie, Richard F; Kost, Gerald

    2003-01-01

    This study was designed to validate oxygen saturation measurements from the NOVA CO-Oximeter (NOVA Biomedical Corporation, Waltham, MA), the i-STAT System (Sensor Devices, Waukesha, WI), and the Corning 170 blood gas analyzer (Bayer Corporation, East Walpole, MA) under conditions similar to the clinical application of a hemoglobin-based oxygen carrier (HBOC, hemoglobin glutamer-200 [bovine]; Oxyglobin, Biopure Corporation, Cambridge, MA). A canine model was used for both in vitro and in vivo experiments. In vivo experiments were conducted in a canine laboratory, and in vitro experiments were conducted in a tonometry laboratory. Study subjects were six mixed-breed dogs, each weighing approximately 30 kg. In the first set of experiments, the target blood po(2) levels were reached by tonometry. In the second set of experiments, quantitative measurements of total oxygen content with the LEXO2CON-K (HOSPEX Fiberoptics, Chestnut Hill, MA) were performed, immediately followed by measurements with the NOVA CO-Oximeter and the i-STAT system. HBOC was added in concentrations of 16.2, 32.5, 65, and 97.5 g/L. To analyze the clinical significance of the differences in the results obtained with the each investigated instrument, blood samples from dogs treated with HBOC after acute hemorrhagic shock were used. Oxygen saturation, oxygen content, and po(2) were measured. There was a strong correlation between the oxygen saturation values measured with the investigated instruments in samples after tonometry and known po(2). The total calculated oxygen content varied by 5% based on results generated by calculations using the investigated instruments. The results did not change with different oxygenation of the sample. The differences among methods were not significant when the HBOC concentration was 16.2 g/L. Higher concentrations of HBOC increased the difference between calculated and measured oxygen content; the i-STAT system demonstrated a greater deviation compared with the

  3. Pallidol, a resveratrol dimer from red wine, is a selective singlet oxygen quencher

    SciTech Connect

    He Shan; Jiang Liyan; Wu Bin; Pan Yuanjiang; Sun Cuirong

    2009-02-06

    Pallidol is a naturally occurring resveratrol dimer from red wine with antioxidant and antifungal activities. In this report, with the use of the EPR spin-trapping technique, the scavenging and quenching effects of pallidol on reactive oxygen species (ROS) were investigated. The results demonstrated that pallidol showed strong quenching effects on singlet oxygen at very low concentrations, but it was ineffective to scavenge hydroxyl radicals or superoxide anions. Further kinetic study revealed that the reaction of pallidol with singlet oxygen had an extremely high rate constant (k{sub a} = 1.71 x 10{sup 10}). Therefore, pallidol is a potent and selective singlet oxygen quencher in aqueous systems. It may be used in singlet oxygen-mediated diseases as a pharmacological agent, which may contribute to the health beneficial effects of red wine.

  4. Influence of oxygen and pH on the selective oxidation of ethanol on Pd catalysts

    SciTech Connect

    Hibbitts, David D.; Neurock, Matthew

    2013-03-01

    The selective oxidation of ethanol on supported Pd is catalytically promoted by the presence of hydroxide species on the Pd surface as well as in solution. These hydroxide intermediates act as Brønsted bases which readily abstract protons from the hydroxyl groups of adsorbed or solution-phase alcohols. The C1AH bond of the resulting alkoxide is subsequently activated on the metal surface via hydride elimination to form acetaldehyde. Surface and solution-phase hydroxide intermediates can also readily react with the acetaldehyde via nucleophilic addition to form a germinal diol intermediate, which subsequently undergoes a second C1AH bond activation on Pd to form acetic acid. The role of O2 is to remove the electrons produced in the oxidation reaction via the oxygen reduction reaction over Pd. The reduction reaction also regenerates the hydroxide intermediates and removes adsorbed hydrogen that is produced during the oxidation.

  5. Synergistic Effects in Bimetallic Palladium-Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions.

    PubMed

    Goulas, Konstantinos A; Sreekumar, Sanil; Song, Yuying; Kharidehal, Purnima; Gunbas, Gorkem; Dietrich, Paul J; Johnson, Gregory R; Wang, Y C; Grippo, Adam M; Grabow, Lars C; Gokhale, Amit A; Toste, F Dean

    2016-06-01

    Condensation reactions such as Guerbet and aldol are important since they allow for C-C bond formation and give higher molecular weight oxygenates. An initial study identified Pd-supported on hydrotalcite as an active catalyst for the transformation, although this catalyst showed extensive undesirable decarbonylation. A catalyst containing Pd and Cu in a 3:1 ratio dramatically decreased decarbonylation, while preserving the high catalytic rates seen with Pd-based catalysts. A combination of XRD, EXAFS, TEM, and CO chemisorption and TPD revealed the formation of CuPd bimetallic nanoparticles with a Cu-enriched surface. Finally, density functional theory studies suggest that the surface segregation of Cu atoms in the bimetallic alloy catalyst produces Cu sites with increased reactivity, while the Pd sites responsible for unselective decarbonylation pathways are selectively poisoned by CO. PMID:27195582

  6. Analysis of selected specimens from the STS-46 Energetic Oxygen Interaction with Materials-3 experiment

    SciTech Connect

    Golden, J.L.; Bourassa, R.J.; Dursch, H.W.; Pippin, H.G.

    1995-02-01

    The Energetic Oxygen Interaction with Materials 3 (EOIM-3) experiment was flown on the STS-46 mission, which was launched on 31 July 1992 and returned 8 Aug. 1992. Boeing specimens were located on both the NASA Marshall Space Flight Center (MSFC) tray and the Ballistic Missile Defense Organization (BMDO) tray integrated by the Jet Propulsion Laboratory (JPL). The EOIM-3 pallet was mounted in the Space Shuttle payload bay near the aft bulkhead. During the mission, the atomic oxygen (AO) exposure levels of specimens in these passive sample trays was about 2.3 x 10(exp 20) atoms/sq cm. The specimens also received an estimated 22 equivalent sun hours of solar exposure. In addition, it appears that the EOIM-3 pallet was exposed to a silicone contamination source and many specimens had a thin layer of silicon based deposit on their surfaces after the flight. The specimens on the MSFC tray included seven solid film lubricants, a selection of butyl rubber (B612) and silicone (S383) o-rings, three indirect scatter surfaces, and Silver/Fluorinated Ethylene Propylene (Ag/FEP) and Chemglaze A276 specimens which had previously flown on trailing edge locations of the Long Duration Exposure Facility (LDEF). The specimens on the JPL tray included composites previously flown on LDEF and two indirect scattering surfaces.

  7. Analysis of selected specimens from the STS-46 Energetic Oxygen Interaction with Materials-3 experiment

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.; Bourassa, Roger J.; Dursch, Harry W.; Pippin, H. Gary

    1995-01-01

    The Energetic Oxygen Interaction with Materials 3 (EOIM-3) experiment was flown on the STS-46 mission, which was launched on 31 Jul. 1992 and returned 8 Aug. 1992. Boeing specimens were located on both the NASA Marshall Space Flight Center (MSFC) tray and the Ballistic Missile Defense Organization (BMDO) tray integrated by the Jet Propulsion Laboratory (JPL). The EOIM-3 pallet was mounted in the Space Shuttle payload bay near the aft bulkhead. During the mission, the atomic oxygen (AO) exposure levels of specimens in these passive sample trays was about 2.3 x 10(exp 20) atoms/sq cm. The specimens also received an estimated 22 equivalent sun hours of solar exposure. In addition, it appears that the EOIM-3 pallet was exposed to a silicone contamination source and many specimens had a thin layer of silicon based deposit on their surfaces after the flight. The specimens on the MSFC tray included seven solid film lubricants, a selection of butyl rubber (B612) and silicone (S383) o-rings, three indirect scatter surfaces, and Silver/Fluorinated Ethylene Propylene (Ag/FEP) and Chemglaze A276 specimens which had previously flown on trailing edge locations of the Long Duration Exposure Facility (LDEF). The specimens on the JPL tray included composites previously flown on LDEF and two indirect scattering surfaces.

  8. Modeling of the Temperature Effect on Oxygen Absorption by Iron-Based Oxygen Scavengers.

    PubMed

    Polyakov, Vladimir A; Miltz, Joseph

    2016-01-01

    A new engineering-oriented model for prediction of the effect of temperature on the kinetics of oxygen absorption by iron-based oxygen scavengers (IOSs) was developed. The model is based on the physicochemical mechanism of the O2 scavenging process by the active component of the IOS (iron powder). The conclusions of this study are: (1) the iron deposits formed on the iron particles are composed of 2 different layers: an inner layer of Fe3 O4 and an outer layer of FeOOH that vanishes with the depletion of oxygen. (2) The model considers the chemical processes in the heterogeneous closed system "Fe-H2 O-NaCl-O2 " and describes the kinetics of oxygen absorption by the powder, depending on the characteristics of the system. (3) The nonlinear ordinary differential equation (ODE) of the O2 absorption kinetics was derived and a simple approximate solution to this ODE was obtained theoretically that is similar to the empirical exponential formula published in the relevant literature. (4) The temperature dependence of the oxygen absorption rate is more complicated than that described by the Arrhenius equation. PMID:26650762

  9. Modeling of the Temperature Effect on Oxygen Absorption by Iron-Based Oxygen Scavengers.

    PubMed

    Polyakov, Vladimir A; Miltz, Joseph

    2016-01-01

    A new engineering-oriented model for prediction of the effect of temperature on the kinetics of oxygen absorption by iron-based oxygen scavengers (IOSs) was developed. The model is based on the physicochemical mechanism of the O2 scavenging process by the active component of the IOS (iron powder). The conclusions of this study are: (1) the iron deposits formed on the iron particles are composed of 2 different layers: an inner layer of Fe3 O4 and an outer layer of FeOOH that vanishes with the depletion of oxygen. (2) The model considers the chemical processes in the heterogeneous closed system "Fe-H2 O-NaCl-O2 " and describes the kinetics of oxygen absorption by the powder, depending on the characteristics of the system. (3) The nonlinear ordinary differential equation (ODE) of the O2 absorption kinetics was derived and a simple approximate solution to this ODE was obtained theoretically that is similar to the empirical exponential formula published in the relevant literature. (4) The temperature dependence of the oxygen absorption rate is more complicated than that described by the Arrhenius equation.

  10. Selective hydrogen oxidation in the presence of C3 hydrocarbons using perovskite oxygen reservoirs.

    PubMed

    Beckers, Jurriaan; Drost, Ruben; van Zandvoort, Ilona; Collignon, Paul F; Rothenberg, Gadi

    2008-05-16

    Perovskite-type oxides, ABO(3), can be successfully applied as solid "oxygen reservoirs" in redox reactions such as selective hydrogen combustion. This reaction is part of a novel process for propane oxidative dehydrogenation, wherein the lattice oxygen of the perovskite is used to combust hydrogen selectively from the dehydrogenation mixture at 550 degrees C. This gives three key advantages: it shifts the dehydrogenation equilibrium to the side of the desired products, heat is generated, thus aiding the endothermic dehydrogenation, and it simplifies product separation (H(2)O vs H(2)). Furthermore, the process is safer since it uses the catalysts' lattice oxygen instead of gaseous O(2). We screened fourteen perovskites for activity, selectivity and stability in selective hydrogen combustion. The catalytic properties depend strongly on the composition. Changing the B atom in a series of LaBO(3) perovskites shows that Mn and Co give a higher selectivity than Fe and Cr. Replacing some of the La atoms with Sr or Ca also affects the catalytic properties. Doping with Sr increases the selectivity of the LaFeO(3) perovskite, but yields a catalyst with low selectivity in the case of LaCrO(3). Conversely, doping LaCrO(3) with Ca increases the selectivity. The best results are achieved with Sr-doped LaMnO(3), with selectivities of up to 93 % and activities of around 150 mumol O m(-2). This catalyst, La(0.9)Sr(0.1)MnO(3), shows excellent stability, even after 125 redox cycles at 550 degrees C (70 h on stream). Notably, the activity per unit surface area of the perovskite catalysts is higher than that of doped cerias, the current benchmark of solid oxygen reservoirs.

  11. Polymeric nanoparticles for hemoglobin-based oxygen carriers.

    PubMed

    Piras, Anna Maria; Dessy, Alberto; Chiellini, Federica; Chiellini, Emo; Farina, Claudio; Ramelli, Massimiliano; Della Valle, Elena

    2008-10-01

    This article reports on the current status of the research on blood substitutes with particular attention on hemoglobin-based oxygen carriers (HBOCs). Insights on the physiological role of hemoglobin are reported in the view of the development of both acellular and cellular hemoglobin-based oxygen carriers. Attention is then focused on biocompatible polymeric materials that find application as matrices for cellular based HBOCs and on the strategies employed to avoid methemoglobin formation. Results are reported regarding the use of bioerodible polymeric matrices based on hemiesters of alternating copolymer (maleic anhydride-co-butyl vinyl ether) for the preparation of hemoglobin loaded nanoparticles.

  12. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases

    NASA Astrophysics Data System (ADS)

    Chowdhury, Rasheduzzaman; Leung, Ivanhoe K. H.; Tian, Ya-Min; Abboud, Martine I.; Ge, Wei; Domene, Carmen; Cantrelle, François-Xavier; Landrieu, Isabelle; Hardy, Adam P.; Pugh, Christopher W.; Ratcliffe, Peter J.; Claridge, Timothy D. W.; Schofield, Christopher J.

    2016-08-01

    The response to hypoxia in animals involves the expression of multiple genes regulated by the αβ-hypoxia-inducible transcription factors (HIFs). The hypoxia-sensing mechanism involves oxygen limited hydroxylation of prolyl residues in the N- and C-terminal oxygen-dependent degradation domains (NODD and CODD) of HIFα isoforms, as catalysed by prolyl hydroxylases (PHD 1-3). Prolyl hydroxylation promotes binding of HIFα to the von Hippel-Lindau protein (VHL)-elongin B/C complex, thus signalling for proteosomal degradation of HIFα. We reveal that certain PHD2 variants linked to familial erythrocytosis and cancer are highly selective for CODD or NODD. Crystalline and solution state studies coupled to kinetic and cellular analyses reveal how wild-type and variant PHDs achieve ODD selectivity via different dynamic interactions involving loop and C-terminal regions. The results inform on how HIF target gene selectivity is achieved and will be of use in developing selective PHD inhibitors.

  13. Tailoring Selectivity for Electrocatalytic Oxygen Evolution on Ruthenium Oxides by Zn Substitution

    SciTech Connect

    Petrykin, V.; Macounova, K; Shlyakhtin, O; Krtil, P

    2010-01-01

    Controlling gas emissions: Versatile control of the selectivity of an oxide electrocatalyst in the oxygen- and chlorine-evolution reactions was demonstrated by Zn substitution in RuO{sub 2}. The incorporation of Zn into the rutile structure alters the cation sequence along the [001] direction and modifies the structure of the active sites for both gas-evolution processes.

  14. DETERMINATION OF LETHAL DISSOLVED OXYGEN LEVELS FOR SELECTED MARINE AND ESTUARINE FISHES, CRUSTACEANS AND A BIVALVE

    EPA Science Inventory

    The objective of this study was to provide a database of the incipient lethal concentrations for reduced dissolved oxygen (DO) for selected marine and estuarine species including 12 species of fish, 9 crustaceans, and 1 bivalve. All species occur in the Virginian Province, USA, w...

  15. Trityl-based EPR probe with enhanced sensitivity to oxygen

    PubMed Central

    Bobko, Andrey A.; Dhimitruka, Ilirian; Eubank, Timothy D.; Marsh, Clay B.; Zweier, Jay L.; Khramtsov, Valery V.

    2009-01-01

    An asymmetric derivative of triarylmethyl radical, TAM-H, containing one aldehyde and two carboxyl groups was synthesized. The electron paramagnetic resonance, EPR, spectrum of TAM-H is characterized by a doublet of narrow lines with linewidth of 105 mG in anoxic conditions and hyperfine interaction constant 245 mG. The partial overlap of the components of the doublet results in enhanced sensitivity of the spectral amplitudes ratio to oxygen compared with oxygen-induced linewidth broadening of a single line. Application of the TAM-H probe allows for EPR measurements in an extended range of oxygen pressures from atmospheric to 1 mmHg whereas the EPR spectrum linewidth of the popular TAM-based oxygen sensor, Oxo63, is practically insensitive to oxygen partial pressures below 20 mmHg. Enhanced sensitivity of TAM-H probe relative to Oxo63 was demonstrated in detection of oxygen consumption by Met-1 cancer cells. The TAM-H probe allowed prolonged measurements of oxygen depletion during the hypoxia stage and down to true anoxia (≤ 1.5 mmHg). PMID:19523513

  16. Evaluation of UV-radiation induced singlet oxygen generation potential of selected drugs.

    PubMed

    Pandey, R; Mehrotra, S; Ray, R S; Joshi, P C; Hans, R K

    2002-05-01

    Photosensitization reaction of drugs leading to the formation of reactive oxygen species under ultraviolet radiation (UVR) can cause tissue injury, resulting in damage to various cellular macromolecules. The aim of this study was to determine the singlet oxygen generation potential of some commonly used antibiotics so that due precautions can be exercised to minimize their photosensitizing action and oxidative stress potential. The selected antibiotics were examined for their ability to produce singlet oxygen (1O2) under artificial UVA (320-400 nm). Singlet oxygen generation of various screened antibiotics under UVA is of the following order: Nalidixic acid > Amphotericin-B > Cephradine > Cefazolin > Nafcillin > Cephalothin > Ampicillin > Cephalexin > Puromycin > Kanamycin > Lincomycin > Tetracycline > Nystatin > Gentamicin sulphate. Nalidixic acid, the most potent generator of 1O2 among the screened antibiotics, was selected to carry out further studies. Certain specific quenchers of 1O2 such as beta-carotene, 1,4-diazabicyclo[2.2.2] octane (DABCO), and sodium azide (NaN3) accorded significant inhibition in the production of 1O2. The results suggest that precautions are necessary to avoid ultraviolet radiation after the intake of photoreactive drugs, especially in tropical countries such as India. These findings are significant because UVB radiation is reportedly increasing on earth surface in part due to depletion of stratospheric ozone layer. The selected drugs are commonly used for the treatment of various diseases. Thus, the synergistic action of both can lead to undesirable phototoxic responses.

  17. 4-N,N-Dimethylaminopyridine promoted selective oxidation of methyl aromatics with molecular oxygen.

    PubMed

    Zhang, Zhan; Gao, Jin; Wang, Feng; Xu, Jie

    2012-03-30

    4-N,N-Dimethylaminopyridine (DMAP) as catalyst in combination with benzyl bromide was developed for the selective oxidation of methyl aromatics. DMAP exhibited higher catalytic activity than other pyridine analogues, such as 4-carboxypyridine, 4-cyanopyridine and pyridine. The sp3 hybrid carbon-hydrogen (C-H) bonds of different methyl aromatics were successfully oxygenated with molecular oxygen. The real catalyst is due to the formation of a pyridine onium salt from the bromide and DMAP. The onium salt was well characterized by NMR and the reaction mechanism was discussed.

  18. [Oxygen therapy during Argentine-based national and international flights].

    PubMed

    Martínez Fraga, Alejandro; Sívori, Martín; Alonso, Mariana

    2008-01-01

    There are no data about supplemental oxygen in flight in our country. The objective of our study was to evaluate arranging in-flight-oxygen required by a simulated traveler, system of administration and costs, and to compare the results between Argentine-based (A) and international (I) airlines. The questionnaire used was similar to that of Stoller et al12. Data collection consisted of telephone calls placed by one of the authors to all commercial air carriers listed in our two Buenos Aires City airports during July 2007. A structured interview with questions was addressed on issues that an oxygen-using air traveler would need to arrange in-flight oxygen. Of the 25 airlines, 6 were discarded because of lack of information (24%, three A -60%- and one I -16%-). All A allowed in-flight-oxygen vs. 80% of I (p<0.05), 100% of A and 94% of I required a medical certificate (p=NS); 71% of A and 100% of I required previous notification (p<0.05); 50% of A and 87% of I provided patient interphases of oxygen administration (p=NS). Free of charge oxygen could be provided by 100% of A and 50% of I, with airline charge between 70 to 300 dollars. In conclusion, we observed different policies, rules, availability, and a pronounced lack of standardization of airline information. The cost of oxygen was very different between airlines and it was superior on I. It will be necessary to carry out actions to facilitate patient access to oxygentherapy and to standardize medical information among airlines in our country.

  19. A Porous Tissue Engineering Scaffold Selectively Degraded by Cell-Generated Reactive Oxygen Species

    PubMed Central

    Martin, John R.; Gupta, Mukesh K.; Page, Jonathan M.; Yu, Fang; Davidson, Jeffrey M.; Guelcher, Scott A.

    2014-01-01

    Biodegradable tissue engineering scaffolds are commonly fabricated from poly(lactide-co-glycolide) (PLGA) or similar polyesters that degrade by hydrolysis. PLGA hydrolysis generates acidic breakdown products that trigger an accelerated, autocatalytic degradation mechanism that can create mismatched rates of biomaterial breakdown and tissue formation. Reactive oxygen species (ROS) are key mediators of cell function in both health and disease, especially at sites of inflammation and tissue healing, and induction of inflammation and ROS are natural components of the in vivo response to biomaterial implantation. Thus, polymeric biomaterials that are selectively degraded by cell-generated ROS may have potential for creating tissue engineering scaffolds with better matched rates of tissue in-growth and cell-mediated scaffold biodegradation. To explore this approach, a series of poly(thioketal) (PTK) urethane (PTK-UR) biomaterial scaffolds were synthesized that degrade specifically by an ROS-dependent mechanism. PTK-UR scaffolds had significantly higher compressive moduli than analogous poly(ester urethane) (PEUR) scaffolds formed from hydrolytically-degradable ester-based diols (p < 0.05). Unlike PEUR scaffolds, the PTK-UR scaffolds were stable under aqueous conditions out to 25 weeks but were selectively degraded by ROS, indicating that their biodegradation would be exclusively cell-mediated. The in vitro oxidative degradation rates of the PTK-URs followed first-order degradation kinetics, were significantly dependent on PTK composition (p < 0.05), and correlated to ROS concentration. In subcutaneous rat wounds, PTK-UR scaffolds supported cellular infiltration and granulation tissue formation, followed first-order degradation kinetics over 7 weeks, and produced significantly greater stenting of subcutaneous wounds compared to PEUR scaffolds. These combined results indicate that ROS-degradable PTK-UR tissue engineering scaffolds have significant advantages over analogous

  20. A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species.

    PubMed

    Martin, John R; Gupta, Mukesh K; Page, Jonathan M; Yu, Fang; Davidson, Jeffrey M; Guelcher, Scott A; Duvall, Craig L

    2014-04-01

    Biodegradable tissue engineering scaffolds are commonly fabricated from poly(lactide-co-glycolide) (PLGA) or similar polyesters that degrade by hydrolysis. PLGA hydrolysis generates acidic breakdown products that trigger an accelerated, autocatalytic degradation mechanism that can create mismatched rates of biomaterial breakdown and tissue formation. Reactive oxygen species (ROS) are key mediators of cell function in both health and disease, especially at sites of inflammation and tissue healing, and induction of inflammation and ROS are natural components of the in vivo response to biomaterial implantation. Thus, polymeric biomaterials that are selectively degraded by cell-generated ROS may have potential for creating tissue engineering scaffolds with better matched rates of tissue in-growth and cell-mediated scaffold biodegradation. To explore this approach, a series of poly(thioketal) (PTK) urethane (PTK-UR) biomaterial scaffolds were synthesized that degrade specifically by an ROS-dependent mechanism. PTK-UR scaffolds had significantly higher compressive moduli than analogous poly(ester urethane) (PEUR) scaffolds formed from hydrolytically-degradable ester-based diols (p < 0.05). Unlike PEUR scaffolds, the PTK-UR scaffolds were stable under aqueous conditions out to 25 weeks but were selectively degraded by ROS, indicating that their biodegradation would be exclusively cell-mediated. The in vitro oxidative degradation rates of the PTK-URs followed first-order degradation kinetics, were significantly dependent on PTK composition (p < 0.05), and correlated to ROS concentration. In subcutaneous rat wounds, PTK-UR scaffolds supported cellular infiltration and granulation tissue formation, followed first-order degradation kinetics over 7 weeks, and produced significantly greater stenting of subcutaneous wounds compared to PEUR scaffolds. These combined results indicate that ROS-degradable PTK-UR tissue engineering scaffolds have significant advantages over

  1. Process for selection of Oxygen-tolerant algal mutants that produce H.sub.2

    DOEpatents

    Ghirardi, Maria L.; Seibert, Michael

    1999-01-01

    A process for selection of oxygen-tolerant, H.sub.2 -producing algal mutant cells comprising: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas; (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light. (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H.sub.2 -producing mutants.

  2. Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer; Zhen Fan

    2005-09-01

    sequestration. FW has developed a conceptual design of an O{sub 2} fired boiler to determine overall plant performance and economics. Five subtasks were conducted: (1) a literature review, (2) a system design and analysis, (3) a low NOx burner design and analysis, (4) a furnace and heat recovery area design analysis, and (5) an economic analysis. The objective of the literature search is to locate any data/information relevant to the Oxygen-Based PC Boiler conceptual design. The objective of the system design and analysis task is to optimize the PC boiler plant by maximizing system efficiency within practical considerations. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 MW plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.6% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 65% of the air-fired reference case. The objective of the low NOx burner design and analysis task is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent CFD computer program. Four burner designs were developed: (1) with no OFG and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall

  3. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    PubMed

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells. PMID:27599911

  4. The impact of meter-scale oxygen gradients in the selective degradation of organic matter: implications for proxy interpretation

    NASA Astrophysics Data System (ADS)

    Bogus, K.; Zonneveld, K. A.; Fischer, D.; Kasten, S.; Versteegh, G.

    2010-12-01

    The reconstruction of upper oceanographic conditions is often founded on organic matter-based proxies that have their origin within the photic zone and measurably reflect these conditions. It is well known that only a fraction of the organic matter that is produced in the upper water column reaches the sea floor where it is further degraded by aerobic and anaerobic remineralization processes. During the last decades it has become clear that preservation is highly selective and can, depending on the proxy used, severely influence the proxy outcome. One of the main factors that can influence the preservation of organic matter is the presence of oxygen. Therefore, for an adequate interpretation of proxy signals, it is essential to obtain insight as to how the extent of oxygen availability might alter the proxy outcome. Until now, the majority of studies investigating the impact of selective aerobic degradation on organic matter-based proxies have suffered from a priori environmental spatial heterogeneity. In other words, a large distance between sample locations introduces a source of error in that additional factors, such as lateral transport and differing photic zone conditions, cannot be completely discounted as contributing reasons for a change in proxy ratios during interpretation. This degree of uncertainty makes it difficult to separate initial environmentally-induced heterogeneity, such as varying temperatures and nutrient levels, from those induced by selective aerobic degradation. In order to constrain these problems and evaluate the extent of early selective aerobic degradation on proxies in surface sediments, we restricted sampling distance to meter-scale oxygen gradients existing on the margins of cold seeps in the northeastern Arabian Sea. These samples were retrieved along a gradient from the methane pocket to the outer rim of the methane-influenced area by computer-steered push coring using the ROV Quest during RV Meteor cruise M74/3 in November 2007

  5. Determinations of renal cortical and medullary oxygenation using BOLD Magnetic Resonance Imaging and selective diuretics

    PubMed Central

    Warner, Lizette; Glockner, James F.; Woollard, John; Textor, Stephen C.; Romero, Juan C.; Lerman, Lilach O.

    2010-01-01

    Objective This study was undertaken to test the hypothesis that blood O2 level dependent magnetic resonance imaging (BOLD MRI) can detect changes in cortical proximal tubule (PT) and medullary thick ascending limb of Henle (TAL) oxygenation consequent to successive administration of furosemide and acetazolamide (Az). Assessment of PT and TAL function could be useful to monitor renal disease states in vivo. Therefore, the adjunct use of diuretics that inhibit Na+ reabsorption selectively in PT and TAL, Az and furosemide, respectively, may help discern tubular function by using BOLD MRI to detect changes in tissue oxygenation. Material and Methods BOLD MRI signal R2* (inversely related to oxygenation) and tissue oxygenation with intrarenal O2 probes were measured in pigs that received either furosemide (0.5mg/kg) or Az (15mg/kg) alone, Az sequentially after furosemide (n=6 each, 15-minute intervals), or only saline vehicle (n=3). Results R2* decreased in the cortex of Az-treated and medulla of furosemide-treated kidneys, corresponding to an increase in their tissue O2 assessed with probes. However, BOLD MRI also showed decreased cortical R2* following furosemide that was additive to the Az-induced decrease. Az administration, both alone and after furosemide, also decreased renal blood flow (−26±3.5 and −29.2±3%, respectively, p<0.01). Conclusion These results suggest that an increase in medullary and cortical tissue O2 elicited by selective diuretics is detectable by BOLD MRI, but may be complicated by hemodynamic effects of the drugs. Therefore, the BOLD MRI signal may reflect functional changes additional to oxygenation, and needs to be interpreted cautiously. PMID:20856128

  6. Development of Recombinant Hemoglobin-Based Oxygen Carriers

    PubMed Central

    Varnado, Cornelius L.; Mollan, Todd L.; Birukou, Ivan; Smith, Bryan J.Z.; Henderson, Douglas P.

    2013-01-01

    Abstract Significance: The worldwide blood shortage has generated a significant demand for alternatives to whole blood and packed red blood cells for use in transfusion therapy. One such alternative involves the use of acellular recombinant hemoglobin (Hb) as an oxygen carrier. Recent Advances: Large amounts of recombinant human Hb can be expressed and purified from transgenic Escherichia coli. The physiological suitability of this material can be enhanced using protein-engineering strategies to address specific efficacy and toxicity issues. Mutagenesis of Hb can (i) adjust dioxygen affinity over a 100-fold range, (ii) reduce nitric oxide (NO) scavenging over 30-fold without compromising dioxygen binding, (iii) slow the rate of autooxidation, (iv) slow the rate of hemin loss, (v) impede subunit dissociation, and (vi) diminish irreversible subunit denaturation. Recombinant Hb production is potentially unlimited and readily subjected to current good manufacturing practices, but may be restricted by cost. Acellular Hb-based O2 carriers have superior shelf-life compared to red blood cells, are universally compatible, and provide an alternative for patients for whom no other alternative blood products are available or acceptable. Critical Issues: Remaining objectives include increasing Hb stability, mitigating iron-catalyzed and iron-centered oxidative reactivity, lowering the rate of hemin loss, and lowering the costs of expression and purification. Although many mutations and chemical modifications have been proposed to address these issues, the precise ensemble of mutations has not yet been identified. Future Directions: Future studies are aimed at selecting various combinations of mutations that can reduce NO scavenging, autooxidation, oxidative degradation, and denaturation without compromising O2 delivery, and then investigating their suitability and safety in vivo. Antioxid. Redox Signal. 18, 2314–2328. PMID:23025383

  7. Procedure for the selection of materials for use in oxygen systems at the John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Bryan, Coleman J.; Olsen, Melvin G.

    1988-01-01

    This paper describes tests used at the John F. Kennedy Space Center (KSC) in the material selection procedure for evaluating materials suitable for use in oxygen systems. Special attention is given to the basic selection criteria for materials used in oxygen enriched environments. The flow chart for the material selection procedure is presented, and information that must be supplied by vendors requesting batch/lot certification support from KSC is given.

  8. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases

    PubMed Central

    Chowdhury, Rasheduzzaman; Leung, Ivanhoe K. H.; Tian, Ya-Min; Abboud, Martine I.; Ge, Wei; Domene, Carmen; Cantrelle, François-Xavier; Landrieu, Isabelle; Hardy, Adam P.; Pugh, Christopher W.; Ratcliffe, Peter J.; Claridge, Timothy D. W.; Schofield, Christopher J.

    2016-01-01

    The response to hypoxia in animals involves the expression of multiple genes regulated by the αβ-hypoxia-inducible transcription factors (HIFs). The hypoxia-sensing mechanism involves oxygen limited hydroxylation of prolyl residues in the N- and C-terminal oxygen-dependent degradation domains (NODD and CODD) of HIFα isoforms, as catalysed by prolyl hydroxylases (PHD 1–3). Prolyl hydroxylation promotes binding of HIFα to the von Hippel–Lindau protein (VHL)–elongin B/C complex, thus signalling for proteosomal degradation of HIFα. We reveal that certain PHD2 variants linked to familial erythrocytosis and cancer are highly selective for CODD or NODD. Crystalline and solution state studies coupled to kinetic and cellular analyses reveal how wild-type and variant PHDs achieve ODD selectivity via different dynamic interactions involving loop and C-terminal regions. The results inform on how HIF target gene selectivity is achieved and will be of use in developing selective PHD inhibitors. PMID:27561929

  9. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases.

    PubMed

    Chowdhury, Rasheduzzaman; Leung, Ivanhoe K H; Tian, Ya-Min; Abboud, Martine I; Ge, Wei; Domene, Carmen; Cantrelle, François-Xavier; Landrieu, Isabelle; Hardy, Adam P; Pugh, Christopher W; Ratcliffe, Peter J; Claridge, Timothy D W; Schofield, Christopher J

    2016-01-01

    The response to hypoxia in animals involves the expression of multiple genes regulated by the αβ-hypoxia-inducible transcription factors (HIFs). The hypoxia-sensing mechanism involves oxygen limited hydroxylation of prolyl residues in the N- and C-terminal oxygen-dependent degradation domains (NODD and CODD) of HIFα isoforms, as catalysed by prolyl hydroxylases (PHD 1-3). Prolyl hydroxylation promotes binding of HIFα to the von Hippel-Lindau protein (VHL)-elongin B/C complex, thus signalling for proteosomal degradation of HIFα. We reveal that certain PHD2 variants linked to familial erythrocytosis and cancer are highly selective for CODD or NODD. Crystalline and solution state studies coupled to kinetic and cellular analyses reveal how wild-type and variant PHDs achieve ODD selectivity via different dynamic interactions involving loop and C-terminal regions. The results inform on how HIF target gene selectivity is achieved and will be of use in developing selective PHD inhibitors. PMID:27561929

  10. Reactive lattice oxygen sites for C sub 4 -hydrocarbon selective oxidation over. beta. -VOPO sub 4

    SciTech Connect

    Lashier, M.E.; Schrader, G.L. )

    1991-03-01

    The role of lattice oxygen species in the catalytic oxidation of n-butene to maleic anhydride has been investigated using {beta}-VOPO{sub 4} labeled with {sup 18}O. The catalyst was prepared by stoichiometric reaction of (VO){sub 2}P{sub 2}O{sub 7} with {sup 18}O{sub 2} using solid state preparation techniques. The {beta}-VOPO{sub 7/2} {sup 18}O{sub 1/2} was characterized using laser Raman and Fourier transform infrared spectroscopies: preferential incorporation at P-O-V sites was observed. A pulse reactor was used to react n-butane, 1-butene, 1,3-butadiene, furan, {gamma}-butyrolactone, and maleic anhydride with the catalyst in the absence of gas-phase O{sub 2}. Incorporation of {sup 18}O into the products was monitored by mass spectrometry. Specific lattice oxygen sites could be associated with the reaction pathways for selective or nonselective oxidation. The results of this study also indicate that the initial interaction of n-butane with {beta}-VOPO{sub 4} is fundamentally different from the initial interaction of olefins or oxygenated species. The approach used in this research-referred to as Isotopic Reactive-Site Mapping-is a potentially powerful method for probing the reactive lattice sites of other selective oxidation catalysts.

  11. Material Selection Guidelines to Limit Atomic Oxygen Effects on Spacecraft Surfaces

    NASA Technical Reports Server (NTRS)

    Dooling, D.; Finckenor, M. M.

    1999-01-01

    This report provides guidelines in selecting materials for satellites and space platforms, designed to operate within the Low-Earth orbit environment, which limit the effects of atomic oxygen interactions with spacecraft surfaces. This document should be treated as an introduction rather than a comprehensive guide since analytical and flight technologies continue to evolve, flight experiments are conducted as primary or piggyback opportunities arise, and our understanding of materials interactions and protection methods grows. The reader is urged to consult recent literature and current web sites containing information about research and flight results.

  12. Fundamental Vocabulary Selection Based on Word Familiarity

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Kasahara, Kaname; Kanasugi, Tomoko; Amano, Shigeaki

    This paper proposes a new method for selecting fundamental vocabulary. We are presently constructing the Fundamental Vocabulary Knowledge-base of Japanese that contains integrated information on syntax, semantics and pragmatics, for the purposes of advanced natural language processing. This database mainly consists of a lexicon and a treebank: Lexeed (a Japanese Semantic Lexicon) and the Hinoki Treebank. Fundamental vocabulary selection is the first step in the construction of Lexeed. The vocabulary should include sufficient words to describe general concepts for self-expandability, and should not be prohibitively large to construct and maintain. There are two conventional methods for selecting fundamental vocabulary. The first is intuition-based selection by experts. This is the traditional method for making dictionaries. A weak point of this method is that the selection strongly depends on personal intuition. The second is corpus-based selection. This method is superior in objectivity to intuition-based selection, however, it is difficult to compile a sufficiently balanced corpora. We propose a psychologically-motivated selection method that adopts word familiarity as the selection criterion. Word familiarity is a rating that represents the familiarity of a word as a real number ranging from 1 (least familiar) to 7 (most familiar). We determined the word familiarity ratings statistically based on psychological experiments over 32 subjects. We selected about 30,000 words as the fundamental vocabulary, based on a minimum word familiarity threshold of 5. We also evaluated the vocabulary by comparing its word coverage with conventional intuition-based and corpus-based selection over dictionary definition sentences and novels, and demonstrated the superior coverage of our lexicon. Based on this, we conclude that the proposed method is superior to conventional methods for fundamental vocabulary selection.

  13. Effects of Hemoglobin-Based Oxygen Carriers on Blood Coagulation

    PubMed Central

    Roghani, Kimia; Holtby, Randall J.; Jahr, Jonathan S.

    2014-01-01

    For many decades, Hemoglobin-based oxygen carriers (HBOCs) have been central in the development of resuscitation agents that might provide oxygen delivery in addition to simple volume expansion. Since 80% of the world population lives in areas where fresh blood products are not available, the application of these new solutions may prove to be highly beneficial (Kim and Greenburg 2006). Many improvements have been made to earlier generation HBOCs, but various concerns still remain, including coagulopathy, nitric oxide scavenging, platelet interference and decreased calcium concentration secondary to volume expansion (Jahr et al. 2013). This review will summarize the current challenges faced in developing HBOCs that may be used clinically, in order to guide future research efforts in the field. PMID:25514567

  14. Electrochemical oxygen reduction behavior of selectively deposited platinum atoms on gold nanoparticles.

    PubMed

    Sarkar, A; Kerr, J B; Cairns, E J

    2013-07-22

    Carbon-supported Pt@Au "core-shell" nanoparticles with varying surface concentration of platinum atoms have been synthesized using a novel redox-mediated synthesis approach. The synthesis technique allows for a selective deposition of platinum atoms on the surface of prefabricated gold nanoparticles. Energy dispersive spectroscopic analyses in a scanning electron microscope reveal that the platinum to gold atomic ratios are close to the nominal values, validating the synthesis scheme. X-ray diffraction data indicate an un-alloyed structure. The platinum to gold surface atomic ratio determined from cyclic voltammetry and copper under-potential deposition experiments reveal good agreement with the calculated values at low platinum concentration. However, there is an increase in non-uniformity in the deposition process upon increasing the platinum concentration. Koutecky-Levich analysis of the samples indicates a transition of the total number of electrons transferred (n) in the electrochemical oxygen reduction reaction from two to four electrons upon increasing the surface concentration of platinum atoms. Furthermore, the data indicate that isolated platinum atoms can reduce molecular oxygen but via a two-electron route. Moreover, successful four-electron reduction of molecular oxygen requires clusters of platinum atoms.

  15. Process for selection of oxygen-tolerant algal mutants that produce H{sub 2}

    DOEpatents

    Ghirardi, M.L.; Seibert, M.

    1999-02-16

    A process for selection of oxygen-tolerant, H{sub 2}-producing algal mutant cells comprises: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautotrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas and (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light; (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H{sub 2}-producing mutants. 5 figs.

  16. Selective oxidation of cyclohexane on a novel catalyst Mg-Cu/SBA-15 by molecular oxygen.

    PubMed

    Duan, Xiaogang; Liu, Weimin; Yue, Lumin; Fu, Wei; Ha, Minh Ngoc; Li, Jun; Lu, Guanzhong

    2015-10-21

    The novel catalysts xMg-2.3Cu/SBA-15 with copper and magnesium oxide co-supported on mesoporous silica were synthesized by an impregnation method. The newly synthesized catalysts were characterized using a series of techniques such as BET, XRD, H2-TPR, UV-vis, XPS, EDS and TEM. The catalytic performance was evaluated by using selective oxidation of cyclohexane with molecular oxygen as the oxidant in a solvent free system. The incorporation of magnesium improved the dispersion of copper oxide and prevented the deep oxidation of cyclohexanol and cyclohexanone. The selectivity of K/A oil was up to 99.3% with 12% conversion of cyclohexane over the 1.2Mg-2.3Cu/SBA-15 catalyst. To our knowledge, this is the best result for the heterogeneous oxidation of cyclohexane by O2. PMID:26388454

  17. Oxygen-assisted hydroxymatairesinol dehydrogenation: a selective secondary-alcohol oxidation over a gold catalyst.

    PubMed

    Prestianni, Antonio; Ferrante, Francesco; Simakova, Olga A; Duca, Dario; Murzin, Dmitry Yu

    2013-04-01

    Selective dehydrogenation of the biomass-derived lignan hydroxymatairesinol (HMR) to oxomatairesinol (oxoMAT) was studied over an Au/Al(2)O(3) catalyst. The reaction was carried out in a semi-batch glass reactor at 343 K under two different gas atmospheres, namely produced through synthetic air or nitrogen. The studied reaction is, in fact, an example of secondary-alcohol oxidation over an Au catalyst. Thus, the investigated reaction mechanism of HMR oxidative dehydrogenation is useful for the fundamental understanding of other secondary-alcohol dehydrogenation over Au surfaces. To investigate the elementary catalytic steps ruling both oxygen-free- and oxygen-assisted dehydrogenation of HMR to oxoMAT, the reactions were mimicked in a vacuum over an Au(28) cluster. Adsorption of the involved molecular species--O(2), three different HMR diastereomers (namely, one SRR and two RRR forms), and the oxoMAT derivative--were also studied at the DFT level. In particular, the energetic and structural differences between SRR-HMR and RRR-HMR diastereomers on the Au(28) cluster were analyzed, following different reaction pathways for the HMR dehydrogenation that occur in presence or absence of oxygen. The corresponding mechanisms explain the higher rates of the experimentally observed oxygen-assisted reaction, mostly depending on the involved HMR diastereomer surface conformations. The role of the support was also elucidated, considering a very simple Au(28) charged model that explains the experimentally observed high reactivity of the Au/Al(2)O(3) catalyst.

  18. Selective oxidation of alkanes and/or alkenes to valuable oxygenates

    DOEpatents

    Lin, Manhua; Pillai, Krishnan S.

    2011-02-15

    A catalyst, its method of preparation and its use for producing at least one of methacrolein and methacrylic acid, for example, by subjecting isobutane or isobutylene or a mixture thereof to a vapor phase catalytic oxidation in the presence of air or oxygen. In the case where isobutane alone is subjected to a vapor phase catalytic oxidation in the presence of air or oxygen, the product is at least one of isobutylene, methacrolein and methacrylic acid. The catalyst comprises a compound having the formula A.sub.aB.sub.bX.sub.xY.sub.yZ.sub.zO.sub.o wherein A is one or more elements selected from the group of Mo, W and Zr, B is one or more elements selected from the group of Bi, Sb, Se, and Te, X is one or more elements selected from the group of Al, Bi, Ca, Ce, Co, Fe, Ga, Mg, Ni, Nb, Sn, W and Zn, Y is one or more elements selected from the group of Ag, Au, B, Cr, Cs, Cu, K, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Re, Ru, Sn, Te, Ti, V and Zr, and Z is one or more element from the X or Y groups or from the following: As, Ba, Pd, Pt, Sr, or mixtures thereof, and wherein a=1, 0.05

  19. Oxygen reduction by lithiated graphene and graphene-based materials.

    PubMed

    Kataev, Elmar Yu; Itkis, Daniil M; Fedorov, Alexander V; Senkovsky, Boris V; Usachov, Dmitry Yu; Verbitskiy, Nikolay I; Grüneis, Alexander; Barinov, Alexei; Tsukanova, Daria Yu; Volykhov, Andrey A; Mironovich, Kirill V; Krivchenko, Victor A; Rybin, Maksim G; Obraztsova, Elena D; Laubschat, Clemens; Vyalikh, Denis V; Yashina, Lada V

    2015-01-27

    Oxygen reduction reaction (ORR) plays a key role in lithium-air batteries (LABs) that attract great attention thanks to their high theoretical specific energy several times exceeding that of lithium-ion batteries. Because of their high surface area, high electric conductivity, and low specific weight, various carbons are often materials of choice for applications as the LAB cathode. Unfortunately, the possibility of practical application of such batteries is still under question as the sustainable operation of LABs with carbon cathodes is not demonstrated yet and the cyclability is quite poor, which is usually associated with oxygen reduced species side reactions. However, the mechanisms of carbon reactivity toward these species are still unclear. Here, we report a direct in situ X-ray photoelectron spectroscopy study of oxygen reduction by lithiated graphene and graphene-based materials. Although lithium peroxide (Li2O2) and lithium oxide (Li2O) reactions with carbon are thermodynamically favorable, neither of them was found to react even at elevated temperatures. As lithium superoxide is not stable at room temperature, potassium superoxide (KO2) prepared in situ was used instead to test the reactivity of graphene with superoxide species. In contrast to Li2O2 and Li2O, KO2 was demonstrated to be strongly reactive.

  20. Selective nitrogen doping in graphene: Enhanced catalytic activity for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wang, Xianlong; Hou, Zhufeng; Ikeda, Takashi; Huang, Sheng-Feng; Terakura, Kiyoyuki; Boero, Mauro; Oshima, Masaharu; Kakimoto, Masa-Aki; Miyata, Seizo

    2011-12-01

    The structural and electronic properties of N-doped zigzag graphene ribbons with various ratios of dihydrogenated to monohydrogenated edge carbons are investigated within the density functional theory framework. We find that the stability of graphitic N next to the edge, which is claimed to play important roles in the catalytic activity in our previous work, will be enhanced with increasing the concentration of dihydrogenated carbons. Furthermore, the dihydrogenated edge carbons turn out to be easily converted into monohydrogenated ones in the presence of oxygen molecules at room temperature. Based on our results, we propose a possible way to enhance the oxygen reduction catalytic activity of N-doped graphene by controlling the degrees of hydrogenation of edge carbons. The characteristic features in the x-ray absorption and emission spectra for each specific N site considered here will also be given.

  1. Immobilised activated sludge based biosensor for biochemical oxygen demand measurement.

    PubMed

    Liu, J; Björnsson, L; Mattiasson, B

    2000-02-01

    A biochemical oxygen demand (BOD) sensor, based on an immobilised mixed culture of microorganisms in combination with a dissolved oxygen electrode, has been developed for the purpose of on-line monitoring of the biological treatment process for waste and wastewater. The sensor was designed for easy replacement of the biomembrane, thereby making it suitable for short-term use. The drawbacks of activated sludge based sensor, such as short sensor lifetime, were thereby circumvented. The sensor BOD measurements were carried out in the kinetic mode using a flow injection system, resulting in 25 s for one measurement followed by 4-8 min recovery time. Based on the results of normalised sensor responses, the OECD synthetic wastewater was considered to be a more suitable calibration solution in comparison with the GGA solution. Good agreement was achieved between the results of the sensor BOD measurement and those obtained from BOD5 analysis of a wastewater sample from a food-processing factory. Reproducibility of responses using one sensor was below +/- 5.6%, standard deviation. Reproducibility of responses using different sensors was within acceptable bias limits, viz. +/- 15% standard deviation.

  2. Survey of selected seaweeds for simultaneous photoproduction of hydrogen and oxygen

    SciTech Connect

    Greenbaum, E.; Ramus, J.

    1983-03-01

    Then seaweed species were surveyed for simultaneous photoevolution of hydrogen and oxygen. In an attempt to induce hydrogenase activity (as measured by hydrogen photoproduction) the seaweeds were maintained under anaerobiosis in CO/sub 2/-free seawater for varying lengths of time. Although oxygen evolution was observed in every alga studied, hydrogen evolution was not observed. One conclusion of this research is that, in contrast to the microscopic algae, there is not a single example of a macroscopic alga for which the photoevolution of hydrogen has been observed, in spite of the fact that there are now at least nine macroscopic algal species known for which hydrogenase activity has been reported (either by dark hydrogen evolution or light-activated hydrogen uptake). These results are in conflict with the conventional view that algal hydrogenase can catalyze a multiplicity of reactions, one of which is the photoproduction of molecular hydrogen. Two possible explanations for the lack of hydrogen photoproduction in macroscopic algae are presented. It is postulated that electron acceptors other than carbon dioxide can take up reducing equivalents from Photosystem I to the measurable exclusion of hydrogen photoproduction. Alternatively, the hydrogenase system in macroscopic algae may be primarily a hydrogen-uptake system with respect to light-activated reactions. A simple kinetic argument based on recent measurements of the photosynthetic turnover times of simultaneous light-activated hydrogen and oxygen production is presented that supports the second explanation. 25 references, 3 figures, 1 table.

  3. Dissolved-oxygen and algal conditions in selected locations of the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rinella, F.A.; McKenzie, S.W.; Wille, S.A.

    1981-01-01

    During July and August 1978, the U.S. Geological Survey, in cooperation with the Oregon Department of Enviromental Quality, made three intensive river-quality dissolved-oxygen studies in the upper Willamette River basin. Two studies were made on the upper Willamette River and one was made on the Santiam River, a Willamette River tributary. Nitrification, occurring in both the upper Willamette and South Santiam Rivers, accounted for about 62% and 92% of the DO sag in the rivers, respectively. Rates of nitrification were found to be dependent on ammonia concentrations in the rivers. Periphyton and phytoplankton algal samples were collected on the main stem Willamette River and selected tributaries during August 1978. Diatoms were the dominant group in both the periphyton and phytoplankton samples. The most common diatom genera were Melosira, Stephanodiscus, Cymbella, Achnanthes, and Nitzschia. Comparisons with historical data indicate no significant difference from previous years in the total abundance or diversity of the algae. (USGS)

  4. Leveraging zinc interstitials and oxygen vacancies for sensitive biomolecule detection through selective surface functionalization

    NASA Astrophysics Data System (ADS)

    Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Chaudhry, Shajee; Prasad, Shalini

    2015-03-01

    In this study, functionally engineered EIS technique was implemented to investigate the influence of surface functionalization on sensitivity of biomolecule detection using nanostructured ZnO platform. Organic molecules with thiol and carboxylic functional groups were chosen to control biomolecule immobilization on zinc and oxygen-terminated 2D planar and 1D nanostructured ZnO surfaces. The amount of functionalization and its influence on charge perturbations at the ZnO-electrolyte interface were studied using fluorescence and EIS measurements. We observed the dependence of charge transfer on both the polarity of platform and concentration of cross-linker molecules. Such selectively modified surfaces were used for detection of cortisol, a major stress indicator. Results demonstrated preferential binding of thiol groups to Zn terminations and thus leveraging ZnO interstitials increases the sensitivity of detection over larger dynamic range with detection limit at 10fg/mL.

  5. [Fat-stabilizing properties of phosphatides. 1. Response of selected phosphatides to oxygen].

    PubMed

    Linow, F; Mieth, G

    1975-01-01

    The authors investigated the formation of hydroperoxides and carbonyl compounds in raw phosphatides from soya-beans and rape-seeds during storage at 50 degrees C. According to the results obtained, the chemical deterioration of the raw phosphatides depends upon their intrinsic contents of prooxidative and antioxidative compounds and upon the consituent fatty acids. Purified preparations are considerably more stable as comparable fatty acid methyl esters; and phosphatides containing nitrogenous bases are less sensitive to atmospheric oxygen than their nitrogen-free analogues. PMID:1171372

  6. A lithium-oxygen battery based on lithium superoxide

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Jung Lee, Yun; Luo, Xiangyi; Chun Lau, Kah; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J.; Sub Jeong, Yo; Park, Jin-Bum; Zak Fang, Zhigang; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A.; Amine, Khalil

    2016-01-01

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

  7. A lithium-oxygen battery based on lithium superoxide.

    PubMed

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J; Jeong, Yo Sub; Park, Jin-Bum; Fang, Zhigang Zak; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A; Amine, Khalil

    2016-01-21

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

  8. Implementing oxygen control in chip-based cell and tissue culture systems.

    PubMed

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  9. Single-cell-based computer simulation of the oxygen-dependent tumour response to irradiation

    NASA Astrophysics Data System (ADS)

    Harting, Christine; Peschke, Peter; Borkenstein, Klaus; Karger, Christian P.

    2007-08-01

    Optimization of treatment plans in radiotherapy requires the knowledge of tumour control probability (TCP) and normal tissue complication probability (NTCP). Mathematical models may help to obtain quantitative estimates of TCP and NTCP. A single-cell-based computer simulation model is presented, which simulates tumour growth and radiation response on the basis of the response of the constituting cells. The model contains oxic, hypoxic and necrotic tumour cells as well as capillary cells which are considered as sources of a radial oxygen profile. Survival of tumour cells is calculated by the linear quadratic model including the modified response due to the local oxygen concentration. The model additionally includes cell proliferation, hypoxia-induced angiogenesis, apoptosis and resorption of inactivated tumour cells. By selecting different degrees of angiogenesis, the model allows the simulation of oxic as well as hypoxic tumours having distinctly different oxygen distributions. The simulation model showed that poorly oxygenated tumours exhibit an increased radiation tolerance. Inter-tumoural variation of radiosensitivity flattens the dose response curve. This effect is enhanced by proliferation between fractions. Intra-tumoural radiosensitivity variation does not play a significant role. The model may contribute to the mechanistic understanding of the influence of biological tumour parameters on TCP. It can in principle be validated in radiation experiments with experimental tumours.

  10. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation

    PubMed Central

    Gagnon, Louis; Smith, Amy F.; Boas, David A.; Devor, Anna; Secomb, Timothy W.; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These “bottom-up” models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  11. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation

    PubMed Central

    Gagnon, Louis; Smith, Amy F.; Boas, David A.; Devor, Anna; Secomb, Timothy W.; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These “bottom-up” models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans. PMID:27630556

  12. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    PubMed

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans. PMID:27630556

  13. Case-Based Learning of Blood Oxygen Transport

    ERIC Educational Resources Information Center

    Cliff, William H.

    2006-01-01

    A case study about carbon monoxide poisoning was used help students gain a greater understanding of the physiology of oxygen transport by the blood. A review of student answers to the case questions showed that students can use the oxygen-hemoglobin dissociation curve to make meaningful determinations of oxygen uptake and delivery. However, the…

  14. Selection for high and low oxygen consumption altered hepatic mitochondrial energy efficiency in mice.

    PubMed

    Hong, Yu; Ardiyanti, Astrid; Kikusato, Motoi; Shimazu, Tomoyuki; Toyomizu, Masaaki; Suzuki, Keiichi

    2015-09-01

    Selection for high (H) and low (L) oxygen consumption (OC) as an indirect estimation of maintenance energy requirement was determined. Feed intake and body weight were measured and feed conversion ratio (FCR) of 4-8-week-old mice was calculated. Respiratory activity of hepatic mitochondria was measured at 12 weeks. Total feed intake (H: 103.74 g, L: 97.92 g, P < 0.01), daily feed intake (H: 3.70 g/day, L: 3.50 g/day, P < 0.01) and FCR (H: 18.79, L: 15.50, P < 0.01) were significantly different between lines. The line by sex interaction was significant for FCR. No line differences were observed in males; and the FCR of the H line was greater than in the L line in females. H line mice had the highest hepatic mitochondrial respiratory activity in state 2 (P < 0.01), the highest uncoupled respiratory rate of mitochondria in the presence of an uncoupling agent (P < 0.001), and the mitochondrial proton leak. The adenosine diphosphate/ O ratio was highest in the L line (P < 0.05). This suggests that the selection for high and low OC induced differences in basal mitochondrial respiration and basal metabolism, resulting in difference in FCR between H and L lines.

  15. SELECTIVE EXTRACTION OF OXYGENATES FROM SAVORY AND PEPPERMINT USING SUBCRITICAL WATER. (R825394)

    EPA Science Inventory

    The yields of oxygenated and non-oxygenated flavour and fragrance compounds from savory (Satureja hortensis) and peppermint (Mentha piperita) were compared using subcritical water extraction, supercritical carbon dioxide extraction (SFE) and hydrodistillation. Extraction rates wi...

  16. Selective Degeneration of Central Photoreceptors after Hyperbaric Oxygen in Normal and Metallothionein-Knockout Mice

    PubMed Central

    Nachman-Clewner, Michele; Giblin, Frank J.; Kathleen Dorey, C.; Blanks, Robert H. I.; Dang, Loan; Dougherty, Christopher J.; Blanks, Janet C.

    2009-01-01

    Purpose Metallothioneins (MTs) in the brain and retina are believed to bind metals and reduce free radicals, thereby protecting neurons from oxidative damage. This study was undertaken to investigate whether retinal photoreceptor (PR) cells lacking MTs are more susceptible to hyperbaric oxygen (HBO)–induced cell death in vivo. Methods Wild-type (WT) and MT-knockout (MT-KO) mice lacking metallothionein (MT)-1 and MT-2 were exposed to three atmospheres of 100% oxygen for 3 hours, 3 times per week for 1, 3, or 5 weeks. The control animals were not exposed. Histologic analysis of PR viability was performed by counting rows of nuclei in the outer nuclear layer (ONL). Ultrastructure studies verified PR damage. Results HBO exposure produced a major loss of PR cells in the central retinas of WT and MT-KO mice, with no effect on the peripheral retina even at the longest (5 weeks) exposures. The degree of PR damage and cell death increased with duration of HBO exposure. One week of HBO exposure was insufficient to cause PR death, but tissue damage was observed in the inner and outer segments. At 3 weeks, the rows of PR nuclei in the central retina were significantly reduced by 38% in WT and 28% in MT-KO animals. At 5 weeks, PR loss was identical in WT (34%) and MT-KO (34%) animals and was comparable to that in WT at 3 weeks. Conclusions The data suggest that MT-1 and -2 alone are not sufficient for protecting PRs against HBO-induced cell death. The selective degeneration of central PRs may provide clues to mechanisms of oxidative damage in retinal disease. PMID:18579766

  17. The influence of selected parameters on the efficiency and economic charactersistics of the oxy-type coal unit with a membrane-cryogenic oxygen separator

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Berdowska, Sylwia

    2016-03-01

    In this paper a 600 MW oxy-type coal unit with a pulverized bed boiler and a membrane-cryogenic oxygen separator and carbon capture installation was analyzed. A membrane-cryogenic oxygen separation installation consists of a membrane module and two cryogenic distillation columns. In this system oxygen is produced with the purity equal to 95%. Installation of carbon capture was based on the physical separation method and allows to reduce the CO2 emission by 90%. In this work the influence of the main parameter of the membrane process - the selectivity coefficient, on the efficiency of the coal unit was presented. The economic analysis with the use of the break-even point method was carried out. The economic calculations were realized in view of the break-even price of electricity depending on a coal unit availability.

  18. Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission.

    PubMed

    Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N; De Lacey, Antonio L; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M; Conghaile, Peter Ó; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey

    2014-01-01

    Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply. PMID:25310190

  19. Self-Powered Wireless Carbohydrate/Oxygen Sensitive Biodevice Based on Radio Signal Transmission

    PubMed Central

    Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N.; De Lacey, Antonio L.; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M.; Conghaile, Peter Ó.; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D.; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey

    2014-01-01

    Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply. PMID:25310190

  20. Hypolimnetic dissolved-oxygen dynamics within selected White River reservoirs, northern Arkansas-southern Missouri, 1974-2008

    USGS Publications Warehouse

    De Lanois, Jeanne L.; Green, W. Reed

    2011-01-01

    Dissolved oxygen is a critical constituent in reservoirs and lakes because it is essential for metabolism by all aerobic aquatic organisms. In general, hypolimnetic temperature and dissolved-oxygen concentrations vary from summer to summer in reservoirs, more so than in natural lakes, largely in response to the magnitude of flow into and release out of the water body. Because eutrophication is often defined as the acceleration of biological productivity resulting from increased nutrient and organic loading, hypolimnetic oxygen consumption rates or deficits often provide a useful tool in analyzing temporal changes in water quality. This report updates a previous report that evaluated hypolimnetic dissolved-oxygen dynamics for a 21-year record (1974-94) in Beaver, Table Rock, Bull Shoals, and Norfork Lakes, as well as analyzed the record for Greers Ferry Lake. Beginning in 1974, vertical profiles of temperature and dissolved-oxygen concentrations generally were collected monthly from March through December at sites near the dam of each reservoir. The rate of change in the amount of dissolved oxygen present below a given depth at the beginning and end of the thermal stratification period is referred to as the areal hypolimnetic oxygen deficit. Areal hypolimnetic oxygen deficit was normalized for each reservoir based on seasonal flushing rate between April 15 and October 31 to adjust for wet year and dry year variability. Annual cycles in thermal stratification within Beaver, Table Rock, Bull Shoals, Norfork, and Greers Ferry Lakes exhibited typical monomictic (one extended turnover period per year) characteristics. Flow dynamics drive reservoir processes and need to be considered when analyzing areal hypolimnetic oxygen deficit rates. A nonparametric, locally weighted scatter plot smooth line describes the relation between areal hypolimnetic oxygen deficit and seasonal flushing rates, without assuming linearity or normality of the residuals. The results in this report

  1. Water, hydrogen, deuterium, carbon, carbon-13, and oxygen-18 content of selected lunar material

    USGS Publications Warehouse

    Friedman, I.; O'Neil, J.R.; Adami, L.H.; Gleason, J.D.; Hardcastle, K.

    1970-01-01

    The water content of the breccia is 150 to 455 ppm, with a ??D from -580 to -870 per mil. Hydrogen gas content is 40 to 53 ppm with a ??D of -830 to -970 per mil. The CO2 is 290 to 418 ppm with S 13C = + 2.3 to + 5.1 per mil and ??18O = 14.2 to 19.1 per mil. Non-CO2 carbon is 22 to 100 ppm, ??18C = -6.4 to -23.2 per mil. Lunar dust is 810 ppm H2O (D = 80 ppm) and 188 ppm total carbon (??13C = -17.6 per mil). The 18O analyses of whole rocks range from 5.8 to 6.2 per mil. The temperature of crystallization of type B rocks is 1100?? to 1300??C, based on the oxygen isotope fractionation between coexisting plagioclase and ilmenite.

  2. Nonflammable organic-base paint for oxygen-rich atmospheres

    NASA Technical Reports Server (NTRS)

    Harwell, R. J.; Key, C. F.; Krupnick, A. C.

    1971-01-01

    New paint formulations, which combine aqueous latex paints with inorganic pigments and additives, produce coatings that are self-extinguishing in pure oxygen at pressures up to twice the partial pressure of atmospheric oxygen. A paint formulation in percent by weight is given and the properties of resultant coatings are discussed.

  3. SELECTIVE OXIDATION OF ALCOHOLS BY MOLECULAR OXYGEN OVER A PD/MGO CATALYST IN THE ABSENCE OF ANY ADDITIVES

    EPA Science Inventory

    Selective oxidation of alcohols to the corresponding carbonyl products using molecular oxygen is achieved over a simple and easily recyclable 1% Pd/MgO impregnated heterogeneous catalyst in the presence of trifluorotoluene. A variety of activated and non-activated alcohols are ef...

  4. Orientation selectivity based structure for texture classification

    NASA Astrophysics Data System (ADS)

    Wu, Jinjian; Lin, Weisi; Shi, Guangming; Zhang, Yazhong; Lu, Liu

    2014-10-01

    Local structure, e.g., local binary pattern (LBP), is widely used in texture classification. However, LBP is too sensitive to disturbance. In this paper, we introduce a novel structure for texture classification. Researches on cognitive neuroscience indicate that the primary visual cortex presents remarkable orientation selectivity for visual information extraction. Inspired by this, we investigate the orientation similarities among neighbor pixels, and propose an orientation selectivity based pattern for local structure description. Experimental results on texture classification demonstrate that the proposed structure descriptor is quite robust to disturbance.

  5. Simulations of Ground and Space-Based Oxygen Atom Experiments

    NASA Technical Reports Server (NTRS)

    Minton, T. K.; Cline, J. A.; Braunstein, M.

    2002-01-01

    Fast, pulsed atomic oxygen sources are a key tool in ground-based investigations of spacecraft contamination and surface erosion effects. These technically challenging ground-based studies provide a before and after picture of materials under low-earth-orbit (LEO) conditions. It would be of great interest to track in real time the pulsed flux from the source to the surface sample target and beyond in order to characterize the population of atoms and molecules that actually impact the surface and those that make it downstream to any coincident detectors. We have performed simulations in order to provide such detailed descriptions of these ground-based measurements and to provide an assessment of their correspondence to the actual LEO environment. Where possible we also make comparisons to measured fluxes and erosion yields. To perform the calculations we use a detailed description of a measurement beam and surface geometry based on the W, pulsed apparatus at Montana State University. In this system, a short pulse (on the order of 10 microseconds) of an O/O2 beam impacts a flat sample about 40 cm downstream and slightly displaced &om the beam s central axis. Past this target, at the end of the beam axis is a quadrupole mass spectrometer that measures the relative in situ flux of 0102 to give an overall normalized erosion yield. In our simulations we use the Direct Simulation Monte Carlo (DSMC) method, and track individual atoms within the atomic oxygen pulse. DSMC techniques are typically used to model rarefied (few collision) gas-flows which occur at altitudes above approximately 110 kilometers. These techniques are well suited for the conditions here, and multi-collision effects that can only be treated by this or a similar technique are included. This simulation includes collisions with the surface and among gas atoms that have scattered from the surface. The simulation also includes descriptions of the velocity spread and spatial profiles of the O/O2 beam

  6. Estimating peak oxygen uptake based on postexercise measurements in swimming.

    PubMed

    Chaverri, Diego; Iglesias, Xavier; Schuller, Thorsten; Hoffmann, Uwe; Rodríguez, Ferran A

    2016-06-01

    To assess the validity of postexercise measurements in estimating peak oxygen uptake (V̇O2peak) in swimming, we compared oxygen uptake (V̇O2) measurements during supramaximal exercise with various commonly adopted methods, including a recently developed heart rate - V̇O2 modelling procedure. Thirty-one elite swimmers performed a 200-m maximal swim where V̇O2 was measured breath-by-breath using a portable gas analyzer connected to a respiratory snorkel, 1 min before, during, and 3 min postexercise. V̇O2peak(-20-0) was the average of the last 20 s of effort. The following postexercise measures were compared: (i) first 20-s average (V̇O2peak(0-20)); (ii) linear backward extrapolation (BE) of the first 20 s (BE(20)), 30 s, and 3 × 20-, 4 × 20-, and 3 or 4 × 20-s averages; (iii) semilogarithmic BE at 20 s (LOG(20)) and at the other same time intervals as in linear BE; and (iv) predicted V̇O2peak using mathematical modelling (pV̇O2(0-20)]. Repeated-measures ANOVA and post-hoc Bonferroni tests compared V̇O2peak (criterion) and each estimated value. Pearson's coefficient of determination (r(2)) was used to assess correlation. Exercise V̇O2peak(-20-0) (mean ± SD 3531 ± 738 mL·min(-1)) was not different (p > 0.30) from pV̇O2(0-20) (3571 ± 735 mL·min(-1)), BE(20) (3617 ± 708 mL·min(-1)), or LOG(20) (3627 ± 746 mL·min(-1)). pV̇O2(0-20) was very strongly correlated with exercise V̇O2peak (r(2) = 0.962; p < 0.001), and showed a low standard error of the estimate (146 mL·min(-1), 4.1%) and the lowest mean difference (40 mL·min(-1); 1.1%). We confirm that the new modelling procedure based on postexercise V̇O2 and heart rate measurements is a valid and accurate procedure for estimating V̇O2peak in swimmers and avoids the estimation bias produced by other methods.

  7. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  8. Implementing oxygen control in chip-based cell and tissue culture systems.

    PubMed

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments. PMID:27492338

  9. Structural and Functional Evidence Indicates Selective Oxygen Signaling in Caldanaerobacter subterraneus H-NOX.

    PubMed

    Hespen, Charles W; Bruegger, Joel J; Phillips-Piro, Christine M; Marletta, Michael A

    2016-08-19

    Acute and specific sensing of diatomic gas molecules is an essential facet of biological signaling. Heme nitric oxide/oxygen binding (H-NOX) proteins are a family of gas sensors found in diverse classes of bacteria and eukaryotes. The most commonly characterized bacterial H-NOX domains are from facultative anaerobes and are activated through a conformational change caused by formation of a 5-coordinate Fe(II)-NO complex. Members of this H-NOX subfamily do not bind O2 and therefore can selectively ligate NO even under aerobic conditions. In contrast, H-NOX domains encoded by obligate anaerobes do form stable 6-coordinate Fe(II)-O2 complexes by utilizing a conserved H-bonding network in the ligand-binding pocket. The biological function of O2-binding H-NOX domains has not been characterized. In this work, the crystal structures of an O2-binding H-NOX domain from the thermophilic obligate anaerobe Caldanaerobacter subterraneus (Cs H-NOX) in the Fe(II)-NO, Fe(II)-CO, and Fe(II)-unliganded states are reported. The Fe(II)-unliganded structure displays a conformational shift distinct from the NO-, CO-, and previously reported O2-coordinated structures. In orthogonal signaling assays using Cs H-NOX and the H-NOX signaling effector histidine kinase from Vibrio cholerae (Vc HnoK), Cs H-NOX regulates Vc HnoK in an O2-dependent manner and requires the H-bonding network to distinguish O2 from other ligands. The crystal structures of Fe(II) unliganded and NO- and CO-bound Cs H-NOX combined with functional assays herein provide the first evidence that H-NOX proteins from obligate anaerobes can serve as O2 sensors.

  10. An investigation of active and selective oxygen in vanadium phosphorus oxide catalysts for n-butane conversion to maleic anhydride

    SciTech Connect

    Lashier, M.E.

    1990-01-01

    The role of lattice oxygens in two model catalysts, {beta}-VOPO{sub 4} and (VO){sub 2}P{sub 2}O{sub 7}, was investigated for the selective and nonselective oxidation of C{sub 4} hydrocarbons to maleic anhydride and combustion products. Specific catalytic oxygen sites in each model catalyst were labeled with specific amounts of {sup 18}O. Labeled sites were identified by laser Raman spectroscopy and Fourier transform infrared spectroscopy. The level of {sup 18}O enrichment in each site was estimated from the laser Raman spectra and the stoichiometry of reactions involved in the synthesis of the labeled catalysts. Products of the anaerobic C{sub 4} hydrocarbon oxidation and, in the case of (VO){sub 2}P{sub 2}O{sub 7}, alternating pulses of oxygen with pulses of hydrocarbon, over labeled catalysts were monitored by quadrupole mass spectrometry. 146 refs., 51 figs., 7 tabs.

  11. Identification of selected apple pests based on selected graphical parameters

    NASA Astrophysics Data System (ADS)

    Boniecki, P.; Koszela, K.; Piekarska-Boniecka, H.; Nowakowski, K.; Przybył, J.; Zaborowicz, M.; Raba, B.; Dach, J.

    2013-07-01

    The aim of this work was a neural identification of selected apple tree orchard pests. The classification was conducted on the basis of graphical information coded in the form of selected geometric characteristics of agrofags, presented on digital images. A neural classification model is presented in this paper, optimized using learning sets acquired on the basis of information contained in digital photographs of pests. In particular, the problem of identifying 6 selected apple pests, the most commonly encountered in Polish orchards, has been addressed. In order to classify the agrofags, neural modelling methods were utilized, supported by digital analysis of image techniques.

  12. Selective oxidation of cyclooctane to cyclootanone with molecular oxygen in the presence of compressed carbon dioxide.

    PubMed

    Theyssen, Nils; Leitner, Walter

    2002-03-01

    The oxidation of cyclooctane (1) to cyclooctanone (3) with molecular oxygen and acetaldehyde (2) as a co-reductant occurs efficiently in the presence of compressed CO2. Up to 20% yields of 3 are obtained under optimised multiphase conditions.

  13. Oxygen-Rich Enzyme Biosensor Based on Superhydrophobic Electrode.

    PubMed

    Lei, Yongjiu; Sun, Ruize; Zhang, Xiangcheng; Feng, Xinjian; Jiang, Lei

    2016-02-17

    The fabrication of novel superhydrophobic electrodes is described, which have an air-liquid-solid three-phase interface, where oxygen is sufficient and constant. Oxygen is an effective natural electron acceptor for oxidase, and plays a key role in the development of reliable bioassays. Such an electrode allows detection of glucose concentration, linearly from 50 × 10(-9) m to 156 × 10(-3) m with good sensitivity and accuracy without analyte dilution. This strategy offers a unique route to address the gas-deficit problem of many reaction systems. PMID:26661886

  14. ASRDI oxygen technology survey. Volume 3: Heat transfer and fluid dynamics. Abstracts of selected technical reports and publications

    NASA Technical Reports Server (NTRS)

    Schmidt, A. F. (Editor)

    1972-01-01

    Selected information is presented from an assemblage of reports and publications on heat transfer and fluid dynamics with direct applicability to oxygen systems. For each document cited, an abstract has been prepared together with key words and a listing of most important references found in the document. Additionally, an author index, a subject index, and a key word index have been provided to simplify the retrieval of specific information from this work. In each subject area - e.g., boiling heat transfer - the individual citations are listed alphabetically by first author, with review papers dually noted under the appropriate subject category and under review papers. Of the documents reviewed and evaluated for inclusion in this publication, coverage of existing information directly concerned with oxygen was given primary emphasis. However, work not specifically oxygen-designated but considered applicable to oxygen by the reviewer e.g., a two-phase friction factor correlation derived from nitrogen experiments is occasionally given where no actual oxygen data exist, as an aid to the reader. Approximately 130 abstracts are listed.

  15. Interaction of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems

    PubMed Central

    Broniec, Agnieszka; Klosinski, Radoslaw; Pawlak, Anna; Wrona-Krol, Marta; Thompson, David; Sarna, Tadeusz

    2011-01-01

    Plasmalogens (Plg) are phospholipids containing vinyl ether linkage at the sn-1 position of the glycerophospholipid backbone. In spite of being quite abundant in humans, the biological role of plasmalogens remains speculative. It has been postulated that plasmalogens are physiological antioxidants with the vinyl ether functionality serving as sacrificial trap for free radicals and singlet oxygen. However, no quantitative data on the efficiency of plasmalogens to scavenge these reactive species are available. In this study, rate constants of quenching of singlet oxygen, generated by photosensitized energy transfer, by several plasmalogens and, for comparison, by their diacyl analogs, were determined by time-resolved detection of phosphorescence at 1270 nm. Relative rates of the interaction of singlet oxygen, with plasmalogens and other lipids in solution and liposomal membranes were measured by electron paramagnetic resonance oximetry and product analysis, employing HPLC-EC detection of cholesterol hydroperoxides and iodometric assay of lipid hydroperoxides. Results show that singlet oxygen interacts with plasmalogens significantly faster than with the other lipids, with he corresponding rate constants being by one-two orders of magnitude greater. The quenching of singlet oxygen by plasmalogens is mostly reactive in nature and results from its preferential interaction with the vinyl ether bond. The data suggest that plasmalogens could protect unsaturated membrane lipids against oxidation induced by singlet oxygen, providing that the oxidation products are not excessively cytotoxic. PMID:21236336

  16. CMOS compatible electrode materials selection in oxide-based memory devices

    NASA Astrophysics Data System (ADS)

    Zhuo, V. Y.-Q.; Li, M.; Guo, Y.; Wang, W.; Yang, Y.; Jiang, Y.; Robertson, J.

    2016-07-01

    Electrode materials selection guidelines for oxide-based memory devices are constructed from the combined knowledge of observed device operation characteristics, ab-initio calculations, and nano-material characterization. It is demonstrated that changing the top electrode material from Ge to Cr to Ta in the Ta2O5-based memory devices resulted in a reduction of the operation voltages and current. Energy Dispersed X-ray (EDX) Spectrometer analysis clearly shows that the different top electrode materials scavenge oxygen ions from the Ta2O5 memory layer at various degrees, leading to different oxygen vacancy concentrations within the Ta2O5, thus the observed trends in the device performance. Replacing the Pt bottom electrode material with CMOS compatible materials (Ru and Ir) further reduces the power consumption and can be attributed to the modification of the Schottky barrier height and oxygen vacancy concentration at the electrode/oxide interface. Both trends in the device performance and EDX results are corroborated by the ab-initio calculations which reveal that the electrode material tunes the oxygen vacancy concentration via the oxygen chemical potential and defect formation energy. This experimental-theoretical approach strongly suggests that the proper selection of CMOS compatible electrode materials will create the critical oxygen vacancy concentration to attain low power memory performance.

  17. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production

    PubMed Central

    Steinmiller, Ellen M. P.; Choi, Kyoung-Shin

    2009-01-01

    This study describes the photochemical deposition of Co-based oxygen evolution catalysts on a semiconductor photoanode for use in solar oxygen evolution. In the photodeposition process, electron-hole pairs are generated in a semiconductor upon illumination and the photogenerated holes are used to oxidize Co2+ ions to Co3+ ions, resulting in the precipitation of Co3+-based catalysts on the semiconductor surface. Both photodeposition of the catalyst and solar O2 evolution are photo-oxidation reactions using the photogenerated holes. Therefore, photodeposition provides an efficient way to couple oxygen evolution catalysts with photoanodes by naturally placing catalysts at the locations where the holes are most readily available for solar O2 evolution. In this study Co-based catalysts were photochemically deposited as 10–30 nm nanoparticles on the ZnO surface. The comparison of the photocurrent-voltage characteristics of the ZnO electrodes with and without the presence of the Co-based catalyst demonstrated that the catalyst generally enhanced the anodic photocurrent of the ZnO electrode with its effect more pronounced when the band bending is less significant. The presence of Co-based catalyst on the ZnO photoanode also shifted the onset potential of the photocurrent by 0.23 V to the negative direction, closer to the flat band potential. These results demonstrated that the cobalt-based catalyst can efficiently use the photogenerated holes in ZnO to enhance solar O2 evolution. The photodeposition method described in this study can be used as a general route to deposit the Co-based catalysts on any semiconductor electrode with a valence band edge located at a more positive potential than the oxidation potential of Co2+ ions. PMID:19934060

  18. Microparticle, nanoparticle, and stem cell-based oxygen carriers as advanced blood substitutes.

    PubMed

    Tao, Zhimin; Ghoroghchian, P Peter

    2014-09-01

    Here, we discuss recent advances in the development of artificial red blood cell (RBC) substitutes, illustrating lessons learned from initial attempts using perfluorocarbon (PFC) emulsions and acellular hemoglobin-based oxygen carriers (HBOCs). We also highlight novel oxygen-containing microparticles, nanoparticles, and stem cell-derived RBC products, with emphasis on improvements in biocompatibility and oxygen delivery. In addition, we envision future developments for the rational design of advanced blood substitutes that aim to address unmet clinical needs.

  19. Leaching-resistant carrageenan-based colorimetric oxygen indicator films for intelligent food packaging.

    PubMed

    Vu, Chau Hai Thai; Won, Keehoon

    2014-07-23

    Visual oxygen indicators can give information on the quality and safety of packaged food in an economic and simple manner by changing color based on the amount of oxygen in the packaging, which is related to food spoilage. In particular, ultraviolet (UV)-activated oxygen indicators have the advantages of in-pack activation and irreversibility; however, these dye-based oxygen indicator films suffer from dye leaching upon contact with water. In this work, we introduce carrageenans, which are natural sulfated polysaccharides, to develop UV-activated colorimetric oxygen indicator films that are resistant to dye leakage. Carrageenan-based indicator films were fabricated using redox dyes [methylene blue (MB), azure A, and thionine], a sacrificial electron donor (glycerol), an UV-absorbing photocatalyst (TiO2), and an encapsulation polymer (carrageenan). They showed even lower dye leakage in water than conventional oxygen indicator films, owing to the electrostatic interaction of anionic carrageenan with cationic dyes. The MB/TiO2/glycerol/carrageenan oxygen indicator film was successfully bleached upon UV irradiation, and it regained color very rapidly in the presence of oxygen compared to the other waterproof oxygen indicator films. PMID:24979322

  20. Leaching-resistant carrageenan-based colorimetric oxygen indicator films for intelligent food packaging.

    PubMed

    Vu, Chau Hai Thai; Won, Keehoon

    2014-07-23

    Visual oxygen indicators can give information on the quality and safety of packaged food in an economic and simple manner by changing color based on the amount of oxygen in the packaging, which is related to food spoilage. In particular, ultraviolet (UV)-activated oxygen indicators have the advantages of in-pack activation and irreversibility; however, these dye-based oxygen indicator films suffer from dye leaching upon contact with water. In this work, we introduce carrageenans, which are natural sulfated polysaccharides, to develop UV-activated colorimetric oxygen indicator films that are resistant to dye leakage. Carrageenan-based indicator films were fabricated using redox dyes [methylene blue (MB), azure A, and thionine], a sacrificial electron donor (glycerol), an UV-absorbing photocatalyst (TiO2), and an encapsulation polymer (carrageenan). They showed even lower dye leakage in water than conventional oxygen indicator films, owing to the electrostatic interaction of anionic carrageenan with cationic dyes. The MB/TiO2/glycerol/carrageenan oxygen indicator film was successfully bleached upon UV irradiation, and it regained color very rapidly in the presence of oxygen compared to the other waterproof oxygen indicator films.

  1. Fast, Ultrasensitive Detection of Reactive Oxygen Species Using a Carbon Nanotube Based-Electrocatalytic Intracellular Sensor

    PubMed Central

    2015-01-01

    Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular “pulse” of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection. PMID:26438964

  2. Fast, Ultrasensitive Detection of Reactive Oxygen Species Using a Carbon Nanotube Based-Electrocatalytic Intracellular Sensor.

    PubMed

    Rawson, Frankie J; Hicks, Jacqueline; Dodd, Nicholas; Abate, Wondwossen; Garrett, David J; Yip, Nga; Fejer, Gyorgy; Downard, Alison J; Baronian, Kim H R; Jackson, Simon K; Mendes, Paula M

    2015-10-28

    Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular "pulse" of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection. PMID:26438964

  3. Liquid crystal size selection of large-size graphene oxide for size-dependent N-doping and oxygen reduction catalysis.

    PubMed

    Lee, Kyung Eun; Kim, Ji Eun; Maiti, Uday Narayan; Lim, Joonwon; Hwang, Jin Ok; Shim, Jongwon; Oh, Jung Jae; Yun, Taeyeong; Kim, Sang Ouk

    2014-09-23

    Graphene oxide (GO) is aqueous-dispersible oxygenated graphene, which shows colloidal discotic liquid crystallinity. Many properties of GO-based materials, including electrical conductivity and mechanical properties, are limited by the small flake size of GO. Unfortunately, typical sonochemical exfoliation of GO from graphite generally leads to a broad size and shape distribution. Here, we introduce a facile size selection of large-size GO exploiting liquid crystallinity and investigate the size-dependent N-doping and oxygen reduction catalysis. In the biphasic GO dispersion where both isotropic and liquid crystalline phases are equilibrated, large-size GO flakes (>20 μm) are spontaneously concentrated within the liquid crystalline phase. N-Doping and reduction of the size-selected GO exhibit that N-dopant type is highly dependent on GO flake size. Large-size GO demonstrates quaternary dominant N-doping and the lowest onset potential (-0.08 V) for oxygen reduction catalysis, signifying that quaternary N-dopants serve as principal catalytic sites in N-doped graphene. PMID:25145457

  4. Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode.

    PubMed

    Pita, Marcos; Gutierrez-Sanchez, Cristina; Toscano, Miguel D; Shleev, Sergey; De Lacey, Antonio L

    2013-12-01

    Gold disk electrodes modified with gold nanoparticles have been used as a scaffold for the covalent immobilization of bilirubin oxidase. The nanostructured bioelectrodes were tested as mediator-less biosensors for oxygen in a buffer that mimics the content and the composition of human physiological fluids. Chronoamperometry measurements showed a detection limit towards oxygen of 6 ± 1 μM with a linear range of 6-300 μM, i.e. exceeding usual physiological ranges of oxygen in human tissues and fluids. The biosensor presented is the first ever-reported oxygen amperometric biosensor based on direct electron transfer of bilirubin oxidase. PMID:23973738

  5. ICI D7114 a novel selective beta-adrenoceptor agonist selectively stimulates brown fat and increases whole-body oxygen consumption.

    PubMed

    Holloway, B R; Howe, R; Rao, B S; Stribling, D; Mayers, R M; Briscoe, M G; Jackson, J M

    1991-09-01

    1. ICI D7114 is a novel, beta-adrenoceptor agonist which stimulates whole body oxygen consumption in conscious rats, cats and dogs and brown adipose tissue (BAT) activity in conscious rats. Treatment of rats with ICI D7114 stimulated oxygen consumption (ED50, 0.04 mg kg-1, p.o.) and BAT mitochondrial guanosine diphosphate (GDP)-binding (ED50, 0.15 mg kg-1, p.o.) with no chronotropic effects on the heart at these doses. 2. Reference beta-adrenoceptor agonists, isoprenaline and clenbuterol, also stimulated oxygen consumption and BAT activity but were less selective because they also produced effects on heart rate at these doses. 3. Treatment of conscious rats with ICI D7114 did not attenuate the chronotropic effects on the heart of a subsequent isoprenaline challenge. 4. Administration of ICI D7114 or of its acid metabolite had no effect in a cat soleus muscle model of tremor or on blood potassium levels in the conscious dog, indicating lack of effects at beta 2-adrenoceptors. 5. The results indicate that ICI D7114 may have activity at atypical beta-adrenoceptors in brown adipose tissue leading to increased whole body oxygen consumption. PMID:1686210

  6. ICI D7114 a novel selective beta-adrenoceptor agonist selectively stimulates brown fat and increases whole-body oxygen consumption.

    PubMed Central

    Holloway, B. R.; Howe, R.; Rao, B. S.; Stribling, D.; Mayers, R. M.; Briscoe, M. G.; Jackson, J. M.

    1991-01-01

    1. ICI D7114 is a novel, beta-adrenoceptor agonist which stimulates whole body oxygen consumption in conscious rats, cats and dogs and brown adipose tissue (BAT) activity in conscious rats. Treatment of rats with ICI D7114 stimulated oxygen consumption (ED50, 0.04 mg kg-1, p.o.) and BAT mitochondrial guanosine diphosphate (GDP)-binding (ED50, 0.15 mg kg-1, p.o.) with no chronotropic effects on the heart at these doses. 2. Reference beta-adrenoceptor agonists, isoprenaline and clenbuterol, also stimulated oxygen consumption and BAT activity but were less selective because they also produced effects on heart rate at these doses. 3. Treatment of conscious rats with ICI D7114 did not attenuate the chronotropic effects on the heart of a subsequent isoprenaline challenge. 4. Administration of ICI D7114 or of its acid metabolite had no effect in a cat soleus muscle model of tremor or on blood potassium levels in the conscious dog, indicating lack of effects at beta 2-adrenoceptors. 5. The results indicate that ICI D7114 may have activity at atypical beta-adrenoceptors in brown adipose tissue leading to increased whole body oxygen consumption. PMID:1686210

  7. Methodology and Significance of Microsensor-based Oxygen Mapping in Plant Seeds – an Overview

    PubMed Central

    Rolletschek, Hardy; Stangelmayer, Achim; Borisjuk, Ljudmilla

    2009-01-01

    Oxygen deficiency is commonplace in seeds, and limits both their development and their germination. It is, therefore, of considerable relevance to crop production. While the underlying physiological basis of seed hypoxia has been known for some time, the lack of any experimental means of measuring the global or localized oxygen concentration within the seed has hampered further progress in this research area. The development of oxygen-sensitive microsensors now offers the capability to determine the localized oxygen status within a seed, and to study its dynamic adjustment both to changes in the ambient environment, and to the seed's developmental stage. This review illustrates the use of oxygen microsensors in seed research, and presents an overview of existing data with an emphasis on crop species. Oxygen maps, both static and dynamic, should serve to increase our basic understanding of seed physiology, as well as to facilitate upcoming breeding and biotechnology-based approaches for crop improvement. PMID:22412307

  8. Colour polymeric paints research under atomic oxygen in flight and ground-based experiments

    NASA Astrophysics Data System (ADS)

    Chernik, V. N.; Naumov, S. F.; Sokolova, S. P.; Gerasimova, T. I.; Kurilyonok, A. O.; Poruchikova, Ju. V.; Novikova, V. A.

    2003-09-01

    Three types of colour coatings were tested to atomic oxygen resistance on ground-based and in-flight experiments. The epoxy enamels colouring change and significant mass losses are observed. The effect of atomic oxygen on silicone enamels almost does not change their colouring and mass. Protection of the epoxy enamels by a layer of silicone varnish increases paints resistance.

  9. SYSTEM DESIGN AND ANALYSIS FOR CONCEPTUAL DESIGN OF OXYGEN-BASED PC BOILER

    SciTech Connect

    Zhen Fan; Andrew Seltzer

    2003-11-01

    The objective of the system design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the PC boiler plant by maximizing system efficiency. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 Mw plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.1% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 44% of the air-fired reference case. Compared to other CO{sub 2} sequestration technologies, the O{sub 2}-fired PC is substantially better than both natural gas combined cycles and post CO{sub 2} removal PCs and is slightly better than integrated gasification combined cycles.

  10. Selection of Environmentally Friendly Solvents for the Extravehicular Mobility Unit Secondary Oxygen Pack Cold Trap Testing

    NASA Technical Reports Server (NTRS)

    Steele, John; Chullen, Cinda; Morenz, Jesse; Stephenson, Curtis

    2010-01-01

    Freon-113(TradeMark) has been used as a chemistry lab sampling solvent at NASA/JSC for EMU (extravehicular Mobility Unit) SOP (Secondary Oxygen Pack) oxygen testing Cold Traps utilized at the USA (United Space Alliance) Houston facility. Similar testing has occurred at the HSWL (Hamilton Sundstrand Windsor Locks) facility. A NASA Executive Order bans the procurement of all ODS (ozone depleting substances), including Freon-113 by the end of 2009. In order to comply with NASA direction, HSWL began evaluating viable solvents to replace Freon-113 . The study and testing effort to find Freon-113 replacements used for Cold Trap sampling is the subject of this paper. Test results have shown HFE-7100 (a 3M fluorinated ether) to be an adequate replacement for Freon-113 as a solvent to remove and measure the non-volatile residue collected in a Cold Trap during oxygen testing. Furthermore, S-316 (a Horiba Instruments Inc. high molecular weight, non-ODS chlorofluorocarbon) was found to be an adequate replacement for Freon-113 as a solvent to reconstitute non-volatile residue removed from a Cold Trap during oxygen testing for subsequent HC (hydrocarbon) analysis via FTIR (Fourier Transform Infrared Spectroscopy).

  11. Caterpillars selected for large body size and short development time are more susceptible to oxygen-related stress.

    PubMed

    Harrison, Jon F; Cease, Arianne J; Vandenbrooks, John M; Albert, Todd; Davidowitz, Goggy

    2013-05-01

    Recent studies suggest that higher growth rates may be associated with reduced capacities for stress tolerance and increased accumulated damage due to reactive oxygen species. We tested the response of Manduca sexta (Sphingidae) lines selected for large or small body size and short development time to hypoxia (10 kPa) and hyperoxia (25, 33, and 40 kPa); both hypoxia and hyperoxia reduce reproduction and oxygen levels over 33 kPa have been shown to increase oxidative damage in insects. Under normoxic (21 kPa) conditions, individuals from the large-selected (big-fast) line were larger and had faster growth rates, slightly longer developmental times, and reduced survival rates compared to individuals from a line selected for small size (small-fast) or an unselected control line. Individuals from the big-fast line exhibited greater negative responses to hyperoxia with greater reductions in juvenile and adult mass, growth rate, and survival than the other two lines. Hypoxia generally negatively affected survival and growth/size, but the lines responded similarly. These results are mostly consistent with the hypothesis that simultaneous acquisition of large body sizes and short development times leads to reduced capacities for coping with stressful conditions including oxidative damage. This result is of particular importance in that natural selection tends to decrease development time and increase body size.

  12. Caterpillars selected for large body size and short development time are more susceptible to oxygen-related stress

    PubMed Central

    Harrison, Jon F; Cease, Arianne J; VandenBrooks, John M; Albert, Todd; Davidowitz, Goggy

    2013-01-01

    Recent studies suggest that higher growth rates may be associated with reduced capacities for stress tolerance and increased accumulated damage due to reactive oxygen species. We tested the response of Manduca sexta (Sphingidae) lines selected for large or small body size and short development time to hypoxia (10 kPa) and hyperoxia (25, 33, and 40 kPa); both hypoxia and hyperoxia reduce reproduction and oxygen levels over 33 kPa have been shown to increase oxidative damage in insects. Under normoxic (21 kPa) conditions, individuals from the large-selected (big-fast) line were larger and had faster growth rates, slightly longer developmental times, and reduced survival rates compared to individuals from a line selected for small size (small-fast) or an unselected control line. Individuals from the big-fast line exhibited greater negative responses to hyperoxia with greater reductions in juvenile and adult mass, growth rate, and survival than the other two lines. Hypoxia generally negatively affected survival and growth/size, but the lines responded similarly. These results are mostly consistent with the hypothesis that simultaneous acquisition of large body sizes and short development times leads to reduced capacities for coping with stressful conditions including oxidative damage. This result is of particular importance in that natural selection tends to decrease development time and increase body size. PMID:23762517

  13. Selectivity tailoring of Pd/CNTs in phenol hydrogenation by surface modification: Role of Csbnd O oxygen species

    NASA Astrophysics Data System (ADS)

    Xu, Tieyong; Zhang, Qunfeng; Cen, Jie; Xiang, Yizhi; Li, Xiaonian

    2015-01-01

    The effect of different types of oxygen containing groups (OCGs) on the catalytic performance was investigated in this paper by performing the selective hydrogenation of phenol in aqueous phase over the carbon supported Pd catalysts. The type of OCGs on carbon nanotubes (CNTs) was regulated by pretreating it with HNO3, or HNO3 followed by hydrothermal or thermal oxidation treatment. A distinct difference in the amount of phenolic/ether groups (Csbnd O) was observed for CNTs treated by different methods, while the difference in the amount of carbonyl groups (Cdbnd O) and carboxylic groups was much smaller. The results showed that the selectivity to cyclohexanone decreased with the increase of Csbnd O amount on carbon surface. Csbnd O groups played an important role in adsorption/desorption behavior of phenol/cyclohexanone and was considered to be responsible for the dramatic selectivity difference.

  14. Fluorophore-based sensor for oxygen radicals in processing plasmas

    SciTech Connect

    Choudhury, Faraz A.; Shohet, J. Leon; Sabat, Grzegorz; Sussman, Michael R.; Nishi, Yoshio

    2015-11-15

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.

  15. Alkaline static feed electrolyzer based oxygen generation system

    NASA Technical Reports Server (NTRS)

    Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.

    1988-01-01

    In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.

  16. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species

    PubMed Central

    Asghar, Waseem; Velasco, Vanessa; Kingsley, James L.; Shoukat, Muhammad S.; Shafiee, Hadi; Anchan, Raymond M.; Mutter, George L.; Tüzel, Erkan; Demirci, Utkan

    2014-01-01

    Fertilization and reproduction are central to the survival and propagation of a species. Couples who cannot reproduce naturally have to undergo in vitro clinical procedures. An integral part of these clinical procedures includes isolation of healthy sperm from raw semen. Existing sperm sorting methods are not efficient and isolate sperm having high DNA fragmentation and reactive oxygen species, and suffer from multiple manual steps and variations between embryologists. Inspired by in vivo natural sperm sorting mechanisms where vaginal mucus becomes less viscous to form microchannels to guide sperm towards egg, we present a chip that efficiently sorts healthy, motile and morphologically normal sperm without centrifugation. Higher percentage of sorted sperm show significantly lesser reactive oxygen species and DNA fragmentation than the conventional swim-up method. The presented chip is an easy-to-use high throughput sperm sorter that provides standardized sperm sorting assay with less reliance on embryologist’s skills, facilitating reliable operational steps. PMID:24753434

  17. Methylene blue- and thiol-based oxygen depletion for super-resolution imaging.

    PubMed

    Schäfer, Philip; van de Linde, Sebastian; Lehmann, Julian; Sauer, Markus; Doose, Sören

    2013-03-19

    Anaerobic conditions are often required in solution-based bionanotechnological applications. Efficient oxygen depletion is essential for increasing photostability, optimizing fluorescence signals, and adjusting kinetics of fluorescence intermittency in single-molecule fluorescence spectroscopy/microscopy, particularly for super-resolution imaging techniques. We characterized methylene blue (MB)- and thiol-based redox reactions with the aim of designing an oxygen scavenger system as an alternative to the established enzyme-based oxygen scavenging systems or purging procedures. Redox reactions of the chromophore methylene blue in aqueous solution, commonly visualized in the blue bottle experiment, deplete molecular oxygen as long as a sacrificial reduction component is present in excess concentrations. We demonstrate that methylene blue in combination with reducing compounds such as β-mercaptoethylamine (MEA) can serve as fast and efficient oxygen scavenger. Efficient oxygen scavenging in aqueous solution is also possible with mere β-mercaptoethylamine at mM concentrations. We present kinetic parameters of the relevant reactions, pH-stability of the MB/MEA-oxygen scavenging system, and its application in single-molecule based super-resolution imaging.

  18. Roles of reactive oxygen species and selected antioxidants in regulation of cellular metabolism.

    PubMed

    Stańczyk, Małgorzata; Gromadzińska, Jolanta; Wasowicz, Wojciech

    2005-01-01

    Reactive oxygen species (ROS) are essential for life of aerobic organisms. They are produced in normal cells and formed as a result of exposure to numerous factors, both chemical and physical. In normal cells, oxygen derivatives are neutralized or eliminated owing to the presence of a natural defense mechanism that involves enzymatic antioxidants (glutathione peroxidase, superoxide dismutase, catalase) and water or fat-soluble non-enzymatic antioxidants (vitamins C and E, glutathione, selenium). Under certain conditions, however, ROS production during cellular metabolism also stimulated by external agents may exceed the natural ability of cells to eliminate them from the organism. The disturbed balance leads to the state known as oxidative stress inducing damage of DNA, proteins, and lipids. An inefficient repair mechanism may finally trigger the process of neoplastic transformation or cell death. Reactive oxygen species are also an integral part of signal transduction essential for intercellular communication. The balance between pro- and antioxidative processes determines normal cellular metabolism manifested by genes activation and/or proteins expression in response to exo- and endogenous stimuli. PMID:16052887

  19. MIS-based sensors with hydrogen selectivity

    DOEpatents

    Li; ,Dongmei; Medlin, J. William; McDaniel, Anthony H.; Bastasz, Robert J.

    2008-03-11

    The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.

  20. Flexible lithium-oxygen battery based on a recoverable cathode.

    PubMed

    Liu, Qing-Chao; Xu, Ji-Jing; Xu, Dan; Zhang, Xin-Bo

    2015-01-01

    Although flexible power sources are crucial for the realization next-generation flexible electronics, their application in such devices is hindered by their low theoretical energy density. Rechargeable lithium-oxygen (Li-O2) batteries can provide extremely high specific energies, while the conventional Li-O2 battery is bulky, inflexible and limited by the absence of effective components and an adjustable cell configuration. Here we show that a flexible Li-O2 battery can be fabricated using unique TiO2 nanowire arrays grown onto carbon textiles (NAs/CT) as a free-standing cathode and that superior electrochemical performances can be obtained even under stringent bending and twisting conditions. Furthermore, the TiO2 NAs/CT cathode features excellent recoverability, which significantly extends the cycle life of the Li-O2 battery and lowers its life cycle cost. PMID:26235205

  1. Flexible lithium–oxygen battery based on a recoverable cathode

    PubMed Central

    Liu, Qing-Chao; Xu, Ji-Jing; Xu, Dan; Zhang, Xin-Bo

    2015-01-01

    Although flexible power sources are crucial for the realization next-generation flexible electronics, their application in such devices is hindered by their low theoretical energy density. Rechargeable lithium–oxygen (Li–O2) batteries can provide extremely high specific energies, while the conventional Li–O2 battery is bulky, inflexible and limited by the absence of effective components and an adjustable cell configuration. Here we show that a flexible Li–O2 battery can be fabricated using unique TiO2 nanowire arrays grown onto carbon textiles (NAs/CT) as a free-standing cathode and that superior electrochemical performances can be obtained even under stringent bending and twisting conditions. Furthermore, the TiO2 NAs/CT cathode features excellent recoverability, which significantly extends the cycle life of the Li–O2 battery and lowers its life cycle cost. PMID:26235205

  2. Quantitative inactivation-mechanisms of P. digitatum and A. niger spores based on atomic oxygen dose

    NASA Astrophysics Data System (ADS)

    Ito, Masafumi; Hashizume, Hiroshi; Ohta, Takayuki; Hori, Masaru

    2014-10-01

    We have investigated inactivation mechanisms of Penicillium digitatum and Asperguills niger spores using atmospheric-pressure radical source quantitatively. The radical source was specially developed for supplying only neutral radicals without charged species and UV-light emissions. Reactive oxygen radical densities such as grand-state oxygen atoms, excited-state oxygen molecules and ozone were measured using VUV and UV absorption spectroscopies. The measurements and the treatments of spores were carried out in an Ar-purged chamber for eliminating the influences of OH, NOx and so on. The results revealed that the inactivation of spores can be explained by atomic-oxygen dose under the conditions employing neutral ROS irradiations. On the basis of the dose, we have observed the changes of intracellular organelles and membrane functions using TEM, SEM and confocal- laser fluorescent microscopy. From these results, we discuss the detail inactivation-mechanisms quantitatively based on atomic-oxygen dose.

  3. Pathway and Surface Mechanism Studies of 1,3-butadiene Selective Oxidation Over Vanadium-Molybdenum-Oxygen Catalysts

    SciTech Connect

    William David Schroeder

    2002-05-27

    The partial oxidation of 1,3-butadiene has been investigated over VMoO catalysts synthesized by sol-gel techniques. Surface areas were 9-14 m{sup 2}/g, and compositions were within the solid solution regime, i.e. below 15.0 mol % MoO{sub 3}/(MoO{sub 3} + V{sub 2}O{sub 5}). Laser Raman Spectroscopy and XRD data indicated that solid solutions were formed, and pre- and post-reaction XPS data indicated that catalyst surfaces contained some V{sup +4} and were further reduced in 1,3-butadiene oxidation. A reaction pathway for 1,3-butadiene partial oxidation to maleic anhydride was shown to involve intermediates such as 3,4-epoxy-1-butene, crotonaldehyde, furan, and 2-butene-1,4-dial. The addition of water to the reaction stream substantially increased catalyst activity and improved selectivity to crotonaldehyde and furan at specific reaction temperatures. At higher water addition concentrations, furan selectivity increased from 12% to over 25%. The catalytic effects of water addition were related to competitive adsorption with various V{sub 2}O{sub 5}-based surface sites, including the vanadyl V=O, corner sharing V-O-V and edge sharing V-O oxygen. Higher levels of water addition were proposed to impose acidic character by dissociative adsorption. In addition, a novel combinatorial synthesis technique for VMoO was used to investigate the phase transitions of V{sub 2}O{sub 5}, solid solutions of Mo in V{sub 2}O{sub 5}, V{sub 9}Mo{sub 6}O{sub 40}, and other reduced VMoO compounds, characterized by laser Raman spectroscopy. The natural composition gradient imposed by the sputter deposition apparatus was used to create VMoO arrays containing 225 samples ranging from 7.0-42 mol% MoO{sub 3}/(V{sub 2}O{sub 5} + MoO{sub 3}), determined by EDS analysis.

  4. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    DOEpatents

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  5. High-throughput determination of biochemical oxygen demand (BOD) by a microplate-based biosensor.

    PubMed

    Pang, Hei-Leung; Kwok, Nga-Yan; Chan, Pak-Ho; Yeung, Chi-Hung; Lo, Waihung; Wong, Kwok-Yin

    2007-06-01

    The use of the conventional 5-day biochemical oxygen demand (BOD5) method in BOD determination is greatly hampered by its time-consuming sampling procedure and its technical difficulty in the handling of a large pool of wastewater samples. Thus, it is highly desirable to develop a fast and high-throughput biosensor for BOD measurements. This paper describes the construction of a microplate-based biosensor consisting of an organically modified silica (ORMOSIL) oxygen sensing film for high-throughput determination of BOD in wastewater. The ORMOSIL oxygen sensing film was prepared by reacting tetramethoxysilane with dimethyldimethoxysilane in the presence of the oxygen-sensitive dye tris(4,7-diphenyl-1,10-phenanthroline)ruthenium-(II) chloride. The silica composite formed a homogeneous, crack-free oxygen sensing film on polystyrene microtiter plates with high stability, and the embedded ruthenium dye interacted with the dissolved oxygen in wastewater according to the Stern-Volmer relation. The bacterium Stenotrophomonas maltophilia was loaded into the ORMOSIL/ PVA composite (deposited on the top of the oxygen sensing film) and used to metabolize the organic compounds in wastewater. This BOD biosensor was found to be able to determine the BOD values of wastewater samples within 20 min by monitoring the dissolved oxygen concentrations. Moreover, the BOD values determined by the BOD biosensor were in good agreement with those obtained by the conventional BOD5 method.

  6. Intrinsic and metal-doped gallium oxide based high-temperature oxygen sensors for combustion processes

    NASA Astrophysics Data System (ADS)

    Rubio, Ernesto Javier

    Currently, there is enormous interest in research, development and optimization of the combustion processes for energy harvesting. Recent statistical and economic analyses estimated that by improving the coal-based firing/combustion processes in the power plants, savings up to $450-500 million yearly can be achieved. Advanced sensors and controls capable of withstanding extreme environments such as high temperatures, highly corrosive atmospheres, and high pressures are critical to such efficiency enhancement and cost savings. For instance, optimization of the combustion processes in power generation systems can be achieved by sensing, monitoring and control of oxygen, which is a measure of the completeness of the process and can lead to enhanced efficiency and reduced greenhouse gas emissions. However, despite the fact that there exists a very high demand for advanced sensors, the existing technologies suffer from poor 'response and recovery times' and 'long-term stability.' Motivated by the aforementioned technological challenges, the present work was focused on high-temperature (≥700 °C) oxygen sensors for application in power generation systems. The objective of the present work is to investigate nanostructured gallium oxide (2O3) based sensors for oxygen sensing, where we propose to conduct in-depth exploration of the role of refractory metal (tungsten, W, in this case) doping into 2O 3 to enhance the sensitivity, selectivity, stability ("3S" criteria) and reliability of such sensors while keeping cost economical. Tungsten (W) doped gallium oxide (2O3) thin films were deposited via rf-magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying the sputtering power applied to the W-target in order to achieve variable W content into 2O3 films while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-grown and post-annealed W-doped 2O3

  7. Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction

    NASA Astrophysics Data System (ADS)

    Hernandez-Fernandez, Patricia; Masini, Federico; McCarthy, David N.; Strebel, Christian E.; Friebel, Daniel; Deiana, Davide; Malacrida, Paolo; Nierhoff, Anders; Bodin, Anders; Wise, Anna M.; Nielsen, Jane H.; Hansen, Thomas W.; Nilsson, Anders; Stephens, Ifan E. L.; Chorkendorff, Ib

    2014-08-01

    Low-temperature fuel cells are limited by the oxygen reduction reaction, and their widespread implementation in automotive vehicles is hindered by the cost of platinum, currently the best-known catalyst for reducing oxygen in terms of both activity and stability. One solution is to decrease the amount of platinum required, for example by alloying, but without detrimentally affecting its properties. The alloy PtxY is known to be active and stable, but its synthesis in nanoparticulate form has proved challenging, which limits its further study. Herein we demonstrate the synthesis, characterization and catalyst testing of model PtxY nanoparticles prepared through the gas-aggregation technique. The catalysts reported here are highly active, with a mass activity of up to 3.05 A mgPt-1 at 0.9 V versus a reversible hydrogen electrode. Using a variety of characterization techniques, we show that the enhanced activity of PtxY over elemental platinum results exclusively from a compressive strain exerted on the platinum surface atoms by the alloy core.

  8. Determination of the relative resistance to ignition of selected turbopump materials in high-pressure, high-temperature, oxygen environments, volume 1

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Benz, Frank J.

    1986-01-01

    Advances in the design of the liquid oxygen, liquid hydrogen engines for the Space Transportation System call for the use of warm, high-pressure oxygen as the driving gas in the liquid oxygen turbopump. The NASA Lewis Research Center requested the NASA White Sands Test Facility (WSTF) to design a test program to determine the relative resistance to ignition of nine selected turbopump materials: Hastelloy X, Inconel 600, Invar 36, Monel K-500, nickel 200, silicon carbide, stainless steel 316, and zirconium copper. The materials were subjected to particle impact and to frictional heating in high-pressure oxygen.

  9. Vanadium-phosphorus-oxygen industrial catalysts for C/sub 4/ hydrocarbon selective oxidation to maleic anhydride

    SciTech Connect

    Wenig, R.W.

    1987-06-01

    The selective oxidation of n-butane to maleic anhydride by vanadium-phosphorus-oxygen (V-P-O) industrial catalysts varying in P-to-V ratio has been studied in a fixed bed integral reactor system. Catalyst characterization studies including x-ray diffraction, laser Raman spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy, x-ray energy dispersive spectroscopy, and BET surface area measurements were used. A strong effect of P-to-V synthesis ratio on catalyst structure, catalyst morphology, vanadium oxidation state, and reactivity in n-butane selective oxidation was observed. A slight ''excess'' of catalyst phosphorus (P/V = 1.1 catalyst) was found to stabilize an active and selective (VO)/sub 2/P/sub 2/O/sub 7/ phase. The mechanism of n-butane selective oxidation to maleic anhydride was studied by in situ infrared spectroscopy using n-butane, 1-butene, 1,3-butadiene, crotyl alcohol, maleic acid, crotonic acid, and maleic anhydride feeds. During paraffin selective oxidation, highly reactive olefin species and maleic acid were observed on the surfaces of V-P-O catalysts. Further evidence in support of conjugated or possibly strained olefin and maleic acid reaction intermediates in n-butane and 1-butene partial oxidation to maleic anhydride was gathered.

  10. Porous platinum-based catalysts for oxygen reduction

    DOEpatents

    Erlebacher, Jonah D; Snyder, Joshua D

    2014-11-25

    A porous metal that comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A fuel cell includes a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. At least one of the first and second electrodes is coated with a porous metal catalyst for oxygen reduction, and the porous metal catalyst comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A method of producing a porous metal according to an embodiment of the current invention includes producing an alloy consisting essentially of platinum and nickel according to the formula Pt.sub.xNi.sub.1-x, where x is at least 0.01 and less than 0.3; and dealloying the alloy in a substantially pH neutral solution to reduce an amount of nickel in the alloy to produce the porous metal.

  11. Protocol for Atomic Oxygen Testing of Materials in Ground-Based Facilities. No. 2

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.

    1995-01-01

    A second version of standard guidelines is proposed for improving materials testing in ground-based atomic oxygen environments for the purpose of predicting the durability of the tested materials in low Earth orbit (LEO). Accompanying these guidelines are background information and notes about testing. Both the guidelines and the additional information are intended to aid users who wish to evaluate the potential hazard of atomic oxygen in LEO to a candidate space component without actually flying the component in space, and to provide a framework for more consistent atomic oxygen testing in the future.

  12. Model vanadium-phosphorus-oxygen catalysts for the selective oxidation of C/sub 4/ hydrocarbons to maleic anhydride

    SciTech Connect

    Moser, T.P.

    1987-06-01

    Two model vanadium-phosphorus-oxygen catalysts, ..beta..-VOPO/sub 4/ and (VO)/sub 2/P/sub 2/O/sub 7/, were investigated for the selective oxidation of C/sub 4/ hydrocarbons to maleic anhydride. In situ laser Raman spectroscopy was used. Complementary techniques including x-ray powder diffraction and x-ray photoelectron spectroscopy were used for characterization of the fresh and used catalytic materials. The direct observation of phase stability and the participation of lattice oxygen during catalysis was possible using the in situ Raman technique. In particular, ..beta..-VOPO/sub 4/ and (VO)/sub 2/P/sub 2/O/sub 7/ demonstrated bulk structural integrity during n-butane oxidation. The relatively greater reducing capacity of 1-butene induced the ..beta..-VOPO/sub 4/ to (VO)/sub 2/P/sub 2/O/sub 7/ phase transformation. Direct structural identification of catalytically active centers for paraffin and olefin oxidation were investigated using an /sup 18/O-enriched ..beta..-VOPO/sub 4/ phase catalyst. Active sites responsible for complete combustion (Site I) and selective oxidation (Site II) were identified. The selective route for 1-butene oxidation involved predominantly Site II centers, while Site I centers were associated with complete combustion. In contrast, n-butane oxidation required the highly active Site I centers for initial activation and for the formation of an intermediate containing two oxygen atoms. Raman band assignments indicated these oxygen sites were associated with PO/sub 4/ units in the ..beta..-VOPO/sub 4/ lattice. Maleic anhydride conversion was particularly sensitive to the catalytic phase present. Significant combustion activity was observed when maleic anhydride was fed directly to an integral flow reactor charged with model catalysts. The combustion activity was least for (VO)/sub 2/P/sub 2/O/sub 7/, nominally a V(IV) phase. The ..beta..-VOPO/sub 4/ catalyst, nominally a V(V) phase, resulted in increased conversions of maleic anhydride.

  13. The USA Multicenter Prehosptial Hemoglobin -based Oxygen Carrier Resuscitation Trial: Scientific Rationale, Study Design, and Results

    PubMed Central

    Moore, Ernest E.; Johnson, Jeffrey L.; Moore, Frederick A.; Moore, Hunter B.

    2013-01-01

    The current generation of blood substitutes tested in clinical trials are red blood cell (RBC) substitutes; that is, they are designed primarily to transport oxygen. The products now being used in advanced-phase clinical trials are derived from hemoglobin (Hb) and are thus often referred to as Hb-based oxygen carriers (HBOCs). The potential benefits of HBOCs are well known (Box 1). The objectives of this overview are to provide the scientific background and rationale for the study design of the USA Multi-center Prehospital HBOC Resuscitation Trial and to present the results and discuss clinical implications. Box 1Potential clinical benefits of hemoglobin-based oxygen carriers in trauma careAvailabilityAbundant supplyUniversally compatibleProlonged shelf-lifeStorage at room temperatureSafetyNo disease transmissionsNo antigenic reactionsNo immunologic effectsEfficacyEnhanced oxygen deliveryImproved rheologic properties PMID:19341912

  14. Study of oxygen scavenging PET-based films activated by water

    NASA Astrophysics Data System (ADS)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2016-05-01

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  15. Reactive oxygen species and glutathione dual redox-responsive micelles for selective cytotoxicity of cancer.

    PubMed

    Chiang, Yi-Ting; Yen, Yu-Wei; Lo, Chun-Liang

    2015-08-01

    This study developed reactive oxygen species (ROS) and glutathione (GSH) dual redox-responsive micelles, which encapsulate anticancer drug camptothecin (CPT), protect CPT activity, and trigger CPT release in cancer cell H2O2- or GSH-rich surroundings. Experimental results show that CPT-loaded dual redox-responsive micelles remain stable at low levels of ROS and GSH in blood circulation, have high redox sensitivities needed to CPT release in cancer cells with high ROS or GSH (e.g., lung, gastric, and colon cancer cells), and prevent undersigned CPT toxicity in ROS/GSH balanced normal cells (e.g., fibroblast cells, etc.) or normal organs (e.g., liver, kidney, etc.). The CPT-loaded dual redox-responsive micelles also had high in vivo antitumor efficacy. This study demonstrates that ROS and GSH dual redox-responsive micelles have potential use as anticancer therapeutic nanomedicine in various cancer therapies.

  16. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol

    PubMed Central

    Grundner, Sebastian; Markovits, Monica A.C.; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A.; Hensen, Emiel J.M.; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A.

    2015-01-01

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite. PMID:26109507

  17. Medium Effects are as Important as Catalyst Design for Selectivity in Electrocatalytic Oxygen Reduction by Iron-porphyrin Complexes

    SciTech Connect

    Rigsby, Matthew L.; Wasylenko, Derek J.; Pegis, Michael L.; Mayer, James M.

    2015-04-08

    Several substituted iron porphyrin com-plexes were evaluated for oxygen reduction reaction (ORR) electrocatalysis in different homogeneous and heterogeneous media. The selectivity for 4-electron re-duction to H2O vs. 2-electron reduction to H2O2 varies substantially from one medium to another for a given catalyst. In many cases, the influence of the medium in which the catalyst is evaluated has a larger effect on the observed selectivity than the factors attributable to chemical modification of the catalyst. For instance, introduction of potential proton relays has variable effects depending on the catalyst medium. Thus, comparisons of ORR selectivity results need to be interpreted with caution, as the catalysis is a property not just of the catalyst, but also of the larger mesoscale environment be-yond the catalyst. Still, in all the direct pairwise comparisons in the same medium, the catalysts with potential proton relays have similar or better selectivity for the preferred 4e– path. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  18. SADA: Ecological Risk Based Decision Support System for Selective Remediation

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is freeware that implements terrestrial ecological risk assessment and yields a selective remediation design using its integral geographical information system, based on ecological and risk assessment inputs. Selective remediation ...

  19. Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes.

    PubMed

    Kim, Jinsoo; Lim, Hee-Dae; Gwon, Hyeokjo; Kang, Kisuk

    2013-03-14

    Recently, metal-air batteries, such as lithium-air and zinc-air systems, have been studied extensively as potential candidates for ultra-high energy density storage devices because of their exceptionally high capacities. Here, we report such an electrochemical system based on sodium, which is abundant and inexpensive. Two types of sodium-oxygen batteries were introduced and studied, i.e. with carbonate and non-carbonate electrolytes. Both types could deliver specific capacities (2800 and 6000 mA h g(-1)) comparable to that of lithium-oxygen batteries but with slightly lower discharge voltages (2.3 V and 2.0 V). The reaction mechanisms of sodium-oxygen batteries in carbonate and non-carbonate electrolytes were investigated and compared with those of lithium-oxygen batteries.

  20. Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes.

    PubMed

    Kim, Jinsoo; Lim, Hee-Dae; Gwon, Hyeokjo; Kang, Kisuk

    2013-03-14

    Recently, metal-air batteries, such as lithium-air and zinc-air systems, have been studied extensively as potential candidates for ultra-high energy density storage devices because of their exceptionally high capacities. Here, we report such an electrochemical system based on sodium, which is abundant and inexpensive. Two types of sodium-oxygen batteries were introduced and studied, i.e. with carbonate and non-carbonate electrolytes. Both types could deliver specific capacities (2800 and 6000 mA h g(-1)) comparable to that of lithium-oxygen batteries but with slightly lower discharge voltages (2.3 V and 2.0 V). The reaction mechanisms of sodium-oxygen batteries in carbonate and non-carbonate electrolytes were investigated and compared with those of lithium-oxygen batteries. PMID:23386220

  1. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide

    SciTech Connect

    Strmcnik, D.; Escudero, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Markovic, N. M.

    2010-10-01

    The slow rate of the oxygen reduction reaction in the phosphoric acid fuel cell is the main factor limiting its wide application. Here, we present an approach that can be used for the rational design of cathode catalysts with potential use in phosphoric acid fuel cells, or in any environments containing strongly adsorbing tetrahedral anions. This approach is based on molecular patterning of platinum surfaces with cyanide adsorbates that can efficiently block the sites for adsorption of spectator anions while the oxygen reduction reaction proceeds unhindered. We also demonstrate that, depending on the supporting electrolyte anions and cations, on the same CN-covered Pt(111) surface, the oxygen reduction reaction activities can range from a 25-fold increase to a 50-fold decrease. This behaviour is discussed in the light of the role of covalent and non-covalent interactions in controlling the ensemble of platinum active sites required for high turn over rates of the oxygen reduction reaction.

  2. Enhanced electrocatalysis of the oxygen reduction reaction based on pattering of platinum surfaces with cyanide.

    SciTech Connect

    Strmcnik, D.; Escudero-Escribano, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Markovic, N. M.; Materials Science Division; Inst. de Quimica Fisica; Toyota Central R&D Labs., Inc.

    2010-08-15

    The slow rate of the oxygen reduction reaction in the phosphoric acid fuel cell is the main factor limiting its wide application. Here, we present an approach that can be used for the rational design of cathode catalysts with potential use in phosphoric acid fuel cells, or in any environments containing strongly adsorbing tetrahedral anions. This approach is based on molecular patterning of platinum surfaces with cyanide adsorbates that can efficiently block the sites for adsorption of spectator anions while the oxygen reduction reaction proceeds unhindered. We also demonstrate that, depending on the supporting electrolyte anions and cations, on the same CN-covered Pt(111) surface, the oxygen reduction reaction activities can range from a 25-fold increase to a 50-fold decrease. This behaviour is discussed in the light of the role of covalent and non-covalent interactions in controlling the ensemble of platinum active sites required for high turn over rates of the oxygen reduction reaction.

  3. Increasing Oxygen Radicals and Water Temperature Select for Toxic Microcystis sp

    PubMed Central

    Dziallas, Claudia; Grossart, Hans-Peter

    2011-01-01

    Pronounced rises in frequency of toxic cyanobacterial blooms are recently observed worldwide, particularly when temperatures increase. Different strains of cyanobacterial species vary in their potential to produce toxins but driving forces are still obscure. Our study examines effects of hydrogen peroxide on toxic and non-toxic (including a non-toxic mutant) strains of M. aeruginosa. Here we show that hydrogen peroxide diminishes chlorophyll a content and growth of cyanobacteria and that this reduction is significantly lower for toxic than for non-toxic strains. This indicates that microcystins protect from detrimental effects of oxygen radicals. Incubation of toxic and non-toxic strains of M. aeruginosa with other bacteria or without (axenic) at three temperatures (20, 26 and 32°C) reveals a shift toward toxic strains at higher temperatures. In parallel to increases in abundance of toxic (i.e. toxin gene possessing) strains and their actual toxin expression, concentrations of microcystins rise with temperature, when amounts of radicals are expected to be enhanced. Field samples from three continents support the influence of radicals and temperature on toxic potential of M. aeruginosa. Our results imply that global warming will significantly increase toxic potential and toxicity of cyanobacterial blooms which has strong implications for socio-economical assessments of global change. PMID:21980492

  4. Increasing oxygen radicals and water temperature select for toxic Microcystis sp.

    PubMed

    Dziallas, Claudia; Grossart, Hans-Peter

    2011-01-01

    Pronounced rises in frequency of toxic cyanobacterial blooms are recently observed worldwide, particularly when temperatures increase. Different strains of cyanobacterial species vary in their potential to produce toxins but driving forces are still obscure. Our study examines effects of hydrogen peroxide on toxic and non-toxic (including a non-toxic mutant) strains of M. aeruginosa. Here we show that hydrogen peroxide diminishes chlorophyll a content and growth of cyanobacteria and that this reduction is significantly lower for toxic than for non-toxic strains. This indicates that microcystins protect from detrimental effects of oxygen radicals. Incubation of toxic and non-toxic strains of M. aeruginosa with other bacteria or without (axenic) at three temperatures (20, 26 and 32°C) reveals a shift toward toxic strains at higher temperatures. In parallel to increases in abundance of toxic (i.e. toxin gene possessing) strains and their actual toxin expression, concentrations of microcystins rise with temperature, when amounts of radicals are expected to be enhanced. Field samples from three continents support the influence of radicals and temperature on toxic potential of M. aeruginosa. Our results imply that global warming will significantly increase toxic potential and toxicity of cyanobacterial blooms which has strong implications for socio-economical assessments of global change.

  5. An economic analysis of selected strategies for dissolved-oxygen management; Chattahoochee River, Georgia

    USGS Publications Warehouse

    Schefter, John E.; Hirsch, Robert M.

    1980-01-01

    A method for evaluating the cost-effectiveness of alternative strategies for dissolved-oxygen (DO) management is demonstrated, using the Chattahoochee River, GA., as an example. The conceptual framework for the analysis is suggested by the economic theory of production. The minimum flow of the river and the percentage of the total waste inflow receiving nitrification are considered to be two variable inputs to be used in the production of given minimum concentration of DO in the river. Each of the inputs has a cost: the loss of dependable peak hydroelectric generating capacity at Buford Dam associated with flow augmentation and the cost associated with nitrification of wastes. The least-cost combination of minimum flow and waste treatment necessary to achieve a prescribed minimum DO concentration is identified. Results of the study indicate that, in some instances, the waste-assimilation capacity of the Chattahoochee River can be substituted for increased waste treatment; the associated savings in waste-treatment costs more than offset the benefits foregone because of the loss of peak generating capacity at Buford Dam. The sensitivity of the results to the estimates of the cost of replacing peak generating capacity is examined. It is also demonstrated that a flexible approach to the management of DO in the Chattahoochee River may be much more cost effective than a more rigid, institutional approach wherein constraints are placed on the flow of the river and(or) on waste-treatment practices. (USGS)

  6. Selective oxygenation of alkynes: a direct approach to diketones and vinyl acetate.

    PubMed

    Xia, Xiao-Feng; Gu, Zhen; Liu, Wentao; Wang, Ningning; Wang, Haijun; Xia, Yongmei; Gao, Haiyan; Liu, Xiang

    2014-12-28

    Arylalkynes can be converted into α-diketones with the use of a copper catalyst, and also be transformed into vinyl acetates under metal-free conditions, both in the presence of PhI(OAc)2 as an oxidant at room temperature. A series of substituted α-diketones were prepared in moderate to good yields. A variety of vinyl halides could be regio- and stereo-selectively synthesized under mild conditions, and I, Br and Cl could be all easily embedded into the alkynes. PMID:25356631

  7. Virucidal nanofiber textiles based on photosensitized production of singlet oxygen.

    PubMed

    Lhotáková, Yveta; Plíštil, Lukáš; Morávková, Alena; Kubát, Pavel; Lang, Kamil; Forstová, Jitka; Mosinger, Jiří

    2012-01-01

    Novel biomaterials based on hydrophilic polycaprolactone and polyurethane (Tecophilic®) nanofibers with an encapsulated 5,10,5,20-tetraphenylporphyrin photosensitizer were prepared by electrospinning. The doped nanofiber textiles efficiently photo-generate O(2)((1)Δ(g)), which oxidize external chemical and biological substrates/targets. Strong photo-virucidal effects toward non-enveloped polyomaviruses and enveloped baculoviruses were observed on the surface of these textiles. The photo-virucidal effect was confirmed by a decrease in virus infectivity. In contrast, no virucidal effect was detected in the absence of light and/or the encapsulated photosensitizer. PMID:23139839

  8. Selective oxidation of glycerol by using a hydrotalcite-supported platinum catalyst under atmospheric oxygen pressure in water.

    PubMed

    Tsuji, Akihiro; Rao, Kasanneni Tirumala Venkateswara; Nishimura, Shun; Takagaki, Atsushi; Ebitani, Kohki

    2011-04-18

    A hydrotalcite-supported platinum (Pt/HT) catalyst was found to be a highly active and selective heterogeneous catalyst for glycerol oxidation in pure water under atmospheric oxygen pressure in a high glycerol/metal molar ratio up to 3125. High selectivity toward glyceric acid (78 %) was obtained even at room temperature under air atmosphere. The Pt/HT catalyst selectively oxidized the primary hydroxyl group of 1,2-propandiol to give the corresponding carboxylic acid (lactic acid) as well as glycerol. The activity of the catalyst was greatly influenced by the Mg/Al ratio of hydrotalcite. Glycerol conversion increased with increasing the Mg/Al ratio of hydrotalcite (from trace to 56 %). X-ray absorption fine structure (XAFS) measurements indicated that the catalytic oxidation activity was proportional to the metallic platinum concentration, and more than 35 % of metallic platinum was necessary for this reaction. TEM measurements and titration analysis by using benzoic acid suggested that the solid basicity of hydrotalcite plays important roles in the precise control of platinum size and metal concentration as well as the initial promotion of alcohol oxidation.

  9. Selective oxidation of glycerol by using a hydrotalcite-supported platinum catalyst under atmospheric oxygen pressure in water.

    PubMed

    Tsuji, Akihiro; Rao, Kasanneni Tirumala Venkateswara; Nishimura, Shun; Takagaki, Atsushi; Ebitani, Kohki

    2011-04-18

    A hydrotalcite-supported platinum (Pt/HT) catalyst was found to be a highly active and selective heterogeneous catalyst for glycerol oxidation in pure water under atmospheric oxygen pressure in a high glycerol/metal molar ratio up to 3125. High selectivity toward glyceric acid (78 %) was obtained even at room temperature under air atmosphere. The Pt/HT catalyst selectively oxidized the primary hydroxyl group of 1,2-propandiol to give the corresponding carboxylic acid (lactic acid) as well as glycerol. The activity of the catalyst was greatly influenced by the Mg/Al ratio of hydrotalcite. Glycerol conversion increased with increasing the Mg/Al ratio of hydrotalcite (from trace to 56 %). X-ray absorption fine structure (XAFS) measurements indicated that the catalytic oxidation activity was proportional to the metallic platinum concentration, and more than 35 % of metallic platinum was necessary for this reaction. TEM measurements and titration analysis by using benzoic acid suggested that the solid basicity of hydrotalcite plays important roles in the precise control of platinum size and metal concentration as well as the initial promotion of alcohol oxidation. PMID:21271683

  10. Discovery of small-molecule enhancers of reactive oxygen species that are nontoxic or cause genotype-selective cell death.

    PubMed

    Adams, Drew J; Boskovic, Zarko V; Theriault, Jimmy R; Wang, Alex J; Stern, Andrew M; Wagner, Bridget K; Shamji, Alykhan F; Schreiber, Stuart L

    2013-05-17

    Elevation of reactive oxygen species (ROS) levels has been observed in many cancer cells relative to nontransformed cells, and recent reports have suggested that small-molecule enhancers of ROS may selectively kill cancer cells in various in vitro and in vivo models. We used a high-throughput screening approach to identify several hundred small-molecule enhancers of ROS in a human osteosarcoma cell line. A minority of these compounds diminished the viability of cancer cell lines, indicating that ROS elevation by small molecules is insufficient to induce death of cancer cell lines. Three chemical probes (BRD5459, BRD56491, BRD9092) are highlighted that most strongly elevate markers of oxidative stress without causing cell death and may be of use in a variety of cellular settings. For example, combining nontoxic ROS-enhancing probes with nontoxic doses of L-buthionine sulfoximine, an inhibitor of glutathione synthesis previously studied in cancer patients, led to potent cell death in more than 20 cases, suggesting that even nontoxic ROS-enhancing treatments may warrant exploration in combination strategies. Additionally, a few ROS-enhancing compounds that contain sites of electrophilicity, including piperlongumine, show selective toxicity for transformed cells over nontransformed cells in an engineered cell-line model of tumorigenesis. These studies suggest that cancer cell lines are more resilient to chemically induced increases in ROS levels than previously thought and highlight electrophilicity as a property that may be more closely associated with cancer-selective cell death than ROS elevation.

  11. Acridine-intercalator based hypoxia selective cytotoxins

    DOEpatents

    Papadopoulou-Rosenzweig, M.; Bloomer, W.D.

    1994-03-15

    Hypoxia selective cytotoxins of the general formula STR1 wherein n is from 1 to 5, and NO[sub 2] is in at least one of the 2, 4 or 5-positions of the imidazole are developed. Such compounds have utility as radiosensitizers and chemosensitizers. 9 figs.

  12. Acridine-intercalator based hypoxia selective cytotoxins

    DOEpatents

    Papadopoulou-Rosenzweig, Maria; Bloomer, William D.; Bloomer, William D.

    1994-01-01

    Hypoxia selective cytotoxins of the general formula ##STR1## wherein n is from 1 to 5, and NO.sub.2 is in at least one of the 2, 4 or 5-positions of the imidazole. Such compounds have utility as radiosensitizers and chemosensitizers.

  13. Estimating streambed travel times and respiration rates based on temperature and oxygen consumption

    NASA Astrophysics Data System (ADS)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2015-12-01

    Oxygen consumption is a common proxy for aerobic respiration and novel in situ measurement techniques with high spatial resolution enable an accurate determination of the oxygen distribution in the streambed. The oxygen concentration at a certain location in the streambed depends on the input concentration, the respiration rate, temperature, and the travel time of the infiltrating flowpath. While oxygen concentrations and temperature can directly be measured, respiration rate and travel time must be estimated from the data. We investigated the interplay of these factors using a 6 month long, 5-min resolution dataset collected in a 3rdorder gravel-bed stream. Our objective was twofold, to determine transient rates of hyporheic respiration and to estimate travel times in the streambed based solely on oxygen and temperature measurements. Our results show that temperature and travel time explains ~70% of the variation in oxygen concentration in the streambed. Independent travel times were obtained using natural variations in the electrical conductivity (EC) of the stream water as tracer (µ=4.1 h; σ=2.3 h). By combining these travel times with the oxygen consumption, we calculated a first order respiration rate (µ=9.7 d-1; σ=6.1 d-1). Variations in the calculated respiration rate are largely explained by variations in streambed temperature. An empirical relationship between our respiration rate and temperature agrees with the theoretical Boltzmann-Arrhenius equation. With this relationship, a temperature-based respiration rate can be estimated and used to re-estimate subsurface travel times. The resulting travel times distinctively resemble the EC-derived travel times (R20.47; Nash-Sutcliffe coefficient 0.32). Both calculations of travel time are correlated to stream water levels and increase during discharge events, enhancing the oxygen consumption for these periods. No other physical factors besides temperature were significantly correlated with the respiration

  14. Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions.

    PubMed

    Long, Ran; Huang, Hao; Li, Yaping; Song, Li; Xiong, Yujie

    2015-11-25

    Oxidation reactions by molecular oxygen (O2 ) over palladium (Pd)-based nanomaterials are a series of processes crucial to the synthesis of fine chemicals. In the past decades, investigations of related catalytic materials have mainly been focused on the synthesis of Pd-based nanomaterials from the angle of tailoring their surface structures, compositions and supporting materials, in efforts to improve their activities in organic reactions. From the perspective of rational materials design, it is imperative to address the fundamental issues associated with catalyst performance, one of which should be oxygen activation by Pd-based nanomaterials. Here, the fundamentals that account for the transformation from O2 to reactive oxygen species over Pd, with a focus on singlet O2 and its analogue, are introduced. Methods for detecting and differentiating species are also presented to facilitate future fundamental research. Key factors for tuning the oxygen activation efficiencies of catalytic materials are then outlined, and recent developments in Pd-catalyzed oxygen-related organic reactions are summarized in alignment with each key factor. To close, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields.

  15. Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions.

    PubMed

    Long, Ran; Huang, Hao; Li, Yaping; Song, Li; Xiong, Yujie

    2015-11-25

    Oxidation reactions by molecular oxygen (O2 ) over palladium (Pd)-based nanomaterials are a series of processes crucial to the synthesis of fine chemicals. In the past decades, investigations of related catalytic materials have mainly been focused on the synthesis of Pd-based nanomaterials from the angle of tailoring their surface structures, compositions and supporting materials, in efforts to improve their activities in organic reactions. From the perspective of rational materials design, it is imperative to address the fundamental issues associated with catalyst performance, one of which should be oxygen activation by Pd-based nanomaterials. Here, the fundamentals that account for the transformation from O2 to reactive oxygen species over Pd, with a focus on singlet O2 and its analogue, are introduced. Methods for detecting and differentiating species are also presented to facilitate future fundamental research. Key factors for tuning the oxygen activation efficiencies of catalytic materials are then outlined, and recent developments in Pd-catalyzed oxygen-related organic reactions are summarized in alignment with each key factor. To close, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields. PMID:26422795

  16. Materials selection for long life in low earth orbit - A critical evaluation of atomic oxygen testing with thermal atom systems

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Albyn, K.; Leger, L.

    1990-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined in thermal atom environments are compared with those observed in LEO and in high-quality LEO simulations. Reaction efficiencies (cu cm/atom) measured in a new type of thermal atom apparatus are one-thousandth to one ten-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of eight in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain speciic thermal atom test environments can be used as reliable materials screening tools.

  17. Surface spectators and their role in relationships between activity and selectivity of the oxygen reduction reaction in acid environments.

    SciTech Connect

    Ciapina, Eduardo G.; Lopes, Pietro P.; Subbaraman, Ram; Ticianelli, Edson A.; Stamenkovic, Vojislav; Strmcnik, Dusan; Markovic, Nenad M.

    2015-11-01

    We use the rotating ring disk (RRDE) method to study activity-selectivity relationships for the oxygen reduction reaction (ORR) on Pt(111) modified by various surface coverages of adsorbed CNad (ΘCNad). The results demonstrate that small variations in ΘCNad have dramatic effect on the ORR activity and peroxide production, resulting in “volcano-like” dependence with an optimal surface coverage of ΘCNad = 0.3 ML. These relationships can be simply explained by balancing electronic and ensemble effects of co-adsorbed CNad and adsorbed spectator species from the supporting electrolytes, without the need for intermediate adsorption energy arguments. Although this study has focused on the Pt(111)-CNad/H2SO4 interface, the results and insight gained here are invaluable for controlling another dimension in the properties of electrochemical interfaces.

  18. Accelerated materials design of fast oxygen ionic conductors based on first principles calculations

    NASA Astrophysics Data System (ADS)

    He, Xingfeng; Mo, Yifei

    Over the past decades, significant research efforts have been dedicated to seeking fast oxygen ion conductor materials, which have important technological applications in electrochemical devices such as solid oxide fuel cells, oxygen separation membranes, and sensors. Recently, Na0.5Bi0.5TiO3 (NBT) was reported as a new family of fast oxygen ionic conductor. We will present our first principles computation study aims to understand the O diffusion mechanisms in the NBT material and to design this material with enhanced oxygen ionic conductivity. Using the NBT materials as an example, we demonstrate the computation capability to evaluate the phase stability, chemical stability, and ionic diffusion of the ionic conductor materials. We reveal the effects of local atomistic configurations and dopants on oxygen diffusion and identify the intrinsic limiting factors in increasing the ionic conductivity of the NBT materials. Novel doping strategies were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm-1 at 900 K compared to the experimental Mg doped compositions. Our results provide new avenues for the future design of the NBT materials and demonstrate the accelerated design of new ionic conductor materials based on first principles techniques. This computation methodology and workflow can be applied to the materials design of any (e.g. Li +, Na +) fast ion-conducting materials.

  19. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer.

    PubMed

    Shimomura, Satoru; Higuchi, Masakazu; Matsuda, Ryotaro; Yoneda, Ko; Hijikata, Yuh; Kubota, Yoshiki; Mita, Yoshimi; Kim, Jungeun; Takata, Masaki; Kitagawa, Susumu

    2010-08-01

    Porous coordination polymers are materials formed from metal ions that are bridged together by organic linkers and that can combine two seemingly contradictory properties-crystallinity and flexibility. Porous coordination polymers can therefore create highly regular yet dynamic nanoporous domains that are particularly promising for sorption applications. Here, we describe the effective selective sorption of dioxygen and nitric oxide by a structurally and electronically dynamic porous coordination polymer built from zinc centres and tetracyanoquinodimethane (TCNQ) as a linker. In contrast to a variety of other gas molecules (C(2)H(2), Ar, CO(2), N(2) and CO), O(2) and NO are accommodated in its pores. This unprecedented preference arises from the concerted effect of the charge-transfer interaction between TCNQ and these guests, and the switchable gate opening and closing of the pores of the framework. This system provides further insight into the efficient recognition of small gas molecules.

  20. Hemoglobin-Based Oxygen Carrier for Traumatic Hemorrhagic Shock Treatment in a Jehovah’s Witness

    PubMed Central

    Posluszny, Joseph A.; Napolitano, Lena M.

    2016-01-01

    Introduction: Treatment of severe hemorrhagic shock due to acute blood loss from traumatic injuries in a Jehovah’s witness (JW) trauma patient is very challenging since hemostatic blood product resuscitation is limited by refusal of the transfusion of allogeneic blood products. Case Presentation: We describe a multifaceted approach to the clinical care of a severely anemic JW trauma patient including the early administration of a bovine hemoglobin-based oxygen carrier (HBOC) as a bridge to resolution of critical anemia (nadir hemoglobin 3.9 g/dL). Hemoglobin-based oxygen carrier infusions were used to supplement oxygen delivery until endogenous erythropoiesis could restore adequate red blood cell mass. Subsequent endogenous bone marrow recovery was supported by early administration of high-dose erythropoiesis-stimulating agents and iron supplementation. Conclusions: Early HBOC administration can be used in the treatment of severe hemorrhagic shock in trauma patients who refuse allogeneic blood.

  1. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation.

    PubMed

    Zheng, Gang; Chen, Juan; Stefflova, Klara; Jarvi, Mark; Li, Hui; Wilson, Brian C

    2007-05-22

    Molecular beacons are FRET-based target-activatable probes. They offer control of fluorescence emission in response to specific cancer targets, thus are useful tools for in vivo cancer imaging. Photodynamic therapy (PDT) is a cell-killing process by light activation of a photosensitizer (PS) in the presence of oxygen. The key cytotoxic agent is singlet oxygen ((1)O(2)). By combining these two principles (FRET and PDT), we have introduced a concept of photodynamic molecular beacons (PMB) for controlling the PS's ability to generate (1)O(2) and, ultimately, for controlling its PDT activity. The PMB comprises a disease-specific linker, a PS, and a (1)O(2) quencher, so that the PS's photoactivity is silenced until the linker interacts with a target molecule, such as a tumor-associated protease. Here, we report the full implementation of this concept by synthesizing a matrix metalloproteinase-7 (MMP7)-triggered PMB and achieving not only MMP7-triggered production of (1)O(2) in solution but also MMP7-mediated photodynamic cytotoxicity in cancer cells. Preliminary in vivo studies also reveal the MMP7-activated PDT efficacy of this PMB. This study validates the core principle of the PMB concept that selective PDT-induced cell death can be achieved by exerting precise control of the PS's ability to produce (1)O(2) by responding to specific cancer-associated biomarkers. Thus, PDT selectivity will no longer depend solely on how selectively the PS can be delivered to cancer cells. Rather, it will depend on how selective a biomarker is to cancer cells, and how selective the interaction of PMB is to this biomarker.

  2. Establishment of a total liquid ventilation system using saline-based oxygen micro/nano-bubble dispersions in rats.

    PubMed

    Kakiuchi, Kenta; Matsuda, Kenichi; Harii, Norikazu; Sou, Keitaro; Aoki, Junko; Takeoka, Shinji

    2015-09-01

    Micro/nano-bubbles are practical nanomaterials designed to increase the gas content in liquids. We attempted to use oxygen micro/nano-bubble dispersions as an oxygen-rich liquid as a means for total liquid ventilation. To determine the oxygen content in the bubble dispersion, a new method based on a spectrophotometric change between oxy- and deoxy-hemoglobin was established. The oxygen micro/nano-bubble dispersion was supplied to an experimental total ventilation liquid in anesthetic rats. Though the amount of dissolving oxygen was as low as 6 mg/L in physiological saline, the oxygen content in the oxygen micro/nano-bubble dispersion was increased to 45 mg/L. The positive correlation between the oxygen content and the life-saving time under liquid ventilation clearly indicates that the life-saving time is prolonged by increasing the oxygen content in the oxygen micro/nano-bubble dispersion. This is the first report indicating that the oxygen micro/nano-bubbles containing a sufficient amount of oxygen are useful in producing oxygen-rich liquid for the process of liquid ventilation.

  3. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  4. Turbulence Based Microhabitat Selection Criteria for Salmonids

    NASA Astrophysics Data System (ADS)

    Tritico, Hans; Webb, Paul; Cotel, Aline

    2004-11-01

    Fine-scale turbulence data were collected in the West Branch of the Maple River in Northern Michigan. This sand bed river with complex cross sectional geometries and abundant woody debris is shown to have regions where the macro-scale of turbulence is not solely governed by the channel depth. A mixed array of Acoustic Doppler Velocimeters (ADVs) and Marsh-McBurney meters were deployed in locations where trout were observed station holding. The meters were synchronized and data were collected simultaneously at multiple points around the fish locations. The array geometry was varied to obtain velocity correlations that were used to estimate the macro-scale turbulence in the vicinity of the selected trout habitat. Data were compared with length scales from areas in the river not inhabited by fish. Habitats selected are shown to have length scales less than that of the channel depth. Length scales are discussed with respect to other pertinent length scales such as fish length, obstruction diameters, and dune heights. The importance of eddy length scales when designing stream restoration projects and fish passage solutions are also discussed.

  5. Selection in sugarcane based on inbreeding depression.

    PubMed

    de Azeredo, A A C; Bhering, L L; Brasileiro, B P; Cruz, C D; Barbosa, M H P

    2016-01-01

    This study aimed to evaluate the gene action associated with yield-related traits, including mean stalk weight (MSW), tons of sugarcane per hectare (TCH), and fiber content (FIB) in sugarcane. Moreover, the viability of individual reciprocal recurrent selection (RRSI-S1) was verified, and the effect of inbreeding depression on progenies was checked. The results were also used to select promising genotypes in S1 progenies. Eight clones (RB925345, RB867515, RB739359, SP80-1816, RB928064, RB865230, RB855536, and RB943365) and their respective progenies, derived from selfing (S1), were evaluated. Several traits, including the number of stalks, MSW, soluble solids content determined in the field, stalk height, stalk diameter, TCH, soluble solids content determined in the laboratory, sucrose content, and FIB were evaluated in a randomized block design with hierarchical classification. The results showed that the traits with predominant gene action associated with the dominance variance of MSW and TCH were most affected by inbreeding depression. The FIB, with predominant additive control, was not affected by selfing of the clones, and the RB867515⊗, RB928064⊗, RB739359⊗ and RB925345⊗ progenies performed best. Therefore, the use of S1 progenies for RRSI-S1 in sugarcane breeding programs is promising, and it should be explored for the future breeding of clones with high FIB levels. PMID:27323098

  6. A luminescence lifetime-based capillary oxygen sensor utilizing monolithically integrated organic photodiodes.

    PubMed

    Lamprecht, Bernhard; Tschepp, Andreas; Čajlaković, Merima; Sagmeister, Martin; Ribitsch, Volker; Köstler, Stefan

    2013-10-21

    A novel optical sensor device monolithically integrated on a glass capillary is presented. Therefore, we took advantage of the ability to fabricate organic optoelectronic devices on non-planar substrates. The functionality of the concept is demonstrated by realizing an integrated oxygen sensor based on luminescence decay time measurement.

  7. Graphene-based hollow spheres as efficient electrocatalysts for oxygen reduction.

    PubMed

    Wu, Longfei; Feng, Hongbin; Liu, Mengjia; Zhang, Kaixiang; Li, Jinghong

    2013-11-21

    A facile and straightforward approach is developed for the construction of graphene-based hollow spheres. An electron rich sodium-ammonia solution is used to effectively restore the π-conjugation of graphene. The hollow spheres exhibit excellent electrocatalytic activity towards oxygen reduction without catalyst deactivation. PMID:24089043

  8. Mechanistic study of nickel based catalysts for oxygen evolution and methanol oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Chen, Dayi; Minteer, Shelley D.

    2015-06-01

    Nickel based catalysts have been studied as catalysts for either organic compound (especially methanol) oxidation or oxygen evolution reactions in alkaline medium for decades, but methanol oxidation and oxygen evolution reactions occur at a similar potential range and pH with nickel based catalysts. In contrast to previous studies, we studied these two reactions simultaneously under various pH and methanol concentrations with electrodes containing a series of NiOOH surface concentrations. We found that nickel based catalysts are more suitable to be used as oxygen evolution catalysts than methanol oxidation catalysts based on the observation that: The rate-determining step of methanol oxidation involves NiOOH, OH- and methanol while high methanol to OH- ratio could poison the NiOOH sites. Since NiOOH is involved in the rate-determining step, methanol oxidation suffers from high overpotential and oxygen evolution is favored over methanol oxidation in the presence of an equivalent amount (0.1 M) of alkali and methanol.

  9. N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions.

    PubMed

    Meng, Yuying; Voiry, Damien; Goswami, Anandarup; Zou, Xiaoxin; Huang, Xiaoxi; Chhowalla, Manish; Liu, Zhongwu; Asefa, Tewodros

    2014-10-01

    Replacing rare and expensive metal catalysts with inexpensive and earth-abundant ones is currently among the major goals of sustainable chemistry. Herein we report the synthesis of N-, O-, and S-tridoped, polypyrrole-derived nanoporous carbons (NOSCs) that can serve as metal-free, selective electrocatalysts and catalysts for oxygen reduction reaction (ORR) and alcohol oxidation reaction (AOR), respectively. The NOSCs are synthesized via polymerization of pyrrole using (NH4)2S2O8 as oxidant and colloidal silica nanoparticles as templates, followed by carbonization of the resulting S-containing polypyrrole/silica composite materials and then removal of the silica templates. The NOSCs exhibit good catalytic activity toward ORR with low onset potential and low Tafel slope, along with different electron-transfer numbers, or in other words, different ratios H2O/H2O2 as products, depending on the relative amount of colloidal silica used as templates. The NOSCs also effectively catalyze AOR at relatively low temperature, giving good conversions and high selectivity.

  10. Hydrophobic dipeptide crystals: a promising Ag-free class of ultramicroporous materials showing argon/oxygen adsorption selectivity.

    PubMed

    Afonso, R; Mendes, A; Gales, L

    2014-09-28

    The adsorption isotherms of nitrogen, oxygen and argon in four VA-class hydrophobic dipeptides are presented. Isotherms were determined at 5, 20 and 35 °C, for a pressure range of 0-6 bar. Under these conditions, adsorption is still in the Henry region. For all materials and temperatures, the sequence of preferential adsorption is Ar > O2 > N2, a highly abnormal result. At 5 °C, the dipeptide with the smallest pores, VI, has Ar/O2 adsorption equilibrium selectivities up to 1.30, the highest ever measured in Ag-free adsorbents. Gas uptakes, at 1 bar and 20 °C, are ∼0.05 mol kg(-1), very low relative values that are partially explained by the low porosity of the solids (<10%). The significance of these results for the development of new materials for the process of O2 generation by pressure swing adsorption (PSA) is discussed. The results indicate some of the structural and chemical properties that prospective Ag-free adsorbents should have in order to have Ar/O2 selectivity, hydrophobic pores, less than 0.5 nm-wide, and porosity of, at least, 20%.

  11. Adaptive Cognitive-Based Selection of Learning Objects

    ERIC Educational Resources Information Center

    Karampiperis, Pythagoras; Lin, Taiyu; Sampson, Demetrios G.; Kinshuk

    2006-01-01

    Adaptive cognitive-based selection is recognized as among the most significant open issues in adaptive web-based learning systems. In order to adaptively select learning resources, the definition of adaptation rules according to the cognitive style or learning preferences of the learners is required. Although some efforts have been reported in…

  12. An upgraded camera-based imaging system for mapping venous blood oxygenation in human skin tissue

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhang, Xiao; Qiu, Lina; Leotta, Daniel F.

    2016-07-01

    A camera-based imaging system was previously developed for mapping venous blood oxygenation in human skin. However, several limitations were realized in later applications, which could lead to either significant bias in the estimated oxygen saturation value or poor spatial resolution in the map of the oxygen saturation. To overcome these issues, an upgraded system was developed using improved modeling and image processing algorithms. In the modeling, Monte Carlo (MC) simulation was used to verify the effectiveness of the ratio-to-ratio method for semi-infinite and two-layer skin models, and then the relationship between the venous oxygen saturation and the ratio-to-ratio was determined. The improved image processing algorithms included surface curvature correction and motion compensation. The curvature correction is necessary when the imaged skin surface is uneven. The motion compensation is critical for the imaging system because surface motion is inevitable when the venous volume alteration is induced by cuff inflation. In addition to the modeling and image processing algorithms in the upgraded system, a ring light guide was used to achieve perpendicular and uniform incidence of light. Cross-polarization detection was also adopted to suppress surface specular reflection. The upgraded system was applied to mapping of venous oxygen saturation in the palm, opisthenar and forearm of human subjects. The spatial resolution of the oxygenation map achieved is much better than that of the original system. In addition, the mean values of the venous oxygen saturation for the three locations were verified with a commercial near-infrared spectroscopy system and were consistent with previously published data.

  13. An imaging-based computational model for simulating angiogenesis and tumour oxygenation dynamics

    NASA Astrophysics Data System (ADS)

    Adhikarla, Vikram; Jeraj, Robert

    2016-05-01

    Tumour growth, angiogenesis and oxygenation vary substantially among tumours and significantly impact their treatment outcome. Imaging provides a unique means of investigating these tumour-specific characteristics. Here we propose a computational model to simulate tumour-specific oxygenation changes based on the molecular imaging data. Tumour oxygenation in the model is reflected by the perfused vessel density. Tumour growth depends on its doubling time (T d) and the imaged proliferation. Perfused vessel density recruitment rate depends on the perfused vessel density around the tumour (sMVDtissue) and the maximum VEGF concentration for complete vessel dysfunctionality (VEGFmax). The model parameters were benchmarked to reproduce the dynamics of tumour oxygenation over its entire lifecycle, which is the most challenging test. Tumour oxygenation dynamics were quantified using the peak pO2 (pO2peak) and the time to peak pO2 (t peak). Sensitivity of tumour oxygenation to model parameters was assessed by changing each parameter by 20%. t peak was found to be more sensitive to tumour cell line related doubling time (~30%) as compared to tissue vasculature density (~10%). On the other hand, pO2peak was found to be similarly influenced by the above tumour- and vasculature-associated parameters (~30–40%). Interestingly, both pO2peak and t peak were only marginally affected by VEGFmax (~5%). The development of a poorly oxygenated (hypoxic) core with tumour growth increased VEGF accumulation, thus disrupting the vessel perfusion as well as further increasing hypoxia with time. The model with its benchmarked parameters, is applied to hypoxia imaging data obtained using a [64Cu]Cu-ATSM PET scan of a mouse tumour and the temporal development of the vasculature and hypoxia maps are shown. The work underscores the importance of using tumour-specific input for analysing tumour evolution. An extended model incorporating therapeutic effects can serve as a powerful tool for

  14. An imaging-based computational model for simulating angiogenesis and tumour oxygenation dynamics

    NASA Astrophysics Data System (ADS)

    Adhikarla, Vikram; Jeraj, Robert

    2016-05-01

    Tumour growth, angiogenesis and oxygenation vary substantially among tumours and significantly impact their treatment outcome. Imaging provides a unique means of investigating these tumour-specific characteristics. Here we propose a computational model to simulate tumour-specific oxygenation changes based on the molecular imaging data. Tumour oxygenation in the model is reflected by the perfused vessel density. Tumour growth depends on its doubling time (T d) and the imaged proliferation. Perfused vessel density recruitment rate depends on the perfused vessel density around the tumour (sMVDtissue) and the maximum VEGF concentration for complete vessel dysfunctionality (VEGFmax). The model parameters were benchmarked to reproduce the dynamics of tumour oxygenation over its entire lifecycle, which is the most challenging test. Tumour oxygenation dynamics were quantified using the peak pO2 (pO2peak) and the time to peak pO2 (t peak). Sensitivity of tumour oxygenation to model parameters was assessed by changing each parameter by 20%. t peak was found to be more sensitive to tumour cell line related doubling time (~30%) as compared to tissue vasculature density (~10%). On the other hand, pO2peak was found to be similarly influenced by the above tumour- and vasculature-associated parameters (~30-40%). Interestingly, both pO2peak and t peak were only marginally affected by VEGFmax (~5%). The development of a poorly oxygenated (hypoxic) core with tumour growth increased VEGF accumulation, thus disrupting the vessel perfusion as well as further increasing hypoxia with time. The model with its benchmarked parameters, is applied to hypoxia imaging data obtained using a [64Cu]Cu-ATSM PET scan of a mouse tumour and the temporal development of the vasculature and hypoxia maps are shown. The work underscores the importance of using tumour-specific input for analysing tumour evolution. An extended model incorporating therapeutic effects can serve as a powerful tool for analysing

  15. The determining factor for interstitial oxygen formation in Ruddlesden-Popper type La2NiO4-based oxides.

    PubMed

    Nakamura, Takashi; Oike, Ryo; Ling, Yihan; Tamenori, Yusuke; Amezawa, Koji

    2016-01-21

    The interstitial oxygen formation mechanism in La2NiO4-based oxides was studied using soft X-ray absorption spectroscopy. When the interstitial oxygen concentration increased, the pre-edge peak of O K-edge spectra increased while Ni L-edge spectra was almost invariant. These spectral changes strongly suggest the significant contribution of ligand oxygen to interstitial oxygen formation by providing/accepting electronic charge carriers. The variation of the integrated peak intensity of the O K-edge strongly suggests that interstitial oxygen formation is determined by the equilibrium unoccupied pDOS of ligand oxygen. From this hypothesis, we propose that modulating the electronic structure is the key to control the capability of interstitial oxygen formation in La2NiO4-based oxides.

  16. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  17. Raman-based Oxygen and Nitrogen Sensor for Monitoring Empty Airplane Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Chen, Peter C.

    2004-01-01

    The purpose of this project was to develop a Raman-based method for detecting oxygen and nitrogen in empty fuel tanks. The need for such a method comes from the potential danger of allowing explosive oxygen-fuel mixtures to accumulate in empty airplane fuel tanks. An explosion resulting from such a mixture is believed to have caused the Flight TWA 800 disaster in 1996. Recently, (e.g., February 17,2004 press release) the FAA announced its intentions to make fuel tank inerting mandatory. One potential solution to this problem is to use an inert gas such as nitrogen to flood the empty fue1 tanks in order to reduce the concentration of oxygen.

  18. A simplified headspace biochemical oxygen demand test protocol based on oxygen measurements using a fiber optic probe.

    PubMed

    Min, Booki; Kohler, David; Logan, Bruce E

    2004-01-01

    Batch respirometric tests have many advantages over the conventional biochemical oxygen demand (BOD) method for analysis of wastewaters, including the use of nondiluted samples, a more rapid exertion of oxygen demand, and reduced sample preparation time. The headspace biochemical oxygen demand (HBOD) test can be used to obtain oxygen demands in 2 or 3 days that can predict 5-day biochemical oxygen demand (BOD5) results. The main disadvantage of the HBOD and other respirometric tests has been the lack of a simple and direct method to measure oxygen concentrations in the gas phase. The recent commercial production of a new type of fiber optic oxygen probe, however, provides a method to eliminate this disadvantage. This fiber optic probe, referred to here as the HBOD probe, was tested to see if it could be used in HBOD tests. Gas-phase oxygen measurements made with the HBOD probe took only a few seconds and were not significantly different from those made using a gas chromatograph (t test: n = 15, R2 = 0.9995, p < 0.001). In field tests using the HBOD probe procedure, the probe greatly reduced sample analysis time compared with previous HBOD and BOD protocols and produced more precise results than the BOD test for wastewater samples from two treatment plants (University Area Joint Authority [UAJA] Wastewater Treatment Plant in University Park, Pennsylvania, and The Pennsylvania State University [PSU] Wastewater Treatment Plant in University Park). Headspace biochemical oxygen demand measurements on UAJA primary clarifier effluent were 59.9 +/- 2.4% after 2 days (HBOD2) and 73.0 +/- 3.1% after 3 days (HBOD) of BOD, values, indicating that BOD5 values could be predicted by multiplying HBOD2 values by 1.67 +/- 0.07 or HBOD3 by 1.37 +/- 0.06. Similarly, tests using PSU wastewater samples could be used to provide BOD5 estimates by multiplying the HBOD2 by 1.24 +/- 0.04 or by multiplying the HBOD3 by 0.97 +/- 0.03. These results indicate that the HBOD fiber optic probe can

  19. [Measurement of multi-wavelength pulse oxygen saturation based on dynamic spectroscopy].

    PubMed

    Wang, Xiao-Fei; Zhao, Wen-Jun

    2014-05-01

    The present paper puts forward multi-wavelength pulse oxygen saturation measurement based on dynamic spectroscopy to do the non-invasive determination of oxygen saturation. Compared to conventional ways, the new method makes full use of more wavelengths light and improves the measurement accuracy. During the experiment, the in-vivo measurements were carried out on 60 patients and their spectroscopic data were collected by the high sensitivity type fiber optic spectrometer. Singletrial estimation method was used to extract the dynamic spectroscopy at the wavelengths of 606. 44 approximately 987. 55 nm. Oxygen saturation obtained from arterial blood gas analysis is regarded as the true value. Synergy interval partial least square (siPLS) was used to establish the calibration model of subjects' oxygen saturation values against dynamic spectroscopy data. The relative error of prediction is +/-0. 017 6, but the relative error of the subjects in the same set measured by the patient monitor which was two-wavelength measure system is +/-0. 116 4. Measurement results show that the use of the high sensitivity type fiber optic spectrometer to collect multi-wavelength spectroscopic data and dynamic spectroscopy method to process data can do better in improving the accuracy of the oxygen saturation measurement.

  20. [Measurement of multi-wavelength pulse oxygen saturation based on dynamic spectroscopy].

    PubMed

    Wang, Xiao-Fei; Zhao, Wen-Jun

    2014-05-01

    The present paper puts forward multi-wavelength pulse oxygen saturation measurement based on dynamic spectroscopy to do the non-invasive determination of oxygen saturation. Compared to conventional ways, the new method makes full use of more wavelengths light and improves the measurement accuracy. During the experiment, the in-vivo measurements were carried out on 60 patients and their spectroscopic data were collected by the high sensitivity type fiber optic spectrometer. Singletrial estimation method was used to extract the dynamic spectroscopy at the wavelengths of 606. 44 approximately 987. 55 nm. Oxygen saturation obtained from arterial blood gas analysis is regarded as the true value. Synergy interval partial least square (siPLS) was used to establish the calibration model of subjects' oxygen saturation values against dynamic spectroscopy data. The relative error of prediction is +/-0. 017 6, but the relative error of the subjects in the same set measured by the patient monitor which was two-wavelength measure system is +/-0. 116 4. Measurement results show that the use of the high sensitivity type fiber optic spectrometer to collect multi-wavelength spectroscopic data and dynamic spectroscopy method to process data can do better in improving the accuracy of the oxygen saturation measurement. PMID:25095431

  1. Oxygen safety

    MedlinePlus

    COPD - oxygen safety; Chronic obstructive pulmonary disease - oxygen safety; Chronic obstructive airways disease - oxygen safety; Emphysema - oxygen safety; Heart failure - oxygen-safety; Palliative care - oxygen safety; ...

  2. Selecting supplier combination based on fuzzy multicriteria analysis

    NASA Astrophysics Data System (ADS)

    Han, Zhi-Qiu; Luo, Xin-Xing; Chen, Xiao-Hong; Yang, Wu-E.

    2015-07-01

    Existing multicriteria analysis (MCA) methods are probably ineffective in selecting a supplier combination. Thus, an MCA-based fuzzy 0-1 programming method is introduced. The programming relates to a simple MCA matrix that is used to select a single supplier. By solving the programming, the most feasible combination of suppliers is selected. Importantly, this result differs from selecting suppliers one by one according to a single-selection order, which is used to rank sole suppliers in existing MCA methods. An example highlights such difference and illustrates the proposed method.

  3. First principle simulations on the effects of oxygen vacancy in HfO2-based RRAM

    NASA Astrophysics Data System (ADS)

    Dai, Yuehua; Zhao, Yuanyang; Wang, Jiayu; Xu, Jianbin; Yang, Fei

    2015-01-01

    HfO2-based resistive random access memory (RRAM) takes advantage of oxygen vacancy (V o) defects in its principle of operation. Since the change in resistivity of the material is controlled by the level of oxygen deficiency in the material, it is significantly important to study the performance of oxygen vacancies in formation of conductive filament. Excluding effects of the applied voltage, the Vienna ab initio simulation package (VASP) is used to investigate the orientation and concentration mechanism of the oxygen vacancies based on the first principle. The optimal value of crystal orientation [010] is identified by means of the calculated isosurface plots of partial charge density, formation energy, highest isosurface value, migration barrier, and energy band of oxygen vacancy in ten established orientation systems. It will effectively influence the SET voltage, forming voltage, and the ON/OFF ratio of the device. Based on the results of orientation dependence, different concentration models are established along crystal orientation [010]. The performance of proposed concentration models is evaluated and analyzed in this paper. The film is weakly conductive for the samples deposited in a mixture with less than 4.167at.% of V o contents, and the resistive switching (RS) phenomenon cannot be observed in this case. The RS behavior improves with an increase in the V o contents from 4.167at.% to 6.25at.%; nonetheless, it is found difficult to switch to a stable state. However, a higher V o concentration shows a more favorable uniformity and stability for HfO2-based RRAM.

  4. Reactions of State-Selected Atomic Oxygen Ions O(+)((4)S, (2)D, (2)P) with Methane.

    PubMed

    Cunha de Miranda, Barbara; Romanzin, Claire; Chefdeville, Simon; Vuitton, Véronique; Žabka, Jan; Polášek, Miroslav; Alcaraz, Christian

    2015-06-11

    An experimental study has been carried out on the reactions of state selected O(+)((4)S, (2)D, (2)P) ions with methane with the aims of characterizing the effects of both the parent ion internal energy and collision energy on the reaction dynamics and determining the fate of oxygen species in complex media, in particular the Titan ionosphere. Absolute cross sections and product velocity distributions have been determined for the reactions of (16)O(+) or (18)O(+) ions with CH4 or CD4 from thermal to 5 eV collision energies by using the guided ion beam (GIB) technique. Dissociative photoionization of O2 with vacuum ultraviolet (VUV) synchrotron radiation delivered by the DESIRS beamline at the SOLEIL storage ring and the threshold photoion photoelectron coincidence (TPEPICO) technique are used for the preparation of purely state-selected O(+)((4)S, (2)D, (2)P) ions. A complete inversion of the product branching ratio between CH4(+) and CH3(+) ions in favor of the latter is observed for excitation of O(+) ions from the (4)S ground state to either the (2)D or the (2)P metastable state. CH4(+) and CH3(+) ions, which are by far the major products for the reaction of ground state and excited states, are strongly backward scattered in the center of mass frame relative to O(+) parent ions. For the reaction of O(+)((4)S), CH3(+) production also rises with increasing collision energy but with much less efficiency than with O(+) excitation. We found that a mechanism of dissociative charge transfer, mediated by an initial charge transfer step, can account very well for all the observations, indicating that CH3(+) production is associated with the formation of H and O atoms (CH3(+) + H + O) rather than with OH formation by an hydride transfer process (CH3(+) + OH). Therefore, as the CH4(+) production by charge transfer is also associated with O atoms, the fate of oxygen species in these reactions is essentially the O production, except for the reaction of O(+)((4)S), which also

  5. Reactions of State-Selected Atomic Oxygen Ions O(+)((4)S, (2)D, (2)P) with Methane.

    PubMed

    Cunha de Miranda, Barbara; Romanzin, Claire; Chefdeville, Simon; Vuitton, Véronique; Žabka, Jan; Polášek, Miroslav; Alcaraz, Christian

    2015-06-11

    An experimental study has been carried out on the reactions of state selected O(+)((4)S, (2)D, (2)P) ions with methane with the aims of characterizing the effects of both the parent ion internal energy and collision energy on the reaction dynamics and determining the fate of oxygen species in complex media, in particular the Titan ionosphere. Absolute cross sections and product velocity distributions have been determined for the reactions of (16)O(+) or (18)O(+) ions with CH4 or CD4 from thermal to 5 eV collision energies by using the guided ion beam (GIB) technique. Dissociative photoionization of O2 with vacuum ultraviolet (VUV) synchrotron radiation delivered by the DESIRS beamline at the SOLEIL storage ring and the threshold photoion photoelectron coincidence (TPEPICO) technique are used for the preparation of purely state-selected O(+)((4)S, (2)D, (2)P) ions. A complete inversion of the product branching ratio between CH4(+) and CH3(+) ions in favor of the latter is observed for excitation of O(+) ions from the (4)S ground state to either the (2)D or the (2)P metastable state. CH4(+) and CH3(+) ions, which are by far the major products for the reaction of ground state and excited states, are strongly backward scattered in the center of mass frame relative to O(+) parent ions. For the reaction of O(+)((4)S), CH3(+) production also rises with increasing collision energy but with much less efficiency than with O(+) excitation. We found that a mechanism of dissociative charge transfer, mediated by an initial charge transfer step, can account very well for all the observations, indicating that CH3(+) production is associated with the formation of H and O atoms (CH3(+) + H + O) rather than with OH formation by an hydride transfer process (CH3(+) + OH). Therefore, as the CH4(+) production by charge transfer is also associated with O atoms, the fate of oxygen species in these reactions is essentially the O production, except for the reaction of O(+)((4)S), which also

  6. Adair-based hemoglobin equilibrium with oxygen, carbon dioxide and hydrogen ion activity.

    PubMed

    Mateják, Marek; Kulhánek, Tomáš; Matoušek, Stanislav

    2015-04-01

    As has been known for over a century, oxygen binding onto hemoglobin is influenced by the activity of hydrogen ions (H⁺), as well as the concentration of carbon dioxide (CO₂). As is also known, the binding of both CO₂and H⁺ on terminal valine-1 residues is competitive. One-parametric situations of these hemoglobin equilibria at specific levels of H⁺, O₂or CO₂are also well described. However, we think interpolating or extrapolating this knowledge into an 'empirical' function of three independent variables has not yet been completely satisfactory. We present a model that integrates three orthogonal views of hemoglobin oxygenation, titration, and carbamination at different temperatures. The model is based only on chemical principles, Adair's oxygenation steps and Van't Hoff equation of temperature dependences. Our model fits the measurements of the Haldane coefficient and CO₂hemoglobin saturation. It also fits the oxygen dissociation curve influenced by simultaneous changes in H⁺, CO₂and O₂, which makes it a strong candidate for integration into more complex models of blood acid-base with gas transport, where any combination of mentioned substances can appear. PMID:25594800

  7. Adair-based hemoglobin equilibrium with oxygen, carbon dioxide and hydrogen ion activity.

    PubMed

    Mateják, Marek; Kulhánek, Tomáš; Matoušek, Stanislav

    2015-04-01

    As has been known for over a century, oxygen binding onto hemoglobin is influenced by the activity of hydrogen ions (H⁺), as well as the concentration of carbon dioxide (CO₂). As is also known, the binding of both CO₂and H⁺ on terminal valine-1 residues is competitive. One-parametric situations of these hemoglobin equilibria at specific levels of H⁺, O₂or CO₂are also well described. However, we think interpolating or extrapolating this knowledge into an 'empirical' function of three independent variables has not yet been completely satisfactory. We present a model that integrates three orthogonal views of hemoglobin oxygenation, titration, and carbamination at different temperatures. The model is based only on chemical principles, Adair's oxygenation steps and Van't Hoff equation of temperature dependences. Our model fits the measurements of the Haldane coefficient and CO₂hemoglobin saturation. It also fits the oxygen dissociation curve influenced by simultaneous changes in H⁺, CO₂and O₂, which makes it a strong candidate for integration into more complex models of blood acid-base with gas transport, where any combination of mentioned substances can appear.

  8. Wavelength-selective ultraviolet (Mg,Zn)O photodiodes: Tuning of parallel composition gradients with oxygen pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Zhipeng; von Wenckstern, Holger; Lenzner, Jörg; Grundmann, Marius

    2016-06-01

    We report on ultraviolet photodiodes with integrated optical filter based on the wurtzite (Mg,Zn)O thin films. Tuning of the bandgap of filter and active layers was realized by employing a continuous composition spread approach relying on the ablation of a single segmented target in pulsed-laser deposition. Filter and active layers of the device were deposited on opposite sides of a sapphire substrate with nearly parallel compositional gradients. Ensure that for each sample position the bandgap of the filter layer blocking the high energy radiation is higher than that of the active layer. Different oxygen pressures during the two depositions runs. The absorption edge is tuned over 360 meV and the spectral bandwidth of photodiodes is typically 100 meV and as low as 50 meV.

  9. Analysis and interpretation of microplate-based oxygen consumption and pH data.

    PubMed

    Divakaruni, Ajit S; Paradyse, Alexander; Ferrick, David A; Murphy, Anne N; Jastroch, Martin

    2014-01-01

    Breakthrough technologies to measure cellular oxygen consumption and proton efflux are reigniting the study of cellular energetics by increasing the scope and pace with which discoveries are made. As we learn the variation in metabolism between cell types is large, it is helpful to continually provide additional perspectives and update our roadmap for data interpretation. In that spirit, this chapter provides the following for those conducting microplate-based oxygen consumption experiments: (i) a description of the standard parameters for measuring respiration in intact cells, (ii) a framework for data analysis and normalization, and (iii) examples of measuring respiration in permeabilized cells to follow up results observed with intact cells. Additionally, rate-based measurements of extracellular pH are increasingly used as a qualitative indicator of glycolytic flux. As a resource to help interpret these measurements, this chapter also provides a detailed accounting of proton production during glucose oxidation in the context of plate-based assays. PMID:25416364

  10. Analysis and interpretation of microplate-based oxygen consumption and pH data.

    PubMed

    Divakaruni, Ajit S; Paradyse, Alexander; Ferrick, David A; Murphy, Anne N; Jastroch, Martin

    2014-01-01

    Breakthrough technologies to measure cellular oxygen consumption and proton efflux are reigniting the study of cellular energetics by increasing the scope and pace with which discoveries are made. As we learn the variation in metabolism between cell types is large, it is helpful to continually provide additional perspectives and update our roadmap for data interpretation. In that spirit, this chapter provides the following for those conducting microplate-based oxygen consumption experiments: (i) a description of the standard parameters for measuring respiration in intact cells, (ii) a framework for data analysis and normalization, and (iii) examples of measuring respiration in permeabilized cells to follow up results observed with intact cells. Additionally, rate-based measurements of extracellular pH are increasingly used as a qualitative indicator of glycolytic flux. As a resource to help interpret these measurements, this chapter also provides a detailed accounting of proton production during glucose oxidation in the context of plate-based assays.

  11. A ground-based radio frequency inductively coupled plasma apparatus for atomic oxygen simulation in low Earth orbit.

    PubMed

    Huang, Yongxian; Tian, Xiubo; Yang, Shiqin; Chu, Paul K

    2007-10-01

    A radio frequency (rf) inductively coupled plasma apparatus has been developed to simulate the atomic oxygen environment encountered in low Earth orbit (LEO). Basing on the novel design, the apparatus can achieve stable, long lasting operation, pure and high density oxygen plasma beam. Furthermore, the effective atomic oxygen flux can be regulated. The equivalent effective atomic oxygen flux may reach (2.289-2.984) x 10(16) at.cm(2) s at an oxygen pressure of 1.5 Pa and rf power of 400 W. The equivalent atomic oxygen flux is about 100 times than that in the LEO environment. The mass loss measured from the polyimide sample changes linearly with the exposure time, while the density of the eroded holes becomes smaller. The erosion mechanism of the polymeric materials by atomic oxygen is complex and involves initial reactions at the gas-surface interface as well as steady-state material removal.

  12. Information Gain Based Dimensionality Selection for Classifying Text Documents

    SciTech Connect

    Dumidu Wijayasekara; Milos Manic; Miles McQueen

    2013-06-01

    Selecting the optimal dimensions for various knowledge extraction applications is an essential component of data mining. Dimensionality selection techniques are utilized in classification applications to increase the classification accuracy and reduce the computational complexity. In text classification, where the dimensionality of the dataset is extremely high, dimensionality selection is even more important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection in text mining applications that utilizes information gain. The presented methodology uses information gain of each dimension to change the mutation probability of chromosomes dynamically. Since the information gain is calculated a priori, the computational complexity is not affected. The presented method was tested on a specific text classification problem and compared with conventional genetic algorithm based dimensionality selection. The results show an improvement of 3% in the true positives and 1.6% in the true negatives over conventional dimensionality selection methods.

  13. A Rule-Based Industrial Boiler Selection System

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Khalil, S. N.; Karjanto, J.; Tee, B. T.; Wahidin, L. S.; Chen, W.; Rauterberg, G. W. M.; Sivarao, S.; Lim, T. L.

    2015-09-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes, super heaters, air heaters and economizers. The selection of the boiler is very important to the industry for conducting the operation system successfully. The selection criteria are based on rule based expert system and multi-criteria weighted average method. The developed system consists of Knowledge Acquisition Module, Boiler Selection Module, User Interface Module and Help Module. The system capable of selecting the suitable boiler based on criteria weighted. The main benefits from using the system is to reduce the complexity in the decision making for selecting the most appropriate boiler to palm oil process plant.

  14. Materials selection for long life in LEO: A critical evaluation of atomic oxygen testing with thermal atom systems

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Kuminecz, J.; Leger, L.; Nordine, P.

    1988-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material.

  15. Low-temperature selective catalytic reduction of NO with propylene in excess oxygen over the Pt/ZSM-5 catalyst.

    PubMed

    Zhang, Zhixiang; Chen, Mingxia; Jiang, Zhi; Shangguan, Wenfeng

    2011-10-15

    A 0.5 wt% Pt/ZSM-5 catalyst was used for the low-temperature selective catalytic reduction (SCR) of NO with C(3)H(6) in the presence of excess oxygen. Under an atmosphere of 150 ppm NO, 150 ppm C(3)H(6) and 18 vol% O(2) (GHSV 72,000 h(-1)), Pt/ZSM-5 showed remarkably high catalytic performance giving 77.1% NO reduction to N(2) + N(2)O and 79.7% C(3)H(6) conversion to CO(2) simultaneously at 140 °C. The samples were characterized by means of NO temperature programmed desorption (TPD), NO/C(3)H(6) temperature programmed oxidation (TPO), BET surface area, XRD and TEM. The catalytic activities of C(3)H(6) combustion and NO oxidation are improved by well-dispersed platinum significantly. It is found that the enhanced activity of Pt/ZSM-5 for the low-temperature SCR is associated with its outstanding activities in the TPO processes of NO to NO(2) and C(3)H(6) to CO(2) in low temperature range.

  16. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules

    NASA Astrophysics Data System (ADS)

    Genorio, Bostjan; Strmcnik, Dusan; Subbaraman, Ram; Tripkovic, Dusan; Karapetrov, Goran; Stamenkovic, Vojislav R.; Pejovnik, Stane; Marković, Nenad M.

    2010-12-01

    The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core-shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5V (ref. 11). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement.

  17. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules.

    SciTech Connect

    Genorio, B.; Strmcnik, D.; Subbaraman, R.; Tripkovic, D.; Karapetrov, G.; Stamenkovic, V. R.; Pejovnik, S.; Markovic, N. M.; Univ. Ljubljana; National Inst. of Chemistry

    2010-12-01

    The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core-shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V. Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement.

  18. Stable hydrogen and oxygen isotope ratios for selected sites of the National Oceanic and Atmospheric Administration's Atmospheric Integrated Research Monitoring Network (AIRMoN)

    USGS Publications Warehouse

    Coplen, Tyler B.; Huang, Richard

    2000-01-01

    Increasingly, hydrologic studies require information on the isotopic composition of natural waters. This report presents stable hydrogen (δ2H) and oxygen isotope ratios (δ180) of precipitation samples from seven selected sites of the National Oceanic and Atmospheric Administration's Atmospheric Integrated Research Monitoring Network (AIRMoN) collected during the years 1992-1994.

  19. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction.

    PubMed

    Cheng, Niancai; Banis, Mohammad Norouzi; Liu, Jian; Riese, Adam; Li, Xia; Li, Ruying; Ye, Siyu; Knights, Shanna; Sun, Xueliang

    2015-01-14

    Encapsulation of Pt nanoparticles (NPs) in a zirconia nanocage by area-selective atomic layer deposition (ALD) can significantly enhance both the Pt stability and activity. Such encapsulated Pt NPs show 10 times more stability than commercial Pt/C catalysts and an oxygen reduction reaction (ORR) activity 6.4 times greater than that of Pt/C.

  20. Raman modes of the apical oxygen in mercury-based superconductors

    SciTech Connect

    Yang, I.; Lee, H.; Hur, N.H.; Yu, J.

    1995-12-01

    Recent studies suggest that the apical oxygen plays an important role in high-{ital T}{sub {ital c}} superconductivity of mercury-based superconductors HgBa{sub 2}Ca{sub {ital n}{minus}1}Cu{sub {ital n}}O{sub 2{ital n}+2+{delta}} [Hg-12({ital n}-1){ital n}]. Among strong Raman peaks at {similar_to}570 and {similar_to} 585 cm{sup {minus}1}, the mode at {similar_to} 585 cm{sup {minus}1} has been determined to be the {ital A}{sub 1{ital g}} mode of the apical oxygen. However, the origin of the mode near 570 cm{sup {minus}1} is still in question. In order to clarify the origin of the 570 cm{sup {minus}1} mode, we have carried out Raman measurements on the Hg{sub 1{minus}{ital x}}Tl{sub {ital x}}Ba{sub 2}(Ca{sub 0.86}Sr{sub 0.14}){sub 2}Cu{sub 3}O{sub 8+{delta}} systems, where the amount of the oxygen in the Hg/Tl-O plane is controlled by the doping level of Tl ions. The results show that the 570 cm{sup {minus}1} peak does not arise from the modes of the interstitial oxygens in the Hg/Tl-O plane, but from the {ital A}{sub 1{ital g}}-type mode of the apical oxygen. From our analysis, it is shown that the 570 cm{sup {minus}1} mode arises from the apical oxygen O{sub {ital A}} with the neighboring interstitial oxygen O{sub {delta}}, while the 585 cm{sup {minus}1} mode is from the O{sub {ital A}} without the nearest O{sub {delta}} neighbor. We conclude that the apical oxygens in the Hg-12({ital n}-1){ital n} systems can have two distinctive sets of O{sub {delta}} environment.

  1. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells.

    PubMed

    Lippert, Alexander R; New, Elizabeth J; Chang, Christopher J

    2011-07-01

    Hydrogen sulfide (H(2)S) is emerging as an important mediator of human physiology and pathology but remains difficult to study, in large part because of the lack of methods for selective monitoring of this small signaling molecule in live biological specimens. We now report a pair of new reaction-based fluorescent probes for selective imaging of H(2)S in living cells that exploit the H(2)S-mediated reduction of azides to fluorescent amines. Sulfidefluor-1 (SF1) and Sulfidefluor-2 (SF2) respond to H(2)S by a turn-on fluorescence signal enhancement and display high selectivity for H(2)S over other biologically relevant reactive sulfur, oxygen, and nitrogen species. In addition, SF1 and SF2 can be used to detect H(2)S in both water and live cells, providing a potentially powerful approach for probing H(2)S chemistry in biological systems.

  2. A Class of High Performance Metal-Free Oxygen Reduction Electrocatalysts based on Cheap Carbon Blacks

    NASA Astrophysics Data System (ADS)

    Sun, Xiujuan; Song, Ping; Zhang, Yuwei; Liu, Changpeng; Xu, Weilin; Xing, Wei

    2013-08-01

    For the goal of practical industrial development of fuel cells, cheap, sustainable and high performance electrocatalysts for oxygen reduction reactions (ORR) which rival those based on platinum (Pt) and other rare materials are highly desirable. In this work, we report a class of cheap and high-performance metal-free oxygen reduction electrocatalysts obtained by co-doping carbon blacks with nitrogen and fluorine (CB-NF).The CB-NF electrocatalysts are highly active and exhibit long-term operation stability and tolerance to poisons during oxygen reduction process in alkaline medium. The alkaline direct methanol fuel cell with the best CB-NF as cathode (3 mg/cm2) outperforms the one with commercial platinum-based cathode (3 mg Pt/cm2). To the best of our knowledge, these are among the most efficient non-Pt based electrocatalysts. Since carbon blacks are 10,000 times cheaper than Pt, these CB-NF electrocatalysts possess the best price/performance ratio for ORR, and are the most promising alternatives to Pt-based ones to date.

  3. 44 CFR 321.2 - Selection of the mobilization base.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... base. 321.2 Section 321.2 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS MAINTENANCE OF THE MOBILIZATION BASE (DEPARTMENT OF DEFENSE, DEPARTMENT OF ENERGY, MARITIME ADMINISTRATION) § 321.2 Selection of the mobilization base. (a) The...

  4. 44 CFR 321.2 - Selection of the mobilization base.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... base. 321.2 Section 321.2 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS MAINTENANCE OF THE MOBILIZATION BASE (DEPARTMENT OF DEFENSE, DEPARTMENT OF ENERGY, MARITIME ADMINISTRATION) § 321.2 Selection of the mobilization base. (a) The...

  5. 44 CFR 321.2 - Selection of the mobilization base.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... base. 321.2 Section 321.2 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS MAINTENANCE OF THE MOBILIZATION BASE (DEPARTMENT OF DEFENSE, DEPARTMENT OF ENERGY, MARITIME ADMINISTRATION) § 321.2 Selection of the mobilization base. (a) The...

  6. 44 CFR 321.2 - Selection of the mobilization base.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... base. 321.2 Section 321.2 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS MAINTENANCE OF THE MOBILIZATION BASE (DEPARTMENT OF DEFENSE, DEPARTMENT OF ENERGY, MARITIME ADMINISTRATION) § 321.2 Selection of the mobilization base. (a) The...

  7. 44 CFR 321.2 - Selection of the mobilization base.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... base. 321.2 Section 321.2 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS MAINTENANCE OF THE MOBILIZATION BASE (DEPARTMENT OF DEFENSE, DEPARTMENT OF ENERGY, MARITIME ADMINISTRATION) § 321.2 Selection of the mobilization base. (a) The...

  8. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  9. Shield support selection based on geometric characteristics of coal seam

    SciTech Connect

    K. Goshtasbi; K. Oraee; F. Khakpour-yeganeh

    2006-01-15

    The most initial investment in longwall face equipping is the cost of powered support. Selection of proper shields for powered supports is based on load, geometric characterization of coal seams and economical considerations.

  10. Reinterpreting the importance of oxygen-based biodegradation in chloroethene-contaminated groundwater

    USGS Publications Warehouse

    Bradley, Paul M.

    2011-01-01

    Chlororespiration is common in shallow aquifer systems under conditions nominally identified as anoxic. Consequently, chlororespiration is a key component of remediation at many chloroethene-contaminated sites. In some instances, limited accumulation of reductive dechlorination daughter products is interpreted as evidence that natural attenuation is not adequate for site remediation. This conclusion is justified when evidence for parent compound (tetrachloroethene, PCE, or trichloroethene, TCE) degradation is lacking. For many chloroethene-contaminated shallow aquifer systems, however, nonconservative losses of the parent compounds are clear but the mass balance between parent compound attenuation and accumulation of reductive dechlorination daughter products is incomplete. Incomplete mass balance indicates a failure to account for important contaminant attenuation mechanisms and is consistent with contaminant degradation to nondiagnostic mineralization products like CO2. While anoxic mineralization of chloroethene compounds has been proposed previously, recent results suggest that oxygen-based mineralization of chloroethenes also can be significant at dissolved oxygen concentrations below the currently accepted field standard for nominally anoxic conditions. Thus, reassessment of the role and potential importance of low concentrations of oxygen in chloroethene biodegradation are needed, because mischaracterization of operant biodegradation processes can lead to expensive and ineffective remedial actions. A modified interpretive framework is provided for assessing the potential for chloroethene biodegradation under different redox conditions and the probable role of oxygen in chloroethene biodegradation.

  11. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOEpatents

    Natesan, Krishnamurti

    1992-01-01

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9-30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000.degree.-1100.degree. C.

  12. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOEpatents

    Natesan, K.

    1992-11-17

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9--30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000--1100 C. 7 figs.

  13. Selectivity of stationary phases based on pyridinium ionic liquids for capillary gas chromatography

    NASA Astrophysics Data System (ADS)

    Shashkov, M. V.; Sidelnikov, V. N.; Zaikin, P. A.

    2014-04-01

    A number of capillary columns with stationary liquid phases based on mono- and dication pyridinium ionic liquids (ILs) were prepared. Their polarity was evaluated using McReynolds system and the selectivity was estimated from intermolecular interactions. The parameters of intermolecular interactions were obtained from retention data using the (Abraham) model of the linear free energy relationship. The dependences of intermolecular interactions on the structure of the cation in the ILs under study were revealed. The results were compared with the data for the traditional phases (HP-5, ZB-WAX). Examples of separation of mixtures of oxygen-containing compounds on the phases under study are given.

  14. Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.

  15. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, Paul

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  16. Sensitivity enhancement of carbon nanotube based ammonium ion sensors through surface modification by using oxygen plasma treatment

    SciTech Connect

    Yeo, Sanghak; Woong Jang, Chi; Lee, Seok; Min Jhon, Young; Choi, Changrok

    2013-02-18

    We have shown that the sensitivity of carbon nanotube (CNT) based sensors can be enhanced as high as 74 times through surface modification by using the inductively coupled plasma chemical vapor deposition method with oxygen. The plasma treatment power was maintained as low as 10 W within 20 s, and the oxygen plasma was generated far away from the sensors to minimize the plasma damage. From X-ray photoelectron spectroscopy analysis, we found that the concentration of oxygen increased with the plasma treatment time, which implies that oxygen functional groups or defect sites were generated on the CNT surface.

  17. Selective oxidation of ethane to acetaldehyde and acrolein over silica-supported vanadium catalysts using oxygen as oxidant

    SciTech Connect

    Zhao, Zhen; Yamada, Yusuke; Teng, Yonghong; Ueda, Atsushi; Nakagawa, Kiyoharu; Kobayashi, Tetsuhiko

    2000-03-10

    The oxidation of ethane by oxygen was studied over silica catalysts supporting different amounts of vanadium with and without cesium. Three different catalytic properties of the product selectivity were observed, aldehyde formation, oxidative dehydrogenation (ODH), and combustion, depending upon the vanadium loading amount and the presence or the absence of cesium. A very low loading of vanadium (V:Si = 0.02--0.1 at.%) and the addition of Cs (Cs:Si = 1 at.%) on silica were found to be important for the formation of aldehyde. Not only acetaldehyde but also acrolein were observed in the aldehyde formation from ethane. On the other hand, catalysts with medium and high vanadium loadings (V:Si = 0.5--20 at.%) gave a dehydrogenated product, ethene, when Cs was not added to the catalysts. The addition of cesium to the catalysts with medium and high vanadium loadings changed the catalytic property from ODH to combustion. The different types of vanadyl species were identified by UV-visible and IR measurements in samples with different vanadium loadings. It was estimated that isolated vanadyl species with tetrahedral coordination, which were found mainly on the catalysts with vanadium loading lower than 0.5 at.%, became the active site for the aldehyde formation through the interaction with Cs. As a plausible reaction path giving acrolein from ethane, cesium-catalyzed cross-condensation between acetaldehyde and formaldehyde, formed in the reaction, was proposed. Polymeric vanadyl species with octahedral coordination were detected in the samples with medium (0.5--5.0 at.%) and high (10 and 20 at.%) vanadium loadings, respectively. Both species show the ODH catalytic property without cesium, but they bring about a deep oxidation of ethane if cesium is added to the catalysts.

  18. Comparison across races of peak oxygen consumption and heart failure survival score for selection for cardiac transplantation.

    PubMed

    Goda, Ayumi; Lund, Lars H; Mancini, Donna M

    2010-05-15

    The aim of the present study was to determine whether peak oxygen consumption (VO(2)) and the Heart Failure Survival Score (HFSS) predict prognosis in European-American, African-American, and Hispanic-American patients with chronic heart failure referred for heart transplantation. The peak VO(2) and the HFSS have previously been shown to effectively risk stratify patients with chronic heart failure and are criteria for the listing for heart transplantation. However, the effect of race on the predictive value of these variables has not been studied. A total of 715 patients with congestive heart failure (433 European American, 126 African American, 123 Hispanic American, and 33 other), who had been referred for heart transplantation, underwent cardiopulmonary exercise testing with measurement of the peak VO(2) and calculation of the HFSS. A total of 354 patients had died or undergone urgent heart transplantation or implantation of a left ventricular assist device during the 962 +/- 912 days of follow-up. On univariate and multivariate Cox hazard analysis, both peak VO(2) and the HFSS were powerful prognostic markers in the overall cohort and in the separate races. In the receiver operating characteristic curve analysis, the areas under the curve at 1 and 2 years of follow-up were greater for the HFSS than for peak VO(2). In conclusion, HFSS and peak VO(2) can be used for transplant selection; however, in the era of modern therapy and across races and genders, the HFSS might perform better than the peak VO(2). PMID:20451691

  19. Oxygen vacancy effects in HfO2-based resistive switching memory: First principle study

    NASA Astrophysics Data System (ADS)

    Dai, Yuehua; Pan, Zhiyong; Wang, Feifei; Li, Xiaofeng

    2016-08-01

    The work investigated the shape and orientation of oxygen vacancy clusters in HfO2-base resistive random access memory (ReRAM) by using the first-principle method based on the density functional theory. Firstly, the formation energy of different local Vo clusters was calculated in four established orientation systems. Then, the optimized orientation and charger conductor shape were identified by comparing the isosurface plots of partial charge density, formation energy, and the highest isosurface value of oxygen vacancy. The calculated results revealed that the [010] orientation was the optimal migration path of Vo, and the shape of system D4 was the best charge conductor in HfO2, which effectively influenced the SET voltage, formation voltage and the ON/OFF ratio of the device. Afterwards, the PDOS of Hf near Vo and total density of states of the system D4_010 were obtained, revealing the composition of charge conductor was oxygen vacancy instead of metal Hf. Furthermore, the migration barriers of the Vo hopping between neighboring unit cells were calculated along four different orientations. The motion was proved along [010] orientation. The optimal circulation path for Vo migration in the HfO2 super-cell was obtained.

  20. Quantum Dot-Based Luminescent Oxygen Channeling Assay for Potential Application in Homogeneous Bioassays.

    PubMed

    Zhuang, Si-Hui; Guo, Xin-Xin; Wu, Ying-Song; Chen, Zhen-Hua; Chen, Yao; Ren, Zhi-Qi; Liu, Tian-Cai

    2016-01-01

    The unique photoproperties of quantum dots are promising for potential application in bioassays. In the present study, quantum dots were applied to a luminescent oxygen channeling assay. The reaction system developed in this study was based on interaction of biotin with streptavidin. Carboxyl-modified polystyrene microspheres doped with quantum dots were biotinylated and used as acceptors. Photosensitizer-doped carboxyl-modified polystyrene microspheres were conjugated with streptavidin and used as donors. The results indicated that the singlet oxygen that was released from the donor beads diffused into the acceptor beads. The acceptor beads were then exited via thioxene, and were subsequently fluoresced. To avoid generating false positives, a high concentration (0.01 mg/mL) of quantum dots is required for application in homogeneous immunoassays. Compared to a conventional luminescent oxygen channeling assay, this quantum dots-based technique requires less time, and would be easier to automate and miniaturize because it requires no washing to remove excess labels.

  1. Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Liu, Chung-Chiun

    2011-01-01

    An ambient temperature oxygen microsensor, based on a Nafion polymer electrolyte, has been developed and was microfabricated using thin-film technologies. A challenge in the operation of Nafion-based sensor systems is that the conductivity of Nafion film depends on the humidity in the film. Nafion film loses conductivity when the moisture content in the film is too low, which can affect sensor operation. The advancement here is the identification of a method to retain the operation of the Nafion films in lower humidity environments. Certain salts can hold water molecules in the Nafion film structure at room temperature. By mixing salts with the Nafion solution, water molecules can be homogeneously distributed in the Nafion film increasing the film s hydration to prevent Nafion film from being dried out in low-humidity environment. The presence of organics provides extra sites in the Nafion film to promote proton (H+) mobility and thus improving Nafion film conductivity and sensor performance. The fabrication of ambient temperature oxygen microsensors includes depositing basic electrodes using noble metals, and metal oxides layer on one of the electrode as a reference electrode. The use of noble metals for electrodes is due to their strong catalytic properties for oxygen reduction. A conducting polymer Nafion, doped with water-retaining components and extra sites facilitating proton movement, was used as the electrolyte material, making the design adequate for low humidity environment applications. The Nafion solution was coated on the electrodes and air-dried. The sensor operates at room temperature in potentiometric mode, which measures voltage differences between working and reference electrodes in different gases. Repeat able responses to 21-percent oxygen in nitrogen were achieved using nitrogen as a baseline gas. Detection of oxygen from 7 to 21 percent has also been demonstrated. The room-temperature oxygen micro sensor developed has extremely low power

  2. FEM-based oxygen consumption and cell viability models for avascular pancreatic islets

    PubMed Central

    Buchwald, Peter

    2009-01-01

    Background The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Pancreatic islets (islets of Langerhans) are particularly susceptible due to their relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite element method (FEM) based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media. Methods Two- and three-dimensional models were built in COMSOL Multiphysics using the convection and diffusion as well as the incompressible Navier-Stokes fluid dynamics application modes. Oxygen consumption was assumed to follow Michaelis-Menten-type kinetics and to cease when local concentrations fell below a critical threshold; in a dynamic model, it was also allowed to increase with increasing glucose concentration. Results Partial differential equation (PDE) based exploratory cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions have been implemented for fully scaled cell culture geometries with 100, 150, and 200 μm diameter islets as representative. Calculated oxygen concentrations and intra-islet regions likely to suffer from hypoxia-related necrosis obtained for traditional flask-type cultures, oxygen-permeable silicone-rubber membrane bottom cultures, and perifusion chambers with flowing media and varying incoming glucose levels are presented in detail illustrated with corresponding colour-coded figures and animations. Conclusion Results of the computational models are, as a first estimate, in good quantitative agreement with existing experimental evidence, and they confirm that during culture, hypoxia is often a problem for non-vascularised islet

  3. A method for selecting training samples based on camera response

    NASA Astrophysics Data System (ADS)

    Zhang, Leihong; Li, Bei; Pan, Zilan; Liang, Dong; Kang, Yi; Zhang, Dawei; Ma, Xiuhua

    2016-09-01

    In the process of spectral reflectance reconstruction, sample selection plays an important role in the accuracy of the constructed model and in reconstruction effects. In this paper, a method for training sample selection based on camera response is proposed. It has been proved that the camera response value has a close correlation with the spectral reflectance. Consequently, in this paper we adopt the technique of drawing a sphere in camera response value space to select the training samples which have a higher correlation with the test samples. In addition, the Wiener estimation method is used to reconstruct the spectral reflectance. Finally, we find that the method of sample selection based on camera response value has the smallest color difference and root mean square error after reconstruction compared to the method using the full set of Munsell color charts, the Mohammadi training sample selection method, and the stratified sampling method. Moreover, the goodness of fit coefficient of this method is also the highest among the four sample selection methods. Taking all the factors mentioned above into consideration, the method of training sample selection based on camera response value enhances the reconstruction accuracy from both the colorimetric and spectral perspectives.

  4. Oxygen affinity of haemoglobin and red cell acid-base status in patients with severe chronic obstructive lung disease.

    PubMed

    Huckauf, H; Schäfer, J H; Kollo, D

    1976-01-01

    The oxygen affinity of hemoglobin and the factors determining the position of the oxygen dissociation curve were investigated in twenty-five patients with severe chronic obstructive lung disease. Patients have been separated into three groups: group I showed a normal or mild decrease of PaO2, group II a moderate fall in arterial oxygen pressure, and group III a severe hypoxia with balanced acid-base equilibrium and hypercapnia. Blood hemoglobin exhibited a significant increase in all groups, indicating an improved oxygen transport. In most patients a leftward shifting of the oxygen dissociation curve occurred. It is discussed that the tendency to left shifting is based upon alkalosis inside the red cells, evidently demonstrated in all groups studied. 2,3-diphosphoglycerate showed no close relation to evaluated oxygen affinity of hemoglobin. The evidence for an increased oxygen affinity may reveal a further compensatory mechanism in oxygen transport in patients with pulmonary disorders. Additionally the alkalosis inside the cells may counterbalance too great a right shifting of oxygen dissociation curve in vivo when severe hypoxia and hypercapnia occur. PMID:13884

  5. Suppression of Cancer Growth by Nonviral Gene Therapy Based on a Novel Reactive Oxygen Species-responsive Promoter

    PubMed Central

    Policastro, Lucía L; Ibañez, Irene L; Durán, Hebe A; Soria, Gastón; Gottifredi, Vanesa; Podhajcer, Osvaldo L

    2009-01-01

    Increased reactive oxygen species (ROS) production has been reported as a distinctive feature of different pathologies including cancer. Therefore, we assessed whether increased ROS production in the cancer microenvironment could be selectively exploited to develop a selective anticancer therapy. For this purpose, we constructed a novel chimeric promoter, based on a ROS-response motif located in the VEGF gene promoter placed, in turn, downstream of a second ROS-response motif obtained from the early growth response 1 (Egr-1) gene promoter. The activity of the chimeric promoter was largely dependent on variations in intracellular ROS levels and showed a high inducible response to exogenous H2O2. Transient expression of the thymidine kinase (TK) gene driven by the chimeric promoter, followed by gancyclovir (GCV) administration, inhibited human colorectal cancer and melanoma cell growth in vitro and in vivo. Moreover, electrotransfer of the TK gene followed by GCV administration exerted a potent therapeutic effect on established tumors. This response was improved when combined with chemotherapeutic drugs. Thus, we show for the first time that a distinctive pro-oxidant state can be used to develop new selective gene therapeutics for cancer. PMID:19436270

  6. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions

    PubMed Central

    Huang, Yi-Jen; Chao, Shih-Chun; Lien, Der-Hsien; Wen, Cheng-Yen; He, Jr-Hau; Lee, Si-Chen

    2016-01-01

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we show that the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (<±1 V) and self-compliance to current up to 50 μA. When it is used for threshold switching, the low threshold current is beneficial for improving the device selectivity. The variation of oxygen distribution measured by energy dispersive X-ray spectroscopy and scanning transmission electron microscopy indicates the formation or rupture of conducting filaments in the device at different resistance states. It is therefore suggested that the push and pull actions of oxygen ions in the amorphous TiOx and polycrystalline TiOx films during the voltage sweep account for the memory switching and threshold switching properties in the device. PMID:27052322

  7. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions.

    PubMed

    Huang, Yi-Jen; Chao, Shih-Chun; Lien, Der-Hsien; Wen, Cheng-Yen; He, Jr-Hau; Lee, Si-Chen

    2016-01-01

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we show that the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (<± 1 V) and self-compliance to current up to 50 μA. When it is used for threshold switching, the low threshold current is beneficial for improving the device selectivity. The variation of oxygen distribution measured by energy dispersive X-ray spectroscopy and scanning transmission electron microscopy indicates the formation or rupture of conducting filaments in the device at different resistance states. It is therefore suggested that the push and pull actions of oxygen ions in the amorphous TiOx and polycrystalline TiOx films during the voltage sweep account for the memory switching and threshold switching properties in the device. PMID:27052322

  8. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Jen; Chao, Shih-Chun; Lien, Der-Hsien; Wen, Cheng-Yen; He-Hau, Jr.; Lee, Si-Chen

    2016-04-01

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we show that the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (<±1 V) and self-compliance to current up to 50 μA. When it is used for threshold switching, the low threshold current is beneficial for improving the device selectivity. The variation of oxygen distribution measured by energy dispersive X-ray spectroscopy and scanning transmission electron microscopy indicates the formation or rupture of conducting filaments in the device at different resistance states. It is therefore suggested that the push and pull actions of oxygen ions in the amorphous TiOx and polycrystalline TiOx films during the voltage sweep account for the memory switching and threshold switching properties in the device.

  9. Ignition characteristics of the nickel-based alloy UNS N07718 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, James W.; Billiard, Phillip A.; Hurley, James A.; Mcdermott, Kathleen M.; Vazquez, Isaura

    1989-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel based alloy UNS N07718. Ignition of the alloy was achieved by heating the top. It was found that the alloy would autoheat to destruction from temperatures below the solidus temperature. In addition, endothermic events occurred as the alloy was heated, many at reproducible temperatures. Many endothermic events occurred prior to abrupt increases in surface temperature and appeared to accelerate the rate of increase in specimen temperature. It appeared that the source of some endotherms may increase the oxidation rate of the alloy. Ignition parameters are defined and the temperatures at which these parameters occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  10. Atomic Oxygen Sensors Based on Nanograin ZnO Films Prepared by Pulse Laser Deposition

    SciTech Connect

    Wang Yunfei; Chen Xuekang; Li Zhonghua; Zheng Kuohai; Wang Lanxi; Feng Zhanzu; Yang Shengsheng

    2009-01-05

    High-quality nanograin ZnO thin films were deposited on c-plane sapphire (Al{sub 2}O{sub 3}) substrates by pulse laser deposition (PLD). Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were used to characterize the samples. The structural and morphological properties of ZnO films under different deposition temperature have been investigated before and after atomic oxygen (AO) treatment. XRD has shown that the intensity of the (0 0 2) peak increases and its FWHM value decreases after AO treatment. The AO sensing characteristics of nano ZnO film also has been investigated in a ground-based atomic oxygen simulation facility. The results show that the electrical conductivity of nanograin ZnO films decreases with increasing AO fluence and that the conductivity of the films can be recovered by heating.

  11. Brain tissue oxygen-based therapy and outcome after severe traumatic brain injury: a systematic literature review.

    PubMed

    Nangunoori, Raj; Maloney-Wilensky, Eileen; Stiefel, Michael; Park, Soojin; Andrew Kofke, W; Levine, Joshua M; Yang, Wei; Le Roux, Peter D

    2012-08-01

    Observational clinical studies demonstrate that brain hypoxia is associated with poor outcome after severe traumatic brain injury (TBI). In this study, available medical literature was reviewed to examine whether brain tissue oxygen (PbtO2)-based therapy is associated with improved patient outcome after severe TBI. Clinical studies published between 1993 and 2010 that compared PbtO2-based therapy combined with intracranial and cerebral perfusion pressure (ICP/CPP)-based therapy to ICP/CPP-based therapy alone were identified from electronic databases, Index Medicus, bibliographies of pertinent articles, and expert consultation. For analysis, each selected paper had to have adequate data to determine odds ratios (ORs) and confidence intervals (CIs) of outcome described by the Glasgow outcome score (GOS). Seven studies that compared ICP/CPP and PbtO2- to ICP/CPP-based therapy were identified. There were no randomized studies and no comparison studies in children. Four studies, published in 2003, 2009, and 2010 that included 491 evaluable patients were used in the final analysis. Among patients who received PbtO2-based therapy, 121(38.8%) had unfavorable and 191 (61.2%) had a favorable outcome. Among the patients who received ICP/CPP-based therapy 104 (58.1%) had unfavorable and 75 (41.9%) had a favorable outcome. Overall PbtO2-based therapy was associated with favorable outcome (OR 2.1; 95% CI 1.4-3.1). Summary results suggest that combined ICP/CPP- and PbtO2-based therapy is associated with better outcome after severe TBI than ICP/CPP-based therapy alone. Cross-organizational practice variances cannot be controlled for in this type of review and so we cannot answer whether PbtO2-based therapy improves outcome. However, the potentially large incremental value of PbtO2-based therapy provides justification for a randomized clinical trial.

  12. Application of case-based reasoning for machining parameters selection

    NASA Astrophysics Data System (ADS)

    Grabowik, C.; Kalinowski, K.; Krenczyk, D.; Paprocka, I.; Kempa, W.

    2016-08-01

    Process planning, as one of the most important stage of the technological production preparation, consists in selection of manufacturing operations taking into account the minimal manufacturing cost. The minimal manufacturing cost could be achieved by selection of the best sequence of manufacturing operations, machine tools, manufacturing tools, and accompanying machining parameters selection. On the other hand, it is almost impossible, especially in industrial conditions, to design an optimal process plan, first of all due to restrictions imposed by the installed in the factory machine park. Taking into consideration above, machining parameter selection seems to be one of the potential areas of optimization. In manual process planning process engineers select machining parameters using selection rules and data stored in manuals and tool catalogues. It makes this process time and labour consuming and non-error free. On the other hand, in workshop practice, machine operators select parameters having their skills and habits in mind. It could be a reason for suboptimal process planning. Considering this, new methods of machining parameters selection free of human factor influence are still sought. In our approach, we propose to apply case-based reasoning for machining parameter selection. In the paper, a detailed description of our approach is presented.

  13. Nucleotide kinase-based selection system for genetic switches.

    PubMed

    Ike, Kohei; Umeno, Daisuke

    2014-01-01

    Ever-increasing repertories of RNA-based switching devices are enabling synthetic biologists to construct compact, self-standing, and easy-to-integrate regulatory circuits. However, it is rather rare that the existing RNA-based expression controllers happen to have the exact specification needed for particular applications from the beginning. Evolutionary design of is powerful strategy for quickly tuning functions/specification of genetic switches. Presented here are the steps required for rapid and efficient enrichment of genetic switches with desired specification using recently developed nucleoside kinase-based dual selection system. Here, the library of genetic switches, created by randomizing either the part or the entire sequence coding switching components, is subjected to OFF (negative) selection and ON (positive) selection in various conditions. The entire selection process is completed only by liquid handling, facilitating the parallel and continuous operations of multiple selection projects. This automation-liable platform for genetic selection of functional switches has potential applications for development of RNA-based biosensors, expression controllers, and their integrated forms (genetic circuits).

  14. Nucleotide kinase-based selection system for genetic switches.

    PubMed

    Ike, Kohei; Umeno, Daisuke

    2014-01-01

    Ever-increasing repertories of RNA-based switching devices are enabling synthetic biologists to construct compact, self-standing, and easy-to-integrate regulatory circuits. However, it is rather rare that the existing RNA-based expression controllers happen to have the exact specification needed for particular applications from the beginning. Evolutionary design of is powerful strategy for quickly tuning functions/specification of genetic switches. Presented here are the steps required for rapid and efficient enrichment of genetic switches with desired specification using recently developed nucleoside kinase-based dual selection system. Here, the library of genetic switches, created by randomizing either the part or the entire sequence coding switching components, is subjected to OFF (negative) selection and ON (positive) selection in various conditions. The entire selection process is completed only by liquid handling, facilitating the parallel and continuous operations of multiple selection projects. This automation-liable platform for genetic selection of functional switches has potential applications for development of RNA-based biosensors, expression controllers, and their integrated forms (genetic circuits). PMID:24549617

  15. Fiber-optic Singlet Oxygen [1O2 (1Δg)] Generator Device Serving as a Point Selective Sterilizer

    PubMed Central

    Aebisher, David; Zamadar, Matibur; Mahendran, Adaickapillai; Ghosh, Goutam; McEntee, Catherine; Greer, Alexander

    2016-01-01

    Traditionally, Type II heterogeneous photo-oxidations produce singlet oxygen via external irradiation of a sensitizer and external supply of ground-state oxygen. A potential improvement is reported here. A hollow-core fiber-optic device was developed with an “internal” supply of light and flowing oxygen, and a porous photosensitizer-end capped configuration. Singlet oxygen was delivered through the fiber tip. The singlet oxygen steady-state concentration in the immediate vicinity of the probe tip was ca 20 fM by N-benzoyl-DL-methionine trapping. The device is portable and the singlet oxygen-generating tip is maneuverable, which opened the door to simple disinfectant studies. Complete Escherichia coli inactivation was observed in 2 h when the singlet oxygen sensitizing probe tip was immersed in 0.1 mL aqueous samples of 0.1–4.4 × 107 cells. Photobleaching of the probe tip occurred after ca 12 h of use, requiring baking and sensitizer reloading steps for reuse. PMID:20497367

  16. Selected Styles in Web-Based Educational Research

    ERIC Educational Resources Information Center

    Mann, Bruce, Ed.

    2006-01-01

    "Selected Styles in Web-Based Educational Research" is concerned with the most common research styles in Web-based teaching or learning. It is intended for practitioners, educators and students, who wish to learn how to conduct research in online teaching and learning, and helps define style in educational research methodology. To enhance…

  17. The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen.

    PubMed

    Kehres, D G; Zaharik, M L; Finlay, B B; Maguire, M E

    2000-06-01

    NRAMPs (natural resistance-associated macrophage proteins) have been characterized in mammals as divalent transition metal transporters involved in iron metabolism and host resistance to certain pathogens. The mechanism of pathogen resistance is proposed to involve sequestration of Fe2+ and Mn2+, cofactors of both prokaryotic and eukaryotic catalases and superoxide dismutases, not only to protect the macrophage against its own generation of reactive oxygen species, but to deny the cations to the pathogen for synthesis of its protective enzymes. NRAMP homologues are also present in bacteria. We report the cloning and characterization of the single NRAMP genes in Escherichia coli and Salmonella enterica ssp. typhimurium, and the cloning of two distinct NRAMP genes from Pseudomonas aeruginosa and an internal fragment of an NRAMP gene in Burkholderia cepacia. The genes are designated mntH because the two enterobacterial NRAMPs encode H+-stimulated, highly selective manganese(II) transport systems, accounting for all Mn2+ uptake in each species under the conditions tested. For S. typhimurium MntH, the Km for 54Mn2+ ( approximately 0.1 microM) was pH independent, but maximal uptake increased as pH decreased. Monovalent cations, osmotic strength, Mg2+ and Ca2+ did not inhibit 54Mn2+ uptake. Ni2+, Cu2+ and Zn2+ inhibited uptake with Kis greater than 100 microM, Co2+ with a Ki of 20 microM and Fe2+ with a Ki that decreased from 100 microM at pH 7. 6 to 10 microM at pH 5.5. Fe3+ and Pb2+ inhibited weakly, exhibiting Kis of 50 microM, while Cd2+ was a potent inhibitor with a Ki of about 1 microM. E. coli MntH had a similar inhibition profile, except that Kis were three- to 10-fold higher. Both S. typhimurium and E. coli MntH also transport 55Fe2+ however, the Kms are equivalent to the Kis for Fe2+ inhibition of Mn2+ uptake, and are thus too high to be physiologically relevant. In both S. typhimurium and E. coli, mntH:lacZ constructs were strongly induced by hydrogen peroxide

  18. Ignition characteristics of the nickel-based alloy UNS N07001 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Billiard, P. A.

    1990-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel-based alloy UNS N07001. Ignition of the alloy was achieved by heating the top surface of a cylindrical specimen with a continuous-wave CO2 laser. Two heating procedures were used. In the first, laser power was adjusted to maintain an approximately linear increase in surface temperature. In the second, laser power was periodically increased until autoheating (self-heating) was established. It was found that the alloy would autoheat to combustion from temperatures below the solidus temperature. In addition, the alloy had a tendency to develop combustion zones (hot spots) at high oxygen pressures when the incremental (step) heating test mode was used. Unique points on the temperature-time curves that describe certain events are defined and the temperatures at which these events occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  19. Ground-Based Tests of Spacecraft Polymeric Materials under OXY-GEN Plasma-Beam

    NASA Astrophysics Data System (ADS)

    Chernik, Vladimir; Novikov, Lev; Gaidar, Anna

    2016-07-01

    Spacecraft LEO mission is accompanied by destruction of polymeric material surface under influence of atomic oxygen flow. Sources of molecular, plasma and ion beams are used for the accelerated ground-based tests of spacecraft materials. In the work application of oxygen plasma accelerator of a duoplasmatron type is described. Plasma particles have been accelerated up to average speed of 13-16 km/s. Influence of such beam on materials leads to more intensive destruction of polymers than in LEO. This fact allows to execute tests in the accelerated time scale by a method of an effective fluence. Special measures were given to decrease a concentration of both gaseous and electrode material impurities in the oxygen beam. In the work the results of simulative tests of spacecraft materials and experiments on LEO are considered. Comparison of plasma beam simulation with LEO data has shown conformity for structures of a number of polymeric materials. The relative erosion yields (normalized with respect to polyimide) of the tested materials are shown practically equal to those in LEO. The obtained results give grounds for using the plasma-generation mode with ion energies of 20-30 eV to accelerated testing of spacecraft materials for long -term LEO missions.

  20. An aeration control strategy for oxidation ditch processes based on online oxygen requirement estimation.

    PubMed

    Zhan, J X; Ikehata, M; Mayuzumi, M; Koizumi, E; Kawaguchi, Y; Hashimoto, T

    2013-01-01

    A feedforward-feedback aeration control strategy based on online oxygen requirements (OR) estimation is proposed for oxidation ditch (OD) processes, and it is further developed for intermittent aeration OD processes, which are the most popular type in Japan. For calculating OR, concentrations of influent biochemical oxygen demand (BOD) and total Kjeldahl nitrogen (TKN) are estimated online by the measurement of suspended solids (SS) and sometimes TKN is estimated by NH4-N. Mixed liquor suspended solids (MLSS) and temperature are used to estimate the required oxygen for endogenous respiration. A straightforward parameter named aeration coefficient, Ka, is introduced as the only parameter that can be tuned automatically by feedback control or manually by the operators. Simulation with an activated sludge model was performed in comparison to fixed-interval aeration and satisfying result of OR control strategy was obtained. The OR control strategy has been implemented at seven full-scale OD plants and improvements in nitrogen removal are obtained in all these plants. Among them, the results obtained in Yumoto wastewater treatment plant were presented, in which continuous aeration was applied previously. After implementing intermittent OR control, the total nitrogen concentration was reduced from more than 5 mg/L to under 2 mg/L, and the electricity consumption was reduced by 61.2% for aeration or 21.5% for the whole plant. PMID:23823542

  1. An optical sensor for monitoring of dissolved oxygen based on phase detection

    NASA Astrophysics Data System (ADS)

    Feng, Weiwei; Zhou, Na; Chen, Lingxin; Li, Bowei

    2013-05-01

    Dissolved oxygen (DO) monitoring is of vital importance to water treatment, sewage treatment, aquaculture and biological research. The traditional method for DO detection is an electrochemical method called the Clark electrode. This electrochemical method has been widely used as it is simple and inexpensive; however, the critical drawback for this kind of sensor is that it is easily affected by pH variations, and by the concentration of H2S and SO2. Optical sensing for DO detection is a newly developed technology, which can avoid most of the drawbacks of the electrochemical sensors. A DO sensor using fluorescence detection is described in this paper. The oxygen concentration measurement principle is based on optical phase detection, which is more precise than the traditional intensity detection method. Emission is carried out by a low-cost, specially designed light emitting diode (LED) source. To avoid an unwanted phase shift, a reference LED is used to improve the degree of accuracy. The sensing material for fluorescence is a ruthenium complex. A discrete Fourier transform (DFT) algorithm was used for the phase calculation. The system was designed into a stainless steel probe, and dissolved oxygen concentration measurement results for various applications are presented in this paper.

  2. Highly Efficient Oxygen-Storage Material with Intrinsic Coke Resistance for Chemical Looping Combustion-Based CO2 Capture.

    PubMed

    Imtiaz, Qasim; Kurlov, Alexey; Rupp, Jennifer Lilia Marguerite; Müller, Christoph Rüdiger

    2015-06-22

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging thermochemical CO2 capture cycles that allow the capture of CO2 with a small energy penalty. Here, the development of suitable oxygen carrier materials is a key aspect to transfer these promising concepts to practical installations. CuO is an attractive material for CLC and CLOU because of its high oxygen-storage capacity (20 wt %), fast reaction kinetics, and high equilibrium partial pressure of oxygen at typical operating temperatures (850-1000 °C). However, despite its promising characteristics, its low Tammann temperature requires the development of new strategies to phase-stabilize CuO-based oxygen carriers. In this work, we report a strategy based on stabilization by co-precipitated ceria (CeO2-x ), which allowed us to increase the oxygen capacity, coke resistance, and redox stability of CuO-based oxygen carriers substantially. The performance of the new oxygen carriers was evaluated in detail and compared to the current state-of-the-art materials, that is, Al2 O3 -stabilized CuO with similar CuO loadings. We also demonstrate that the higher intrinsic oxygen uptake, release, and mobility in CeO2-x -stabilized CuO leads to a three times higher carbon deposition resistance compared to that of Al2 O3 -stabilized CuO. Moreover, we report a high cyclic stability without phase intermixing for CeO2-x -supported CuO. This was accompanied by a lower reduction temperature compared to state-of-the-art Al2 O3 -supported CuO. As a result of its high resistance towards carbon deposition and fast oxygen uncoupling kinetics, CeO2-x -stabilized CuO is identified as a very promising material for CLC- and CLOU-based CO2 capture architectures.

  3. A biocompatible cobaltporphyrin-based complex micelle constructed via supramolecular assembly for oxygen transfer.

    PubMed

    Shen, Liangliang; Qu, Rui; Shi, Hejin; Huang, Fan; An, Yingli; Shi, Linqi

    2016-05-26

    Herein, a complex micelle as an oxygen nano-carrier is constructed through the hierarchical assembly of the diblock copolymer poly(ethylene glycol)-block-poly(l-lysine) (PEG-b-PLys), tetrakis(4-sulfonatophenyl)porphinato cobalt(ii) (Co(ii)TPPS), a heptapeptide (Cys-His-His-His-His-His-His) and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD). Co(ii)TPPS was encapsulated into the cavities of TM-β-CDs driven by the host-guest interaction so that the irreversible formation of a μ-oxo-dimer of Co(ii)TPPS can be effectively prevented. The imidazole groups of the heptapeptide were selected as good axial ligands coordinating to the centric cobalt of Co(ii)TPPS, which subtly constituted the five-coordinated precursor serving as an active functional centre for oxygen binding. The sixth position of Co(ii)TPPS can bind oxygen. Furthermore, the host-guest inclusion (TM-β-CD/Co(ii)TPPS) was loaded into the hydrophobic core of the complex micelle and tightly fixed with PLys chains. The hydrophilic PEG blocks stretched in the aqueous solution constitute the shells which stabilize the structure of the complex micelle as well as impart the complex micelle sufficient blood circulation time. Moreover, the complex micelle exhibited excellent biocompatibility and cellular uptake. Therefore, the rationally designed amphiphilic structure can work as promising artificial O2 carriers in vivo. Potentially, the complex micelle can be expected to change the anaerobic microenvironment and find applications in the repair of the cells damaged by cellular hypoxia. PMID:27009911

  4. Reduced Moment-Based Models for Oxygen Precipitates and Dislocation Loops in Silicon

    NASA Astrophysics Data System (ADS)

    Trzynadlowski, Bart

    The demand for ever smaller, higher-performance integrated circuits and more efficient, cost-effective solar cells continues to push the frontiers of process technology. Fabrication of silicon devices requires extremely precise control of impurities and crystallographic defects. Failure to do so not only reduces performance, efficiency, and yield, it threatens the very survival of commercial enterprises in today's fiercely competitive and price-sensitive global market. The presence of oxygen in silicon is an unavoidable consequence of the Czochralski process, which remains the most popular method for large-scale production of single-crystal silicon. Oxygen precipitates that form during thermal processing cause distortion of the surrounding silicon lattice and can lead to the formation of dislocation loops. Localized deformation caused by both of these defects introduces potential wells that trap diffusing impurities such as metal atoms, which is highly desirable if done far away from sensitive device regions. Unfortunately, dislocations also reduce the mechanical strength of silicon, which can cause wafer warpage and breakage. Engineers must negotiate this and other complex tradeoffs when designing fabrication processes. Accomplishing this in a complex, modern process involving a large number of thermal steps is impossible without the aid of computational models. In this dissertation, new models for oxygen precipitation and dislocation loop evolution are described. An oxygen model using kinetic rate equations to evolve the complete precipitate size distribution was developed first. This was then used to create a reduced model tracking only the moments of the size distribution. The moment-based model was found to run significantly faster than its full counterpart while accurately capturing the evolution of oxygen precipitates. The reduced model was fitted to experimental data and a sensitivity analysis was performed to assess the robustness of the results. Source

  5. Evaluation of RPE-Select: A Web-Based Respiratory Protective Equipment Selector Tool.

    PubMed

    Vaughan, Nick; Rajan-Sithamparanadarajah, Bob; Atkinson, Robert

    2016-08-01

    This article describes the evaluation of an open-access web-based respiratory protective equipment selector tool (RPE-Select, accessible at http://www.healthyworkinglives.com/rpe-selector). This tool is based on the principles of the COSHH-Essentials (C-E) control banding (CB) tool, which was developed for the exposure risk management of hazardous chemicals in the workplace by small and medium sized enterprises (SMEs) and general practice H&S professionals. RPE-Select can be used for identifying adequate and suitable RPE for dusts, fibres, mist (solvent, water, and oil based), sprays, volatile solids, fumes, gases, vapours, and actual or potential oxygen deficiency. It can be applied for substances and products with safety data sheets as well as for a large number of commonly encountered process-generated substances (PGS), such as poultry house dusts or welding fume. Potential international usability has been built-in by using the Hazard Statements developed for the Globally Harmonised System (GHS) and providing recommended RPE in picture form as well as with a written specification. Illustration helps to compensate for the variabilities in assigned protection factors across the world. RPE-Select uses easily understandable descriptions/explanations and an interactive stepwise flow for providing input/answers at each step. The output of the selection process is a report summarising the user input data and a selection of RPE, including types of filters where applicable, from which the user can select the appropriate one for each wearer. In addition, each report includes 'Dos' and 'Don'ts' for the recommended RPE. RPE-Select outcomes, based on up to 20 hypothetical use scenarios, were evaluated in comparison with other available RPE selection processes and tools, and by 32 independent users with a broad range of familiarities with industrial use scenarios in general and respiratory protection in particular. For scenarios involving substances having safety data sheets

  6. Evaluation of RPE-Select: A Web-Based Respiratory Protective Equipment Selector Tool

    PubMed Central

    Vaughan, Nick; Rajan-Sithamparanadarajah, Bob; Atkinson, Robert

    2016-01-01

    This article describes the evaluation of an open-access web-based respiratory protective equipment selector tool (RPE-Select, accessible at http://www.healthyworkinglives.com/rpe-selector). This tool is based on the principles of the COSHH-Essentials (C-E) control banding (CB) tool, which was developed for the exposure risk management of hazardous chemicals in the workplace by small and medium sized enterprises (SMEs) and general practice H&S professionals. RPE-Select can be used for identifying adequate and suitable RPE for dusts, fibres, mist (solvent, water, and oil based), sprays, volatile solids, fumes, gases, vapours, and actual or potential oxygen deficiency. It can be applied for substances and products with safety data sheets as well as for a large number of commonly encountered process-generated substances (PGS), such as poultry house dusts or welding fume. Potential international usability has been built-in by using the Hazard Statements developed for the Globally Harmonised System (GHS) and providing recommended RPE in picture form as well as with a written specification. Illustration helps to compensate for the variabilities in assigned protection factors across the world. RPE-Select uses easily understandable descriptions/explanations and an interactive stepwise flow for providing input/answers at each step. The output of the selection process is a report summarising the user input data and a selection of RPE, including types of filters where applicable, from which the user can select the appropriate one for each wearer. In addition, each report includes ‘Dos’ and ‘Don’ts’ for the recommended RPE. RPE-Select outcomes, based on up to 20 hypothetical use scenarios, were evaluated in comparison with other available RPE selection processes and tools, and by 32 independent users with a broad range of familiarities with industrial use scenarios in general and respiratory protection in particular. For scenarios involving substances having safety

  7. Performance-Based Technology Selection Filter description report

    SciTech Connect

    O'Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  8. Spatial Mutual Information Based Hyperspectral Band Selection for Classification

    PubMed Central

    2015-01-01

    The amount of information involved in hyperspectral imaging is large. Hyperspectral band selection is a popular method for reducing dimensionality. Several information based measures such as mutual information have been proposed to reduce information redundancy among spectral bands. Unfortunately, mutual information does not take into account the spatial dependency between adjacent pixels in images thus reducing its robustness as a similarity measure. In this paper, we propose a new band selection method based on spatial mutual information. As validation criteria, a supervised classification method using support vector machine (SVM) is used. Experimental results of the classification of hyperspectral datasets show that the proposed method can achieve more accurate results. PMID:25918742

  9. [Design of Oxygen Saturation, Heart Rate, Respiration Rate Detection System Based on Smartphone of Android Operating System].

    PubMed

    Zhu, Mingshan; Zeng, Bixin

    2015-03-01

    In this paper, we designed an oxygen saturation, heart rate, respiration rate monitoring system based on smartphone of android operating system, physiological signal acquired by MSP430 microcontroller and transmitted by Bluetooth module. PMID:26524782

  10. [Design of Oxygen Saturation, Heart Rate, Respiration Rate Detection System Based on Smartphone of Android Operating System].

    PubMed

    Zhu, Mingshan; Zeng, Bixin

    2015-03-01

    In this paper, we designed an oxygen saturation, heart rate, respiration rate monitoring system based on smartphone of android operating system, physiological signal acquired by MSP430 microcontroller and transmitted by Bluetooth module.

  11. Kinetics and products of the reactions of hydroxyl radicals with selected volatile organic compounds, including oxygenated compounds

    NASA Astrophysics Data System (ADS)

    Bethel, Heidi Lynn

    Kinetics, products and reaction mechanisms of the OH radical-initiated reactions of selected volatile organic compounds (VOCs) and oxygenated compounds were examined. These compounds are important smog forming chemicals that are found in gasoline and many consumer products. Smog is created by the interaction of these VOCs with oxides of nitrogen in the presence of sunlight. The hydroxyl (OH) radical is a daytime species and a key initiator of the VOC reactions which lead to photochemical smog formation. Chapter II investigates the OH radical-initiated reactions of p-xylene, 1,2,3-, and 1,2,4-trimethylbenzene which are components of gasoline fuels, vehicle exhaust and ambient air in urban areas. Experiments were conducted at varying NO2 concentrations in indoor environmental chambers in order to determine the dependence of the product yields as a function of NO2 concentrations. From these experiments and previous literature yields, a majority of the products from these reactions under atmospheric conditions have now been elucidated. Chapter III examines the OH radical-initiated reaction of 3-hexene-2,5-dione which is formed from the reactions of p-xylene and 1,2,4-trimethylbenzene (Chapter II). Due to its polar nature, 3-hexene-2,5-dione and its reaction products are difficult to handle experimentally. Products identified from this reaction through the use of in situ atmospheric pressure ionization tandem mass spectrometry were CH3C(O)CH(OH)CHO and CH 3C(O)CH(OH)CH(ONO2)C(O)CH3. Chapters IV, V, and VI examine the OH radical-initiated reactions of 6 different alcohols, including diols. The products examined in Chapters IV and V are those from 2-methyl-2,4-pentanediol and 1,2-, 1,3-, and 2,3-butanediol, which are found in various solvents. Reaction rates were determined using a relative rate method. Hydroxyaldehyde and hydroxyketone products from these reactions were also quantified. Chapter VI examined the reaction rates and products formed from the OH radical

  12. Reactive oxygen species accelerate degradation of anion exchange membranes based on polyphenylene oxide in alkaline environments.

    PubMed

    Parrondo, Javier; Wang, Zhongyang; Jung, Min-Suk J; Ramani, Vijay

    2016-07-20

    Anion exchange membranes (AEM) based on polyphenylene oxide (PPO) suffered quaternary-ammonium-cation-site degradation in alkaline environments. Surprisingly, the degradation rate was considerably faster in the presence of molecular oxygen. We postulated that the AEM cation-site catalyzes the reduction of dioxygen by hydroxide ions to yield the superoxide anion radical and the highly reactive hydroxyl free radical. We substantiated our hypothesis by using a phosphorous-containing spin trap (5-diisopropoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide) to detect the adducts for both free radicals in situ using (31)P-NMR spectroscopy. PMID:27381009

  13. Fiber-Based Laser Transmitter for Oxygen A-Band Spectroscopy and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Abshire, James B.

    2010-01-01

    A fiber-based laser transmitter has been designed for active remote-sensing spectroscopy. The transmitter uses a master-oscillator-power-amplifier (MOPA) configuration with a distributed feedback diode-laser master oscillator and an erbium-doped fiber amplifier. The output from the MOPA is frequency-doubled with a periodically poled nonlinear crystal. The utility of this single-frequency, wavelength-tunable, power-scalable laser has been demonstrated in a spectroscopic measurement of the diatomic oxygen A-band.

  14. Base metal-catalyzed benzylic oxidation of (aryl)(heteroaryl)methanes with molecular oxygen

    PubMed Central

    Sterckx, Hans; De Houwer, Johan; Mensch, Carl; Herrebout, Wouter; Tehrani, Kourosch Abbaspour

    2016-01-01

    Summary The methylene group of various substituted 2- and 4-benzylpyridines, benzyldiazines and benzyl(iso)quinolines was successfully oxidized to the corresponding benzylic ketones using a copper or iron catalyst and molecular oxygen as the stoichiometric oxidant. Application of the protocol in API synthesis is exemplified by the alternative synthesis of a precursor to the antimalarial drug Mefloquine. The oxidation method can also be used to prepare metabolites of APIs which is illustrated for the natural product papaverine. ICP–MS analysis of the purified reaction products revealed that the base metal impurity was well below the regulatory limit. PMID:26877817

  15. Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics.

    PubMed

    Batuk, Dmitry; Batuk, Maria; Tsirlin, Alexander A; Hadermann, Joke; Abakumov, Artem M

    2015-12-01

    The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.

  16. Selection of principal components based on Fisher discriminant ratio

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangyan; Naghedolfeizi, Masoud; Arora, Sanjeev; Yousif, Nabil; Aberra, Dawit

    2016-05-01

    Principal component analysis transforms a set of possibly correlated variables into uncorrelated variables, and is widely used as a technique of dimensionality reduction and feature extraction. In some applications of dimensionality reduction, the objective is to use a small number of principal components to represent most variation in the data. On the other hand, the main purpose of feature extraction is to facilitate subsequent pattern recognition and machine learning tasks, such as classification. Selecting principal components for classification tasks aims for more than dimensionality reduction. The capability of distinguishing different classes is another major concern. Components that have larger eigenvalues do not necessarily have better distinguishing capabilities. In this paper, we investigate a strategy of selecting principal components based on the Fisher discriminant ratio. The ratio of between class variance to within class variance is calculated for each component, based on which the principal components are selected. The number of relevant components is determined by the classification accuracy. To alleviate overfitting which is common when there are few training data available, we use a cross-validation procedure to determine the number of principal components. The main objective is to select the components that have large Fisher discriminant ratios so that adequate class separability is obtained. The number of selected components is determined by the classification accuracy of the validation data. The selection method is evaluated by face recognition experiments.

  17. [Orthogonal projection divergence-based hyperspectral band selection].

    PubMed

    Su, Hong-jun; Sheng, Ye-hua; Yang, He; Du, Qian

    2011-05-01

    Due to the high data dimensionality of a hyperspectral image, dimensionality reduction algorithm has attracted much attention in hyperspectral image analysis. Band selection algorithm, which selects appropriate bands from the original set of spectral bands, can preserve original information from the data and is useful for image classification and recognition. In the present paper, a novel band selection algorithm based on orthogonal projection divergence (OPD) is proposed, it aims to discriminate the interesting objects from background and noise information, maximize the spectral similarity between different spectral vectors by projecting the original data to feature space. Two HYDICE Washington DC Mall images and an HYMAP Purdue campus image data were experimented, and support vector machine (SVM) classifier was used for classification. The selected band number varies from 5 to 40 in order to study the impacts of different band selection algorithms on different features. For the computation complex, the sequential floating forward search (SFFS) was used to get the appropriate bands. The experiments have proved that our proposed OPD algorithm can outperform other traditional band selection methods such as SAM, ED, SID, and LCMV-BCC for hyperspectral image analysis. It is proven that OPD band selection is effective and robust in hyperspectral remote sensing dimensionality reduction

  18. An Iron-based Film for Highly Efficient Electrocatalytic Oxygen Evolution from Neutral Aqueous Solution.

    PubMed

    Chen, Mingxing; Wu, Yizhen; Han, Yongzhen; Lin, Xiaohuan; Sun, Junliang; Zhang, Wei; Cao, Rui

    2015-10-01

    An ultrathin Fe-based film was prepared by electrodeposition from an Fe(II) solution through a fast and simple cyclic voltammetry method. The extremely low Fe loading of 12.3 nmol cm(-2) on indium tin oxide electrodes is crucial for high atom efficiency and transparence of the resulted film. This Fe-based film was shown to be a very efficient electrocatalyst for oxygen evolution from neutral aqueous solution with remarkable activity and stability. In a 34 h controlled potential electrolysis at 1.45 V (vs NHE) and pH 7.0, impressive turnover number of 5.2 × 10(4) and turnover frequency of 1528 h(-1) were obtained. To the best of our knowledge, these values represent one of the highest among electrodeposited catalyst films for water oxidation under comparable conditions. The morphology and the composition of the catalyst film was determined by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy, which all confirmed the deposition of Fe-based materials with Fe(III) oxidation state on the electrode. This study is significant because of the use of iron, the fast and simple cyclic voltammetry electrodeposition, the extremely low catalyst loading and thus the transparency of the catalyst film, the remarkable activity and stability, and the oxygen evolution in neutral aqueous media. PMID:26368828

  19. Optimization of catalyst layer composition for PEMFC using graphene-based oxygen reduction reaction catalysts

    NASA Astrophysics Data System (ADS)

    Park, Jong Cheol; Park, Sung Hyeon; Chung, Min Wook; Choi, Chang Hyuck; Kho, Back Kyun; Woo, Seong Ihl

    2015-07-01

    The focus in recent years is on developing high performance non-precious metal catalysts (NPMCs) to reduce the catalyst cost in fuel cells. However, little attention has been paid to improve the utilization of NPMCs. Thus, this study focuses on the optimization of electrode component, particularly the Nafion content. With the synthesized graphene based oxygen reduction reaction (ORR) catalyst, the catalyst inks were prepared at various Nafion contents with suitable amounts of catalysts sprayed on the gas diffusion media. Twenty different single cells were assembled and measured for polarization, resistance and electrochemical impedance. Electrodes of 66.7 and 50.0% Nafion contents showed the highest performance for hydrogen/oxygen and hydrogen/air operation, respectively. These results were explained using the electrochemical impedance spectra, where the highest performance electrode resulted with the lowest charge transfer resistance. Moreover, negligible change in performance was observed during the 80 h of stability test. The optimization compositions of NPMC-based MEAs were very different to Pt-based MEAs, indicating the importance of optimization studies for the practical use of NPMCs.

  20. Filter selection based on light source for multispectral imaging

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Xu, Haisong

    2016-07-01

    In multispectral imaging, it is necessary to select a reduced number of filters to balance the imaging efficiency and spectral reflectance recovery accuracy. Due to the combined effect of filters and light source on reflectance recovery, the optimal filters are influenced by the employed light source in the multispectral imaging system. By casting the filter selection as an optimization issue, the selection of optimal filters corresponding to the employed light source proceeds with respect to a set of target samples utilizing one kind of genetic algorithms, regardless of the detailed spectral characteristics of the light source, filters, and sensor. Under three light sources with distinct spectral power distributions, the proposed filter selection method was evaluated on a filter-wheel based multispectral device with a set of interference filters. It was verified that the filters derived by the proposed method achieve better spectral and colorimetric accuracy of reflectance recovery than the conventional one under different light sources.

  1. Non-plasmonic metal nanoparticles as visible light photocatalysts for the selective oxidation of aliphatic alcohols with molecular oxygen at near ambient conditions.

    PubMed

    Tana, Tana; Guo, Xiao-Wei; Xiao, Qi; Huang, Yiming; Sarina, Sarina; Christopher, Phillip; Jia, Jianfeng; Wu, Haishun; Zhu, Huaiyong

    2016-10-01

    Nanoparticles (NPs) of Pd and Pt were used for the selective oxidation of aliphatic alcohols with molecular oxygen as an oxidant at near ambient temperatures under visible light irradiation. Distinct final products were obtained under identical reaction conditions, aliphatic esters formed over the Pd NPs while aldehydes formed over the Pt NPs. The reason for this different product selectivity is proven to be due to the much stronger interaction of Pd NPs with alcohol and aldehyde compared to Pt NPs. The photocatalytic activity is tuneable by light intensity or a moderate change in the reaction temperature. PMID:27606378

  2. Thermal stability of uranyl complexes with neutral oxygen-containing organic bases

    SciTech Connect

    Kobets, L.V.

    1987-03-01

    The thermal stability of uranyl chloride, nitrate, and oxalate with a series of neutral oxygen-containing organic ligands is discussed. It was found that the temperatures of removal of chlorine are higher than the stripping of the first molecule of the base in complexes UO/sub 2/Cl/sub 2/ x 2L. This is an indication of greater strength of the bonds of the Cl/sup -/ ions to the uranyl group in comparison with the investigated bases. It was shown that the temperatures of removal of a mole of neutral ligands depend little on the nature of the anions and exhibit a correlation with the donor capacity of the bases: Ac < TBP < DMFA similarly ordered DMSO < TBPO similarly ordered PyO. The chemistry of the decomposition of the complexes and the strength of the binding of the acido- and neutral ligands in them are discussed.

  3. Multiobjective Evolutionary Path Planning via Sugeno-Based Tournament Selection

    NASA Technical Reports Server (NTRS)

    Dozier, Gerry; McCullough, Shaun; Homaifar, Abdollah; Esterline, Albert

    1998-01-01

    This paper introduces a new tournament selection algorithm that can be used for evolutionary path planning systems. The fuzzy (Sugeno) tournament selection algorithm (STSA) described in this paper selects candidate paths (CPs) to be parents and undergo reproduction based on: (1) path feasibility, (2) the euclidean distance of a path from the origin to its destination, and (3) the average change in the slope of a path. In this paper, we provide a detailed description of the fuzzy inference system used in the STSA as well as some examples of its usefulness. We then use 12 instances of our STSA to rank a population of CPs based on the above criteria. We also show how the STSA can obviate the need for the development of an explicit (lexicographic multiobjective) evaluation function and use it to develop multiobjective motion paths.

  4. [Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].

    PubMed

    Zhou, Jinzhi; Tang, Xiaofang

    2015-08-01

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification. PMID:26710441

  5. Feature Selection with Neighborhood Entropy-Based Cooperative Game Theory

    PubMed Central

    Zeng, Kai; She, Kun; Niu, Xinzheng

    2014-01-01

    Feature selection plays an important role in machine learning and data mining. In recent years, various feature measurements have been proposed to select significant features from high-dimensional datasets. However, most traditional feature selection methods will ignore some features which have strong classification ability as a group but are weak as individuals. To deal with this problem, we redefine the redundancy, interdependence, and independence of features by using neighborhood entropy. Then the neighborhood entropy-based feature contribution is proposed under the framework of cooperative game. The evaluative criteria of features can be formalized as the product of contribution and other classical feature measures. Finally, the proposed method is tested on several UCI datasets. The results show that neighborhood entropy-based cooperative game theory model (NECGT) yield better performance than classical ones. PMID:25276120

  6. Feature selection with neighborhood entropy-based cooperative game theory.

    PubMed

    Zeng, Kai; She, Kun; Niu, Xinzheng

    2014-01-01

    Feature selection plays an important role in machine learning and data mining. In recent years, various feature measurements have been proposed to select significant features from high-dimensional datasets. However, most traditional feature selection methods will ignore some features which have strong classification ability as a group but are weak as individuals. To deal with this problem, we redefine the redundancy, interdependence, and independence of features by using neighborhood entropy. Then the neighborhood entropy-based feature contribution is proposed under the framework of cooperative game. The evaluative criteria of features can be formalized as the product of contribution and other classical feature measures. Finally, the proposed method is tested on several UCI datasets. The results show that neighborhood entropy-based cooperative game theory model (NECGT) yield better performance than classical ones.

  7. Spin-selected focusing and imaging based on metasurface lens.

    PubMed

    Wang, Sen; Wang, Xinke; Kan, Qiang; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Han, Peng; Qu, Shiliang; Zhang, Yan

    2015-10-01

    Spin of light provides a route to control photons. Spin-based optical devices which can manipulate photons with different spin states are imperative. Here we experimentally demonstrated a spin-selected metasurface lens based on the spin-orbit interaction originated from the Pancharatnam-Berry (PB) phase. The optimized PB phase enables the light with different spin states to be focused on two separated points in the preset plane. Furthermore, the metasurface lens can perform the spin-selected imaging according to the polarization of the illuminating light. Such a spin-based device capacitates a lot of advanced applications for spin-controlled photonics in quantum information processing and communication based on the spin and orbit angular momentum.

  8. Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation.

    PubMed

    Iyer, Arun K; Greish, Khaled; Seki, Takahiro; Okazaki, Shoko; Fang, Jun; Takeshita, Keizo; Maeda, Hiroshi

    2007-01-01

    Polymeric micelles of zinc protoporphyrin (ZnPP) with water soluble biocompatible and amphiphilic polymer, polyethylene glycol (PEG) demonstrated unique characteristics to target tumor tissues selectively based on the enhanced permeability and retention (EPR) effect. The micellar macromolecular drug of ZnPP (SMA-ZnPP and PEG-ZnPP) previously showed notable anticancer activity as a consequence of selective tumor targeting ability and its potent HO-1 inhibitory potential, resulting in suppressed biliverdin/bilirubin production in tumors thereby leading to oxystress induced tumor cell killing. Furthermore, recent findings also showed that ZnPP efficiently generated reactive singlet oxygen under illumination of visible light, laser, or xenon light source, which could augment its oxystress induced cell killing abilities. In the present paper, we report the synergistic effects of light induced photosensitizing capabilities and HO-1 inhibitory potentials of these unique micelles when tested in vitro and in vivo on tumor models under localized, mild illumination conditions using a tungsten-xenon light source. The results indicate that these water soluble polymeric micelles of ZnPP portend to be promising candidates for targeted chemotherapy as well as photodynamic therapy against superficial tumors as well as solid tumors located at light penetrable depths.

  9. Automatic learning-based beam angle selection for thoracic IMRT

    SciTech Connect

    Amit, Guy; Marshall, Andrea; Purdie, Thomas G. Jaffray, David A.; Levinshtein, Alex; Hope, Andrew J.; Lindsay, Patricia; Pekar, Vladimir

    2015-04-15

    Purpose: The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose–volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner’s clinical experience. The purpose of this work is to propose and study a computationally efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. Methods: The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. Results: The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary target volume

  10. Health Effects Profiles for Searching Selected Lockheed DIALOG Data Bases.

    ERIC Educational Resources Information Center

    Clement, Linda Lee

    This preliminary study attempted to determine the most effective search strategies for the topic "health effects" in relation to specific chemicals and/or pollutants--in this case, asbestos--for each of five selected Lockheed DIALOG data bases: BIOSIS Previews, Chemical Abstracts Condensates (Chemcon), NTIS, Enviroline, and Pollution Abstracts.…

  11. Attachment and Children: Citations From Selected Data Bases.

    ERIC Educational Resources Information Center

    Baskin, Linda B., Comp.

    This bibliography compiles citations from seven selected data bases on the topic of attachment and children. The citations are grouped into eight categories: (1) Attachment -- General; (2) Institutions -- Hospitals, Prisons; (3) Day Care and Attachment; (4) Handicapped Children and Attachment; (5) Separation; (6) Child Abuse and Attachment; (7)…

  12. Object-based attentional selection modulates anticipatory alpha oscillations.

    PubMed

    Knakker, Balázs; Weiss, Béla; Vidnyánszky, Zoltán

    2014-01-01

    Visual cortical alpha oscillations are involved in attentional gating of incoming visual information. It has been shown that spatial and feature-based attentional selection result in increased alpha oscillations over the cortical regions representing sensory input originating from the unattended visual field and task-irrelevant visual features, respectively. However, whether attentional gating in the case of object based selection is also associated with alpha oscillations has not been investigated before. Here we measured anticipatory electroencephalography (EEG) alpha oscillations while participants were cued to attend to foveal face or word stimuli, the processing of which is known to have right and left hemispheric lateralization, respectively. The results revealed that in the case of simultaneously displayed, overlapping face and word stimuli, attending to the words led to increased power of parieto-occipital alpha oscillations over the right hemisphere as compared to when faces were attended. This object category-specific modulation of the hemispheric lateralization of anticipatory alpha oscillations was maintained during sustained attentional selection of sequentially presented face and word stimuli. These results imply that in the case of object-based attentional selection-similarly to spatial and feature-based attention-gating of visual information processing might involve visual cortical alpha oscillations.

  13. Tailoring p- and n- type semiconductor through site selective oxygen doping in Cu3N: density functional studies

    NASA Astrophysics Data System (ADS)

    Sahoo, Guruprasad; Kashikar, Ravi; Jain, Mahaveer K.; Nanda, B. R. K.

    2016-06-01

    Using ab initio density functional calculations, we have investigated the stability and electronic structure of pure and oxygen doped semiconducting Cu3N. The oxygen can be accommodated in the system without structural instability as the formation energy either decreases when oxygen substitutes nitrogen, or remains nearly same when oxygen occupies the interstitial position. The interstitial oxygen (OI) prefers to stabilize in the unusual charge neutral state and acts as an acceptor to make the system a p-type degenerate semiconductor. In this case the hole pockets are formed by the partially occupied OI-p states. On the other hand, oxygen substituting nitrogen (OS) stabilizes in its usual -2 charge state and acts as a donor to make the system an n-type degenerate semiconductor. The electron pockets are formed by the conducting Cu-p states. In the case of mixed doping, holes are gradually compensated by the donor electrons and an intrinsic gap is obtained for {{{Cu}}}3{{{N}}}{1-2{x}}{{{{O}}}{{S}}}2{x}{{{{O}}}{{I}}}{x} stoichiometry. Our calculations predict the nature of doping as well as optical band gap ({{E}{{g}}}{{o}{{p}}{{t}}}) variation in experimentally synthesized copper oxynitride. While interstitial doping contracts the lattice and increases the {{E}{{g}}}{{o}{{p}}{{t}}}, substitutional doping increases both lattice size and {{E}{{g}}}{{o}{{p}}{{t}}}. Mixed doping reduces {{E}{{g}}}{{o}{{p}}{{t}}}. Additionally we show that a rare intra-atomic d-p optical absorption can be realized in the pristine Cu3N as the Fermi level lies in the gap between the Cu-d dominated anti-bonding valence state and Cu-p conducting state.

  14. The relative importance of selected factors controlling the oxygen dynamics in the water column of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Miladinova, S.; Stips, A.

    2009-09-01

    A 1-D biogeochemical/physical model of marine systems has been applied to study the oxygen cycle in four stations of the different sub-basins of the Baltic Sea, namely, in Gotland Deep, Bornholm, Arkona and Fladen. The model consists of biogeochemical model of Neumann et al. (2002) coupled with the 1-D General Ocean Turbulence Model (GOTM). The model has been forced with meteorological data from the ECMWF reanalysis project for the period 1998-2003, producing a 6-year hindcast validated with datasets from the Baltic Environmental Database (BED) for the same period. The vertical profiles of temperature and salinity are relaxed towards both profiles provided by 3-D simulations of General Estuarine Turbulent Model (GETM) and observed profiles from BED. Modifications in the parameterisation of the air/sea oxygen fluxes have led to significant improvement of the model results in the surface and intermediate water levels. The largest mismatch with observation is found in simulating the oxygen dynamics in the Baltic Sea bottom waters. The model results demonstrate the good capability of the model to predict the time-evolution of the physical and biogeochemical variables at all different stations. Comparative analysis of the modelled oxygen concentrations with respect to the observation data is performed to distinguish the relative importance of several factors on the seasonal, interannual and long-term variations of oxygen. It is found that the natural physical factors, like the magnitude of the vertical turbulent mixing, wind speed, the variation in temperature and salinity field are the major factors controlling the oxygen dynamics in the Baltic Sea. The influence of limiting nutrients is less pronounced, at least under the nutrient flux parameterisation assumed in the model.

  15. Tailoring p- and n- type semiconductor through site selective oxygen doping in Cu3N: density functional studies

    NASA Astrophysics Data System (ADS)

    Sahoo, Guruprasad; Kashikar, Ravi; Jain, Mahaveer K.; Nanda, B. R. K.

    2016-06-01

    Using ab initio density functional calculations, we have investigated the stability and electronic structure of pure and oxygen doped semiconducting Cu3N. The oxygen can be accommodated in the system without structural instability as the formation energy either decreases when oxygen substitutes nitrogen, or remains nearly same when oxygen occupies the interstitial position. The interstitial oxygen (OI) prefers to stabilize in the unusual charge neutral state and acts as an acceptor to make the system a p-type degenerate semiconductor. In this case the hole pockets are formed by the partially occupied OI-p states. On the other hand, oxygen substituting nitrogen (OS) stabilizes in its usual ‑2 charge state and acts as a donor to make the system an n-type degenerate semiconductor. The electron pockets are formed by the conducting Cu-p states. In the case of mixed doping, holes are gradually compensated by the donor electrons and an intrinsic gap is obtained for {{{Cu}}}3{{{N}}}{1-2{x}}{{{{O}}}{{S}}}2{x}{{{{O}}}{{I}}}{x} stoichiometry. Our calculations predict the nature of doping as well as optical band gap ({{E}{{g}}}{{o}{{p}}{{t}}}) variation in experimentally synthesized copper oxynitride. While interstitial doping contracts the lattice and increases the {{E}{{g}}}{{o}{{p}}{{t}}}, substitutional doping increases both lattice size and {{E}{{g}}}{{o}{{p}}{{t}}}. Mixed doping reduces {{E}{{g}}}{{o}{{p}}{{t}}}. Additionally we show that a rare intra-atomic d–p optical absorption can be realized in the pristine Cu3N as the Fermi level lies in the gap between the Cu-d dominated anti-bonding valence state and Cu-p conducting state.

  16. Electrochemical activation of commercial polyacrylonitrile-based carbon fiber for the oxygen reduction reaction.

    PubMed

    Xu, Haibo; Xia, Guangsen; Liu, Haining; Xia, Shuwei; Lu, Yonghong

    2015-03-28

    Nitrogen (N)-doped carbon and its non-noble metal composite replacing platinum-based oxygen reduction reaction (ORR) electrocatalysts still have some fundamental problems that remain. Here the micron-sized commercial polyacrylonitrile-based carbon fiber (PAN-CF) electrode was modified using an electrochemical method, converting its inherent pyridinic-N into 2-pyridone (or 2-hydroxyl pyridine) functional group existing in three-dimensional active layers with remarkable ORR catalytic activity and stability. The carbon atom adjacent to the nitrogen and oxygen atoms is prone to act as an active site to efficiently catalyze a two-electron ORR process. However, after coordinating pyridone to the Cu(2+) ion, together with the electrochemical reaction, the chemical redox between Cu(+) and ORR intermediates synergistically tends towards a four-electron pathway in alkaline solution. In different medium, the complexation and dissociation can induce the charge transfer and reconstruction among proton, metal ion and pyridone functionalities, eventually leading to the changes of ORR performance. PMID:25712410

  17. A Phase Shift Demodulation Technique: Verification and Application in Fluorescence Phase Based Oxygen Sensors

    NASA Astrophysics Data System (ADS)

    Jia, Chuanwu; Chang, Jun; Wang, Fupeng; Jiang, Hao; Zhu, Cunguang; Wang, Pengpeng

    2016-06-01

    A phase shift demodulation technique based on subtraction capable of measuring 0.03 phase degree limit between sinusoidal signals is presented in this paper. A self-gain module and a practical subtracter act the kernel parts of the phase shift demodulation system. Electric signals in different phases are used to verify the performance of the system. In addition, a new designed optical source, laser fiber differential source (LFDS), capable of generating mini phase is used to further verify the system reliability. R-square of 0.99997 in electric signals and R-square of 0.99877 in LFDS are achieved, and 0.03 degree measurement limit is realized in experiments. Furthermore, the phase shift demodulation system is applied to the fluorescence phase based oxygen sensors to realize the fundamental function. The experimental results reveal that a good repetition and better than 0.02% oxygen concentration measurement accuracy are realized. In addition, the phase shift demodulation system can be easily integrated to other applications.

  18. A Predictive Based Regression Algorithm for Gene Network Selection

    PubMed Central

    Guerrier, Stéphane; Mili, Nabil; Molinari, Roberto; Orso, Samuel; Avella-Medina, Marco; Ma, Yanyuan

    2016-01-01

    Gene selection has become a common task in most gene expression studies. The objective of such research is often to identify the smallest possible set of genes that can still achieve good predictive performance. To do so, many of the recently proposed classification methods require some form of dimension-reduction of the problem which finally provide a single model as an output and, in most cases, rely on the likelihood function in order to achieve variable selection. We propose a new prediction-based objective function that can be tailored to the requirements of practitioners and can be used to assess and interpret a given problem. Based on cross-validation techniques and the idea of importance sampling, our proposal scans low-dimensional models under the assumption of sparsity and, for each of them, estimates their objective function to assess their predictive power in order to select. Two applications on cancer data sets and a simulation study show that the proposal compares favorably with competing alternatives such as, for example, Elastic Net and Support Vector Machine. Indeed, the proposed method not only selects smaller models for better, or at least comparable, classification errors but also provides a set of selected models instead of a single one, allowing to construct a network of possible models for a target prediction accuracy level. PMID:27379155

  19. A Predictive Based Regression Algorithm for Gene Network Selection.

    PubMed

    Guerrier, Stéphane; Mili, Nabil; Molinari, Roberto; Orso, Samuel; Avella-Medina, Marco; Ma, Yanyuan

    2016-01-01

    Gene selection has become a common task in most gene expression studies. The objective of such research is often to identify the smallest possible set of genes that can still achieve good predictive performance. To do so, many of the recently proposed classification methods require some form of dimension-reduction of the problem which finally provide a single model as an output and, in most cases, rely on the likelihood function in order to achieve variable selection. We propose a new prediction-based objective function that can be tailored to the requirements of practitioners and can be used to assess and interpret a given problem. Based on cross-validation techniques and the idea of importance sampling, our proposal scans low-dimensional models under the assumption of sparsity and, for each of them, estimates their objective function to assess their predictive power in order to select. Two applications on cancer data sets and a simulation study show that the proposal compares favorably with competing alternatives such as, for example, Elastic Net and Support Vector Machine. Indeed, the proposed method not only selects smaller models for better, or at least comparable, classification errors but also provides a set of selected models instead of a single one, allowing to construct a network of possible models for a target prediction accuracy level. PMID:27379155

  20. New solar selective coating based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Abendroth, Thomas; Leupolt, Beate; Mäder, Gerrit; Härtel, Paul; Grählert, Wulf; Althues, Holger; Kaskel, Stefan; Beyer, Eckhard

    2016-05-01

    Carbon nanotubes (CNTs) can be applied to assemble a new type of solar selective coating system for solar thermal applications. In this work the predominant absorption processes occurring by interaction with π-plasmon and Van Hove singularities (VHS) were investigated by UV-VIS-NIR spectroscopy and ellipsometry. Not only optical properties for as deposited SWCNT thin films itself, but also the potential for systematic tailoring will be presented. Besides low cost technologies required, the adjustability of optical properties, as well as their thermal stability render CNT based solar selective coatings as promising alternative to commercially available coating systems.

  1. Selective detector of cosmic particles based on diamond sensitive elements

    NASA Astrophysics Data System (ADS)

    Altukhov, A. A.; Zaharchenko, K. V.; Kolyubin, V. A.; Lvov, S. A.; Nedosekin, P. G.; Tyurin, E. M.; Ibragimov, R. F.; Kadilin, V. V.; Nikolaev, I. V.

    2016-02-01

    The article describes the device for selective registration of electrons, protons and heavy ions fluxes from the solar and galactic cosmic rays in the twelve energy ranges, built on a base of diamond detector. The use of the diamond detectors allowed for the creation a device for registration of cosmic particles fluxes at the external spacecraft surface with the resource not less than 20 years. Selective detector is aimed for continuous monitoring of radiation situation on board the spacecrafts, in order to predict the residual life of their work and prompt measures to actively protect the spacecraft when the flow of cosmic particles is sharply increased.

  2. SELECTIVE REDUCTION OF NOX IN OXYGEN RICH ENVIRONMENTS WITH PLASMA-ASSISTED CATALYSIS: CATALYST DEVELOPMENT AND MECHANISTIC STUDIES

    SciTech Connect

    Peden, C; Barlow, S; Hoard, J; Kwak, J; *Balmer-Millar, M; *Panov, A; Schmieg, S; Szanyi, J; Tonkyn, R

    2003-08-24

    The control of NOx (NO and NO2) emissions from so-called ''lean-burn'' vehicle engines remains a challenge. In recent years, there have been a number of reports that show that a plasma device combined with a catalyst can reduce as high as 90% or more of NOx in simulated diesel and other ''lean-burn'' exhaust. In the case of propylene containing simulated diesel exhaust, the beneficial role of a plasma treatment is now thought to be due to oxidation of NO to NO2, and the formation of partially oxidized hydrocarbons that are more active for the catalytic reduction of NO2 than propylene. Thus, the overall system can be most usefully described as hydrocarbon selective catalytic reduction (SCR) enhanced by 'reforming' the exhaust with a non-thermal plasma (NTP) device. For plasma-enhanced catalysis, both zeolite- and alumina-based materials have shown high activity, albeit in somewhat different temperature ranges, when preceded by an NTP reactor. This paper will briefly describe our research efforts aimed at optimizing the catalyst materials for NTP-catalysis devices based, in part, on our continuing studies of the NTP- and catalytic-reaction mechanisms. Various alkali- and alkaline earth-cation-exchanged Y zeolites have been prepared, their material properties characterized, and they have been tested as catalytic materials for NOx reduction in laboratory NTP-catalysis reactors. Interestingly, NO2 formed in the plasma and not subsequently removed over these catalysts, will back-convert to NO, albeit to varying extents depending upon the nature of the cation. Besides this comparative reactivity, we will also discuss selected synthesis strategies for enhancing the performance of these zeolite-based catalyst materials. A particularly important result from our mechanistic studies is the observation that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of NOx to N2. Indeed, acetaldehyde has been found to

  3. Economic Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-02-01

    The objective of the economic analysis is to prepare a budgetary estimate of capital and operating costs of the O{sub 2}-fired PC power plant as well as for the equivalent conventional PC-fired power plant. Capital and operating costs of conventional steam generation, steam heating, and power generation equipment are estimated based on Foster Wheeler's extensive experience and database. Capital and operating costs of equipment, such as oxygen separation and CO{sub 2} liquefaction, are based on vendor supplied data and FW process plant experience. The levelized cost of electricity is determined for both the air-fired and O{sub 2}-fired power plants as well as the CO{sub 2} mitigation cost. An economic comparison between the O{sub 2}-fired PC and other alternate technologies is presented.

  4. Combinatorial density functional theory-based screening of surface alloys for the oxygen reduction reaction.

    SciTech Connect

    Greeley, J.; Norskov, J.; Center for Nanoscale Materials; Technical Univ. of Denmark

    2009-03-26

    A density functional theory (DFT) -based, combinatorial search for improved oxygen reduction reaction (ORR) catalysts is presented. A descriptor-based approach to estimate the ORR activity of binary surface alloys, wherein alloying occurs only in the surface layer, is described, and rigorous, potential-dependent computational tests of the stability of these alloys in aqueous, acidic environments are presented. These activity and stability criteria are applied to a database of DFT calculations on nearly 750 binary transition metal surface alloys; of these, many are predicted to be active for the ORR but, with few exceptions, they are found to be thermodynamically unstable in the acidic environments typical of low-temperature fuel cells. The results suggest that, absent other thermodynamic or kinetic mechanisms to stabilize the alloys, surface alloys are unlikely to serve as useful ORR catalysts over extended periods of operation.

  5. Oxygen reduction activity of N-doped carbon-based films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Hakoda, Teruyuki; Yamamoto, Shunya; Kawaguchi, Kazuhiro; Yamaki, Tetsuya; Kobayashi, Tomohiro; Yoshikawa, Masahito

    2010-12-01

    Carbon-based films with nitrogen species on their surface were prepared on a glassy carbon (GC) substrate for application as a non-platinum cathode catalyst for polymer electrolyte fuel cells. Cobalt and carbon were deposited in the presence of N 2 gas using a pulsed laser deposition method and then the metal Co was removed by HCl-washing treatment. Oxygen reduction reaction (ORR) activity was electrochemically determined using a rotating disk electrode system in which the film samples on the GC substrate were replaceable. The ORR activity increased with the temperature of the GC substrate during deposition. A carbon-based film prepared at 600 °C in the presence of N 2 at 66.7 Pa showed the highest ORR activity among the tested samples (0.66 V vs. NHE). This film was composed of amorphous carbons doped with pyridine type nitrogen atoms on its surface.

  6. Inverse calculation of biochemical oxygen demand models based on time domain for the tidal Foshan River.

    PubMed

    Er, Li; Xiangying, Zeng

    2014-01-01

    To simulate the variation of biochemical oxygen demand (BOD) in the tidal Foshan River, inverse calculations based on time domain are applied to the longitudinal dispersion coefficient (E(x)) and BOD decay rate (K(x)) in the BOD model for the tidal Foshan River. The derivatives of the inverse calculation have been respectively established on the basis of different flow directions in the tidal river. The results of this paper indicate that the calculated values of BOD based on the inverse calculation developed for the tidal Foshan River match the measured ones well. According to the calibration and verification of the inversely calculated BOD models, K(x) is more sensitive to the models than E(x) and different data sets of E(x) and K(x) hardly affect the precision of the models. PMID:25026574

  7. Thickness independent reduced forming voltage in oxygen engineered HfO{sub 2} based resistive switching memories

    SciTech Connect

    Sharath, S. U. Kurian, J.; Komissinskiy, P.; Hildebrandt, E.; Alff, L.; Bertaud, T.; Walczyk, C.; Calka, P.; Schroeder, T.

    2014-08-18

    The conducting filament forming voltage of stoichiometric hafnium oxide based resistive switching layers increases linearly with layer thickness. Using strongly reduced oxygen deficient hafnium oxide thin films grown on polycrystalline TiN/Si(001) substrates, the thickness dependence of the forming voltage is strongly suppressed. Instead, an almost constant forming voltage of about 3 V is observed up to 200 nm layer thickness. This effect suggests that filament formation and switching occurs for all samples in an oxidized HfO{sub 2} surface layer of a few nanometer thickness while the highly oxygen deficient thin film itself merely serves as a oxygen vacancy reservoir.

  8. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity

    PubMed Central

    Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  9. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity.

    PubMed

    Toma, Vlad Al; Farcaș, Anca D; Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  10. Selective production of atomic oxygen by laser photolysis as a tool for studying the effect of atomic oxygen in plasma medicine

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Tokumitsu, Yusuke

    2015-06-01

    We propose a method for selectively producing O atoms by the laser photolysis of O3 as a tool for studying the therapeutic effect of O atoms in plasma medicine. A KrF excimer laser (248 nm) irradiates an O3 /He mixture flowing in a quartz tube to photodissociate O3 , which leads to the production of O atoms. The effluent from the quartz tube nozzle can be applied to a target (cells, bacteria, or an affected part). Simulations show that 500 ppm O atoms can be continuously supplied to a target surface at a distance of 3 mm from the quartz tube nozzle if an O3 (2000 ppm)/He mixture is used. The effluent contains only O, O3 , and O_2({{a}1}{Δg}) , and does not contain other types of reactive species in contrast to a plasma. Therefore, it can be used to examine the therapeutic effects of O atoms in isolation. Part of the simulation results are experimentally verified by irradiating an O3 /He mixture with a KrF excimer laser.

  11. Oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives by nitrous oxide via selective oxygen atom transfer reactions: insights from quantum chemistry calculations.

    PubMed

    Xie, Hujun; Liu, Chengcheng; Yuan, Ying; Zhou, Tao; Fan, Ting; Lei, Qunfang; Fang, Wenjun

    2016-01-21

    The mechanisms for the oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives (Cp* = η(5)-C5Me5) by nitrous oxide via selective oxygen atom transfer reactions have been systematically studied by means of density functional theory (DFT) calculations. On the basis of the calculations, we investigated the original mechanism proposed by Hillhouse and co-workers for the activation of N2O. The calculations showed that the complex with an initial O-coordination of N2O to the coordinatively unsaturated Hf center is not a local minimum. Then we proposed a new reaction mechanism to investigate how N2O is activated and why N2O selectively oxidize phenyl and hydride ligands of . Frontier molecular orbital theory analysis indicates that N2O is activated by nucleophilic attack by the phenyl or hydride ligand. Present calculations provide new insights into the activation of N2O involving the direct oxygen atom transfer from nitrous oxide to metal-ligand bonds instead of the generally observed oxygen abstraction reaction to generate metal-oxo species.

  12. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-01-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

  13. Model-based sensor location selection for helicopter gearbox monitoring

    NASA Technical Reports Server (NTRS)

    Jammu, Vinay B.; Wang, Keming; Danai, Kourosh; Lewicki, David G.

    1996-01-01

    A new methodology is introduced to quantify the significance of accelerometer locations for fault diagnosis of helicopter gearboxes. The basis for this methodology is an influence model which represents the effect of various component faults on accelerometer readings. Based on this model, a set of selection indices are defined to characterize the diagnosability of each component, the coverage of each accelerometer, and the relative redundancy between the accelerometers. The effectiveness of these indices is evaluated experimentally by measurement-fault data obtained from an OH-58A main rotor gearbox. These data are used to obtain a ranking of individual accelerometers according to their significance in diagnosis. Comparison between the experimentally obtained rankings and those obtained from the selection indices indicates that the proposed methodology offers a systematic means for accelerometer location selection.

  14. Effect of oxygenated liquid additives on the urea based SNCR process.

    PubMed

    Tayyeb Javed, M; Nimmo, W; Mahmood, Asif; Irfan, Naseem

    2009-08-01

    An experimental investigation was performed to study the effect of oxygenated liquid additives, H(2)O(2), C(2)H(5)OH, C(2)H(4)(OH)(2) and C(3)H(5)(OH)(3) on NO(x) removal from flue gases by the selective non-catalytic reduction (SNCR) process using urea as a reducing agent. Experiments were performed with a 150kW pilot scale reactor in which a simulated flue gas was generated by the combustion of methane operating with 6% excess oxygen in flue gases. The desired levels of initial NO(x) (500ppm) were achieved by doping the fuel gas with ammonia. Experiments were performed throughout the temperature range of interest, i.e. from 800 to 1200 degrees C for the investigation of the effects of the process additives on the performance of aqueous urea DeNO(x). With H(2)O(2) addition a downward shift of 150 degrees C in the peak reduction temperature from 1130 to 980 degrees C was observed during the experimentation, however, the peak reduction efficiency was reduced from 81 to 63% when no additive was used. The gradual addition of C(2)H(5)OH up to a molar ratio of 2.0 further impairs the peak NO(x) reduction efficiency by reducing it to 50% but this is accompanied by a downward shift of 180 degrees C in the peak reduction temperature. Further exploration using C(2)H(4)(OH)(2) suggested that a 50% reduction could be attained for all the temperatures higher than 940 degrees C. The use of C(3)H(5)(OH)(3) as a secondary additive has a significant effect on the peak reduction efficiency that decreased to 40% the reductions were achievable at a much lower temperature of 800 degrees C showing a downward shift of 330 degrees C.

  15. Electrochemical Performance of Glucose/Oxygen Biofuel Cells Based on Carbon Nanostructures.

    PubMed

    Koo, Min-Hye; Das, Gautam; Yoon, Hyon Hee

    2016-03-01

    The electrochemical performance of glucose/oxygen biofuel cells based on carbon nanostructures was investigated in the present study. Different types of carbon nanomaterials, including multi-walled carbon nanotubes (MWCNT), functionalized MWCNT (f-MWCNT), carbon nanofibers (CNF), and functionalized CNF (f-CNF) were examined for electrode fabrications. The anode for glucose/oxygen biofuel cells were prepared by sequential coating of carbon nanomaterials, charge transfer complex (CTC), glucose oxidase (GOx) and nafion membrane. The anode was then integrated with a bilirubin oxidase-immobilized cathode for the biofuel cell test. It was found that the electrochemical performance of the enzyme electrodes was remarkably enhanced by the amalgamation of carbon nanomaterials with the CTC. The biofuel cell with anode comprising of f-CNF and the cathode with MWCNT exhibited the best electrochemical performance with a maximum power density of 210 μW/cm2 at a cell voltage of 0.44 V for 20 mM glucose concentration, which is comparable with the best power density value reported earlier. PMID:27455759

  16. Electrochemical Performance of Glucose/Oxygen Biofuel Cells Based on Carbon Nanostructures.

    PubMed

    Koo, Min-Hye; Das, Gautam; Yoon, Hyon Hee

    2016-03-01

    The electrochemical performance of glucose/oxygen biofuel cells based on carbon nanostructures was investigated in the present study. Different types of carbon nanomaterials, including multi-walled carbon nanotubes (MWCNT), functionalized MWCNT (f-MWCNT), carbon nanofibers (CNF), and functionalized CNF (f-CNF) were examined for electrode fabrications. The anode for glucose/oxygen biofuel cells were prepared by sequential coating of carbon nanomaterials, charge transfer complex (CTC), glucose oxidase (GOx) and nafion membrane. The anode was then integrated with a bilirubin oxidase-immobilized cathode for the biofuel cell test. It was found that the electrochemical performance of the enzyme electrodes was remarkably enhanced by the amalgamation of carbon nanomaterials with the CTC. The biofuel cell with anode comprising of f-CNF and the cathode with MWCNT exhibited the best electrochemical performance with a maximum power density of 210 μW/cm2 at a cell voltage of 0.44 V for 20 mM glucose concentration, which is comparable with the best power density value reported earlier.

  17. Direct measurement of singlet oxygen by using a photomultiplier tube-based detection system.

    PubMed

    Kim, In-Wook; Park, Jae Myung; Roh, Yoon Jin; Kim, Ju Hee; Choi, Myung-Gyu; Hasan, Tayyaba

    2016-06-01

    The effective dosimetry for photodynamic therapy (PDT) can be specified by direct measurement of singlet oxygen ((1)O2) production. The purpose of this study was to investigate the feasibility of a newly developed photomultiplier tube (PMT)-based singlet oxygen detection (SOD) system. The lowest and highest (1)O2 concentrations detectable by the PMT-SOD system were 15nM and 10μM, respectively. Dose-dependent quenching, by NaN3, of the fluorogenic reaction was observed, which was negatively correlated with the (1)O2 level measured by the PMT-SOD system. The lifetime of (1)O2, as measured by the PMT-SOD system, was found to be lengthened when H2O was replaced with deuterium oxide. (1)O2 photon counts were significantly and dose-dependently correlated with intracellular fluorescence intensity after photosensitizer treatments. In vitro cell viability test and in vivo xenografted-tumor mass shrinkage showed a positive association between PDT-induced cytotoxicity and (1)O2 production concomitantly measured by the PMT-SOD system. It was concluded that the PMT-SOD system is capable of measuring (1)O2 production directly and accurately, demonstrating that this system can be useful in the determination of dosimetry for PDT. PMID:26995671

  18. Ignition characteristics of the iron-based alloy UNS S66286 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, James W.; Billard, Phillip A.; Hurley, James A.; Mcdermott, Kathleen M.; Vazquez, Isaura

    1988-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the iron based alloy UNS S66286. Ignition of the alloy was achieved by heating the top surface of a cylindrical specimen with a continuous-wave CO2 laser. Two heating procedures were used. In the first, laser power was adjusted to maintain an approximately linear increase in surface temperature. In the second, laser power was periodically increased until autoheating (self-heating) was established. It was found that the alloy would autoheat to destruction from temperatures below the solidus temperature. In addition endothermic events occurred as the alloy was heated, many at reproducible temperatures. Many endothermic events occurred prior to abrupt increases in surface temperature and appeared to accelerate the rate of increase in specimen temperature to rates greater than what would be expected from increased temperature alone. It is suggested that the source of these endotherms may increase the oxidation rate of the alloy. Ignition parameters are defined and the temperatures at which these parameters occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (25 to 2000 psia).

  19. Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium-Oxygen Batteries.

    PubMed

    Asadi, Mohammad; Kumar, Bijandra; Liu, Cong; Phillips, Patrick; Yasaei, Poya; Behranginia, Amirhossein; Zapol, Peter; Klie, Robert F; Curtiss, Larry A; Salehi-Khojin, Amin

    2016-02-23

    Lithium-oxygen (Li-O2) batteries have been recognized as an emerging technology for energy storage systems owing to their high theoretical specific energy. One challenge is to find an electrolyte/cathode system that is efficient, stable, and cost-effective. We present such a system based on molybdenum disulfide (MoS2) nanoflakes combined with an ionic liquid (IL) that work together as an effective cocatalyst for discharge and charge in a Li-O2 battery. Cyclic voltammetry results show superior catalytic performance for this cocatalyst for both oxygen reduction and evolution reactions compared to Au and Pt catalysts. It also performs remarkably well in the Li-O2 battery system with 85% round-trip efficiency and reversibility up to 50 cycles. Density functional calculations provide a mechanistic understanding of the MoS2 nanoflakes/IL system. The cocatalyst reported in this work could open the way for exploiting the unique properties of ionic liquids in Li-air batteries in combination with nanostructured MoS2 as a cathode material. PMID:26789516

  20. Biofilm reactor based real-time analysis of biochemical oxygen demand.

    PubMed

    Liu, Changyu; Jia, Jianbo; Dong, Shaojun

    2013-04-15

    We reported a biofilm reactor (BFR) based analytical system for real-time biochemical oxygen demand (BOD) monitoring. It does not need a blank solution and other chemical reagents to operate. The initial dissolved oxygen (DO) in sample solution was measured as blank, while DO in the BFR effluent was measured as response. The DO difference obtained before and after the sample solution flowed through the BFR was regarded as an indicator of real-time BOD. The analytical performance of this reagent-free BFR system was equal to the previous BFR system operated using phosphate buffer saline (PBS) and high purity deionized water in reproducibility, accuracy and long-term stability. Besides, this method embraces many notable advantages, such as no secondary pollution. Additionally, the sample solutions are free from temperature controlling and air-saturation before injection. Significantly, this is a real-time BOD analysis method. This method was successfully carried out in a simulated emergency, and the obtained results agreed well with conventional BOD₅. These advantages, coupled with simplicity in device, convenience in operation and minimal maintenance, make such a reagent-free BFR analytical system promising for practical BOD real-time warning. PMID:23228491

  1. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  2. Cell design concepts for aqueous lithium-oxygen batteries: A model-based assessment

    NASA Astrophysics Data System (ADS)

    Grübl, Daniel; Bessler, Wolfgang G.

    2015-11-01

    Seven cell design concepts for aqueous (alkaline) lithium-oxygen batteries are investigated using a multi-physics continuum model for predicting cell behavior and performance in terms of the specific energy and specific power. Two different silver-based cathode designs (a gas diffusion electrode and a flooded cathode) and three different separator designs (a porous separator, a stirred separator chamber, and a redox-flow separator) are compared. Cathode and separator thicknesses are varied over a wide range (50 μm-20 mm) in order to identify optimum configurations. All designs show a considerable capacity-rate effect due to spatiotemporally inhomogeneous precipitation of solid discharge product LiOH·H2O. In addition, a cell design with flooded cathode and redox-flow separator including oxygen uptake within the external tank is suggested. For this design, the model predicts specific power up to 33 W/kg and specific energy up to 570 Wh/kg (gravimetric values of discharged cell including all cell components and catholyte except housing and piping).

  3. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes.

    PubMed

    Li, Yanguang; Zhou, Wu; Wang, Hailiang; Xie, Liming; Liang, Yongye; Wei, Fei; Idrobo, Juan-Carlos; Pennycook, Stephen J; Dai, Hongjie

    2012-06-01

    Oxygen reduction reaction catalysts based on precious metals such as platinum or its alloys are routinely used in fuel cells because of their high activity. Carbon-supported materials containing metals such as iron or cobalt as well as nitrogen impurities have been proposed to increase scalability and reduce costs, but these alternatives usually suffer from low activity and/or gradual deactivation during use. Here, we show that few-walled carbon nanotubes, following outer wall exfoliation via oxidation and high-temperature reaction with ammonia, can act as an oxygen reduction reaction electrocatalyst in both acidic and alkaline solutions. Under a unique oxidation condition, the outer walls of the few-walled carbon nanotubes are partially unzipped, creating nanoscale sheets of graphene attached to the inner tubes. The graphene sheets contain extremely small amounts of irons originated from nanotube growth seeds, and nitrogen impurities, which facilitate the formation of catalytic sites and boost the activity of the catalyst, as revealed by atomic-scale microscopy and electron energy loss spectroscopy. Whereas the graphene sheets formed from the unzipped part of the outer wall of the nanotubes are responsible for the catalytic activity, the inner walls remain intact and retain their electrical conductivity, which facilitates charge transport during electrocatalysis. PMID:22635099

  4. Selection of Construction Methods: A Knowledge-Based Approach

    PubMed Central

    Skibniewski, Miroslaw

    2013-01-01

    The appropriate selection of construction methods to be used during the execution of a construction project is a major determinant of high productivity, but sometimes this selection process is performed without the care and the systematic approach that it deserves, bringing negative consequences. This paper proposes a knowledge management approach that will enable the intelligent use of corporate experience and information and help to improve the selection of construction methods for a project. Then a knowledge-based system to support this decision-making process is proposed and described. To define and design the system, semistructured interviews were conducted within three construction companies with the purpose of studying the way that the method' selection process is carried out in practice and the knowledge associated with it. A prototype of a Construction Methods Knowledge System (CMKS) was developed and then validated with construction industry professionals. As a conclusion, the CMKS was perceived as a valuable tool for construction methods' selection, by helping companies to generate a corporate memory on this issue, reducing the reliance on individual knowledge and also the subjectivity of the decision-making process. The described benefits as provided by the system favor a better performance of construction projects. PMID:24453925

  5. Selection of construction methods: a knowledge-based approach.

    PubMed

    Ferrada, Ximena; Serpell, Alfredo; Skibniewski, Miroslaw

    2013-01-01

    The appropriate selection of construction methods to be used during the execution of a construction project is a major determinant of high productivity, but sometimes this selection process is performed without the care and the systematic approach that it deserves, bringing negative consequences. This paper proposes a knowledge management approach that will enable the intelligent use of corporate experience and information and help to improve the selection of construction methods for a project. Then a knowledge-based system to support this decision-making process is proposed and described. To define and design the system, semistructured interviews were conducted within three construction companies with the purpose of studying the way that the method' selection process is carried out in practice and the knowledge associated with it. A prototype of a Construction Methods Knowledge System (CMKS) was developed and then validated with construction industry professionals. As a conclusion, the CMKS was perceived as a valuable tool for construction methods' selection, by helping companies to generate a corporate memory on this issue, reducing the reliance on individual knowledge and also the subjectivity of the decision-making process. The described benefits as provided by the system favor a better performance of construction projects.

  6. Selective adsorption for removal of nitrogen compounds from hydrocarbon streams over carbon-based adsorbents

    NASA Astrophysics Data System (ADS)

    Almarri, Masoud S.

    desulfurization of model diesel fuel, which contains equimolar concentrations of nitrogen (i.e., quinoline and indole), sulfur (i.e., dibenzothiophene and 4,6-dimethyldibenzothiophene), and aromatic compounds (naphthalene, 1-methylnaphthalene, and fluorene), was examined. The results revealed that when both nitrogen and sulfur compounds coexist in the fuel, the type and density of oxygen functional groups on the surface of the activated carbon are crucial for selective adsorption of nitrogen compounds but have negligible positive effects for sulfur removal. The adsorption of quinoline and indole is largely governed by specific interactions. There is enough evidence to support the importance of dipole--dipole and acid-base-specific interactions for the adsorption of both quinoline and indole. Modified carbon is a promising material for the efficient removal of the nitrogen compounds from light cycle oil (LCO). Adsorptive denitrogenation of LCO significantly improved the hydrodesulfurization (HDS) performance, especially for the removal of the refractory sulfur compounds such as 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene. An essential factor in applying activated carbon for adsorptive denitrogenation and desulfurization of liquid hydrocarbon streams is regeneration after saturation. The regeneration method of the saturated adsorbents consisted of toluene washing followed by heating to remove the remaining toluene. The results show that the spent activated carbon can be regenerated to completely recover the adsorption capacity. The high capacity and selectivity of activated carbon for nitrogen compounds, along with their ability to be regenerated, indicate that activated carbon is a promising adsorbent for the deep denitrogenation of liquid hydrocarbon streams.

  7. Improvement of Rice Biomass Yield through QTL-Based Selection.

    PubMed

    Matsubara, Kazuki; Yamamoto, Eiji; Kobayashi, Nobuya; Ishii, Takuro; Tanaka, Junichi; Tsunematsu, Hiroshi; Yoshinaga, Satoshi; Matsumura, Osamu; Yonemaru, Jun-Ichi; Mizobuchi, Ritsuko; Yamamoto, Toshio; Kato, Hiroshi; Yano, Masahiro

    2016-01-01

    Biomass yield of rice (Oryza sativa L.) is an important breeding target, yet it is not easy to improve because the trait is complex and phenotyping is laborious. Using progeny derived from a cross between two high-yielding Japanese cultivars, we evaluated whether quantitative trait locus (QTL)-based selection can improve biomass yield. As a measure of biomass yield, we used plant weight (aboveground parts only), which included grain weight and stem and leaf weight. We measured these and related traits in recombinant inbred lines. Phenotypic values for these traits showed a continuous distribution with transgressive segregation, suggesting that selection can affect plant weight in the progeny. Four significant QTLs were mapped for plant weight, three for grain weight, and five for stem and leaf weight (at α = 0.05); some of them overlapped. Multiple regression analysis showed that about 43% of the phenotypic variance of plant weight was significantly explained (P < 0.0001) by six of the QTLs. From F2 plants derived from the same parental cross as the recombinant inbred lines, we divergently selected lines that carried alleles with positive or negative additive effects at these QTLs, and performed successive selfing. In the resulting F6 lines and parents, plant weight significantly differed among the genotypes (at α = 0.05). These results demonstrate that QTL-based selection is effective in improving rice biomass yield.

  8. Improvement of Rice Biomass Yield through QTL-Based Selection

    PubMed Central

    Matsubara, Kazuki; Yamamoto, Eiji; Kobayashi, Nobuya; Ishii, Takuro; Tanaka, Junichi; Tsunematsu, Hiroshi; Yoshinaga, Satoshi; Matsumura, Osamu; Yonemaru, Jun-ichi; Mizobuchi, Ritsuko; Yamamoto, Toshio; Kato, Hiroshi; Yano, Masahiro

    2016-01-01

    Biomass yield of rice (Oryza sativa L.) is an important breeding target, yet it is not easy to improve because the trait is complex and phenotyping is laborious. Using progeny derived from a cross between two high-yielding Japanese cultivars, we evaluated whether quantitative trait locus (QTL)-based selection can improve biomass yield. As a measure of biomass yield, we used plant weight (aboveground parts only), which included grain weight and stem and leaf weight. We measured these and related traits in recombinant inbred lines. Phenotypic values for these traits showed a continuous distribution with transgressive segregation, suggesting that selection can affect plant weight in the progeny. Four significant QTLs were mapped for plant weight, three for grain weight, and five for stem and leaf weight (at α = 0.05); some of them overlapped. Multiple regression analysis showed that about 43% of the phenotypic variance of plant weight was significantly explained (P < 0.0001) by six of the QTLs. From F2 plants derived from the same parental cross as the recombinant inbred lines, we divergently selected lines that carried alleles with positive or negative additive effects at these QTLs, and performed successive selfing. In the resulting F6 lines and parents, plant weight significantly differed among the genotypes (at α = 0.05). These results demonstrate that QTL-based selection is effective in improving rice biomass yield. PMID:26986071

  9. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  10. A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.

  11. 2H,3H-Decafluoropentane-Based Nanodroplets: New Perspectives for Oxygen Delivery to Hypoxic Cutaneous Tissues

    PubMed Central

    Jose, Jithin; Khadjavi, Amina; Cavallo, Federica; Quaglino, Elena; Panariti, Alice; Rivolta, Ilaria; Benintende, Emilio; Varetto, Gianfranco; Argenziano, Monica; Troia, Adriano; Cavalli, Roberta; Guiot, Caterina

    2015-01-01

    Perfluoropentane (PFP)-based oxygen-loaded nanobubbles (OLNBs) were previously proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature, including cancer, infection, and autoimmunity. Here we introduce a new platform of oxygen nanocarriers, based on 2H,3H-decafluoropentane (DFP) as core fluorocarbon. These new nanocarriers have been named oxygen-loaded nanodroplets (OLNDs) since DFP is liquid at body temperature, unlike gaseous PFP. Dextran-shelled OLNDs, available either in liquid or gel formulations, display spherical morphology, ~600 nm diameters, anionic charge, good oxygen carrying capacity, and no toxic effects on human keratinocytes after cell internalization. In vitro OLNDs result more effective in releasing oxygen to hypoxic environments than former OLNBs, as demonstrated by analysis through oxymetry. In vivo, OLNDs effectively enhance oxy-hemoglobin levels, as emerged from investigation by photoacoustic imaging. Interestingly, ultrasound (US) treatment further improves transdermal oxygen release from OLNDs. Taken together, these data suggest that US-activated, DFP-based OLNDs might be innovative, suitable and cost-effective devices to topically treat hypoxia-associated pathologies of the cutaneous tissues. PMID:25781463

  12. Design of Laccase-Metal Organic Framework-Based Bioelectrodes for Biocatalytic Oxygen Reduction Reaction.

    PubMed

    Patra, Snehangshu; Sene, Saad; Mousty, Christine; Serre, Christian; Chaussé, Annie; Legrand, Ludovic; Steunou, Nathalie

    2016-08-10

    Laccase in combination with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a mediator is a well-known bioelectrocatalyst for the 4-electron oxygen reduction reactions (ORR). The present work deals with the first exploitation of mesoporous iron(III) trimesate-based metal organic frameworks (MOF) MIL-100(Fe) (MIL stands for materials from Institut Lavoisier) as a new and efficient immobilization matrix of laccase for the building up of biocathodes for ORR. First, the immobilization of ABTS in the pores of the MOF was studied by combining micro-Raman spectroscopy, X-ray powder diffraction (XRPD), and N2 porosimetry. The ABTS-MIL-100(Fe)-based modified electrode presents excellent properties in terms of charge transfer kinetics and ionic conductivity as well as a very stable and reproducible electrochemical response, showing that MIL-100(Fe) provides a suitable and stabilizing microenvironment for electroactive ABTS molecules. In a second step, laccase was further immobilized on the MIL-100(Fe)-ABTS matrix. The Lac-ABTS-MIL-100(Fe)-CIE bioelectrode presents a high electrocatalytic current density of oxygen reduction and a reproducible electrochemical response characterized by a high stability over a long period of time (3 weeks). These results constitute a significant advance in the field of laccase-based bioelectrocatalysts for ORR. According to our work, it appears that the high catalytic efficiency of Lac-ABTS-MIL-100(Fe) for ORR may result from a synergy of chemical and catalytic properties of MIL-100(Fe) and laccase.

  13. A new oxygen barometer for solar system basaltic glasses based on vanadium valence

    SciTech Connect

    Karner, J.M.; Sutton, S.R.; Papike, J.J.; Delaney, J.S.; Shearer, C.K.; Newville, M.; Eng, P.; Rivers, M.; Dyar, M.D.

    2004-05-10

    An oxybarometer based on vanadium valence and applicable to basaltic glasses covers eight orders of magnitude in oxygen fugacity. The determination of oxidation conditions for basaltic magmas derived by the melting of planetary mantles is critical to our understanding of the nature and evolution of planetary interiors. Yet, these determinations are compromised in terrestrial and especially extraterrestrial basalts by our analytical and computational methods for estimating oxygen fugacity (fO{sub 2}). For example, mineralogical barometers (1, 2) can be reduced in effectiveness by subsolidus re-equilibration of mineral assemblages, inversion of mineralogical data to melt characteristics, and deviations of the natural mineral compositions from ideal thermodynamic parameters. Likewise, techniques to estimate fO{sub 2} based on the valence state of Fe (i.e. Fe{sup 3+}/Fe{sup 2+}) are ineffective for materials that crystallized at or below the IW buffer, and only contain Fe{sup 2+} and Fe{sup 0} (3). For these reasons, we have developed an oxybarometer based on the valence state of vanadium in basaltic glasses. This oxybarometer has enormous potential because (1) V valence is measured in basaltic glasses that have been quenched at near liquidus temperatures, thereby recording magmatic fO{sub 2} conditions, and (2) V is a multivalent element, existing as V{sup 2+}, V{sup 3+}, V{sup 4+}, and V{sup 5+}, thus allowing for applicability over a range of redox conditions from the most reduced materials in the solar system, (e.g. calcium aluminum rich inclusions in chondritic meteorites [4]) to the most oxidized terrestrial magmas (this work).

  14. Design of Laccase-Metal Organic Framework-Based Bioelectrodes for Biocatalytic Oxygen Reduction Reaction.

    PubMed

    Patra, Snehangshu; Sene, Saad; Mousty, Christine; Serre, Christian; Chaussé, Annie; Legrand, Ludovic; Steunou, Nathalie

    2016-08-10

    Laccase in combination with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a mediator is a well-known bioelectrocatalyst for the 4-electron oxygen reduction reactions (ORR). The present work deals with the first exploitation of mesoporous iron(III) trimesate-based metal organic frameworks (MOF) MIL-100(Fe) (MIL stands for materials from Institut Lavoisier) as a new and efficient immobilization matrix of laccase for the building up of biocathodes for ORR. First, the immobilization of ABTS in the pores of the MOF was studied by combining micro-Raman spectroscopy, X-ray powder diffraction (XRPD), and N2 porosimetry. The ABTS-MIL-100(Fe)-based modified electrode presents excellent properties in terms of charge transfer kinetics and ionic conductivity as well as a very stable and reproducible electrochemical response, showing that MIL-100(Fe) provides a suitable and stabilizing microenvironment for electroactive ABTS molecules. In a second step, laccase was further immobilized on the MIL-100(Fe)-ABTS matrix. The Lac-ABTS-MIL-100(Fe)-CIE bioelectrode presents a high electrocatalytic current density of oxygen reduction and a reproducible electrochemical response characterized by a high stability over a long period of time (3 weeks). These results constitute a significant advance in the field of laccase-based bioelectrocatalysts for ORR. According to our work, it appears that the high catalytic efficiency of Lac-ABTS-MIL-100(Fe) for ORR may result from a synergy of chemical and catalytic properties of MIL-100(Fe) and laccase. PMID:27447023

  15. Light-addressable measurements of cellular oxygen consumption rates in microwell arrays based on phase-based phosphorescence lifetime detection

    PubMed Central

    Huang, Shih-Hao; Hsu, Yu-Hsuan; Wu, Chih-Wei; Wu, Chang-Jer

    2012-01-01

    A digital light modulation system that utilizes a modified commercial digital micromirror device (DMD) projector, which is equipped with a UV light-emitting diode as a light modulation source, has been developed to spatially direct excited light toward a microwell array device to detect the oxygen consumption rate (OCR) of single cells via phase-based phosphorescence lifetime detection. The microwell array device is composed of a combination of two components: an array of glass microwells containing Pt(II) octaethylporphine (PtOEP) as the oxygen-sensitive luminescent layer and a microfluidic module with pneumatically actuated glass lids set above the microwells to controllably seal the microwells of interest. By controlling the illumination pattern on the DMD, the modulated excitation light can be spatially projected to only excite the sealed microwell for cellular OCR measurements. The OCR of baby hamster kidney-21 fibroblast cells cultivated on the PtOEP layer within a sealed microwell has been successfully measured at 104 ± 2.96 amol s−1 cell−1. Repeatable and consistent measurements indicate that the oxygen measurements did not adversely affect the physiological state of the measured cells. The OCR of the cells exhibited a good linear relationship with the diameter of the microwells, ranging from 400 to 1000 μm and containing approximately 480 to 1200 cells within a microwell. In addition, the OCR variation of single cells in situ infected by Dengue virus with a different multiplicity of infection was also successfully measured in real-time. This proposed platform provides the potential for a wide range of biological applications in cell-based biosensing, toxicology, and drug discovery. PMID:24348889

  16. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity.

    PubMed

    Cho, Seung-Ju; Kim, So-Yeon; Jeong, Ho-Chang; Cheong, Hyeonsik; Kim, Doseok; Park, Soon-Jung; Choi, Jong-Jin; Kim, Hyongbum; Chung, Hyung-Min; Moon, Sung-Hwan; Cha, Hyuk-Jin

    2015-12-01

    Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs) to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR) as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs) were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies.

  17. Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic

    NASA Astrophysics Data System (ADS)

    Singh, H.; Chen, Y.; Tabazadeh, A.; Fukui, Y.; Bey, I.; Yantosca, R.; Jacob, D.; Arnold, F.; Wohlfrom, K.; Atlas, E.; Flocke, F.; Blake, D.; Blake, N.; Heikes, B.; Snow, J.; Talbot, R.; Gregory, G.; Sachse, G.; Vay, S.; Kondo, Y.

    2000-02-01

    A large number of oxygenated organic chemicals (peroxyacyl nitrates, alkyl nitrates, acetone, formaldehyde, methanol, methylhydroperoxide, acetic acid and formic acid) were measured during the 1997 Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) airborne field campaign over the Atlantic. In this paper, we present a first picture of the distribution of these oxygenated organic chemicals (Ox-organic) in the troposphere and the lower stratosphere, and assess their source and sink relationships. In both the troposphere and the lower stratosphere, the total atmospheric abundance of these oxygenated species (ΣOx-organic) nearly equals that of total nonmethane hydrocarbons (ΣNMHC), which have been traditionally measured. A sizable fraction of the reactive nitrogen (10-30%) is present in its oxygenated organic form. The organic reactive nitrogen fraction is dominated by peroxyacetyl nitrate (PAN), with alkyl nitrates and peroxypropionyl nitrate (PPN) accounting for <5% of total NOy. Comparison of observations with the predictions of the Harvard three-dimensional global model suggests that in many key areas (e.g., formaldehyde and peroxides) substantial differences between measurements and theory are present and must be resolved. In the case of CH3OH, there appears to be a large mismatch between atmospheric concentrations and estimated sources, indicating the presence of major unknown removal processes. Instrument intercomparisons as well as disagreements between observations and model predictions are used to identify needed improvements in key areas. The atmospheric chemistry and sources of this group of chemicals is poorly understood even though their fate is intricately linked with upper tropospheric NOx and HOx cycles.

  18. Tuning oxygen vacancy photoluminescence in monoclinic Y2WO6 by selectively occupying yttrium sites using lanthanum

    PubMed Central

    Ding, Bangfu; Han, Chao; Zheng, Lirong; Zhang, Junying; Wang, Rongming; Tang, Zilong

    2015-01-01

    The effect of isovalent lanthanum (La) doping on the monoclinic Y2WO6 photoluminescence was studied. Introducing the non-activated La3+ into Y2WO6 brings new excitation bands from violet to visible regions and strong near-infrared emission, while the bands position and intensity depend on the doping concentration. It is interesting to find that doping La3+ into Y2WO6 promotes the oxygen vacancy formation according to the first-principle calculation, Raman spectrum, and synchrotron radiation analysis. Through the Rietveld refinement and X-ray photoelectron spectroscopy results, La3+ is found to mainly occupy the Y2 (2f) site in low-concentration doped samples. With increasing doping concentration, the La3+ occupation number at the Y3 (4g) site increases faster than those at the Y1 (2e) and Y2 (2f) sites. When La3+ occupies different Y sites, the localized energy states caused by the oxygen vacancy pair change their position in the forbidden band, inducing the variation of the excitation and emission bands. This research proposes a feasible method to tune the oxygen vacancy emission, eliminating the challenge of precisely controlling the calcination atmosphere. PMID:25821078

  19. Medium selection and effect of higher oxygen concentration pulses on Metarhizium anisopliae var. lepidiotum conidial production and quality.

    PubMed

    Tlecuitl-Beristain, Saul; Viniegra-González, Gustavo; Díaz-Godínez, Gerardo; Loera, Octavio

    2010-05-01

    Rice and oat flours were analyzed as media for the production of conidia by M. anisopliae var. lepidiotum. The presence of peptone increased conidia yield regardless of the substrate used; however, the highest yield was achieved on oat flour media. The effect of oxygen on conidia production using oat-peptone medium was also studied at two levels: Normal atmosphere (21% O(2)) and Oxygen-rich pulses (26% O(2)). Maximum conidia production (4.25 x 10(7) conidia cm(-2)) was achieved using 26% O(2) pulses after 156 h of culture, which was higher than 100% relative to conidial levels under normal atmosphere. Conidia yield per gram of biomass was 2.6 times higher with 26% O(2) (1.12 x 10(7) conidia mg(-1)). Conidia quality parameters, such as germination and hydrophobicity, did not show significant differences (P < 0.05) between those treatments. Bioassays parameters, using Tenebrio molitor adults, were analyzed for conidia obtained in both atmospheres and data were fitted to an exponential model. The specific mortality rates were 2.22 and 1.26 days(-1), whereas lethal times for 50% mortality were 3.90 and 4.31 days, for 26% O(2) pulses and 21% O(2) atmosphere, respectively. These results are relevant for production processes since an oxygen increase allowed superior levels of conidia by M. anisopliae without altering quality parameters and virulence toward Tenebrio molitor adults. PMID:20039138

  20. Selective gas transfer through binary polymeric systems based on block-copolymers.

    PubMed

    Beckman, I N; Teplyakov, V V

    2015-08-01

    Evaluation of several versions of phenomenological theory of gas permeability in selective polymeric membranes is presented, along with the appropriate experimental methods for verification of these versions. The main focus is on a description of stationary mass transfer across membranes (films) containing dispersion inclusions of various shapes of one polymer in a matrix of another. Considering heterogeneous media as a membrane material, it was assumed that diffusion and sorption properties of inclusions are different from those of the dispersing medium. The problem of choosing optimal shape of inclusions is evaluated from the point of view of targeted permeability and selectivity of a membrane with respect to gases. To confirm this theoretical approach, the experimental results of the studies of diffusion (permeability) of permanent gases in polymeric membranes of different structures were used. The target gases included noble gases, hydrogen, nitrogen, oxygen, CO2, and methane. The target polymers included glassy polyvinyltrimethylsilane (PVTMS, T(gl)=155-180 °C), rubberlike polydimethylsiloxane (PDMS, T(gl)=-120 °C), and two-phase block-copolymers based on these materials within a wide range of composition, including the region of phase inversion. In addition, available experimental literature data on gas permeation parameters for polyarylat-polysiloxane, polysulfon-polysiloxane, and polycarbonate-polysiloxane block-copolymers are utilized. In order to describe the stationary gas permeability for two-phase systems (from diluted dispersion of one polymer in another to concentrated dispersion and complete phase inversion) the empiric approaches based on modified Maxwell equations are offered. The requirements for two-phase systems with high permeability and selectivity parameters for gas separation are identified. The permeability parameters are predicted for C1-C4 hydrocarbons in block-copolymers based on PDMS dispersion in PVTMS, phase inversion, and PVTMS

  1. Risk-based audit selection of dairy farms.

    PubMed

    van Asseldonk, M A P M; Velthuis, A G J

    2014-02-01

    Dairy farms are audited in the Netherlands on numerous process standards. Each farm is audited once every 2 years. Increasing demands for cost-effectiveness in farm audits can be met by introducing risk-based principles. This implies targeting subpopulations with a higher risk of poor process standards. To select farms for an audit that present higher risks, a statistical analysis was conducted to test the relationship between the outcome of farm audits and bulk milk laboratory results before the audit. The analysis comprised 28,358 farm audits and all conducted laboratory tests of bulk milk samples 12 mo before the audit. The overall outcome of each farm audit was classified as approved or rejected. Laboratory results included somatic cell count (SCC), total bacterial count (TBC), antimicrobial drug residues (ADR), level of butyric acid spores (BAB), freezing point depression (FPD), level of free fatty acids (FFA), and cleanliness of the milk (CLN). The bulk milk laboratory results were significantly related to audit outcomes. Rejected audits are likely to occur on dairy farms with higher mean levels of SCC, TBC, ADR, and BAB. Moreover, in a multivariable model, maxima for TBC, SCC, and FPD as well as standard deviations for TBC and FPD are risk factors for negative audit outcomes. The efficiency curve of a risk-based selection approach, on the basis of the derived regression results, dominated the current random selection approach. To capture 25, 50, or 75% of the population with poor process standards (i.e., audit outcome of rejected), respectively, only 8, 20, or 47% of the population had to be sampled based on a risk-based selection approach. Milk quality information can thus be used to preselect high-risk farms to be audited more frequently. PMID:24290823

  2. Risk-based audit selection of dairy farms.

    PubMed

    van Asseldonk, M A P M; Velthuis, A G J

    2014-02-01

    Dairy farms are audited in the Netherlands on numerous process standards. Each farm is audited once every 2 years. Increasing demands for cost-effectiveness in farm audits can be met by introducing risk-based principles. This implies targeting subpopulations with a higher risk of poor process standards. To select farms for an audit that present higher risks, a statistical analysis was conducted to test the relationship between the outcome of farm audits and bulk milk laboratory results before the audit. The analysis comprised 28,358 farm audits and all conducted laboratory tests of bulk milk samples 12 mo before the audit. The overall outcome of each farm audit was classified as approved or rejected. Laboratory results included somatic cell count (SCC), total bacterial count (TBC), antimicrobial drug residues (ADR), level of butyric acid spores (BAB), freezing point depression (FPD), level of free fatty acids (FFA), and cleanliness of the milk (CLN). The bulk milk laboratory results were significantly related to audit outcomes. Rejected audits are likely to occur on dairy farms with higher mean levels of SCC, TBC, ADR, and BAB. Moreover, in a multivariable model, maxima for TBC, SCC, and FPD as well as standard deviations for TBC and FPD are risk factors for negative audit outcomes. The efficiency curve of a risk-based selection approach, on the basis of the derived regression results, dominated the current random selection approach. To capture 25, 50, or 75% of the population with poor process standards (i.e., audit outcome of rejected), respectively, only 8, 20, or 47% of the population had to be sampled based on a risk-based selection approach. Milk quality information can thus be used to preselect high-risk farms to be audited more frequently.

  3. In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity.

    PubMed

    Trześniewski, Bartek J; Diaz-Morales, Oscar; Vermaas, David A; Longo, Alessandro; Bras, Wim; Koper, Marc T M; Smith, Wilson A

    2015-12-01

    Ni-based oxygen evolution catalysts (OECs) are cost-effective and very active materials that can be potentially used for efficient solar-to-fuel conversion process toward sustainable energy generation. We present a systematic spectroelectrochemical characterization of two Fe-containing Ni-based OECs, namely nickel borate (Ni(Fe)-B(i)) and nickel oxyhydroxide (Ni(Fe)OOH). Our Raman and X-ray absorption spectroscopy results show that both OECs are chemically similar, and that the borate anions do not play an apparent role in the catalytic process at pH 13. Furthermore, we show spectroscopic evidence for the generation of negatively charged sites in both OECs (NiOO(-)), which can be described as adsorbed "active oxygen". Our data conclusively links the OER activity of the Ni-based OECs with the generation of those sites on the surface of the OECs. The OER activity of both OECs is strongly pH dependent, which can be attributed to a deprotonation process of the Ni-based OECs, leading to the formation of the negatively charged surface sites that act as OER precursors. This work emphasizes the relevance of the electrolyte effect to obtain catalytically active phases in Ni-based OECs, in addition to the key role of the Fe impurities. This effect should be carefully considered in the development of Ni-based compounds meant to catalyze the OER at moderate pHs. Complementarily, UV-vis spectroscopy measurements show strong darkening of those catalysts in the catalytically active state. This coloration effect is directly related to the oxidation of nickel and can be an important factor limiting the efficiency of solar-driven devices utilizing Ni-based OECs.

  4. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters

    SciTech Connect

    Esswein, AJ; Surendranath, Y; Reece, SY; Nocera, DG

    2011-02-01

    A high surface area electrode is functionalized with cobalt-based oxygen evolving catalysts (Co-OEC = electrodeposited from pH 7 phosphate, Pi, pH 8.5 methylphosphonate, MePi, and pH 9.2 borate electrolyte, Bi). Co-OEC prepared from MePi and operated in Pi and Bi achieves a current density of 100 mA cm(-2) for water oxidation at 442 and 363 mV overpotential, respectively. The catalyst retains activity in near-neutral pH buffered electrolyte in natural waters such as those from the Charles River (Cambridge, MA) and seawater (Woods Hole, MA). The efficacy and ease of operation of anodes functionalized with Co-OEC at appreciable current density together with its ability to operate in near neutral pH buffered natural water sources bodes well for the translation of this catalyst to a viable renewable energy storage technology.

  5. Understanding Iron-based catalysts with efficient Oxygen reduction activity from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Hafiz, Hasnain; Barbiellini, B.; Jia, Q.; Tylus, U.; Strickland, K.; Bansil, A.; Mukerjee, S.

    2015-03-01

    Catalysts based on Fe/N/C clusters can support the oxygen-reduction reaction (ORR) without the use of expensive metals such as platinum. These systems can also prevent some poisonous species to block the active sites from the reactant. We have performed spin-polarized calculations on various Fe/N/C fragments using the Vienna Ab initio Simulation Package (VASP) code. Some results are compared to similar calculations obtained with the Gaussian code. We investigate the partial density of states (PDOS) of the 3d orbitals near the Fermi level and calculate the binding energies of several ligands. Correlations of the binding energies with the 3d electronic PDOS's are used to propose electronic descriptors of the ORR associated with the 3d states of Fe. We also suggest a structural model for the most active site with a ferrous ion (Fe2+) in the high spin state or the so-called Doublet 3 (D3).

  6. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation.

    PubMed

    Cadet, Jean; Wagner, J Richard

    2013-02-01

    Emphasis has been placed in this article dedicated to DNA damage on recent aspects of the formation and measurement of oxidatively generated damage in cellular DNA in order to provide a comprehensive and updated survey. This includes single pyrimidine and purine base lesions, intrastrand cross-links, purine 5',8-cyclonucleosides, DNA-protein adducts and interstrand cross-links formed by the reactions of either the nucleobases or the 2-deoxyribose moiety with the hydroxyl radical, one-electron oxidants, singlet oxygen, and hypochlorous acid. In addition, recent information concerning the mechanisms of formation, individual measurement, and repair-rate assessment of bipyrimidine photoproducts in isolated cells and human skin upon exposure to UVB radiation, UVA photons, or solar simulated light is critically reviewed. PMID:23378590

  7. Faraday rotation spectroscopy based on permanent magnets for sensitive detection of oxygen at atmospheric conditions.

    PubMed

    Brumfield, Brian; Wysocki, Gerard

    2012-12-31

    A low-power Faraday rotation spectroscopy system that uses permanent rare-earth magnets has been developed for detection of O₂ at 762 nm. The experimental signals are generated using laser wavelength modulation combined with a balanced detection scheme that permits quantum shot noise limited performance. A noise equivalent polarization rotation angle of 8 × 10⁻⁸ rad/Hz¹/² is estimated from the experimental noise, and this agrees well with a theoretical model based on Jones calculus. A bandwidth normalized minimum detection limit to oxygen of 6 ppmv/Hz¹/² with an ultimate minimum of 1.3 ppmv at integration times of ~1 minute has been demonstrated.

  8. Dissolved oxygen prediction using a possibility theory based fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Khan, Usman T.; Valeo, Caterina

    2016-06-01

    A new fuzzy neural network method to predict minimum dissolved oxygen (DO) concentration in a highly urbanised riverine environment (in Calgary, Canada) is proposed. The method uses abiotic factors (non-living, physical and chemical attributes) as inputs to the model, since the physical mechanisms governing DO in the river are largely unknown. A new two-step method to construct fuzzy numbers using observations is proposed. Then an existing fuzzy neural network is modified to account for fuzzy number inputs and also uses possibility theory based intervals to train the network. Results demonstrate that the method is particularly well suited to predicting low DO events in the Bow River. Model performance is compared with a fuzzy neural network with crisp inputs, as well as with a traditional neural network. Model output and a defuzzification technique are used to estimate the risk of low DO so that water resource managers can implement strategies to prevent the occurrence of low DO.

  9. Dissolved oxygen prediction using a possibility-theory based fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Khan, U. T.; Valeo, C.

    2015-11-01

    A new fuzzy neural network method to predict minimum dissolved oxygen (DO) concentration in a highly urbanised riverine environment (in Calgary, Canada) is proposed. The method uses abiotic (non-living, physical and chemical attributes) as inputs to the model, since the physical mechanisms governing DO in the river are largely unknown. A new two-step method to construct fuzzy numbers using observations is proposed. Then an existing fuzzy neural network is modified to account for fuzzy number inputs and also uses possibility-theory based intervals to train the network. Results demonstrate that the method is particularly well suited to predict low DO events in the Bow River. Model output and a defuzzification technique is used to estimate the risk of low DO so that water resource managers can implement strategies to prevent the occurrence of low DO.

  10. Evaluation of denture base resin after disinfection method using reactive oxygen species (ROS).

    PubMed

    Odagiri, Ken; Sawada, Tomofumi; Hori, Norio; Seimiya, Kazuhide; Otsuji, Takeshi; Hamada, Nobushiro; Kimoto, Katsuhiko

    2012-01-01

    The effects of certain disinfectants on the stability of a polymethyl methacrylate denture base resin were investigated, including those of a novel disinfection method using reactive oxygen species (ROS). The surface roughness and flexural strength were analyzed to assess the effects of the disinfectants on material properties. The following disinfectants were tested: 5% sodium hypochlorite, 70% alcohol, and ROS. Furthermore, the attachment of Candida albicans to the resin surface was investigated. The disinfection method using sodium hypochlorite significantly increased the surface roughness and decreased flexural strength. The surface roughness and flexural strength of the ROS-treated specimens did not significantly differ from those of the control specimens, and the ROS-treated specimens exhibited diminished Candida attachment. These results demonstrate that the ROS disinfection method preserves acceptable material stability levels in polymethyl methacrylate resins.

  11. Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation.

    PubMed

    Chen, Juan; Stefflova, Klara; Niedre, Mark J; Wilson, Brian C; Chance, Britton; Glickson, Jerry D; Zheng, Gang

    2004-09-22

    We report a new concept for type-II photosensitization, based on incorporating the photosensitizer (PS) and a singlet-oxygen (1O2) quenching/scavenging molecule onto a disease-targeting linker, such that the PS becomes activatable by light only when targeting has occurred. In this first proof-of-concept report, a model photosensitizing beacon was synthesized containing a pyropheophorbide as the PS and a carotenoid as the 1O2 quencher. These were kept in close proximity by the self-folding of a caspase-3-specific peptide sequence. Upon caspase-3-induced cleavage, the 1O2 production increased markedly, as measured directly by 1O2 near-infrared luminescence and lifetime measurements.

  12. Functionalized ZnO/ZnO2 n-N straddling heterostructure achieved by oxygen plasma bombardment for highly selective methane sensing.

    PubMed

    Ghosh, Sugato; Bhattacharyya, Raghunath; Saha, Hiranmay; Chaudhuri, Chirasree Roy; Mukherjee, Nillohit

    2015-11-01

    Metal oxide semiconductors have been extensively used as reducing gas sensors with major limitations regarding selectivity and operating temperature which is relatively high for most of the cases making the device unusable in some critical situations. Higher operating temperature is also associated with the higher power consumption, which goes against the miniaturization of the device. In order to resolve these problems, here we introduced a ZnO/ZnO2 straddling 'n-N' isotype heterostructure as a highly selective and sensitive methane sensor at moderately low operating temperature. ZnO-Zn(OH)2 precursor films were treated in oxygen plasma in a pulsed DC magnetron sputtering system. Morphological analyses by field emission scanning electron microscopy showed flake like growth of the grains with high surface roughness, whereas X-ray diffraction (XRD) showed polycrystalline nature of the films. Polycrystalline ZnO2 peaks were observed in the XRD pattern in addition to the existing ZnO, which indicates modification of the precursor to oxygen rich heterostructure of ZnO/ZnO2. This was further supported by the shifting of the O1s peak in the X-ray photoelectron spectroscopic analysis. Plasma treated ZnO/ZnO2 heterostructured films were found to show high selectivity towards methane (with respect to H2S and CO) and sensitivity (∼96%) at a comparatively low operating temperature. PMID:26435126

  13. Antibiotic Selection Pressure Determination through Sequence-Based Metagenomics.

    PubMed

    Willmann, Matthias; El-Hadidi, Mohamed; Huson, Daniel H; Schütz, Monika; Weidenmaier, Christopher; Autenrieth, Ingo B; Peter, Silke

    2015-12-01

    The human gut forms a dynamic reservoir of antibiotic resistance genes (ARGs). Treatment with antimicrobial agents has a significant impact on the intestinal resistome and leads to enhanced horizontal transfer and selection of resistance. We have monitored the development of intestinal ARGs over a 6-day course of ciprofloxacin (Cp) treatment in two healthy individuals by using sequenced-based metagenomics and different ARG quantification methods. Fixed- and random-effect models were applied to determine the change in ARG abundance per defined daily dose of Cp as an expression of the respective selection pressure. Among various shifts in the composition of the intestinal resistome, we found in one individual a strong positive selection for class D beta-lactamases which were partly located on a mobile genetic element. Furthermore, a trend to a negative selection has been observed with class A beta-lactamases (-2.66 hits per million sample reads/defined daily dose; P = 0.06). By 4 weeks after the end of treatment, the composition of ARGs returned toward their initial state but to a different degree in both subjects. We present here a novel analysis algorithm for the determination of antibiotic selection pressure which can be applied in clinical settings to compare therapeutic regimens regarding their effect on the intestinal resistome. This information is of critical importance for clinicians to choose antimicrobial agents with a low selective force on their patients' intestinal ARGs, likely resulting in a diminished spread of resistance and a reduced burden of hospital-acquired infections with multidrug-resistant pathogens. PMID:26369961

  14. Antibiotic Selection Pressure Determination through Sequence-Based Metagenomics

    PubMed Central

    El-Hadidi, Mohamed; Huson, Daniel H.; Schütz, Monika; Autenrieth, Ingo B.; Peter, Silke

    2015-01-01

    The human gut forms a dynamic reservoir of antibiotic resistance genes (ARGs). Treatment with antimicrobial agents has a significant impact on the intestinal resistome and leads to enhanced horizontal transfer and selection of resistance. We have monitored the development of intestinal ARGs over a 6-day course of ciprofloxacin (Cp) treatment in two healthy individuals by using sequenced-based metagenomics and different ARG quantification methods. Fixed- and random-effect models were applied to determine the change in ARG abundance per defined daily dose of Cp as an expression of the respective selection pressure. Among various shifts in the composition of the intestinal resistome, we found in one individual a strong positive selection for class D beta-lactamases which were partly located on a mobile genetic element. Furthermore, a trend to a negative selection has been observed with class A beta-lactamases (−2.66 hits per million sample reads/defined daily dose; P = 0.06). By 4 weeks after the end of treatment, the composition of ARGs returned toward their initial state but to a different degree in both subjects. We present here a novel analysis algorithm for the determination of antibiotic selection pressure which can be applied in clinical settings to compare therapeutic regimens regarding their effect on the intestinal resistome. This information is of critical importance for clinicians to choose antimicrobial agents with a low selective force on their patients' intestinal ARGs, likely resulting in a diminished spread of resistance and a reduced burden of hospital-acquired infections with multidrug-resistant pathogens. PMID:26369961

  15. Antibiotic Selection Pressure Determination through Sequence-Based Metagenomics.

    PubMed

    Willmann, Matthias; El-Hadidi, Mohamed; Huson, Daniel H; Schütz, Monika; Weidenmaier, Christopher; Autenrieth, Ingo B; Peter, Silke

    2015-12-01

    The human gut forms a dynamic reservoir of antibiotic resistance genes (ARGs). Treatment with antimicrobial agents has a significant impact on the intestinal resistome and leads to enhanced horizontal transfer and selection of resistance. We have monitored the development of intestinal ARGs over a 6-day course of ciprofloxacin (Cp) treatment in two healthy individuals by using sequenced-based metagenomics and different ARG quantification methods. Fixed- and random-effect models were applied to determine the change in ARG abundance per defined daily dose of Cp as an expression of the respective selection pressure. Among various shifts in the composition of the intestinal resistome, we found in one individual a strong positive selection for class D beta-lactamases which were partly located on a mobile genetic element. Furthermore, a trend to a negative selection has been observed with class A beta-lactamases (-2.66 hits per million sample reads/defined daily dose; P = 0.06). By 4 weeks after the end of treatment, the composition of ARGs returned toward their initial state but to a different degree in both subjects. We present here a novel analysis algorithm for the determination of antibiotic selection pressure which can be applied in clinical settings to compare therapeutic regimens regarding their effect on the intestinal resistome. This information is of critical importance for clinicians to choose antimicrobial agents with a low selective force on their patients' intestinal ARGs, likely resulting in a diminished spread of resistance and a reduced burden of hospital-acquired infections with multidrug-resistant pathogens.

  16. Fundamental Investigation of Oxygen Reduction Reaction on Rhodium Sulfide-Based Chalcogenides

    SciTech Connect

    Ziegelbauer, J.; Gatewood, D; Gulla, A; Guinel, M; Ernst, F; Ramaker, D; Mukerjee, S

    2009-01-01

    Synchrotron-based X-ray absorption spectroscopy (XAS), including the surface-specific {Delta}XANES technique, is used to investigate the active reaction site for water activation and the oxygen reduction reaction (ORR) on the novel, mixed-phase chalcogenide electrocatalyst RhxSy/C (De Nora). The specific adsorption of water, OH, and O as a function of overpotential is reported. This study builds on a prior communication based solely on interpreting the XAS spectra of RhxSy with respect to the metallic Rh3S4 phase. Here, a more extensive overview of the electrocatalysis is provided on RhxSy/C, the thermally grown Rh2S3/C and Rh3S4/C preferential phases and a standard 30 wt % Rh/C electrocatalyst, including results obtained by X-ray diffraction (XRD), XAS, high-resolution transmission electron imaging, microanalysis, and electrochemical investigations. Heating of the RhxSy catalysts to prepare the two preferential phases causes Rh segregation and the formation of Rh metal particles, and immersion in TFMSA causes S dissolution and the formation of a Rh skin on the RhxSy samples. It is shown that some Rh-Rh interactions are needed to carry out the ORR. This is present on the Rh6 moieties in both the Rh3S4 and RhxSy catalysts, but a partial Rh skin (present from acid dissolution) is also contributing to the ORR observed on RhxSy. This to our knowledge is the first time a reaction site in a multiphase inorganic framework structure has been investigated in terms of electrocatalytic pathway for oxygen reduction.

  17. Direct oxidation of L-sorbose to 2-keto-L-gulonic acid with molecular oxygen on platinum- and palladium-based catalysts

    SciTech Connect

    Broennimann, C.; Bodnar, Z.; Mallat, T.; Baiker, A.; Hug, P.

    1994-11-01

    The selective oxidation of the C1 hydroxyl group of L-sorbose to a carboxylic group without protection of the four other hydroxyl functions was investigated. The reactions were performed in slightly alkaline aqueous solutions with molecular oxygen over various alumina- and carbon-supported Pt and Pd catalysts. Optimum reaction conditions were 50{degrees}C, pH 7.3, and a catalyst:reactant ratio of 1:4 (wt/wt). The lower the pH and the temperature, the higher the selectivity toward 2-keto-L-gluonic acid. Catalyst deactivation was also found to increase with lower pH and temperature. A 5 wt% Pt/alumina catalyst showed the best catalytic performance (67% selectivity at 58% conversion). Promotion with Bi or Pb had a detrimental effect on selectivity for 2-keto-L-gulonic acid. Electrochemical measurements indicated that the reaction occurs in a rather narrow potential range, which corresponds to a moderate oxygen coverage of Pt or Pd. Four types of catalyst deactivation processes were identified, based on XPS and ICP-AES analysis and on the in situ determination of the oxidation state by monitoring the catalyst potential during reaction. A significant chemical poisoning of the active noble metal sites occurred during the initial, destructive adsorption of L-sorbose and during the oxidation reaction. The successive contamination of active sites resulted in overoxidation (too high oxygen coverage of Pt or Pd). The partially oxidized promoters and noble metals were corroded and dissolved in the presence of 2-keto-L-gulonic acid, resulting in an irreversible deactivation. 66 refs., 11 figs., 2 tabs.

  18. Phase diagram of cuprate high-temperature superconductors described by a field theory based on anharmonic oxygen degrees of freedom.

    PubMed

    Hsiao, Jenhao; Martyna, Glenn J; Newns, Dennis M

    2015-03-13

    In high temperature superconductors, although some phenomena such as the Mott transition (MT) at low doping are clearly driven by electron correlations, recent experimental data imply that anharmonic oxygen degrees of freedom-characteristic of perovskite materials-are playing a significant role. A key test of the role of anharmonic oxygen is to reproduce the complex cuprate phase diagram from a simple model. Here, we show that a field theory based on nonlinear coupling to anharmonic oxygens, parametrized from ab initio calculations, quantitatively reproduces the cuprate phase diagram for dopings above the MT. Pairing is mediated by renormalized oxygen vibrations transmuted into excitations of the pseudogap. The observed strong dependence of gap to transition temperature ratio on Tc also emerges from this field theory. This work suggests that including vibrational degrees of freedom is key to developing a complete understanding of the cuprates. PMID:25815959

  19. Improved reset breakdown strength in a HfOx-based resistive memory by introducing RuOx oxygen diffusion barrier

    NASA Astrophysics Data System (ADS)

    Park, Jaesung; Woo, Jiyong; Prakash, Amit; Lee, Sangheon; Lim, Seokjae; Hwang, Hyunsang

    2016-05-01

    We investigated the reset breakdown phenomenon of HfOx-based resistive memory for reliable switching operation in a fully CMOS compatible stack. Through the understanding on the effect of electrode materials and device area, our findings show that observed failure is attributed to additional oxygen vacancies close to the electrode interface, where switching is occurred. Therefore, RuOx serving as an oxygen diffusion barrier was introduced to suppress the generation of unwanted oxygen vacancies by preventing out-diffusion of oxygen through the electrode. As a result, significantly enhanced breakdown strength in HfOx/RuOx stack is achieved and resulting in improved cycle endurance with larger on/off ratio.

  20. Performance-based selection of likelihood models for phylogeny estimation.

    PubMed

    Minin, Vladimir; Abdo, Zaid; Joyce, Paul; Sullivan, Jack

    2003-10-01

    Phylogenetic estimation has largely come to rely on explicitly model-based methods. This approach requires that a model be chosen and that that choice be justified. To date, justification has largely been accomplished through use of likelihood-ratio tests (LRTs) to assess the relative fit of a nested series of reversible models. While this approach certainly represents an important advance over arbitrary model selection, the best fit of a series of models may not always provide the most reliable phylogenetic estimates for finite real data sets, where all available models are surely incorrect. Here, we develop a novel approach to model selection, which is based on the Bayesian information criterion, but incorporates relative branch-length error as a performance measure in a decision theory (DT) framework. This DT method includes a penalty for overfitting, is applicable prior to running extensive analyses, and simultaneously compares all models being considered and thus does not rely on a series of pairwise comparisons of models to traverse model space. We evaluate this method by examining four real data sets and by using those data sets to define simulation conditions. In the real data sets, the DT method selects the same or simpler models than conventional LRTs. In order to lend generality to the simulations, codon-based models (with parameters estimated from the real data sets) were used to generate simulated data sets, which are therefore more complex than any of the models we evaluate. On average, the DT method selects models that are simpler than those chosen by conventional LRTs. Nevertheless, these simpler models provide estimates of branch lengths that are more accurate both in terms of relative error and absolute error than those derived using the more complex (yet still wrong) models chosen by conventional LRTs. This method is available in a program called DT-ModSel. PMID:14530134

  1. Index Fund Selections with GAs and Classifications Based on Turnover

    NASA Astrophysics Data System (ADS)

    Orito, Yukiko; Motoyama, Takaaki; Yamazaki, Genji

    It is well known that index fund selections are important for the risk hedge of investment in a stock market. The`selection’means that for`stock index futures’, n companies of all ones in the market are selected. For index fund selections, Orito et al.(6) proposed a method consisting of the following two steps : Step 1 is to select N companies in the market with a heuristic rule based on the coefficient of determination between the return rate of each company in the market and the increasing rate of the stock price index. Step 2 is to construct a group of n companies by applying genetic algorithms to the set of N companies. We note that the rule of Step 1 is not unique. The accuracy of the results using their method depends on the length of time data (price data) in the experiments. The main purpose of this paper is to introduce a more`effective rule’for Step 1. The rule is based on turnover. The method consisting of Step 1 based on turnover and Step 2 is examined with numerical experiments for the 1st Section of Tokyo Stock Exchange. The results show that with our method, it is possible to construct the more effective index fund than the results of Orito et al.(6). The accuracy of the results using our method depends little on the length of time data (turnover data). The method especially works well when the increasing rate of the stock price index over a period can be viewed as a linear time series data.

  2. The Unique Gas-Phase Chemistry of the [AuO](+) /CH4 Couple: Selective Oxygen-Atom Transfer to, Rather than Hydrogen-Atom Abstraction from, Methane.

    PubMed

    Zhou, Shaodong; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2016-08-26

    The thermal reaction of [AuO](+) with methane has been explored using FT-ICR mass spectrometry complemented by high-level quantum chemical calculations. In contrast to the previously studied congener [CuO](+) , and to [AgO](+) , [AuO](+) reacts with CH4 exclusively via oxygen-atom transfer to form CH3 OH, and a novel mechanistic scenario for this selective oxidation process has been revealed. Also, the origin of the inertness of the [AgO](+) /CH4 couple has been addressed computationally. PMID:27390885

  3. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    PubMed

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process. PMID:25251943

  4. Sensitive hydrogen sensor based on selectively infiltrated photonic crystal fiber with Pt-loaded WO₃ coating.

    PubMed

    Wang, Ying; Wang, D N; Yang, Fan; Li, Zhi; Yang, Minghong

    2014-07-01

    A sensitive hydrogen sensing device based on a selectively infiltrated photonic crystal fiber (PCF) coated with Pt-loaded WO₃ is demonstrated. With Pt-loaded WO₃ coating acting as the catalytic layer, hydrogen undergoes an exothermic reaction with oxygen and releases heat when the device is exposed to gas mixtures of air and hydrogen, which induces local temperature change in the PCF and hence leads to the resonant wavelength shift of the proposed device. The maximum wavelength shift of 98.5 nm is obtained with a 10-mm-long infiltrated PCF for 4% (v/v) H₂ concentration, and a hydrogen sensitivity of 32.3 nm/% (v/v) H₂ is achieved within the range of 1%-4% (v/v) H₂ in air. PMID:24978759

  5. Direct Regularized Estimation of Retinal Vascular Oxygen Tension Based on an Experimental Model

    PubMed Central

    Yildirim, Isa; Ansari, Rashid; Yetik, I. Samil; Shahidi, Mahnaz

    2014-01-01

    Phosphorescence lifetime imaging is commonly used to generate oxygen tension maps of retinal blood vessels by classical least squares (LS) estimation method. A spatial regularization method was later proposed and provided improved results. However, both methods obtain oxygen tension values from the estimates of intermediate variables, and do not yield an optimum estimate of oxygen tension values, due to their nonlinear dependence on the ratio of intermediate variables. In this paper, we provide an improved solution by devising a regularized direct least squares (RDLS) method that exploits available knowledge in studies that provide models of oxygen tension in retinal arteries and veins, unlike the earlier regularized LS approach where knowledge about intermediate variables is limited. The performance of the proposed RDLS method is evaluated by investigating and comparing the bias, variance, oxygen tension maps, 1-D profiles of arterial oxygen tension, and mean absolute error with those of earlier methods, and its superior performance both quantitatively and qualitatively is demonstrated. PMID:23732915

  6. Distant protonated pyridine groups in water-soluble iron porphyrin electrocatalysts promote selective oxygen reduction to water

    SciTech Connect

    Matson, Benjamin D.; Carver, Colin T.; Von Ruden, Amber L.; Yang, Jenny Y.; Raugei, Simone; Mayer, James M.

    2012-11-08

    Fe(III)-meso-tetra(pyridyl)porphines are selective electrocatalysts for the reduction of dioxygen to water in aqueous acidic solution. The 2-pyridyl derivatives, both the triflate and chloride salts, are more selective than the isomeric 4-pyridyl complexes. The improved selectivity of is ascribed to the inward-pointing pyridinium groups acting as intramolecular proton relays. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  7. Long-chain bases, phosphatidic acid, MAPKs, and reactive oxygen species as nodal signal transducers in stress responses in Arabidopsis

    PubMed Central

    Saucedo-García, Mariana; Gavilanes-Ruíz, Marina; Arce-Cervantes, Oscar

    2015-01-01

    Due to their sessile condition, plants have developed sensitive, fast, and effective ways to contend with environmental changes. These mechanisms operate as informational wires conforming extensive and intricate networks that are connected in several points. The responses are designed as pathways orchestrated by molecules that are transducers of protein and non-protein nature. Their chemical nature imposes selective features such as specificity, formation rate, and generation site to the informational routes. Enzymes such as mitogen-activated protein kinases and non-protein, smaller molecules, such as long-chain bases, phosphatidic acid, and reactive oxygen species are recurrent transducers in the pleiotropic responses to biotic and abiotic stresses in plants. In this review, we considered these four components as nodal points of converging signaling pathways that start from very diverse stimuli and evoke very different responses. These pleiotropic effects may be explained by the potentiality that every one of these four mediators can be expressed from different sources, cellular location, temporality, or magnitude. Here, we review recent advances in our understanding of the interplay of these four specific signaling components in Arabidopsis cells, with an emphasis on drought, cold and pathogen stresses. PMID:25763001

  8. Quantum-chemical study of the effect of oxygen on the formation of active sites of silver clusters during the selective adsorption of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Lanin, S. N.; Polynskaya, Yu. G.; Pichugina, D. A.; Nguen, V.; Beletskaya, A. V.; Kuz'menko, N. E.; Shestakov, A. F.

    2013-09-01

    Density functional theory (PBE with a modified Dirac-Coulomb-Breit Hamiltonian) is used to simulate the adsorption of hydrocarbons (C2H2, C2H4, C2H6) on the surface of a sorbent containing Ag0, Agδ+, and AgO sites. The dynamics of change in the structural characteristics of Ag n ( n ≤ 10) is analyzed and the adsorption of oxygen on Ag8 and Ag10 is studied to select the adsorption site model. Studying the interaction of hydrocarbons with Ag8, Ag10, Ag{10/+}, Ag10O, and Ag10O2 clusters reveals that the presence of oxygen leads to an increase in the activation of unsaturated hydrocarbons, and the adsorption energy of C2H2 increases tenfold. It is found that the role of adsorbed oxygen is not only to form adsorption sites of hydrocarbons (Agδ+) but also to bind C2H2 and C2H4 directly to the sorbent's surface.

  9. Oxygen sensing glucose biosensors based on alginate nano-micro systems

    NASA Astrophysics Data System (ADS)

    Chaudhari, Rashmi; Joshi, Abhijeet; Srivastava, Rohit

    2014-04-01

    Clinically glucose monitoring in diabetes management is done by point-measurement. However, an accurate, continuous glucose monitoring, and minimally invasive method is desirable. The research aims at developing fluorescence-mediated glucose detecting biosensors based on near-infrared radiation (NIR) oxygen sensitive dyes. Biosensors based on Glucose oxidase (GOx)-Rudpp loaded alginate microspheres (GRAM) and GOx-Platinum-octaethylporphyrin (PtOEP)-PLAalginate microsphere system (GPAM) were developed using air-driven atomization and characterized using optical microscopy, CLSM, fluorescence spectro-photometry etc. Biosensing studies were performed by exposing standard solutions of glucose. Uniform sized GRAM and GPAM with size 50+/-10μm were formed using atomization. CLSM imaging of biosensors suggests that Rudpp and PtOEP nanoparticles are uniformly distributed in alginate microspheres. The GRAM and GPAM showed a good regression constant of 0.974 and of 0.9648 over a range of 0-10 mM of glucose with a high sensitivity of 3.349%/mM (625 nm) and 2.38%/mM (645 nm) at 10 mM of glucose for GRAM and GPAM biosensor. GRAM and GPAM biosensors show great potential in development of an accurate and minimally invasive glucose biosensor. NIR dye based assays can aid sensitive, minimally-invasive and interference-free detection of glucose in diabetic patients.

  10. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis.

    PubMed

    Shi, Lihua; Bielawski, Jacek; Mu, Jinye; Dong, Haili; Teng, Chong; Zhang, Jian; Yang, Xiaohui; Tomishige, Nario; Hanada, Kentaro; Hannun, Yusuf A; Zuo, Jianru

    2007-12-01

    Sphingolipids have been suggested to act as second messengers for an array of cellular signaling activities in plant cells, including stress responses and programmed cell death (PCD). However, the mechanisms underpinning these processes are not well understood. Here, we report that an Arabidopsis mutant, fumonisin B1 resistant 11-1 (fbr 11-1), which fails to generate reactive oxygen intermediates (ROIs), is incapable of initiating PCD when the mutant is challenged by fumonisin B(1) (FB(1)), a specific inhibitor of ceramide synthase. Molecular analysis indicated that FBR11 encodes a long-chain base 1 (LCB1) subunit of serine palmitoyltransferase (SPT), which catalyzes the first rate-limiting step of de novo sphingolipid synthesis. Mass spectrometric analysis of the sphingolipid concentrations revealed that whereas the fbr 11-1 mutation did not affect basal levels of sphingoid bases, the mutant showed attenuated formation of sphingoid bases in response to FB(1). By a direct feeding experiment, we show that the free sphingoid bases dihydrosphingosine, phytosphingosine and sphingosine efficiently induce ROI generation followed by cell death. Conversely, ROI generation and cell death induced by dihydrosphingosine were specifically blocked by its phosphorylated form dihydrosphingosine-1-phosphate in a dose-dependent manner, suggesting that the maintenance of homeostasis between a free sphingoid base and its phosphorylated derivative is critical to determining the cell fate. Because alterations of the sphingolipid level occur prior to the ROI production, we propose that the free sphingoid bases are involved in the control of PCD in Arabidopsis, presumably through the regulation of the ROI level upon receiving different developmental or environmental cues.

  11. Automatic key frame selection using a wavelet-based approach

    NASA Astrophysics Data System (ADS)

    Campisi, Patrizio; Longari, Andrea; Neri, Alessandro

    1999-10-01

    In a multimedia framework, digital image sequences (videos) are by far the most demanding as far as storage, search, browsing and retrieval requirements are concerned. In order to reduce the computational burden associated to video browsing and retrieval, a video sequence is usually decomposed into several scenes (shots) and each of them is characterized by means of some key frames. The proper selection of these key frames, i.e. the most representative frames in the scene, is of paramount importance for computational efficiency. In this contribution a novel key frame extraction technique based on the wavelet analysis is presented. Experimental results show the capability of the proposed algorithm to select key frames properly summarizing the shot.

  12. Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes.

    PubMed

    Wang, Xiaoju; Falk, Magnus; Ortiz, Roberto; Matsumura, Hirotoshi; Bobacka, Johan; Ludwig, Roland; Bergelin, Mikael; Gorton, Lo; Shleev, Sergey

    2012-01-15

    We report on the fabrication and characterisation of a gold-nanoparticle (AuNP)-based mediatorless sugar/oxygen biofuel cell (BFC) operating in neutral sugar-containing buffers and human physiological fluids, such as blood and plasma. First, Corynascus thermophilus cellobiose dehydrogenase (CtCDH) and Myrothecium verrucaria bilirubin oxidase (MvBOx), used as anodic and cathodic bioelements, respectively, were immobilised on gold electrodes modified with 20 nm AuNPs. Detailed characterisation and optimisation of a new CDH/AuNP-based bioanode were performed and the following fundamental parameters were obtained: (i) the redox potential of the haem-containing centre of the enzyme was measured to be 75 mV vs. NHE, (ii) the surface coverage of CtCDH was found to be 0.65 pmol cm(-2) corresponding to a sub-monolayer coverage of the thiol-modified AuNPs by the enzyme, (iii) a turnover number for CtCDH immobilised on thiol-modified AuNPs was calculated to be ca. 0.5 s(-1), and (iv) the maximal current densities as high as 40 μA cm(-2) were registered in sugar-containing neutral buffers. Second, both biomodified electrodes, namely the CtCDH/AuNP-based bioanode and the MvBOx/AuNP-based biocathode, were combined into a functional BFC and the designed biodevices were carefully investigated. The following characteristics of the mediator-, separator- and membrane-less, miniature BFC were obtained: in phosphate buffer; an open-circuit voltage of 0.68 V, a maximum power density of 15 μW cm(-2) at a cell voltage of 0.52 V and in human blood; an open-circuit voltage of 0.65 V, a maximum power density of 3 μW cm(-2) at a cell voltage of 0.45 V, respectively. The estimated half-lives of the biodevices were found to be >12, <8, and <2 h in a sugar-containing buffer, human plasma, and blood, respectively. The basic characteristics of mediatorless sugar/oxygen BFCs were significantly improved compared with previously designed biodevices, because of the usage of three-dimensional Au

  13. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M.; Elzatahry, Ahmed A.; Zheng, Gengfeng

    2015-08-01

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g-1, with excellent capacitance retention (>90%) at 10 A g-1 for over 10 000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm-2 at 1.65 V vs. the RHE.A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific

  14. OXYGEN TENSION MEASUREMENT BY A METHOD OF TIME SELECTION USING THE STATIC PLATINUM ELECTRODE WITH ALTERNATING POTENTIAL

    PubMed Central

    Olson, Rodney A.; Brackett, Frederick S.; Crickard, Robert G.

    1949-01-01

    1. The possibility of obtaining sustained and reproducible results in the analysis of dissolved oxygen with simple platinum electrodes by means of the application of a periodic potential pattern was explored over a wide range of frequencies and with a variety of wave forms. 2. Satisfactory results were obtained by the application in the frequency range of 5 to 10 C.P.M. of a square wave consisting of a positive and a negative pulse with interposed shorting periods and observing the current flowing at the end of each successive negative pulse. This was found to be linearly proportional to O2 concentration for a pulse duration of the order of 1 second when the RC constant of the circuit was sufficiently small. 3. An instrument was developed to provide the required wave form and record the terminal currents of the negative pulses. The instrument provides either for recording of current voltage curves (polarograms) or for continuous recording at a fixed voltage of diffusion limited current values. 4. Typical measurements of oxygen uptake with yeast suspensions illustrate the application of the technique to problems requiring frequent determinations during short intervals. 5. Applications of this technique to biological and other problems are indicated with its limitations. PMID:18131871

  15. [Wavelength selection of the oximetry based on test analysis of variance].

    PubMed

    Lin, Ling; Li, Wei; Zeng, Rui-Li; Liu, Rui-An; Li, Gang; Wu, Xiao-Rong

    2014-07-01

    In order to improve the precision and reliability of the spectral measurement of blood oxygen saturation, and enhance the validity of the measurement, the method of test analysis of variance was employed. Preferred wavelength combination was selected by the analysis of the distribution of the coefficient of oximetry at different wavelength combinations and rational use of statistical theory. Calculated by different combinations of wavelengths (660 and 940 nm, 660 and 805 nm and 805 and 940 nm) through the clinical data under different oxygen saturation, the single factor test analysis of variance model of the oxygen saturation coefficient was established, the relative preferabe wavelength combination can be selected by comparative analysis of different combinations of wavelengths from the photoelectric volume pulse to provide a reliable intermediate data for further modeling. The experiment results showed that the wavelength combination of 660 and 805 nm responded more significantly to the changes in blood oxygen saturation and the introduced noise and method error were relatively smaller of this combination than other wavelength combination, which could improve the measurement accuracy of oximetry. The study applied the test variance analysis to the selection of wavelength combination in the blood oxygen result measurement, and the result was significant. The study provided a new idea for the blood oxygen measurements and other related spectroscopy quantitative analysis. The method of test analysis of variance can help extract the valid information which represents the measured values from the spectrum.

  16. Shape-based feature selection for microcalcification evaluation

    NASA Astrophysics Data System (ADS)

    Marti, Joan; Cufi, Xavier; Regincos, Jordi; Espanol, Josep; Pont, Josep; Barcelo, Carles

    1998-06-01

    This work focuses on the selection of a set of shape-based features in order to assist radiologists in differentiating between malignant and benignant clustered microcalcifications in mammograms. The results obtained allow the creation of a model for the evaluation of the benignant or malignant character of the microcalcifications in a mammogram, based exclusively on the following parameters: number of clusters, number of holes, area, Feret elongation, roughness and elongation. The performance of the classification scheme is close to the mean performance of three expert radiologists, which allows to consider the proposed method for assisting the diagnosis and encourages to continue the investigation in this field. Additionally, the work is based on an unpublished database formed by patients of the Regional Health Area of Girona, which in the future may contribute to increase the digital mammogram databases.

  17. Optically based quantification of absolute cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution in rodents

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Sakadžić, Sava; Vinogradov, Sergei A.; Boas, David A.

    2010-02-01

    Measuring oxygen delivery in brain tissue is important for identifying the pathophysiological changes associated with brain injury and various diseases such as cancer, stroke, and Alzheimer's disease. We have developed a multi-modal imaging system for minimally invasive measurement of cerebral oxygenation and blood flow in small animals with high spatial resolution. The system allows for simultaneous measurement of blood flow using Fourier-domain optical coherence tomography, and oxygen partial pressure (pO2) using either confocal or multiphoton phosphorescence lifetime imaging with exogenous porphyrin-based dyes sensitive to dissolved oxygen. Here we present the changes in pO2 and blood flow in superficial cortical vessels of Sprague Dawley rats in response to conditions such as hypoxia, hyperoxia, and functional stimulation. pO2 measurements display considerable heterogeneity over distances that cannot be resolved with more widely used oxygen-monitoring techniques such as BOLD-fMRI. Large increases in blood flow are observed in response to functional stimulation and hypoxia. Our system allows for quantification of cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution, providing a better understanding of metabolic dynamics during functional stimulation and under various neuropathologies. Ultimately, better insight into the underlying mechanisms of neuropathologies will facilitate the development of improved therapeutic strategies to minimize damage to brain tissue.

  18. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    SciTech Connect

    Ju, Hua; Li, Zhihu; Xu, Yanhui

    2015-04-15

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm{sup −2} for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm{sup −2} (the real surface area), and the reaction rate constant has an order of magnitude of 10{sup −7}–10{sup −6} cm s{sup −1}. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER.

  19. Method of assessing blood oxygenation in microcirculation vessels based on Doppler approach

    NASA Astrophysics Data System (ADS)

    Sokolov, Vladimir G.; Korsi, Larissa V.; Egorov, Sergei Y.

    2001-06-01

    Combination of laser Doppler flowmetry and pulse oximetry methods allows for the direct assessment of oxygen supply to tissues at the microcirculatory level, namely, in that part of the vascular network where the transcapillary exchange takes place that is responsible for saturating tissues with oxygen. The microcirculation system comprises arterial and venous microvascular parts that differ in blood flow velocities. Frequency separation of the photodetector signal components related to different velocity ranges makes possible to distinguish the hemodynamic processes in these two parts of the microvascular system. Moreover, numerous studies of collective oscillatory processes in hemodynamics reveal that cardio-oscillations are more pronounced in arterioles, whereas venous hemodynamics is mostly influenced by the breath rhythm. Taking account of the above phenomena allows developing a signal-filtration system for separate characterization of blood-oxygenation states in arterial and venous blood flows. Light absorbance in the skin depends on both light wavelength and blood-oxygenation level. Processing the signals obtained with a two-channel dual-wavelength (630 and 1115 nm) laser Doppler flowmeter provides information about blood oxygenation levels at the entrance and exit of the microvascular system and allows assessing the specific levels of oxygenation levels at the entrance and exit of the microvascular system and allows assessing the specific levels of oxygen consumption in tissues. In particular, this approach allows revealing pathogenic processes resulting from hyper- and hypo-oxygenation in tissues. For instance, rapidly growing malignant tumors are characterized by intensive metabolism, rapid formation of capillaries, and active transcapillary oxygen exchange that results in higher level of oxygen diffusion into tissue, while the level of oxygen is lowered in the microvascular veins.

  20. HEMORHEOLOGICAL IMPLICATIONS OF PERFLUOROCARBON BASED OXYGEN CARRIER INTERACTION WITH COLLOID PLASMA EXPANDERS AND BLOOD

    PubMed Central

    Vásquez, Diana M.; Ortiz, Daniel; Alvarez, Oscar A.; Briceño, Juan C.; Cabrales, Pedro

    2013-01-01

    Perfluorocarbon (PFC) emulsion based oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically-used PEs. The rheological behavior of the mixtures was analyzed in parallel with in vivo analysis of blood flow in microvessels using intravital microscopy when administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation, and increased blood viscosity. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo relative to non-aggregating mixtures of PFC and PEs. For the PEs evaluated, albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rate (e.g. arterioles, venules, and pulmonary circulation) because aggregates could cause capillary occlusion, decrease perfusion, pulmonary emboli, or focal ischemia. PMID:23606592

  1. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction.

    PubMed

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Zheng, Gengfeng

    2015-09-14

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g(-1), with excellent capacitance retention (>90%) at 10 A g(-1) for over 10,000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm(-2) at 1.65 V vs. the RHE.

  2. Peroxide-based oxygen generating topical wound dressing for enhancing healing of dermal wounds.

    PubMed

    Chandra, Prafulla K; Ross, Christina L; Smith, Leona C; Jeong, Seon S; Kim, Jaehyun; Yoo, James J; Harrison, Benjamin S

    2015-01-01

    Oxygen generating biomaterials represent a new trend in regenerative medicine that aims to generate and supply oxygen at the site of requirement, to support tissue healing and regeneration. To enhance the healing of dermal wounds, we have developed a highly portable, in situ oxygen generating wound dressings that uses sodium percarbonate (SPO) and calcium peroxide (CPO) as chemical oxygen sources. The dressing continuously generated oxygen for more than 3 days, after which it was replaced. In the in vivo testing on porcine full-thickness porcine wound model, the SPO/CPO dressing showed enhanced wound healing during the 8 week study period. Quantitative measurements of wound healing related parameters, such as wound closure, reepithelialization, epidermal thickness and collagen content of dermis showed that supplying oxygen topically using the SPO/CPO dressing significantly accelerated the wound healing. An increase in neovascularization, as determined using Von Willebrand factor (vWF) and CD31 staining, was also observed in the presence of SPO/CPO dressing. This novel design for a wound dressing that contains oxygen generating biomaterials (SPO/CPO) for supplying topical oxygen, may find utility in treating various types of acute to chronic wounds.

  3. Metallic filament formation by aligned oxygen vacancies in ZnO-based resistive switches

    NASA Astrophysics Data System (ADS)

    Gu, Tingkun

    2014-05-01

    The electronic structure of ZnO with defects of oxygen vacancies were investigated by using first-principles methods. Some structure models were constructed in order to investigate the effects of the distribution of oxygen vacancies on the electronic properties of ZnO. By analyzing the calculated results, we found that only the aligned oxygen vacancies can form the conducting channel in ZnO, and the transformation of the oxygen vacancy from charged state to neutral state is consistent with the energetics rule of the forming aligned oxygen vacancies. As for the heterojunction of Pt/ZnO/Pt, the oxygen vacancies near the interface of Pt/ZnO depress the local Schottky barrier effectively, and the aligned oxygen vacancies in ZnO form a conducting filament connecting two Pt electrodes. The metallic filament formation in Pt/ZnO/Pt resistive switching cells should be closely related to the carrier injection from Pt electrode into ZnO and the arrangement of oxygen vacancies in ZnO slab.

  4. Metallic filament formation by aligned oxygen vacancies in ZnO-based resistive switches

    SciTech Connect

    Gu, Tingkun

    2014-05-28

    The electronic structure of ZnO with defects of oxygen vacancies were investigated by using first-principles methods. Some structure models were constructed in order to investigate the effects of the distribution of oxygen vacancies on the electronic properties of ZnO. By analyzing the calculated results, we found that only the aligned oxygen vacancies can form the conducting channel in ZnO, and the transformation of the oxygen vacancy from charged state to neutral state is consistent with the energetics rule of the forming aligned oxygen vacancies. As for the heterojunction of Pt/ZnO/Pt, the oxygen vacancies near the interface of Pt/ZnO depress the local Schottky barrier effectively, and the aligned oxygen vacancies in ZnO form a conducting filament connecting two Pt electrodes. The metallic filament formation in Pt/ZnO/Pt resistive switching cells should be closely related to the carrier injection from Pt electrode into ZnO and the arrangement of oxygen vacancies in ZnO slab.

  5. Image-Based Modeling of Blood Flow and Oxygen Transfer in Feto-Placental Capillaries

    PubMed Central

    Brownbill, Paul; Janáček, Jiří; Jirkovská, Marie; Kubínová, Lucie; Chernyavsky, Igor L.; Jensen, Oliver E.

    2016-01-01

    During pregnancy, oxygen diffuses from maternal to fetal blood through villous trees in the placenta. In this paper, we simulate blood flow and oxygen transfer in feto-placental capillaries by converting three-dimensional representations of villous and capillary surfaces, reconstructed from confocal laser scanning microscopy, to finite-element meshes, and calculating values of vascular flow resistance and total oxygen transfer. The relationship between the total oxygen transfer rate and the pressure drop through the capillary is shown to be captured across a wide range of pressure drops by physical scaling laws and an upper bound on the oxygen transfer rate. A regression equation is introduced that can be used to estimate the oxygen transfer in a capillary using the vascular resistance. Two techniques for quantifying the effects of statistical variability, experimental uncertainty and pathological placental structure on the calculated properties are then introduced. First, scaling arguments are used to quantify the sensitivity of the model to uncertainties in the geometry and the parameters. Second, the effects of localized dilations in fetal capillaries are investigated using an idealized axisymmetric model, to quantify the possible effect of pathological placental structure on oxygen transfer. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximized by an optimal width of the dilation. The results could explain the prevalence of fetal hypoxia in cases of delayed villous maturation, a pathology characterized by a lack of the vasculo-syncytial membranes often seen in conjunction with localized capillary dilations. PMID:27788214

  6. A Database Selection Expert System Based on Reference Librarian's Database Selection Strategy: A Usability and Empirical Evaluation.

    ERIC Educational Resources Information Center

    Ma, Wei

    2002-01-01

    Describes the development of a prototype Web-based database selection expert system at the University of Illinois at Urbana-Champaign that is based on reference librarians' database selection strategy which allows users to simultaneously search all available databases to identify those most relevant to their search using free-text keywords or…

  7. Selectivity of Chemisorbed Oxygen in C–H Bond Activation and CO Oxidation and Kinetic Consequences for CH₄–O₂ Catalysis on Pt and Rh Clusters

    SciTech Connect

    Chin, Ya-Huei; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2011-10-06

    Rate measurements, density functional theory (DFT) within the framework of transition state theory, and ensemble-averaging methods are used to probe oxygen selectivities, defined as the reaction probability ratios for O* reactions with CO and CH₄, during CH₄–O₂ catalysis on Pt and Rh clusters. CO₂ and H₂O are the predominant products, but small amounts of CO form as chemisorbed oxygen atoms (O*) are depleted from cluster surfaces. Oxygen selectivities, measured using ¹²CO–¹³CH₄–O₂ reactants, increase with O₂/ CO ratio and O* coverage and are much larger than unity at all conditions on Pt clusters. These results suggest that O* reacts much faster with CO than with CH₄, causing any CO that forms and desorbs from metal cluster surfaces to react along the reactor bed with other O* to produce CO₂ at any residence time required for detectable extents of CH₄ conversion. O* selectivities were also calculated by averaging DFTderived activation barriers for CO and CH₄ oxidation reactions over all distinct surface sites on cubo-octahedral Pt clusters (1.8 nm diameter, 201 Pt atoms) at low O* coverages, which are prevalent at low O₂ pressures during catalysis. CO oxidation involves non-activated molecular CO adsorption as the kinetically relevant step on exposed Pt atoms vicinal of chemisorbed O* atoms (on *–O* site pairs). CH₄ oxidation occurs via kinetically relevant C–H bond activation on *–* site pairs involving oxidative insertion of a Pt atom into one of the C–H bonds in CH₄, forming a three-centered HC₃–Pt–H transition state. C–H bond activation barriers reflect the strength of Pt–CH₃ and Pt–H interactions at the transition state, which correlates, in turn, with the Pt coordination and with CH₃ * binding energies. Ensemble-averaged O* selectivities increase linearly with O₂/CO ratios, which define the O* coverages, via a proportionality constant. The proportionality constant is given by the ratio of rate

  8. A model-based approach to selection of tag SNPs

    PubMed Central

    Nicolas, Pierre; Sun, Fengzhu; Li, Lei M

    2006-01-01

    Background Single Nucleotide Polymorphisms (SNPs) are the most common type of polymorphisms found in the human genome. Effective genetic association studies require the identification of sets of tag SNPs that capture as much haplotype information as possible. Tag SNP selection is analogous to the problem of data compression in information theory. According to Shannon's framework, the optimal tag set maximizes the entropy of the tag SNPs subject to constraints on the number of SNPs. This approach requires an appropriate probabilistic model. Compared to simple measures of Linkage Disequilibrium (LD), a good model of haplotype sequences can more accurately account for LD structure. It also provides a machinery for the prediction of tagged SNPs and thereby to assess the performances of tag sets through their ability to predict larger SNP sets. Results Here, we compute the description code-lengths of SNP data for an array of models and we develop tag SNP selection methods based on these models and the strategy of entropy maximization. Using data sets from the HapMap and ENCODE projects, we show that the hidden Markov model introduced by Li and Stephens outperforms the other models in several aspects: description code-length of SNP data, information content of tag sets, and prediction of tagged SNPs. This is the first use of this model in the context of tag SNP selection. Conclusion Our study provides strong evidence that the tag sets selected by our best method, based on Li and Stephens model, outperform those chosen by several existing methods. The results also suggest that information content evaluated with a good model is more sensitive for assessing the quality of a tagging set than the correct prediction rate of tagged SNPs. Besides, we show that haplotype phase uncertainty has an almost negligible impact on the ability of good tag sets to predict tagged SNPs. This justifies the selection of tag SNPs on the basis of haplotype informativeness, although genotyping

  9. Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging

    NASA Astrophysics Data System (ADS)

    Epel, Boris; Halpern, Howard J.

    2015-05-01

    Electron paramagnetic resonance (EPR) spin-lattice relaxation (SLR) oxygen imaging has proven to be an indispensable tool for assessing oxygen partial pressure in live animals. EPR oxygen images show remarkable oxygen accuracy when combined with high precision and spatial resolution. Developing more effective means for obtaining SLR rates is of great practical, biological and medical importance. In this work we compared different pulse EPR imaging protocols and pulse sequences to establish advantages and areas of applicability for each method. Tests were performed using phantoms containing spin probes with oxygen concentrations relevant to in vivo oxymetry. We have found that for small animal size objects the inversion recovery sequence combined with the filtered backprojection reconstruction method delivers the best accuracy and precision. For large animals, in which large radio frequency energy deposition might be critical, free induction decay and three pulse stimulated echo sequences might find better practical usage.

  10. High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis

    SciTech Connect

    Datta, Moni Kanchan; Kadakia, Karan; Velikokhatnyi, Oleg I; Jampani, Prashanth H; Chung, Sung Jae; Poston, James A; Manivannan, Ayyakkannu; Kumta, Prashant N

    2013-01-01

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts comprising compositions with significantly reduced amounts of expensive noble metal contents (e.g. IrO{sub 2}, Pt) with comparable electrochemical performance to the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would signify a major breakthrough in hydrogen generation via water electrolysis. Development of such systems would lead to two primary outcomes: first, a reduction in the overall capital costs of PEM based water electrolyzers, and second, attainment of the targeted hydrogen production costs (<$3.00/gge delivered by 2015) comparable to conventional liquid fuels. In line with these goals, by exploiting a two-pronged theoretical first principles and experimental approach herein, we demonstrate for the very first time a solid solution of SnO{sub 2}:10 wt% F containing only 20 at.% IrO{sub 2} [e.g. (Sn{sub 0.80}Ir{sub 0.20})O{sub 2}:10F] displaying remarkably similar electrochemical activity and comparable or even much improved electrochemical durability compared to pure IrO{sub 2}, the accepted gold standard in oxygen evolution electro-catalysts for PEM based water electrolysis. We present the results of these studies.

  11. Release time of residual oxygen after dental bleaching with 35% hydrogen peroxide: effect of a catalase-based neutralizing agent.

    PubMed

    Guasso, Bárbara; Salomone, Paloma; Nascimento, Paulo Cícero; Pozzobon, Roselaine Terezinha

    2016-01-01

    This article assessed the effect of a catalase-based agent on residual oxygen (O2) release from teeth exposed to 35% hydrogen peroxide (H2O2). The use of the catalase-based neutralizer agent for 2-3 minutes was able to release residual O2 5 days after exposure to a 35% H2O2-based bleaching gel. PMID:27148658

  12. Development of palladium-based nanocatalysts on carbon support for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Arroyo Ramirez, Lisandra

    Direct methanol fuel cell (DMFC) promises to be a power source for space application, transportation and portable devices. However, platinum catalysts, the methanol crossover and the sluggish kinetics of the oxygen reduction reaction (ORR) limit their commercialization. DMFC has the challenge to find a catalyst with high methanol tolerance and simple synthesis methodology. We proposed the development of palladium-based nanostructures on carbon supports as electrocatalyst for the oxygen reduction reaction. The working hypothesis is that the use of different methodologies and carbon supports will lead the formation of different palladium catalytic nanostructures with high methanol tolerance. A new single source approach was used to synthesize Pd-Co nanostructures on a highly ordered pyrolytic graphite (HOPG) surface using a bimetallic molecular precursor. Then, synthesis of palladium and palladium-cobalt nanoparticles on Vulcan XC-72R by chemical and thermal reduction using organometallic complexes as precursors was done. The palladium thin films and nanoshells were synthesized on HOPG and carbon cloth using sputtering deposition and electrospinning techniques. The morphology and composition were characterized by surface analysis techniques, such as: atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscope with energy-dispersive X-ray fluorescence spectroscopy (SEM/EDS), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), among others. ORR electrocatalytic activity and methanol tolerance was determined for the Pd/C, Pd2Co/C and PdCo 2/C catalysts. The rotating ring-disk electrode technique was used to determine the ORR mechanism and kinetics. Pd2Co nanorings were formed on a HOPG surface by self-assembly with humidity control. Also, a single precursor was used for the synthesis of palladium-cobalt nanocatalysts on carbon supports by thermal reduction with ORR electrocatalytic activity and higher methanol

  13. Reference View Selection in DIBR-Based Multiview Coding.

    PubMed

    Maugey, Thomas; Petrazzuoli, Giovanni; Frossard, Pascal; Cagnazzo, Marco; Pesquet-Popescu, Beatrice

    2016-04-01

    Augmented reality, interactive navigation in 3D scenes, multiview video, and other emerging multimedia applications require large sets of images, hence larger data volumes and increased resources compared with traditional video services. The significant increase in the number of images in multiview systems leads to new challenging problems in data representation and data transmission to provide high quality of experience on resource-constrained environments. In order to reduce the size of the data, different multiview video compression strategies have been proposed recently. Most of them use the concept of reference or key views that are used to estimate other images when there is high correlation in the data set. In such coding schemes, the two following questions become fundamental: 1) how many reference views have to be chosen for keeping a good reconstruction quality under coding cost constraints? And 2) where to place these key views in the multiview data set? As these questions are largely overlooked in the literature, we study the reference view selection problem and propose an algorithm for the optimal selection of reference views in multiview coding systems. Based on a novel metric that measures the similarity between the views, we formulate an optimization problem for the positioning of the reference views, such that both the distortion of the view reconstruction and the coding rate cost are minimized. We solve this new problem with a shortest path algorithm that determines both the optimal number of reference views and their positions in the image set. We experimentally validate our solution in a practical multiview distributed coding system and in the standardized 3D-HEVC multiview coding scheme. We show that considering the 3D scene geometry in the reference view, positioning problem brings significant rate-distortion improvements and outperforms the traditional coding strategy that simply selects key frames based on the distance between cameras. PMID

  14. Reference View Selection in DIBR-Based Multiview Coding.

    PubMed

    Maugey, Thomas; Petrazzuoli, Giovanni; Frossard, Pascal; Cagnazzo, Marco; Pesquet-Popescu, Beatrice

    2016-04-01

    Augmented reality, interactive navigation in 3D scenes, multiview video, and other emerging multimedia applications require large sets of images, hence larger data volumes and increased resources compared with traditional video services. The significant increase in the number of images in multiview systems leads to new challenging problems in data representation and data transmission to provide high quality of experience on resource-constrained environments. In order to reduce the size of the data, different multiview video compression strategies have been proposed recently. Most of them use the concept of reference or key views that are used to estimate other images when there is high correlation in the data set. In such coding schemes, the two following questions become fundamental: 1) how many reference views have to be chosen for keeping a good reconstruction quality under coding cost constraints? And 2) where to place these key views in the multiview data set? As these questions are largely overlooked in the literature, we study the reference view selection problem and propose an algorithm for the optimal selection of reference views in multiview coding systems. Based on a novel metric that measures the similarity between the views, we formulate an optimization problem for the positioning of the reference views, such that both the distortion of the view reconstruction and the coding rate cost are minimized. We solve this new problem with a shortest path algorithm that determines both the optimal number of reference views and their positions in the image set. We experimentally validate our solution in a practical multiview distributed coding system and in the standardized 3D-HEVC multiview coding scheme. We show that considering the 3D scene geometry in the reference view, positioning problem brings significant rate-distortion improvements and outperforms the traditional coding strategy that simply selects key frames based on the distance between cameras.

  15. Eutrophication trends inferred from hypolimnetic dissolved-oxygen dynamics within selected White River reservoirs, northern Arkansas-southern Missouri, 1974-94

    USGS Publications Warehouse

    Green, W.R.

    1996-01-01

    The White River Basin in northern Arkansas and southern Missouri contains four major reservoirs. Beaver, Table Rock, and Bull Shoals Lakes form a chain of reservoirs on the main stem of the White River. Norfork Lake is on the North Fork River, a tributary of the White River. Vertical water- column profiles of temperature and dissolved- oxygen concentrations have been collected monthly, in general, at sites near the dam of each reservoir since 1974. Hypolimnetic dissolved- oxygen dynamics of these reservoirs from 1974 through 1994 were examined based on the near-dam data and used to infer temporal changes in eutrophication. Regression models indicated that a positive relation existed between discharge through the dam during the stratification season and the areal hypolimnetic deficit. Temporal changes in the relative areal hypolimnetic oxygen deficit, a model that adjusts the areal hypolimnetic oxygen deficit to standard temperature and depth, showed a decreasing trend in Beaver Lake from 1974 through 1994, indicating that the level of eutrophication decreased. Little or no change in the relative areal hypolimnetic oxygen deficit occurred in Table Rock, Bull Shoals, or Norfork Lakes over the period of record. Temporal analysis of the residuals from the oxygen deficit-discharge model indicated that the oxygen deficit-discharge function changed over time in Beaver and Table Rock Lakes. There was little or no temporal trend in residuals of areal hypolimnetic oxygen deficit over the period of record for Bull Shoals and Norfork Lakes. Multiple regression using a time variable and discharge through the dam during the stratification season was examined for the four reservoirs. The slope coefficient of the time variable for both Beaver and Table Rock Lakes was negative, indicating that the temporal function driving the discharge related areal hypolimnetic oxygen deficit decreased over the period of record. This temporal function may be an expression of biological

  16. Selectively Encrypted Pull-Up Based Watermarking of Biometric data

    NASA Astrophysics Data System (ADS)

    Shinde, S. A.; Patel, Kushal S.

    2012-10-01

    Biometric authentication systems are becoming increasingly popular due to their potential usage in information security. However, digital biometric data (e.g. thumb impression) are themselves vulnerable to security attacks. There are various methods are available to secure biometric data. In biometric watermarking the data are embedded in an image container and are only retrieved if the secrete key is available. This container image is encrypted to have more security against the attack. As wireless devices are equipped with battery as their power supply, they have limited computational capabilities; therefore to reduce energy consumption we use the method of selective encryption of container image. The bit pull-up-based biometric watermarking scheme is based on amplitude modulation and bit priority which reduces the retrieval error rate to great extent. By using selective Encryption mechanism we expect more efficiency in time at the time of encryption as well as decryption. Significant reduction in error rate is expected to be achieved by the bit pull-up method.

  17. Commercial facility site selection simulating based on MAS

    NASA Astrophysics Data System (ADS)

    Chao, Yi; Li, Qingquan; Zheng, Guizhou

    2008-10-01

    The location of commercial facility decides the benefit of the operator to a large degree. Existing location methods can express the static relationships between site selection result and location factors, but there still are some limites when express the dynamic and uncertain relationship between them. Hence, a dynamic, stochastic and forecastable location model should be built which can introduce the customer's behavior into the model and combine the macro pattern and micro spatial interaction. So the authors proposes Geosim-LM based on MAS. Geosim-LM has 3 kinds of agents, CustAgent, SiteAgent and GovAgent. They represent the customers, commercial fercilities and government. The land type, land price and traffic are the model environment. Then Geosim-LM is applied in the bank branches site evaluation and selection in Liwan district, Guangzhou. In existing bank branches site evaluation, there are 70% consistent in score grade between result of Geosim-LM after 200 round runing and actual rebust location. It proves the model is reliable and feasible. The conclusions can be get from the paper. MAS have advantages in location choice than existed methods. The result of Geosim-LM running can powerfully proves that building location model based on MAS is feasible.

  18. Atomic oxygen interaction with spacecraft materials: Relationship between orbital and ground-based testing for materials certification

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.; Lan, Esther H.

    1993-01-01

    The effects of atomic oxygen on boron nitride (BN), silicon nitride (Si3N4), Intelsat 6 solar cell interconnects, organic polymers, and MoS2 and WS2 dry lubricant, were studied in Low Earth Orbit (LEO) flight experiments and in a ground based simulation facility. Both the inflight and ground based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and Electron Spectroscopy for Chemical Analysis (ESCA) analysis to measure chemical composition changes. Results are given. The ground based results on the materials studied to date show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground based facility in terms of reproducing LEO flight results. In addition it was demonstrated that ground based simulation is capable of performing more detailed experiments than orbital exposures can presently perform. This allows the development of a fundamental understanding of the mechanisms involved in the LEO environment degradation of materials.

  19. Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates (External Review Draft)

    EPA Science Inventory

    EPA has released a draft report entitled, Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates, for independent external peer review and public comment. NCEA published the Exposure Factors Handbook in 1997. This comprehens...

  20. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb ... in your home. A different kind of oxygen therapy is called hyperbaric oxygen therapy. It uses oxygen ...

  1. [Design of Non-Invasive Blood Oxygen Measurement Based on AFE4490].

    PubMed

    Zhu, Jinsong; Wu, Shouhao; Guo, Wenxiu; Zheng, Hui; Tang, Dong

    2015-09-01

    From the perspective of portable monitoring devices,we use an analog front-end AFE4490 design a module of Non-invasive blood oxygen measurement, used to collect human pulse wave signal and peak (valley) value detection and then use the principles of non-invasive oximetry calculated oxygen saturation (SPO2). This design of noninvasive oximetry module has the characteristics of small size, low power consumption, and the results of test show that the measurement of oxygen saturation are correct. PMID:26904876

  2. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism.

    PubMed

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-12-09

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications.

  3. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism

    PubMed Central

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-01-01

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications. PMID:26690176

  4. Reference concepts for a space-based hydrogen-oxygen combustion, turboalternator, burst power system

    SciTech Connect

    Edenburn, M.W.

    1990-07-01

    This report describes reference concepts for a hydrogen-oxygen combustion, turboalternator power system that supplies power during battle engagement to a space-based, ballistic missile defense platform. All of the concepts are open''; that is, they exhaust hydrogen or a mixture of hydrogen and water vapor into space. We considered the situation where hydrogen is presumed to be free to the power system because it is also needed to cool the platform's weapon and the situation where hydrogen is not free and its mass must be added to that of the power system. We also considered the situation where water vapor is an acceptable exhaust and the situation where it is not. The combination of these two sets of situations required four different power generation systems, and this report describes each, suggests parameter values, and estimates masses for each of the four. These reference concepts are expected to serve as a baseline'' to which other types of power systems can be compared, and they are expected to help guide technology development efforts in that they suggest parameter value ranges that will lead to optimum system designs. 7 refs., 18 figs., 5 tabs.

  5. Hybrid Nanomaterials Based on Graphene and Gold Nanoclusters for Efficient Electrocatalytic Reduction of Oxygen

    NASA Astrophysics Data System (ADS)

    Wang, Changhong; Li, Na; Wang, Qiannan; Tang, Zhenghua

    2016-07-01

    Nanocomposites based on gold nanoclusters (AuNCs) with polyvinyl pyrrolidone as ligand and reduced graphene oxide (RGO) have been prepared and employed as efficient electrocatalysts for oxygen reduction reaction (ORR). AuNCs were synthesized through a wet chemical approach and then loaded onto the RGO. The as-prepared hybrid materials were pyrolyzed to remove the organic ligands. The composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) as well as other techniques. Electrochemical tests demonstrated that the hybrid materials exhibited effective ORR activity in alkaline media. Among a series of samples tested, the pyrolyzed sample with 50 % AuNCs mass loading exhibited the best activity, superior than AuNCs alone, RGO alone, and the others, in terms of onset potential and kinetic current density as well as durability. The method here may provide a generic approach to prepare supported noble metal nanoclusters with excellent reactivity and robust stability for ORR.

  6. Immobilized multi-species based biosensor for rapid biochemical oxygen demand measurement.

    PubMed

    Liu, Changyu; Ma, Chao; Yu, Dengbin; Jia, Jianbo; Liu, Ling; Zhang, Bailin; Dong, Shaojun

    2011-01-15

    To improve the practicability of rapid biochemical oxygen demand (BOD) method, we proposed a stable BOD sensor based on immobilizing multi-species BODseed for wastewater monitoring in the flow system. The activation time of the biofilm was greatly shortened for the biofilm prepared by BODseed in the organic-inorganic hybrid material. Some influence factors such as temperature, pH, and concentration of phosphate buffer solution (PBS) were investigated in detail in which high tolerance to environment was validated for the BOD sensor permitted a wide pH and PBS concentration ranges. The minimum detectable BOD was around 0.5 mg/l BOD under the optimized 1.0 mg/ml BODseed immobilized concentration. The as-prepared BOD sensor exhibited excellent stability and reproducibility for different samples. Furthermore, the as-prepared BOD biosensor displayed a notable advantage in indiscriminate biodegradation to different organic compounds and their mixture, similar to the character of conventional BOD(5) results. The results of the BOD sensor method are well agreed with those obtained from conventional BOD(5) method for wastewater samples. The proposed rapid BOD sensor method should be promising in practical application of wastewater monitoring.

  7. Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst.

    PubMed

    Surendranath, Yogesh; Lutterman, Daniel A; Liu, Yi; Nocera, Daniel G

    2012-04-11

    The mechanism of nucleation, steady-state growth, and repair is investigated for an oxygen evolving catalyst prepared by electrodeposition from Co(2+) solutions in weakly basic electrolytes (Co-OEC). Potential step chronoamperometry and atomic force microscopy reveal that nucleation of Co-OEC is progressive and reaches a saturation surface coverage of ca. 70% on highly oriented pyrolytic graphite substrates. Steady-state electrodeposition of Co-OEC exhibits a Tafel slope approximately equal to 2.3 × RT/F. The electrochemical rate law exhibits a first order dependence on Co(2+) and inverse orders on proton (third order) and proton acceptor, methylphosphonate (first order for 1.8 mM ≤ [MeP(i)] ≤ 18 mM and second order dependence for 32 mM ≤ [MeP(i)] ≤ 180 mM). These electrokinetic studies, combined with recent XAS studies of catalyst structure, suggest a mechanism for steady state growth at intermediate MeP(i) concentration (1.8-18 mM) involving a rapid solution equilibrium between aquo Co(II) and Co(III) hydroxo species accompanied with a rapid surface equilibrium involving electrolyte dissociation and deprotonation of surface bound water. These equilibria are followed by a chemical rate-limiting step for incorporation of Co(III) into the growing cobaltate clusters comprising Co-OEC. At higher concentrations of MeP(i) ([MeP(i)] ≥ 32 mM), MePO(3)(2-) equilibrium binding to Co(II) in solution is suggested by the kinetic data. Consistent with the disparate pH profiles for oxygen evolution electrocatalysis and catalyst formation, NMR-based quantification of catalyst dissolution as a function of pH demonstrates functional stability and repair at pH values >6 whereas catalyst corrosion prevails at lower pH values. These kinetic insights provide a basis for developing and operating functional water oxidation (photo)anodes under benign pH conditions. PMID:22394103

  8. Oxygen-Induced Degradation in C60-Based Organic Solar Cells: Relation Between Film Properties and Device Performance.

    PubMed

    Bastos, João P; Voroshazi, Eszter; Fron, Eduard; Brammertz, Guy; Vangerven, Tim; Van der Auweraer, Mark; Poortmans, Jef; Cheyns, David

    2016-04-20

    Fullerene-based molecules are the archetypical electron-accepting materials for organic photovoltaic devices. A detailed knowledge of the degradation mechanisms that occur in C60 layers will aid in the development of more stable organic solar cells. Here, the impact of storage in air on the optical and electrical properties of C60 is studied in thin films and in devices. Atmospheric exposure induces oxygen-trap states that are 0.19 eV below the LUMO of the fullerene C60. Moreover, oxygen causes a 4-fold decrease of the exciton lifetime in C60 layers, resulting in a 40% drop of short-circuit current from optimized planar heterojunction solar cells. The presence of oxygen-trap states increases the saturation current of the device, resulting in a 20% loss of open-circuit voltage. Design guidelines are outlined to improve air stability for fullerene-containing devices.

  9. Luminescent sensing of dissolved oxygen based on Ru(II) complex embedded in sol-gel matrix

    NASA Astrophysics Data System (ADS)

    Bi, Yubing; Tao, Wei; Hu, Yanli; Mao, Yimei; Zhao, Hui

    2015-11-01

    In biological cells and tissues environment, real-time monitoring and controlling dissolved oxygen (DO) provides critical information for studying cellular metabolism process, health status and pathological features. This paper developed an optical DO sensor based on fluorescence quenching principle, prepared tris(4,7-diphenyl-1,10- phenanthroline)ruthenium(II) dichloride complex sol-gel sensing film, and studied its sensing performance. The principle of this sensor is that dissolved oxygen has quenching effect towards the fluorescence emitted by ruthenium complex. So the fluorescence intensity is reduced due to the existence of DO. The measurement limit of DO was 10- 100%, the response time was 20s, and the resolution was 0.02. Compared to traditional dissolved oxygen electrode probe, this luminescent fiber had many advantages, such as smaller size, shorter response time and higher stability.

  10. Selection of operation for esophageal cancer based on staging.

    PubMed Central

    Skinner, D B; Little, A G; Ferguson, M K; Soriano, A; Staszak, V M

    1986-01-01

    The concept of en bloc removal of tissue surrounding the esophagus was applied to intrathoracic esophageal cancers, and the first 80 cases were operated on by this technique between 1969 and 1981. Analysis of prognostic factors showed that only penetration through the esophageal wall and lymph node spread influenced survival. Since 1981, a new staging system based on wall penetration (W) and lymph nodes (N), as well as systemic metastases (M), and similar to the modified Dukes' system for colon cancer has been used to select patients before and during surgery for en bloc resection if favorable pathology (W1, N0, or N1) could be anticipated. When curative resection was not attainable, based on preoperative and operative staging, a standard esophagectomy was considered for relief of symptoms when necessary. From July 1981 to June 1984, 68 esophageal cancers were referred to us, and 31 were resected by the en bloc method, 21 by standard esophagectomy, and 16 were not resected. The success of preoperative staging was confirmed, as only nine of the 31 en bloc cases demonstrated both W2 and N2 pathology. The proportion of W2N2 cases subjected to en bloc esophagectomy was less (p less than 0.01) than that in the preceding series. This selection of cases showed a favorable deviation in the survival curve following en bloc esophagectomy since 1981 compared to the earlier interval. Patients treated by en bloc esophagectomy had a significantly greater survival than they did following standard esophagectomy at all time intervals after 6 months. There was no difference in hospital mortality or complications between the two operations. Further evidence for the value of the new staging system was shown by the significant difference in survival curves between those with favorable versus unfavorable staging and treated by en bloc esophagectomy. Among all cases resected between 1981 and 1984, 18-month survival in W1 stage was 67% compared to 35% for W2 disease. Survival with N0

  11. Lunar Observer Laser Altimeter observations for lunar base site selection

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Bufton, Jack L.

    1992-01-01

    One of the critical datasets for optimal selection of future lunar landing sites is local- to regional-scale topography. Lunar base site selection will require such data for both engineering and scientific operations purposes. The Lunar Geoscience Orbiter or Lunar Observer is the ideal precursory science mission from which to obtain this required information. We suggest that a simple laser altimeter instrument could be employed to measure local-scale slopes, heights, and depths of lunar surface features important to lunar base planning and design. For this reason, we have designed and are currently constructing a breadboard of a Lunar Observer Laser Altimeter (LOLA) instrument capable of acquiring contiguous-footprint topographic profiles with both 30-m and 300-m along-track resolution. This instrument meets all the severe weight, power, size, and data rate limitations imposed by Observer-class spacecraft. In addition, LOLA would be capable of measuring the within-footprint vertical roughness of the lunar surface, and the 1.06-micron relative surface reflectivity at normal incidence. We have used airborne laser altimeter data for a few representative lunar analog landforms to simulate and analyze LOLA performance in a 100-km lunar orbit. We demonstrate that this system in its highest resolution mode (30-m diameter footprints) would quantify the topography of all but the very smallest lunar landforms. At its global mapping resolution (300-m diameter footprints), LOLA would establish the topographic context for lunar landing site selection by providing the basis for constructing a 1-2 km spatial resolution global, geodetic topographic grid that would contain a high density of observations (e.g., approximately 1000 observations per each 1 deg by 1 deg cell at the lunar equator). The high spatial and vertical resolution measurements made with a LOLA-class instrument on a precursory Lunar Observer would be highly synergistic with high-resolution imaging datasets, and

  12. Effects of microwave and oxygen plasma treatments on capacitive characteristics of supercapacitor based on multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dulyaseree, Paweena; Yordsri, Visittapong; Wongwiriyapan, Winadda

    2016-02-01

    The effects of microwave and oxygen plasma treatments on the capacitive characteristics of a supercapacitor based on multiwalled carbon nanotubes (MWNTs) were investigated. MWNTs were heat-treated under air ambient at 500 °C for 1 h, and subsequently microwave-treated at 650 W for 70 s (m-MWNTs). Another batch of MWNTs was treated by oxygen plasma for 30 min (p-MWNTs). Pristine MWNTs, m-MWNTs, and p-MWNTs were separately used as electrode materials for supercapacitors. Their cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy results were analyzed. The p-MWNTs show the best performance with a specific capacitance of 238.23 F·g-1. The capacitance improvement is attributed to the increase in the number of oxygen-containing functional groups, as evidenced by Fourier transform-infrared spectroscopy and contact angle measurement. These results suggest that oxygen plasma treatment is a rapid and efficient method for oxygen functionalization.

  13. Obviating the requirement for oxygen in SnO2-based solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Docampo, Pablo; Snaith, Henry J.

    2011-06-01

    Organic semiconductors employed in solar cells are perfectly stable to solar irradiation provided oxygen content can be kept below 1 ppm. Paradoxically, the state-of-the-art molecular hole-transporter-based solid-state dye-sensitized solar cells only operate efficiently if measured in an atmosphere containing oxygen. Without oxygen, these devices rapidly lose photovoltage and photocurrent and are rendered useless. Clearly this peculiar requirement has detrimental implications to the long term stability of these devices. Through characterizing the solar cells in air and in oxygen-free atmospheres, and considering the device architecture, we identify that direct contact between the metallic cathode and the mesoporous metal oxide photo-anode is responsible for a shunting path through the device. This metal-metal oxide contact forms a Schottky barrier under ambient conditions and the barrier is suitably high so as to prevent significant shunting of the solar cells. However, under light absorption in an anaerobic atmosphere the barrier reduces significantly, opening a low resistance shunting path which dominates the current-voltage characteristics in the solar cell. By incorporating an extra interlayer of insulating mesoporous aluminum oxide, on top of the mesoporous semiconducting metal oxide electrode, we successfully block this shunting path and subsequently the devices operate efficiently in an oxygen-free atmosphere, enabling the possibility of long term stability of solid-state dye-sensitized solar cells.

  14. Modeling the effect of oxygen on the amperometric response of immobilized organoselenium-based S-nitrosothiol sensors.

    PubMed

    Höfler, Lajos; Meyerhoff, Mark E

    2011-01-15

    Amperometric detection of S-nitrosothiols (RSNOs) at submicromolar levels in blood samples is of potential importance for monitoring endothelial function and other disease states that involve changes in physiological nitric oxide (NO) production. It is shown here that the elimination of dissolved oxygen from samples is critical when covalently attached diselenocystamine-based amperometric RSNO sensors are used for practical RSNO measurements. The newest generation of RSNO sensors utilizes an amperometric NO gas sensor with a thin organoselenium modified dialysis membrane mounted at the distal sensing tip. Sample RSNOs are catalytically reduced to NO within the dialysis membrane by the immobilized organoselenium species. In the presence of oxygen, the sensitivity of these sensors for measuring low levels of RSNOs (<μM) is greatly reduced. It is demonstrated that the main scavenger of the generated nitric oxide is not the dissolved oxygen but rather superoxide anion radical generated from the reaction of the reduced organoselenium species (the reactive species in the catalytic redox cycle) and dissolved oxygen. Computer simulations of the response of the RSNO sensor using rate constants and diffusion coefficients for the reactions involved, known from the literature or estimated from fitting to the observed amperometric response curves, as well as the specific geometric dimensions of the RSNO sensor, further support that nitric oxide and superoxide anion radical quickly react resulting in near zero sensor sensitivity toward RSNO concentrations in the submicromolar concentration range. Elimination of oxygen from samples helps improve sensor detection limits to ca. 10 nM levels of RSNOs.

  15. Mobility-Based Mobile Relay Selection in MANETs

    NASA Astrophysics Data System (ADS)

    Kim, Gilnam; Lee, Hyoungjoo; Lee, Kwang Bok

    The future wireless mobile communication networks are expected to provide seamless wireless access and data exchange to mobile users. In particular, it is expected that the demand for ubiquitous data exchange between mobile users will increase with the widespread use of various wireless applications of the intelligent transportation system (ITS) and intelligent vehicles. Mobile ad hoc networks (MANETs) are one of the representative research areas pursuing the technology needed to satisfy the increasing mobile communication requirements. However, most of the works on MANET systems do not take into account the continuous and dynamic changes of nodal mobility to accommodate system design and performance evaluation. The mobility of nodes limits the reliability of communication between the source and the destination node since a link between two continuously moving nodes is established only when one node enters the transmission range of the other. To alleviate this problem, mobile relay has been studied. In particular, it is shown that relay selection is an efficient way to support nodal mobility in MANET systems. In this paper, we propose a mobility-based relay selection algorithm for the MANET environment. Firstly, we define the lifetime as the maximum link duration for which the link between two nodes remains active. Therefore, the lifetime indicates the reliability of the relay link which measures its capability to successfully support relayed communication when requested by the source node. Furthermore, we consider a series of realistic scenarios according to the randomness of nodal mobility. Thus, the proposed algorithm can be easily applied in practical MANET systems by choosing the appropriate node mobility behavior. The numerical results show that the improved reliability of the proposed algorithm's relayed communication is achieved with a proper number of mobile relay nodes rather than with the conventional selection algorithm. Lastly, we show that random

  16. A weight based genetic algorithm for selecting views

    NASA Astrophysics Data System (ADS)

    Talebian, Seyed H.; Kareem, Sameem A.

    2013-03-01

    Data warehouse is a technology designed for supporting decision making. Data warehouse is made by extracting large amount of data from different operational systems; transforming it to a consistent form and loading it to the central repository. The type of queries in data warehouse environment differs from those in operational systems. In contrast to operational systems, the analytical queries that are issued in data warehouses involve summarization of large volume of data and therefore in normal circumstance take a long time to be answered. On the other hand, the result of these queries must be answered in a short time to enable managers to make decisions as short time as possible. As a result, an essential need in this environment is in improving the performances of queries. One of the most popular methods to do this task is utilizing pre-computed result of queries. In this method, whenever a new query is submitted by the user instead of calculating the query on the fly through a large underlying database, the pre-computed result or views are used to answer the queries. Although, the ideal option would be pre-computing and saving all possible views, but, in practice due to disk space constraint and overhead due to view updates it is not considered as a feasible choice. Therefore, we need to select a subset of possible views to save on disk. The problem of selecting the right subset of views is considered as an important challenge in data warehousing. In this paper we suggest a Weighted Based Genetic Algorithm (WBGA) for solving the view selection problem with two objectives.

  17. A prototype of behavior selection mechanism based on emotion

    NASA Astrophysics Data System (ADS)

    Zhang, Guofeng; Li, Zushu

    2007-12-01

    In bionic methodology rather than in design methodology more familiar with, summarizing the psychological researches of emotion, we propose the biologic mechanism of emotion, emotion selection role in creature evolution and a anima framework including emotion similar to the classical control structure; and consulting Prospect Theory, build an Emotion Characteristic Functions(ECF) that computer emotion; two more emotion theories are added to them that higher emotion is preferred and middle emotion makes brain run more efficiently, emotional behavior mechanism comes into being. A simulation of proposed mechanism are designed and carried out on Alife Swarm software platform. In this simulation, a virtual grassland ecosystem is achieved where there are two kinds of artificial animals: herbivore and preyer. These artificial animals execute four types of behavior: wandering, escaping, finding food, finding sex partner in their lives. According the theories of animal ethnology, escaping from preyer is prior to other behaviors for its existence, finding food is secondly important behavior, rating is third one and wandering is last behavior. In keeping this behavior order, based on our behavior characteristic function theory, the specific functions of emotion computing are built of artificial autonomous animals. The result of simulation confirms the behavior selection mechanism.

  18. Wet-chemistry based selective coatings for concentrating solar power

    NASA Astrophysics Data System (ADS)

    Maimon, Eran; Kribus, Abraham; Flitsanov, Yuri; Shkolnik, Oleg; Feuermann, Daniel; Zwicker, Camille; Larush, Liraz; Mandler, Daniel; Magdassi, Shlomo

    2013-09-01

    Spectrally selective coatings are common in low and medium temperature solar applications from solar water heating collectors to parabolic trough absorber tubes. They are also an essential element for high efficiency in higher temperature Concentrating Solar Power (CSP) systems. Selective coatings for CSP are usually prepared using advanced expensive methods such as sputtering and vapor deposition. In this work, coatings were prepared using low-cost wet-chemistry methods. Solutions based on Alumina and Silica sol gel were prepared and then dispersed with black spinel pigments. The black dispersions were applied by spray/roll coating methods on stainless steel plates. The spectral emissivity of sample coatings was measured in the temperature range between 200 and 500°C, while the spectral absorptivity was measured at room temperature and 500°C. Emissivity at wavelengths of 0.4-1.7 μm was evaluated indirectly using multiple measurements of directional reflectivity. Emissivity at wavelengths 2-14 μm was measured directly using a broadband IR camera that acquires the radiation emitted from the sample, and a range of spectral filters. Emissivity measurement results for a range of coated samples will be presented, and the impact of coating thickness, pigment loading, and surface preparation will be discussed.

  19. Knowledge based system for Satellite data product selection

    NASA Astrophysics Data System (ADS)

    Goyal, R.; Jayasudha, T.; Pandey, P.; Rama Devi, D.; Rebecca, A.; Manju Sarma, M.; Lakshmi, B.

    2014-11-01

    In recent years, the use of satellite data for geospatial applications has multiplied and contributed significantly towards development of the society. Satellite data requirements, in terms of spatial and spectral resolution, periodicity of data, level of correction and other parameters, vary for different applications. For major applications, remote sensing data alone may not suffice and may require additional data like field data. An application user, even though being versatile in his application, may not know which satellite data is best suited for his application, how to use the data and what information can be derived from the data. Remote sensing domain experts have the proficiency of using appropriate data for remote sensing applications. Entrenching domain expertise into the system and building a knowledge base system for satellite data product selection is vital. Non specialist data users need a user-friendly software which guides them to the most suitable satellite data product on the basis of their application. Such tool will aid the usage for apt remote sensed data for various sectors of application users. Additionally, the consumers will be less concerned about the technical particulars of the platforms that provide satellite data, instead focusing on the content and values in the data product, meeting the timelines and ease of access. Embedding knowledge is a popular and effective means of increasing the power of using a system. This paper describes a system, driven by the built-in knowledge of domain experts, for satellite data products selection for geospatial applications.

  20. Duplex-Selective Ruthenium-based DNA Intercalators

    PubMed Central

    Shade, Chad M.; Kennedy, Robert D.; Rouge, Jessica L.; Rosen, Mari S.; Wang, Mary X.; Seo, Soyoung E.; Clingerman, Daniel J.

    2016-01-01

    We report the design and synthesis of small molecules that exhibit enhanced luminescence in the presence of duplex rather than single-stranded DNA. The local environment presented by a well-known [Ru(dipyrido[2,3-a:3',2'-c]phenazine)L2]2+-based DNA intercalator was modified by functionalizing the bipyridine ligands with esters and carboxylic acids. By systematically varying the number and charge of the pendant groups, it was determined that decreasing the electrostatic interaction between the intercalator and the anionic DNA backbone reduced single-strand interactions and translated to better duplex specificity. In studying this class of complexes, a single RuII complex emerged that selectively luminesces in the presence of duplex DNA with little to no background from interacting with single stranded DNA. This complex shows promise as a new dye capable of selectively staining double versus single-stranded DNA in gel electrophoresis, which cannot be done with conventional SYBR dyes. PMID:26119581

  1. What is the contribution of human FMO3 in the N-oxygenation of selected therapeutic drugs and drugs of abuse?

    PubMed

    Wagmann, Lea; Meyer, Markus R; Maurer, Hans H

    2016-09-01

    Little is known about the role of flavin-containing monooxygenases (FMOs) in the metabolism of xenobiotics. FMO3 is the isoform in adult human liver with the highest impact on drug metabolism. The aim of the presented study was to elucidate the contribution of human FMO3 to the N-oxygenation of selected therapeutic drugs and drugs of abuse (DOAs). Its contribution to the in vivo hepatic net clearance of the N-oxygenation products was calculated by application of an extended relative activity factor (RAF) approach to differentiate from contribution of cytochrome P450 (CYP) isoforms. FMO3 and CYP substrates were identified using pooled human liver microsomes after heat inactivation and chemical inhibition, or single enzyme incubations. Kinetic parameters were subsequently determined using recombinant human enzymes and mass spectrometric analysis via authentic reference standards or simple peak areas of the products divided by those of the internal standard. FMO3 was identified as enzyme mainly responsible for the formation of N,N-diallyltryptamine N-oxide and methamphetamine hydroxylamine (>80% contribution for both). A contribution of 50 and 30% was calculated for the formation of N,N-dimethyltryptamine N-oxide and methoxypiperamide N-oxide, respectively. However, FMO3 contributed with less than 5% to the formation of 3-bromomethcathinone hydroxylamine, amitriptyline N-oxide, and clozapine N-oxide. There was no significant difference in the contributions when using calibrations with reference metabolite standards or peak area ratio calculations. The successful application of a modified RAF approach including FMO3 proved the importance of FMO3 in the N-oxygenation of DOAs in human metabolism. PMID:27320963

  2. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells.

    PubMed

    Kim, Boyun; Kim, Hee Seung; Jung, Eun-Ji; Lee, Jung Yun; K Tsang, Benjamin; Lim, Jeong Mook; Song, Yong Sang

    2016-05-01

    Prolonged accumulation of misfolded or unfolded proteins caused by cellular stress, including oxidative stress, induces endoplasmic reticulum stress, which then activates an unfolded protein response (UPR). ER stress is usually maintained at higher levels in cancer cells as compared to normal cells due to altered metabolism in cancer. Here, we investigated whether curcumin is ER stress-mediated apoptosis in cervical cancer cells, and ROS increased by curcumin are involved in the process as an upstream contributor. Curcumin inhibited proliferation of cervical cancer cells (C33A, CaSki, HeLa, and ME180) and induced apoptotic cell death. Curcumin activated ER-resident UPR sensors, such as PERK, IRE-1α, and ATF6, and their downstream-signaling proteins in cervical cancer cells, but not in normal epithelial cells and peripheral blood mononuclear cells (PBMCs). CHOP, a key factor involved in ER stress-mediated apoptosis, was also activated by curcumin. CHOP decreased the ratio of anti-apoptotic protein Bcl-2 to pro-apoptotic protein Bax expression, and subsequently increased the apoptotic population of cervical cancer cells. Furthermore, curcumin elevated levels of intracellular reactive oxygen species (ROS) in cervical cancer cells, but not in normal epithelial cells. Scavenging ROS resulted in inhibition of ER stress and partially restored cell viability in curcumin-treated cancer cells. Collectively, these observations show that curcumin promotes ER stress-mediated apoptosis in cervical cancer cells through increase of cell type-specific ROS generation. Therefore, modulation of these differential responses to curcumin between normal and cervical cancer cells could be an effective therapeutic strategy without adverse effects on normal cells.

  3. Possible roles of plant sulfurtransferases in detoxification of cyanide, reactive oxygen species, selected heavy metals and arsenate.

    PubMed

    Most, Parvin; Papenbrock, Jutta

    2015-01-14

    Plants and animals have evolved various potential mechanisms to surmount the adverse effects of heavy metal toxicity. Plants possess low molecular weight compounds containing sulfhydryl groups (-SH) that actively react with toxic metals. For instance, glutathione (γ-Glu-Cys-Gly) is a sulfur-containing tripeptide thiol and a substrate of cysteine-rich phytochelatins (γ-Glu-Cys)2-11-Gly (PCs). Phytochelatins react with heavy metal ions by glutathione S-transferase in the cytosol and afterwards they are sequestered into the vacuole for degradation. Furthermore, heavy metals induce reactive oxygen species (ROS), which directly or indirectly influence metabolic processes. Reduced glutathione (GSH) attributes as an antioxidant and participates to control ROS during stress. Maintenance of the GSH/GSSG ratio is important for cellular redox balance, which is crucial for the survival of the plants. In this context, sulfurtransferases (Str), also called rhodaneses, comprise a group of enzymes widely distributed in all phyla, paving the way for the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors, at least in vitro. The best characterized in vitro reaction is the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms have multi-protein families (MPF) of Str. Despite the presence of Str activities in many living organisms, their physiological role has not been clarified unambiguously. In mammals, these proteins are involved in the elimination of cyanide released from cyanogenic compounds. However, their ubiquity suggests additional physiological functions. Furthermore, it is speculated that a member of the Str family acts as arsenate reductase (AR) and is involved in arsenate detoxification. In summary, the role of Str in detoxification processes is still not well understood but seems to be a major function in the organism.

  4. Possible roles of plant sulfurtransferases in detoxification of cyanide, reactive oxygen species, selected heavy metals and arsenate.

    PubMed

    Most, Parvin; Papenbrock, Jutta

    2015-01-01

    Plants and animals have evolved various potential mechanisms to surmount the adverse effects of heavy metal toxicity. Plants possess low molecular weight compounds containing sulfhydryl groups (-SH) that actively react with toxic metals. For instance, glutathione (γ-Glu-Cys-Gly) is a sulfur-containing tripeptide thiol and a substrate of cysteine-rich phytochelatins (γ-Glu-Cys)2-11-Gly (PCs). Phytochelatins react with heavy metal ions by glutathione S-transferase in the cytosol and afterwards they are sequestered into the vacuole for degradation. Furthermore, heavy metals induce reactive oxygen species (ROS), which directly or indirectly influence metabolic processes. Reduced glutathione (GSH) attributes as an antioxidant and participates to control ROS during stress. Maintenance of the GSH/GSSG ratio is important for cellular redox balance, which is crucial for the survival of the plants. In this context, sulfurtransferases (Str), also called rhodaneses, comprise a group of enzymes widely distributed in all phyla, paving the way for the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors, at least in vitro. The best characterized in vitro reaction is the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms have multi-protein families (MPF) of Str. Despite the presence of Str activities in many living organisms, their physiological role has not been clarified unambiguously. In mammals, these proteins are involved in the elimination of cyanide released from cyanogenic compounds. However, their ubiquity suggests additional physiological functions. Furthermore, it is speculated that a member of the Str family acts as arsenate reductase (AR) and is involved in arsenate detoxification. In summary, the role of Str in detoxification processes is still not well understood but seems to be a major function in the organism. PMID:25594348

  5. A naphthalene-based two-photon fluorescent probe for selective and sensitive detection of endogenous hypochlorous acid.

    PubMed

    Zhou, Xiao-Hong; Jiang, Yu-Ren; Zhao, Xiong-Jie; Guo, Dong

    2016-11-01

    An efficient naphthalene-based two-photon fluorescent probe for endogenous HClO has been reported in the present study, which consists of a 6-(2-benzothiazolyl)-2-naphthalenol fluorophore connected with a 4-aminophenol (the fluorescence quenching and response group). This probe exhibits a high selectivity and excellent sensitivity with a detection limit of 7.6nM over other reactive oxygen species and analyte species, and the fluorescence intensity enhanced 103-fold when responsed. Furthermore, it was successfully used for two-photon imaging of endogenous HClO in live cells with high-resolution. PMID:27591640

  6. A naphthalene-based two-photon fluorescent probe for selective and sensitive detection of endogenous hypochlorous acid.

    PubMed

    Zhou, Xiao-Hong; Jiang, Yu-Ren; Zhao, Xiong-Jie; Guo, Dong

    2016-11-01

    An efficient naphthalene-based two-photon fluorescent probe for endogenous HClO has been reported in the present study, which consists of a 6-(2-benzothiazolyl)-2-naphthalenol fluorophore connected with a 4-aminophenol (the fluorescence quenching and response group). This probe exhibits a high selectivity and excellent sensitivity with a detection limit of 7.6nM over other reactive oxygen species and analyte species, and the fluorescence intensity enhanced 103-fold when responsed. Furthermore, it was successfully used for two-photon imaging of endogenous HClO in live cells with high-resolution.

  7. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts.

    PubMed

    Hanson, Susan K; Baker, R Tom

    2015-07-21

    This work began as part of a biomass conversion catalysis project with UC Santa Barbara funded by the first NSF Chemical Bonding Center, CATSB. Recognizing that catalytic aerobic oxidation of diol C-C bonds could potentially be used to break down lignocellulose, we began to synthesize oxovanadium complexes and explore their fundamental reactivity. Of course there were theories regarding the oxidation mechanism, but our mechanistic studies soon revealed a number of surprises of the type that keep all chemists coming back to the bench! We realized that these reactions were also exciting in that they actually used the oxygen-on-every-carbon property of biomass-derived molecules to control the selectivity of the oxidation. When we found that these oxovanadium complexes tended to convert sugars predominantly to formic acid and carbon dioxide, we replaced one of the OH groups with an ether and entered the dark world of lignin chemistry. In this Account, we summarize results from our collaboration and from our individual labs. In particular, we show that oxidation selectivity (C-C vs C-O bond cleavage) of lignin models using air and vanadium complexes depends on the ancillary ligands, the reaction solvent, and the substrate structure (i.e., phenolic vs non-phenolic). Selected vanadium complexes in the presence of added base serve as effective alcohol oxidation catalysts via a novel base-assisted dehydrogenation pathway. In contrast, copper catalysts effect direct C-C bond cleavage of these lignin models, presumably through a radical pathway. The most active vanadium catalyst exhibits unique activity for the depolymerization of organosolv lignin. After Weckhuysen's excellent 2010 review on lignin valorization, the number of catalysis studies and approaches on both lignin models and extracts has expanded rapidly. Today we are seeing new start-ups and lignin production facilities sprouting up across the globe as we all work to prove wrong the old pulp and paper chemist

  8. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts.

    PubMed

    Hanson, Susan K; Baker, R Tom

    2015-07-21

    This work began as part of a biomass conversion catalysis project with UC Santa Barbara funded by the first NSF Chemical Bonding Center, CATSB. Recognizing that catalytic aerobic oxidation of diol C-C bonds could potentially be used to break down lignocellulose, we began to synthesize oxovanadium complexes and explore their fundamental reactivity. Of course there were theories regarding the oxidation mechanism, but our mechanistic studies soon revealed a number of surprises of the type that keep all chemists coming back to the bench! We realized that these reactions were also exciting in that they actually used the oxygen-on-every-carbon property of biomass-derived molecules to control the selectivity of the oxidation. When we found that these oxovanadium complexes tended to convert sugars predominantly to formic acid and carbon dioxide, we replaced one of the OH groups with an ether and entered the dark world of lignin chemistry. In this Account, we summarize results from our collaboration and from our individual labs. In particular, we show that oxidation selectivity (C-C vs C-O bond cleavage) of lignin models using air and vanadium complexes depends on the ancillary ligands, the reaction solvent, and the substrate structure (i.e., phenolic vs non-phenolic). Selected vanadium complexes in the presence of added base serve as effective alcohol oxidation catalysts via a novel base-assisted dehydrogenation pathway. In contrast, copper catalysts effect direct C-C bond cleavage of these lignin models, presumably through a radical pathway. The most active vanadium catalyst exhibits unique activity for the depolymerization of organosolv lignin. After Weckhuysen's excellent 2010 review on lignin valorization, the number of catalysis studies and approaches on both lignin models and extracts has expanded rapidly. Today we are seeing new start-ups and lignin production facilities sprouting up across the globe as we all work to prove wrong the old pulp and paper chemist

  9. Feature selection gait-based gender classification under different circumstances

    NASA Astrophysics Data System (ADS)

    Sabir, Azhin; Al-Jawad, Naseer; Jassim, Sabah

    2014-05-01

    This paper proposes a gender classification based on human gait features and investigates the problem of two variations: clothing (wearing coats) and carrying bag condition as addition to the normal gait sequence. The feature vectors in the proposed system are constructed after applying wavelet transform. Three different sets of feature are proposed in this method. First, Spatio-temporal distance that is dealing with the distance of different parts of the human body (like feet, knees, hand, Human Height and shoulder) during one gait cycle. The second and third feature sets are constructed from approximation and non-approximation coefficient of human body respectively. To extract these two sets of feature we divided the human body into two parts, upper and lower body part, based on the golden ratio proportion. In this paper, we have adopted a statistical method for constructing the feature vector from the above sets. The dimension of the constructed feature vector is reduced based on the Fisher score as a feature selection method to optimize their discriminating significance. Finally k-Nearest Neighbor is applied as a classification method. Experimental results demonstrate that our approach is providing more realistic scenario and relatively better performance compared with the existing approaches.

  10. Infrared transparent frequency selective surface based on metallic meshes

    SciTech Connect

    Yu, Miao; Xu, Nianxi; Liu, Hai; Gao, Jinsong

    2014-02-15

    This paper presents an infrared transparent frequency selective surface (ITFSS) based on metallic meshes. In this ITFSS structure, periodic cross-slot units are integrated on square metallic meshes empowered by coating and UV-lithography. A matching condition is proposed to avoid the distortion of units. Experimental results show that this ITFSS possesses a good transmittance of 80% in the infrared band of 3–5 μm, and also a stable band-pass behavior at the resonance frequency of 36.4 GHz with transmittance of −0.56 dB. Theoretical simulations about the ITFSS diffractive characteristics and frequency responses are also investigated. The novel ITFSS will attract renewed interest and be exploited for applications in various fields.

  11. Isotope-selective sensor for medical diagnostics based on PAS

    NASA Astrophysics Data System (ADS)

    Wolff, M.; Groninga, H. G.; Harde, H.

    2005-06-01

    Development of new optical sensor technologies has a major impact on the progression of diagnostic methods. Of the permanently increasing number of non-invasive 13C-breath tests, the Urea Breath Test for detection of Helicobacter pylori is the most prominent. However, many recent developments go beyond gastroenterological applications. We present a new detection scheme for breath analysis that employs an especially compact and simple set-up based on Photoacoustic Spectroscopy. Using a wavelength-modulated DFB-diode laser and taking advantage of acoustical resonances of the sample cell, we performed very sensitive isotope-selective measurements on CO2. Detection limits for 13CO2 of a few ppm and for the variation of the 13CO2 concentration of approximately 1% were achieved.

  12. Site-selective deposition of twinned platinum nanoparticles on TiSi2 nanonets by atomic layer deposition and their oxygen reduction activities.

    PubMed

    Xie, Jin; Yang, Xiaogang; Han, Binghong; Shao-Horn, Yang; Wang, Dunwei

    2013-07-23

    For many electrochemical reactions such as oxygen reduction, catalysts are of critical importance, as they are often necessary to reduce reaction overpotentials. To fulfill the promises held by catalysts, a well-defined charge transport pathway is indispensable. Presently, porous carbon is most commonly used for this purpose, the application of which has been recently recognized to be a potential source of concern. To meet this challenge, here we present the development of a catalyst system without the need for carbon. Instead, we focused on a conductive, two-dimensional material of a TiSi2 nanonet, which is also of high surface area. As a proof-of-concept, we grew Pt nanoparticles onto TiSi2 by atomic layer deposition. Surprisingly, the growth exhibited a unique selectivity, with Pt deposited only on the top/bottom surfaces of the nanonets at the nanoscale without mask or patterning. Pt {111} surfaces are preferably exposed as a result of a multiple-twinning effect. The materials showed great promise in catalyzing oxygen reduction reactions, which is one of the key challenges in both fuel cells and metal air batteries.

  13. Synthesis, characterization and biological relevance of some metal (II) complexes with oxygen, nitrogen and oxygen (ONO) donor Schiff base ligand derived from thiazole and 2-hydroxy-1-naphthaldehyde

    NASA Astrophysics Data System (ADS)

    Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2015-04-01

    The novel Schiff base ligand 2-((2-hydroxynaphthalen-1-yl)methylene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-hydroxy-1-naphthaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), Zn(II) and Cd(II) complexes have been characterized by microanalysis, molar conductance, IR, 1H NMR, ESI-mass, UV-Visible, TGA/DTA, ESR and powder X-ray diffraction data to explicate their structures. The IR results confirmed the tridentate binding of the ligand involving oxygen atom of amide carbonyl, azomethine nitrogen and naphthol oxygen. 1H NMR spectral data of the ligand (L) and its Zn(II) complex agreed well with the proposed structures. Thermogravimetric studies for Cu(II) and Ni(II) complexes indicated the presence of coordinated water molecules and the final product is the metal oxide. In order to appraise the effect of antimicrobial activity of metal ions upon chelation, the newly synthesized ligand and its metal complexes were screened for their antimicrobial activity by minimum inhibitory concentration (MIC) method. The DNA cleavage activities were studied using plasmid DNA pBR322 (Bangal re Genei, Bengaluru, Cat. No 105850) as a target molecule by agarose gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties against Artemia salina. Furthermore, the antioxidant activity were determined in vitro by reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH). The ligand exhibited better in vitro-antioxidant activity than its metal complexes.

  14. Convenient microtiter plate-based, oxygen-independent activity assays for flavin-dependent oxidoreductases based on different redox dyes.

    PubMed

    Brugger, Dagmar; Krondorfer, Iris; Zahma, Kawah; Stoisser, Thomas; Bolivar, Juan M; Nidetzky, Bernd; Peterbauer, Clemens K; Haltrich, Dietmar

    2014-04-01

    Flavin-dependent oxidoreductases are increasingly recognized as important biocatalysts for various industrial applications. In order to identify novel activities and to improve these enzymes in engineering approaches, suitable screening methods are necessary. We developed novel microtiter-plate-based assays for flavin-dependent oxidases and dehydrogenases using redox dyes as electron acceptors for these enzymes. 2,6-dichlorophenol-indophenol, methylene green, and thionine show absorption changes between their oxidized and reduced forms in the visible range, making it easy to judge visually changes in activity. A sample set of enzymes containing both flavoprotein oxidases and dehydrogenases - pyranose 2-oxidase, pyranose dehydrogenase, cellobiose dehydrogenase, D-amino acid oxidase, and L-lactate oxidase - was selected. Assays for these enzymes are based on a direct enzymatic reduction of the redox dyes and not on the coupled detection of a reaction product as in the frequently used assays based on hydrogen peroxide formation. The different flavoproteins show low Michaelis constants with these electron acceptor substrates, and therefore these dyes need to be added in only low concentrations to assure substrate saturation. In conclusion, these electron acceptors are useful in selective, reliable and cheap MTP-based screening assays for a range of flavin-dependent oxidoreductases, and offer a robust method for library screening, which could find applications in enzyme engineering programs. PMID:24376171

  15. Unsupervised Feature Selection Based on the Morisita Index

    NASA Astrophysics Data System (ADS)

    Golay, Jean; Kanevski, Mikhail

    2016-04-01

    Recent breakthroughs in technology have radically improved our ability to collect and store data. As a consequence, the size of datasets has been increasing rapidly both in terms of number of variables (or features) and number of instances. Since the mechanism of many phenomena is not well known, too many variables are sampled. A lot of them are redundant and contribute to the emergence of three major challenges in data mining: (1) the complexity of result interpretation, (2) the necessity to develop new methods and tools for data processing, (3) the possible reduction in the accuracy of learning algorithms because of the curse of dimensionality. This research deals with a new algorithm for selecting the smallest subset of features conveying all the information of a dataset (i.e. an algorithm for removing redundant features). It is a new version of the Fractal Dimensionality Reduction (FDR) algorithm [1] and it relies on two ideas: (a) In general, data lie on non-linear manifolds of much lower dimension than that of the spaces where they are embedded. (b) The situation describes in (a) is partly due to redundant variables, since they do not contribute to increasing the dimension of manifolds, called Intrinsic Dimension (ID). The suggested algorithm implements these ideas by selecting only the variables influencing the data ID. Unlike the FDR algorithm, it resorts to a recently introduced ID estimator [2] based on the Morisita index of clustering and to a sequential forward search strategy. Consequently, in addition to its ability to capture non-linear dependences, it can deal with large datasets and its implementation is straightforward in any programming environment. Many real world case studies are considered. They are related to environmental pollution and renewable resources. References [1] C. Traina Jr., A.J.M. Traina, L. Wu, C. Faloutsos, Fast feature selection using fractal dimension, in: Proceedings of the XV Brazilian Symposium on Databases, SBBD, pp. 158

  16. Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates.

    SciTech Connect

    Lyons, J.E.

    1992-07-01

    The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

  17. Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates

    SciTech Connect

    Lyons, J.E.

    1992-01-01

    The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

  18. Oxygenation of Earth's atmosphere and its impact on the evolution of nitrogen-based metabolisms

    NASA Astrophysics Data System (ADS)

    Papineau, D.; Mojzsis, S. J.

    2002-12-01

    Early Proterozoic. In the anoxic Archean atmosphere, the nitrogen cycle must have been different and the instability of oxidized nitrogen species such as NO3- under low pO2 must have limited its availability. Therefore nitrogen fixation probably was the dominant nitrogen-based metabolic pathway during the Archean until the rise of oxygen in the atmosphere in the Early Proterozoic, which resulted in more favorable conditions for denitrification to become the dominant nitrogen-based metabolism. Stable isotopic ratios can be used to detect denitrification (which positively fractionates δ15N) and nitrogen fixation (which negatively fractionates δ15N) in K+-containing minerals such as biotite and muscovite. In an effort to characterize the transition from the essentially anoxic Archean atmosphere to the modern oxidizing atmosphere, we are investigating sedimentary rocks spanning 2.4 to 1.9 Ga from Rovaniemi, Finland. Structural NH4+ in minerals is characterized by μFTIR spectroscopy. Our new μFTIR measurements of Early Proterozoic metasediments spanning the 2.4 - 1.9 Ga time interval (and focused on the well-represented 2.2 - 1.9 Ga time interval from Rovaniemi) provide a high-resolution record of ammonium content during the GOE as a prelude to future detailed δ15N measurements by laser mass spectrometry. This work traces the evolution of nitrogen fixation in the biosphere, its response to changes in global redox and provides a tool for the investigation of biosignatures in samples returned from other ancient planetary surfaces.

  19. Hemorheological implications of perfluorocarbon based oxygen carrier interaction with colloid plasma expanders and blood.

    PubMed

    Vásquez, Diana M; Ortiz, Daniel; Alvarez, Oscar A; Briceño, Juan C; Cabrales, Pedro

    2013-01-01

    Perfluorocarbon (PFC) emulsions used as artificial oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically-used PEs. The rheological behavior of the mixtures was analyzed in vitro in parallel with in vivo analysis of blood flow in the microcirculation using intravital microscopy, when PEs were administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation and increased blood viscosity in a shear dependent fashion. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo compared to nonaggregating mixtures of PFC and PEs. For the PEs evaluated, human serum albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rates (e.g., arterioles, venules, and pulmonary circulation) when used in a clinical setting, because persistent aggregates could cause capillary occlusion, decreased perfusion, pulmonary emboli or focal ischemia.

  20. Mutual information-based feature selection for radiomics

    NASA Astrophysics Data System (ADS)

    Oubel, Estanislao; Beaumont, Hubert; Iannessi, Antoine

    2016-03-01

    Background The extraction and analysis of image features (radiomics) is a promising field in the precision medicine era, with applications to prognosis, prediction, and response to treatment quantification. In this work, we present a mutual information - based method for quantifying reproducibility of features, a necessary step for qualification before their inclusion in big data systems. Materials and Methods Ten patients with Non-Small Cell Lung Cancer (NSCLC) lesions were followed over time (7 time points in average) with Computed Tomography (CT). Five observers segmented lesions by using a semi-automatic method and 27 features describing shape and intensity distribution were extracted. Inter-observer reproducibility was assessed by computing the multi-information (MI) of feature changes over time, and the variability of global extrema. Results The highest MI values were obtained for volume-based features (VBF). The lesion mass (M), surface to volume ratio (SVR) and volume (V) presented statistically significant higher values of MI than the rest of features. Within the same VBF group, SVR showed also the lowest variability of extrema. The correlation coefficient (CC) of feature values was unable to make a difference between features. Conclusions MI allowed to discriminate three features (M, SVR, and V) from the rest in a statistically significant manner. This result is consistent with the order obtained when sorting features by increasing values of extrema variability. MI is a promising alternative for selecting features to be considered as surrogate biomarkers in a precision medicine context.

  1. Novel class of highly selective divanillin-based PACs

    NASA Astrophysics Data System (ADS)

    Medina, Arturo N.; Ferreira, Lawrence; Tadros, Sobhy P.; Sizensky, Joseph J.; Fregeolle, M.; Blakeney, Andrew J.; Toukhy, Medhat A.

    1996-06-01

    A new class of diazonaphthoquinone (DNQ) photoactive compounds (PACs) based on the divanillin core is introduced in this paper. The general structure of these PAC backbones is shown in Formula 1. The divanillin structure possesses unique electronic characteristics which influence its DNQ-SO2Cl esterification reactions to be highly selective. The most reactive site for esterification in Formula 1 is one of the divanillin hydroxyls despite the typically higher steric hindrance. Surprisingly, the esterification product is then significantly deactivated towards esterification at the other previously equivalent divanillin OH. The result of using 3 equivalents of DNQ-SO2Cl to esterify tetraphenolic species is the formation of high percentages of the specific triester in which the second divanillyl OH remains unesterified. The deactivation of the second divanillin OH after the initial esterification indicates some interaction between the two o,o-biphenol rings despite its inability to be coplanar for conjugation of (pi) electrons because of steric hindrance. Possible explanations for this interaction are explored using molecular simulation tools. Diverse members of the divanillin PAC family have been prepared from phenols of varying structure and hydrophobicities. These PACs were tested lithographically and the results correlated with PAC backbone structure. The characteristic dissolution rate behavior of the resist formulations based on triesterified PACs, measured as a function of exposure dose, generally show high discrimination and strong inhibition, even with the more hydrophilic PACs. These formulations typically exhibited high resolution, wide focus latitude, and exposure margins greater than 2.0 in lithographic screening.

  2. A Belief-based Trust Model for Dynamic Service Selection

    NASA Astrophysics Data System (ADS)

    Ali, Ali Shaikh; Rana, Omer F.

    Provision of services across institutional boundaries has become an active research area. Many such services encode access to computational and data resources (comprising single machines to computational clusters). Such services can also be informational, and integrate different resources within an institution. Consequently, we envision a service rich environment in the future, where service consumers can intelligently decide between which services to select. If interaction between service providers/users is automated, it is necessary for these service clients to be able to automatically chose between a set of equivalent (or similar) services. In such a scenario trust serves as a benchmark to differentiate between service providers. One might therefore prioritize potential cooperative partners based on the established trust. Although many approaches exist in literature about trust between online communities, the exact nature of trust for multi-institutional service sharing remains undefined. Therefore, the concept of trust suffers from an imperfect understanding, a plethora of definitions, and informal use in the literature. We present a formalism for describing trust within multi-institutional service sharing, and provide an implementation of this; enabling the agent to make trust-based decision. We evaluate our formalism through simulation.

  3. Personalized Clinical Trials in Hepatocellular Carcinoma Based on Biomarker Selection

    PubMed Central

    Zhang, Bingnan; Finn, Richard S.

    2016-01-01

    Background Since the approval of sorafenib there have been numerous failures of new agents in Phase III studies for treatment of advanced hepatocellular carcinoma (HCC). These studies have generally ignored the molecular heterogeneity of HCC and they have not enrolled patients based on predictive markers of response. The development of molecular targeted therapeutics in HCC needs to model the approach that has been taken with great success in other solid tumors, to decrease the likelihood of failure in future studies. Summary Here we review the paradigm taken with novel targeted agents in other solid tumors and highlight ongoing studies in HCC that are incorporating biomarkers in clinical development. Key Messages With the appreciation of the molecular diversity of HCC, clinical development of new agents in HCC will need to be targeted towards those patients who are most likely to benefit. This strategy, based on biomarkers for patient selection, is more likely to yield positive results and mitigate the risk of continued negative Phase III studies. PMID:27493897

  4. Graphical LASSO based Model Selection for Time Series

    NASA Astrophysics Data System (ADS)

    Jung, Alexander; Hannak, Gabor; Goertz, Norbert

    2015-10-01

    We propose a novel graphical model selection (GMS) scheme for high-dimensional stationary time series or discrete time process. The method is based on a natural generalization of the graphical LASSO (gLASSO), introduced originally for GMS based on i.i.d. samples, and estimates the conditional independence graph (CIG) of a time series from a finite length observation. The gLASSO for time series is defined as the solution of an l1-regularized maximum (approximate) likelihood problem. We solve this optimization problem using the alternating direction method of multipliers (ADMM). Our approach is nonparametric as we do not assume a finite dimensional (e.g., an autoregressive) parametric model for the observed process. Instead, we require the process to be sufficiently smooth in the spectral domain. For Gaussian processes, we characterize the performance of our method theoretically by deriving an upper bound on the probability that our algorithm fails to correctly identify the CIG. Numerical experiments demonstrate the ability of our method to recover the correct CIG from a limited amount of samples.

  5. Thin layer coulometry with ionophore based ion-selective membranes.

    PubMed

    Grygolowicz-Pawlak, Ewa; Bakker, Eric

    2010-06-01

    We are demonstrating here for the first time a thin layer coulometric detection mode for ionophore based liquid ion-selective membranes. Coulometry promises to achieve the design of robust, calibration free sensors that are especially attractive for applications where recalibration in situ is difficult or undesirable. This readout principle is here achieved with porous polypropylene tubing doped with the membrane material and which contains a chlorinated silver wire in the inner compartment, together with the fluidically delivered sample solution. The membrane material consists of the lipophilic plasticizer dodecyl 2-nitrophenyl ether, the lipophilic electrolyte ETH 500, and the calcium ionophore ETH 5234. Importantly and in contrast to earlier work on voltammetric liquid membrane electrodes, the membrane also contains a cation-exchanger salt, KTFPB. This renders the membrane permselective and allows one to observe open circuit potentiometric responses for the device, which is confirmed to follow the expected Nernstian equation. Moreover, as the same cationic species is now potential determining at both interfaces of the membrane, it is possible to use rapidly diffusing and/or thin membrane systems where transport processes at the inner and outer interface of the membrane do not perturb each other or the overall composition of the membrane. The tubing is immersed in an electrolyte solution where the counter and working electrode are placed, and the potentials are applied relative to the measured open circuit potentials. Exhaustive current decays are observed in the range of 10 to 100 muM calcium chloride. The observed charge, calculated as integrated currents, is linearly dependent on concentration and forms the basis for the coulometric readout of ion-selective membrane electrodes.

  6. A sterilization system using ultraviolet photochemical reactions based on nitrous oxide and oxygen gases.

    PubMed

    Ohnishi, Yasutaka; Matsumoto, Hiroyuki; Iwamori, Satoru

    2016-03-01

    Active oxygen species (AOS) generated under ultraviolet (UV) lamps can be applied for various industrial processes owing to extremely strong oxidative abilities. We have already reported on an application of the AOS for a sterilization process of microorganisms. Here, a sterilization method using active oxygen generated under ultraviolet (UV) lamps introducing nitrous oxide (N2O) and oxygen gases into a vacuum chamber was investigated. Nitrogen dioxide (NO2) gas was readily produced from N2O by UV photochemical reactions under the low-pressure mercury lamp and then used to sterilize medical devices. We compared the ability of the N2O gas to sterilize Geobacillus stearothermophilus spores with those of conventional methods. Successful sterilization of spores on various biological indicators was achieved within 60 min, not only in sterilization bags but also in a lumen device. PMID:26812575

  7. Toward understanding the selective anticancer capacity of cold atmospheric plasma--a model based on aquaporins (Review).

    PubMed

    Yan, Dayun; Talbot, Annie; Nourmohammadi, Niki; Sherman, Jonathan H; Cheng, Xiaoqian; Keidar, Michael

    2015-01-01

    Selectively treating tumor cells is the ongoing challenge of modern cancer therapy. Recently, cold atmospheric plasma (CAP), a near room-temperature ionized gas, has been demonstrated to exhibit selective anticancer behavior. However, the mechanism governing such selectivity is still largely unknown. In this review, the authors first summarize the progress that has been made applying CAP as a selective tool for cancer treatment. Then, the key role of aquaporins in the H2O2 transmembrane diffusion is discussed. Finally, a novel model, based on the expression of aquaporins, is proposed to explain why cancer cells respond to CAP treatment with a greater rise in reactive oxygen species than homologous normal cells. Cancer cells tend to express more aquaporins on their cytoplasmic membranes, which may cause the H2O2 uptake speed in cancer cells to be faster than in normal cells. As a result, CAP treatment kills cancer cells more easily than normal cells. Our preliminary observations indicated that glioblastoma cells consumed H2O2 much faster than did astrocytes in either the CAP-treated or H2O2-rich media, which supported the selective model based on aquaporins.

  8. The selectivity of water-based pyrophosphate recognition is tuned by metal substitution in dimetallic receptors.

    PubMed

    Svane, Simon; Kjeldsen, Frank; McKee, Vickie; McKenzie, Christine J

    2015-07-14

    The three dimetallic compounds [Ga2(bpbp)(OH)2(H2O)2](ClO4)3, [In2(bpbp)(CH3CO2)2](ClO4)3 and [Zn2(bpbp)(HCO2)2](ClO4) (bpbp(-) = 2,6-bis((N,N'-bis(2-picolyl)amino)methyl)-4-tertbutylphenolate) were evaluated as stable solid state precursors for reactive solution state receptors to use for the recognition of the biologically important anion pyrophosphate in water at neutral pH. Indicator displacement assays using in situ generated complex-pyrocatechol violet adducts, {M2(bpbp)(HxPV)}(n+) M = Ga(3+), In(3+), Zn(2+), were tested for selectivity in their reactions with a series of common anions: pyrophosphate, phosphate, ATP, arsenate, nitrate, perchlorate, chloride, sulfate, formate, carbonate and acetate. The receptor employing Ga(3+) showed a slow but visually detectable response (blue to yellow) in the presence of one equivalent of pyrophosphate but no response to any other anion, even when they were present in much higher concentrations. The systems based on In(3+) or Zn(2+) show less selectivity in accord with visibly discernible responses to several of the anions. These results demonstrate a facile method for increasing anion selectivity without modification of an organic dinucleating ligand scaffold. The comfortable supramolecular recognition of pyrophosphate by the dimetallic complexes is demonstrated by the single crystal X-ray structure of [Ga2(bpbp)(HP2O7)](ClO4)2 in which the pyrophosphate is coordinated to the two gallium ions via four of its oxygen atoms.

  9. The selectivity of water-based pyrophosphate recognition is tuned by metal substitution in dimetallic receptors.

    PubMed

    Svane, Simon; Kjeldsen, Frank; McKee, Vickie; McKenzie, Christine J

    2015-07-14

    The three dimetallic compounds [Ga2(bpbp)(OH)2(H2O)2](ClO4)3, [In2(bpbp)(CH3CO2)2](ClO4)3 and [Zn2(bpbp)(HCO2)2](ClO4) (bpbp(-) = 2,6-bis((N,N'-bis(2-picolyl)amino)methyl)-4-tertbutylphenolate) were evaluated as stable solid state precursors for reactive solution state receptors to use for the recognition of the biologically important anion pyrophosphate in water at neutral pH. Indicator displacement assays using in situ generated complex-pyrocatechol violet adducts, {M2(bpbp)(HxPV)}(n+) M = Ga(3+), In(3+), Zn(2+), were tested for selectivity in their reactions with a series of common anions: pyrophosphate, phosphate, ATP, arsenate, nitrate, perchlorate, chloride, sulfate, formate, carbonate and acetate. The receptor employing Ga(3+) showed a slow but visually detectable response (blue to yellow) in the presence of one equivalent of pyrophosphate but no response to any other anion, even when they were present in much higher concentrations. The systems based on In(3+) or Zn(2+) show less selectivity in accord with visibly discernible responses to several of the anions. These results demonstrate a facile method for increasing anion selectivity without modification of an organic dinucleating ligand scaffold. The comfortable supramolecular recognition of pyrophosphate by the dimetallic complexes is demonstrated by the single crystal X-ray structure of [Ga2(bpbp)(HP2O7)](ClO4)2 in which the pyrophosphate is coordinated to the two gallium ions via four of its oxygen atoms. PMID:26057368

  10. Oxygen abundance distributions in six late-type galaxies based on SALT spectra of H II regions

    NASA Astrophysics Data System (ADS)

    Zinchenko, I. A.; Kniazev, A. Y.; Grebel, E. K.; Pilyugin, L. S.

    2015-10-01

    Spectra of 34 H ii regions in the late-type galaxies NGC 1087, NGC 2967, NGC 3023, NGC 4030, NGC 4123, and NGC 4517A were observed with the South African Large Telescope (SALT). In all 34 H ii regions, oxygen abundances were determined through the "counterpart" method (C method). Additionally, in two H ii regions in which we detected auroral lines, we measured oxygen abundances with the classic Te method. We also estimated the abundances in our H ii regions using the O3N2 and N2 calibrations and compared those with the C-based abundances. With these data, we examined the radial abundance distributions in the disks of our target galaxies. We derived surface-brightness profiles and other characteristics of the disks (the surface brightness at the disk center and the disk scale length) in three photometric bands for each galaxy using publicly available photometric imaging data. The radial distributions of the oxygen abundances predicted by the relation between abundance and disk surface brightness in the W1 band obtained for spiral galaxies in our previous study are close to the radial distributions of the oxygen abundances determined from the analysis of the emission line spectra for four galaxies where this relation is applicable. Hence, when the surface-brightness profile of a late-type galaxy is known, this parametric relation can be used to estimate the likely present-day oxygen abundance in the disk of the galaxy. Based on observations made with the Southern African Large Telescope, programs 2012-1-RSA_OTH-001, 2012-2-RSA_OTH-003 and 2013-1-RSA_OTH-005.

  11. Comparing topography-based verbal behavior with stimulus selection-based verbal behavior

    PubMed Central

    Sundberg, Carl T.; Sundberg, Mark L.

    1990-01-01

    Michael (1985) distinguished between two types of verbal behavior: topography-based and stimulus selection-based verbal behavior. The current research was designed to empirically examine these two types of verbal behavior while addressing the frequently debated question, Which augmentative communication system should be used with the nonverbal developmentally disabled person? Four mentally retarded adults served as subjects. Each subject was taught to tact an object by either pointing to its corresponding symbol (selection-based verbal behavior), or making the corresponding sign (topography-based verbal behavior). They were then taught an intraverbal relation, and were tested for the emergence of stimulus equivalence relations. The results showed that signed responses were acquired more readily than pointing responses as measured by the acquisition of tacts and intraverbals, and the formation of equivalence classes. These results support Michael's (1985) analysis, and have important implications for the design of language intervention programs for the developmentally disabled. ImagesFig. 1Fig. 2 PMID:22477602

  12. Simple and highly Z-selective ruthenium-based olefin metathesis catalyst.

    PubMed

    Occhipinti, Giovanni; Hansen, Fredrik R; Törnroos, Karl W; Jensen, Vidar R

    2013-03-01

    A one-step substitution of a single chloride anion of the Grubbs-Hoveyda second-generation catalyst with a 2,4,6-triphenylbenzenethiolate ligand resulted in an active olefin metathesis catalyst with remarkable Z selectivity, reaching 96% in metathesis homocoupling of terminal olefins. High turnover numbers (up to 2000 for homocoupling of 1-octene) were obtained along with sustained appreciable Z selectivity (>85%). Apart from the Z selectivity, many properties of the new catalyst, such as robustness toward oxygen and water as well as a tendency to isomerize substrates and react with internal olefin products, resemble those of the parent catalyst.

  13. Impact of oxygen concentration on time to resolution of spontaneous pneumothorax in term infants: a population based cohort study

    PubMed Central

    2014-01-01

    Background Little evidence exists regarding the optimal concentration of oxygen to use in the treatment of term neonates with spontaneous pneumothorax (SP). The practice of using high oxygen concentrations to promote “nitrogen washout” still exists at many centers. The aim of this study was to identify the time to clinical resolution of SP in term neonates treated with high oxygen concentrations (HO: FiO2 ≥ 60%), moderate oxygen concentrations (MO: FiO2 < 60%) or room air (RA: FiO2 = 21%). Methods A population based cohort study that included all term neonates with radiologically confirmed spontaneous pneumothorax admitted to all neonatal intensive care units in Calgary, Alberta, Canada, within 72 hours of birth between 2006 and 2010. Newborns with congenital and chromosomal anomalies, meconium aspiration, respiratory distress syndrome, and transient tachypnea of newborn, pneumonia, tension pneumothorax requiring thoracocentesis or chest tube drainage or mechanical ventilation before the diagnosis of pneumothorax were excluded. The primary outcome was time to clinical resolution (hours) of SP. A Cox proportional hazards model was developed to assess differences in time to resolution of SP between treatment groups. Results Neonates were classified into three groups based on the treatment received: HO (n = 27), MO (n = 35) and RA (n = 30). There was no significant difference in time to resolution of SP between the three groups, median (range 25th-75th percentile) for HO = 12 hr (8–27), MO = 12 hr (5–24) and RA = 11 hr (4–24) (p = 0.50). A significant difference in time to resolution of SP was also not observed after adjusting for inhaled oxygen concentration [MO (a HR = 1.13, 95% CI 0.54-2.37); RA (a HR = 1.19, 95% CI 0.69-2.05)], gender (a HR = 0.87, 95% CI 0.53-1.43) and ACoRN respiratory score (a HR = 0.7, 95% CI 0.41-1.34). Conclusions Supplemental oxygen use or nitrogen washout was not

  14. Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment.

    PubMed

    Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen

    2015-01-01

    To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability.

  15. Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment

    PubMed Central

    Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen

    2015-01-01

    To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability. PMID:26257980

  16. Influence of dissolved oxygen concentration on the start-up of the anammox-based process: ELAN®.

    PubMed

    Morales, N; Val del Río, A; Vázquez-Padín, J R; Gutiérrez, R; Fernández-González, R; Icaran, P; Rogalla, F; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-01-01

    The anammox-based process ELAN® was started-up in two different sequencing batch reactor (SBR) pilot plant reactors treating municipal anaerobic digester supernatant. The main difference in the operation of both reactors was the dissolved oxygen (DO) concentration in the bulk liquid. SBR-1 was started at a DO value of 0.4 mg O2/L whereas SBR-2 was started at DO values of 3.0 mg O2/L. Despite both reactors working at a nitrogen removal rate of around 0.6 g N/(L d), in SBR-1, granules represented only a small fraction of the total biomass and reached a diameter of 1.1 mm after 7 months of operation, while in SBR-2 the biomass was mainly composed of granules with an average diameter of 3.2 mm after the same operational period. Oxygen microelectrode profiling revealed that granules from SBR-2 where only fully penetrated by oxygen with DO concentrations of 8 mg O2/L while granules from SBR-1 were already oxygen penetrated at DO concentrations of 1 mg O2/L. In this way granules from SBR-2 performed better due to the thick layer of ammonia oxidizing bacteria, which accounted for up to 20% of all the microbial populations, which protected the anammox bacteria from non-suitable liquid media conditions. PMID:26247749

  17. Prediction of In-Space Durability of Protected Polymers Based on Ground Laboratory Thermal Energy Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Rutledge, Sharon; DiFilippo, Frank J.

    1996-01-01

    The probability of atomic oxygen reacting with polymeric materials is orders of magnitude lower at thermal energies (greater than O.1 eV) than at orbital impact energies (4.5 eV). As a result, absolute atomic oxygen fluxes at thermal energies must be orders of magnitude higher than orbital energy fluxes, to produce the same effective fluxes (or same oxidation rates) for polymers. These differences can cause highly pessimistic durability predictions for protected polymers and polymers which develop protective metal oxide surfaces as a result of oxidation if one does not make suitable calibrations. A comparison was conducted of undercut cavities below defect sites in protected polyimide Kapton samples flown on the Long Duration Exposure Facility (LDEF) with similar samples exposed in thermal energy oxygen plasma. The results of this comparison were used to quantify predicted material loss in space based on material loss in ground laboratory thermal energy plasma testing. A microindent hardness comparison of surface oxidation of a silicone flown on the Environmental Oxygen Interaction with Materials-III (EOIM-III) experiment with samples exposed in thermal energy plasmas was similarly used to calibrate the rate of oxidation of silicone in space relative to samples in thermal energy plasmas exposed to polyimide Kapton effective fluences.

  18. High impact of uranyl ions on carrying-releasing oxygen capability of hemoglobin-based blood substitutes.

    PubMed

    Duan, Li; Du, Lili; Jia, Yi; Liu, Wenyuan; Liu, Zhichao; Li, Junbai

    2015-01-01

    The effect of radioactive UO2 (2+) on the oxygen-transporting capability of hemoglobin-based oxygen carriers has been investigated in vitro. The hemoglobin (Hb) microspheres fabricated by the porous template covalent layer-by-layer (LbL) assembly were utilized as artificial oxygen carriers and blood substitutes. Magnetic nanoparticles of iron oxide (Fe3 O4 ) were loaded in porous CaCO3 particles for magnetically assisted chemical separation (MACS). Through the adsorption spectrum of magnetic Hb microspheres after adsorbing UO2 (2+) , it was found that UO2 (2+) was highly loaded in the magnetic Hb microspheres, and it shows that the presence of UO2 (2+) in vivo destroys the structure and oxygen-transporting capability of Hb microspheres. In view of the high adsorption capacity of UO2 (2+) , the as-assembled magnetic Hb microspheres can be considered as a novel, highly effective adsorbent for removing metal toxins from radiation-contaminated bodies, or from nuclear-power reactor effluent before discharge into the environment.

  19. A multisyringe flow injection Winkler-based spectrophotometric analyzer for in-line monitoring of dissolved oxygen in seawater.

    PubMed

    Horstkotte, Burkhard; Alonso, Juan Carlos; Miró, Manuel; Cerdà, Víctor

    2010-01-15

    An integrated analyzer based on the multisyringe flow injection analysis approach is proposed for the automated determination of dissolved oxygen in seawater. The entire Winkler method including precipitation of manganese(II) hydroxide, fixation of dissolved oxygen, dissolution of the oxidized manganese hydroxide precipitate, and generation of iodine and tri-iodide ion are in-line effected within the flow network. Spectrophotometric quantification of iodine and tri-iodide at the isosbestic wavelength of 466nm renders enhanced method reliability. The calibration function is linear up to 19mgL(-1) dissolved oxygen and an injection frequency of 17 per hour is achieved. The multisyringe system features a highly satisfying signal stability with repeatabilities of 2.2% RSD that make it suitable for continuous determination of dissolved oxygen in seawater. Compared to the manual starch-end-point titrimetric Winkler method and early reported automated systems, concentrations and consumption of reagents and sample are reduced up to hundredfold. The versatility of the multisyringe assembly was exploited in the implementation of an ancillary automatic batch-wise Winkler titrator using a single syringe of the module for accurate titration of the released iodine/tri-iodide with thiosulfate. PMID:20006097

  20. Effect of fuel gas composition in chemical-looping combustion with Ni-based oxygen carriers. 1. Fate of sulfur

    SciTech Connect

    Garcia-Labiano, F.; de Diego, L.F.; Gayan, P.; Adanez, J.; Abad, A.; Dueso, C.

    2009-03-15

    Chemical-looping combustion (CLC) has been suggested among the best alternatives to reduce the economic cost of CO{sub 2} capture using fuel gas because CO{sub 2} is inherently separated in the process. For gaseous fuels, natural gas, refinery gas, or syngas from coal gasification can be used. These fuels may contain different amounts of sulfur compounds, such as H{sub 2}S and COS. An experimental investigation of the fate of sulfur during CH{sub 4} combustion in a 500 W{sub th} CLC prototype using a Ni-based oxygen carrier has been carried out. The effect on the oxygen carrier behavior and combustion efficiency of several operating conditions such as temperature and H{sub 2}S concentration has been analyzed. Nickel sulfide, Ni3S{sub 2}, was formed at all operating conditions in the fuel reactor, which produced an oxygen carrier deactivation and lower combustion efficiencies. However, the oxygen carrier recovered their initial reactivity after certain time without sulfur addition. The sulfides were transported to the air reactor where SO{sub 2} was produced as final gas product. Agglomeration problems derived from the sulfides formation were never detected during continuous operation. Considering both operational and environmental aspects, fuels with sulfur contents below 100 vppm H{sub 2}S seem to be adequate to be used in an industrial CLC plant.

  1. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning

    PubMed Central

    Barbosa-Santillán, Liliana I.; Sánchez-Escobar, Juan J.; Calixto-Romo, M. Angeles; Barbosa-Santillán, Luis F.

    2016-01-01

    We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2. PMID:27366202

  2. Sol-gel based sensor for selective formaldehyde determination.

    PubMed

    Bunkoed, Opas; Davis, Frank; Kanatharana, Proespichaya; Thavarungkul, Panote; Higson, Séamus P J

    2010-02-01

    We report the development of transparent sol-gels with entrapped sensitive and selective reagents for the detection of formaldehyde. The sampling method is based on the adsorption of formaldehyde from the air and reaction with beta-diketones (for example acetylacetone) in a sol-gel matrix to produce a yellow product, lutidine, which was detected directly. The proposed method does not require preparation of samples prior to analysis and allows both screening by visual detection and quantitative measurement by simple spectrophotometry. The detection limit of 0.03 ppmv formaldehyde is reported which is lower than the maximum exposure concentrations recommended by both the World Health Organisation (WHO) and the Occupational Safety and Health Administration (OSHA). This sampling method was found to give good reproducibility, the relative standard deviation at 0.2 and 1 ppmv being 6.3% and 4.6%, respectively. Other carbonyl compounds i.e. acetaldehyde, benzaldehyde, acetone and butanone do not interfere with this analytical approach. Results are provided for the determination of formaldehyde in indoor air.

  3. Towards an Automatic and Application-Based EigensolverSelection

    SciTech Connect

    Zhang, Yeliang; Li, Xiaoye S.; Marques, Osni

    2005-09-09

    The computation of eigenvalues and eigenvectors is an important and often time-consuming phase in computer simulations. Recent efforts in the development of eigensolver libraries have given users good algorithms without the need for users to spend much time in programming. Yet, given the variety of numerical algorithms that are available to domain scientists, choosing the ''best'' algorithm suited for a particular application is a daunting task. As simulations become increasingly sophisticated and larger, it becomes infeasible for a user to try out every reasonable algorithm configuration in a timely fashion. Therefore, there is a need for an intelligent engine that can guide the user through the maze of various solvers with various configurations. In this paper, we present a methodology and a software architecture aiming at determining the best solver based on the application type and the matrix properties. We combine a decision tree and an intelligent engine to select a solver and a preconditioner combination for the application submitted by the user. We also discuss how our system interface is implemented with third party numerical libraries. In the case study, we demonstrate the feasibility and usefulness of our system with a simplified linear solving system. Our experiments show that our proposed intelligent engine is quite adept in choosing a suitable algorithm for different applications.

  4. Feature-based attention across saccades and immediate postsaccadic selection.

    PubMed

    Eymond, Cécile; Cavanagh, Patrick; Collins, Thérèse

    2016-07-01

    Before each eye movement, attentional resources are drawn to the saccade goal. This saccade-related attention is known to be spatial in nature, and in this study we asked whether it also evokes any feature selectivity that is maintained across the saccade. After a saccade toward a colored target, participants performed a postsaccadic feature search on an array displayed at landing. The saccade target either had the same color as the search target in the postsaccadic array (congruent trials) or a different color (incongruent or neutral trials). Our results show that the color of the saccade target did not prime the subsequent feature search. This suggests that "landmark search", the process of searching for the saccade target once the eye lands (Deubel in Visual Cognition, 11, 173-202, 2004), may not involve the attentional mechanisms that underlie feature search. We also analyzed intertrial effects and observed priming of pop-out (Maljkovic & Nakayama in Memory & Cognition, 22, 657-672, 1994) for the postsaccadic feature search: the detection of the color singleton became faster when its color was repeated on successive trials. However, search performance revealed no effect of congruency between the saccade and search targets, either within or across trials, suggesting that the priming of pop-out is specific to target repetitions within the same task and is not seen for repetitions across tasks. Our results support a dissociation between feature-based attention and the attentional mechanisms associated with eye movement programming. PMID:27084700

  5. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning.

    PubMed

    Barbosa-Santillán, Liliana I; Sánchez-Escobar, Juan J; Calixto-Romo, M Angeles; Barbosa-Santillán, Luis F

    2016-01-01

    We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2. PMID:27366202

  6. Metabolically Derived human ventilation rates: A revised approach based upon oxygen consumption rates (Final Report) 2009

    EPA Science Inventory

    The purpose of this report is to provide a revised approach for calculating an individual's ventilation rate directly from their oxygen consumption rate. This revised approach will be used to update the ventilation rate information in the Exposure Factors Handbook, which serve as...

  7. Home-Based Aerobic Interval Training Improves Peak Oxygen Uptake Equal to Residential Cardiac Rehabilitation: A Randomized, Controlled Trial

    PubMed Central

    Moholdt, Trine; Bekken Vold, Mona; Grimsmo, Jostein; Slørdahl, Stig Arild; Wisløff, Ulrik

    2012-01-01

    Aerobic capacity, measured as the peak oxygen uptake, is a strong predictor of survival in cardiac patients. Aerobic interval training (AIT), walking/running four times four minutes at 85–95% of peak heart rate, has proven to be effective in increasing peak oxygen uptake in coronary heart disease patients. As some patients do not attend organized rehabilitation programs, home-based exercise should be an alternative. We investigated whether AIT could be performed effectively at home, and compared the effects on peak oxygen uptake with that observed after a standard care, four-week residential rehabilitation. Thirty patients undergoing coronary artery bypass surgery were randomized to residential rehabilitation or home-based AIT. At six months follow-up, peak oxygen uptake increased 4.6 (±2.7) and 3.9 (±3.6) mL·kg−1 min−1 (both p<0.005, non-significant between-group difference) after residential rehabilitation and AIT, respectively. Quality of life increased significantly in both groups, with no statistical significant difference between groups. We found no evidence for a different treatment effect between patients randomized to home-based AIT compared to patients attending organized rehabilitation (95% confidence interval −1.8, 3.5). AIT patients reported good adherence to exercise training. Even though these first data indicate positive effects of home-based AIT in patients undergoing coronary artery bypass surgery, more studies are needed to provide supporting evidence for the application of this rehabilitation strategy. Trial Registration ClinicalTrials.gov NCT00363922 PMID:22815970

  8. Observations of Oxygen Ion Behavior in the Lithium-Based Electrolytic Reduction of Uranium Oxide

    SciTech Connect

    Steven D. Herrmann; Shelly X. Li; Brenda E. Serrano-Rodriguez

    2009-09-01

    Parametric studies were performed on a lithium-based electrolytic reduction process at bench-scale to investigate the behavior of oxygen ions in the reduction of uranium oxide for various electrochemical cell configurations. Specifically, a series of eight electrolytic reduction runs was performed in a common salt bath of LiCl – 1 wt% Li2O. The variable parameters included fuel basket containment material (i.e., stainless steel wire mesh and sintered stainless steel) and applied electrical charge (i.e., 75 – 150% of the theoretical charge for complete reduction of uranium oxide in a basket to uranium metal). Samples of the molten salt electrolyte were taken at regular intervals throughout each run and analyzed to produce a time plot of Li2O concentrations in the bulk salt over the course of the runs. Following each run, the fuel basket was sectioned and the fuel was removed. Samples of the fuel were analyzed for the extent of uranium oxide reduction to metal and for the concentration of salt constituents, i.e., LiCl and Li2O. Extents of uranium oxide reduction ranged from 43 – 70% in stainless steel wire mesh baskets and 8 – 33 % in sintered stainless steel baskets. The concentrations of Li2O in the salt phase of the fuel product from the stainless steel wire mesh baskets ranged from 6.2 – 9.2 wt%, while those for the sintered stainless steel baskets ranged from 26 – 46 wt%. Another series of tests was performed to investigate the dissolution of Li2O in LiCl at 650 °C across various cathode containment materials (i.e., stainless steel wire mesh, sintered stainless steel and porous magnesia) and configurations (i.e., stationary and rotating cylindrical baskets). Dissolution of identical loadings of Li2O particulate reached equilibrium within one hour for stationary stainless steel wire mesh baskets, while the same took several hours for sintered stainless steel and porous magnesia baskets. Rotation of an annular cylindrical basket of stainless steel

  9. Atomic oxygen interaction with spacecraft materials: Relationship between orbital and ground-based testing for materials certification

    SciTech Connect

    Cross, J.B. ); Koontz, S.L. . Lyndon B. Johnson Space Center); Lan, E.H. )

    1991-01-01

    The effects of atomic oxygen on boron nitride, silicon nitride, solar cell interconnects used on the Intelsat 6 satellite, organic polymers, and MoS{sub 2} and WS{sub 2} dry lubricant have been studied in low Earth orbit (LEO) flight experiments and in our ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and ESCA analysis to measure chemical composition changes. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN overcoated on thin silver was observed. No permeation of atomic oxygen through Si{sub 3}N{sub 4} was observed. Test results on the Intelsat 6 satellite interconnects used on its photovoltaic array indicate that more than 60--80% of the original thickness of silver should remain after completion of the proposed Space Shuttle rescue/reboost mission. Gas phase reaction products produced by the interaction of high kinetic energy atomic oxygen (AO) with Kapton were found to be H{sub 2}, H{sub 2}O, CO, and CO{sub 2} with NO being a possible secondary product. Hydrogen abstraction at high AO kinetic energy is postulated to be the key reaction controlling the erosion rate of Kapton. An Arrhenius-like expression having an activation barrier of 0.4 eV can be fit to the data, which suggests that the rate limiting step in the AO/Kapton reaction mechanism can be overcome by translational energy. Oxidation of MoS{sub 2} and WS{sub 2} dry lubricants in both ground-based and orbital exposures indicated the formation of MoO{sub 3} and WO{sub 3} respectively. A protective oxide layer is formed {approx}30 monolayers thick which has a high initial friction coefficient until the layer is worn off.

  10. A simple fluorescent probe for the determination of dissolved oxygen based on the catalytic activation of oxygen by iron(II) chelates.

    PubMed

    Luo, Wei; Abbas, M E; Zhu, Lihua; Zhou, Wenyi; Li, Kejing; Tang, Heqing; Liu, Shushen; Li, Weiying

    2009-04-27

    This work aims at establishing a simple fluorescent probe for the determination of dissolved oxygen. It is found that iron(II) ions activate oxygen to produce reactive species being capable of oxidizing non-fluorescent coumarin to fluorescent 7-hydroxycoumarin. However, this process is not effective because the yield of the reactive species is very low in the presence of simple iron(II) salts alone. The addition of organic ligands such as oxalate results in the formation of complexes between iron(II) ions, which leads to considerable increase in the yield of reactive species (such as hydroxyl radicals) and then increase in the fluorescence intensity of 7-hydroxycoumarin to a significant level. It has been observed that in the mixture solution of iron(II) ions, ligand, coumarin, and dissolved oxygen, there is an excellent linear response between the fluorescence and dissolved oxygen. Therefore, a new spectrofluorimetric method has been proposed for the determination of dissolved oxygen by using catalytic activation of O(2) by iron(II) chelates. Under optimized conditions, a linear correlation (r=0.995) has been observed between the fluorescence intensity of 7-hydroxycoumarin at 456 nm and the concentration of dissolved oxygen over the range of 0.96-9.22 mg L(-1). The limit of detection for dissolved oxygen at a signal-to-noise ratio of 3 has been estimated to be 0.35 mg L(-1). The proposed method has been applied to determine the concentration of dissolved oxygen in practical water samples with results as satisfactory as that obtained by the standard iodometric method.

  11. Disposable nitrate-selective optical sensor based on fluorescent dye

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple, disposable thin-film optical nitrate sensor was developed. The sensor was fabricated by applying a nitrate-selective polymer membrane on the surface of a thin polyester film. The membrane was composed of polyvinylchloride (PVC), plasticizer, fluorescent dye, and nitrate-selective ionophore...

  12. Fabrication and Characterization of Nanocarbon-Based Nanofluids by Using an Oxygen-Acetylene Flame Synthesis System

    NASA Astrophysics Data System (ADS)

    Teng, Tun-Ping; Wang, Wei-Ping; Hsu, Yu-Chun

    2016-06-01

    In this study, an oxygen-acetylene flame synthesis system was developed to fabricate nanocarbon-based nanofluids (NCBNFs) through a one-step synthesis method. Measured in liters per minute (LPM), the flame's fuel flows combined oxygen and acetylene at four ratios: 1.5/2.5 (P1), 1.0/2.5 (P2), 0.5/2.5 (P3), and 0/2.5 (P4). The flow rate of cooling water (base fluid) was fixed at 1.2 LPM to produce different nanocarbon-based materials (NCBMs) and various concentrations of NCBNFs. Tests and analyses were conducted for determining the morphology of NCBMs, NCBM material, optical characteristics, the production rate, suspension performance, average particle size, zeta potential, and other relevant basic characteristics of NCBNFs to understand the characteristics and materials of NCBNFs produced through different process parameters (P1-P4). The results revealed that the NCBMs mainly had flaky and spherical morphologies and the diameters of the spherical NCBMs measured approximately 20-30 nm. X-ray diffraction and Raman spectroscopy revealed that the NCBMs contained graphene oxide (GO) and amorphous carbon (AC) when the oxygen flow rate was lower than 1.0 LPM. In addition, the NCBMs contained reduced GO, crystalline graphite (graphite-2H), and AC when the oxygen flow rate was higher than 1.0 LPM. The process parameters of P1, P2, P3, and P4 resulted in NCBMs produced at concentrations of 0.010, 0.013, 0.040, and 0.023 wt%, respectively, in NCBNFs. All the NCBNFs exhibited non-Newtonian and shear-thinning rheological properties. The P4 ratio showed the highest enhancement rate of thermal conductivity for NCBNFs, at a rate 4.85 % higher than that of water.

  13. Fabrication and Characterization of Nanocarbon-Based Nanofluids by Using an Oxygen-Acetylene Flame Synthesis System.

    PubMed

    Teng, Tun-Ping; Wang, Wei-Ping; Hsu, Yu-Chun

    2016-12-01

    In this study, an oxygen-acetylene flame synthesis system was developed to fabricate nanocarbon-based nanofluids (NCBNFs) through a one-step synthesis method. Measured in liters per minute (LPM), the flame's fuel flows combined oxygen and acetylene at four ratios: 1.5/2.5 (P1), 1.0/2.5 (P2), 0.5/2.5 (P3), and 0/2.5 (P4). The flow rate of cooling water (base fluid) was fixed at 1.2 LPM to produce different nanocarbon-based materials (NCBMs) and various concentrations of NCBNFs. Tests and analyses were conducted for determining the morphology of NCBMs, NCBM material, optical characteristics, the production rate, suspension performance, average particle size, zeta potential, and other relevant basic characteristics of NCBNFs to understand the characteristics and materials of NCBNFs produced through different process parameters (P1-P4). The results revealed that the NCBMs mainly had flaky and spherical morphologies and the diameters of the spherical NCBMs measured approximately 20-30 nm. X-ray diffraction and Raman spectroscopy revealed that the NCBMs contained graphene oxide (GO) and amorphous carbon (AC) when the oxygen flow rate was lower than 1.0 LPM. In addition, the NCBMs contained reduced GO, crystalline graphite (graphite-2H), and AC when the oxygen flow rate was higher than 1.0 LPM. The process parameters of P1, P2, P3, and P4 resulted in NCBMs produced at concentrations of 0.010, 0.013, 0.040, and 0.023 wt%, respectively, in NCBNFs. All the NCBNFs exhibited non-Newtonian and shear-thinning rheological properties. The P4 ratio showed the highest enhancement rate of thermal conductivity for NCBNFs, at a rate 4.85 % higher than that of water. PMID:27295256

  14. Oxygen migration in TiO{sub 2}-based higher-k gate stacks

    SciTech Connect

    Kim, Sang Bum; Brown, Stephen L.; Rossnagel, Stephen M.; Bruley, John; Copel, Matthew; Hopstaken, Marco J. P.; Narayanan, Vijay; Frank, Martin M.

    2010-03-15

    We report on the stability of high-permittivity (high-k) TiO{sub 2} films incorporated in metal-oxide-silicon capacitor structures with a TiN metal gate electrode, focusing on oxygen migration. Titanium oxide films are deposited by either Ti sputtering [physical vapor deposition (PVD)] followed by radical shower oxidation or by plasma-enhanced atomic layer deposition (PEALD) from titanium isopropoxide (Ti{l_brace}OCH(CH{sub 3}){sub 2{r_brace}4}) and O{sub 2} plasma. Both PVD and PEALD films result in near-stoichiometric TiO{sub 2} prior to high-temperature annealing. We find that dopant activation anneals of TiO{sub 2}-containing gate stacks at 1000 deg. C cause 5 A or more of additional SiO{sub 2} to be formed at the gate-dielectric/Si-channel interface. Furthermore, we demonstrate for the first time that oxygen released from TiO{sub 2} diffuses through the TiN gate electrode and oxidizes the poly-Si contact. The thickness of this upper SiO{sub 2} layer continues to increase with increasing TiO{sub 2} thickness, while the thickness of the regrown SiO{sub 2} at the gate-dielectric/Si interface saturates. The upper SiO{sub 2} layer degrades gate stack capacitance, and simultaneously the oxygen-deficient TiO{sub x} becomes a poor insulator. In an attempt to mitigate O loss from the TiO{sub 2}, top and bottom Al{sub 2}O{sub 3} layers are added to the TiO{sub 2} gate dielectric as oxygen barriers. However, they are found to be ineffective, due to Al{sub 2}O{sub 3}-TiO{sub 2} interdiffusion during activation annealing. Bottom HfO{sub 2}/Si{sub 3}N{sub 4} interlayers are found to serve as more effective oxygen barriers, reducing, though not preventing, oxygen downdiffusion.

  15. Artificial immune system based on adaptive clonal selection for feature selection and parameters optimisation of support vector machines

    NASA Astrophysics Data System (ADS)

    Sadat Hashemipour, Maryam; Soleimani, Seyed Ali

    2016-01-01

    Artificial immune system (AIS) algorithm based on clonal selection method can be defined as a soft computing method inspired by theoretical immune system in order to solve science and engineering problems. Support vector machine (SVM) is a popular pattern classification method with many diverse applications. Kernel parameter setting in the SVM training procedure along with the feature selection significantly impacts on the classification accuracy rate. In this study, AIS based on Adaptive Clonal Selection (AISACS) algorithm has been used to optimise the SVM parameters and feature subset selection without degrading the SVM classification accuracy. Several public datasets of University of California Irvine machine learning (UCI) repository are employed to calculate the classification accuracy rate in order to evaluate the AISACS approach then it was compared with grid search algorithm and Genetic Algorithm (GA) approach. The experimental results show that the feature reduction rate and running time of the AISACS approach are better than the GA approach.

  16. Structural and optical properties of solid-phase singlet oxygen photosensitizers based on fullerene aqueous suspensions

    NASA Astrophysics Data System (ADS)

    Belousova, I. M.; Belousov, V. P.; Kiselev, V. M.; Murav'eva, T. D.; Kislyakov, I. M.; Sirotkin, A. K.; Starodubtsev, A. M.; Kris'ko, T. K.; Bagrov, I. V.; Ermakov, A. V.

    2008-11-01

    The relationship between the structural and photosensitizing properties of solid-phase particles of fullerene C60 in aqueous suspensions is studied using the methods of absorption spectroscopy, electron spin resonance spectroscopy (ESR), X-ray diffraction, and spectrophotometry of solutions of singlet oxygen chemical traps—histidine in combination with p-nitrosodimethylaniline. Two new variants are proposed for obtaining aqueous suspensions of particles of solid-phase fullerene whose structures are disordered and whose degrees of amorphization are 67 and 40%, respectively. It is shown that an increase in the disorder of the structure of particles in suspensions and a decrease in their average size facilitate an increase in the formation efficiency of singlet oxygen by solid-phase fullerene presumably due to an in increase in the concentration of surface localized excitons.

  17. Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory.

    PubMed

    Karlberg, G S; Rossmeisl, J; Nørskov, J K

    2007-10-01

    By varying the external electric field in density functional theory (DFT) calculations we have estimated the impact of the local electric field in the electric double layer on the oxygen reduction reaction (ORR). Potentially, including the local electric field could change adsorption energies and barriers substantially, thereby affecting the reaction mechanism predicted for ORR on different metals. To estimate the effect of local electric fields on ORR we combine the DFT results at various external electric field strengths with a previously developed model of electrochemical reactions which fully accounts for the effect of the electrode potential. We find that the local electric field only slightly affects the output of the model. Hence, the general picture obtained without inclusion of the electric field still persists. However, for accurate predictions at oxygen reduction potentials close to the volcano top local electric field effects may be of importance.

  18. Artificial oxygen carriers based on perfluorodecalin-filled poly(n-butyl-cyanoacrylate) nanocapsules.

    PubMed

    Stephan, Claudia; Schlawne, Carolin; Grass, Stefan; Waack, Indra N; Ferenz, Katja B; Bachmann, Michael; Barnert, Sabine; Schubert, Rolf; Bastmeyer, Martin; de Groot, Herbert; Mayer, Christian

    2014-01-01

    Poly(n-butyl-cyanoacrylate)-nanocapsules filled by perfluorodecalin (PFD) are proposed as potential oxygen carriers for blood substitute. The capsule dispersion is prepared via interfacial polymerisation from a PFD emulsion in water which in turn is generated by spontaneous phase separation. The resulting dispersion is capable of carrying approximately 10% of its own volume of gaseous oxygen, which is approximately half of the capacity of human blood. The volumes of the organic solvents and water are varied within a wide range, connected to a change of the capsule radius between 200 and 400 nm. The principal suitability of the capsule dispersion for intravenous application is proven in first physiological experiments. A total amount of 10 ml/kg body weight has been infused into rats, with the dispersion supernatant and a normal saline solution as controls. After the infusion of nanocapsules, the blood pressure as well as the heart rate remains constant on a normal level.

  19. The evidence base for oxygen for chronic refractory breathlessness: issues, gaps, and a future work plan.

    PubMed

    Johnson, Miriam J; Abernethy, Amy P; Currow, David C

    2013-04-01

    Breathlessness or "shortness of breath," medically termed dyspnea, is a common and distressing symptom featuring strongly in advanced lung, cardiac, and neuromuscular diseases; its prevalence and intensity increase as death approaches. However, despite the increasing understanding in the genesis of breathlessness, as well as an increasing portfolio of treatment options, breathlessness is still difficult to manage and engenders helplessness in caregivers and health care professionals and fear for patients. Although hypoxemia does not appear to be the dominant driver for breathlessness in advanced disease, the belief that oxygen is important for the relief of acute, chronic, and acute-on-chronic shortness of breath is firmly embedded in the minds of patients, caregivers, and health care professionals. This article presents current understanding of the use of oxygen for treating refractory breathlessness in advanced disease. The objective is to highlight what is still unknown, set a research agenda to resolve these questions, and highlight methodological issues for consideration in planned studies.

  20. Increased oxygen load in the prefrontal cortex from mouth breathing: a vector-based near-infrared spectroscopy study.

    PubMed

    Sano, Masahiro; Sano, Sayaka; Oka, Noriyuki; Yoshino, Kayoko; Kato, Toshinori

    2013-12-01

    Individuals who habitually breathe through the mouth are more likely than nasal breathers to have sleep disorders and attention deficit hyperactive disorder. We hypothesized that brain hemodynamic responses in the prefrontal cortex might be different for mouth and nasal breathing. To test this hypothesis, we measured changes in oxyhemoglobin and deoxyhemoglobin in the prefrontal cortex during mouth breathing and nasal breathing in healthy adults (n=9) using vector-based near-infrared spectroscopy. The angle k, calculated from changes in oxyhemoglobin and deoxyhemoglobin and indicating the degree of oxygen exchange, was significantly higher during mouth breathing (P<0.05), indicating an increased oxygen load. Mouth breathing also caused a significant increase in deoxyhemoglobin, but oxyhemoglobin did not increase. This difference in oxygen load in the brain arising from different breathing routes can be evaluated quantitatively using vector-based near-infrared spectroscopy. Phase responses could help to provide an earlier and more reliable diagnosis of a patient's habitual breathing route than a patient interview.

  1. Study on a practical robotic follower to support home oxygen therapy patients--questionnaire-based concept evaluation by the patients-.

    PubMed

    Endo, Gen; Iemura, Yu; Fukushima, Edwardo F; Hirose, Shigeo; Iribe, Masatsugu; Ikeda, Ryota; Onishi, Kohei; Maeda, Naoto; Takubo, Toshio; Ohira, Mineko

    2013-06-01

    Home oxygen therapy (HOT) is a medical treatment for the patients suffering from severe lung diseases. Although walking outdoors is recommended for the patients to maintain physical strength, the patients always have to carry a portable oxygen supplier which is not sufficiently light weight for this purpose. Our ultimate goal is to develop a mobile robot to carry an oxygen tank and follow a patient in an urban outdoor environment. We have proposed a mobile robot with a tether interface to detect the relative position of the foregoing patient. In this paper, we report the questionnaire-based evaluation about the two developed prototypes by the HOT patients. We conduct maneuvering experiments, and then obtained questionnaire-based evaluations from the 20 patients. The results show that the basic following performance is sufficient and the pulling force of the tether is sufficiently small for the patients. Moreover, the patients prefer the small-sized prototype for compactness and light weight to the middle-sized prototype which can carry larger payload. We also obtained detailed requests to improve the robots. Finally the results show the general concept of the robot is favorably received by the patients. PMID:24187296

  2. Oxide scales formed on Fe-Cr-Al-based model alloys exposed to oxygen containing molten lead

    NASA Astrophysics Data System (ADS)

    Weisenburger, A.; Jianu, A.; Doyle, S.; Bruns, M.; Fetzer, R.; Heinzel, A.; DelGiacco, M.; An, W.; Müller, G.

    2013-06-01

    Based on the state of the art oxide maps concerning oxidation behavior of Fe-Cr-Al model alloys at 800 and 1000 °C in oxygen atmosphere, ten compositions, belonging to this alloy system, were designed in order to tap the borders of the alumina stability domain, during their exposure to oxygen (10-6 wt.%) containing lead, at 400, 500 and 600 °C. Eight alloys, Fe-6Cr-6Al, Fe-8Cr-6Al, Fe-10Cr-5Al, Fe-14Cr-4Al, Fe-16Cr-4Al, Fe-6Cr-8Al, Fe-10Cr-7Al and Fe-12Cr-5Al, were found to be protected against corrosion in oxygen containing lead, either by a duplex layer (Fe3O4 + (Fe1-x-yCrxAly)3O4) or by (Fe1-x-yCrxAly)3O4, depending on the temperature at which they were exposed. Two alloys namely Fe-12Cr-7Al and Fe-16Cr-6Al were found to form transient aluminas, κ-Al2O3 (at 400 and 500 °C) and θ-Al2O3 (at 600 °C), as protective oxide scale against corrosion in oxygen containing lead. An oxide map illustrating the stability domain of alumina, grown on Fe-Cr-Al alloys when exposed to molten, oxygen containing lead, was drawn. The map includes also additional points, extracted from literature and corresponding to alumina forming alloys, when exposed to HLMs, which fit very well with our findings. Chromium and aluminium contents of 12.5-17 wt.% and 6-7.5 wt.%, respectively, are high enough to obtain thin, stable and protective alumina scales on Fe-Cr-Al-based alloys exposed to oxygen containing lead at 400, 500 and 600 °C. For the temperature range and exposure times used during the current evaluation, the growth rate of the alumina scale was low. No area with detached scale was observed and no trace of α-Al2O3 was detected.

  3. Impact of Menu Sequencing on Internet-Based Educational Module Selection

    ERIC Educational Resources Information Center

    Bensley, Robert; Brusk, John J.; Rivas, Jason; Anderson, Judith V.

    2006-01-01

    Patterns of Internet-based menu item selection can occur for a number of reasons, many of which may not be based on interest in topic. It then becomes important to ensure menu order is devised in a way that ensures the greatest accuracy in matching user need with selection. This study examined the impact of menu rotation on the selection of…

  4. Feature selection for physics model based object discrimination

    NASA Astrophysics Data System (ADS)

    Wang, Chunmei; Collins, Leslie

    2005-06-01

    We investigated the application of two state-of-the-art feature selection algorithms for subsurface target discrimination. One is called joint classification and feature optimization (JCFO), which imposes a sparse prior on the features, and optimizes the classifier and its predictors simultaneously via an expectation maximization (EM) algorithm. The other selects features by directly maximizing the hypothesis margin between targets and clutter. The results of feature selection and target discrimination are demonstrated using wideband electromagnetic induction data measured at data collected at the Aberdeen Proving Ground Standardized Test Site for UXO discrimination. It is shown that the classification performance is significantly improved by only including a compact set of relevant features.

  5. Sources of systematic error in calibrated BOLD based mapping of baseline oxygen extraction fraction.

    PubMed

    Blockley, Nicholas P; Griffeth, Valerie E M; Stone, Alan J; Hare, Hannah V; Bulte, Daniel P

    2015-11-15

    Recently a new class of calibrated blood oxygen level dependent (BOLD) functional magnetic resonance imaging (MRI) methods were introduced to quantitatively measure the baseline oxygen extraction fraction (OEF). These methods rely on two respiratory challenges and a mathematical model of the resultant changes in the BOLD functional MRI signal to estimate the OEF. However, this mathematical model does not include all of the effects that contribute to the BOLD signal, it relies on several physiological assumptions and it may be affected by intersubject physiological variability. The aim of this study was to investigate these sources of systematic error and their effect on estimating the OEF. This was achieved through simulation using a detailed model of the BOLD signal. Large ranges for intersubject variability in baseline physiological parameters such as haematocrit and cerebral blood volume were considered. Despite this the uncertainty in the relationship between the measured BOLD signals and the OEF was relatively low. Investigations of the physiological assumptions that underlie the mathematical model revealed that OEF measurements are likely to be overestimated if oxygen metabolism changes during hypercapnia or cerebral blood flow changes under hyperoxia. Hypoxic hypoxia was predicted to result in an underestimation of the OEF, whilst anaemic hypoxia was found to have only a minimal effect.

  6. A Study of Oxidation of Hydrogen Based on Flashback of Hydrogen-Oxygen-Nitrogen Burner Flames

    NASA Technical Reports Server (NTRS)

    Fine, Burton D.

    1959-01-01

    The flashback of hydrogen-oxygen-nitrogen flames was studied as a function of pressure, burner diameter, equivalence ratio, and oxidant strength. The results were treated on the assumption that the product of the critical boundary velocity gradient for flashback and the initial concentration of that reactant which is not in excess is proportional to a mean reaction rate associated with the flame zone. It was further assumed that this reaction rate can be expressed in terms of initial concentrations and flame temperature. Measurements at constant flame temperature yield orders of reaction with respect to hydrogen and oxygen. These do not vary with flame temperature. Measurements in which pressure is varied for several values of oxidant strength at constant equivalence ratio yield a total order of reaction and a function describing the dependence of the mean reaction rate on flame temperature. The total reaction order is independent of flame temperature and equal to the sum of the orders for hydrogen and oxygen. The dependence of the reaction rate on flame temperature cannot be described by a constant activation energy. The activation energy obtained apparently increases with flame temperature. Flashback results can be described by a single rate constant which is independent of equivalence ratio. Values were estimated for this rate constant as a function of flame temperature.

  7. Yeast-based Biochemical Oxygen Demand Sensors Using Gold-modified Boron-doped Diamond Electrodes.

    PubMed

    Ivandini, Tribidasari A; Harmesa; Saepudin, Endang; Einaga, Yasuaki

    2015-01-01

    A gold nanoparticle modified boron-doped diamond electrode was developed as a transducer for biochemical oxygen demand (BOD) measurements. Rhodotorula mucilaginosa UICC Y-181 was immobilized in a sodium alginate matrix, and used as a biosensing agent. Cyclic voltammetry was applied to study the oxygen reduction reaction at the electrode, while amperometry was employed to detect oxygen, which was not consumed by the microorganisms. The optimum waiting time of 25 min was observed using 1-mm thickness of yeast film. A comparison against the system with free yeast cells shows less sensitivity of the current responses with a linear dynamic range (R(2) = 0.99) of from 0.10 mM to 0.90 mM glucose (equivalent to 10 - 90 mg/L BOD) with an estimated limit of detection of 1.90 mg/L BOD. However, a better stability of the current responses could be achieved with an RSD of 3.35%. Moreover, less influence from the presence of copper ions was observed. The results indicate that the yeast-immobilized BOD sensors is more suitable to be applied in a real condition.

  8. A method for modeling oxygen diffusion in an agent-based model with application to host-pathogen infection

    SciTech Connect

    Plimpton, Steven J.; Sershen, Cheryl L.; May, Elebeoba E.

    2015-01-01

    This paper describes a method for incorporating a diffusion field modeling oxygen usage and dispersion in a multi-scale model of Mycobacterium tuberculosis (Mtb) infection mediated granuloma formation. We implemented this method over a floating-point field to model oxygen dynamics in host tissue during chronic phase response and Mtb persistence. The method avoids the requirement of satisfying the Courant-Friedrichs-Lewy (CFL) condition, which is necessary in implementing the explicit version of the finite-difference method, but imposes an impractical bound on the time step. Instead, diffusion is modeled by a matrix-based, steady state approximate solution to the diffusion equation. Moreover, presented in figure 1 is the evolution of the diffusion profiles of a containment granuloma over time.

  9. Rocket-borne instrumentation for the measurement of atomic oxygen based on chemical release in the lower thermosphere

    NASA Astrophysics Data System (ADS)

    Vanhemelrijk, E.; Vanransbeek, E.

    Rocket-borne instrumentation, which determines atomic oxygen density as a function of altitude, was tested. A technique where NO gas is ejected in the backward direction of the flight is outlined. A 6.8 g explosive charge punches a 40 mm hole in the gas bottles. At 80 to 105 km altitude 99% of the gas is ejected within 0.07 sec over a 60 m release interval, assuming rocket velocity = 100 m/sec. The initial Gaussian radius of the cloud is 60 to 70 m, satisfying the point release principle. Cloud altitudes, and wind speeds are derived from ground based photographs. Oxygen concentration is determined by analyzing the chemiluminescence of the point releases. Rocket flights confirm the usefulness of the system.

  10. A method for modeling oxygen diffusion in an agent-based model with application to host-pathogen infection

    DOE PAGES

    Plimpton, Steven J.; Sershen, Cheryl L.; May, Elebeoba E.

    2015-01-01

    This paper describes a method for incorporating a diffusion field modeling oxygen usage and dispersion in a multi-scale model of Mycobacterium tuberculosis (Mtb) infection mediated granuloma formation. We implemented this method over a floating-point field to model oxygen dynamics in host tissue during chronic phase response and Mtb persistence. The method avoids the requirement of satisfying the Courant-Friedrichs-Lewy (CFL) condition, which is necessary in implementing the explicit version of the finite-difference method, but imposes an impractical bound on the time step. Instead, diffusion is modeled by a matrix-based, steady state approximate solution to the diffusion equation. Moreover, presented in figuremore » 1 is the evolution of the diffusion profiles of a containment granuloma over time.« less

  11. Biphenyl derived Schiff-base vanadium(V) complexes with pendant OH-groups--structure, characterization and hydrogen peroxide mediated sulfide oxygenation.

    PubMed

    Plitt, Patrick; Pritzkow, Hans; Kramer, Roland

    2004-08-01

    A series of mononuclear oxovanadium(v) complexes of tridentate Schiff bases HL(1)-HL(4) and H(2)L(5)-H(2)L(8) derived from 6-phenylsalicylaldehyde and 6-(2-hydroxyphenyl)salicylaldehyde and four different amines was synthesized. The systematically selected ligands contain aliphatic or aromatic nitrogen, or alkoxy- and phenoxy-oxygen as third donor atom. The complexes were characterised by spectroscopic methods in solution and the solid state. Single-crystal X-ray analyses were performed with VO(2)L(1)(), VO(2)L(3)x1/2EtOH (), VO(2)L(4)(), VO(OiPr)L(7)xiPrOH, VO(OiPr)L(8) and H(2)L(8). For all compounds the vanadium(v) cores contain distorted tetragonal pyramidal geometry around the dioxo- and oxovanadium site at which the N(2)O- and NO(2)-donor ligands bind equatorially. Complexes and display intramolecular hydrogen bonding of the pendant hydroxyphenyl group to a coordinated oxygen trans to a nitrogen atom and therefore serve as suitable models for the native site of vanadium dependent haloperoxidases. Variable-temperature (1)H NMR spectra revealed significant hydrogen bond interaction in acetonitrile solution. In situ prepared catalysts are active for hydrogen peroxide mediated oxygenation of ethyl phenyl sulfide and showed complete conversion of the substrate to ethyl phenyl sulfoxide, together with small amounts of the corresponding sulfone, as detected by GC/MS after 10 min. The complex of H(2)L(7) turned out to be most efficient while HL(1) and HL(2) were completely inactive. Catalysis is supported by the pendant OH group in the complex of HL(3), the catalyst is twice as active as the complex of HL(4). PMID:15278124

  12. Brain Oxygenation Monitoring.

    PubMed

    Kirkman, Matthew A; Smith, Martin

    2016-09-01

    A mismatch between cerebral oxygen supply and demand can lead to cerebral hypoxia/ischemia and deleterious outcomes. Cerebral oxygenation monitoring is an important aspect of multimodality neuromonitoring. It is increasingly deployed whenever intracranial pressure monitoring is indicated. Although there is a large body of evidence demonstrating an association between cerebral hypoxia/ischemia and poor outcomes, it remains to be determined whether restoring cerebral oxygenation leads to improved outcomes. Randomized prospective studies are required to address uncertainties about cerebral oxygenation monitoring and management. This article describes the different methods of monitoring cerebral oxygenation, their indications, evidence base, limitations, and future perspectives. PMID:27521197

  13. Theory of mind selectively predicts preschoolers' knowledge-based selective word learning.

    PubMed

    Brosseau-Liard, Patricia; Penney, Danielle; Poulin-Dubois, Diane

    2015-11-01

    Children can selectively attend to various attributes of a model, such as past accuracy or physical strength, to guide their social learning. There is a debate regarding whether a relation exists between theory-of-mind skills and selective learning. We hypothesized that high performance on theory-of-mind tasks would predict preference for learning new words from accurate informants (an epistemic attribute), but not from physically strong informants (a non-epistemic attribute). Three- and 4-year-olds (N = 65) completed two selective learning tasks, and their theory-of-mind abilities were assessed. As expected, performance on a theory-of-mind battery predicted children's preference to learn from more accurate informants but not from physically stronger informants. Results thus suggest that preschoolers with more advanced theory of mind have a better understanding of knowledge and apply that understanding to guide their selection of informants. This work has important implications for research on children's developing social cognition and early learning. PMID:26211504

  14. Theory of mind selectively predicts preschoolers' knowledge-based selective word learning.

    PubMed

    Brosseau-Liard, Patricia; Penney, Danielle; Poulin-Dubois, Diane

    2015-11-01

    Children can selectively attend to various attributes of a model, such as past accuracy or physical strength, to guide their social learning. There is a debate regarding whether a relation exists between theory-of-mind skills and selective learning. We hypothesized that high performance on theory-of-mind tasks would predict preference for learning new words from accurate informants (an epistemic attribute), but not from physically strong informants (a non-epistemic attribute). Three- and 4-year-olds (N = 65) completed two selective learning tasks, and their theory-of-mind abilities were assessed. As expected, performance on a theory-of-mind battery predicted children's preference to learn from more accurate informants but not from physically stronger informants. Results thus suggest that preschoolers with more advanced theory of mind have a better understanding of knowledge and apply that understanding to guide their selection of informants. This work has important implications for research on children's developing social cognition and early learning.

  15. Hemolymph acid-base balance of the crayfish Astacus leptodactylus as a function of the oxygenation and the acid-base balance of the ambient water.

    PubMed

    Dejours, P; Armand, J

    1980-07-01

    The acid-base balance of the prebranchial hemolymph of the crayfish Astacus leptodactylus was studied at various acid-base balances and levels of oxygenation of the ambient water at 13 degrees C. The water acid-base balance was controlled automatically by a pH-CO2-stat. Into water of constant titration alkalinity, TA, this device intermittenly injects carbon dioxide to maintain the pH at a preset value. Water pH was reduced to the same value either by hypercapnia (at constant TA) or by adding HCl or H2SO4 to decrease the TA (at constant CO2 tension). Decrease of hemolymph pH and increase of hemolymph PCO2 were similar for the three acidic waters. Water oxygenation changes strongly affected hemolymph ABB. In crayfish living in hyperoxic water (PO2 congruent to 600 Torr) compared to those in hypoxic water (PO2 congruent to 40 Torr), hemolymph pH was 0.3 to 0.4 unit lower and hemolymph PCO2 several times higher, the exact values of pH and PCO2 depending on the controlled ambient acid-base balance. In any study of the hemolymph acid-base balance of the crayfish, it is an important to control ambient water's acid-base balance and oxygenation as it is to control its temperature, a conclusion which probably holds true for studies on all water breathers.

  16. Advanced oxygen-hydrocarbon rocket engine study

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1980-01-01

    Preliminary identification and evaluation of promising liquid oxygen/ hydrocarbon (LO2/HC) rocket engine cycles is reported. A consistent and reliable data base for vehicle optimization and design studies, to demonstrate the significance of propulsion system improvements, and to select the critical technology areas necessary to realize such advances is presented.

  17. Oxygen activation and CO oxidation over size-selected Pt(n)/alumina/Re(0001) model catalysts: correlations with valence electronic structure, physical structure, and binding sites.

    PubMed

    Roberts, F Sloan; Kane, Matthew D; Baxter, Eric T; Anderson, Scott L

    2014-12-28

    Oxidation of CO over size-selected Ptn clusters (n = 1, 2, 4, 7, 10, 14, 18) supported on alumina thin films grown on Re(0001) was studied using temperature-programmed reaction/desorption (TPR/TPD), X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS), and low energy ion scattering spectroscopy (ISS). The activity of the model catalysts was found to vary by a factor of five with deposited Ptn size during the first reaction cycle (TPR) and by a factor of two during subsequent cycles, with Pt2 being the least active and Pt14 the most active. The limiting step in the reaction appears to be the binding of oxygen; however, this does not appear to be an activated process as reaction is equally efficient for 300 K and 180 K oxidation temperatures. Size-dependent shifts in the valence band onset energy correlate strongly with CO oxidation activity, and there is also an apparent correlation with the availability of a particular binding site, as probed by CO TPD. The morphology of the clusters also becomes more three dimensional over the same size range, but with a distinctly different size-dependence. The results suggest that both electronic structure and the availability of particular binding sites control activity.

  18. Process observation in fiber laser-based selective laser melting

    NASA Astrophysics Data System (ADS)

    Thombansen, Ulrich; Gatej, Alexander; Pereira, Milton

    2015-01-01

    The process observation in selective laser melting (SLM) focuses on observing the interaction point where the powder is processed. To provide process relevant information, signals have to be acquired that are resolved in both time and space. Especially in high-power SLM, where more than 1 kW of laser power is used, processing speeds of several meters per second are required for a high-quality processing results. Therefore, an implementation of a suitable process observation system has to acquire a large amount of spatially resolved data at low sampling speeds or it has to restrict the acquisition to a predefined area at a high sampling speed. In any case, it is vitally important to synchronously record the laser beam position and the acquired signal. This is a prerequisite that allows the recorded data become information. Today, most SLM systems employ f-theta lenses to focus the processing laser beam onto the powder bed. This report describes the drawbacks that result for process observation and suggests a variable retro-focus system which solves these issues. The beam quality of fiber lasers delivers the processing laser beam to the powder bed at relevant focus diameters, which is a key prerequisite for this solution to be viable. The optical train we present here couples the processing laser beam and the process observation coaxially, ensuring consistent alignment of interaction zone and observed area. With respect to signal processing, we have developed a solution that synchronously acquires signals from a pyrometer and the position of the laser beam by sampling the data with a field programmable gate array. The relevance of the acquired signals has been validated by the scanning of a sample filament. Experiments with grooved samples show a correlation between different powder thicknesses and the acquired signals at relevant processing parameters. This basic work takes a first step toward self-optimization of the manufacturing process in SLM. It enables the

  19. GoDisco: Selective Gossip Based Dissemination of Information in Social Community Based Overlays

    NASA Astrophysics Data System (ADS)

    Datta, Anwitaman; Sharma, Rajesh

    We propose and investigate a gossip based, social principles and behavior inspired decentralized mechanism (GoDisco) to disseminate information in online social community networks, using exclusively social links and exploiting semantic context to keep the dissemination process selective to relevant nodes. Such a designed dissemination scheme using gossiping over a egocentric social network is unique and is arguably a concept whose time has arrived, emulating word of mouth behavior and can have interesting applications like probabilistic publish/subscribe, decentralized recommendation and contextual advertisement systems, to name a few. Simulation based experiments show that despite using only local knowledge and contacts, the system has good global coverage and behavior.

  20. a Genetic Algorithm Based on Sexual Selection for the Multidimensional 0/1 Knapsack Problems

    NASA Astrophysics Data System (ADS)

    Varnamkhasti, Mohammad Jalali; Lee, Lai Soon

    In this study, a new technique is presented for choosing mate chromosomes during sexual selection in a genetic algorithm. The population is divided into groups of males and females. During the sexual selection, the female chromosome is selected by the tournament selection while the male chromosome is selected based on the hamming distance from the selected female chromosome, fitness value or active genes. Computational experiments are conducted on the proposed technique and the results are compared with some selection mechanisms commonly used for solving multidimensional 0/1 knapsack problems published in the literature.