Science.gov

Sample records for oxygen selection based

  1. High Selectivity Oxygen Delignification

    SciTech Connect

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  2. High Selectivity Oxygen Delignification

    SciTech Connect

    Arthur J. Ragauskas Lucian A. Lucia Hasan Jameel

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in

  3. MOF-based catalysts for selective hydrogenolysis of carbon–oxygen ether bonds

    DOE PAGES

    Stavila, Vitalie; Parthasarathi, Ramakrishnan; Davis, Ryan W.; ...

    2015-11-23

    We demonstrate that metal–organic frameworks (MOFs) can catalyze hydrogenolysis of aryl ether bonds under mild conditions. Mg-IRMOF-74(I) and Mg-IRMOF-74(II) are stable under reducing conditions and can cleave phenyl ethers containing β-O-4, α-O-4, and 4-O-5 linkages to the corresponding hydrocarbons and phenols. Reaction occurs at 10 bar H2 and 120 °C without added base. DFT-optimized structures and charge transfer analysis suggest that the MOF orients the substrate near Mg2+ ions on the pore walls. Ti and Ni doping further increase conversions to as high as 82% with 96% selectivity for hydrogenolysis versus ring hydrogenation. Thus repeated cycling induces no loss ofmore » activity, making this a promising route for mild aryl-ether bond scission.« less

  4. MOF-based catalysts for selective hydrogenolysis of carbon–oxygen ether bonds

    SciTech Connect

    Stavila, Vitalie; Parthasarathi, Ramakrishnan; Davis, Ryan W.; El Gabaly, Farid; Sale, Kenneth L.; Simmons, Blake A.; Singh, Seema; Allendorf, Mark D.

    2015-11-23

    We demonstrate that metal–organic frameworks (MOFs) can catalyze hydrogenolysis of aryl ether bonds under mild conditions. Mg-IRMOF-74(I) and Mg-IRMOF-74(II) are stable under reducing conditions and can cleave phenyl ethers containing β-O-4, α-O-4, and 4-O-5 linkages to the corresponding hydrocarbons and phenols. Reaction occurs at 10 bar H2 and 120 °C without added base. DFT-optimized structures and charge transfer analysis suggest that the MOF orients the substrate near Mg2+ ions on the pore walls. Ti and Ni doping further increase conversions to as high as 82% with 96% selectivity for hydrogenolysis versus ring hydrogenation. Thus repeated cycling induces no loss of activity, making this a promising route for mild aryl-ether bond scission.

  5. The role of surface oxygenated-species and adsorbed hydrogen in the oxygen reduction reaction (ORR) mechanism and product selectivity on Pd-based catalysts in acid media.

    PubMed

    Rahul, R; Singh, R K; Bera, B; Devivaraprasad, R; Neergat, M

    2015-06-21

    Oxygen reduction reaction (ORR) is investigated on bulk PdO-based catalysts (oxides of Pd and Pd3Co) in oxygen-saturated 0.1 M HClO4 to establish the role of surface oxides and adsorbed hydrogen in the activity and product selectivity (H2O/H2O2). The initial voltammetric features suggest that the oxides are inactive toward ORR. The evolution of the ORR voltammograms and potential-dependent H2O2 generation features on the PdO catalyst suggest gradual and parallel in situ reduction of the bulk PdO phase below ∼0.4 V in the hydrogen underpotential deposition (Hupd) region; the reduction of the bulk PdO catalyst is confirmed from the X-ray photoelectron spectra (XPS) and X-ray diffraction (XRD) patterns. The potential-dependent H2O2 generation features originate due to the presence of surface oxides and adsorbed hydrogen; this is further confirmed using halide ions (Cl(-) and Br(-)) and peroxide as the external impurities.

  6. Systematic selection of metalloporphyrin-based catalysts for oxygen reduction by modulation of the donor-acceptor intermolecular hardness.

    PubMed

    Masa, Justus; Schuhmann, Wolfgang

    2013-07-15

    Incisive modulation of the intermolecular hardness between metalloporphyrins and O2 can lead to the identification of promising catalysts for oxygen reduction. The dependency of the electrocatalytic reduction of O2 by metalloporphyrins on the nature of the central metal yields a volcano-type curve, which is rationalized to be in accordance with the Sabatier principle by using an approximation of the electrophilicity of the complexes. By using electrochemical and UV/Vis data, the influence of a selection of meso-substituents on the change in the energy for the π→π* excitation of manganese porphyrins was evaluated allowing one to quantitatively correlate the influence of the various ligands on the electrocatalysis of O2 reduction by the complexes. A manganese porphyrin was identified that electrocatalyzes the reduction of oxygen at low overpotentials without generating hydrogen peroxide. The activity of the complex became remarkably enhanced upon its pyrolysis at 650 °C.

  7. Selective photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1998-01-01

    A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

  8. Safety Standard for Oxygen and Oxygen Systems: Guidelines for Oxygen System Design, Materials Selection, Operations, Storage, and Transportation

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's standard for oxygen system design, materials selection, operation, and transportation is presented. Minimum guidelines applicable to NASA Headquarters and all NASA Field Installations are contained.

  9. A Comparison of Atomic Oxygen Erosion Yields of Carbon and Selected Polymers Exposed in Ground Based Facilities and in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Cales, Michael

    1994-01-01

    A comparison of the relative erosion yields (volume of material removed per oxygen atom arriving) for FEP Teflon, polyethylene, and pyrolytic graphite with respect to Kapton HN was performed in an atomic oxygen directed beam system, in a plasma asher, and in space on the EOIM-III (Evaluation of Oxygen Interaction with Materials-III) flight experiment. This comparison was performed to determine the sensitivity of material reaction to atomic oxygen flux, atomic oxygen fluence, and vacuum ultraviolet radiation for enabling accurate estimates of durability in ground based facilities. The relative erosion yield of pyrolytic graphite was found not to be sensitive to these factors, that for FEP was sensitive slightly to fluence and possibly ions, and that for polyethylene was found to be partially VUV and flux sensitive but more sensitive to an unknown factor. Results indicate that the ability to use these facilities for material relative durability prediction is great as long as the sensitivity of particular materials to conditions such as VUV, and atomic oxygen flux and fluence are taken into account. When testing materials of a particular group such as teflon, it may be best to use a witness sample made of a similar material that has some available space data on it. This would enable one to predict an equivalent exposure in the ground based facility.

  10. Selectivity in the carbon-oxygen reaction

    NASA Astrophysics Data System (ADS)

    Skokova, Kristina A.

    The dependence of the carbon-oxygen reaction rate and the CO/COsb2 ratio on temperature, oxygen pressure, carbon crystallite size, concentration of surface C(O) complexes, and content of heteroatoms was studied. It was shown that the temperature dependence of the CO/COsb2 ratio obeys an Arrhenius-type relationship, but the pre-exponential factor and the activation energy depend on oxygen pressure and carbon nature. The Arrhenius parameters were found to be directly proportional to each other. This confirmed the importance of the compensation effect in carbon oxidation. It was explained by active site heterogeneity in carbon materials. For all experimental conditions, the CO/COsb2 ratio was lower for carbons with more ordered graphitic structure. It was shown that the CO/COsb2 ratio is inversely proportional to the surface coverage with reactive C(O) complexes. More ordered carbons were revealed to possess lower concentrations of stable complexes, higher surface coverages with reactive complexes and thus lower CO/COsb2 ratios. The influence of B and N heteroatoms on carbon reactivity and the CO/COsb2 ratio was studied. It was confirmed that B acts as an inhibitor of carbon oxidation due to the formation of a protective Bsb2Osb3 coating. The N presence in the carbon structure increases its rate of oxidation, maybe due to decreasing carbon crystallite dimensions. The CO/COsb2 ratio did not correlate with the N content in the carbon, but depended on the concentration of surface carbon-oxygen complexes. A new reaction mechanism is proposed. A key feature of the mechanism is that it takes into account the presence and mobility of oxygen atoms on the basal plane. It was shown with the aid of theoretical molecular orbital calculations that chemisorption on a pair of adjacent edge and basal sites is thermodynamically favorable as a parallel process to the generally accepted path of chemisorption on two edge carbon atoms. The former process can lead to the formation of a

  11. Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations.

    PubMed

    Šiljić, Aleksandra; Antanasijević, Davor; Perić-Grujić, Aleksandra; Ristić, Mirjana; Pocajt, Viktor

    2015-03-01

    Biological oxygen demand (BOD) is the most significant water quality parameter and indicates water pollution with respect to the present biodegradable organic matter content. European countries are therefore obliged to report annual BOD values to Eurostat; however, BOD data at the national level is only available for 28 of 35 listed European countries for the period prior to 2008, among which 46% of data is missing. This paper describes the development of an artificial neural network model for the forecasting of annual BOD values at the national level, using widely available sustainability and economical/industrial parameters as inputs. The initial general regression neural network (GRNN) model was trained, validated and tested utilizing 20 inputs. The number of inputs was reduced to 15 using the Monte Carlo simulation technique as the input selection method. The best results were achieved with the GRNN model utilizing 25% less inputs than the initial model and a comparison with a multiple linear regression model trained and tested using the same input variables using multiple statistical performance indicators confirmed the advantage of the GRNN model. Sensitivity analysis has shown that inputs with the greatest effect on the GRNN model were (in descending order) precipitation, rural population with access to improved water sources, treatment capacity of wastewater treatment plants (urban) and treatment of municipal waste, with the last two having an equal effect. Finally, it was concluded that the developed GRNN model can be useful as a tool to support the decision-making process on sustainable development at a regional, national and international level.

  12. Copper crystallite in carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1993-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfurfuryl alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  13. Copper modified carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1992-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfunctional alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  14. Oxygen diffusion in vanadium-based alloys

    SciTech Connect

    de Avillez, R.R.

    1981-01-01

    The experimental study of transport and equilibrium properties of oxygen in vanadium-based alloys was made by EMF measurements on solid electrolytic cells over the temperature range of 873 to 1423/sup 0/K. The oxygen diffusion in vanadium was not significantly modified by small additions of Ti, Cr, Ni, Nb and Ta. The increase in the activation energy for oxygen diffusion in the V-based alloys containing Cr, Ni, Nb and Ta probably reflects the effect of these substitutional solutes on the activity coefficient of oxygen. The oxygen activity was increased by the addition of 1 at % of Cr, Ni and Nb, and decreased by the addition of Ti and Ta. However, the effects in the alloys containing Nb and Ta are very small.

  15. Modulation of Oxygen Toxicity by Select Anti-Melanogenic Compounds

    DTIC Science & Technology

    1979-11-01

    Altschule of Harvard Medical School, who has provided us with a list of select anti-melanogenic agents (i.e. disulfiram, 2-thiouracil, D- penicillamine ...changes, any possible beneficial effect that D- penicillamine may have had in crmbating oxygen tovicity were undoubtedly masked. Nevertheless, minimal...Obviously, additional studies are required before a Judgment can be made relative to the value of D- penicillamine . c. 2-Thiouracil Figure 3 shows the effects

  16. Oxygen Selective Membranes for Li-Air (O2) Batteries

    PubMed Central

    Crowther, Owen; Salomon, Mark

    2012-01-01

    Lithium-air (Li-air) batteries have a much higher theoretical energy density than conventional lithium batteries and other metal air batteries, so they are being developed for applications that require long life. Water vapor from air must be prevented from corroding the lithium (Li) metal negative electrode during discharge under ambient conditions, i.e., in humid air. One method of protecting the Li metal from corrosion is to use an oxygen selective membrane (OSM) that allows oxygen into the cell while stopping or slowing the ingress of water vapor. The desired properties and some potential materials for OSMs for Li-air batteries are discussed and the literature is reviewed. PMID:24958173

  17. Pulsed diode laser-based monitor for singlet molecular oxygen

    PubMed Central

    Lee, Seonkyung; Zhu, Leyun; Minhaj, Ahmed M.; Hinds, Michael F.; Vu, Danthu H.; Rosen, David I.; Davis, Steven J.; Hasan, Tayyaba

    2010-01-01

    Photodynamic therapy (PDT) is a promising cancer treatment. PDT uses the affinity of photosensitizers to be selectively retained in malignant tumors. When tumors, pretreated with the photosensitizer, are irradiated with visible light, a photochemical reaction occurs and tumor cells are destroyed. Oxygen molecules in the metastable singlet delta state O2(1Δ) are believed to be the species that destroys cancerous cells during PDT. Monitoring singlet oxygen produced by PDT may lead to more precise and effective PDT treatments. Our approach uses a pulsed diode laser-based monitor with optical fibers and a fast data acquisition system to monitor singlet oxygen during PDT. We present results of in vitro singlet oxygen detection in solutions and in a rat prostate cancer cell line as well as PDT mechanism modeling. PMID:18601555

  18. Hemoglobin-Based Nanoarchitectonic Assemblies as Oxygen Carriers.

    PubMed

    Jia, Yi; Duan, Li; Li, Junbai

    2016-02-10

    Safe and effective artificial oxygen carriers are the subject of great interest due to the problems of traditional blood transfusion and enormous demand in clinical use. In view of its unique oxygen-transport ability and normal metabolic pathways, hemoglobin is regarded as an ideal oxygen-carrying unit. With advances in nano-biotechnology, hemoglobin assemblies as artificial oxygen carriers achieve great development. Here, recent progress on hemoglobin-based oxygen carriers is highlighted in view of two aspects: acellular hemoglobin-based oxygen carriers and cellular hemoglobin-based oxygen carriers. These novel oxygen carriers exhibit advantages over traditional carriers and will greatly promote research on reliable and feasible oxygen carriers.

  19. Oxygen Concentration Flammability Thresholds of Selected Aerospace Materials Considered for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susan A.; Beeson, Harold; Pedley, Michael D.

    2007-01-01

    Materials selection for spacecraft is based on an upward flammability test conducted in a quiescent environment in the highest expected oxygen concentration environment. The test conditions and its pass/fail test logic do not provide sufficient quantitative materials flammability information for an advanced space exploration program. A modified approach has been suggested determination of materials self-extinguishment limits. The flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats. This paper provides data on oxygen concentration self-extinguishment limits under quiescent conditions for selected materials considered for the Constellation Program.

  20. Oxidizer Selection for the ISTAR Program (Liquid Oxygen versus Hydrogen Peroxide)

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene; Koelbl, Mary E. (Technical Monitor)

    2002-01-01

    This paper discusses a study of two alternate oxidizers, liquid oxygen and hydrogen peroxide, for use in a rocket based combined cycle (RBCC) demonstrator vehicle. The flight vehicle is baselined as an airlaunched self-powered Mach 0.7 to 7 demonstration of an RBCC engine through all or its air breathing propulsion modes. Selection of an alternate oxidizer has the potential to lower overall vehicle size, system complexity/ cost and ultimately the total program risk. This trade study examined the oxidizer selection effects upon the overall vehicle performance, safety and operations. After consideration of all the technical and programmatic details available at this time, 90% hydrogen peroxide was selected over liquid oxygen for use in this program.

  1. Venous Oxygenation Mapping using Velocity-Selective Excitation and Arterial Nulling (VSEAN)

    PubMed Central

    Guo, Jia; Wong, Eric C.

    2011-01-01

    A new MRI technique to map the oxygenation of venous blood is presented. The method uses velocity-selective excitation and arterial nulling pulses, combined with phase sensitive signal detection to isolate the venous blood signal. The T2 of this signal along with a T2-Y calibration curve yields estimates of venous oxygenation in situ. Results from phantoms and healthy human subjects under normoxic and hypoxic conditions are shown, and venous saturation levels estimated from both sagittal sinus and grey matter based ROIs are compared to the related techniques TRUST and QUIXOTIC. In addition, combined with an additional scan without arterial nulling pulses, the oxygen saturation level on arterial side can also be estimated. PMID:22294414

  2. Naphthoxazole-based singlet oxygen fluorescent probes.

    PubMed

    Ruiz-González, Rubén; Zanocco, Renzo; Gidi, Yasser; Zanocco, Antonio L; Nonell, Santi; Lemp, Else

    2013-01-01

    In this study, we report the synthesis and photochemical behavior of a new family of photoactive compounds to assess its potential as singlet oxygen ((1)O2) probes. The candidate dyads are composed by a (1)O2 trap plus a naphthoxazole moiety linked directly or through an unsaturated bond to the oxazole ring. In the native state, the inherent great fluorescence of the naphthoxazole moiety is quenched; but in the presence of (1)O2, generated by the addition and appropriate irradiation of an external photosensitizer, a photooxidation reaction occurs leading to the formation of a new chemical entity whose fluorescence is two orders of magnitude higher than that of the initial compound, at the optimal selected wavelength. The presented dyads outperform the commonly used indirect fluorescent (1)O2 probes in terms of fluorescence enhancement maintaining the required specificity for (1)O2 detection in solution.

  3. Nanomaterial-based robust oxygen sensor

    NASA Astrophysics Data System (ADS)

    Goswami, Kisholoy; Sampathkumaran, Uma; Alam, Maksudul; Tseng, Derek; Majumdar, Arun K.; Kazemi, Alex A.

    2007-09-01

    Since the TWA flight 800 accident in July 1996, significant emphasis has been placed on fuel tank safety. The Federal Aviation Administration (FAA) has focused research to support two primary methods of fuel tank protection - ground-based and on-board - both involving fuel tank inerting. Ground-based fuel tank inerting involves some combination of fuel scrubbing and ullage washing with Nitrogen Enriched Air (NEA) while the airplane is on the ground (applicable to all or most operating transport airplanes). On-board fuel tank inerting involves ullage washing with OBIGGS (on-board inert gas generating system), a system that generates NEA during aircraft operations. An OBIGGS generally encompasses an air separation module (ASM) to generate NEA, a compressor, storage tanks, and a distribution system. Essential to the utilization of OBIGGS is an oxygen sensor that can operate inside the aircraft's ullage and assess the effectiveness of the inerting systems. OBIGGS can function economically by precisely knowing when to start and when to stop. Toward achieving these goals, InnoSense LLC is developing an all-optical fuel tank ullage sensor (FTUS) prototype for detecting oxygen in the ullage of an aircraft fuel tank in flight conditions. Data would be presented to show response time and wide dynamic range of the sensor in simulated flight conditions and fuel tank environment.

  4. An Elementary Overview of the Selection of Materials for Service in Oxygen-Enriched Environments

    NASA Technical Reports Server (NTRS)

    Davis, Samuel Eddie

    2012-01-01

    The process for selecting materials for use in oxygen or oxygen-enriched environments is one that continues to be investigated by many industries due to the importance to those industries of oxygen systems. There are several excellent resources available to assist oxygen systems design engineers and end-users, with the most comprehensive being ASTM MNL-36, Safe Use of Oxygen and Oxygen Systems: Handbook for Design, Operation and Maintenance, 2nd Edition. ASTM also makes available several standards for oxygen systems. However, the ASTM publications are extremely detailed, and typically designed for professionals who already possess a working knowledge of oxygen systems. No notable resource exists, whether an ASTM or other organizational publication, which can be used to educate engineers or technicians who have no prior knowledge of the nuances of oxygen system design and safety. This paper will fill the void for information needed by organizations that design or operate oxygen systems. The information in this paper is not new information, but is a concise and easily understood summary of selecting materials for oxygen systems. This paper will serve well as an employee s first introduction to oxygen system materials selection, and probably the employee s first introduction to ASTM.

  5. 20. VIEW OF WORTHINGTON BASE LOAD OXYGEN COMPRESSOR IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF WORTHINGTON BASE LOAD OXYGEN COMPRESSOR IN THE HIGH PURITY OXYGEN BUILDING LOOKING NORTH. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  6. Interpreting Oxygenation-Based Neuroimaging Signals: The Importance and the Challenge of Understanding Brain Oxygen Metabolism

    PubMed Central

    Buxton, Richard B.

    2010-01-01

    Functional magnetic resonance imaging is widely used to map patterns of brain activation based on blood oxygenation level dependent (BOLD) signal changes associated with changes in neural activity. However, because oxygenation changes depend on the relative changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2), a quantitative interpretation of BOLD signals, and also other functional neuroimaging signals related to blood or tissue oxygenation, is fundamentally limited until we better understand brain oxygen metabolism and how it is related to blood flow. However, the positive side of the complexity of oxygenation signals is that when combined with dynamic CBF measurements they potentially provide the best tool currently available for investigating the dynamics of CMRO2. This review focuses on the problem of interpreting oxygenation-based signals, the challenges involved in measuring CMRO2 in general, and what is needed to put oxygenation-based estimates of CMRO2 on a firm foundation. The importance of developing a solid theoretical framework is emphasized, both as an essential tool for analyzing oxygenation-based multimodal measurements, and also potentially as a way to better understand the physiological phenomena themselves. The existing data, integrated within a simple theoretical framework of O2 transport, suggests the hypothesis that an important functional role of the mismatch of CBF and CMRO2 changes with neural activation is to prevent a fall of tissue pO2. Future directions for better understanding brain oxygen metabolism are discussed. PMID:20616882

  7. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers

    PubMed Central

    Koehler, Raymond C.; Fronticelli, Clara; Bucci, Enrico

    2008-01-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4–34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery. PMID:18230370

  8. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2000-01-01

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  9. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, H.; Blatter, F.; Sun, H.

    1999-06-22

    A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

  10. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2001-01-01

    A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  11. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1999-01-01

    A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  12. Biomimetic catalytic system driven by electron transfer for selective oxygenation of hydrocarbon.

    PubMed

    Yang, Guanyu; Ma, Yinfa; Xu, Jie

    2004-09-01

    Hydrocarbon oxyfunctionalization is a crucial industrial process. Most metallic catalysts require higher temperatures and often show lower selectivities. One of the intellectual approaches is the mimicry for bio-oxidation. We have established a biomimetic system with a nonmetallic redox center, composed of anthraquinones, N-hydroxyphthalimide, and zeolite HY, for selective hydrocarbon oxygenation by molecular oxygen. Selectivity of 95.8% for acetophenone and 66.2% conversion were accomplished for oxygenation of ethylbenzene at temperatures as low as 80 degrees C. The redox cycle, driven by one-electron transfer and product orientation by Zeolite HY, opens up the possibility of mimicking bio-oxidation under mild conditions.

  13. Pressure Flammability Thresholds in Oxygen of Selected Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Harper, Susana; Beeson, Harold; Ruff, Gary; Pedley, Mike

    2010-01-01

    The experimental approach consisted of concentrating the testing in the flammability transition zone following the Bruceton Up-and-Down Method. For attribute data, the method has been shown to be very repeatable and most efficient. Other methods for characterization of critical levels (Karberand Probit) were also considered. The data yielded the upward limiting pressure index (ULPI), the pressure level where approx.50% of materials self-extinguish in a given environment.Parametric flammability thresholds other than oxygen concentration can be determined with the methodology proposed for evaluating the MOC when extinguishment occurs. In this case, a pressure threshold in 99.8% oxygen was determined with the methodology and found to be 0.4 to 0.9 psia for typical spacecraft materials. Correlation of flammability thresholds obtained with chemical, hot wire, and other ignition sources will be conducted to provide recommendations for using alternate ignition sources to evaluate flammability of aerospace materials.

  14. Calculated values of atomic oxygen fluences and solar exposure on selected surfaces of LDEF

    NASA Technical Reports Server (NTRS)

    Gillis, J. R.; Pippin, H. G.; Bourassa, R. J.; Gruenbaum, P. E.

    1995-01-01

    Atomic oxygen (AO) fluences and solar exposure have been modeled for selected hardware from the Long Duration Exposure Facility (LDEF). The atomic oxygen exposure was modeled using the microenvironment modeling code SHADOWV2. The solar exposure was modeled using the microenvironment modeling code SOLSHAD version 1.0.

  15. Lifetime-based photoacoustic oxygen sensing in vivo

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Rajian, Justin Rajesh; Lee, Yong-Eun Koo; Wang, Xueding; Kopelman, Raoul

    2012-05-01

    The determination of oxygen levels in blood and other tissues in vivo is critical for ensuring proper body functioning, for monitoring the status of many diseases, such as cancer, and for predicting the efficacy of therapy. Here we demonstrate, for the first time, a lifetime-based photoacoustic technique for the measurement of oxygen in vivo, using an oxygen sensitive dye, enabling real time quantification of blood oxygenation. The results from the main artery in the rat tail indicated that the lifetime of the dye, quantified by the photoacoustic technique, showed a linear relationship with the blood oxygenation levels in the targeted artery.

  16. Carbon, Nitrogen, and Oxygen Abundances of Selected Stars in the Hertzsprung Gap

    NASA Astrophysics Data System (ADS)

    Vanture, Andrew D.; Wallerstein, George

    1999-01-01

    The iron, carbon, nitrogen, and oxygen abundances for several stars whose characteristics place them in the Hertzsprung gap have been derived from high-resolution spectra. These stars were selected based on the fact that previous studies have shown them to have peculiar carbon, nitrogen, or lithium abundances considering their position in the Hertzsprung-Russell diagram. When combined with the lithium abundances derived by Wallerstein and coworkers, the carbon, nitrogen, and oxygen abundances indicate that the sample of stars can generally be broken into two categories-lower luminosity dwarfs or subgiants that are unmixed and higher luminosity mixed giants. Among the sample are two stars, HR 7606 and HR 8626, which previously have been identified by Bidelman as ``low-velocity CH stars.'' These stars show metallicities of [Fe/H]~-0.5 and solar abundances of carbon, nitrogen, and oxygen. The strength of the CH band in these stars is probably an artifact of a mild metal deficiency and the absence of substantial mixing of CN processed materials to the surface of the star rather than an unusual nucleosynthetic history.

  17. Combustion in a multiburner furnace with selective flow of oxygen

    DOEpatents

    Bool, III, Lawrence E.; Kobayashi, Hisashi

    2004-03-02

    Improved operational characteristics such as improved fuel efficiency, reduction of NOx formation, reduction of the amount of unburned carbon in the ash, and lessened tendency to corrosion at the tube wall, in a multi-burner furnace are obtained by reducing the flow rate of combustion air to the burners and selectively individually feeding oxidant to only some of the burners.

  18. Diagnosis of Compartment Syndrome Based on Tissue Oxygenation

    DTIC Science & Technology

    2013-10-01

    measured with microprobes has been shown to be highly correlated with tissue oxygenation and the extent of ischemia reperfusion injury .3 Near-infrared...Tissue Oxygenation PRINCIPAL INVESTIGATOR: Hubert Kim, M.D., Ph.D. CONTRACTING ORGANIZATION: Northern California Institute for...SUBTITLE Diagnosis of Compartment Syndrome based on Tissue Oxygenation 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-10-1-1024 5c. PROGRAM ELEMENT

  19. Water-based oxygen-sensor films.

    PubMed

    Habibagahi, Arezoo; Mébarki, Youssef; Sultan, Yasir; Yap, Glenn P A; Crutchley, Robert J

    2009-08-01

    The luminescent cyclometalated iridium complex [Ir(fppy)(2)(t-Bu-iCN)(2)]CF(3)SO(3), 1 (fppy = 4-(2-pyridyl)benzaldehyde, and t-Bu-iCN = tert-butyl isocyanide), was synthesized and characterized by X-ray crystallography and (1)H NMR, absorption, and emission spectroscopies. Complex 1 was quantitatively bound to the water-soluble amine-functionalized polymer Silamine D208-EDA by reductive amination, to produce 2. The quantum yield of emission and excited state lifetime of 2 (varphi(em) = 0.23 and tau = 20.6 mus) are comparable to that of the model complex [Ir(tpy)(2)(t-Bu-iCN)(2)]CF(3)SO(3), 3 (tpy = 2-(p- tolyl) pyridine) with varphi(em) = 0.28 and tau = 35.6 mus. Aqueous blends of 2 with Silamine and colloidal microcrystalline cellulose (MC) were used to prepare oxygen-sensor films. Oxygen sensitivities of these films were determined as a function of Silamine:MC ratio and obeyed Stern-Volmer kinetics. The optimum oxygen-sensor film composition was 2 in 1:1 Silamine:MC, which had an oxygen sensitivity of 0.502 over an atmospheric pressure range of 0.007-45 psi. Temperature sensitivity (percentage loss of intensity per degrees C) of this film was determined to be -1.1 and -1.4% degrees C(-1) at vacuum and 1 bar atmospheric pressure, respectively. These results were compared to those of films incorporating dispersions of 1 and 3. Luminescence microscopy of 9:1, 1:1, and 1:5 Silamine:MC films of 2 show that the charged iridium complex in 2 associates with the surface of MC and lifetime measurements of these films show an increase in lifetime with increasing MC fraction. The optimum quenching sensitivity observed for the 1:1 Silamine:MC film suggests that the diffusion of oxygen must decrease with increasing fraction of MC and thereby decrease oxygen sensitivity. These novel materials offer an environmentally friendly alternative to the preparation of oxygen-sensor films.

  20. A comparative study on the potential of oxygen release by roots of selected wetland plants

    NASA Astrophysics Data System (ADS)

    Yao, Fang; Shen, Gen-xiang; Li, Xue-lian; Li, Huai-zheng; Hu, Hong; Ni, Wu-zhong

    The capacity of root oxygen release by selected wetland plants pre-grown under both nutrient solution and artificial wastewater conditions were determined. The results indicated that the significant differences of root oxygen release by the tested wetland plants existed, and the biochemical process was the main source of root oxygen release as oxygen released by Vetiveria zizanioides L. Nash roots through biochemical process was contributed to 77% and 74% of total root oxygen release under nutrient solution conditions and artificial wastewater conditions, respectively, and that was 72% and 71% of total root oxygen release for Cyperus alternifolius L. It was found that the formation of root plaque with iron oxide was a function of root oxygen release as iron oxide concentration in root plaque was positively correlated to the potential of oxygen released by wetland plant roots with the regression coefficients as 0.874 *( p < 0.05) under nutrient solution conditions and 0.944 **( p < 0.01) under artificial wastewater conditions, which could be regarded as an important mechanism of wetland plants being tolerant to anoxia during wastewater treatment. It was suggested that the potential of root oxygen release could be used as a parameter for selecting wetland plants that can increase oxygen supply to soil or substrate of constructed wetlands and enhance nutrient transformation and removal, and V. zizanioides L. Nash with the highest potential of root oxygen release and higher tolerance to wastewater could be recommended to establish vegetated wetlands for treating nutrient-rich wastewater such as domestic wastewater.

  1. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    EPA Science Inventory

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen

    Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  2. Pallidol, a resveratrol dimer from red wine, is a selective singlet oxygen quencher

    SciTech Connect

    He Shan; Jiang Liyan; Wu Bin; Pan Yuanjiang; Sun Cuirong

    2009-02-06

    Pallidol is a naturally occurring resveratrol dimer from red wine with antioxidant and antifungal activities. In this report, with the use of the EPR spin-trapping technique, the scavenging and quenching effects of pallidol on reactive oxygen species (ROS) were investigated. The results demonstrated that pallidol showed strong quenching effects on singlet oxygen at very low concentrations, but it was ineffective to scavenge hydroxyl radicals or superoxide anions. Further kinetic study revealed that the reaction of pallidol with singlet oxygen had an extremely high rate constant (k{sub a} = 1.71 x 10{sup 10}). Therefore, pallidol is a potent and selective singlet oxygen quencher in aqueous systems. It may be used in singlet oxygen-mediated diseases as a pharmacological agent, which may contribute to the health beneficial effects of red wine.

  3. Influence of oxygen and pH on the selective oxidation of ethanol on Pd catalysts

    SciTech Connect

    Hibbitts, David D.; Neurock, Matthew

    2013-03-01

    The selective oxidation of ethanol on supported Pd is catalytically promoted by the presence of hydroxide species on the Pd surface as well as in solution. These hydroxide intermediates act as Brønsted bases which readily abstract protons from the hydroxyl groups of adsorbed or solution-phase alcohols. The C1AH bond of the resulting alkoxide is subsequently activated on the metal surface via hydride elimination to form acetaldehyde. Surface and solution-phase hydroxide intermediates can also readily react with the acetaldehyde via nucleophilic addition to form a germinal diol intermediate, which subsequently undergoes a second C1AH bond activation on Pd to form acetic acid. The role of O2 is to remove the electrons produced in the oxidation reaction via the oxygen reduction reaction over Pd. The reduction reaction also regenerates the hydroxide intermediates and removes adsorbed hydrogen that is produced during the oxidation.

  4. Analysis of selected specimens from the STS-46 Energetic Oxygen Interaction with Materials-3 experiment

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.; Bourassa, Roger J.; Dursch, Harry W.; Pippin, H. Gary

    1995-01-01

    The Energetic Oxygen Interaction with Materials 3 (EOIM-3) experiment was flown on the STS-46 mission, which was launched on 31 Jul. 1992 and returned 8 Aug. 1992. Boeing specimens were located on both the NASA Marshall Space Flight Center (MSFC) tray and the Ballistic Missile Defense Organization (BMDO) tray integrated by the Jet Propulsion Laboratory (JPL). The EOIM-3 pallet was mounted in the Space Shuttle payload bay near the aft bulkhead. During the mission, the atomic oxygen (AO) exposure levels of specimens in these passive sample trays was about 2.3 x 10(exp 20) atoms/sq cm. The specimens also received an estimated 22 equivalent sun hours of solar exposure. In addition, it appears that the EOIM-3 pallet was exposed to a silicone contamination source and many specimens had a thin layer of silicon based deposit on their surfaces after the flight. The specimens on the MSFC tray included seven solid film lubricants, a selection of butyl rubber (B612) and silicone (S383) o-rings, three indirect scatter surfaces, and Silver/Fluorinated Ethylene Propylene (Ag/FEP) and Chemglaze A276 specimens which had previously flown on trailing edge locations of the Long Duration Exposure Facility (LDEF). The specimens on the JPL tray included composites previously flown on LDEF and two indirect scattering surfaces.

  5. Self-assembled benzophenone bis-urea macrocycles facilitate selective oxidations by singlet oxygen.

    PubMed

    Geer, Michael F; Walla, Michael D; Solntsev, Kyril M; Strassert, Cristian A; Shimizu, Linda S

    2013-06-07

    This manuscript investigates how incorporation of benzophenone, a well-known triplet sensitizer, within a bis-urea macrocycle, which self-assembles into a columnar host, influences its photophysical properties and affects the reactivity of bound guest molecules. We further report the generation of a remarkably stable organic radical. As expected, UV irradiation of the host suspended in oxygenated solvents efficiently generates singlet oxygen similar to the parent benzophenone. In addition, this host can bind guests such as 2-methyl-2-butene and cumene to form stable solid host-guest complexes. Subsequent UV irradiation of these complexes facilitated the selective oxidation of 2-methyl-2-butene into the allylic alcohol, 3-methyl-2-buten-1-ol, at 90% selectivity as well as the selective reaction of cumene to the tertiary alcohol, α,α'-dimethyl benzyl alcohol, at 63% selectivity. However, these products usually arise through radical pathways and are not observed in the presence of benzophenone in solution. In contrast, typical reactions with benzophenone result in the formation of the reactive singlet oxygen that reacts with alkenes to form endoperoxides, diooxetanes, or hydroperoxides, which are not observed in our system. Our results suggest that the confinement, the formation of a stable radical species, and the singlet oxygen photoproduction are responsible for the selective oxidation processes. A greater understanding of the mechanism of this selective oxidation could lead to development of greener oxidants.

  6. Cerebral Blood Oxygenation Measurement Based on Oxygen-dependent Quenching of Phosphorescence

    PubMed Central

    Sakadžić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A.; Mandeville, Emiri T.; Srinivasan, Vivek J.; Arai, Ken; Ruvinskaya, Svetlana; Wu, Weicheng; Devor, Anna; Lo, Eng H.; Vinogradov, Sergei A.; Boas, David A.

    2011-01-01

    Monitoring of the spatiotemporal characteristics of cerebral blood and tissue oxygenation is crucial for better understanding of the neuro-metabolic-vascular relationship. Development of new pO2 measurement modalities with simultaneous monitoring of pO2 in larger fields of view with higher spatial and/or temporal resolution will enable greater insight into the functioning of the normal brain and will also have significant impact on diagnosis and treatment of neurovascular diseases such as stroke, Alzheimer's disease, and head injury. Optical imaging modalities have shown a great potential to provide high spatiotemporal resolution and quantitative imaging of pO2 based on hemoglobin absorption in visible and near infrared range of optical spectrum. However, multispectral measurement of cerebral blood oxygenation relies on photon migration through the highly scattering brain tissue. Estimation and modeling of tissue optical parameters, which may undergo dynamic changes during the experiment, is typically required for accurate estimation of blood oxygenation. On the other hand, estimation of the partial pressure of oxygen (pO2) based on oxygen-dependent quenching of phosphorescence should not be significantly affected by the changes in the optical parameters of the tissue and provides an absolute measure of pO2. Experimental systems that utilize oxygen-sensitive dyes have been demonstrated in in vivo studies of the perfused tissue as well as for monitoring the oxygen content in tissue cultures, showing that phosphorescence quenching is a potent technology capable of accurate oxygen imaging in the physiological pO2 range. Here we demonstrate with two different imaging modalities how to perform measurement of pO2 in cortical vasculature based on phosphorescence lifetime imaging. In first demonstration we present wide field of view imaging of pO2 at the cortical surface of a rat. This imaging modality has relatively simple experimental setup based on a CCD camera and a

  7. Oxygen Transport in Melts Based on V2O5

    NASA Astrophysics Data System (ADS)

    Klimashin, Anton; Belousov, Valery

    2016-02-01

    An oxygen ion transport model was developed for oxide melts based on V2O5. Within the framework of this model, the values of the parabolic rate constant of catastrophic oxidation of V2O5-deposited copper and the oxygen flux through the slags based on molten V2O5 were calculated and compared with experimental data. The calculated and experimental values are of the same order of magnitude which shows an adequacy of the model.

  8. Portable optical oxygen sensor based on time-resolved fluorescence.

    PubMed

    Chu, Cheng-Shane; Chu, Ssu-Wei

    2014-11-10

    A new, simple signal processing, low-cost technique for the fabrication of a portable oxygen sensor based on time-resolved fluorescence is described. The sensing film uses the oxygen sensing dye platinum meso-tetra (pentfluorophenyl) porphyrin (PtTFPP) embedded in a polymer matrix. The ratio τ0100 measures sensitivity of the sensing film, where τ0 and τ100 represent the detected fluorescence lifetimes from the sensing film exposed to 100% nitrogen and 100% oxygen, respectively. The experimental results reveal that the PtTFPP-doped oxygen sensor has a sensitivity of 2.2 in the 0%-100% range. A preparation procedure for coating the photodiodes with the oxygen sensor film that produces repetitive and reliable sensing devices is proposed. The developed time-resolved optical oxygen sensor is portable, low-cost, has simple signal processing, and lacks optical filter elements. It is a cost-effective alternative to traditional electrochemical-based oxygen sensors and provides a platform for other optical based sensors.

  9. Modeling of the Temperature Effect on Oxygen Absorption by Iron-Based Oxygen Scavengers.

    PubMed

    Polyakov, Vladimir A; Miltz, Joseph

    2016-01-01

    A new engineering-oriented model for prediction of the effect of temperature on the kinetics of oxygen absorption by iron-based oxygen scavengers (IOSs) was developed. The model is based on the physicochemical mechanism of the O2 scavenging process by the active component of the IOS (iron powder). The conclusions of this study are: (1) the iron deposits formed on the iron particles are composed of 2 different layers: an inner layer of Fe3 O4 and an outer layer of FeOOH that vanishes with the depletion of oxygen. (2) The model considers the chemical processes in the heterogeneous closed system "Fe-H2 O-NaCl-O2 " and describes the kinetics of oxygen absorption by the powder, depending on the characteristics of the system. (3) The nonlinear ordinary differential equation (ODE) of the O2 absorption kinetics was derived and a simple approximate solution to this ODE was obtained theoretically that is similar to the empirical exponential formula published in the relevant literature. (4) The temperature dependence of the oxygen absorption rate is more complicated than that described by the Arrhenius equation.

  10. Selective molecular oxygen oxidation of thioethers to sulfoxides catalyzed by Ce(IV)

    SciTech Connect

    Riley, D.P.; Smith, M.R.; Correa, P.E.

    1988-01-06

    The selective molecular oxygen conversion of thioethers to sulfoxides is catalyzed by ceric ammonium nitrate (CAN) with rate enhancements that are at least three orders of magnitude greater than the uncatalyzed autoxidation of thioethers. Mechanistic studies (including spectroscopic, labeling, uptake, mixed reactant, and autocatalysis studies) of this novel reaction reveal that both atoms of dioxygen are incorporated into product sulfoxide, that a novel oxygen-driven Ce(IV)Ce(III) redox cycle gives rise to the catalysis, and that molecular oxygen efficiently traps a sulfur-centered radial cation of the thioether (produced by Ce(IV) oxidation of thioether) to yield the oxygenated radical cation R/sub 2/S/sup +/OO/sup ./, which, it is proposed, reoxidizes Ce(III) to Ce(IV). The zwitterionic R/sub 2/S/sup +/OO/sup -/ intermediate (persulfoxide) reacts with thioether to yield two sulfoxide product molecules.

  11. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases

    NASA Astrophysics Data System (ADS)

    Chowdhury, Rasheduzzaman; Leung, Ivanhoe K. H.; Tian, Ya-Min; Abboud, Martine I.; Ge, Wei; Domene, Carmen; Cantrelle, François-Xavier; Landrieu, Isabelle; Hardy, Adam P.; Pugh, Christopher W.; Ratcliffe, Peter J.; Claridge, Timothy D. W.; Schofield, Christopher J.

    2016-08-01

    The response to hypoxia in animals involves the expression of multiple genes regulated by the αβ-hypoxia-inducible transcription factors (HIFs). The hypoxia-sensing mechanism involves oxygen limited hydroxylation of prolyl residues in the N- and C-terminal oxygen-dependent degradation domains (NODD and CODD) of HIFα isoforms, as catalysed by prolyl hydroxylases (PHD 1-3). Prolyl hydroxylation promotes binding of HIFα to the von Hippel-Lindau protein (VHL)-elongin B/C complex, thus signalling for proteosomal degradation of HIFα. We reveal that certain PHD2 variants linked to familial erythrocytosis and cancer are highly selective for CODD or NODD. Crystalline and solution state studies coupled to kinetic and cellular analyses reveal how wild-type and variant PHDs achieve ODD selectivity via different dynamic interactions involving loop and C-terminal regions. The results inform on how HIF target gene selectivity is achieved and will be of use in developing selective PHD inhibitors.

  12. DETERMINATION OF LETHAL DISSOLVED OXYGEN LEVELS FOR SELECTED MARINE AND ESTUARINE FISHES, CRUSTACEANS AND A BIVALVE

    EPA Science Inventory

    The objective of this study was to provide a database of the incipient lethal concentrations for reduced dissolved oxygen (DO) for selected marine and estuarine species including 12 species of fish, 9 crustaceans, and 1 bivalve. All species occur in the Virginian Province, USA, w...

  13. Particulate Formation from a Copper Oxide-Based Oxygen ...

    EPA Pesticide Factsheets

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling duct, range between 2 and 5 μm. A notable number of submicron particulates are also identified. Oxygen carrier attrition was observed to lead to increased CuO loss resulting from the chemical looping reactions, i.e., Cu is enriched in small particles generated primarily from fragmentation in the size range of 10-75 μm. Cyclic reduction and oxidation reactions in CLC have been determined to weaken the oxygen carrier particles, resulting in increased particulate emission rates when compared to oxygen carriers without redox reactions. The generation rate for particulates < 10 μm was found to decrease with progressive cycles over as-prepared oxygen carrier particles and then reach a steady state. The surface of the oxygen carrier is also found to be coarsened due to a Kirkendall effect, which also explains the enrichment of Cu on particle surfaces and in small particles. As a result, it is important to collect and reprocess small particles generated from chemical looping processes to reduce oxygen carrier loss. The redox reactions associated with chemical looping combustion play an important role in particle attrition in the fluidized bed. Reaction-induced local stresses, due to the r

  14. Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices

    NASA Astrophysics Data System (ADS)

    Chen, C.; Gao, S.; Zeng, F.; Tang, G. S.; Li, S. Z.; Song, C.; Fu, H. D.; Pan, F.

    2013-07-01

    Oxides-based resistive switching memory induced by oxygen ions migration is attractive for future nonvolatile memories. Numerous works had focused their attentions on the sandwiched oxide materials for depressing the characteristic variations, but the comprehensive studies of the dependence of electrodes on the migration behavior of oxygen ions are overshadowed. Here, we investigated the interaction of various metals (Ni, Co, Al, Ti, Zr, and Hf) with oxygen atoms at the metal/Ta2O5 interface under electric stress and explored the effect of top electrode on the characteristic variations of Ta2O5-based memory device. It is demonstrated that chemically inert electrodes (Ni and Co) lead to the scattering switching characteristics and destructive gas bubbles, while the highly chemically active metals (Hf and Zr) formed a thick and dense interfacial intermediate oxide layer at the metal/Ta2O5 interface, which also degraded the resistive switching behavior. The relatively chemically active metals (Al and Ti) can absorb oxygen ions from the Ta2O5 film and avoid forming the problematic interfacial layer, which is benefit to the formation of oxygen vacancies composed conduction filaments in Ta2O5 film thus exhibit the minimum variations of switching characteristics. The clarification of oxygen ions migration behavior at the interface can lead further optimization of resistive switching performance in Ta2O5-based memory device and guide the rule of electrode selection for other oxide-based resistive switching memories.

  15. Evaluation of UV-radiation induced singlet oxygen generation potential of selected drugs.

    PubMed

    Pandey, R; Mehrotra, S; Ray, R S; Joshi, P C; Hans, R K

    2002-05-01

    Photosensitization reaction of drugs leading to the formation of reactive oxygen species under ultraviolet radiation (UVR) can cause tissue injury, resulting in damage to various cellular macromolecules. The aim of this study was to determine the singlet oxygen generation potential of some commonly used antibiotics so that due precautions can be exercised to minimize their photosensitizing action and oxidative stress potential. The selected antibiotics were examined for their ability to produce singlet oxygen (1O2) under artificial UVA (320-400 nm). Singlet oxygen generation of various screened antibiotics under UVA is of the following order: Nalidixic acid > Amphotericin-B > Cephradine > Cefazolin > Nafcillin > Cephalothin > Ampicillin > Cephalexin > Puromycin > Kanamycin > Lincomycin > Tetracycline > Nystatin > Gentamicin sulphate. Nalidixic acid, the most potent generator of 1O2 among the screened antibiotics, was selected to carry out further studies. Certain specific quenchers of 1O2 such as beta-carotene, 1,4-diazabicyclo[2.2.2] octane (DABCO), and sodium azide (NaN3) accorded significant inhibition in the production of 1O2. The results suggest that precautions are necessary to avoid ultraviolet radiation after the intake of photoreactive drugs, especially in tropical countries such as India. These findings are significant because UVB radiation is reportedly increasing on earth surface in part due to depletion of stratospheric ozone layer. The selected drugs are commonly used for the treatment of various diseases. Thus, the synergistic action of both can lead to undesirable phototoxic responses.

  16. New Reaction Pathway Induced by Plasmon for Selective Benzyl Alcohol Oxidation on BiOCl Possessing Oxygen Vacancies.

    PubMed

    Li, Hao; Qin, Feng; Yang, Zhiping; Cui, Ximin; Wang, Jianfang; Zhang, Lizhi

    2017-03-08

    Selective organic transformation under mild conditions constitutes a challenge in green chemistry, especially for alcohol oxidation, which typically requires environmentally unfriendly oxidants. Here, we report a new plasmonic catalyst of Au supported on BiOCl containing oxygen vacancies. It photocatalyzes selective benzyl alcohol oxidation with O2 under visible light through synergistic action of plasmonic hot electrons and holes. Oxygen vacancies on BiOCl facilitate the trapping and transfer of plasmonic hot electrons to adsorbed O2, producing •O2(-) radicals, while plasmonic hot holes remaining on the Au surface mildly oxidize benzyl alcohol to corresponding carbon-centered radicals. The hypothesized concerted ring addition between these two radical species on the BiOCl surface highly favors the production of benzaldehyde along with an unexpected oxygen atom transfer from O2 to the product. The results and understanding acquired in this study, based on the full utilization of hot charge carriers in a plasmonic metal deposited on a rationally designed support, will contribute to the development of more active and/or selective plasmonic catalysts for a wide variety of organic transformations.

  17. A Porous Tissue Engineering Scaffold Selectively Degraded by Cell-Generated Reactive Oxygen Species

    PubMed Central

    Martin, John R.; Gupta, Mukesh K.; Page, Jonathan M.; Yu, Fang; Davidson, Jeffrey M.; Guelcher, Scott A.

    2014-01-01

    Biodegradable tissue engineering scaffolds are commonly fabricated from poly(lactide-co-glycolide) (PLGA) or similar polyesters that degrade by hydrolysis. PLGA hydrolysis generates acidic breakdown products that trigger an accelerated, autocatalytic degradation mechanism that can create mismatched rates of biomaterial breakdown and tissue formation. Reactive oxygen species (ROS) are key mediators of cell function in both health and disease, especially at sites of inflammation and tissue healing, and induction of inflammation and ROS are natural components of the in vivo response to biomaterial implantation. Thus, polymeric biomaterials that are selectively degraded by cell-generated ROS may have potential for creating tissue engineering scaffolds with better matched rates of tissue in-growth and cell-mediated scaffold biodegradation. To explore this approach, a series of poly(thioketal) (PTK) urethane (PTK-UR) biomaterial scaffolds were synthesized that degrade specifically by an ROS-dependent mechanism. PTK-UR scaffolds had significantly higher compressive moduli than analogous poly(ester urethane) (PEUR) scaffolds formed from hydrolytically-degradable ester-based diols (p < 0.05). Unlike PEUR scaffolds, the PTK-UR scaffolds were stable under aqueous conditions out to 25 weeks but were selectively degraded by ROS, indicating that their biodegradation would be exclusively cell-mediated. The in vitro oxidative degradation rates of the PTK-URs followed first-order degradation kinetics, were significantly dependent on PTK composition (p < 0.05), and correlated to ROS concentration. In subcutaneous rat wounds, PTK-UR scaffolds supported cellular infiltration and granulation tissue formation, followed first-order degradation kinetics over 7 weeks, and produced significantly greater stenting of subcutaneous wounds compared to PEUR scaffolds. These combined results indicate that ROS-degradable PTK-UR tissue engineering scaffolds have significant advantages over analogous

  18. Selective Coke Combustion by Oxygen Pulsing During Mo/ZSM‐5‐Catalyzed Methane Dehydroaromatization

    PubMed Central

    Coumans, Ferdy J. A. G.; Uslamin, Evgeny; Kapteijn, Freek

    2016-01-01

    Abstract Non‐oxidative methane dehydroaromatization is a promising reaction to directly convert natural gas into aromatic hydrocarbons and hydrogen. Commercialization of this technology is hampered by rapid catalyst deactivation because of coking. A novel approach is presented involving selective oxidation of coke during methane dehydroaromatization at 700 °C. Periodic pulsing of oxygen into the methane feed results in substantially higher cumulative product yield with synthesis gas; a H2/CO ratio close to two is the main side‐product of coke combustion. Using 13C isotope labeling of methane it is demonstrated that oxygen predominantly reacts with molybdenum carbide species. The resulting molybdenum oxides catalyze coke oxidation. Less than one‐fifth of the available oxygen reacts with gaseous methane. Combined with periodic regeneration at 550 °C, this strategy is a significant step forward, towards a process for converting methane into liquid hydrocarbons. PMID:27791321

  19. Process for selection of Oxygen-tolerant algal mutants that produce H.sub.2

    DOEpatents

    Ghirardi, Maria L.; Seibert, Michael

    1999-01-01

    A process for selection of oxygen-tolerant, H.sub.2 -producing algal mutant cells comprising: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas; (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light. (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H.sub.2 -producing mutants.

  20. Effects of ambient oxygen and size-selective mortality on growth and maturation in guppies

    PubMed Central

    Diaz Pauli, Beatriz; Kolding, Jeppe; Jeyakanth, Geetha

    2017-01-01

    Abstract Growth, onset of maturity and investment in reproduction are key traits for understanding variation in life-history strategies. Many environmental factors affect variation in these traits, but for fish, hypoxia and size-dependent mortality have become increasingly important because of human activities, such as increased nutrient enrichment (eutrophication), climate warming and selective fishing. Here, we study experimentally the effect of oxygen availability on maturation and growth in guppies (Poecilia reticulata) from two different selected lines, one subjected to positive and the other negative size-dependent fishing. This is the first study to assess the effects of both reduced ambient oxygen and size-dependent mortality in fish. We show that reduced ambient oxygen led to stunting, early maturation and high reproductive investment. Likewise, lineages that had been exposed to high mortality of larger-sized individuals displayed earlier maturation at smaller size, greater investment in reproduction and faster growth. These life-history changes were particularly evident for males. The widely reported trends towards earlier maturation in wild fish populations are often interpreted as resulting from size-selective fishing. Our results highlight that reduced ambient oxygen, which has received little experimental investigation to date, can lead to similar phenotypic changes. Thus, changes in ambient oxygen levels can be a confounding factor that occurs in parallel with fishing, complicating the causal interpretation of changes in life-history traits. We believe that better disentangling of the effects of these two extrinsic factors, which increasingly affect many freshwater and marine ecosystems, is important for making more informed management decisions. PMID:28361001

  1. Image-based modelling of skeletal muscle oxygenation.

    PubMed

    Zeller-Plumhoff, B; Roose, T; Clough, G F; Schneider, P

    2017-02-01

    The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange.

  2. Image-based modelling of skeletal muscle oxygenation

    PubMed Central

    Clough, G. F.

    2017-01-01

    The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo. Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange. PMID:28202595

  3. Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer; Zhen Fan

    2005-09-01

    sequestration. FW has developed a conceptual design of an O{sub 2} fired boiler to determine overall plant performance and economics. Five subtasks were conducted: (1) a literature review, (2) a system design and analysis, (3) a low NOx burner design and analysis, (4) a furnace and heat recovery area design analysis, and (5) an economic analysis. The objective of the literature search is to locate any data/information relevant to the Oxygen-Based PC Boiler conceptual design. The objective of the system design and analysis task is to optimize the PC boiler plant by maximizing system efficiency within practical considerations. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 MW plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.6% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 65% of the air-fired reference case. The objective of the low NOx burner design and analysis task is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent CFD computer program. Four burner designs were developed: (1) with no OFG and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall

  4. The impact of meter-scale oxygen gradients in the selective degradation of organic matter: implications for proxy interpretation

    NASA Astrophysics Data System (ADS)

    Bogus, K.; Zonneveld, K. A.; Fischer, D.; Kasten, S.; Versteegh, G.

    2010-12-01

    The reconstruction of upper oceanographic conditions is often founded on organic matter-based proxies that have their origin within the photic zone and measurably reflect these conditions. It is well known that only a fraction of the organic matter that is produced in the upper water column reaches the sea floor where it is further degraded by aerobic and anaerobic remineralization processes. During the last decades it has become clear that preservation is highly selective and can, depending on the proxy used, severely influence the proxy outcome. One of the main factors that can influence the preservation of organic matter is the presence of oxygen. Therefore, for an adequate interpretation of proxy signals, it is essential to obtain insight as to how the extent of oxygen availability might alter the proxy outcome. Until now, the majority of studies investigating the impact of selective aerobic degradation on organic matter-based proxies have suffered from a priori environmental spatial heterogeneity. In other words, a large distance between sample locations introduces a source of error in that additional factors, such as lateral transport and differing photic zone conditions, cannot be completely discounted as contributing reasons for a change in proxy ratios during interpretation. This degree of uncertainty makes it difficult to separate initial environmentally-induced heterogeneity, such as varying temperatures and nutrient levels, from those induced by selective aerobic degradation. In order to constrain these problems and evaluate the extent of early selective aerobic degradation on proxies in surface sediments, we restricted sampling distance to meter-scale oxygen gradients existing on the margins of cold seeps in the northeastern Arabian Sea. These samples were retrieved along a gradient from the methane pocket to the outer rim of the methane-influenced area by computer-steered push coring using the ROV Quest during RV Meteor cruise M74/3 in November 2007

  5. Hemoglobin-based oxygen carriers for hemorrhagic shock.

    PubMed

    Elmer, Jonathan; Alam, Hasan B; Wilcox, Susan R

    2012-03-01

    Hemorrhagic shock is a pathologic state in which intravascular volume and tissue oxygen delivery are impaired, leading to circulatory collapse and cellular ischemia. Resuscitation with hemoglobin-based oxygen carriers (HBOCs) is appealing in that their use can both restore intravascular volume and tissue oxygenation, without the limitations in supply and immunomodulatory effects of packed red blood cells. However, the development of safe and effective agents has been elusive. In this article, we briefly discuss the major limitations of traditional resuscitative fluids which have driven the continued interest in HBOCs. We then review the history of early HBOC development and the modern understanding of their mechanisms of toxicity, which has informed the rational design of second-generation agents. Finally, we provide an overview of these second-generation HBOCs that are under active investigation or have recently completed phase 3 clinical trials.

  6. Decomposition of methanol on oxygen-modified Fe(100) surfaces. II. Preadsorbed oxygen as poison, selectivity modifier and promoter

    NASA Astrophysics Data System (ADS)

    Lu, Jiong-Ping; Albert, Mark; Bernasek, Steven L.; Dwyer, Daniel J.

    1990-12-01

    Decomposition of methanol (CH 3OH) on the Fe(100) surface modified by low temperature adsorption of oxygen has been studied, using high resolution electron energy loss spectroscopy (HREELS) and temperature programmed reaction spectroscopy (TPRS). Fe(100) surfaces studied were modified by adsorption of O 2 at 113 K, and methanol decomposition as a function of oxygen coverage was monitored. The effect of pre-heating the oxygen overlayers on the methanol decomposition was also examined. Decomposition of methanol on these O-modified surfaces passes through a methoxy (-OCH 3) intermediate. The thermal stability of methoxy increases in the presence of pre-adsorbed oxygen. At low coverage, atomic oxygen occupies four-fold hollow sites. In this case, the effect of oxygen on the methanol decomposition is similar to that observed previously on the annealed O-modified surfaces. At higher oxygen coverage, a more weakly bound non-hollow site oxygen also exists on the surface, which reacts with hydroxyl (-OH) hydrogen of the CH 3OH, promoting the formation of methoxy. At high oxygen coverage (close to saturation coverage at 113 K), decomposition of methanol results in the formation of formaldehyde (H 2CO), without production of carbon monoxide (CO). This is very different from the decomposition of methanol on the clean Fe(100) surface, where decomposition leads to the formation of CO without H 2CO. The effect of oxygen modification is discussed in terms of changing relative probabilities of competing reaction pathways.

  7. Procedure for the selection of materials for use in oxygen systems at the John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Bryan, Coleman J.; Olsen, Melvin G.

    1988-01-01

    This paper describes tests used at the John F. Kennedy Space Center (KSC) in the material selection procedure for evaluating materials suitable for use in oxygen systems. Special attention is given to the basic selection criteria for materials used in oxygen enriched environments. The flow chart for the material selection procedure is presented, and information that must be supplied by vendors requesting batch/lot certification support from KSC is given.

  8. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases

    PubMed Central

    Chowdhury, Rasheduzzaman; Leung, Ivanhoe K. H.; Tian, Ya-Min; Abboud, Martine I.; Ge, Wei; Domene, Carmen; Cantrelle, François-Xavier; Landrieu, Isabelle; Hardy, Adam P.; Pugh, Christopher W.; Ratcliffe, Peter J.; Claridge, Timothy D. W.; Schofield, Christopher J.

    2016-01-01

    The response to hypoxia in animals involves the expression of multiple genes regulated by the αβ-hypoxia-inducible transcription factors (HIFs). The hypoxia-sensing mechanism involves oxygen limited hydroxylation of prolyl residues in the N- and C-terminal oxygen-dependent degradation domains (NODD and CODD) of HIFα isoforms, as catalysed by prolyl hydroxylases (PHD 1–3). Prolyl hydroxylation promotes binding of HIFα to the von Hippel–Lindau protein (VHL)–elongin B/C complex, thus signalling for proteosomal degradation of HIFα. We reveal that certain PHD2 variants linked to familial erythrocytosis and cancer are highly selective for CODD or NODD. Crystalline and solution state studies coupled to kinetic and cellular analyses reveal how wild-type and variant PHDs achieve ODD selectivity via different dynamic interactions involving loop and C-terminal regions. The results inform on how HIF target gene selectivity is achieved and will be of use in developing selective PHD inhibitors. PMID:27561929

  9. UV radiation impacts body weight, oxygen consumption, and shelter selection in the intertidal vertebrate Girella laevifrons.

    PubMed

    Pulgar, José; Waldisperg, Melany; Galbán-Malagón, Cristóbal; Maturana, Diego; Pulgar, Victor M; Aldana, Marcela

    2017-02-01

    The amount of ultraviolet (UV) radiation reaching the earth's surface has increased due to ozone layer depletion, and this fact represents an opportunity to evaluate the physiological and behavioral responses of animals to this global-scale stressor. The transitory fish Girella laevifrons inhabits pools in the upper intertidal zone, which is characterized by exposure to a wide range of stressors, including UV radiation. We documented the field magnitude and the impact of UV radiation on oxygen consumption, body mass variations, and shelter (rocky and algae) selection by G. laevifrons. UV-exposed animals showed increased oxygen consumption, slower body weight increase, and active rocky shelter selection. Control fish showed increased body weight and no evident shelter selection. The results indicated that UV exposure affects fish energetic balance and habitat selection to favor greater protection against radiation. Increased UV exposure in transitory intertidal animals at levels observed in upper intertidal pools may alter the residency time of fish before leaving for the subtidal zone. Therefore, UV-induced energetic changes may determine animal performance and ontogenetic physiological itineraries, whereas shelter quality might determine habitat use.

  10. Stable and solubilized active Au atom clusters for selective epoxidation of cis-cyclooctene with molecular oxygen

    PubMed Central

    Qian, Linping; Wang, Zhen; Beletskiy, Evgeny V.; Liu, Jingyue; dos Santos, Haroldo J.; Li, Tiehu; Rangel, Maria do C.; Kung, Mayfair C.; Kung, Harold H.

    2017-01-01

    The ability of Au catalysts to effect the challenging task of utilizing molecular oxygen for the selective epoxidation of cyclooctene is fascinating. Although supported nanometre-size Au particles are poorly active, here we show that solubilized atomic Au clusters, present in ng ml−1 concentrations and stabilized by ligands derived from the oxidized hydrocarbon products, are active. They can be formed from various Au sources. They generate initiators and propagators to trigger the onset of the auto-oxidation reaction with an apparent turnover frequency of 440 s−1, and continue to generate additional initiators throughout the auto-oxidation cycle without direct participation in the cycle. Spectroscopic characterization suggests that 7–8 atom clusters are effective catalytically. Extension of work based on these understandings leads to the demonstration that these Au clusters are also effective in selective oxidation of cyclohexene, and that solubilized Pt clusters are also capable of generating initiators for cyclooctene epoxidation. PMID:28348389

  11. Material Selection Guidelines to Limit Atomic Oxygen Effects on Spacecraft Surfaces

    NASA Technical Reports Server (NTRS)

    Dooling, D.; Finckenor, M. M.

    1999-01-01

    This report provides guidelines in selecting materials for satellites and space platforms, designed to operate within the Low-Earth orbit environment, which limit the effects of atomic oxygen interactions with spacecraft surfaces. This document should be treated as an introduction rather than a comprehensive guide since analytical and flight technologies continue to evolve, flight experiments are conducted as primary or piggyback opportunities arise, and our understanding of materials interactions and protection methods grows. The reader is urged to consult recent literature and current web sites containing information about research and flight results.

  12. Process for selection of oxygen-tolerant algal mutants that produce H{sub 2}

    DOEpatents

    Ghirardi, M.L.; Seibert, M.

    1999-02-16

    A process for selection of oxygen-tolerant, H{sub 2}-producing algal mutant cells comprises: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautotrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas and (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light; (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H{sub 2}-producing mutants. 5 figs.

  13. Methodologies for detection of hemoglobin-based oxygen carriers.

    PubMed

    Goebel, Catrin; Alma, Chris; Howe, Chris; Kazlauskas, Rymantas; Trout, Graham

    2005-01-01

    Blood substitutes based on hemoglobin or hemoglobin-based oxygen carriers (HBOCs) are oxygen-carrying therapeutic agents developed for use in operations and emergencies in place of donated blood. Increased oxygen-carrying capacity through the use of blood substitutes could help elite athletes to lengthen endurance capacity and improve their performance. As blood substitutes become more readily available, it is essential that a qualitative detection method for their abuse in sport is available. Ideally, such a method would be simple and inexpensive. This study investigates methods that could be used as screening procedures to easily detect HBOCs in plasma and develops tests that can unequivocally confirm their presence. The investigation into the screening method indicates that the direct visual screening of plasma discoloration is the most appropriate with detection limits of less than 1% HBOC in plasma. Two methods are shown to confirm the presence of exogenous hemoglobin in plasma samples, size-exclusion chromatography with photodiode array detection and high-performance liquid chromatography analysis of enzymatic digests with detection by electrospray mass spectrometry. This work emphasizes the need for cooperation between drug developers and sports testing laboratories to ensure that methods for the detection of putative doping agents are available prior to product release.

  14. Effects of Hemoglobin-Based Oxygen Carriers on Blood Coagulation

    PubMed Central

    Roghani, Kimia; Holtby, Randall J.; Jahr, Jonathan S.

    2014-01-01

    For many decades, Hemoglobin-based oxygen carriers (HBOCs) have been central in the development of resuscitation agents that might provide oxygen delivery in addition to simple volume expansion. Since 80% of the world population lives in areas where fresh blood products are not available, the application of these new solutions may prove to be highly beneficial (Kim and Greenburg 2006). Many improvements have been made to earlier generation HBOCs, but various concerns still remain, including coagulopathy, nitric oxide scavenging, platelet interference and decreased calcium concentration secondary to volume expansion (Jahr et al. 2013). This review will summarize the current challenges faced in developing HBOCs that may be used clinically, in order to guide future research efforts in the field. PMID:25514567

  15. Selective oxidation of alkanes and/or alkenes to valuable oxygenates

    DOEpatents

    Lin, Manhua; Pillai, Krishnan S.

    2011-02-15

    A catalyst, its method of preparation and its use for producing at least one of methacrolein and methacrylic acid, for example, by subjecting isobutane or isobutylene or a mixture thereof to a vapor phase catalytic oxidation in the presence of air or oxygen. In the case where isobutane alone is subjected to a vapor phase catalytic oxidation in the presence of air or oxygen, the product is at least one of isobutylene, methacrolein and methacrylic acid. The catalyst comprises a compound having the formula A.sub.aB.sub.bX.sub.xY.sub.yZ.sub.zO.sub.o wherein A is one or more elements selected from the group of Mo, W and Zr, B is one or more elements selected from the group of Bi, Sb, Se, and Te, X is one or more elements selected from the group of Al, Bi, Ca, Ce, Co, Fe, Ga, Mg, Ni, Nb, Sn, W and Zn, Y is one or more elements selected from the group of Ag, Au, B, Cr, Cs, Cu, K, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Re, Ru, Sn, Te, Ti, V and Zr, and Z is one or more element from the X or Y groups or from the following: As, Ba, Pd, Pt, Sr, or mixtures thereof, and wherein a=1, 0.05

  16. Redox-Active Metal-Organic Composites for Highly Selective Oxygen Separation Applications

    SciTech Connect

    Zhang, Wen; Banerjee, Debasis; Liu, Jian; Schaef, Herbert T.; Crum, Jarrod V.; Fernandez, Carlos A.; Kukkadapu, Ravi K.; Nie, Zimin; Nune, Satish K.; Motkuri, Radha K.; Chapman, Karena W.; Engelhard, Mark H.; Hayes, James C.; Silvers, Kurt L.; Krishna, Rajamani; McGrail, B. Peter; Liu, Jun; Thallapally, Praveen K.

    2016-03-08

    Incorporating, a redox active organometallic molIncorporating, a redox active organometallic molecule within a porous matrix is a useful strategy to form redox active composite materials for emerging applications such as energy storage, electro-catalysis and electro-magnetic separation. Herein we report a new class of stable, redox active metal organic composites for oxygen/air separation with exceptional efficiency. In particular, Ferrocene impregnated in a thermally stable hierarchical porous framework showed a saturation uptake capacity of >51 mg/g for oxygen at a very low relative saturation pressure (P/Po) of 0.06. The material shows excellent O2 selectivity from air as evident from experimental and simulated breakthrough experiments. In detail structural analysis using 57Fe-Mössbauer, X-ray photoelectron spectroscopy (XPS) and pair distribution function (PDF) analysis show that of O2 adsorption affinity and selectivity originates by the formation Fe3+-O oxide due to the highly reactive nature of the organometallics imbedded in the porous matrix.

  17. Molecular origin of the selectivity differences between palladium and gold-palladium in benzyl alcohol oxidation: Different oxygen adsorption properties

    SciTech Connect

    Savara, Aditya Ashi; Chan-Thaw, Carine E.; Sutton, Jonathan E.; Wang, Di; Prati, Laura; Villa, Alberto

    2016-12-22

    The same mechanism and microkinetic model used for benzyl alcohol oxidation over Pd/C was shown to apply to benzyl alcohol oxidation over AuPd/C. Almost all of the selectivity differences could be explained by a decrease in oxygen adsorption on AuPd. After isolating oxygen adsorption as being the origin of the selectivity differences, density functional theory was used to investigate the oxygen adsorption properties of a pure Pd surface, a pure Au surface, and an alloyed AuPd surface. Finally, the calculations showed that Au–Pd alloying decreased the oxygen adsorption properties relative to pure Pd, which explained the selectivity differences, consistent with the microkinetic modeling.

  18. Molecular origin of the selectivity differences between palladium and gold-palladium in benzyl alcohol oxidation: Different oxygen adsorption properties

    DOE PAGES

    Savara, Aditya Ashi; Chan-Thaw, Carine E.; Sutton, Jonathan E.; ...

    2016-12-22

    The same mechanism and microkinetic model used for benzyl alcohol oxidation over Pd/C was shown to apply to benzyl alcohol oxidation over AuPd/C. Almost all of the selectivity differences could be explained by a decrease in oxygen adsorption on AuPd. After isolating oxygen adsorption as being the origin of the selectivity differences, density functional theory was used to investigate the oxygen adsorption properties of a pure Pd surface, a pure Au surface, and an alloyed AuPd surface. Finally, the calculations showed that Au–Pd alloying decreased the oxygen adsorption properties relative to pure Pd, which explained the selectivity differences, consistent withmore » the microkinetic modeling.« less

  19. Syngas chemical looping gasification process: oxygen carrier particle selection and performance

    SciTech Connect

    Fanxing Li; Hyung Ray Kim; Deepak Sridhar; Fei Wang; Liang Zeng; Joseph Chen; L.-S. Fan

    2009-08-15

    The syngas chemical looping (SCL) process coproduces hydrogen and electricity. The process involves reducing metal oxides with syngas followed by regeneration of reduced metal oxides with steam and air in a cyclic manner. Iron oxide is determined to be a desired oxygen carrier for hydrogen production considering overall properties including oxygen carrying capacity, thermodynamic properties, reaction kinetics, physical strength, melting points, and environmental effects. An iron oxide based particle can maintain good reactivity for more than 100 reduction-oxidation (redox) cycles in a thermogravimetric analyzer (TGA). The particle exhibits a good crushing strength (>20 MPa) and low attrition rate. Fixed bed experiments are carried out which reaffirm its reactivity. More than 99.75% of syngas is converted during the reduction stage. During the regeneration stage, hydrogen with an average purity of 99.8% is produced. 23 refs., 6 figs., 10 tabs.

  20. Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode.

    PubMed

    Kim, Y C; Lee, K H; Sasaki, S; Hashimoto, K; Ikebukuro, K; Karube, I

    2000-07-15

    The construction and performance evaluation of a novel Chemical Oxygen Demand (COD) sensor is described. The sensor measures, using an oxygen electrode, a decrease of dissolved oxygen of a given sample resulting from photocatalytic oxidation of the organic compounds therein. As the photocatalyst, titanium dioxide (TiO2) fine particles adsorbed on a translucent poly(tetrafluoroethylene) (PTFE) membrane was used. The oxygen electrode with the membrane attached on its tip was used as the sensor probe. The operation characteristics of the sensor are demonstrated using an artificial wastewater and real water samples from lakes in Japan. This method is considered to be reliable, in that the observed parameter is close to the theoretical definition of chemical oxygen demand (COD), the amount of oxygen consumed for oxidation of organic compounds.

  1. Survey of selected seaweeds for simultaneous photoproduction of hydrogen and oxygen

    SciTech Connect

    Greenbaum, E.; Ramus, J.

    1983-03-01

    Then seaweed species were surveyed for simultaneous photoevolution of hydrogen and oxygen. In an attempt to induce hydrogenase activity (as measured by hydrogen photoproduction) the seaweeds were maintained under anaerobiosis in CO/sub 2/-free seawater for varying lengths of time. Although oxygen evolution was observed in every alga studied, hydrogen evolution was not observed. One conclusion of this research is that, in contrast to the microscopic algae, there is not a single example of a macroscopic alga for which the photoevolution of hydrogen has been observed, in spite of the fact that there are now at least nine macroscopic algal species known for which hydrogenase activity has been reported (either by dark hydrogen evolution or light-activated hydrogen uptake). These results are in conflict with the conventional view that algal hydrogenase can catalyze a multiplicity of reactions, one of which is the photoproduction of molecular hydrogen. Two possible explanations for the lack of hydrogen photoproduction in macroscopic algae are presented. It is postulated that electron acceptors other than carbon dioxide can take up reducing equivalents from Photosystem I to the measurable exclusion of hydrogen photoproduction. Alternatively, the hydrogenase system in macroscopic algae may be primarily a hydrogen-uptake system with respect to light-activated reactions. A simple kinetic argument based on recent measurements of the photosynthetic turnover times of simultaneous light-activated hydrogen and oxygen production is presented that supports the second explanation. 25 references, 3 figures, 1 table.

  2. The remarkable effect of oxygen on the N2 selectivity of water catalytic denitrification by hydrogen.

    PubMed

    Constantinou, Costas L; Costa, Costas N; Efstathiou, Angelos M

    2007-02-01

    The selective catalytic reduction of nitrates (NO3-) in pure water toward N2 formation by the use of gaseous H2 and in the presence of O2 (air) at 1 atm total pressure and 25 degrees C has been investigated over Pd-Cu supported on various mixed metal oxides, x wt % MO(x(/gamma-Al2O3 (MO(x) = CeO2, SrO, Mn2O3, Cr2O3, Y2O3, and TiO2). It is demonstrated for the firsttime that a remarkable improvement in N2 reaction selectivity (by 80 percentage units) can be achieved when oxygen is present in the reducing feed gas stream. In particular, significantly lower reaction selectivities toward NH4+ and NO2- can be obtained, whereas the rate of NO3- conversion is not significantly affected. Moreover, it was shown thatthe same effect is obtained over the Pd-Cu-supported catalysts irrespective to the chemical composition of support and the initial concentration of nitrates in water used. The Pd-Cu clusters supported on 4.8 wt%TiO2/gamma-Al2O3 resulted in a solid with the best catalytic behavior compared with the rest of supports examined, both in the presence and in the absence of oxygen in the reducing feed gas stream. DRIFTS studies performed following catalytic reduction by H2 of NO3- in water revealed that the presence of TiO2 in the Pd-Cu/TiO2-Al2O3 system enhanced the reactivity of adsorbed bidentate nitrate species toward H2. Nitrosyl species adsorbed on the alumina and titania support surfaces are considered as active intermediate species of the selective catalytic reduction of NO3- by H2 in water. Pd-Cu/TiO2-Al2O3 appears to be the most selective catalyst ever reported in the literature for the reduction of nitrates present in pure water into N2 by a reducing gas mixture of H2/air.

  3. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Grimaud, Alexis; Demortiere, Arnaud; Saubanere, Matthieu; Dachraoui, Walid; Duchamp, Martial; Doublet, Marie-Liesse; Tarascon, Jean-Marie

    2017-01-01

    The oxygen evolution reaction (OER) is of prime importance in multiple energy storage devices; however, deeper mechanistic understanding is required to design enhanced electrocatalysts for the reaction. Current understanding of the OER mechanism based on oxygen adsorption on a metallic surface site fails to fully explain the activity of iridium and ruthenium oxide surfaces, and the drastic surface reconstruction observed for the most active OER catalysts. Here we demonstrate, using La2LiIrO6 as a model catalyst, that the exceptionally high activity found for Ir-based catalysts arises from the formation of active surface oxygen atoms that act as electrophilic centres for water to react. Moreover, with the help of transmission electron microscopy, we observe drastic surface reconstruction and iridium migration from the bulk to the surface. Therefore, we establish a correlation between surface activity and surface stability for OER catalysts that is rooted in the formation of surface reactive oxygen.

  4. Dissolved-oxygen and algal conditions in selected locations of the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rinella, F.A.; McKenzie, S.W.; Wille, S.A.

    1981-01-01

    During July and August 1978, the U.S. Geological Survey, in cooperation with the Oregon Department of Enviromental Quality, made three intensive river-quality dissolved-oxygen studies in the upper Willamette River basin. Two studies were made on the upper Willamette River and one was made on the Santiam River, a Willamette River tributary. Nitrification, occurring in both the upper Willamette and South Santiam Rivers, accounted for about 62% and 92% of the DO sag in the rivers, respectively. Rates of nitrification were found to be dependent on ammonia concentrations in the rivers. Periphyton and phytoplankton algal samples were collected on the main stem Willamette River and selected tributaries during August 1978. Diatoms were the dominant group in both the periphyton and phytoplankton samples. The most common diatom genera were Melosira, Stephanodiscus, Cymbella, Achnanthes, and Nitzschia. Comparisons with historical data indicate no significant difference from previous years in the total abundance or diversity of the algae. (USGS)

  5. Leveraging zinc interstitials and oxygen vacancies for sensitive biomolecule detection through selective surface functionalization

    NASA Astrophysics Data System (ADS)

    Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Chaudhry, Shajee; Prasad, Shalini

    2015-03-01

    In this study, functionally engineered EIS technique was implemented to investigate the influence of surface functionalization on sensitivity of biomolecule detection using nanostructured ZnO platform. Organic molecules with thiol and carboxylic functional groups were chosen to control biomolecule immobilization on zinc and oxygen-terminated 2D planar and 1D nanostructured ZnO surfaces. The amount of functionalization and its influence on charge perturbations at the ZnO-electrolyte interface were studied using fluorescence and EIS measurements. We observed the dependence of charge transfer on both the polarity of platform and concentration of cross-linker molecules. Such selectively modified surfaces were used for detection of cortisol, a major stress indicator. Results demonstrated preferential binding of thiol groups to Zn terminations and thus leveraging ZnO interstitials increases the sensitivity of detection over larger dynamic range with detection limit at 10fg/mL.

  6. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    PubMed

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  7. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation

    PubMed Central

    Gagnon, Louis; Smith, Amy F.; Boas, David A.; Devor, Anna; Secomb, Timothy W.; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These “bottom-up” models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans. PMID:27630556

  8. A lithium-oxygen battery based on lithium superoxide.

    PubMed

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J; Jeong, Yo Sub; Park, Jin-Bum; Fang, Zhigang Zak; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A; Amine, Khalil

    2016-01-21

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

  9. Case-Based Learning of Blood Oxygen Transport

    ERIC Educational Resources Information Center

    Cliff, William H.

    2006-01-01

    A case study about carbon monoxide poisoning was used help students gain a greater understanding of the physiology of oxygen transport by the blood. A review of student answers to the case questions showed that students can use the oxygen-hemoglobin dissociation curve to make meaningful determinations of oxygen uptake and delivery. However, the…

  10. Rational Design of Advanced Photosensitizers Based on Orthogonal BODIPY Dimers to Finely Modulate Singlet Oxygen Generation.

    PubMed

    Epelde-Elezcano, Nerea; Palao, Eduardo; Manzano, Hegoi; Prieto-Castañeda, Alejandro; Agarrabeitia, Antonia R; Tabero, Andrea; Villanueva, Angeles; de la Moya, Santiago; López-Arbeloa, Íñigo; Martínez-Martínez, Virginia; Ortiz, María J

    2017-04-06

    The synthesis, photophysical characterization, and modeling of a new library of halogen-free photosensitizers (PS) based on orthogonal boron dipyrromethene (BODIPY) dimers are reported. Herein we establish key structural factors in order to enhance singlet oxygen generation by judiciously choosing the substitution patterns according to key electronic effects and synthetic accessibility factors. The photosensitization mechanism of orthogonal BODIPY dimers is demonstrated to be strongly related to their intrinsic intramolecular charge transfer (ICT) character through the spin-orbit charge-transfer intersystem crossing (SOCT-ISC) mechanism. Thus, singlet oxygen generation can be effectively modulated through the solvent polarity and the presence of electron-donating or withdrawing groups in one of the BODIPY units. The photodynamic therapy (PDT) activity is demonstrated by in vitro experiments, showing that selected photosensitizers are efficiently internalized into HeLa cells, exhibiting low dark toxicity and high phototoxicity, even at low PS concentration (0.05-5×10(-6)  m).

  11. First principles based mean field model for oxygen reduction reaction.

    PubMed

    Jinnouchi, Ryosuke; Kodama, Kensaku; Hatanaka, Tatsuya; Morimoto, Yu

    2011-12-21

    A first principles-based mean field model was developed for the oxygen reduction reaction (ORR) taking account of the coverage- and material-dependent reversible potentials of the elementary steps. This model was applied to the simulation of single crystal surfaces of Pt, Pt alloy and Pt core-shell catalysts under Ar and O(2) atmospheres. The results are consistent with those shown by past experimental and theoretical studies on surface coverages under Ar atmosphere, the shape of the current-voltage curve for the ORR on Pt(111) and the material-dependence of the ORR activity. This model suggests that the oxygen associative pathway including HO(2)(ads) formation is the main pathway on Pt(111), and that the rate determining step (RDS) is the removal step of O(ads) on Pt(111). This RDS is accelerated on several highly active Pt alloys and core-shell surfaces, and this acceleration decreases the reaction intermediate O(ads). The increase in the partial pressure of O(2)(g) increases the surface coverage with O(ads) and OH(ads), and this coverage increase reduces the apparent reaction order with respect to the partial pressure to less than unity. This model shows details on how the reaction pathway, RDS, surface coverages, Tafel slope, reaction order and material-dependent activity are interrelated.

  12. Analyzing sediment dissolved oxygen based on microprofile modeling.

    PubMed

    Wang, Chao; Shan, Baoqing; Zhang, Hong; Rong, Nan

    2014-09-01

    Sediment plays a key role in controlling the oxygen demand of aquatic systems. The reaction rate, penetration depth, and flux across the sediment-water interface (SWI) are important factors in sediment oxygen consumption. However, there were few methods to collect these data until recently. In this study, methods were developed to simulate the oxygen microprofile and calculate the sediment oxygen consumption rate, oxygen penetration depth, and oxygen flux across the SWI. We constructed a sediment oxygen measuring system using an oxygen microelectrode and a control device. The simulation equations were derived from both zero and first-order kinetic models, while the penetration depth and the oxygen flux were calculated from the simulation results. The method was tested on four prepared sediment samples. Decreases in dissolved oxygen in surface sediment were clearly detected by the microelectrode. The modeled data were a good fit for the observed data (R (2) > 0.95), and zero-order kinetics were more suitable than first-order kinetics. The values for penetration depth (1.3-3.9 mm) and oxygen fluxes (0.061-0.114 mg/cm(2)/day) calculated by our methods are comparable with those from other studies.

  13. SELECTIVE EXTRACTION OF OXYGENATES FROM SAVORY AND PEPPERMINT USING SUBCRITICAL WATER. (R825394)

    EPA Science Inventory

    The yields of oxygenated and non-oxygenated flavour and fragrance compounds from savory (Satureja hortensis) and peppermint (Mentha piperita) were compared using subcritical water extraction, supercritical carbon dioxide extraction (SFE) and hydrodistillation. Extraction rates wi...

  14. A Peroxygenase from Chaetomium globosum Catalyzes the Selective Oxygenation of Testosterone

    PubMed Central

    Schmidtke, Kai‐Uwe; Zimmermann, Jörg; Kellner, Harald; Jehmlich, Nico; Ullrich, René; Zänder, Daniel; Hofrichter, Martin; Scheibner, Katrin

    2017-01-01

    Abstract Unspecific peroxygenases (UPO, EC 1.11.2.1) secreted by fungi open an efficient way to selectively oxyfunctionalize diverse organic substrates, including less‐activated hydrocarbons, by transferring peroxide‐borne oxygen. We investigated a cell‐free approach to incorporate epoxy and hydroxyl functionalities directly into the bulky molecule testosterone by a novel unspecific peroxygenase (UPO) that is produced by the ascomycetous fungus Chaetomium globosum in a complex medium rich in carbon and nitrogen. Purification by fast protein liquid chromatography revealed two enzyme fractions with the same molecular mass (36 kDa) and with specific activity of 4.4 to 12 U mg−1. Although the well‐known UPOs of Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) failed to convert testosterone in a comparative study, the UPO of C. globosum (CglUPO) accepted testosterone as substrate and converted it with total turnover number (TTN) of up to 7000 into two oxygenated products: the 4,5‐epoxide of testosterone in β‐configuration and 16α‐hydroxytestosterone. The reaction performed on a 100 mg scale resulted in the formation of about 90 % of the epoxide and 10 % of the hydroxylation product, both of which could be isolated with purities above 96 %. Thus, CglUPO is a promising biocatalyst for the oxyfunctionalization of bulky steroids and it will be a useful tool for the synthesis of pharmaceutically relevant steroidal molecules. PMID:28103392

  15. The influence of selected parameters on the efficiency and economic charactersistics of the oxy-type coal unit with a membrane-cryogenic oxygen separator

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Berdowska, Sylwia

    2016-03-01

    In this paper a 600 MW oxy-type coal unit with a pulverized bed boiler and a membrane-cryogenic oxygen separator and carbon capture installation was analyzed. A membrane-cryogenic oxygen separation installation consists of a membrane module and two cryogenic distillation columns. In this system oxygen is produced with the purity equal to 95%. Installation of carbon capture was based on the physical separation method and allows to reduce the CO2 emission by 90%. In this work the influence of the main parameter of the membrane process - the selectivity coefficient, on the efficiency of the coal unit was presented. The economic analysis with the use of the break-even point method was carried out. The economic calculations were realized in view of the break-even price of electricity depending on a coal unit availability.

  16. Hypolimnetic dissolved-oxygen dynamics within selected White River reservoirs, northern Arkansas-southern Missouri, 1974-2008

    USGS Publications Warehouse

    De Lanois, Jeanne L.; Green, W. Reed

    2011-01-01

    Dissolved oxygen is a critical constituent in reservoirs and lakes because it is essential for metabolism by all aerobic aquatic organisms. In general, hypolimnetic temperature and dissolved-oxygen concentrations vary from summer to summer in reservoirs, more so than in natural lakes, largely in response to the magnitude of flow into and release out of the water body. Because eutrophication is often defined as the acceleration of biological productivity resulting from increased nutrient and organic loading, hypolimnetic oxygen consumption rates or deficits often provide a useful tool in analyzing temporal changes in water quality. This report updates a previous report that evaluated hypolimnetic dissolved-oxygen dynamics for a 21-year record (1974-94) in Beaver, Table Rock, Bull Shoals, and Norfork Lakes, as well as analyzed the record for Greers Ferry Lake. Beginning in 1974, vertical profiles of temperature and dissolved-oxygen concentrations generally were collected monthly from March through December at sites near the dam of each reservoir. The rate of change in the amount of dissolved oxygen present below a given depth at the beginning and end of the thermal stratification period is referred to as the areal hypolimnetic oxygen deficit. Areal hypolimnetic oxygen deficit was normalized for each reservoir based on seasonal flushing rate between April 15 and October 31 to adjust for wet year and dry year variability. Annual cycles in thermal stratification within Beaver, Table Rock, Bull Shoals, Norfork, and Greers Ferry Lakes exhibited typical monomictic (one extended turnover period per year) characteristics. Flow dynamics drive reservoir processes and need to be considered when analyzing areal hypolimnetic oxygen deficit rates. A nonparametric, locally weighted scatter plot smooth line describes the relation between areal hypolimnetic oxygen deficit and seasonal flushing rates, without assuming linearity or normality of the residuals. The results in this report

  17. Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission.

    PubMed

    Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N; De Lacey, Antonio L; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M; Conghaile, Peter Ó; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey

    2014-01-01

    Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.

  18. Self-Powered Wireless Carbohydrate/Oxygen Sensitive Biodevice Based on Radio Signal Transmission

    PubMed Central

    Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N.; De Lacey, Antonio L.; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M.; Conghaile, Peter Ó.; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D.; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey

    2014-01-01

    Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply. PMID:25310190

  19. Water, hydrogen, deuterium, carbon, carbon-13, and oxygen-18 content of selected lunar material

    USGS Publications Warehouse

    Friedman, I.; O'Neil, J.R.; Adami, L.H.; Gleason, J.D.; Hardcastle, K.

    1970-01-01

    The water content of the breccia is 150 to 455 ppm, with a ??D from -580 to -870 per mil. Hydrogen gas content is 40 to 53 ppm with a ??D of -830 to -970 per mil. The CO2 is 290 to 418 ppm with S 13C = + 2.3 to + 5.1 per mil and ??18O = 14.2 to 19.1 per mil. Non-CO2 carbon is 22 to 100 ppm, ??18C = -6.4 to -23.2 per mil. Lunar dust is 810 ppm H2O (D = 80 ppm) and 188 ppm total carbon (??13C = -17.6 per mil). The 18O analyses of whole rocks range from 5.8 to 6.2 per mil. The temperature of crystallization of type B rocks is 1100?? to 1300??C, based on the oxygen isotope fractionation between coexisting plagioclase and ilmenite.

  20. Carbocysteine lysine salt monohydrate (SCMC-LYS) is a selective scavenger of reactive oxygen intermediates (ROIs).

    PubMed

    Brandolini, Laura; Allegretti, Marcello; Berdini, Valerio; Cervellera, Maria Neve; Mascagni, Patrizia; Rinaldi, Matteo; Melillo, Gabriella; Ghezzi, Pietro; Mengozzi, Manuela; Bertini, Riccardo

    2003-01-01

    Carbocysteine lysine salt monohydrate (SCMC-Lys) is a well-known mucoactive drug whose therapeutic efficacy is commonly related to the ability of SCMC-Lys to replace fucomucins by sialomucins. The aim of this study was to determine if SCMC-Lys could exert an anti-oxidant action by scavenging reactive oxygen intermediates (ROIs). Our results show that SCMC-Lys proved effective as a selective scavenger of hypochlorous acid (HOCl) and hydroxyl radical (OH.), this effect being related to the reactivity of the SCMC tioether group. The scavenger activity of SCMC-Lys was observed in free cellular system as well as in activated human polymorphonuclear neutrophils (PMNs). SCMC-Lys scavenger activity on HOCl was paralleled by a powerful protection from HOCl-mediated inactivation of alpha1-antitripsin (alpha1-AT) inhibitor, the main serum protease inhibitor. Production of interleukin-(IL-)8, a major mediator of PMN recruitment in inflammatory diseases, is known to be mediated by intracellular OH. SCMC-Lys significantly reduced IL-8 production on stimulated human peripheral blood mononuclear cells (PBMCs) in the same range of concentrations affecting OH. activity. It is concluded that SCMC-Lys could exert, in addition to its mucoactive capacity, an anti-oxidant action, thus contributing to the therapeutic efficacy of SCMC-Lys.

  1. SELECTIVE OXIDATION OF ALCOHOLS BY MOLECULAR OXYGEN OVER A PD/MGO CATALYST IN THE ABSENCE OF ANY ADDITIVES

    EPA Science Inventory

    Selective oxidation of alcohols to the corresponding carbonyl products using molecular oxygen is achieved over a simple and easily recyclable 1% Pd/MgO impregnated heterogeneous catalyst in the presence of trifluorotoluene. A variety of activated and non-activated alcohols are ef...

  2. Laser Based Information Systems (Selected Pages),

    DTIC Science & Technology

    1986-05-22

    CO lasers . Microwaves, 1967, M* 7. 85. W e I s s P. F., T o h n s o n R. E. Laser tracking wiht automatic reacquisi- tion capability. Appl. Optics, 1968, Vol. 7, M* 6. I it 313 lab- Now - ...DIVISIONCD LASER BASED INFORMATION SYSTEMS (Selected Pages) bDTIC L.Z. Kriksunov EL’, %N16 86 4. I’, Approved for public release; Distribution...HUMAN TRANSLATION FTD-ID(RS)T-0563-85 22 May 1986 MICROFICHE NR: FTD-86-C-O01863 LASER BASED INFORMATION SYSTEMS (Selected Pages) By: L.Z.

  3. Nonflammable organic-base paint for oxygen-rich atmospheres

    NASA Technical Reports Server (NTRS)

    Harwell, R. J.; Key, C. F.; Krupnick, A. C.

    1971-01-01

    New paint formulations, which combine aqueous latex paints with inorganic pigments and additives, produce coatings that are self-extinguishing in pure oxygen at pressures up to twice the partial pressure of atmospheric oxygen. A paint formulation in percent by weight is given and the properties of resultant coatings are discussed.

  4. Simulations of Ground and Space-Based Oxygen Atom Experiments

    NASA Technical Reports Server (NTRS)

    Minton, T. K.; Cline, J. A.; Braunstein, M.

    2002-01-01

    Fast, pulsed atomic oxygen sources are a key tool in ground-based investigations of spacecraft contamination and surface erosion effects. These technically challenging ground-based studies provide a before and after picture of materials under low-earth-orbit (LEO) conditions. It would be of great interest to track in real time the pulsed flux from the source to the surface sample target and beyond in order to characterize the population of atoms and molecules that actually impact the surface and those that make it downstream to any coincident detectors. We have performed simulations in order to provide such detailed descriptions of these ground-based measurements and to provide an assessment of their correspondence to the actual LEO environment. Where possible we also make comparisons to measured fluxes and erosion yields. To perform the calculations we use a detailed description of a measurement beam and surface geometry based on the W, pulsed apparatus at Montana State University. In this system, a short pulse (on the order of 10 microseconds) of an O/O2 beam impacts a flat sample about 40 cm downstream and slightly displaced &om the beam s central axis. Past this target, at the end of the beam axis is a quadrupole mass spectrometer that measures the relative in situ flux of 0102 to give an overall normalized erosion yield. In our simulations we use the Direct Simulation Monte Carlo (DSMC) method, and track individual atoms within the atomic oxygen pulse. DSMC techniques are typically used to model rarefied (few collision) gas-flows which occur at altitudes above approximately 110 kilometers. These techniques are well suited for the conditions here, and multi-collision effects that can only be treated by this or a similar technique are included. This simulation includes collisions with the surface and among gas atoms that have scattered from the surface. The simulation also includes descriptions of the velocity spread and spatial profiles of the O/O2 beam

  5. USDA Database for the Oxygen Radical Capacity (ORAC) of Selected Foods, Release 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Oxygen Radical Absorbance Capacity (ORAC) of foods is thought to be useful in evaluating dietary intake because reactive oxygen species (ROS) have been hypothesized to be related to the aging process and other reports suggest that dietary antioxidants may have beneficial effects on certain chron...

  6. Feature subset selection based on relevance

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Bell, David; Murtagh, Fionn

    In this paper an axiomatic characterisation of feature subset selection is presented. Two axioms are presented: sufficiency axiom—preservation of learning information, and necessity axiom—minimising encoding length. The sufficiency axiom concerns the existing dataset and is derived based on the following understanding: any selected feature subset should be able to describe the training dataset without losing information, i.e. it is consistent with the training dataset. The necessity axiom concerns the predictability and is derived from Occam's razor, which states that the simplest among different alternatives is preferred for prediction. The two axioms are then restated in terms of relevance in a concise form: maximising both the r( X; Y) and r( Y; X) relevance. Based on the relevance characterisation, four feature subset selection algorithms are presented and analysed: one is exhaustive and the remaining three are heuristic. Experimentation is also presented and the results are encouraging. Comparison is also made with some well-known feature subset selection algorithms, in particular, with the built-in feature selection mechanism in C4.5.

  7. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  8. System and method for temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M.

    2017-02-21

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  9. A DFT study of oxygen dissociation on platinum based nanoparticles.

    PubMed

    Jennings, Paul C; Aleksandrov, Hristiyan A; Neyman, Konstantin M; Johnston, Roy L

    2014-01-21

    Density functional theory calculations are performed on 38 and 79 metal atom truncated octahedron clusters to study oxygen dissociation as a model for the initial stage of the oxygen reduction reaction. Pure platinum and alloyed platinum-titanium core-shell systems are investigated. It is found that barrierless oxygen dissociation occurs on the (111) facet of the pure platinum clusters. A barrier of ~0.3 eV is observed on the (100) facet. For the alloyed cluster, dissociation barriers are found on both facets, typically ~0.6 eV. The differences between the two systems are attributed to the ability of oxygen to distort the (111) surface of the pure platinum clusters. We show that flexibility of the platinum shell is crucial in promotion of fast oxygen dissociation. However, the titanium core stabilises the platinum shell upon alloying, resulting in a less easily distortable surface. Therefore, whilst an alloyed platinum-titanium electrocatalyst has certain advantages over the pure platinum electrocatalyst, we suggest alloying with a more weakly interacting metal will be beneficial for facilitating oxygen dissociation.

  10. Hemoglobin-based blood substitutes: oxygen carriers, pressor agents, or oxidants?

    PubMed

    Alayash, A I

    1999-06-01

    Hemoglobin-based blood substitutes are being developed as oxygen-carrying agents for the prevention of ischemic tissue damage and hypovolemic (low blood volume) shock. The ability of cell-free hemoglobin blood substitutes to affect vascular tone through the removal of nitric oxide has also prompted an evaluation of their usefulness for maintaining blood pressure in critically ill patients. Before the clinical potential of these substitutes can be fully realized, however, concerns remain as to the intrinsic toxicity of the hemoglobin molecule, particularly the interference of the heme prosthetic group with the tissue oxidant/antioxidant balance. This review provides some insights into the complex redox chemistry of hemoglobin and places an emphasis on how current knowledge may be exploited both to selectively enhance/suppress specific chemical reaction pathway(s) and to ultimately design safer hemoglobin-based therapeutics.

  11. Modelling of operation of a lithium-air battery with ambient air and oxygen-selective membrane

    NASA Astrophysics Data System (ADS)

    Sahapatsombut, Ukrit; Cheng, Hua; Scott, Keith

    2014-03-01

    A macro-homogeneous model has been developed to evaluate the impact of replacing pure oxygen with ambient air on the performance of a rechargeable non-aqueous Li-air battery. The model exhibits a significant reduction in discharge capacity, e.g. from 1240 to 226 mAh gcarbon-1 at 0.05 mA cm-2 when using ambient air rather than pure oxygen. The model correlates the relationship between the performance and electrolyte decomposition and formation of discharge products (such as Li2O2 and Li2CO3) under ambient air conditions. The model predicts a great benefit of using an oxygen-selective membrane on increasing capacity. The results indicate a good agreement between the experimental data and the model.

  12. Biocathodes reducing oxygen at high potential select biofilms dominated by Ectothiorhodospiraceae populations harboring a specific association of genes.

    PubMed

    Desmond-Le Quéméner, Elie; Rimboud, Mickaël; Bridier, Arnaud; Madigou, Céline; Erable, Benjamin; Bergel, Alain; Bouchez, Théodore

    2016-08-01

    Biocathodes polarized at high potential are promising for enhancing Microbial Fuel Cell performances but the microbes and genes involved remain poorly documented. Here, two sets of five oxygen-reducing biocathodes were formed at two potentials (-0.4V and +0.1V vs. saturated calomel electrode) and analyzed combining electrochemical and metagenomic approaches. Slower start-up but higher current densities were observed at high potential and a distinctive peak increasing over time was recorded on cyclic voltamogramms, suggesting the growth of oxygen reducing microbes. 16S pyrotag sequencing showed the enrichment of two operational taxonomic units (OTUs) affiliated to Ectothiorodospiraceae on high potential electrodes with the best performances. Shotgun metagenome sequencing and a newly developed method for the identification of Taxon Specific Gene Annotations (TSGA) revealed Ectothiorhodospiraceae specific genes possibly involved in electron transfer and in autotrophic growth. These results give interesting insights into the genetic features underlying the selection of efficient oxygen reducing microbes on biocathodes.

  13. Enantiotopos-selective C-H oxygenation catalyzed by a supramolecular ruthenium complex.

    PubMed

    Frost, James R; Huber, Stefan M; Breitenlechner, Stefan; Bannwarth, Christoph; Bach, Thorsten

    2015-01-07

    Spirocyclic oxindoles undergo an enantioselective oxygenation reaction (nine examples; e.r. up to 97:3) upon catalysis by a chiral ruthenium porphyrin complex (1 mol %). The catalyst exhibits a lactam ring, which is responsible for substrate association through hydrogen bonds, and an active ruthenium center, which is in a defined spatial relationship to the oxygenation substrate. DFT calculations illustrate the perfect alignment of the active site with the reactive C-H bond and suggest--in line with the kinetic isotope effect--an oxygen rebound mechanism for the reaction.

  14. Water, hydrogen, deuterium, carbon, carbon-13, and oxygen-18 content of selected lunar material.

    PubMed

    Friedman, I; O'neil, J R; Adami, L H; Gleason, J D; Hardcastle, K

    1970-01-30

    The water content of the breccia is 150 to 455 ppm, with a deltaD from-580 to -870 per mil. Hydrogen gas content is 40 to 53 ppm with a deltaD of -830 to -970 per mil. The CO(2) is 290 to 418 ppm with delta (13)C = + 2.3 to + 5.1 per mil and delta(18)O = 14.2 to 19.1 per mil. Non-CO(2) carbon is 22 to 100 ppm, delta(13)C = -6.4 to -23.2 per mil. Lunar dust is 810 ppm H(2)O (D = 80 ppm) and 188 ppm total carbon(delta(13)C = -17.6 per mil). The (18)O analyses of whole rocks range from 5.8 to 6.2 per mil. The temperature of crystallization of type B rocks is 1100 degrees to 1300 degrees C, based on the oxygen isotope fractionation between coexisting plagioclase and ilmenite.

  15. Control of selectivity in allylic alcohol oxidation on gold surfaces: the role of oxygen adatoms and hydroxyl species.

    PubMed

    Mullen, Gregory M; Zhang, Liang; Evans, Edward J; Yan, Ting; Henkelman, Graeme; Mullins, C Buddie

    2015-02-14

    Gold catalysts display high activity and good selectivity for partial oxidation of a number of alcohol species. In this work, we discuss the effects of oxygen adatoms and surface hydroxyls on the selectivity for oxidation of allylic alcohols (allyl alcohol and crotyl alcohol) on gold surfaces. Utilizing temperature programmed desorption (TPD), reactive molecular beam scattering (RMBS), and density functional theory (DFT) techniques, we provide evidence to suggest that the selectivity displayed towards partial oxidation versus combustion pathways is dependent on the type of oxidant species present on the gold surface. TPD and RMBS results suggest that surface hydroxyls promote partial oxidation of allylic alcohols to their corresponding aldehydes with very high selectivity, while oxygen adatoms promote both partial oxidation and combustion pathways. DFT calculations indicate that oxygen adatoms can react with acrolein to promote the formation of a bidentate surface intermediate, similar to structures that have been shown to decompose to generate combustion products over other transition metal surfaces. Surface hydroxyls do not readily promote such a process. Our results help explain phenomena observed in previous studies and may prove useful in the design of future catalysts for partial oxidation of alcohols.

  16. Impact of oxygen on the coexistence of nitrification, denitrification, and sulfate reduction in oxygen-based membrane aerated biofilm.

    PubMed

    Liu, Hong; Tan, Shuying; Sheng, Zhiya; Yu, Tong; Liu, Yang

    2015-03-01

    Membrane aerated biofilms (MABs) are subject to "counter diffusion" of oxygen and substrates. In a membrane aerated biofilm reactor, gases (e.g., oxygen) diffuse through the membrane into the MAB, and liquid substrates pass from the bulk liquid into the MAB. This behavior can result in a unique biofilm structure in terms of microbial composition, distribution, and community activity in the MAB. Previous studies have shown simultaneous aerobic oxidation, nitrification, and denitrification within a single MAB. Using molecular techniques, we investigated the growth of sulfate-reducing bacteria (SRB) in the oxygen-based MAB attached to a flat sheet membrane. Denaturing gradient gel electrophoresis of the amplified 16S rRNA gene fragments and functional gene fragments specific for ammonia-oxidizing bacteria (amoA), denitrifying bacteria (nirK), and SRB (dsrB) demonstrated the coexistence of nitrifiers, denitrifiers, and SRB communities within a single MAB. The functional diversities of SRB and denitrifiers decreased with an increase in the oxygen concentration in the bulk water of the reactor.

  17. ASRDI oxygen technology survey. Volume 3: Heat transfer and fluid dynamics. Abstracts of selected technical reports and publications

    NASA Technical Reports Server (NTRS)

    Schmidt, A. F. (Editor)

    1972-01-01

    Selected information is presented from an assemblage of reports and publications on heat transfer and fluid dynamics with direct applicability to oxygen systems. For each document cited, an abstract has been prepared together with key words and a listing of most important references found in the document. Additionally, an author index, a subject index, and a key word index have been provided to simplify the retrieval of specific information from this work. In each subject area - e.g., boiling heat transfer - the individual citations are listed alphabetically by first author, with review papers dually noted under the appropriate subject category and under review papers. Of the documents reviewed and evaluated for inclusion in this publication, coverage of existing information directly concerned with oxygen was given primary emphasis. However, work not specifically oxygen-designated but considered applicable to oxygen by the reviewer e.g., a two-phase friction factor correlation derived from nitrogen experiments is occasionally given where no actual oxygen data exist, as an aid to the reader. Approximately 130 abstracts are listed.

  18. Anthracene-based fluorescent nanoprobes for singlet oxygen detection in biological media.

    PubMed

    Bresolí-Obach, Roger; Nos, Jaume; Mora, Margarita; Sagristà, Maria Lluïsa; Ruiz-González, Rubén; Nonell, Santi

    2016-10-15

    We have developed a novel singlet oxygen nanoprobe based on 9,10-anthracenedipropionic acid covalently bound to mesoporous silica nanoparticles. The nanoparticle protects the probe from interactions with proteins, which detract from its ability to detect singlet oxygen. In vitro studies show that the nanoprobe is internalized by cells and is distributed throughout the cytoplasm, thus being capable of detecting intracellularly-generated singlet oxygen.

  19. Stimulator Selection in SSVEP-Based Spatial Selective Attention Study.

    PubMed

    Xie, Songyun; Liu, Chang; Obermayer, Klaus; Zhu, Fangshi; Wang, Linan; Xie, Xinzhou; Wang, Wei

    2016-01-01

    Steady-State Visual Evoked Potentials (SSVEPs) are widely used in spatial selective attention. In this process the two kinds of visual simulators, Light Emitting Diode (LED) and Liquid Crystal Display (LCD), are commonly used to evoke SSVEP. In this paper, the differences of SSVEP caused by these two stimulators in the study of spatial selective attention were investigated. Results indicated that LED could stimulate strong SSVEP component on occipital lobe, and the frequency of evoked SSVEP had high precision and wide range as compared to LCD. Moreover a significant difference between noticed and unnoticed frequencies in spectrum was observed whereas in LCD mode this difference was limited and selectable frequencies were also limited. Our experimental finding suggested that average classification accuracies among all the test subjects in our experiments were 0.938 and 0.853 in LED and LCD mode, respectively. These results indicate that LED simulator is appropriate for evoking the SSVEP for the study of spatial selective attention.

  20. Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air

    SciTech Connect

    Zhang, Jian; Xu, Wu; Liu, Wei

    2010-11-01

    In this paper, nonaqueous-electrolyte-based Li-air batteries with O2-selective immobilized liquid membranes have been developed and operated in ambient air with 20~30% relative humidity(RH). Continuous anhydrous O2 can be supplied from the ambient through a membrane barrier layer at interface of the cathode and ambient air. The membranes allow O2 permeate through while blocking moisture. These membranes were prepared by loading O2-selective liquid fluids such as silicone oils into porous supports such as porous metal sheets and Teflon (PTFE) films. It was found that silicone oil of high viscosity shows better performance. The membrane performance was not affected by the oil loading temperature. The immobilized silicone oil (viscosity 100,000cst) membrane in porous PTFE film enabled the Li-air batteries with Ketjen black carbon air electrodes to operate in ambient air (with 20% RH) for 16.3 days with a specific capacity of 789 mAh/g carbon and a specific energy of 2182 Wh/kg carbon. Its performance is much better than reference battery assembled with the same battery material but by use of a commercial, porous PTFE diffusion membranes as the moisture barrier layer on the cathode, which only had a discharge time of 5.5 days corresponding to a specific capacity of 267 mAh/g carbon and a specific energy of 704 Wh/kg carbon. The Li-air battery with the present selective membrane barrier layer even showed better performance in ambient air operation (20% RH) than the reference battery tested in the dry air box (< 1% RH).

  1. Liquid crystal size selection of large-size graphene oxide for size-dependent N-doping and oxygen reduction catalysis.

    PubMed

    Lee, Kyung Eun; Kim, Ji Eun; Maiti, Uday Narayan; Lim, Joonwon; Hwang, Jin Ok; Shim, Jongwon; Oh, Jung Jae; Yun, Taeyeong; Kim, Sang Ouk

    2014-09-23

    Graphene oxide (GO) is aqueous-dispersible oxygenated graphene, which shows colloidal discotic liquid crystallinity. Many properties of GO-based materials, including electrical conductivity and mechanical properties, are limited by the small flake size of GO. Unfortunately, typical sonochemical exfoliation of GO from graphite generally leads to a broad size and shape distribution. Here, we introduce a facile size selection of large-size GO exploiting liquid crystallinity and investigate the size-dependent N-doping and oxygen reduction catalysis. In the biphasic GO dispersion where both isotropic and liquid crystalline phases are equilibrated, large-size GO flakes (>20 μm) are spontaneously concentrated within the liquid crystalline phase. N-Doping and reduction of the size-selected GO exhibit that N-dopant type is highly dependent on GO flake size. Large-size GO demonstrates quaternary dominant N-doping and the lowest onset potential (-0.08 V) for oxygen reduction catalysis, signifying that quaternary N-dopants serve as principal catalytic sites in N-doped graphene.

  2. Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities.

    PubMed

    Zheng, Yu; Bachilo, Sergei M; Weisman, R Bruce

    2017-04-13

    The selective interactions between short oligomers of single-stranded DNA (ssDNA) and specific structures of single-walled carbon nanotubes have been exploited in powerful methods for nanotube sorting. We report here that nanotubes coated with ssDNA also display selective interactions through the selective quenching of nanotube fluorescence by dissolved oxygen. In aqueous solutions equilibrated under 1 atm of O2, emission intensity from semiconducting nanotubes is reduced by between 9 and 40%, varying with the combination of ssDNA sequence and nanotube structure. This quenching reverses promptly and completely on removal of dissolved O2 and may be due to physisorption on nanotube surfaces. Fluorescence quenching offers a simple, nondestructive approach for studying the structure-selective interactions of ssDNA with single-walled carbon nanotubes and identifying recognition sequences.

  3. Fast, Ultrasensitive Detection of Reactive Oxygen Species Using a Carbon Nanotube Based-Electrocatalytic Intracellular Sensor

    PubMed Central

    2015-01-01

    Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular “pulse” of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection. PMID:26438964

  4. Role of aluminum as an oxygen-scavenger in zirconium based bulk metallic glasses

    SciTech Connect

    Heinrich, Jochen; Busch, Ralf; Mueller, Frank; Grandthyll, Samuel; Huefner, Stefan

    2012-02-13

    In order to investigate a way to diminish the impact of oxygen onto the critical cooling rate of Zr-based alloys, the bonding chemistry of the elements in Zr-Cu-Ni-Al-Nb-Si bulk metallic glasses with different oxygen contents is studied by x-ray photoelectron spectroscopy. Complementary undercooling experiments lead to continuous-cooling-transformation diagrams for the studied alloys. The experimental results demonstrate that Al not only acts as a scavenger for both absorbed and intrinsic oxygen but the dissolution of its oxide on atomic length scales refrains from heterogeneous nucleation. The combined effect is an enhancement of oxygen tolerance in the investigated alloy.

  5. Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates (Final Report, 2009)

    EPA Science Inventory

    EPA announced the availability of the final report, Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates. This report provides a revised approach for calculating an individual's ventilation rate directly from their oxygen c...

  6. Covariance based outlier detection with feature selection.

    PubMed

    Zwilling, Chris E; Wang, Michelle Y

    2016-08-01

    The present covariance based outlier detection algorithm selects from a candidate set of feature vectors that are best at identifying outliers. Features extracted from biomedical and health informatics data can be more informative in disease assessment and there are no restrictions on the nature and number of features that can be tested. But an important challenge for an algorithm operating on a set of features is for it to winnow the effective features from the ineffective ones. The powerful algorithm described in this paper leverages covariance information from the time series data to identify features with the highest sensitivity for outlier identification. Empirical results demonstrate the efficacy of the method.

  7. Selective isolation of nitrogen bases from petroleum

    SciTech Connect

    Schmitter, J.M.; Ignatiadis, I.; Arpino, P.; Guiochon, G.

    1983-09-01

    A method has been designed for the rapid separation of nitrogen bases from petroleum by trapping their quaternary ammonium salts on hydrochloric acid treated silica. A chromatographic column filled with this adsorbent and equipped with a solvent recycling system allows a selective and quantitative extraction of basic compounds from large amounts (>100 g) of crude oil. The procedure has been tested with reference compounds, a coker gas-oil, and a heavy biodegraded crude and applied to 15 different oil samples. 22 references, 3 figures, 4 tables.

  8. Selection of Environmentally Friendly Solvents for the Extravehicular Mobility Unit Secondary Oxygen Pack Cold Trap Testing

    NASA Technical Reports Server (NTRS)

    Steele, John; Chullen, Cinda; Morenz, Jesse; Stephenson, Curtis

    2010-01-01

    Freon-113(TradeMark) has been used as a chemistry lab sampling solvent at NASA/JSC for EMU (extravehicular Mobility Unit) SOP (Secondary Oxygen Pack) oxygen testing Cold Traps utilized at the USA (United Space Alliance) Houston facility. Similar testing has occurred at the HSWL (Hamilton Sundstrand Windsor Locks) facility. A NASA Executive Order bans the procurement of all ODS (ozone depleting substances), including Freon-113 by the end of 2009. In order to comply with NASA direction, HSWL began evaluating viable solvents to replace Freon-113 . The study and testing effort to find Freon-113 replacements used for Cold Trap sampling is the subject of this paper. Test results have shown HFE-7100 (a 3M fluorinated ether) to be an adequate replacement for Freon-113 as a solvent to remove and measure the non-volatile residue collected in a Cold Trap during oxygen testing. Furthermore, S-316 (a Horiba Instruments Inc. high molecular weight, non-ODS chlorofluorocarbon) was found to be an adequate replacement for Freon-113 as a solvent to reconstitute non-volatile residue removed from a Cold Trap during oxygen testing for subsequent HC (hydrocarbon) analysis via FTIR (Fourier Transform Infrared Spectroscopy).

  9. SYSTEM DESIGN AND ANALYSIS FOR CONCEPTUAL DESIGN OF OXYGEN-BASED PC BOILER

    SciTech Connect

    Zhen Fan; Andrew Seltzer

    2003-11-01

    The objective of the system design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the PC boiler plant by maximizing system efficiency. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 Mw plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.1% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 44% of the air-fired reference case. Compared to other CO{sub 2} sequestration technologies, the O{sub 2}-fired PC is substantially better than both natural gas combined cycles and post CO{sub 2} removal PCs and is slightly better than integrated gasification combined cycles.

  10. Oxygenates for Advanced Petroleum-Based Diesel Fuels

    DTIC Science & Technology

    2001-02-01

    Blends,” 219th American Chemical Society Meeting , San Francisco, CA, March 26-30, 2000. 5. Naegeli, D.W. and Moses, C.A., “Effects of Fuel...used to optimize engine performance and lower exhaust emissions. Nevertheless, the diesel engine has yet to meet the very stringent emissions...diesel engine designed to meet 1994 emission standards using a catalytic converter. The tests showed that oxygenates reduced PM emissions by 6 to 7

  11. Diagnosis of Compartment Syndrome Based on Tissue Oxygenation

    DTIC Science & Technology

    2015-06-01

    tissue oxygenation and compartment pressure following tibia fracture, Injury 2013, 44:1076- 1080 8. Cathcart CC, Shuler MS, Freedman BA, Reno LR...Injury, Int. J. Care Injured 44 (2013) 1076– 1080 1077percentage of postoperative CP measurements would meet established warning criteria for compartment...Care Injured 44 (2013) 1076– 1080 1079in one patient. Correlations between PmO2 and CP excluding the first 3 h resulted in Pearson correlation

  12. Stimulator Selection in SSVEP-Based Spatial Selective Attention Study

    PubMed Central

    Liu, Chang; Zhu, Fangshi; Wang, Linan; Xie, Xinzhou; Wang, Wei

    2016-01-01

    Steady-State Visual Evoked Potentials (SSVEPs) are widely used in spatial selective attention. In this process the two kinds of visual simulators, Light Emitting Diode (LED) and Liquid Crystal Display (LCD), are commonly used to evoke SSVEP. In this paper, the differences of SSVEP caused by these two stimulators in the study of spatial selective attention were investigated. Results indicated that LED could stimulate strong SSVEP component on occipital lobe, and the frequency of evoked SSVEP had high precision and wide range as compared to LCD. Moreover a significant difference between noticed and unnoticed frequencies in spectrum was observed whereas in LCD mode this difference was limited and selectable frequencies were also limited. Our experimental finding suggested that average classification accuracies among all the test subjects in our experiments were 0.938 and 0.853 in LED and LCD mode, respectively. These results indicate that LED simulator is appropriate for evoking the SSVEP for the study of spatial selective attention. PMID:28044073

  13. Caterpillars selected for large body size and short development time are more susceptible to oxygen-related stress

    PubMed Central

    Harrison, Jon F; Cease, Arianne J; VandenBrooks, John M; Albert, Todd; Davidowitz, Goggy

    2013-01-01

    Recent studies suggest that higher growth rates may be associated with reduced capacities for stress tolerance and increased accumulated damage due to reactive oxygen species. We tested the response of Manduca sexta (Sphingidae) lines selected for large or small body size and short development time to hypoxia (10 kPa) and hyperoxia (25, 33, and 40 kPa); both hypoxia and hyperoxia reduce reproduction and oxygen levels over 33 kPa have been shown to increase oxidative damage in insects. Under normoxic (21 kPa) conditions, individuals from the large-selected (big-fast) line were larger and had faster growth rates, slightly longer developmental times, and reduced survival rates compared to individuals from a line selected for small size (small-fast) or an unselected control line. Individuals from the big-fast line exhibited greater negative responses to hyperoxia with greater reductions in juvenile and adult mass, growth rate, and survival than the other two lines. Hypoxia generally negatively affected survival and growth/size, but the lines responded similarly. These results are mostly consistent with the hypothesis that simultaneous acquisition of large body sizes and short development times leads to reduced capacities for coping with stressful conditions including oxidative damage. This result is of particular importance in that natural selection tends to decrease development time and increase body size. PMID:23762517

  14. Selectivity tailoring of Pd/CNTs in phenol hydrogenation by surface modification: Role of Csbnd O oxygen species

    NASA Astrophysics Data System (ADS)

    Xu, Tieyong; Zhang, Qunfeng; Cen, Jie; Xiang, Yizhi; Li, Xiaonian

    2015-01-01

    The effect of different types of oxygen containing groups (OCGs) on the catalytic performance was investigated in this paper by performing the selective hydrogenation of phenol in aqueous phase over the carbon supported Pd catalysts. The type of OCGs on carbon nanotubes (CNTs) was regulated by pretreating it with HNO3, or HNO3 followed by hydrothermal or thermal oxidation treatment. A distinct difference in the amount of phenolic/ether groups (Csbnd O) was observed for CNTs treated by different methods, while the difference in the amount of carbonyl groups (Cdbnd O) and carboxylic groups was much smaller. The results showed that the selectivity to cyclohexanone decreased with the increase of Csbnd O amount on carbon surface. Csbnd O groups played an important role in adsorption/desorption behavior of phenol/cyclohexanone and was considered to be responsible for the dramatic selectivity difference.

  15. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species

    PubMed Central

    Asghar, Waseem; Velasco, Vanessa; Kingsley, James L.; Shoukat, Muhammad S.; Shafiee, Hadi; Anchan, Raymond M.; Mutter, George L.; Tüzel, Erkan; Demirci, Utkan

    2014-01-01

    Fertilization and reproduction are central to the survival and propagation of a species. Couples who cannot reproduce naturally have to undergo in vitro clinical procedures. An integral part of these clinical procedures includes isolation of healthy sperm from raw semen. Existing sperm sorting methods are not efficient and isolate sperm having high DNA fragmentation and reactive oxygen species, and suffer from multiple manual steps and variations between embryologists. Inspired by in vivo natural sperm sorting mechanisms where vaginal mucus becomes less viscous to form microchannels to guide sperm towards egg, we present a chip that efficiently sorts healthy, motile and morphologically normal sperm without centrifugation. Higher percentage of sorted sperm show significantly lesser reactive oxygen species and DNA fragmentation than the conventional swim-up method. The presented chip is an easy-to-use high throughput sperm sorter that provides standardized sperm sorting assay with less reliance on embryologist’s skills, facilitating reliable operational steps. PMID:24753434

  16. Quantifying oxygen in paper-based cell cultures with luminescent thin film sensors.

    PubMed

    Boyce, Matthew W; Kenney, Rachael M; Truong, Andrew S; Lockett, Matthew R

    2016-04-01

    Paper-based scaffolds are an attractive material for generating 3D tissue-like cultures because paper is readily available and does not require specialized equipment to pattern, cut, or use. By controlling the exchange of fresh culture medium with the paper-based scaffolds, we can engineer diffusion-dominated environments similar to those found in spheroids or solid tumors. Oxygen tension directly regulates cellular phenotype and invasiveness through hypoxia-inducible transcription factors and also has chemotactic properties. To date, gradients of oxygen generated in the paper-based cultures have relied on cellular response-based readouts. In this work, we prepared a luminescent thin film capable of quantifying oxygen tensions in apposed cell-containing paper-based scaffolds. The oxygen sensors, which are polystyrene films containing a Pd(II) tetrakis(pentafluorophenyl)porphyrin dye, are photostable, stable in culture conditions, and not cytotoxic. They have a linear response for oxygen tensions ranging from 0 to 160 mmHg O2, and a Stern-Volmer constant (K sv) of 0.239 ± 0.003 mmHg O2 (-1). We used these oxygen-sensing films to measure the spatial and temporal changes in oxygen tension for paper-based cultures containing a breast cancer line that was engineered to constitutively express a fluorescent protein. By acquiring images of the oxygen-sensing film and the fluorescently labeled cells, we were able to approximate the oxygen consumption rates of the cells in our cultures.

  17. Fluorophore-based sensor for oxygen radicals in processing plasmas

    SciTech Connect

    Choudhury, Faraz A.; Shohet, J. Leon; Sabat, Grzegorz; Sussman, Michael R.; Nishi, Yoshio

    2015-11-15

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.

  18. Alkaline static feed electrolyzer based oxygen generation system

    NASA Technical Reports Server (NTRS)

    Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.

    1988-01-01

    In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.

  19. Selenium-platinum coordination compounds as novel anticancer drugs: selectively killing cancer cells via a reactive oxygen species (ROS)-mediated apoptosis route.

    PubMed

    Zeng, Lingwu; Li, Yang; Li, Tianyu; Cao, Wei; Yi, Yu; Geng, Weijia; Sun, Zhiwei; Xu, Huaping

    2014-08-01

    We report the preparation of selenium-containing platinum-based anticancer drug EG-Se/Pt. EG-Se/Pt was obtained from the coordination of selenium-containing molecules (EG-Se) with cisplatin (CDDP). The structure of EG-Se/Pt was characterized by (1) H and (77) Se NMR spectroscopy, XPS, ESI-MS, and MALDI-TOF. In aqueous solution, EG-Se/Pt self-assembles to form spherical aggregates. EG-Se/Pt shows enhanced stability against dilution and high salt concentration compared with EG-Se. EG-Se/Pt induces cell apoptosis via reactive oxygen species (ROS), which leads to high selectivity between cancer cells and normal cells in cytotoxicity assays. More importantly, EG-Se/Pt effectively inhibits tumor growth in vivo in tumor-bearing mice. It is anticipated that tuning the ROS level through the assembly of selenium-containing molecules can be a general method to realize anticancer selectivity.

  20. Pathway and Surface Mechanism Studies of 1,3-butadiene Selective Oxidation Over Vanadium-Molybdenum-Oxygen Catalysts

    SciTech Connect

    Schroeder, William David

    2001-01-01

    The partial oxidation of 1,3-butadiene has been investigated over VMoO catalysts synthesized by sol-gel techniques. Surface areas were 9-14 m2/g, and compositions were within the solid solution regime, i.e. below 15.0 mol % MoO3/(MoO3 + V2O5). Laser Raman Spectroscopy and XRD data indicated that solid solutions were formed, and pre- and post-reaction XPS data indicated that catalyst surfaces contained some V+4 and were further reduced in 1,3-butadiene oxidation. A reaction pathway for 1,3-butadiene partial oxidation to maleic anhydride was shown to involve intermediates such as 3,4-epoxy-1-butene, crotonaldehyde, furan, and 2-butene-1,4-dial. The addition of water to the reaction stream substantially increased catalyst activity and improved selectivity to crotonaldehyde and furan at specific reaction temperatures. At higher water addition concentrations, furan selectivity increased from 12% to over 25%. The catalytic effects of water addition were related to competitive adsorption with various V2O5-based surface sites, including the vanadyl V=O, corner sharing V-O-V and edge sharing V-O oxygen. Higher levels of water addition were proposed to impose acidic character by dissociative adsorption. In addition, a novel combinatorial synthesis technique for VMoO was used to investigate the phase transitions of V2O5, solid solutions of Mo in V2O5, V9Mo6O40, and other reduced VMoO compounds, characterized by laser Raman spectroscopy. The natural composition gradient imposed by the sputter deposition apparatus was used to create VMoO arrays containing 225 samples ranging from 7.0-42 mol% MoO3/(V2O5 + MoO3), determined by EDS analysis.

  1. Sediments, nutrients, and oxygen-demanding substances in the Minnesota River: Selected water-quality data, 1989-90

    USGS Publications Warehouse

    Payne, G.A.

    1991-01-01

    This report presents selected physical and chemical data collected by the U.S. Geological Survey for the Minnesota River Assessment Project, a four-year interagency study coordinated by the Minnesota Pollution Control Agency. Water samples were collected at 12 sites on the Minnesota River and at the mouths of 10 major tributary streams located from the outlet of Lac qui Parle Reservoir to Henderson, Minnesota. Sampling from August 1989 through September 1990 resulted in collection of 171 stream-water samples. This report includes data on streamflow, total suspended solids, nitrite plus nitrate nitrogen, total phosphorus, biochemical oxygen demand, and chlorophyll a.

  2. Quantitative inactivation-mechanisms of P. digitatum and A. niger spores based on atomic oxygen dose

    NASA Astrophysics Data System (ADS)

    Ito, Masafumi; Hashizume, Hiroshi; Ohta, Takayuki; Hori, Masaru

    2014-10-01

    We have investigated inactivation mechanisms of Penicillium digitatum and Asperguills niger spores using atmospheric-pressure radical source quantitatively. The radical source was specially developed for supplying only neutral radicals without charged species and UV-light emissions. Reactive oxygen radical densities such as grand-state oxygen atoms, excited-state oxygen molecules and ozone were measured using VUV and UV absorption spectroscopies. The measurements and the treatments of spores were carried out in an Ar-purged chamber for eliminating the influences of OH, NOx and so on. The results revealed that the inactivation of spores can be explained by atomic-oxygen dose under the conditions employing neutral ROS irradiations. On the basis of the dose, we have observed the changes of intracellular organelles and membrane functions using TEM, SEM and confocal- laser fluorescent microscopy. From these results, we discuss the detail inactivation-mechanisms quantitatively based on atomic-oxygen dose.

  3. Flexible lithium–oxygen battery based on a recoverable cathode

    PubMed Central

    Liu, Qing-Chao; Xu, Ji-Jing; Xu, Dan; Zhang, Xin-Bo

    2015-01-01

    Although flexible power sources are crucial for the realization next-generation flexible electronics, their application in such devices is hindered by their low theoretical energy density. Rechargeable lithium–oxygen (Li–O2) batteries can provide extremely high specific energies, while the conventional Li–O2 battery is bulky, inflexible and limited by the absence of effective components and an adjustable cell configuration. Here we show that a flexible Li–O2 battery can be fabricated using unique TiO2 nanowire arrays grown onto carbon textiles (NAs/CT) as a free-standing cathode and that superior electrochemical performances can be obtained even under stringent bending and twisting conditions. Furthermore, the TiO2 NAs/CT cathode features excellent recoverability, which significantly extends the cycle life of the Li–O2 battery and lowers its life cycle cost. PMID:26235205

  4. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    DOEpatents

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  5. Hemoglobin-based oxygen carrier and convection enhanced oxygen transport in a hollow fiber bioreactor.

    PubMed

    Chen, Guo; Palmer, Andre F

    2009-04-15

    A mathematical model was developed to study O(2) transport in a convection enhanced hepatic hollow fiber (HF) bioreactor, with hemoglobin-based O(2) carriers (HBOCs) present in the flowing cell culture media stream of the HF lumen. In this study, four HBOCs were evaluated: PEG-conjugated human hemoglobin (MP4), human hemoglobin (hHb), bovine hemoglobin (BvHb) and polymerized bovine hemoglobin (PolyBvHb). In addition, two types of convective flow in the HF extra capillary space (ECS) were considered in this study. Starling flow naturally occurs when both of the ECS ports are closed. If one of the ECS ports is open, forced convective flow through the ECS will occur due to the imposed pressure difference between the lumen and ECS. This type of flow is referred to as cross-flow in this work, since some of the fluid entering the HF lumen will pass across the HF membrane and exit via the open ECS port. In this work, we can predict the dissolved O(2) concentration profile as well as the O(2) transport flux in an individual HF of the bioreactor by solving the coupled momentum and mass transport equations. Our results show that supplementation of the cell culture media with HBOCs can dramatically enhance O(2) transport to the ECS (containing hepatocytes) and lead to the formation of an in vivo-like O(2) spectrum for the optimal culture of hepatocytes. However, both Starling flow and cross-flow have a very limited effect on O(2) transport in the ECS. Taken together, this work represents a novel predictive tool that can be used to design or analyze HF bioreactors that expose cultured cells to defined overall concentrations and gradients of O(2).

  6. Determination of the relative resistance to ignition of selected turbopump materials in high-pressure, high-temperature, oxygen environments, volume 1

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Benz, Frank J.

    1986-01-01

    Advances in the design of the liquid oxygen, liquid hydrogen engines for the Space Transportation System call for the use of warm, high-pressure oxygen as the driving gas in the liquid oxygen turbopump. The NASA Lewis Research Center requested the NASA White Sands Test Facility (WSTF) to design a test program to determine the relative resistance to ignition of nine selected turbopump materials: Hastelloy X, Inconel 600, Invar 36, Monel K-500, nickel 200, silicon carbide, stainless steel 316, and zirconium copper. The materials were subjected to particle impact and to frictional heating in high-pressure oxygen.

  7. Poly(decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples.

    PubMed

    Cao, Youfu; Lee Koo, Yong-Eun; Kopelman, Raoul

    2004-08-01

    150-250 nm Poly(decyl methacrylate)(PDMA) fluorescent ratiometric nanosensors for dissolved oxygen have been developed. Platinum octaethylporphine ketone (PtOEPK), the oxygen-sensitive dye, and octaethylporphyrin (OEP), the oxygen-insensitive dye, have been incorporated into PDMA nanoparticles to make the sensors ratiometric. Based on the corresponding Stern-Volmer plot, these nanosensors exhibit almost complete linearity over the whole range of dissolved molecular oxygen from 0 to 42.5 ppm (deoxygenated to pure oxygen-bubbled water). The overall quenching response is up to 97.5%, the best so far for all dissolved oxygen optical sensors. These PEBBLE nanosensors also show very good reversibility and stability to leaching and photobleaching, as well as very short response times and no perturbation by proteins. In human plasma they demonstrate a robust oxygen sensing capability, little affected by light scattering and autofluorescence. Potential applications include intracellular oxygen imaging and microresolved pressure profiles in biological and other heterogenous environments.

  8. Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction

    SciTech Connect

    Hernandez-Fernandez, Patricia; Masini, Federico; McCarthy, David N.; Strebel, Christian E.; Friebel, Daniel; Deiana, Davide; Malacrida, Paolo; Nierhoff, Anders; Bodin, Anders; Wise, Anna M.; Nielsen, Jane H.; Hansen, Thomas W.; Nilsson, Anders; Stephens, Ifan E. L.; Chorkendorff, Ib

    2014-07-13

    Low-temperature fuel cells are limited by the oxygen reduction reaction, and their widespread implementation in automotive vehicles is hindered by cost of platinum currently the best-known catalyst for reducing oxygen in terms of both activity and stability. One solution is to decrease the amount of platinum required, for example by alloying, but without detrimentally affecting its properties. The alloy PtxY is known to be active and stable, but its synthesis in nanoparticulate form has proved challenging, which limits its further study. Herein we demonstrate the synthesis, characterization and catalyst testing of model PtxY nanoparticles prepared through the gas-aggregation technique. The catalysts reported here are highly active, with a mass activity of up to 3.05 A mgPt-1 at 0.9 V versus a reversible hydrogen electrode. Using a variety of characterization techniques, we show that the enhanced activity of PtxY over platinum results exclusively from a compressive strain exerted on the platinum surface atoms by the alloy core.

  9. Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction.

    PubMed

    Hernandez-Fernandez, Patricia; Masini, Federico; McCarthy, David N; Strebel, Christian E; Friebel, Daniel; Deiana, Davide; Malacrida, Paolo; Nierhoff, Anders; Bodin, Anders; Wise, Anna M; Nielsen, Jane H; Hansen, Thomas W; Nilsson, Anders; Stephens, Ifan E L; Chorkendorff, Ib

    2014-08-01

    Low-temperature fuel cells are limited by the oxygen reduction reaction, and their widespread implementation in automotive vehicles is hindered by the cost of platinum, currently the best-known catalyst for reducing oxygen in terms of both activity and stability. One solution is to decrease the amount of platinum required, for example by alloying, but without detrimentally affecting its properties. The alloy PtxY is known to be active and stable, but its synthesis in nanoparticulate form has proved challenging, which limits its further study. Herein we demonstrate the synthesis, characterization and catalyst testing of model PtxY nanoparticles prepared through the gas-aggregation technique. The catalysts reported here are highly active, with a mass activity of up to 3.05 A mgPt(-1) at 0.9 V versus a reversible hydrogen electrode. Using a variety of characterization techniques, we show that the enhanced activity of PtxY over elemental platinum results exclusively from a compressive strain exerted on the platinum surface atoms by the alloy core.

  10. State-based surveillance for selected hemoglobinopathies

    PubMed Central

    Hulihan, Mary M.; Feuchtbaum, Lisa; Jordan, Lanetta; Kirby, Russell S.; Snyder, Angela; Young, William; Greene, Yvonne; Telfair, Joseph; Wang, Ying; Cramer, William; Werner, Ellen M.; Kenney, Kristy; Creary, Melissa; Grant, Althea M.

    2015-01-01

    Purpose The lack of an ongoing surveillance system for hemoglobinopathies in the United States impedes the ability of public health organizations to identify individuals with these conditions, monitor their health-care utilization and clinical outcomes, and understand the effect these conditions have on the health-care system. This article describes the results of a pilot program that supported the development of the infrastructure and data collection methods for a state-based surveillance system for selected hemoglobinopathies. Methods The system was designed to identify and gather information on all people living with a hemoglobinopathy diagnosis (sickle cell diseases or thalassemias) in the participating states during 2004–2008. Novel, three-level case definitions were developed, and multiple data sets were used to collect information. Results In total, 31,144 individuals who had a hemoglobinopathy diagnosis during the study period were identified in California; 39,633 in Florida; 20,815 in Georgia; 12,680 in Michigan; 34,853 in New York, and 8,696 in North Carolina. Conclusion This approach provides a possible model for the development of state-based hemoglobinopathy surveillance systems. PMID:24991875

  11. Medium effects are as important as catalyst design for selectivity in electrocatalytic oxygen reduction by iron-porphyrin complexes.

    PubMed

    Rigsby, Matthew L; Wasylenko, Derek J; Pegis, Michael L; Mayer, James M

    2015-04-08

    Several substituted iron-porphyrin complexes were evaluated for oxygen reduction reaction (ORR) electrocatalysis in different homogeneous and heterogeneous media. The selectivity for four-electron reduction to H2O versus two-electron reduction to H2O2 varies substantially from one medium to another for a given catalyst. In many cases, the influence of the medium in which the catalyst is evaluated has a larger effect on the observed selectivity than the factors attributable to chemical modification of the catalyst. For instance, introduction of potential proton relays has variable effects depending on the catalyst medium. Thus, comparisons of selectivity results from supported and soluble molecular ORR electrocatalysts must be interpreted with caution, as selectivity is a property not only of the catalyst, but also of the larger mesoscale environment beyond the catalyst. Still, in all the direct pairwise comparisons in the same medium, the catalysts with potential proton relays have similar or better selectivity for the preferred 4e(-) path.

  12. Computational prediction of alpha/beta selectivities in the pyrolysis of oxygen-substituted phenethyl phenyl ethers.

    PubMed

    Beste, Ariana; Buchanan, A C; Harrison, Robert J

    2008-06-05

    Phenethyl phenyl ether (PPE; PhCH 2CH 2OPh) is the simplest model for the most common beta-O-4 linkage in lignin. Previously, we developed a computational scheme to calculate the alpha/beta product selectivity in the pyrolysis of PPE by systematically exploiting error cancellation in the computation of relative rate constants. The alpha/beta selectivity is defined as the selectivity between the competitive hydrogen abstraction reaction paths on the alpha- and beta-carbons of PPE. We use density functional theory and employ transition state theory where we include diagonal anharmonic correction in the vibrational partition functions for low frequency modes for which a semiclassical expression is used. In this work we investigate the effect of oxygen substituents (hydroxy, methoxy) in the para position on the phenethyl ring of PPE on the alpha/beta selectivities. The total alpha/beta selectivity increases when substituents are introduced and is larger for the methoxy than the hydroxy substituent. The strongest effect of the substituents is observed for the alpha-pathway of the hydrogen abstraction by the phenoxyl chain carrying radical for which the rate increases. For the beta pathway and the abstraction by the R-benzyl radical (R = OH,OCH 3) the rate decreases with the introduction of the substituents. These findings are compared with results from recent experimental studies.

  13. Intrinsic and metal-doped gallium oxide based high-temperature oxygen sensors for combustion processes

    NASA Astrophysics Data System (ADS)

    Rubio, Ernesto Javier

    Currently, there is enormous interest in research, development and optimization of the combustion processes for energy harvesting. Recent statistical and economic analyses estimated that by improving the coal-based firing/combustion processes in the power plants, savings up to $450-500 million yearly can be achieved. Advanced sensors and controls capable of withstanding extreme environments such as high temperatures, highly corrosive atmospheres, and high pressures are critical to such efficiency enhancement and cost savings. For instance, optimization of the combustion processes in power generation systems can be achieved by sensing, monitoring and control of oxygen, which is a measure of the completeness of the process and can lead to enhanced efficiency and reduced greenhouse gas emissions. However, despite the fact that there exists a very high demand for advanced sensors, the existing technologies suffer from poor 'response and recovery times' and 'long-term stability.' Motivated by the aforementioned technological challenges, the present work was focused on high-temperature (≥700 °C) oxygen sensors for application in power generation systems. The objective of the present work is to investigate nanostructured gallium oxide (2O3) based sensors for oxygen sensing, where we propose to conduct in-depth exploration of the role of refractory metal (tungsten, W, in this case) doping into 2O 3 to enhance the sensitivity, selectivity, stability ("3S" criteria) and reliability of such sensors while keeping cost economical. Tungsten (W) doped gallium oxide (2O3) thin films were deposited via rf-magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying the sputtering power applied to the W-target in order to achieve variable W content into 2O3 films while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-grown and post-annealed W-doped 2O3

  14. The design of dextran-based hypoxia-inducible hydrogels via in situ oxygen consuming reaction

    PubMed Central

    Park, Kyung Min; Blatchley, Michael R.; Gerecht, Sharon

    2014-01-01

    Hypoxia plays a critical role in development and the wound healing process, as well as a number of pathological conditions. Here, we report dextran–based hypoxia–inducible (Dex–HI) hydrogels formed with in situ oxygen consumption via laccase–medicated reaction. Oxygen levels and gradients were accurately predicted by mathematical simulation. We demonstrate that Dex–HI hydrogels provide prolonged hypoxic conditions up to 12 h. The Dex–HI hydrogel offers an innovative approach to delineate not only the mechanism by which hypoxia regulates cellular responses, but may facilitate the discovery of new pathways involved in the generation of hypoxic and oxygen gradient environments. PMID:25303104

  15. Protocol for Atomic Oxygen Testing of Materials in Ground-Based Facilities. No. 2

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.

    1995-01-01

    A second version of standard guidelines is proposed for improving materials testing in ground-based atomic oxygen environments for the purpose of predicting the durability of the tested materials in low Earth orbit (LEO). Accompanying these guidelines are background information and notes about testing. Both the guidelines and the additional information are intended to aid users who wish to evaluate the potential hazard of atomic oxygen in LEO to a candidate space component without actually flying the component in space, and to provide a framework for more consistent atomic oxygen testing in the future.

  16. Systematic study on the discharge product of Pt-based lithium oxygen batteries

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Xing, Yi; Bi, Xuanxuan; Yuan, Yifei; Wang, Hsien-Hau; Shahbazian-Yassar, Reza; Li, Li; Chen, Renjie; Lu, Jun; Amine, Khalil

    2016-11-01

    Lithium oxygen batteries have attracted much attention due to the high theoretical energy density. However, they suffer a large overpotential during oxygen evolution process and thus catalysts play a vital role in the reaction. Here, we systematically explored the influence of Pt-based nanoparticle catalysts on the discharge product Li2O2. Because of the superior electrical conductivity and the strong binding with oxygen, Pt-based nanoparticles serve as active sites which are favorable for the growth of toroidal Li2O2. We also found that the content and composition of Pt-based nanoparticle catalysts exert a significant influence on the electrochemical performance of lithium oxygen batteries. The discharge products are composed of crystalline Li2O2 and oxygen-rich LiO2 characterized by high-energy X-ray diffraction and Raman. Atomic force microscopy further provides detailed information of the particle size and surface roughness. The loading of Pt catalysts determines the phase and size of Li2O2 on the discharged electrode surface. This study will be beneficial for the optimization of Pt-based catalysts used in non-aqueous lithium oxygen batteries.

  17. Systematic study on the discharge product of Pt-based lithium oxygen batteries

    SciTech Connect

    Wu, Feng; Xing, Yi; Bi, Xuanxuan; Yuan, Yifei; Wang, Hsien-Hau; Shahbazian-Yassar, Reza; Li, Li; Chen, Renjie; Lu, Jun; Amine, Khalil

    2016-11-01

    Lithium oxygen batteries have attracted much attention due to the high theoretical energy density. However, they suffer a large overpotential during oxygen evolution process and thus catalysts play a vital role in the reaction. Here, we systematically explored the influence of Pt-based nanoparticle catalysts on the discharge product Li2O2. Because of the superior electrical conductivity and the strong binding with oxygen, Pt-based nanoparticles serve as active sites which are favorable for the growth of toroidal Li2O2. We also found that the content and composition of Pt-based nanoparticle catalysts exert a significant influence on the electrochemical performance of lithium oxygen batteries. The discharge products are composed of crystalline Li2O2 and oxygen-rich LiO2 characterized by high-energy X-ray diffraction and Raman. Atomic force microscopy further provides detailed information of the particle size and surface roughness. The loading of Pt catalysts determines the phase and size of Li2O2 on the discharged electrode surface. This study will be beneficial for the optimization of Pt-based catalysts used in non-aqueous lithium oxygen batteries.

  18. Reduction Kinetics of a CasO4 Based Oxygen Carrier for Chemical-Looping Combustion

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Song, Q. L.; Zheng, W. G.; Deng, Z. Y.; Shen, L. H.; Zhang, M. Y.

    The CaSO4 based oxygen carrier has been proposed as an alternative low cost oxygen carrier for Chemical-looping combustion (CLC) of coal. The reduction of CaSO4 to CaS is an important step for the cyclic process of reduction/oxidation in CLC of coal with CaSO4 based oxygen carrier. Thermodynamic analysis of CaSO4 oxygen carrier with CO based on the principle of Gibbs free energy minimization show that the essentially high purity of CO2 can be obtained, while the solid product is CaS instead of CaO. The intrinsic reduction kinetics of a CaSO4 based oxygen carrier with CO was investigated in a differential fixed bed reactor. The effects of gas partial pressure (20%-70%) and temperature (880-950°C) on the reduction were investigated. The reduction was described with shrinking unreacted core model. Experimental results of CO partial pressure on the solid conversion show that the reduction of fresh oxygen carriers is of first order with respect to the CO partial pressure. Both chemical reaction control and product layer diffusion control determine the reduction rate. The dependences of reaction rate constant and effective diffusivity with temperature were both obtained. The kinetic equation well predicted the experimental data.

  19. Porous platinum-based catalysts for oxygen reduction

    DOEpatents

    Erlebacher, Jonah D; Snyder, Joshua D

    2014-11-25

    A porous metal that comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A fuel cell includes a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. At least one of the first and second electrodes is coated with a porous metal catalyst for oxygen reduction, and the porous metal catalyst comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A method of producing a porous metal according to an embodiment of the current invention includes producing an alloy consisting essentially of platinum and nickel according to the formula Pt.sub.xNi.sub.1-x, where x is at least 0.01 and less than 0.3; and dealloying the alloy in a substantially pH neutral solution to reduce an amount of nickel in the alloy to produce the porous metal.

  20. Oxygen gas optrode based on microstructured polymer optical fiber segment

    NASA Astrophysics Data System (ADS)

    Yang, Xinghua; Peng, Lirong; Yuan, Libo; Teng, Pingping; Tian, Fengjun; Li, Le; Luo, Shenzi

    2011-06-01

    In this article, we first propose a novel type of oxygen gas optrode by forming fluorophore doped sensing film in the array microholes with the characteristics of microstructured optical fiber (MOF) segment. Comparing with the conventional O 2 detecting method, this slender shaped optrode shows potential in trace amount of O 2 sensing and online O 2 monitoring. Organical silicate gel or plastified cellulose acetate are chosen as sensing films and tris (4,7-diphenyl-1,10-phenathroline) ruthenium(II) dichloride ([Ru(dpp) 3]Cl 2) or meso-tetraphenylporphyin (TPP) as quenching fluorophores. From the experimental results, we find [Ru(dpp) 3] 2+-Gel-MOF optrode has favorable sensing characteristics, and the Stern-Volmer plots are linear in the full concentration range of O 2 (0-100% v/v). The ratio of I 0/I 100, where I 0 and I 100 respectively represents the fluorescence intensities of the optrode exposed to 100% N 2 and 100% O 2, as a sensitivity of the optrode is 10.8. Simultaneously, the optrode can make a quick response within 50 ms.

  1. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol

    PubMed Central

    Grundner, Sebastian; Markovits, Monica A.C.; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A.; Hensen, Emiel J.M.; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A.

    2015-01-01

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite. PMID:26109507

  2. Study of oxygen scavenging PET-based films activated by water

    NASA Astrophysics Data System (ADS)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2016-05-01

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  3. Redox-Active Metal-Organic Composites for Highly Selective Oxygen Separation Applications

    SciTech Connect

    Zhang, Wen; Banerjee, Debasis; Liu, Jian; Schaef, Herbert T.; Crum, Jarrod V.; Fernandez, Carlos A.; Kukkadapu, Ravi K.; Nie, Zimin; Nune, Satish K.; Motkuri, Radha K.; Chapman, Karena W.; Engelhard, Mark H.; Hayes, James C.; Silvers, Kurt L.; Krishna, Rajamani; McGrail, B. Peter; Liu, Jun; Thallapally, Praveen K.

    2016-03-08

    A redox-active metal-organic composite material shows improved and selective O-2 adsorption over N-2 with respect to individual components (MIL-101 and ferrocene). The O-2 sensitivity of the composite material arises due to the formation of maghemite nanoparticles with the pore of the metal-organic framework material.

  4. Hampering Effect of Cholesterol on the Permeation of Reactive Oxygen Species through Phospholipids Bilayer: Possible Explanation for Plasma Cancer Selectivity

    NASA Astrophysics Data System (ADS)

    van der Paal, Jonas; Verheyen, Claudia; Neyts, Erik C.; Bogaerts, Annemie

    2017-01-01

    In recent years, the ability of cold atmospheric pressure plasmas (CAPS) to selectively induce cell death in cancer cells has been widely established. This selectivity has been assigned to the reactive oxygen and nitrogen species (RONS) created in CAPs. To provide new insights in the search for an explanation for the observed selectivity, we calculate the transfer free energy of multiple ROS across membranes containing a varying amount of cholesterol. The cholesterol fraction is investigated as a selectivity parameter because membranes of cancer cells are known to contain lower fractions of cholesterol compared to healthy cells. We find that cholesterol has a significant effect on the permeation of reactive species across a membrane. Indeed, depending on the specific reactive species, an increasing cholesterol fraction can lead to (i) an increase of the transfer free energy barrier height and width, (ii) the formation of a local free energy minimum in the center of the membrane and (iii) the creation of extra free energy barriers due to the bulky sterol rings. In the context of plasma oncology, these observations suggest that the increased ingress of RONS in cancer cells can be explained by the decreased cholesterol fraction of their cell membrane.

  5. Medium Effects are as Important as Catalyst Design for Selectivity in Electrocatalytic Oxygen Reduction by Iron-porphyrin Complexes

    SciTech Connect

    Rigsby, Matthew L.; Wasylenko, Derek J.; Pegis, Michael L.; Mayer, James M.

    2015-04-08

    Several substituted iron porphyrin com-plexes were evaluated for oxygen reduction reaction (ORR) electrocatalysis in different homogeneous and heterogeneous media. The selectivity for 4-electron re-duction to H2O vs. 2-electron reduction to H2O2 varies substantially from one medium to another for a given catalyst. In many cases, the influence of the medium in which the catalyst is evaluated has a larger effect on the observed selectivity than the factors attributable to chemical modification of the catalyst. For instance, introduction of potential proton relays has variable effects depending on the catalyst medium. Thus, comparisons of ORR selectivity results need to be interpreted with caution, as the catalysis is a property not just of the catalyst, but also of the larger mesoscale environment be-yond the catalyst. Still, in all the direct pairwise comparisons in the same medium, the catalysts with potential proton relays have similar or better selectivity for the preferred 4e– path. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  6. Hampering Effect of Cholesterol on the Permeation of Reactive Oxygen Species through Phospholipids Bilayer: Possible Explanation for Plasma Cancer Selectivity

    PubMed Central

    Van der Paal, Jonas; Verheyen, Claudia; Neyts, Erik C.; Bogaerts, Annemie

    2017-01-01

    In recent years, the ability of cold atmospheric pressure plasmas (CAPS) to selectively induce cell death in cancer cells has been widely established. This selectivity has been assigned to the reactive oxygen and nitrogen species (RONS) created in CAPs. To provide new insights in the search for an explanation for the observed selectivity, we calculate the transfer free energy of multiple ROS across membranes containing a varying amount of cholesterol. The cholesterol fraction is investigated as a selectivity parameter because membranes of cancer cells are known to contain lower fractions of cholesterol compared to healthy cells. We find that cholesterol has a significant effect on the permeation of reactive species across a membrane. Indeed, depending on the specific reactive species, an increasing cholesterol fraction can lead to (i) an increase of the transfer free energy barrier height and width, (ii) the formation of a local free energy minimum in the center of the membrane and (iii) the creation of extra free energy barriers due to the bulky sterol rings. In the context of plasma oncology, these observations suggest that the increased ingress of RONS in cancer cells can be explained by the decreased cholesterol fraction of their cell membrane. PMID:28059085

  7. Evoll - A Computer Based Natural Selection Game

    ERIC Educational Resources Information Center

    Wright, Ramil C.

    1972-01-01

    Describes a computer-generated natural selection game which deals with various factors influencing survival and speciation processes. Variation of population size, growth rate, brood size, and selection pressure are permitted by the program, which is written in ASA Basic FORTRAN IV. (PR)

  8. Simulations of Ground and Space-Based Oxygen Atom Experiments

    NASA Technical Reports Server (NTRS)

    Finchum, A. (Technical Monitor); Cline, J. A.; Minton, T. K.; Braunstein, M.

    2003-01-01

    A low-earth orbit (LEO) materials erosion scenario and the ground-based experiment designed to simulate it are compared using the direct-simulation Monte Carlo (DSMC) method. The DSMC model provides a detailed description of the interactions between the hyperthermal gas flow and a normally oriented flat plate for each case. We find that while the general characteristics of the LEO exposure are represented in the ground-based experiment, multi-collision effects can potentially alter the impact energy and directionality of the impinging molecules in the ground-based experiment. Multi-collision phenomena also affect downstream flux measurements.

  9. An economic analysis of selected strategies for dissolved-oxygen management; Chattahoochee River, Georgia

    USGS Publications Warehouse

    Schefter, John E.; Hirsch, Robert M.

    1980-01-01

    A method for evaluating the cost-effectiveness of alternative strategies for dissolved-oxygen (DO) management is demonstrated, using the Chattahoochee River, GA., as an example. The conceptual framework for the analysis is suggested by the economic theory of production. The minimum flow of the river and the percentage of the total waste inflow receiving nitrification are considered to be two variable inputs to be used in the production of given minimum concentration of DO in the river. Each of the inputs has a cost: the loss of dependable peak hydroelectric generating capacity at Buford Dam associated with flow augmentation and the cost associated with nitrification of wastes. The least-cost combination of minimum flow and waste treatment necessary to achieve a prescribed minimum DO concentration is identified. Results of the study indicate that, in some instances, the waste-assimilation capacity of the Chattahoochee River can be substituted for increased waste treatment; the associated savings in waste-treatment costs more than offset the benefits foregone because of the loss of peak generating capacity at Buford Dam. The sensitivity of the results to the estimates of the cost of replacing peak generating capacity is examined. It is also demonstrated that a flexible approach to the management of DO in the Chattahoochee River may be much more cost effective than a more rigid, institutional approach wherein constraints are placed on the flow of the river and(or) on waste-treatment practices. (USGS)

  10. Enhanced electrocatalysis of the oxygen reduction reaction based on pattering of platinum surfaces with cyanide.

    SciTech Connect

    Strmcnik, D.; Escudero-Escribano, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Markovic, N. M.; Materials Science Division; Inst. de Quimica Fisica; Toyota Central R&D Labs., Inc.

    2010-08-15

    The slow rate of the oxygen reduction reaction in the phosphoric acid fuel cell is the main factor limiting its wide application. Here, we present an approach that can be used for the rational design of cathode catalysts with potential use in phosphoric acid fuel cells, or in any environments containing strongly adsorbing tetrahedral anions. This approach is based on molecular patterning of platinum surfaces with cyanide adsorbates that can efficiently block the sites for adsorption of spectator anions while the oxygen reduction reaction proceeds unhindered. We also demonstrate that, depending on the supporting electrolyte anions and cations, on the same CN-covered Pt(111) surface, the oxygen reduction reaction activities can range from a 25-fold increase to a 50-fold decrease. This behaviour is discussed in the light of the role of covalent and non-covalent interactions in controlling the ensemble of platinum active sites required for high turn over rates of the oxygen reduction reaction.

  11. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide

    SciTech Connect

    Strmcnik, D.; Escudero, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Markovic, N. M.

    2010-10-01

    The slow rate of the oxygen reduction reaction in the phosphoric acid fuel cell is the main factor limiting its wide application. Here, we present an approach that can be used for the rational design of cathode catalysts with potential use in phosphoric acid fuel cells, or in any environments containing strongly adsorbing tetrahedral anions. This approach is based on molecular patterning of platinum surfaces with cyanide adsorbates that can efficiently block the sites for adsorption of spectator anions while the oxygen reduction reaction proceeds unhindered. We also demonstrate that, depending on the supporting electrolyte anions and cations, on the same CN-covered Pt(111) surface, the oxygen reduction reaction activities can range from a 25-fold increase to a 50-fold decrease. This behaviour is discussed in the light of the role of covalent and non-covalent interactions in controlling the ensemble of platinum active sites required for high turn over rates of the oxygen reduction reaction.

  12. Manufacture of concentrated, lipid-based oxygen microbubble emulsions by high shear homogenization and serial concentration.

    PubMed

    Thomson, Lindsay M; Polizzotti, Brian D; McGowan, Frances X; Kheir, John N

    2014-05-26

    Gas-filled microbubbles have been developed as ultrasound contrast and drug delivery agents. Microbubbles can be produced by processing surfactants using sonication, mechanical agitation, microfluidic devices, or homogenization. Recently, lipid-based oxygen microbubbles (LOMs) have been designed to deliver oxygen intravenously during medical emergencies, reversing life-threatening hypoxemia, and preventing subsequent organ injury, cardiac arrest, and death. We present methods for scaled-up production of highly oxygenated microbubbles using a closed-loop high-shear homogenizer. The process can produce 2 L of concentrated LOMs (90% by volume) in 90 min. Resulting bubbles have a mean diameter of ~2 μm, and a rheologic profile consistent with that of blood when diluted to 60 volume %. This technique produces LOMs in high capacity and with high oxygen purity, suggesting that this technique may be useful for translational research labs.

  13. The influence of dissolved oxygen on winter habitat selection by largemouth bass: an integration of field biotelemetry studies and laboratory experiments.

    PubMed

    Hasler, C T; Suski, C D; Hanson, K C; Cooke, S J; Tufts, B L

    2009-01-01

    In this study, field biotelemetry and laboratory physiology approaches were coupled to allow understanding of the behavioral and physiological responses of fish to winter hypoxia. The biotelemetry study compared dissolved oxygen levels measured throughout the winter period with continually tracked locations of nine adult largemouth bass obtained from a whole-lake submerged telemetry array. Fish habitat usage was compared with habitat availability to assess whether fish were selecting for specific dissolved oxygen concentrations. The laboratory study examined behavioral and physiological responses to progressive hypoxia in juvenile largemouth bass acclimated to winter temperatures. Results from the dissolved oxygen measurements made during the biotelemetry study showed high variance in under-ice dissolved oxygen levels. Avoidance of water with dissolved oxygen <2.0 mg/L by telemetered fish was demonstrated, but significant use of water with intermediate dissolved oxygen levels was also found. Results from the lab experiments showed marked changes in behavior (i.e., yawning and vertical movement) at <2.0 mg/L of dissolved oxygen but no change in tissue lactate, an indicator of anaerobic metabolism. Combined results of the biotelemetry and laboratory studies demonstrate that a dissolved oxygen content of 2.0 mg/L may be a critical threshold that induces behavioral responses by largemouth bass during the winter. In addition, the use by fish of areas with intermediate levels of dissolved oxygen suggests that there are multiple environmental factors influencing winter behavior.

  14. Selective oxygenation of alkynes: a direct approach to diketones and vinyl acetate.

    PubMed

    Xia, Xiao-Feng; Gu, Zhen; Liu, Wentao; Wang, Ningning; Wang, Haijun; Xia, Yongmei; Gao, Haiyan; Liu, Xiang

    2014-12-28

    Arylalkynes can be converted into α-diketones with the use of a copper catalyst, and also be transformed into vinyl acetates under metal-free conditions, both in the presence of PhI(OAc)2 as an oxidant at room temperature. A series of substituted α-diketones were prepared in moderate to good yields. A variety of vinyl halides could be regio- and stereo-selectively synthesized under mild conditions, and I, Br and Cl could be all easily embedded into the alkynes.

  15. SADA: Ecological Risk Based Decision Support System for Selective Remediation

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is freeware that implements terrestrial ecological risk assessment and yields a selective remediation design using its integral geographical information system, based on ecological and risk assessment inputs. Selective remediation ...

  16. Surface spectators and their role in relationships between activity and selectivity of the oxygen reduction reaction in acid environments.

    SciTech Connect

    Ciapina, Eduardo G.; Lopes, Pietro P.; Subbaraman, Ram; Ticianelli, Edson A.; Stamenkovic, Vojislav; Strmcnik, Dusan; Markovic, Nenad M.

    2015-11-01

    We use the rotating ring disk (RRDE) method to study activity-selectivity relationships for the oxygen reduction reaction (ORR) on Pt(111) modified by various surface coverages of adsorbed CNad (ΘCNad). The results demonstrate that small variations in ΘCNad have dramatic effect on the ORR activity and peroxide production, resulting in “volcano-like” dependence with an optimal surface coverage of ΘCNad = 0.3 ML. These relationships can be simply explained by balancing electronic and ensemble effects of co-adsorbed CNad and adsorbed spectator species from the supporting electrolytes, without the need for intermediate adsorption energy arguments. Although this study has focused on the Pt(111)-CNad/H2SO4 interface, the results and insight gained here are invaluable for controlling another dimension in the properties of electrochemical interfaces.

  17. Materials selection for long life in low earth orbit - A critical evaluation of atomic oxygen testing with thermal atom systems

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Albyn, K.; Leger, L.

    1990-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined in thermal atom environments are compared with those observed in LEO and in high-quality LEO simulations. Reaction efficiencies (cu cm/atom) measured in a new type of thermal atom apparatus are one-thousandth to one ten-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of eight in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain speciic thermal atom test environments can be used as reliable materials screening tools.

  18. Enzyme-based online monitoring and measurement of antioxidant activity using an optical oxygen sensor coupled to an HPLC system.

    PubMed

    Quaranta, Michela; Nugroho Prasetyo, Endry; Koren, Klaus; Nyanhongo, Gibson S; Murkovic, Michael; Klimant, Ingo; Guebitz, Georg M

    2013-03-01

    It is estimated that up to 50% of the adult population take antioxidant products on a daily basis to promote their health status. Strangely, despite the well-recognized importance of antioxidants, currently there is no international standard index for labeling owing to the lack of standardized methods for antioxidant measurement in complex products. Here, an online high-performance liquid chromatography (HPLC)-based method to detect and measure the total antioxidant capacity of antioxidant samples is presented. In this approach, complex samples containing antioxidants are separated by the HPLC system, which is further coupled to an antioxidant measuring system consisting of an optical oxygen sensor, laccase, and tetramethoxy azobismethylene quinone (TMAMQ). The antioxidants, separated via HPLC, reduce TMAMQ to syringaldazine, which is then reoxidized by laccase while simultaneously consuming O(2). The amount of consumed oxygen is directly proportional to the concentration of antioxidants and is measured by the optical oxygen sensor. The sensor is fabricated by coating a glass capillary with an oxygen-sensitive thin layer made of platinum(II) meso-tetra(4-fluorophenyl)tetrabenzoporphyrin and polystyrene, which makes real-time analysis possible (t(90) = 1.1 s in solution). Four selected antioxidants (3 mM), namely, catechin, ferulic acid, naringenin (used as a control), and Trolox, representing flavonol, hydrocinnamic acid, flavanone, and vitamin E, respectively, were injected into the online antioxidant monitoring system, separated, and then mixed with the TMAMQ/laccase solution, which resulted in oxygen consumption. This study shows that, with the use of such a system, the antioxidant activity of individual antioxidant molecules in a sample and their contribution to the total antioxidant activity of the sample can be correctly assigned.

  19. Peripheral oxygen transport and utilization in rats following continued selective breeding for endurance running capacity.

    PubMed

    Howlett, Richard A; Kirkton, Scott D; Gonzalez, Norberto C; Wagner, Harrieth E; Britton, Steven L; Koch, Lauren G; Wagner, Peter D

    2009-06-01

    Untrained rats selectively bred for either high (HCR) or low (LCR) treadmill running capacity previously demonstrated divergent physiological traits as early as the seventh generation (G7). We asked whether continued selective breeding to generation 15 (G15) would further increase the divergence in skeletal muscle capillarity, morphometry, and oxidative capacity seen previously at G7. At G15, mean body weight was significantly lower (P < 0.001) in the HCR rats (n = 11; 194 +/- 3 g) than in LCR (n = 12; 259 +/- 9 g) while relative medial gastrocnemius muscle mass was not different (0.23 +/- 0.01 vs. 0.22 +/- 0.01% total body weight). Normoxic (Fi(O(2)) = 0.21) Vo(2max) was 50% greater (P < 0.001) in HCR despite the lower absolute muscle mass, and skeletal muscle O(2) conductance (measured in hypoxia; Fi(O(2)) = 0.10) was 49% higher in HCR (P < 0.001). Muscle oxidative enzyme activities were significantly higher in HCR (citrate synthase: 16.4 +/- 0.4 vs. 14.0 +/- 0.6; beta-hydroxyacyl-CoA dehydrogenase: 5.2 +/- 0.2 vs. 4.2 +/- 0.2 mmol.kg(-1).min(-1)). HCR rats had approximately 36% more total muscle fibers and also 36% more capillaries in the medial gastrocnemius. Because average muscle fiber area was 35% smaller, capillary density was 36% higher in HCR, but capillary-to-fiber ratio was the same. Compared with G7, G15 HCR animals showed 38% greater total fiber number with an additional 25% decrease in mean fiber area. These data suggest that many of the skeletal muscle structural and functional adaptations enabling greater O(2) utilization in HCR at G7 continue to progress following additional selective breeding for endurance capacity. However, the largest changes at G15 relate to O(2) delivery to skeletal muscle and not to the capacity of skeletal muscle to use O(2).

  20. Estimating streambed travel times and respiration rates based on temperature and oxygen consumption

    NASA Astrophysics Data System (ADS)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2015-12-01

    Oxygen consumption is a common proxy for aerobic respiration and novel in situ measurement techniques with high spatial resolution enable an accurate determination of the oxygen distribution in the streambed. The oxygen concentration at a certain location in the streambed depends on the input concentration, the respiration rate, temperature, and the travel time of the infiltrating flowpath. While oxygen concentrations and temperature can directly be measured, respiration rate and travel time must be estimated from the data. We investigated the interplay of these factors using a 6 month long, 5-min resolution dataset collected in a 3rdorder gravel-bed stream. Our objective was twofold, to determine transient rates of hyporheic respiration and to estimate travel times in the streambed based solely on oxygen and temperature measurements. Our results show that temperature and travel time explains ~70% of the variation in oxygen concentration in the streambed. Independent travel times were obtained using natural variations in the electrical conductivity (EC) of the stream water as tracer (µ=4.1 h; σ=2.3 h). By combining these travel times with the oxygen consumption, we calculated a first order respiration rate (µ=9.7 d-1; σ=6.1 d-1). Variations in the calculated respiration rate are largely explained by variations in streambed temperature. An empirical relationship between our respiration rate and temperature agrees with the theoretical Boltzmann-Arrhenius equation. With this relationship, a temperature-based respiration rate can be estimated and used to re-estimate subsurface travel times. The resulting travel times distinctively resemble the EC-derived travel times (R20.47; Nash-Sutcliffe coefficient 0.32). Both calculations of travel time are correlated to stream water levels and increase during discharge events, enhancing the oxygen consumption for these periods. No other physical factors besides temperature were significantly correlated with the respiration

  1. Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions.

    PubMed

    Long, Ran; Huang, Hao; Li, Yaping; Song, Li; Xiong, Yujie

    2015-11-25

    Oxidation reactions by molecular oxygen (O2 ) over palladium (Pd)-based nanomaterials are a series of processes crucial to the synthesis of fine chemicals. In the past decades, investigations of related catalytic materials have mainly been focused on the synthesis of Pd-based nanomaterials from the angle of tailoring their surface structures, compositions and supporting materials, in efforts to improve their activities in organic reactions. From the perspective of rational materials design, it is imperative to address the fundamental issues associated with catalyst performance, one of which should be oxygen activation by Pd-based nanomaterials. Here, the fundamentals that account for the transformation from O2 to reactive oxygen species over Pd, with a focus on singlet O2 and its analogue, are introduced. Methods for detecting and differentiating species are also presented to facilitate future fundamental research. Key factors for tuning the oxygen activation efficiencies of catalytic materials are then outlined, and recent developments in Pd-catalyzed oxygen-related organic reactions are summarized in alignment with each key factor. To close, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields.

  2. Accelerated materials design of fast oxygen ionic conductors based on first principles calculations

    NASA Astrophysics Data System (ADS)

    He, Xingfeng; Mo, Yifei

    Over the past decades, significant research efforts have been dedicated to seeking fast oxygen ion conductor materials, which have important technological applications in electrochemical devices such as solid oxide fuel cells, oxygen separation membranes, and sensors. Recently, Na0.5Bi0.5TiO3 (NBT) was reported as a new family of fast oxygen ionic conductor. We will present our first principles computation study aims to understand the O diffusion mechanisms in the NBT material and to design this material with enhanced oxygen ionic conductivity. Using the NBT materials as an example, we demonstrate the computation capability to evaluate the phase stability, chemical stability, and ionic diffusion of the ionic conductor materials. We reveal the effects of local atomistic configurations and dopants on oxygen diffusion and identify the intrinsic limiting factors in increasing the ionic conductivity of the NBT materials. Novel doping strategies were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm-1 at 900 K compared to the experimental Mg doped compositions. Our results provide new avenues for the future design of the NBT materials and demonstrate the accelerated design of new ionic conductor materials based on first principles techniques. This computation methodology and workflow can be applied to the materials design of any (e.g. Li +, Na +) fast ion-conducting materials.

  3. Atomic scale behavior of oxygen-based radicals in water

    NASA Astrophysics Data System (ADS)

    Verlackt, C. C. W.; Neyts, E. C.; Bogaerts, A.

    2017-03-01

    Cold atmospheric pressure plasmas in and in contact with liquids represent a growing field of research for various applications. Understanding the interactions between the plasma generated species and the liquid is crucial. In this work we perform molecular dynamics (MD) simulations based on a quantum mechanical method, i.e. density-functional based tight-binding (DFTB), to examine the interactions of OH radicals and O atoms in bulk water. Our calculations reveal that the transport of OH radicals through water is not only governed by diffusion, but also by an equilibrium reaction of H-abstraction with water molecules. Furthermore, when two OH radicals encounter each other, they either form a stable cluster, or react, resulting in the formation of a new water molecule and an O atom. In addition, the O atoms form either oxywater (when in singlet configuration) or they remain stable in solution (when in triplet configuration), stressing the important role that O atoms can play in aqueous solution, and in contact with biomolecules. Our observations are in line with both experimental and ab initio results from the literature.

  4. A lithium-oxygen battery based on lithium superoxide.

    SciTech Connect

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Wen, Jianguo; Wang, Hsien-Hau; Zhai, Dengyun; Miller, Dean; Jeong, Yo-Sub; Park, Jin-Bum; Curtiss, Larry A.; Amine, Khalil

    2016-01-11

    Although the superoxide of lithium (LiO2) is believed to be a key intermediate in Li-O2 batteries leading to the formation of lithium peroxide, LiO2 has never been observed in its pure state. In this work, we provide evidence that use of a cathode based on a reduced graphene oxide with Ir nanoparticles in a Li-O2 battery results in a LiO2 discharge product formed by single electron transfer without further electron transfer or disproportionation to form Li2O2. High energy X-ray diffraction (HE-XRD) patterns indicates the presence of crystalline LiO2 with no evidence of Li2O2 or Li2O. The HEXRD studies as a function of time also show that LiO2 can be stable in its crystalline form after one week of aging in the presence of electrolyte. The results provide evidence that LiO2 is stable enough that it can be repeatedly charged and discharged with a very low charge potential (~3.2 V) and may open the avenue for a lithium superoxide-based battery.

  5. Oxygen-tolerant hydrogenases in hydrogen-based technologies.

    PubMed

    Friedrich, Bärbel; Fritsch, Johannes; Lenz, Oliver

    2011-06-01

    To develop a viable H2 technology, production of H2 has to be significantly enlarged by using renewable resources. One option of generating H2 is the photosynthetic conversion of sunlight and water directly to H2 and O2. Photosystems and hydrogenases are currently being exploited for the design of efficient H2-producing systems that require highly active and O2-tolerant biocatalysts. This communication focuses on two challenging features: hydrogenases that produce H2 in the presence of O2, and direct electron transfer between photosystem I (PS I) and hydrogenase. The latter is accomplished by connecting both modules through a protein fusion or a synthetic molecular wire. These are first steps toward a photosynthetic microbial cell or a semi-synthetic system that may be employed in future H2-based technologies.

  6. Acridine-intercalator based hypoxia selective cytotoxins

    DOEpatents

    Papadopoulou-Rosenzweig, M.; Bloomer, W.D.

    1994-03-15

    Hypoxia selective cytotoxins of the general formula STR1 wherein n is from 1 to 5, and NO[sub 2] is in at least one of the 2, 4 or 5-positions of the imidazole are developed. Such compounds have utility as radiosensitizers and chemosensitizers. 9 figs.

  7. Acridine-intercalator based hypoxia selective cytotoxins

    DOEpatents

    Papadopoulou-Rosenzweig, Maria; Bloomer, William D.; Bloomer, William D.

    1994-01-01

    Hypoxia selective cytotoxins of the general formula ##STR1## wherein n is from 1 to 5, and NO.sub.2 is in at least one of the 2, 4 or 5-positions of the imidazole. Such compounds have utility as radiosensitizers and chemosensitizers.

  8. Effect of oxygen stoichiometry on T(sub c) of Bi-based superconductors

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Seehra, M. S.

    1990-01-01

    The role of oxygen stoichiometry on T(sub c) is relatively well established on La2CuO(4+x) and the YBa2Cu3O(7-x) (123) superconductors, as compared to the Bi-based superconductors. Results are presented of investigations on the effects of oxygen stoichiometry on the transition temperature T(sub c) of Bi2Sr2CaCu2O(8+x) (2212 phase), and Pb-doped Bi2Sr2Ca2Cu3O(10+X) (2223 phase). It is shown that the effects of oxygen stoichiometry on T(sub c) of these two phases are very different. These results may be helpful in understanding the mechanism of superconductivity in the Bi-based superconductors.

  9. Hydrophobic dipeptide crystals: a promising Ag-free class of ultramicroporous materials showing argon/oxygen adsorption selectivity.

    PubMed

    Afonso, R; Mendes, A; Gales, L

    2014-09-28

    The adsorption isotherms of nitrogen, oxygen and argon in four VA-class hydrophobic dipeptides are presented. Isotherms were determined at 5, 20 and 35 °C, for a pressure range of 0-6 bar. Under these conditions, adsorption is still in the Henry region. For all materials and temperatures, the sequence of preferential adsorption is Ar > O2 > N2, a highly abnormal result. At 5 °C, the dipeptide with the smallest pores, VI, has Ar/O2 adsorption equilibrium selectivities up to 1.30, the highest ever measured in Ag-free adsorbents. Gas uptakes, at 1 bar and 20 °C, are ∼0.05 mol kg(-1), very low relative values that are partially explained by the low porosity of the solids (<10%). The significance of these results for the development of new materials for the process of O2 generation by pressure swing adsorption (PSA) is discussed. The results indicate some of the structural and chemical properties that prospective Ag-free adsorbents should have in order to have Ar/O2 selectivity, hydrophobic pores, less than 0.5 nm-wide, and porosity of, at least, 20%.

  10. Establishment of a total liquid ventilation system using saline-based oxygen micro/nano-bubble dispersions in rats.

    PubMed

    Kakiuchi, Kenta; Matsuda, Kenichi; Harii, Norikazu; Sou, Keitaro; Aoki, Junko; Takeoka, Shinji

    2015-09-01

    Micro/nano-bubbles are practical nanomaterials designed to increase the gas content in liquids. We attempted to use oxygen micro/nano-bubble dispersions as an oxygen-rich liquid as a means for total liquid ventilation. To determine the oxygen content in the bubble dispersion, a new method based on a spectrophotometric change between oxy- and deoxy-hemoglobin was established. The oxygen micro/nano-bubble dispersion was supplied to an experimental total ventilation liquid in anesthetic rats. Though the amount of dissolving oxygen was as low as 6 mg/L in physiological saline, the oxygen content in the oxygen micro/nano-bubble dispersion was increased to 45 mg/L. The positive correlation between the oxygen content and the life-saving time under liquid ventilation clearly indicates that the life-saving time is prolonged by increasing the oxygen content in the oxygen micro/nano-bubble dispersion. This is the first report indicating that the oxygen micro/nano-bubbles containing a sufficient amount of oxygen are useful in producing oxygen-rich liquid for the process of liquid ventilation.

  11. Workload-Based Automated Interface Mode Selection

    DTIC Science & Technology

    2012-03-22

    Exposing more control and information gives the operator the ability to understand the state of the system better and take more complex actions, but at the...and require fast response, and may be a better target for these types of interface features. Many computer games already use adaptive interfaces to...introduces an agent into the system interface to assume responsibility for man- aging automation mode selection. The agent uses a novel dynamic scheme for

  12. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  13. Advanced fluorocarbon-based systems for oxygen and drug delivery, and diagnosis.

    PubMed

    Riess, J G; Krafft, M P

    1997-01-01

    Fluorocarbons and fluorocarbon-derived materials constitute a vast family of synthetic components that have a range of remarkable properties including exceptional chemical and biological inertness, gas-dissolving capacity, low surface tension, high fluidity, excellent spreading characteristics, unique hydro- and lipophobicity, high density, absence of protons, and magnetic susceptibility close to that of water. These properties lead to a diversity of products and applications as illustrated by those products that are already in advanced clinical trials, which comprise: 1) an injectable oxygen carrier, i.e. blood substitute, consisting of a fluorocarbon-in-water emulsion for use in surgery to alleviate the problems raised by the transfusion of homologous blood; the same emulsion is also being evaluated with cardiopulmonary bypass patients; 2) a neat fluorocarbon for treatment of acute respiratory failure by liquid ventilation; and 3) fluorocarbon-based or stabilized gas bubbles to be used as contrast agents for the assessment of heart function and detection of perfusion defects by ultrasound imaging. Proper selection of the fluorocarbon best suited for the intended application, formulation optimization, and advanced stabilization and processing procedures led to effective, ready-for-use products with minimal side-effects. Further highly fluorinated materials, including amphiphiles and various fluorocarbon-based colloidal systems that have potential as pulmonary, topical and ophthalmological drug delivery agents, and as skin protection barriers, are now being investigated. Such systems include drug-in-fluorocarbon suspensions, reverse water-in-fluorocarbon emulsions, oil-in-fluorocarbon emulsions, multiple emulsions, microemulsions, fluorocarbon gels, fluorinated liposomes, fluorinated tubules and other novel supramolecular systems.

  14. Kinetic analysis of microbe opsonification based on stimulated polymorphonuclear leukocyte oxygenation activity.

    PubMed

    Allen, R C; Lieberman, M M

    1984-08-01

    With Pseudomonas aeruginosa as the target microbes and polymorphonuclear leukocytes (PMNL) as effector phagocytes, the microbe-specific, immunoglobulin G (IgG)-dependent opsonic capacities of preimmune and immune sera were measured as the rate of stimulated PMNL dioxygenation of luminol yielding chemiluminescence (CL). When the reactants other than opsonin are present in concentrations that are not rate limiting, the information-effector relationship linking specific opsonin concentration to effector PMNL stimulation is described by the rate equation: L' = k'[IgG]i, where L' is the peak CL velocity (photons per minute), k' is the proportionality constant, [IgG] is the concentration of specific opsonin, and the exponent i is the order of the reaction with respect to opsonin. Since the specific opsonins were polyclonal IgG of unknown absolute serum concentration, the reciprocal rate expression, L' = k'D-i, was employed for data presentation; D is the serum dilution (final volume/initial serum volume), and the sign of i is changed to negative. The relationships of integral, first-derivative, and second-derivative expressions of the CL response to opsonin concentration are illustrated with experimentally obtained data. Based on peak CL velocity or peak CL acceleration measurements taken over different time intervals of testing, the estimated order with respect to opsonin is highest, and probably most accurate, using the shortest test interval allowing reasonably good precision of measurement. As an alternative temporal approach, microbe opsonification kinetics are analyzed based on nodal time (Tn) measurements. The Tn is the time point separating the acceleration and deceleration phases of the PMNL oxygenation response to stimulation and as such satisfies the criterion of a selected condition of PMNL activation.

  15. A luminescence lifetime-based capillary oxygen sensor utilizing monolithically integrated organic photodiodes.

    PubMed

    Lamprecht, Bernhard; Tschepp, Andreas; Čajlaković, Merima; Sagmeister, Martin; Ribitsch, Volker; Köstler, Stefan

    2013-10-21

    A novel optical sensor device monolithically integrated on a glass capillary is presented. Therefore, we took advantage of the ability to fabricate organic optoelectronic devices on non-planar substrates. The functionality of the concept is demonstrated by realizing an integrated oxygen sensor based on luminescence decay time measurement.

  16. An imaging-based computational model for simulating angiogenesis and tumour oxygenation dynamics

    NASA Astrophysics Data System (ADS)

    Adhikarla, Vikram; Jeraj, Robert

    2016-05-01

    Tumour growth, angiogenesis and oxygenation vary substantially among tumours and significantly impact their treatment outcome. Imaging provides a unique means of investigating these tumour-specific characteristics. Here we propose a computational model to simulate tumour-specific oxygenation changes based on the molecular imaging data. Tumour oxygenation in the model is reflected by the perfused vessel density. Tumour growth depends on its doubling time (T d) and the imaged proliferation. Perfused vessel density recruitment rate depends on the perfused vessel density around the tumour (sMVDtissue) and the maximum VEGF concentration for complete vessel dysfunctionality (VEGFmax). The model parameters were benchmarked to reproduce the dynamics of tumour oxygenation over its entire lifecycle, which is the most challenging test. Tumour oxygenation dynamics were quantified using the peak pO2 (pO2peak) and the time to peak pO2 (t peak). Sensitivity of tumour oxygenation to model parameters was assessed by changing each parameter by 20%. t peak was found to be more sensitive to tumour cell line related doubling time (~30%) as compared to tissue vasculature density (~10%). On the other hand, pO2peak was found to be similarly influenced by the above tumour- and vasculature-associated parameters (~30-40%). Interestingly, both pO2peak and t peak were only marginally affected by VEGFmax (~5%). The development of a poorly oxygenated (hypoxic) core with tumour growth increased VEGF accumulation, thus disrupting the vessel perfusion as well as further increasing hypoxia with time. The model with its benchmarked parameters, is applied to hypoxia imaging data obtained using a [64Cu]Cu-ATSM PET scan of a mouse tumour and the temporal development of the vasculature and hypoxia maps are shown. The work underscores the importance of using tumour-specific input for analysing tumour evolution. An extended model incorporating therapeutic effects can serve as a powerful tool for analysing

  17. An upgraded camera-based imaging system for mapping venous blood oxygenation in human skin tissue

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhang, Xiao; Qiu, Lina; Leotta, Daniel F.

    2016-07-01

    A camera-based imaging system was previously developed for mapping venous blood oxygenation in human skin. However, several limitations were realized in later applications, which could lead to either significant bias in the estimated oxygen saturation value or poor spatial resolution in the map of the oxygen saturation. To overcome these issues, an upgraded system was developed using improved modeling and image processing algorithms. In the modeling, Monte Carlo (MC) simulation was used to verify the effectiveness of the ratio-to-ratio method for semi-infinite and two-layer skin models, and then the relationship between the venous oxygen saturation and the ratio-to-ratio was determined. The improved image processing algorithms included surface curvature correction and motion compensation. The curvature correction is necessary when the imaged skin surface is uneven. The motion compensation is critical for the imaging system because surface motion is inevitable when the venous volume alteration is induced by cuff inflation. In addition to the modeling and image processing algorithms in the upgraded system, a ring light guide was used to achieve perpendicular and uniform incidence of light. Cross-polarization detection was also adopted to suppress surface specular reflection. The upgraded system was applied to mapping of venous oxygen saturation in the palm, opisthenar and forearm of human subjects. The spatial resolution of the oxygenation map achieved is much better than that of the original system. In addition, the mean values of the venous oxygen saturation for the three locations were verified with a commercial near-infrared spectroscopy system and were consistent with previously published data.

  18. Oxygen quenching in a LAB based liquid scintillator and the nitrogen bubbling model

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Lin; Deng, Jing-Shan; Wang, Nai-Yan

    2010-05-01

    The oxygen quenching effect in a Linear Alkl Benzene (LAB) based liquid scintillator (LAB as the solvent, 3 g/L 2, 5 diphe-nyloxazole (PPO) as the fluor and 15 mg/L p-bis-(o-methylstyryl)-benzene (bis-MSB) as the λ-shifter) is studied by measuring the light yield as a function of the nitrogen bubbling time. It is shown that the light yield of the fully purged liquid scintillator is increased by 11% at room temperature and the room atmospheric pressure. A simple nitrogen bubbling model is proposed to describe the relationship between the relative light yield (oxygen quenching factor) and the bubbling time.

  19. Influence of oxygen functionalities on the environmental impact of imidazolium based ionic liquids.

    PubMed

    Deng, Yun; Besse-Hoggan, Pascale; Sancelme, Martine; Delort, Anne-Marie; Husson, Pascale; Gomes, Margarida F Costa

    2011-12-30

    Several physico-chemical properties relevant to determine the environmental impact of ionic liquids - aqueous solubility, octanol-water partition coefficient and diffusion coefficients in water at infinite dilution - together with toxicity and biodegradability of ionic liquids based on 1-alkyl-3-methylimidazolium cations with or without different oxygenated functional groups (hydroxyl, ester and ether) are studied in this work. The presence of oxygen groups on the imidazolium cation reduces the toxicity of ionic liquids 1-alkyl-3-methylimidazolium with bis(trifluoromethylsulfonyl)imide or octylsulfate anions and simultaneously decreases the value of their octanol-water partition coefficient. The presence of ester functions renders the ionic liquids more easily biodegradable, especially for long alkyl side-chains in the cation but leads to hydrolysis with the formation of reaction products that accumulate. The imidazolium ring is resistant to biodegradability and to abiotic degradation. The oxygen functionalised ionic liquids are more soluble in water and, diffuse more slowly in this medium.

  20. Raman-based Oxygen and Nitrogen Sensor for Monitoring Empty Airplane Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Chen, Peter C.

    2004-01-01

    The purpose of this project was to develop a Raman-based method for detecting oxygen and nitrogen in empty fuel tanks. The need for such a method comes from the potential danger of allowing explosive oxygen-fuel mixtures to accumulate in empty airplane fuel tanks. An explosion resulting from such a mixture is believed to have caused the Flight TWA 800 disaster in 1996. Recently, (e.g., February 17,2004 press release) the FAA announced its intentions to make fuel tank inerting mandatory. One potential solution to this problem is to use an inert gas such as nitrogen to flood the empty fue1 tanks in order to reduce the concentration of oxygen.

  1. Ratiometric Dissolved Oxygen Sensors Based on Ruthenium Complex Doped with Silver Nanoparticles

    PubMed Central

    Jiang, Zike; Yu, Xinsheng; Zhai, Shikui; Hao, Yingyan

    2017-01-01

    A ratiometric optical sensor has been developed with electrospinning processing method for dissolved oxygen measurement. The sensing film is fabricated by using silver nano-particles (Ag NPs) doped with tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride complex (Ru(DPP)3Cl2) encapsulated in plasticized polymethyl methacrylate (PMMA). An insensitive 3-(2-benzothiazolyl)-7-(diethy lamino)-(6CI,7CI) (Coumarin6) is adopted as reference. The ratio of oxygenation is calculated at each image pixel of a 3CCD camera to quantify the oxygen concentration in aqueous environment. Compared to Ag-free film, the response time of Ag-containing films were improved from 1.5 s to 1.0 s upon switching from deoxygenated to air saturation and from 65 s to 45 s from air saturation to fully deoxygenated. The response times of the Ag-free film obtained by knifing was 2.0 s upon switching from deoxygenated to air saturation and 104 s from air saturation to fully deoxygenated. Results of the evaluation of accuracy, limit of detection, stability, and photostability are presented. An experiment measuring the spatiotemporal variation of oxygen distribution within the photosynthesis and respiration of Chlorella vulgaris is demonstrated. It is shown that the nanofiber-based optical sensor film could serve as a promising method for rapid oxygen monitoring in aqueous applications. PMID:28282946

  2. [Measurement of multi-wavelength pulse oxygen saturation based on dynamic spectroscopy].

    PubMed

    Wang, Xiao-Fei; Zhao, Wen-Jun

    2014-05-01

    The present paper puts forward multi-wavelength pulse oxygen saturation measurement based on dynamic spectroscopy to do the non-invasive determination of oxygen saturation. Compared to conventional ways, the new method makes full use of more wavelengths light and improves the measurement accuracy. During the experiment, the in-vivo measurements were carried out on 60 patients and their spectroscopic data were collected by the high sensitivity type fiber optic spectrometer. Singletrial estimation method was used to extract the dynamic spectroscopy at the wavelengths of 606. 44 approximately 987. 55 nm. Oxygen saturation obtained from arterial blood gas analysis is regarded as the true value. Synergy interval partial least square (siPLS) was used to establish the calibration model of subjects' oxygen saturation values against dynamic spectroscopy data. The relative error of prediction is +/-0. 017 6, but the relative error of the subjects in the same set measured by the patient monitor which was two-wavelength measure system is +/-0. 116 4. Measurement results show that the use of the high sensitivity type fiber optic spectrometer to collect multi-wavelength spectroscopic data and dynamic spectroscopy method to process data can do better in improving the accuracy of the oxygen saturation measurement.

  3. Ratiometric Dissolved Oxygen Sensors Based on Ruthenium Complex Doped with Silver Nanoparticles.

    PubMed

    Jiang, Zike; Yu, Xinsheng; Zhai, Shikui; Hao, Yingyan

    2017-03-09

    A ratiometric optical sensor has been developed with electrospinning processing method for dissolved oxygen measurement. The sensing film is fabricated by using silver nano-particles (Ag NPs) doped with tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride complex (Ru(DPP)₃Cl₂) encapsulated in plasticized polymethyl methacrylate (PMMA). An insensitive 3-(2-benzothiazolyl)-7-(diethy lamino)-(6CI,7CI) (Coumarin6) is adopted as reference. The ratio of oxygenation is calculated at each image pixel of a 3CCD camera to quantify the oxygen concentration in aqueous environment. Compared to Ag-free film, the response time of Ag-containing films were improved from 1.5 s to 1.0 s upon switching from deoxygenated to air saturation and from 65 s to 45 s from air saturation to fully deoxygenated. The response times of the Ag-free film obtained by knifing was 2.0 s upon switching from deoxygenated to air saturation and 104 s from air saturation to fully deoxygenated. Results of the evaluation of accuracy, limit of detection, stability, and photostability are presented. An experiment measuring the spatiotemporal variation of oxygen distribution within the photosynthesis and respiration of Chlorella vulgaris is demonstrated. It is shown that the nanofiber-based optical sensor film could serve as a promising method for rapid oxygen monitoring in aqueous applications.

  4. Availability-based Importance Framework for Supplier Selection

    DTIC Science & Technology

    2015-05-01

    AVAILABILITY-BASED IMPORTANCE FRAMEWORK FOR SUPPLIER SELECTION Acquisition Research Symposium May 13-14, 2015 Kash Barker Industrial and...DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Availability-based Importance Framework for Supplier Selection 5a. CONTRACT NUMBER...availability in the supplier selection process?”  We do this by determining  How important a component is to system availability  How well a

  5. A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion

    SciTech Connect

    Shen, Laihong; Zheng, Min; Xiao, Jun; Xiao, Rui

    2008-08-15

    Chemical looping combustion (CLC) has been suggested as an energy-efficient method for the capture of carbon dioxide from combustion. It is indirect combustion by the use of an oxygen carrier, which can be used for CO{sub 2} capture in power-generating processes. The possibility of CLC using a calcium-based oxygen carrier is investigated in this paper. In the air reactor air is supplied to oxidize CaS to CaSO{sub 4}, where oxygen is transferred from air to the oxygen carrier; the reduction of CaSO{sub 4} to CaS takes place in the fuel reactor. The exit gas from the fuel reactor is CO{sub 2} and H{sub 2}O. After condensation of water, almost pure CO{sub 2} could be obtained. The thermodynamic and kinetic problem of the reduction reactions of CaSO{sub 4} with CO and H{sub 2} and the oxidization reactions of CaS with O{sub 2} is discussed in the paper to investigate the technique possibility. To prevent SO{sub 2} release from the process of chemical looping combustion using a calcium-based oxygen carrier, thermochemical CaSO{sub 4} reduction and CaS oxidation are discussed. Thermal simulation experiments are carried out using a thermogravimetric analyzer (TGA). The properties of the products are characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray diffractometry (XRD), and the optimal reaction parameters are evaluated. The effects of reaction temperature, reductive gas mixture, and oxygen partial pressure on the composition of flue gas are discussed. The suitable temperature of the air reactor is between 1050 and 1150 C and the optimal temperature of the fuel reactor between 900 and 950 C. (author)

  6. Reactions of State-Selected Atomic Oxygen Ions O(+)((4)S, (2)D, (2)P) with Methane.

    PubMed

    Cunha de Miranda, Barbara; Romanzin, Claire; Chefdeville, Simon; Vuitton, Véronique; Žabka, Jan; Polášek, Miroslav; Alcaraz, Christian

    2015-06-11

    An experimental study has been carried out on the reactions of state selected O(+)((4)S, (2)D, (2)P) ions with methane with the aims of characterizing the effects of both the parent ion internal energy and collision energy on the reaction dynamics and determining the fate of oxygen species in complex media, in particular the Titan ionosphere. Absolute cross sections and product velocity distributions have been determined for the reactions of (16)O(+) or (18)O(+) ions with CH4 or CD4 from thermal to 5 eV collision energies by using the guided ion beam (GIB) technique. Dissociative photoionization of O2 with vacuum ultraviolet (VUV) synchrotron radiation delivered by the DESIRS beamline at the SOLEIL storage ring and the threshold photoion photoelectron coincidence (TPEPICO) technique are used for the preparation of purely state-selected O(+)((4)S, (2)D, (2)P) ions. A complete inversion of the product branching ratio between CH4(+) and CH3(+) ions in favor of the latter is observed for excitation of O(+) ions from the (4)S ground state to either the (2)D or the (2)P metastable state. CH4(+) and CH3(+) ions, which are by far the major products for the reaction of ground state and excited states, are strongly backward scattered in the center of mass frame relative to O(+) parent ions. For the reaction of O(+)((4)S), CH3(+) production also rises with increasing collision energy but with much less efficiency than with O(+) excitation. We found that a mechanism of dissociative charge transfer, mediated by an initial charge transfer step, can account very well for all the observations, indicating that CH3(+) production is associated with the formation of H and O atoms (CH3(+) + H + O) rather than with OH formation by an hydride transfer process (CH3(+) + OH). Therefore, as the CH4(+) production by charge transfer is also associated with O atoms, the fate of oxygen species in these reactions is essentially the O production, except for the reaction of O(+)((4)S), which also

  7. Fuzzification of ASAT's rule based aimpoint selection

    NASA Astrophysics Data System (ADS)

    Weight, Thomas H.

    1993-06-01

    The aimpoint algorithms being developed at Dr. Weight and Associates are based on the concept of fuzzy logic. This approach does not require a particular type of sensor data or algorithm type, but allows the user to develop a fuzzy logic algorithm based on existing aimpoint algorithms and models. This provides an opportunity for the user to upgrade an existing system design to achieve higher performance at minimal cost. Many projects have aimpoint algorithms which are based on 'crisp' logic rule based algorithms. These algorithms are sensitive to glint, corner reflectors, or intermittent thruster firings, and to uncertainties in the a priori estimates of angle of attack. If these projects are continued through to a demonstration involving a launch to hit a target, it is quite possible that the crisp logic approaches will need to be upgraded to handle these important error sources.

  8. First principle simulations on the effects of oxygen vacancy in HfO2-based RRAM

    NASA Astrophysics Data System (ADS)

    Dai, Yuehua; Zhao, Yuanyang; Wang, Jiayu; Xu, Jianbin; Yang, Fei

    2015-01-01

    HfO2-based resistive random access memory (RRAM) takes advantage of oxygen vacancy (V o) defects in its principle of operation. Since the change in resistivity of the material is controlled by the level of oxygen deficiency in the material, it is significantly important to study the performance of oxygen vacancies in formation of conductive filament. Excluding effects of the applied voltage, the Vienna ab initio simulation package (VASP) is used to investigate the orientation and concentration mechanism of the oxygen vacancies based on the first principle. The optimal value of crystal orientation [010] is identified by means of the calculated isosurface plots of partial charge density, formation energy, highest isosurface value, migration barrier, and energy band of oxygen vacancy in ten established orientation systems. It will effectively influence the SET voltage, forming voltage, and the ON/OFF ratio of the device. Based on the results of orientation dependence, different concentration models are established along crystal orientation [010]. The performance of proposed concentration models is evaluated and analyzed in this paper. The film is weakly conductive for the samples deposited in a mixture with less than 4.167at.% of V o contents, and the resistive switching (RS) phenomenon cannot be observed in this case. The RS behavior improves with an increase in the V o contents from 4.167at.% to 6.25at.%; nonetheless, it is found difficult to switch to a stable state. However, a higher V o concentration shows a more favorable uniformity and stability for HfO2-based RRAM.

  9. Wavelength-selective ultraviolet (Mg,Zn)O photodiodes: Tuning of parallel composition gradients with oxygen pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Zhipeng; von Wenckstern, Holger; Lenzner, Jörg; Grundmann, Marius

    2016-06-01

    We report on ultraviolet photodiodes with integrated optical filter based on the wurtzite (Mg,Zn)O thin films. Tuning of the bandgap of filter and active layers was realized by employing a continuous composition spread approach relying on the ablation of a single segmented target in pulsed-laser deposition. Filter and active layers of the device were deposited on opposite sides of a sapphire substrate with nearly parallel compositional gradients. Ensure that for each sample position the bandgap of the filter layer blocking the high energy radiation is higher than that of the active layer. Different oxygen pressures during the two depositions runs. The absorption edge is tuned over 360 meV and the spectral bandwidth of photodiodes is typically 100 meV and as low as 50 meV.

  10. Computer-Based Information Networks: Selected Examples.

    ERIC Educational Resources Information Center

    Hardesty, Larry

    The history, purpose, and operation of six computer-based information networks are described in general and nontechnical terms. In the introduction the many definitions of an information network are explored. Ohio College Library Center's network (OCLC) is the first example. OCLC began in 1963, and since early 1973 has been extending its services…

  11. Selecting supplier combination based on fuzzy multicriteria analysis

    NASA Astrophysics Data System (ADS)

    Han, Zhi-Qiu; Luo, Xin-Xing; Chen, Xiao-Hong; Yang, Wu-E.

    2015-07-01

    Existing multicriteria analysis (MCA) methods are probably ineffective in selecting a supplier combination. Thus, an MCA-based fuzzy 0-1 programming method is introduced. The programming relates to a simple MCA matrix that is used to select a single supplier. By solving the programming, the most feasible combination of suppliers is selected. Importantly, this result differs from selecting suppliers one by one according to a single-selection order, which is used to rank sole suppliers in existing MCA methods. An example highlights such difference and illustrates the proposed method.

  12. Adair-based hemoglobin equilibrium with oxygen, carbon dioxide and hydrogen ion activity.

    PubMed

    Mateják, Marek; Kulhánek, Tomáš; Matoušek, Stanislav

    2015-04-01

    As has been known for over a century, oxygen binding onto hemoglobin is influenced by the activity of hydrogen ions (H⁺), as well as the concentration of carbon dioxide (CO₂). As is also known, the binding of both CO₂and H⁺ on terminal valine-1 residues is competitive. One-parametric situations of these hemoglobin equilibria at specific levels of H⁺, O₂or CO₂are also well described. However, we think interpolating or extrapolating this knowledge into an 'empirical' function of three independent variables has not yet been completely satisfactory. We present a model that integrates three orthogonal views of hemoglobin oxygenation, titration, and carbamination at different temperatures. The model is based only on chemical principles, Adair's oxygenation steps and Van't Hoff equation of temperature dependences. Our model fits the measurements of the Haldane coefficient and CO₂hemoglobin saturation. It also fits the oxygen dissociation curve influenced by simultaneous changes in H⁺, CO₂and O₂, which makes it a strong candidate for integration into more complex models of blood acid-base with gas transport, where any combination of mentioned substances can appear.

  13. Low-temperature selective catalytic reduction of NO with propylene in excess oxygen over the Pt/ZSM-5 catalyst.

    PubMed

    Zhang, Zhixiang; Chen, Mingxia; Jiang, Zhi; Shangguan, Wenfeng

    2011-10-15

    A 0.5 wt% Pt/ZSM-5 catalyst was used for the low-temperature selective catalytic reduction (SCR) of NO with C(3)H(6) in the presence of excess oxygen. Under an atmosphere of 150 ppm NO, 150 ppm C(3)H(6) and 18 vol% O(2) (GHSV 72,000 h(-1)), Pt/ZSM-5 showed remarkably high catalytic performance giving 77.1% NO reduction to N(2) + N(2)O and 79.7% C(3)H(6) conversion to CO(2) simultaneously at 140 °C. The samples were characterized by means of NO temperature programmed desorption (TPD), NO/C(3)H(6) temperature programmed oxidation (TPO), BET surface area, XRD and TEM. The catalytic activities of C(3)H(6) combustion and NO oxidation are improved by well-dispersed platinum significantly. It is found that the enhanced activity of Pt/ZSM-5 for the low-temperature SCR is associated with its outstanding activities in the TPO processes of NO to NO(2) and C(3)H(6) to CO(2) in low temperature range.

  14. Materials selection for long life in LEO: A critical evaluation of atomic oxygen testing with thermal atom systems

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Kuminecz, J.; Leger, L.; Nordine, P.

    1988-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material.

  15. Use of coal as fuel for chemical-looping combustion with Ni-based oxygen carrier

    SciTech Connect

    Gao, Z.P.; Shen, L.H.; Xiao, J.; Qing, C.J.; Song, Q.L.

    2008-12-15

    Chemical-looping combustion is an indirect combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The feasibility of using NiO as an oxygen carrier during chemical-looping combustion of coal has been investigated experimentally at 800-960{degree}C in the present work. The experiments were carried out in a fluidized bed, where the steam acted as the gasification-fluidization medium. Coal gasification and the reaction of oxygen carrier with the water gas take place simultaneously in the reactor. The oxygen carrier particles exhibit high reactivity above 900{degree}C, and the dry basis concentration of CO{sub 2} in the exit gas of the reactor is nearly 95%. The flue gas composition as a function of the reactor temperature and cyclic reduction number is discussed. At 800-960{degree}C, the dry basis concentration of CO{sub 2} in the flue gas presents a monotonously increasing trend, whereas the dry basis concentration of CO, H{sub 2}, and CH{sub 4} decreases monotonously. The concentrations of CO{sub 2}, CO, H{sub 2}, and CH{sub 4} in the flue gas as a function of cyclic reduction number present a para-curve characteristic at 900{degree}C. With the increase of cyclic reduction number, the dry basis concentration of CO{sub 2} decreases remarkably, while the dry basis concentrations of CO, H{sub 2}, and CH{sub 4} increase rapidly. Moreover, the peak value of H{sub 2} concentration is less than that of CO. The performance of the NiO-based oxygen carriers was also evaluated using an X-ray diffractometer and a scanning electron microscope to characterize the solid residues of oxygen carrier. The results indicate that NiO is one of the suitable oxygen carriers for chemical-looping combustion of coal.

  16. Information Gain Based Dimensionality Selection for Classifying Text Documents

    SciTech Connect

    Dumidu Wijayasekara; Milos Manic; Miles McQueen

    2013-06-01

    Selecting the optimal dimensions for various knowledge extraction applications is an essential component of data mining. Dimensionality selection techniques are utilized in classification applications to increase the classification accuracy and reduce the computational complexity. In text classification, where the dimensionality of the dataset is extremely high, dimensionality selection is even more important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection in text mining applications that utilizes information gain. The presented methodology uses information gain of each dimension to change the mutation probability of chromosomes dynamically. Since the information gain is calculated a priori, the computational complexity is not affected. The presented method was tested on a specific text classification problem and compared with conventional genetic algorithm based dimensionality selection. The results show an improvement of 3% in the true positives and 1.6% in the true negatives over conventional dimensionality selection methods.

  17. Origin of the Electrocatalytic Oxygen Reduction Activity of Graphene-Based Catalysts: A Roadmap to Achieve the Best Performance

    PubMed Central

    2015-01-01

    The mutually corroborated electrochemical measurements and density functional theory (DFT) calculations were used to uncover the origin of electrocatalytic activity of graphene-based electrocatalysts for oxygen reduction reaction (ORR). A series of graphenes doped with nonmetal elements was designed and synthesized, and their ORR performance was evaluated in terms of four electrochemical descriptors: exchange current density, on-set potential, reaction pathway selectivity and kinetic current density. It is shown that these descriptors are in good agreement with DFT calculations, allowing derivation of a volcano plot between the ORR activity and the adsorption free energy of intermediates on metal-free materials, similarly as in the case of metallic catalysts. The molecular orbital concept was used to justify this volcano plot, and to theoretically predict the ORR performance of an ideal graphene-based catalyst, the ORR activity of which is comparable to the state-of-the-art Pt catalyst. Moreover, this study may stimulate the development of metal-free electrocatalysts for other key energy conversion processes including hydrogen evolution and oxygen evolution reactions and largely expand the spectrum of catalysts for energy-related electrocatalysis reactions. PMID:24580116

  18. A Class of High Performance Metal-Free Oxygen Reduction Electrocatalysts based on Cheap Carbon Blacks

    PubMed Central

    Sun, Xiujuan; Song, Ping; Zhang, Yuwei; Liu, Changpeng; Xu, Weilin; Xing, Wei

    2013-01-01

    For the goal of practical industrial development of fuel cells, cheap, sustainable and high performance electrocatalysts for oxygen reduction reactions (ORR) which rival those based on platinum (Pt) and other rare materials are highly desirable. In this work, we report a class of cheap and high-performance metal-free oxygen reduction electrocatalysts obtained by co-doping carbon blacks with nitrogen and fluorine (CB-NF).The CB-NF electrocatalysts are highly active and exhibit long-term operation stability and tolerance to poisons during oxygen reduction process in alkaline medium. The alkaline direct methanol fuel cell with the best CB-NF as cathode (3 mg/cm2) outperforms the one with commercial platinum-based cathode (3 mg Pt/cm2). To the best of our knowledge, these are among the most efficient non-Pt based electrocatalysts. Since carbon blacks are 10,000 times cheaper than Pt, these CB-NF electrocatalysts possess the best price/performance ratio for ORR, and are the most promising alternatives to Pt-based ones to date. PMID:23974295

  19. A Rule-Based Industrial Boiler Selection System

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Khalil, S. N.; Karjanto, J.; Tee, B. T.; Wahidin, L. S.; Chen, W.; Rauterberg, G. W. M.; Sivarao, S.; Lim, T. L.

    2015-09-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes, super heaters, air heaters and economizers. The selection of the boiler is very important to the industry for conducting the operation system successfully. The selection criteria are based on rule based expert system and multi-criteria weighted average method. The developed system consists of Knowledge Acquisition Module, Boiler Selection Module, User Interface Module and Help Module. The system capable of selecting the suitable boiler based on criteria weighted. The main benefits from using the system is to reduce the complexity in the decision making for selecting the most appropriate boiler to palm oil process plant.

  20. Oxygen reduction catalyzed by a fluorinated tetraphenylporphyrin free base at liquid/liquid interfaces.

    PubMed

    Hatay, Imren; Su, Bin; Méndez, Manuel A; Corminboeuf, Clémence; Khoury, Tony; Gros, Claude P; Bourdillon, Mélanie; Meyer, Michel; Barbe, Jean-Michel; Ersoz, Mustafa; Zális, Stanislav; Samec, Zdenek; Girault, Hubert H

    2010-10-06

    The diprotonated form of a fluorinated free base porphyrin, namely 5-(p-aminophenyl)-10,15,20-tris(pentafluorophenyl)porphyrin (H(2)FAP), can catalyze the reduction of oxygen by a weak electron donor, namely ferrocene (Fc). At a water/1,2-dichloroethane interface, the interfacial formation of H(4)FAP(2+) is observed by UV-vis spectroscopy and ion-transfer voltammetry, due to the double protonation of H(2)FAP at the imino nitrogen atoms in the tetrapyrrole ring. H(4)FAP(2+) is shown to bind oxygen, and the complex in the organic phase can easily be reduced by Fc to produce hydrogen peroxide as studied by two-phase reactions with the Galvani potential difference between the two phases being controlled by the partition of a common ion. Spectrophotometric measurements performed in 1,2-dichloroethane solutions clearly evidence that reduction of oxygen by Fc catalyzed by H(4)FAP(2+) only occurs in the presence of the tetrakis(pentafluorophenyl)borate (TB(-)) counteranion in the organic phase. Finally, ab initio computations support the catalytic activation of H(4)FAP(2+) on oxygen.

  1. Spectral-profile-based algorithm for hemoglobin oxygen saturation determination from diffuse reflectance spectra

    PubMed Central

    Chen, Po-Ching; Lin, Wei-Chiang

    2011-01-01

    Variations of hemoglobin (Hb) oxygenation in tissue provide important indications concerning the physiological conditions of tissue, and the data related to these variations are of intense interest in medical research as well as in clinical care. In this study, we derived a new algorithm to estimate Hb oxygenation from diffuse reflectance spectra. The algorithm was developed based on the unique spectral profile differences between the extinction coefficient spectra of oxy-Hb and deoxy-Hb within the visible wavelength region. Using differential wavelet transformation, these differences were quantified using the locations of certain spectral features, and, then, they were related to the oxygenation saturation level of Hb. The applicability of the algorithm was evaluated using a set of diffuse reflectance spectra produced by a Monte Carlo simulation model of photon migration and by tissue phantoms experimentally. The algorithm was further applied to the diffuse reflectance spectra acquired from in vivo experiments to demonstrate its clinical utility. The validation and evaluation results concluded that the algorithm is applicable to various tissue types (i.e., scattering properties) and can be easily used in conjunction with a diverse range of probe geometries for real-time monitoring of Hb oxygenation. PMID:21559121

  2. Reinterpreting the importance of oxygen-based biodegradation in chloroethene-contaminated groundwater

    USGS Publications Warehouse

    Bradley, Paul M.

    2011-01-01

    Chlororespiration is common in shallow aquifer systems under conditions nominally identified as anoxic. Consequently, chlororespiration is a key component of remediation at many chloroethene-contaminated sites. In some instances, limited accumulation of reductive dechlorination daughter products is interpreted as evidence that natural attenuation is not adequate for site remediation. This conclusion is justified when evidence for parent compound (tetrachloroethene, PCE, or trichloroethene, TCE) degradation is lacking. For many chloroethene-contaminated shallow aquifer systems, however, nonconservative losses of the parent compounds are clear but the mass balance between parent compound attenuation and accumulation of reductive dechlorination daughter products is incomplete. Incomplete mass balance indicates a failure to account for important contaminant attenuation mechanisms and is consistent with contaminant degradation to nondiagnostic mineralization products like CO2. While anoxic mineralization of chloroethene compounds has been proposed previously, recent results suggest that oxygen-based mineralization of chloroethenes also can be significant at dissolved oxygen concentrations below the currently accepted field standard for nominally anoxic conditions. Thus, reassessment of the role and potential importance of low concentrations of oxygen in chloroethene biodegradation are needed, because mischaracterization of operant biodegradation processes can lead to expensive and ineffective remedial actions. A modified interpretive framework is provided for assessing the potential for chloroethene biodegradation under different redox conditions and the probable role of oxygen in chloroethene biodegradation.

  3. CYP450 Enzymes Effect Oxygen-Dependent Reduction of Azide-Based Fluorogenic Dyes

    PubMed Central

    2016-01-01

    Azide-containing compounds have broad utility in organic synthesis and chemical biology. Their use as powerful tools for the labeling of biological systems in vitro has enabled insights into complex cellular functions. To date, fluorogenic azide-containing compounds have primarily been employed in the context of click chemistry and as sensitive functionalities for hydrogen sulfide detection. Here, we report an alternative use of this functionality: as fluorogenic probes for the detection of depleted oxygen levels (hypoxia). Oxygen is imperative to all life forms, and probes that enable quantification of oxygen tension are of high utility in many areas of biology. Here we demonstrate the ability of an azide-based dye to image hypoxia in a range of human cancer cell lines. We have found that cytochrome P450 enzymes are able to reduce these probes in an oxygen-dependent manner, while hydrogen sulfide does not play an important role in their reduction. These data indicate that the azide group is a new bioreductive functionality that can be employed in prodrugs and dyes. We have uncovered a novel mechanism for the cellular reduction of azides, which has implications for the use of click chemistry in hypoxia. PMID:28149949

  4. Computational investigation of reactive to nonreactive capture of carbon dioxide by oxygen-containing Lewis bases.

    PubMed

    Teague, Craig M; Dai, Sheng; Jiang, De-en

    2010-11-04

    Recent work has shown that room temperature ionic liquid systems reactively absorb CO(2) and offer distinct advantages over current CO(2) capture technologies. Here we computationally evaluated CO(2) interaction energies with a series of oxygen-containing Lewis base anions (including cyclohexanolate and phenolate and their respective derivatives). Our results show that the interaction energy can be tuned across a range from reactive to nonreactive (or physical) interactions. We evaluated different levels of theory as well as possible corrections to the interaction energy, and we explained our calculated trends on the basis of properties of the individual anions. We found that the interaction energy between CO(2) and the Lewis bases examined here correlates most strongly with the atomic charge on the oxygen atom. This insight provides a useful handle to tune the anion-CO(2) interaction energy for future experimental and computational studies of novel CO(2) capture systems.

  5. Yields of selected constituents in base flow and stormflow in urban watersheds of Jefferson County, Kentucky, 1988-92

    USGS Publications Warehouse

    Evaldi, R.D.; Moore, B.L.

    1994-01-01

    Mean annual base-flow and stormflow yields of selected water-quality constituents from urban watersheds of Jefferson County, Kentucky, were estimated for 1988-92 to help describe the pro portions of constituent transport from point and nonpoint sources. Yield estimates were based on streamflow and water-quality data collected from a network of 25 stream sites in the county. Water- quality data for which estimates of base-flow and stormflow yields were computed include dissolved oxygen and oxygen demand, dissolved solids, suspended and volatile solids, nutrients, metals, and synthetic organic compounds. Transport of most constituents occurred primarily during stormflow. Chemical oxygen demand was related to the amount of industrial land use in each watershed, nitrite and phosphorus yields were inversely proportional to the amount of nonurban and commercial land use in each watershed, and zinc yields were inversely related to the degree of nonurban land use in each watershed.

  6. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOEpatents

    Natesan, K.

    1992-11-17

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9--30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000--1100 C. 7 figs.

  7. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOEpatents

    Natesan, Krishnamurti

    1992-01-01

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9-30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000.degree.-1100.degree. C.

  8. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, Paul

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  9. Shield support selection based on geometric characteristics of coal seam

    SciTech Connect

    K. Goshtasbi; K. Oraee; F. Khakpour-yeganeh

    2006-01-15

    The most initial investment in longwall face equipping is the cost of powered support. Selection of proper shields for powered supports is based on load, geometric characterization of coal seams and economical considerations.

  10. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  11. Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.

  12. Selective catalytic reduction of nitric oxide by ammonia over Cu-FAU catalysts in oxygen-rich atmosphere

    SciTech Connect

    Kieger, S.; Delahay, G.; Coq, B.; Neveu, B.

    1999-04-25

    The selective catalytic reduction (SCR) of NO (2000 ppm) by NH{sub 3} (2000 ppm) in the presence of oxygen (3%) was carried out on Cu(x)-FAU (x = theoretical exchange degree) catalysts prepared by ion exchange or impregnation and calcined at 773 K. The samples were characterized by UV-visible and IR spectroscopy, temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), and temperature-programmed desorption (TPD) of NH{sub 3}. Ion-exchanged Cu(x)-FAU contains mainly Cu ions located in both supercages and sodalite cavities. In contrast, the impregnated sample contains mainly CuO. Ionic Cu is more active and selective to N{sub 2} than CuO in the temperature range 450--750 K. In contrast, CuO aggregates lead to significant formation of N{sub 2}O with a bell-shaped dependency centered at ca. 540 K. IR spectroscopy and TPD of NH{sub 3} show that the last NH{sub 3} ligand was removed from Cu ions above 550 K. The SCR on Cu ions obeys a Cu{sup 2+} {leftrightarrow} Cu{sup +} redox mechanism in which Cu{sup 2+} is reduced to Cu{sup +} by NO + NH{sub 3} and Cu{sup +} is oxidized to Cu{sup 2+} by NO + O{sub 2}, with evolution of N{sub 2} and H{sub 2}O. Both reduction and oxidation steps of Cu in the catalytic cycle encompass the reduction of NO in agreement with the SCR of {sup 14}NO with {sup 15}NH{sub 3}. A new overall SCR reaction below 550 K was proposed: 10NH{sub 3} + 13NO + O{sub 2} {r_arrow} 15H{sub 2}O + (23/2)N{sub 2}. The active sites below 550 K are formed by several Cu neighbor ions, maybe [CuOCu]{sup 2+}, probably located in the supercages. All Cu ions become active above 600 K. The partial reduction of NO to N{sub 2}O occurs at high temperature (>650 K) on exchanged samples. This formation, up to 17% at full NO conversion, is likely to take place on Cu ions located within the sodalite cavities.

  13. Vasculature based model for characterizing the oxygen transport in skin tissues - analogy to the Weinbaum-Jiji bioheat equation

    NASA Astrophysics Data System (ADS)

    Ji, Yan; Liu, Jing

    Based on the conceptual three-layer microvascular structure of skin tissues proposed by Weinbaum et al. [20-25] and in analogy to the well known Weinbaum-Jiji (W-J) bioheat equation, a new oxygen transport model was established in this paper, which collectively included the contributions of the vascular geometry and the blood flow condition. The new one-dimensional three-layer oxygen transport model was then applied to predict the average oxygen concentration distribution in skin tissues and numerical solutions for the boundary value problem coupling the three layers were obtained. A simple expression for the tensor diffusivity (Deff) of oxygen transport over the deep tissue layer was presented, which was orders of magnitude higher than the intrinsic diffusivity (Dt) in tissue without blood flow. Effects of blood flow velocity and vascular geometry to the oxygen transport were investigated. Calculations indicated that the vascular geometry had significant effects on oxygen transport. The oxygen exchange between the arteries and veins was relatively small for the deep tissue layer. Further, the average oxygen concentration gradient appears low in intermediate layer due to large capillary perfusion. The theoretical results were implemented to interpret some previous experimental results and a better understanding on the oxygen transport across the vascularized living tissues was obtained. The strategy proposed in this paper may provide a feasible way to comprehensively characterize the oxygen transport behaviors in living tissues with real and complex vasculature.

  14. Fiber-optic Singlet Oxygen [1O2 (1Δg)] Generator Device Serving as a Point Selective Sterilizer

    PubMed Central

    Aebisher, David; Zamadar, Matibur; Mahendran, Adaickapillai; Ghosh, Goutam; McEntee, Catherine; Greer, Alexander

    2016-01-01

    Traditionally, Type II heterogeneous photo-oxidations produce singlet oxygen via external irradiation of a sensitizer and external supply of ground-state oxygen. A potential improvement is reported here. A hollow-core fiber-optic device was developed with an “internal” supply of light and flowing oxygen, and a porous photosensitizer-end capped configuration. Singlet oxygen was delivered through the fiber tip. The singlet oxygen steady-state concentration in the immediate vicinity of the probe tip was ca 20 fM by N-benzoyl-DL-methionine trapping. The device is portable and the singlet oxygen-generating tip is maneuverable, which opened the door to simple disinfectant studies. Complete Escherichia coli inactivation was observed in 2 h when the singlet oxygen sensitizing probe tip was immersed in 0.1 mL aqueous samples of 0.1–4.4 × 107 cells. Photobleaching of the probe tip occurred after ca 12 h of use, requiring baking and sensitizer reloading steps for reuse. PMID:20497367

  15. Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Liu, Chung-Chiun

    2011-01-01

    An ambient temperature oxygen microsensor, based on a Nafion polymer electrolyte, has been developed and was microfabricated using thin-film technologies. A challenge in the operation of Nafion-based sensor systems is that the conductivity of Nafion film depends on the humidity in the film. Nafion film loses conductivity when the moisture content in the film is too low, which can affect sensor operation. The advancement here is the identification of a method to retain the operation of the Nafion films in lower humidity environments. Certain salts can hold water molecules in the Nafion film structure at room temperature. By mixing salts with the Nafion solution, water molecules can be homogeneously distributed in the Nafion film increasing the film s hydration to prevent Nafion film from being dried out in low-humidity environment. The presence of organics provides extra sites in the Nafion film to promote proton (H+) mobility and thus improving Nafion film conductivity and sensor performance. The fabrication of ambient temperature oxygen microsensors includes depositing basic electrodes using noble metals, and metal oxides layer on one of the electrode as a reference electrode. The use of noble metals for electrodes is due to their strong catalytic properties for oxygen reduction. A conducting polymer Nafion, doped with water-retaining components and extra sites facilitating proton movement, was used as the electrolyte material, making the design adequate for low humidity environment applications. The Nafion solution was coated on the electrodes and air-dried. The sensor operates at room temperature in potentiometric mode, which measures voltage differences between working and reference electrodes in different gases. Repeat able responses to 21-percent oxygen in nitrogen were achieved using nitrogen as a baseline gas. Detection of oxygen from 7 to 21 percent has also been demonstrated. The room-temperature oxygen micro sensor developed has extremely low power

  16. FEM-based oxygen consumption and cell viability models for avascular pancreatic islets

    PubMed Central

    Buchwald, Peter

    2009-01-01

    Background The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Pancreatic islets (islets of Langerhans) are particularly susceptible due to their relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite element method (FEM) based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media. Methods Two- and three-dimensional models were built in COMSOL Multiphysics using the convection and diffusion as well as the incompressible Navier-Stokes fluid dynamics application modes. Oxygen consumption was assumed to follow Michaelis-Menten-type kinetics and to cease when local concentrations fell below a critical threshold; in a dynamic model, it was also allowed to increase with increasing glucose concentration. Results Partial differential equation (PDE) based exploratory cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions have been implemented for fully scaled cell culture geometries with 100, 150, and 200 μm diameter islets as representative. Calculated oxygen concentrations and intra-islet regions likely to suffer from hypoxia-related necrosis obtained for traditional flask-type cultures, oxygen-permeable silicone-rubber membrane bottom cultures, and perifusion chambers with flowing media and varying incoming glucose levels are presented in detail illustrated with corresponding colour-coded figures and animations. Conclusion Results of the computational models are, as a first estimate, in good quantitative agreement with existing experimental evidence, and they confirm that during culture, hypoxia is often a problem for non-vascularised islet

  17. Oxygen vacancy effects in HfO2-based resistive switching memory: First principle study

    NASA Astrophysics Data System (ADS)

    Dai, Yuehua; Pan, Zhiyong; Wang, Feifei; Li, Xiaofeng

    2016-08-01

    The work investigated the shape and orientation of oxygen vacancy clusters in HfO2-base resistive random access memory (ReRAM) by using the first-principle method based on the density functional theory. Firstly, the formation energy of different local Vo clusters was calculated in four established orientation systems. Then, the optimized orientation and charger conductor shape were identified by comparing the isosurface plots of partial charge density, formation energy, and the highest isosurface value of oxygen vacancy. The calculated results revealed that the [010] orientation was the optimal migration path of Vo, and the shape of system D4 was the best charge conductor in HfO2, which effectively influenced the SET voltage, formation voltage and the ON/OFF ratio of the device. Afterwards, the PDOS of Hf near Vo and total density of states of the system D4_010 were obtained, revealing the composition of charge conductor was oxygen vacancy instead of metal Hf. Furthermore, the migration barriers of the Vo hopping between neighboring unit cells were calculated along four different orientations. The motion was proved along [010] orientation. The optimal circulation path for Vo migration in the HfO2 super-cell was obtained.

  18. Reduction kinetics of iron-based oxygen carriers using methane for chemical-looping combustion

    NASA Astrophysics Data System (ADS)

    Luo, Ming; Wang, Shuzhong; Wang, Longfei; Lv, Mingming

    2014-12-01

    The performance of three iron-based oxygen carriers (pure Fe2O3, synthetic Fe2O3/MgAl2O4 and iron ore) in reduction process using methane as fuel is investigated in thermo-gravimetric analyzer (TGA). The reaction rate and mechanism between three oxygen carriers and methane are investigated. On the basis of reactivity in reduction process, it may be concluded that Fe2O3/MgAl2O4 has the best reactivity with methane. The reaction rate constant is found to be in the following order: Fe2O3/MgAl2O4 > pure Fe2O3 > iron ore and the activation energy varies between 49 and 184 kJ mol-1. Reduction reactions for the pure Fe2O3 and synthetic Fe2O3/MgAl2O4 are well represented by the reaction controlling mechanism, and for the iron ore the phase-boundary controlled (contracting cylinder) model dominates. The particles of iron ore and synthetic Fe2O3/MgAl2O4 have better stability than that of pure Fe2O3 when the reaction temperature is limited to lower than 1223 K. These preliminary results suggest that iron-based mixed oxygen carrier particles are potential to be used in methane chemical looping process, but the reactivity of the iron ore needs to be increased.

  19. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions

    PubMed Central

    Huang, Yi-Jen; Chao, Shih-Chun; Lien, Der-Hsien; Wen, Cheng-Yen; He, Jr-Hau; Lee, Si-Chen

    2016-01-01

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we show that the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (<±1 V) and self-compliance to current up to 50 μA. When it is used for threshold switching, the low threshold current is beneficial for improving the device selectivity. The variation of oxygen distribution measured by energy dispersive X-ray spectroscopy and scanning transmission electron microscopy indicates the formation or rupture of conducting filaments in the device at different resistance states. It is therefore suggested that the push and pull actions of oxygen ions in the amorphous TiOx and polycrystalline TiOx films during the voltage sweep account for the memory switching and threshold switching properties in the device. PMID:27052322

  20. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions.

    PubMed

    Huang, Yi-Jen; Chao, Shih-Chun; Lien, Der-Hsien; Wen, Cheng-Yen; He, Jr-Hau; Lee, Si-Chen

    2016-04-07

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we show that the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (<± 1 V) and self-compliance to current up to 50 μA. When it is used for threshold switching, the low threshold current is beneficial for improving the device selectivity. The variation of oxygen distribution measured by energy dispersive X-ray spectroscopy and scanning transmission electron microscopy indicates the formation or rupture of conducting filaments in the device at different resistance states. It is therefore suggested that the push and pull actions of oxygen ions in the amorphous TiOx and polycrystalline TiOx films during the voltage sweep account for the memory switching and threshold switching properties in the device.

  1. Suppression of Cancer Growth by Nonviral Gene Therapy Based on a Novel Reactive Oxygen Species-responsive Promoter

    PubMed Central

    Policastro, Lucía L; Ibañez, Irene L; Durán, Hebe A; Soria, Gastón; Gottifredi, Vanesa; Podhajcer, Osvaldo L

    2009-01-01

    Increased reactive oxygen species (ROS) production has been reported as a distinctive feature of different pathologies including cancer. Therefore, we assessed whether increased ROS production in the cancer microenvironment could be selectively exploited to develop a selective anticancer therapy. For this purpose, we constructed a novel chimeric promoter, based on a ROS-response motif located in the VEGF gene promoter placed, in turn, downstream of a second ROS-response motif obtained from the early growth response 1 (Egr-1) gene promoter. The activity of the chimeric promoter was largely dependent on variations in intracellular ROS levels and showed a high inducible response to exogenous H2O2. Transient expression of the thymidine kinase (TK) gene driven by the chimeric promoter, followed by gancyclovir (GCV) administration, inhibited human colorectal cancer and melanoma cell growth in vitro and in vivo. Moreover, electrotransfer of the TK gene followed by GCV administration exerted a potent therapeutic effect on established tumors. This response was improved when combined with chemotherapeutic drugs. Thus, we show for the first time that a distinctive pro-oxidant state can be used to develop new selective gene therapeutics for cancer. PMID:19436270

  2. Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems.

    PubMed

    Zhang, Wei; Lai, Wenzhen; Cao, Rui

    2017-02-22

    Globally increasing energy demands and environmental concerns related to the use of fossil fuels have stimulated extensive research to identify new energy systems and economies that are sustainable, clean, low cost, and environmentally benign. Hydrogen generation from solar-driven water splitting is a promising strategy to store solar energy in chemical bonds. The subsequent combustion of hydrogen in fuel cells produces electric energy, and the only exhaust is water. These two reactions compose an ideal process to provide clean and sustainable energy. In such a process, a hydrogen evolution reaction (HER), an oxygen evolution reaction (OER) during water splitting, and an oxygen reduction reaction (ORR) as a fuel cell cathodic reaction are key steps that affect the efficiency of the overall energy conversion. Catalysts play key roles in this process by improving the kinetics of these reactions. Porphyrin-based and corrole-based systems are versatile and can efficiently catalyze the ORR, OER, and HER. Because of the significance of energy-related small molecule activation, this review covers recent progress in hydrogen evolution, oxygen evolution, and oxygen reduction reactions catalyzed by porphyrins and corroles.

  3. Atomic Oxygen Sensors Based on Nanograin ZnO Films Prepared by Pulse Laser Deposition

    SciTech Connect

    Wang Yunfei; Chen Xuekang; Li Zhonghua; Zheng Kuohai; Wang Lanxi; Feng Zhanzu; Yang Shengsheng

    2009-01-05

    High-quality nanograin ZnO thin films were deposited on c-plane sapphire (Al{sub 2}O{sub 3}) substrates by pulse laser deposition (PLD). Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were used to characterize the samples. The structural and morphological properties of ZnO films under different deposition temperature have been investigated before and after atomic oxygen (AO) treatment. XRD has shown that the intensity of the (0 0 2) peak increases and its FWHM value decreases after AO treatment. The AO sensing characteristics of nano ZnO film also has been investigated in a ground-based atomic oxygen simulation facility. The results show that the electrical conductivity of nanograin ZnO films decreases with increasing AO fluence and that the conductivity of the films can be recovered by heating.

  4. Ignition characteristics of the nickel-based alloy UNS N07718 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, James W.; Billiard, Phillip A.; Hurley, James A.; Mcdermott, Kathleen M.; Vazquez, Isaura

    1989-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel based alloy UNS N07718. Ignition of the alloy was achieved by heating the top. It was found that the alloy would autoheat to destruction from temperatures below the solidus temperature. In addition, endothermic events occurred as the alloy was heated, many at reproducible temperatures. Many endothermic events occurred prior to abrupt increases in surface temperature and appeared to accelerate the rate of increase in specimen temperature. It appeared that the source of some endotherms may increase the oxidation rate of the alloy. Ignition parameters are defined and the temperatures at which these parameters occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  5. Comparison of the Pharmacokinetic Properties of Hemoglobin-Based Oxygen Carriers

    PubMed Central

    Taguchi, Kazuaki; Yamasaki, Keishi; Maruyama, Toru; Otagiri, Masaki

    2017-01-01

    Hemoglobin (Hb) is an ideal material for use in the development of an oxygen carrier in view of its innate biological properties. However, the vascular retention of free Hb is too short to permit a full therapeutic effect because Hb is rapidly cleared from the kidney via glomerular filtration or from the liver via the haptogloblin-CD 163 pathway when free Hb is administered in the blood circulation. Attempts have been made to develop alternate acellular and cellular types of Hb based oxygen carriers (HBOCs), in which Hb is processed via various routes in order to regulate its pharmacokinetic properties. These HBOCs have been demonstrated to have superior pharmacokinetic properties including a longer half-life than the Hb molecule in preclinical and clinical trials. The present review summarizes and compares the pharmacokinetic properties of acellular and cellular type HBOCs that have been developed through different approaches, such as polymerization, PEGylation, cross-linking, and encapsulation. PMID:28335469

  6. Different working mechanisms for a graphene resistive memory based on oxygen-ion transport

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun

    2017-01-01

    A graphene sheet was used as one of the electrodes of a HfO2 metal-oxide-based resistive random access memory. We find dramatic differences in the device characteristics as voltages with opposite polarities are used to form the resistive memory devices. Using experimental measurements of the switching characteristics and the corresponding low and high resistance state, we compare the two different operating modes of a graphene-electrode-based resistive memory. Using a Raman raster scanning map, we verify that the transport direction of oxygen ions contributes to such dramatic differences in the device's switching characteristics.

  7. Object-based selection is contingent on attentional control settings.

    PubMed

    Taylor, J Eric T; Rajsic, Jason; Pratt, Jay

    2016-05-01

    The visual system allocates attention in object-based and location-based modes. However, the question of when attention selects objects and when it selects locations remains poorly understood. In this article, we present variations on two classic paradigms from the object-based attention literature, in which object-based effects are observed only when the object feature matches the task goal of the observer. In Experiment 1, covert orienting was influenced by task-irrelevant rectangles, but only when the target color matched the rectangle color. In Experiment 2, the region of attentional focus was adjusted to the size of task-irrelevant objects, but only when the target color matched the object color. In Experiment 3, we ruled out the possibility that contingent object-based selection is caused by color-based intratrial priming. These demonstrations of contingent object-based attention suggest that object-based selection is neither mandatory nor default, and that object-based effects are contingent on simple, top-down attentional control settings.

  8. A microarray-based method to perform nucleic acid selections.

    PubMed

    Aminova, Olga; Disney, Matthew D

    2010-01-01

    This method describes a microarray-based platform to perform nucleic acid selections. Chemical ligands to which a nucleic acid binder is desired are immobilized onto an agarose microarray surface; the array is then incubated with an RNA library. Bound RNA library members are harvested directly from the array surface via gel excision at the position on the array where a ligand was immobilized. The RNA is then amplified via RT-PCR, cloned, and sequenced. This method has the following advantages over traditional resin-based Systematic Evolution of Ligands by Exponential Enrichment (SELEX): (1) multiple selections can be completed in parallel on a single microarray surface; (2) kinetic biases in the selections are mitigated since all RNA binders are harvested from an array via gel excision; (3) the amount of chemical ligand needed to perform a selection is minimized; (4) selections do not require expensive resins or equipment; and (5) the matrix used for selections is inexpensive and easy to prepare. Although this protocol was demonstrated for RNA selections, it should be applicable for any nucleic acid selection.

  9. A Molecular Selection Index Method Based on Eigenanalysis

    PubMed Central

    Cerón-Rojas, J. Jesús; Castillo-González, Fernando; Sahagún-Castellanos, Jaime; Santacruz-Varela, Amalio; Benítez-Riquelme, Ignacio; Crossa, José

    2008-01-01

    The traditional molecular selection index (MSI) employed in marker-assisted selection maximizes the selection response by combining information on molecular markers linked to quantitative trait loci (QTL) and phenotypic values of the traits of the individuals of interest. This study proposes an MSI based on an eigenanalysis method (molecular eigen selection index method, MESIM), where the first eigenvector is used as a selection index criterion, and its elements determine the proportion of the trait's contribution to the selection index. This article develops the theoretical framework of MESIM. Simulation results show that the genotypic means and the expected selection response from MESIM for each trait are equal to or greater than those from the traditional MSI. When several traits are simultaneously selected, MESIM performs well for traits with relatively low heritability. The main advantages of MESIM over the traditional molecular selection index are that its statistical sampling properties are known and that it does not require economic weights and thus can be used in practical applications when all or some of the traits need to be improved simultaneously. PMID:18716338

  10. Application of case-based reasoning for machining parameters selection

    NASA Astrophysics Data System (ADS)

    Grabowik, C.; Kalinowski, K.; Krenczyk, D.; Paprocka, I.; Kempa, W.

    2016-08-01

    Process planning, as one of the most important stage of the technological production preparation, consists in selection of manufacturing operations taking into account the minimal manufacturing cost. The minimal manufacturing cost could be achieved by selection of the best sequence of manufacturing operations, machine tools, manufacturing tools, and accompanying machining parameters selection. On the other hand, it is almost impossible, especially in industrial conditions, to design an optimal process plan, first of all due to restrictions imposed by the installed in the factory machine park. Taking into consideration above, machining parameter selection seems to be one of the potential areas of optimization. In manual process planning process engineers select machining parameters using selection rules and data stored in manuals and tool catalogues. It makes this process time and labour consuming and non-error free. On the other hand, in workshop practice, machine operators select parameters having their skills and habits in mind. It could be a reason for suboptimal process planning. Considering this, new methods of machining parameters selection free of human factor influence are still sought. In our approach, we propose to apply case-based reasoning for machining parameter selection. In the paper, a detailed description of our approach is presented.

  11. Anthropometric-based selection and sprint kayak training in children.

    PubMed

    Aitken, D A; Jenkins, D G

    1998-08-01

    A 12 week kayak training programme was evaluated in children who either had or did not have the anthropometric characteristics identified as being unique to senior elite sprint kayakers. Altogether, 234 male and female school children were screened to select 10 children with and 10 children without the identified key anthropometric characteristics. Before and after training, the children completed an all-out 2 min kayak ergometer simulation test; measures of oxygen consumption, plasma lactate and total work accomplished were recorded. In addition, a 500 m time trial was performed at weeks 3 and 12. The coaches were unaware which 20 children possessed those anthropometric characteristics deemed to favour development of kayak ability. All children improved in both the 2 min ergometer simulation test and 500 m time trial. However, boys who were selected according to favourable anthropometric characteristics showed greater improvement than those without such characteristics in the 2 min ergometer test only. In summary, in a small group of children selected according to anthropometric data unique to elite adult kayakers, 12 weeks of intensive kayak training did not influence the rate of improvement of on-water sprint kayak performance.

  12. Development and performance of Cu-based oxygen carriers for chemical-looping combustion

    SciTech Connect

    Chuang, S.Y.; Dennis, J.S.; Hayhurst, A.N.; Scott, S.A.

    2008-07-15

    Chemical-looping combustion (CLC) has the inherent property of separating the product CO{sub 2} from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. This paper focuses on the development and performance of a suitable Cu-based oxygen carrier for burning solid fuels using CLC. Carriers were made from CuO and Al{sub 2}O{sub 3} (as a support) in three different ways: mechanical mixing, wet impregnation, and co-precipitation. The reactivity of these solids was assessed by measuring their ability to oxidize CO, when in a hot bed of sand fluidized by a mixture of CO and N{sub 2}. After that, the Cu in the carrier was oxidized back to CuO by fluidizing the hot bed with air. These oxygen carriers were tested over many such cycles of reduction and oxidation. This work confirms that supporting CuO on Al{sub 2}O{sub 3} enhances the ability of the resulting particles to withstand mechanical and thermal stresses in a fluidized bed. Also, only co-precipitation produces particles that have a high loading of copper and do not agglomerate at 800-900 C. The performance of co-precipitated particles of CuO/Al{sub 2}O{sub 3} at oxidizing CO to CO{sub 2} was significantly affected by the pH of the solution in which precipitation occurred: a high pH (9.7) gave particles that reacted completely and rapidly. After 18 cycles, such a co-precipitated carrier with 82.5 wt% CuO yielded all its oxygen when oxidizing CO. X-ray analysis showed that when heated, CuO reacted with Al{sub 2}O{sub 3} to form CuAl{sub 2}O{sub 4}, which was fully reducible, so CuO experienced no loss in extent of reaction after forming this mixed oxide. An increase in operating temperature from 800 to 900 C led to the CuO providing slightly less oxygen; this was because a little of the CuO decomposed to Cu{sub 2}O between its reduction and oxidation, when the bed was fluidized by pure N{sub 2}. (author)

  13. Feature Selection for Neural Network Based Stock Prediction

    NASA Astrophysics Data System (ADS)

    Sugunnasil, Prompong; Somhom, Samerkae

    We propose a new methodology of feature selection for stock movement prediction. The methodology is based upon finding those features which minimize the correlation relation function. We first produce all the combination of feature and evaluate each of them by using our evaluate function. We search through the generated set with hill climbing approach. The self-organizing map based stock prediction model is utilized as the prediction method. We conduct the experiment on data sets of the Microsoft Corporation, General Electric Co. and Ford Motor Co. The results show that our feature selection method can improve the efficiency of the neural network based stock prediction.

  14. Selected Styles in Web-Based Educational Research

    ERIC Educational Resources Information Center

    Mann, Bruce, Ed.

    2006-01-01

    "Selected Styles in Web-Based Educational Research" is concerned with the most common research styles in Web-based teaching or learning. It is intended for practitioners, educators and students, who wish to learn how to conduct research in online teaching and learning, and helps define style in educational research methodology. To…

  15. An optical sensor for monitoring of dissolved oxygen based on phase detection

    NASA Astrophysics Data System (ADS)

    Feng, Weiwei; Zhou, Na; Chen, Lingxin; Li, Bowei

    2013-05-01

    Dissolved oxygen (DO) monitoring is of vital importance to water treatment, sewage treatment, aquaculture and biological research. The traditional method for DO detection is an electrochemical method called the Clark electrode. This electrochemical method has been widely used as it is simple and inexpensive; however, the critical drawback for this kind of sensor is that it is easily affected by pH variations, and by the concentration of H2S and SO2. Optical sensing for DO detection is a newly developed technology, which can avoid most of the drawbacks of the electrochemical sensors. A DO sensor using fluorescence detection is described in this paper. The oxygen concentration measurement principle is based on optical phase detection, which is more precise than the traditional intensity detection method. Emission is carried out by a low-cost, specially designed light emitting diode (LED) source. To avoid an unwanted phase shift, a reference LED is used to improve the degree of accuracy. The sensing material for fluorescence is a ruthenium complex. A discrete Fourier transform (DFT) algorithm was used for the phase calculation. The system was designed into a stainless steel probe, and dissolved oxygen concentration measurement results for various applications are presented in this paper.

  16. Ground-Based Tests of Spacecraft Polymeric Materials under OXY-GEN Plasma-Beam

    NASA Astrophysics Data System (ADS)

    Chernik, Vladimir; Novikov, Lev; Gaidar, Anna

    2016-07-01

    Spacecraft LEO mission is accompanied by destruction of polymeric material surface under influence of atomic oxygen flow. Sources of molecular, plasma and ion beams are used for the accelerated ground-based tests of spacecraft materials. In the work application of oxygen plasma accelerator of a duoplasmatron type is described. Plasma particles have been accelerated up to average speed of 13-16 km/s. Influence of such beam on materials leads to more intensive destruction of polymers than in LEO. This fact allows to execute tests in the accelerated time scale by a method of an effective fluence. Special measures were given to decrease a concentration of both gaseous and electrode material impurities in the oxygen beam. In the work the results of simulative tests of spacecraft materials and experiments on LEO are considered. Comparison of plasma beam simulation with LEO data has shown conformity for structures of a number of polymeric materials. The relative erosion yields (normalized with respect to polyimide) of the tested materials are shown practically equal to those in LEO. The obtained results give grounds for using the plasma-generation mode with ion energies of 20-30 eV to accelerated testing of spacecraft materials for long -term LEO missions.

  17. Ignition characteristics of the nickel-based alloy UNS N07001 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Billiard, P. A.

    1990-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel-based alloy UNS N07001. Ignition of the alloy was achieved by heating the top surface of a cylindrical specimen with a continuous-wave CO2 laser. Two heating procedures were used. In the first, laser power was adjusted to maintain an approximately linear increase in surface temperature. In the second, laser power was periodically increased until autoheating (self-heating) was established. It was found that the alloy would autoheat to combustion from temperatures below the solidus temperature. In addition, the alloy had a tendency to develop combustion zones (hot spots) at high oxygen pressures when the incremental (step) heating test mode was used. Unique points on the temperature-time curves that describe certain events are defined and the temperatures at which these events occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  18. Singlet oxygen generator on a chip for MEMS-based COIL

    NASA Astrophysics Data System (ADS)

    Livermore, Carol; Hill, Tyrone F.; Velásquez-García, Luis; Wilhite, Benjamin A.; Epstein, Alan H.; Jensen, Klavs; Rawlins, W. Terry; Lee, Seonkyung; Davis, Steven

    2007-02-01

    Microelectromechanical systems (MEMS) offer a promising approach for creating compact, efficient chemical oxygen iodine lasers. In this paper we report the demonstration and characterization of a chip-scale, MEMS-based singlet oxygen generator, or microSOG. The microSOG is a batch-fabricated silicon chip that is micromachined to form reactant inlets and distribution system, an array of microstructured packed bed reaction channels to ensure good mixing between the BHP and the chlorine, a gas-liquid separator that removes liquid from the output stream by capillary effects, integrated heat exchangers to remove the excess heat of reaction, and product outlets. The microSOG has successfully generated singlet delta oxygen, and the resulting singlet delta concentrations were measured in a quartz test cell downstream of the chip using absolutely-calibrated near-infrared emission measurements made by an InGaAs array spectrometer. A kinetics analysis was used to determine the concentration at the chip's outlet from the concentration at the measurement point. Singlet delta yield at the outlet was determined to be about 81% at 150 Torr plenum pressure with a 25 sccm flow of chlorine. The corresponding output flow carries about 1.4 W of power at the chip's outlet.

  19. Selective killing of cancer cells by iron oxide nanoparticles mediated through reactive oxygen species via p53 pathway

    NASA Astrophysics Data System (ADS)

    Ahamed, Maqusood; Alhadlaq, Hisham A.; Khan, M. A. Majeed; Akhtar, Mohd. Javed

    2013-01-01

    Iron oxide (Fe3O4) nanoparticles (NPs) are increasingly recognized for their utility in biomedical applications. However, little is known about the anticancer activity of Fe3O4 NPs. This study was designed to investigate whether Fe3O4 NPs induced toxicity in a cell-specific manner and determine the possible mechanisms of toxicity caused by Fe3O4 NPs in cancer cells. Fe3O4 NPs used in this study were synthesized by green method using α- d-glucose as a reducing agent. Prepared Fe3O4 NPs were spherical in shape with a smooth surface, were fairly distributed, and had an average diameter of 23 nm. Cytotoxicity of Fe3O4 NPs was examined against two types of cancer cells (human hepatocellular carcinoma HepG2 and human lung adenocarcinoma A549) and two normal cells (human lung fibroblast IMR-90 and rat hepatocytes). Fe3O4 NPs exerted distinct effects on cell viability via killing of cancer cells while posing no toxicity on normal cells. Fe3O4 NPs were found to induce depletion of glutathione and induction of reactive oxygen species (ROS) in both types of cancer cells (HepG2 and A549). Further, co-exposure of ascorbic acid significantly attenuated the Fe3O4 NPs-induced oxidative stress. The mRNA levels of tumor suppressor gene p53 and apoptotic genes (caspase-3 and caspase-9) were up-regulated in both types of cancer cells due to Fe3O4 NPs exposure. Protein level of p53, along with the higher activity of caspase-3 and caspase-9 enzymes, was also up-regulated by Fe3O4 NPs. Taken together, our data demonstrated that Fe3O4 NPs selectively induced apoptosis in cancer cells (HepG2 and A549) through up-regulation of p53 that might be mediated by ROS through which most of the anticancer drugs trigger apoptosis. The present study warrants further investigation on anticancer activity of Fe3O4 NPs in relevant animal models.

  20. Physique, body composition and maximum oxygen consumption of selected soccer players of Kunimi High School, Nagasaki, Japan.

    PubMed

    Tahara, Yasuaki; Moji, Kazuhiko; Tsunawake, Noriaki; Fukuda, Rika; Nakayama, Masao; Nakagaichi, Masaki; Komine, Tadatoshi; Kusano, Yosuke; Aoyagi, Kiyoshi

    2006-07-01

    This study evaluates the physical and physiological ability of selected soccer players of Kunimi High School in Nagasaki Prefecture, Japan. The Kunimi team is famous for its intensive training, and had won the championship of the All Japan High School Soccer Tournament six times by 2003. We measured physique, body composition, and maximal oxygen uptake of 72 members aged between 16 and 18 years old between 1986 and 1994. They consisted of 66 outfield players (12 forward players, 23 midfielders, 31 defenders) and 6 goalkeepers. Body density was measured by the under-water weighing method, and Brozek's equation was applied to calculate percentage body fat (%Fat, %), fat-free mass (FFM, kg), FFM/height (FFM/Ht, kg.m(-1)), and FFM index (FFM/Ht(3), kg.m(-3)). The following results were obtained: 1. The average of 66 outfield players was 172.7 cm of height, 64.6 kg of weight, 54.0 cm of girth of thigh, and 90.0 cm of girth of hip, 9.3% of %Fat, 58.6 kg of FFM, 33.9 kg.m(-1) of FFM/Ht and 113.8 kg.m(-3) of FFM index. The mean vital capacity was 4.25 L and total lung capacity was 5.58 L. The mean maximal ventilation was 138.7 L.min(-1), VO(2)max was 3.95 L.min(-1), and VO(2)max/Wt was 61.4 ml.kg(-1).min(-1). 2. Goalkeepers were taller and heavier than outfielders, and had a smaller mean value of VO(2)max/Wt than outfielders (p<0.01). 3. For 23 out of the 72 players measured twice with an interval of about one year, FFM increased and %Fat reduced significantly, while V(E)max, VO(2)max and VO(2)max/Wt did not change. Kunimi players of the present study had as large a VO(2)max/Wt as local players, and a similar or slightly smaller VO(2)max/Wt than national-level players. They had similar %Fat and a similar VO(2)max/Wt with professional soccer players in England (Davis et al., 1992) while they had much smaller physiques.

  1. Research on Routing Selection Algorithm Based on Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Gao, Guohong; Zhang, Baojian; Li, Xueyong; Lv, Jinna

    The hereditary algorithm is a kind of random searching and method of optimizing based on living beings natural selection and hereditary mechanism. In recent years, because of the potentiality in solving complicate problems and the successful application in the fields of industrial project, hereditary algorithm has been widely concerned by the domestic and international scholar. Routing Selection communication has been defined a standard communication model of IP version 6.This paper proposes a service model of Routing Selection communication, and designs and implements a new Routing Selection algorithm based on genetic algorithm.The experimental simulation results show that this algorithm can get more resolution at less time and more balanced network load, which enhances search ratio and the availability of network resource, and improves the quality of service.

  2. Highly Efficient Oxygen-Storage Material with Intrinsic Coke Resistance for Chemical Looping Combustion-Based CO2 Capture.

    PubMed

    Imtiaz, Qasim; Kurlov, Alexey; Rupp, Jennifer Lilia Marguerite; Müller, Christoph Rüdiger

    2015-06-22

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging thermochemical CO2 capture cycles that allow the capture of CO2 with a small energy penalty. Here, the development of suitable oxygen carrier materials is a key aspect to transfer these promising concepts to practical installations. CuO is an attractive material for CLC and CLOU because of its high oxygen-storage capacity (20 wt %), fast reaction kinetics, and high equilibrium partial pressure of oxygen at typical operating temperatures (850-1000 °C). However, despite its promising characteristics, its low Tammann temperature requires the development of new strategies to phase-stabilize CuO-based oxygen carriers. In this work, we report a strategy based on stabilization by co-precipitated ceria (CeO2-x ), which allowed us to increase the oxygen capacity, coke resistance, and redox stability of CuO-based oxygen carriers substantially. The performance of the new oxygen carriers was evaluated in detail and compared to the current state-of-the-art materials, that is, Al2 O3 -stabilized CuO with similar CuO loadings. We also demonstrate that the higher intrinsic oxygen uptake, release, and mobility in CeO2-x -stabilized CuO leads to a three times higher carbon deposition resistance compared to that of Al2 O3 -stabilized CuO. Moreover, we report a high cyclic stability without phase intermixing for CeO2-x -supported CuO. This was accompanied by a lower reduction temperature compared to state-of-the-art Al2 O3 -supported CuO. As a result of its high resistance towards carbon deposition and fast oxygen uncoupling kinetics, CeO2-x -stabilized CuO is identified as a very promising material for CLC- and CLOU-based CO2 capture architectures.

  3. Morph-X-Select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery

    PubMed Central

    Wang, Hongyu; Li, Xin; Volk, David E.; Lokesh, Ganesh L.-R.; Elizondo-Riojas, Miguel-Angel; Li, Li; Nick, Alpa M.; Sood, Anil K.; Rosenblatt, Kevin P.; Gorenstein, David G.

    2016-01-01

    High affinity aptamer-based biomarker discovery has the advantage of simultaneously discovering an aptamer affinity reagent and its target biomarker protein. Here, we demonstrate a morphology-based tissue aptamer selection method that enables us to use tissue sections from individual patients and identify high-affinity aptamers and their associated target proteins in a systematic and accurate way. We created a combinatorial DNA aptamer library that has been modified with thiophosphate substitutions of the phosphate ester backbone at selected 5′dA positions for enhanced nuclease resistance and targeting. Based on morphological assessment, we used image-directed laser microdissection (LMD) to dissect regions of interest bound with the thioaptamer (TA) library and further identified target proteins for the selected TAs. We have successfully identified and characterized the lead candidate TA, V5, as a vimentin-specific sequence that has shown specific binding to tumor vasculature of human ovarian tissue and human microvascular endothelial cells. This new Morph-X-Select method allows us to select high-affinity aptamers and their associated target proteins in a specific and accurate way, and could be used for personalized biomarker discovery to improve medical decision-making and to facilitate the development of targeted therapies to achieve more favorable outcomes. PMID:27839510

  4. A PEGylated bovine hemoglobin as a potent hemoglobin-based oxygen carrier.

    PubMed

    Wang, Ying; Wang, Linli; Yu, Weili; Gao, Dawei; You, Guoxing; Li, Penglong; Zhang, Shan; Zhang, Jun; Hu, Tao; Zhao, Lian; Zhou, Hong

    2017-01-01

    Hemoglobin (Hb)-based oxygen carriers (HBOCs) have been used as blood substitutes in surgery medicine and oxygen therapeutics for ischemic stroke. As a potent HBOC, the PEGylated Hb has received much attention for its oxygen delivery and plasma expanding ability. Two PEGylated Hbs, Euro-Hb, and MP4 have been developed for clinical trials, using human adult hemoglobin (HbA) as the original substrate. However, HbA was obtained from outdated human blood and its quantity available from this source may not be sufficient for mass production of PEGylated HbA. In contrast, bovine Hb (bHb) has no quantity constraints for its ample resource. Thus, bHb is of potential to function as an alternative substrate to obtain a PEGylated bHb (bHb-PEG). bHb-PEG was prepared under the same reaction condition as HbA-PEG, using maleimide chemistry. The structural, functional, solution and physiological properties of bHb-PEG were determined and compared with those of HbA-PEG. bHb-PEG showed higher hydrodynamic volume, colloidal osmotic pressure, viscosity and P50 than HbA-PEG. The high P50 of bHb can partially compensate the PEGylation-induced perturbation in the R to T state transition of HbA. bHb-PEG was non-vasoactive and could efficiently recover the mean arterial pressure of mice suffering from hemorrhagic shock. Thus, bHb-PEG is expected to function as a potent HBOC for its high oxygen delivery and strong plasma expanding ability. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:252-260, 2017.

  5. Impact of oxygenator selection on hemodynamic energy indicators under pulsatile and nonpulsatile flow in a neonatal extracorporeal life support model.

    PubMed

    Vasavada, Rahul; Khan, Sameer; Qiu, Feng; Kunselman, Allen; Undar, Akif

    2011-06-01

    This study compared the quality of perfusion delivered by two oxygenators--the hollow-fiber membrane Capiox Baby RX05 and silicone membrane Medtronic 0800--using hemodynamic energy indicators. The oxygenators were tested across varying flow rates and perfusion modes in a neonatal extracorporeal life support (ECLS) model. The experimental ECLS circuit included a Jostra HL-20 heart/lung machine with Jostra Roller pump, oxygenators with associated tubing and components, and a neonatal pseudo-patient. We used a 40/60 glycerin/water solution in the circuit as a blood analog. Testing occurred at flow rates of 250, 500, and 750 mL/min at 37°C under both pulsatile and nonpulsatile flow conditions. Hemodynamic data points consisted of recording 20-s intervals of data, and a total of 96 experimental repetitions were conducted. The pressure drop across the Capiox Baby RX05 oxygenator was significantly lower than the pressure drop across the Medtronic 0800 at all flow rates and perfusion modes. Furthermore, the Medtronic 0800 oxygenator showed significantly lower post-oxygenator energy equivalent pressures, total hemodynamic energy values, and surplus hemodynamic energy retention values compared to those of the Capiox Baby RX05. These results indicate the Medtronic 0800 oxygenator significantly dampens the hemodynamic energy compared to the Capiox Baby RX05. Consequently, clinical use of the Medtronic 0800 in a pulsatile ECLS setting is likely to mitigate the benefits provided by pulsatile flow. In contrast, the Capiox Baby RX05 better transmits hemodynamic energy to the patient with much lower pressure drop.

  6. Evolution models with base substitutions, insertions, deletions, and selection

    NASA Astrophysics Data System (ADS)

    Saakian, D. B.

    2008-12-01

    The evolution model with parallel mutation-selection scheme is solved for the case when selection is accompanied by base substitutions, insertions, and deletions. The fitness is assumed to be either a single-peak function (i.e., having one finite discontinuity) or a smooth function of the Hamming distance from the reference sequence. The mean fitness is calculated exactly in large-genome limit. In the case of insertions and deletions the evolution characteristics depend on the choice of reference sequence.

  7. FRET-based optical assay for selection of artificial riboswitches.

    PubMed

    Harbaugh, Svetlana V; Chapleau, Molly E; Chushak, Yaroslav G; Stone, Morley O; Kelley-Loughnane, Nancy

    2014-01-01

    Artificial riboswitches are engineered to regulate gene expression in response to a variety of non-endogenous small molecules and, therefore, can be useful tools to reprogram cellular behavior for different applications. A new synthetic riboswitch can be created by linking an in vitro-selected aptamer with a randomized expression platform followed by in vivo selection and screening. Here, we describe an in vivo selection and screening technique to discover artificial riboswitches in E. coli cells that is based on TEV protease-FRET substrate reporter system.

  8. Reduced Moment-Based Models for Oxygen Precipitates and Dislocation Loops in Silicon

    NASA Astrophysics Data System (ADS)

    Trzynadlowski, Bart

    The demand for ever smaller, higher-performance integrated circuits and more efficient, cost-effective solar cells continues to push the frontiers of process technology. Fabrication of silicon devices requires extremely precise control of impurities and crystallographic defects. Failure to do so not only reduces performance, efficiency, and yield, it threatens the very survival of commercial enterprises in today's fiercely competitive and price-sensitive global market. The presence of oxygen in silicon is an unavoidable consequence of the Czochralski process, which remains the most popular method for large-scale production of single-crystal silicon. Oxygen precipitates that form during thermal processing cause distortion of the surrounding silicon lattice and can lead to the formation of dislocation loops. Localized deformation caused by both of these defects introduces potential wells that trap diffusing impurities such as metal atoms, which is highly desirable if done far away from sensitive device regions. Unfortunately, dislocations also reduce the mechanical strength of silicon, which can cause wafer warpage and breakage. Engineers must negotiate this and other complex tradeoffs when designing fabrication processes. Accomplishing this in a complex, modern process involving a large number of thermal steps is impossible without the aid of computational models. In this dissertation, new models for oxygen precipitation and dislocation loop evolution are described. An oxygen model using kinetic rate equations to evolve the complete precipitate size distribution was developed first. This was then used to create a reduced model tracking only the moments of the size distribution. The moment-based model was found to run significantly faster than its full counterpart while accurately capturing the evolution of oxygen precipitates. The reduced model was fitted to experimental data and a sensitivity analysis was performed to assess the robustness of the results. Source

  9. Direct participation of DNA in the formation of singlet oxygen and base damage under UVA irradiation.

    PubMed

    Yagura, Teiti; Schuch, André Passaglia; Garcia, Camila Carrião Machado; Rocha, Clarissa Ribeiro Reily; Moreno, Natália Cestari; Angeli, José Pedro Friedmann; Mendes, Davi; Severino, Divinomar; Bianchini Sanchez, Angelica; Di Mascio, Paolo; de Medeiros, Marisa Helena Gennari; Menck, Carlos Frederico Martins

    2017-03-18

    UVA light is hardly absorbed by the DNA molecule, but recent works point to a direct mechanism of DNA lesion by these wavelengths. UVA light also excite endogenous chromophores, which causes DNA damage through ROS. In this study, DNA samples were irradiated with UVA light in different conditions to investigate possible mechanisms involved in the induction of DNA damage. The different types of DNA lesions formed after irradiation were determined through the use of endonucleases, which recognize and cleave sites containing oxidized bases and cyclobutane pyrimidine dimers (CPDs), as well as through antibody recognition. The formation of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG) was also studied in more detail using electrochemical detection. The results show that high NaCl concentration and concentrated DNA are capable of reducing the induction of CPDs. Moreover, concerning damage caused by oxidative stress, the presence of sodium azide and metal chelators reduce their induction, while deuterated water increases the amounts of oxidized bases, confirming the involvement of singlet oxygen in the generation of these lesions. Curiously, however, high concentrations of DNA also enhanced the formation of oxidized bases, in a reaction that paralleled the increase in the formation of singlet oxygen in the solution. This was interpreted as being due to an intrinsic photosensitization mechanism, depending directly on the DNA molecule to absorb UVA and generate singlet oxygen. Therefore, the DNA molecule itself may act as a chromophore for UVA light, locally producing a damaging agent, which may lead to even greater concerns about the deleterious impact of sunlight.

  10. Fiber-Based Laser Transmitter for Oxygen A-Band Spectroscopy and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Abshire, James B.

    2010-01-01

    A fiber-based laser transmitter has been designed for active remote-sensing spectroscopy. The transmitter uses a master-oscillator-power-amplifier (MOPA) configuration with a distributed feedback diode-laser master oscillator and an erbium-doped fiber amplifier. The output from the MOPA is frequency-doubled with a periodically poled nonlinear crystal. The utility of this single-frequency, wavelength-tunable, power-scalable laser has been demonstrated in a spectroscopic measurement of the diatomic oxygen A-band.

  11. Base metal-catalyzed benzylic oxidation of (aryl)(heteroaryl)methanes with molecular oxygen

    PubMed Central

    Sterckx, Hans; De Houwer, Johan; Mensch, Carl; Herrebout, Wouter; Tehrani, Kourosch Abbaspour

    2016-01-01

    Summary The methylene group of various substituted 2- and 4-benzylpyridines, benzyldiazines and benzyl(iso)quinolines was successfully oxidized to the corresponding benzylic ketones using a copper or iron catalyst and molecular oxygen as the stoichiometric oxidant. Application of the protocol in API synthesis is exemplified by the alternative synthesis of a precursor to the antimalarial drug Mefloquine. The oxidation method can also be used to prepare metabolites of APIs which is illustrated for the natural product papaverine. ICP–MS analysis of the purified reaction products revealed that the base metal impurity was well below the regulatory limit. PMID:26877817

  12. Kinetics of Oxygen Reduction in Aprotic Li-O2 Cells: A Model-Based Study.

    PubMed

    Safari, M; Adams, B D; Nazar, L F

    2014-10-16

    A comprehensive and general kinetic model is developed for the oxygen reduction reaction in aprotic Li-O2 cells. The model is based on the competitive uptake of lithium superoxide by the surface and solution. A demonstrative kinetic study is provided to demystify the origin of curvature in Tafel plots as well as the current dependency and aberrant diversity of the nature and morphology of discharge products in these systems. Our results are general and extend to any system where solubilization of superoxide is favored, such as where phase-transfer catalysts play an important role.

  13. [Development of physiological monitors based on the Zigbee technology for hyperbaric oxygen chambers].

    PubMed

    Zheng, Jin-Nuan; Wu, Bao-Ming; Lin, Jin-Zhao; Wang, Qiang

    2008-05-01

    This paper introduces a monitor that can monitor five physiological parameters (ECG, blood pressure, spo2, respiration and temperature) based on Wireless Sensor Networks. The monitor will be applied to hyperbaric oxygen chambers. After acquisition, the signal will be displayed on the LCD screen of the monitor terminal in the cabin. At the same time, the Zigbee RF module will send the signal to the extravehicular guardianship PC terminals. This monitor equipment can realize synchronous real-time monitoring both inside and outside. What's more? A host can also display monitoring data the three monitor terminals collected. Preliminary clinical tests show that the monitors are safe and the monitoring results are satisfactory.

  14. Imaging of oxygen in microreactors and microfluidic systems

    NASA Astrophysics Data System (ADS)

    Sun, Shiwen; Ungerböck, Birgit; Mayr, Torsten

    2015-09-01

    This review gives an overview on the state-of-the-art of oxygen imaging in microfluidics. Oxygen imaging using optical oxygen sensors based on luminescence is a versatile and powerful tool for obtaining profoundly space-resolved information of oxygen in microreactors and microfluidic systems. We briefly introduce the principle of oxygen imaging and present techniques of oxygen imaging applied in microreactors and microfluidic devices, including selection criteria and demands of sensing material and basic set-up for a 2D oxygen sensing system. A detailed review of oxygen imaging in microreactors and microfluidic systems is given on different applications in oxygen gradient monitoring, cell culturing, single-cell analysis and chemical reactions. Finally, we discuss challenges and trends of oxygen imaging in microfluidic systems.

  15. Evaluation of RPE-Select: A Web-Based Respiratory Protective Equipment Selector Tool

    PubMed Central

    Vaughan, Nick; Rajan-Sithamparanadarajah, Bob; Atkinson, Robert

    2016-01-01

    This article describes the evaluation of an open-access web-based respiratory protective equipment selector tool (RPE-Select, accessible at http://www.healthyworkinglives.com/rpe-selector). This tool is based on the principles of the COSHH-Essentials (C-E) control banding (CB) tool, which was developed for the exposure risk management of hazardous chemicals in the workplace by small and medium sized enterprises (SMEs) and general practice H&S professionals. RPE-Select can be used for identifying adequate and suitable RPE for dusts, fibres, mist (solvent, water, and oil based), sprays, volatile solids, fumes, gases, vapours, and actual or potential oxygen deficiency. It can be applied for substances and products with safety data sheets as well as for a large number of commonly encountered process-generated substances (PGS), such as poultry house dusts or welding fume. Potential international usability has been built-in by using the Hazard Statements developed for the Globally Harmonised System (GHS) and providing recommended RPE in picture form as well as with a written specification. Illustration helps to compensate for the variabilities in assigned protection factors across the world. RPE-Select uses easily understandable descriptions/explanations and an interactive stepwise flow for providing input/answers at each step. The output of the selection process is a report summarising the user input data and a selection of RPE, including types of filters where applicable, from which the user can select the appropriate one for each wearer. In addition, each report includes ‘Dos’ and ‘Don’ts’ for the recommended RPE. RPE-Select outcomes, based on up to 20 hypothetical use scenarios, were evaluated in comparison with other available RPE selection processes and tools, and by 32 independent users with a broad range of familiarities with industrial use scenarios in general and respiratory protection in particular. For scenarios involving substances having safety

  16. An Iron-based Film for Highly Efficient Electrocatalytic Oxygen Evolution from Neutral Aqueous Solution.

    PubMed

    Chen, Mingxing; Wu, Yizhen; Han, Yongzhen; Lin, Xiaohuan; Sun, Junliang; Zhang, Wei; Cao, Rui

    2015-10-07

    An ultrathin Fe-based film was prepared by electrodeposition from an Fe(II) solution through a fast and simple cyclic voltammetry method. The extremely low Fe loading of 12.3 nmol cm(-2) on indium tin oxide electrodes is crucial for high atom efficiency and transparence of the resulted film. This Fe-based film was shown to be a very efficient electrocatalyst for oxygen evolution from neutral aqueous solution with remarkable activity and stability. In a 34 h controlled potential electrolysis at 1.45 V (vs NHE) and pH 7.0, impressive turnover number of 5.2 × 10(4) and turnover frequency of 1528 h(-1) were obtained. To the best of our knowledge, these values represent one of the highest among electrodeposited catalyst films for water oxidation under comparable conditions. The morphology and the composition of the catalyst film was determined by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy, which all confirmed the deposition of Fe-based materials with Fe(III) oxidation state on the electrode. This study is significant because of the use of iron, the fast and simple cyclic voltammetry electrodeposition, the extremely low catalyst loading and thus the transparency of the catalyst film, the remarkable activity and stability, and the oxygen evolution in neutral aqueous media.

  17. Tailoring p- and n- type semiconductor through site selective oxygen doping in Cu3N: density functional studies

    NASA Astrophysics Data System (ADS)

    Sahoo, Guruprasad; Kashikar, Ravi; Jain, Mahaveer K.; Nanda, B. R. K.

    2016-06-01

    Using ab initio density functional calculations, we have investigated the stability and electronic structure of pure and oxygen doped semiconducting Cu3N. The oxygen can be accommodated in the system without structural instability as the formation energy either decreases when oxygen substitutes nitrogen, or remains nearly same when oxygen occupies the interstitial position. The interstitial oxygen (OI) prefers to stabilize in the unusual charge neutral state and acts as an acceptor to make the system a p-type degenerate semiconductor. In this case the hole pockets are formed by the partially occupied OI-p states. On the other hand, oxygen substituting nitrogen (OS) stabilizes in its usual -2 charge state and acts as a donor to make the system an n-type degenerate semiconductor. The electron pockets are formed by the conducting Cu-p states. In the case of mixed doping, holes are gradually compensated by the donor electrons and an intrinsic gap is obtained for {{{Cu}}}3{{{N}}}{1-2{x}}{{{{O}}}{{S}}}2{x}{{{{O}}}{{I}}}{x} stoichiometry. Our calculations predict the nature of doping as well as optical band gap ({{E}{{g}}}{{o}{{p}}{{t}}}) variation in experimentally synthesized copper oxynitride. While interstitial doping contracts the lattice and increases the {{E}{{g}}}{{o}{{p}}{{t}}}, substitutional doping increases both lattice size and {{E}{{g}}}{{o}{{p}}{{t}}}. Mixed doping reduces {{E}{{g}}}{{o}{{p}}{{t}}}. Additionally we show that a rare intra-atomic d-p optical absorption can be realized in the pristine Cu3N as the Fermi level lies in the gap between the Cu-d dominated anti-bonding valence state and Cu-p conducting state.

  18. Performance-Based Technology Selection Filter description report

    SciTech Connect

    O'Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  19. Spatial Mutual Information Based Hyperspectral Band Selection for Classification

    PubMed Central

    2015-01-01

    The amount of information involved in hyperspectral imaging is large. Hyperspectral band selection is a popular method for reducing dimensionality. Several information based measures such as mutual information have been proposed to reduce information redundancy among spectral bands. Unfortunately, mutual information does not take into account the spatial dependency between adjacent pixels in images thus reducing its robustness as a similarity measure. In this paper, we propose a new band selection method based on spatial mutual information. As validation criteria, a supervised classification method using support vector machine (SVM) is used. Experimental results of the classification of hyperspectral datasets show that the proposed method can achieve more accurate results. PMID:25918742

  20. Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Subramanian, Nalini P.; Li, Xuguang; Nallathambi, Vijayadurda; Kumaraguru, Swaminatha P.; Colon-Mercado, Hector; Wu, Gang; Lee, Jong-Won; Popov, Branko N.

    Nitrogen-modified carbon-based catalysts for oxygen reduction were synthesized by modifying carbon black with nitrogen-containing organic precursors. The electrocatalytic properties of catalysts were studied as a function of surface pre-treatments, nitrogen and oxygen concentrations, and heat-treatment temperatures. On the optimum catalyst, the onset potential for oxygen reduction is approximately 0.76 V (NHE) and the amount of hydrogen peroxide produced at 0.5 V (NHE) is approximately 3% under our experimental conditions. The characterization studies indicated that pyridinic and graphitic (quaternary) nitrogens may act as active sites of catalysts for oxygen reduction reaction. In particular, pyridinic nitrogen, which possesses one lone pair of electrons in addition to the one electron donated to the conjugated π bond, facilitates the reductive oxygen adsorption.

  1. Selection of principal components based on Fisher discriminant ratio

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangyan; Naghedolfeizi, Masoud; Arora, Sanjeev; Yousif, Nabil; Aberra, Dawit

    2016-05-01

    Principal component analysis transforms a set of possibly correlated variables into uncorrelated variables, and is widely used as a technique of dimensionality reduction and feature extraction. In some applications of dimensionality reduction, the objective is to use a small number of principal components to represent most variation in the data. On the other hand, the main purpose of feature extraction is to facilitate subsequent pattern recognition and machine learning tasks, such as classification. Selecting principal components for classification tasks aims for more than dimensionality reduction. The capability of distinguishing different classes is another major concern. Components that have larger eigenvalues do not necessarily have better distinguishing capabilities. In this paper, we investigate a strategy of selecting principal components based on the Fisher discriminant ratio. The ratio of between class variance to within class variance is calculated for each component, based on which the principal components are selected. The number of relevant components is determined by the classification accuracy. To alleviate overfitting which is common when there are few training data available, we use a cross-validation procedure to determine the number of principal components. The main objective is to select the components that have large Fisher discriminant ratios so that adequate class separability is obtained. The number of selected components is determined by the classification accuracy of the validation data. The selection method is evaluated by face recognition experiments.

  2. Filter selection based on light source for multispectral imaging

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Xu, Haisong

    2016-07-01

    In multispectral imaging, it is necessary to select a reduced number of filters to balance the imaging efficiency and spectral reflectance recovery accuracy. Due to the combined effect of filters and light source on reflectance recovery, the optimal filters are influenced by the employed light source in the multispectral imaging system. By casting the filter selection as an optimization issue, the selection of optimal filters corresponding to the employed light source proceeds with respect to a set of target samples utilizing one kind of genetic algorithms, regardless of the detailed spectral characteristics of the light source, filters, and sensor. Under three light sources with distinct spectral power distributions, the proposed filter selection method was evaluated on a filter-wheel based multispectral device with a set of interference filters. It was verified that the filters derived by the proposed method achieve better spectral and colorimetric accuracy of reflectance recovery than the conventional one under different light sources.

  3. QCM-based aptamer selection and detection of Salmonella typhimurium.

    PubMed

    Wang, Lijun; Wang, Ronghui; Chen, Fang; Jiang, Tieshan; Wang, Hong; Slavik, Michael; Wei, Hua; Li, Yanbin

    2017-04-15

    In this study, quartz crystal microbalance (QCM) was used to select aptamers against Salmonella typhimurium. To increase the success rate of Systematic Evolution of Ligands Exponential Enrichment (SELEX), the affinity of DNA pool in each round was simultaneously tracked using QCM in order to avoid the loss of high-quality aptamers. When the frequency change reached a maximum value after several rounds of selection and counter-selection, the candidate pool was cloned and sequenced. Out of three aptamer candidates, aptamer B5 showed high specificity and binding affinity with dissociation constant (Kd value) of 58.5nM, and was chosen for further studies. Subsequently, a QCM-based aptasensor was developed to detect S. typhimurium. This aptasensor was able to detect 10(3)CFU/mL of S. typhimurium with less than 1h. This study demonstrated QCM-based selection could be more effective selection of aptamers and QCM-based aptasensor could be more sensitive in detecting S. typhimurium.

  4. Noninvasive approaches to measuring respiratory patterns using a PtTFPP based phase-lifetime self-referencing oxygen optrode

    NASA Astrophysics Data System (ADS)

    Porterfield, D. Marshall; Rickus, Jenna L.; Kopelman, Raoul

    2006-10-01

    Optically transduced sensors (optrodes, or optodes) offer significant advantages over polarographic techniques for measuring oxygen. In biology and medicine, how we make measurements is very important, and this is especially true in terms of physiological exchange. Cellular and tissue oxygenation is a function of background concentration and respiratory demand, and in pure physical terms this is best expressed in terms of molecular flux based on Fick's law. Measuring dynamic flux from biological systems requires sensing technology that can measure activity in multiple dimensions. Here we report the development of a self-referencing oxygen optrode (SRO) for reliably making noninvasive measurements of oxygen flux from a variety of biological systems. The self-referencing microsensor technique was adapted to operate optrodic oxygen sensors through the integration of optical sensing instrumentation with software-controlled data acquisition and micro-stepping motion control. This allows the sensor to scan biologically active gradients of oxygen flux directly, as it relates to cellular and tissue respiratory activity. The technique was validated first using artificially generated oxygen gradients, which are theoretically modelled and compare with measured signals. Subsequently, the SRO was applied in basic research applications to non-invasively measure molecular oxygen flux from a variety of animal and plant systems.

  5. Orbital-selective charge transfer at oxygen-deficient LaAlO3/SrTiO3(001) interfaces

    NASA Astrophysics Data System (ADS)

    Ong, P. V.; Lee, Jaichan

    2013-05-01

    Density-functional theory within the local density approximation + Hubbard U approach was used to study interface electronic structures in stoichiometric and oxygen-deficient LaAlO3/SrTiO3 (LAO/STO) superlattices with regularly spaced n-type and p-type interfaces. Asymmetric behaviors between complementary n-type and p-type interfaces were revealed in terms of orbital-selective charge transfer. Extra electrons induced by oxygen vacancies at the p-type interface easily spread to the n-type interface and occupy the Ti 3dxyorbitals, while those induced by the vacancies at the n-type interface are strictly confined and reside in Ti 3dx2-y2 and/or 3d3z2-r2 orbtials. The electronic behavior of oxygen vacancies at the LAO/STO interfaces and the possibility of distinguishing between intrinsic electronic states, which are induced by the polar catastrophe, and extrinsic states due to oxygen vacancies are discussed in detail.

  6. SELECTIVE REDUCTION OF NOX IN OXYGEN RICH ENVIRONMENTS WITH PLASMA-ASSISTED CATALYSIS: CATALYST DEVELOPMENT AND MECHANISTIC STUDIES

    SciTech Connect

    Peden, C; Barlow, S; Hoard, J; Kwak, J; *Balmer-Millar, M; *Panov, A; Schmieg, S; Szanyi, J; Tonkyn, R

    2003-08-24

    The control of NOx (NO and NO2) emissions from so-called ''lean-burn'' vehicle engines remains a challenge. In recent years, there have been a number of reports that show that a plasma device combined with a catalyst can reduce as high as 90% or more of NOx in simulated diesel and other ''lean-burn'' exhaust. In the case of propylene containing simulated diesel exhaust, the beneficial role of a plasma treatment is now thought to be due to oxidation of NO to NO2, and the formation of partially oxidized hydrocarbons that are more active for the catalytic reduction of NO2 than propylene. Thus, the overall system can be most usefully described as hydrocarbon selective catalytic reduction (SCR) enhanced by 'reforming' the exhaust with a non-thermal plasma (NTP) device. For plasma-enhanced catalysis, both zeolite- and alumina-based materials have shown high activity, albeit in somewhat different temperature ranges, when preceded by an NTP reactor. This paper will briefly describe our research efforts aimed at optimizing the catalyst materials for NTP-catalysis devices based, in part, on our continuing studies of the NTP- and catalytic-reaction mechanisms. Various alkali- and alkaline earth-cation-exchanged Y zeolites have been prepared, their material properties characterized, and they have been tested as catalytic materials for NOx reduction in laboratory NTP-catalysis reactors. Interestingly, NO2 formed in the plasma and not subsequently removed over these catalysts, will back-convert to NO, albeit to varying extents depending upon the nature of the cation. Besides this comparative reactivity, we will also discuss selected synthesis strategies for enhancing the performance of these zeolite-based catalyst materials. A particularly important result from our mechanistic studies is the observation that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of NOx to N2. Indeed, acetaldehyde has been found to

  7. Feature selection with neighborhood entropy-based cooperative game theory.

    PubMed

    Zeng, Kai; She, Kun; Niu, Xinzheng

    2014-01-01

    Feature selection plays an important role in machine learning and data mining. In recent years, various feature measurements have been proposed to select significant features from high-dimensional datasets. However, most traditional feature selection methods will ignore some features which have strong classification ability as a group but are weak as individuals. To deal with this problem, we redefine the redundancy, interdependence, and independence of features by using neighborhood entropy. Then the neighborhood entropy-based feature contribution is proposed under the framework of cooperative game. The evaluative criteria of features can be formalized as the product of contribution and other classical feature measures. Finally, the proposed method is tested on several UCI datasets. The results show that neighborhood entropy-based cooperative game theory model (NECGT) yield better performance than classical ones.

  8. [Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].

    PubMed

    Zhou, Jinzhi; Tang, Xiaofang

    2015-08-01

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.

  9. Multiobjective Evolutionary Path Planning via Sugeno-Based Tournament Selection

    NASA Technical Reports Server (NTRS)

    Dozier, Gerry; McCullough, Shaun; Homaifar, Abdollah; Esterline, Albert

    1998-01-01

    This paper introduces a new tournament selection algorithm that can be used for evolutionary path planning systems. The fuzzy (Sugeno) tournament selection algorithm (STSA) described in this paper selects candidate paths (CPs) to be parents and undergo reproduction based on: (1) path feasibility, (2) the euclidean distance of a path from the origin to its destination, and (3) the average change in the slope of a path. In this paper, we provide a detailed description of the fuzzy inference system used in the STSA as well as some examples of its usefulness. We then use 12 instances of our STSA to rank a population of CPs based on the above criteria. We also show how the STSA can obviate the need for the development of an explicit (lexicographic multiobjective) evaluation function and use it to develop multiobjective motion paths.

  10. Interest area selection for navigation based on structured edge detection

    NASA Astrophysics Data System (ADS)

    Sun, Xiao; Shang, Ke; Li, ShaoJun; Dou, Hao; Tian, JinWen; Ming, Delie

    2015-12-01

    The scene matching based navigation is an important precision navigation technology for unmanned aerial vehicles (UAV). Selection of interest area where reference image is made has an important influence on the precision of matching result besides the performance of match algorithm. In this paper, a method to select interest area based on structured edge detection is proposed. We use a data driven approach that classifies each pixel with a typical structured edge label. We propose a method that combines these labels into a feature measuring suitable to match of a region. Then a SVM classifier is trained to classify the features and get the final result of the selection of interest area. The experimental result shows that the proposed method is valid and effective.

  11. Automatic learning-based beam angle selection for thoracic IMRT

    SciTech Connect

    Amit, Guy; Marshall, Andrea; Purdie, Thomas G. Jaffray, David A.; Levinshtein, Alex; Hope, Andrew J.; Lindsay, Patricia; Pekar, Vladimir

    2015-04-15

    Purpose: The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose–volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner’s clinical experience. The purpose of this work is to propose and study a computationally efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. Methods: The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. Results: The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary target volume

  12. Attachment and Children: Citations From Selected Data Bases.

    ERIC Educational Resources Information Center

    Baskin, Linda B., Comp.

    This bibliography compiles citations from seven selected data bases on the topic of attachment and children. The citations are grouped into eight categories: (1) Attachment -- General; (2) Institutions -- Hospitals, Prisons; (3) Day Care and Attachment; (4) Handicapped Children and Attachment; (5) Separation; (6) Child Abuse and Attachment; (7)…

  13. Health Effects Profiles for Searching Selected Lockheed DIALOG Data Bases.

    ERIC Educational Resources Information Center

    Clement, Linda Lee

    This preliminary study attempted to determine the most effective search strategies for the topic "health effects" in relation to specific chemicals and/or pollutants--in this case, asbestos--for each of five selected Lockheed DIALOG data bases: BIOSIS Previews, Chemical Abstracts Condensates (Chemcon), NTIS, Enviroline, and Pollution…

  14. An Assessment-Based Model for Counseling Strategy Selection.

    ERIC Educational Resources Information Center

    Nelson, Mary Lee

    2002-01-01

    Presents a counseling strategy selection model grounded in technical eclecticism and based on thorough assessment of the client's problems. Assessment should consider client mental health, counseling goals, problem complexity, and capacity and desire for insight. Distinguishing between simple and complex problems can aid assessment and provide…

  15. Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures.

    PubMed

    Liu, Bo; Tian, Meihong; Zhang, Chunhua; Li, Xiangtao

    2015-04-01

    Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained.

  16. Jail-Based Inmate Programs. A Selected Bibliography.

    ERIC Educational Resources Information Center

    Levine, Mark, Comp.; Kravitz, Marjorie, Ed.

    This is a bibliography of documents selected from the data base of the National Criminal Justice Reference Service that provide an overview of comprehensive treatment programs in local jails. The citations follow an explanation of how to obtain the documents and are arranged under the following topics: (1) state of the art, (2) jail management and…

  17. Evaluation of true maximal oxygen uptake based on a novel set of standardized criteria.

    PubMed

    Midgley, Adrian W; Carroll, Sean; Marchant, David; McNaughton, Lars R; Siegler, Jason

    2009-04-01

    In this study, criteria are used to identify whether a subject has elicited maximal oxygen uptake. We evaluated the validity of traditional maximal oxygen uptake criteria and propose a novel set of criteria. Twenty athletes completed a maximal oxygen uptake test, consisting of an incremental phase and a subsequent supramaximal phase to exhaustion (verification phase). Traditional and novel maximal oxygen uptake criteria were evaluated. Novel criteria were: oxygen uptake plateau defined as the difference between modelled and actual maximal oxygen uptake >50% of the regression slope of the individual oxygen uptake-workrate relationship; as in the first criterion, but for maximal verification oxygen uptake; and a difference of oxygen uptake plateau criterion was largely an artefact of the between-subject variation in the oxygen uptake-workrate relationship. Secondary criteria, supposedly an indicator of maximal effort, were often satisfied long before volitional exhaustion, even at intensities as low as 61% maximal oxygen uptake. No significant mean differences were observed between the incremental and verification phases for oxygen uptake (t = 0.4; p = 0.7) or heart rate (t = 0.8; p = 0.5). The novel oxygen uptake plateau criterion, maximal oxygen uptake verification criterion, and maximal heart rate verification criterion were satisfied by 17, 18, and 18 subjects, respectively. The small individual absolute differences in oxygen uptake between incremental and verification phases observed in most subjects provided additional confidence that maximal oxygen uptake was elicited. Current maximal oxygen uptake criteria were not valid and novel criteria should be further explored.

  18. The design of dextran-based hypoxia-inducible hydrogels via in situ oxygen-consuming reaction.

    PubMed

    Park, Kyung Min; Blatchley, Michael R; Gerecht, Sharon

    2014-11-01

    Hypoxia plays a critical role in the development and wound healing process, as well as a number of pathological conditions. Here, dextran-based hypoxia-inducible (Dex-HI) hydrogels formed with in situ oxygen consumption via a laccase-medicated reaction are reported. Oxygen levels and gradients were accurately predicted by mathematical simulation. It is demonstrated that Dex-HI hydrogels provide prolonged hypoxic conditions up to 12 h. The Dex-HI hydrogel offers an innovative approach to delineate not only the mechanism by which hypoxia regulates cellular responses, but may facilitate the discovery of new pathways involved in the generation of hypoxic and oxygen gradient environments.

  19. A LED-based phosphorimeter for measurement of microcirculatory oxygen pressure.

    PubMed

    Guerci, Philippe; Ince, Yasin; Heeman, Paul; Faber, Dirk; Ergin, Bulent; Ince, Can

    2017-02-01

    Quantitative measurements of microcirculatory and tissue oxygenation are of prime importance in experimental research. The noninvasive phosphorescence quenching method has given further insight into the fundamental mechanisms of oxygen transport to healthy tissues and in models of disease. Phosphorimeters are devices dedicated to the study of phosphorescence quenching. The experimental applications of phosphorimeters range from measuring a specific oxygen partial pressure (Po2) in cellular organelles such as mitochondria, finding values of Po2 distributed over an organ or capillaries, to measuring microcirculatory Po2 changes simultaneously in several organ systems. Most of the current phosphorimeters use flash lamps as a light excitation source. However, a major drawback of flash lamps is their inherent plasma glow that persists for tens of microseconds after the primary discharge. This complex distributed excitation pattern generated by the flash lamp can lead to inaccurate Po2 readings unless a deconvolution analysis is performed. Using light-emitting diode (LED), a rectangular shaped light pulse can be generated that provides a more uniformly distributed excitation signal. This study presents the design and calibration process of an LED-based phosphorimeter (LED-P). The in vitro calibration of the LED-P using palladium(II)-meso-tetra(4-carboxyphenyl)-porphyrin (Pd-TCCP) as a phosphorescent dye is presented. The pH and temperature were altered to assess whether the decay times of the Pd-TCCP measured by the LED-P were significantly influenced. An in vivo validation experiment was undertaken to measure renal cortical Po2 in a rat subjected to hypoxic ventilation conditions and ischemia/reperfusion. The benefits of using LEDs as a light excitation source are presented.

  20. VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids

    NASA Astrophysics Data System (ADS)

    Svensson, T.; Andersson, M.; Rippe, L.; Svanberg, S.; Andersson-Engels, S.; Johansson, J.; Folestad, S.

    2008-02-01

    We present a minimalistic and flexible single-beam instrumentation based on sensitive tunable diode laser absorption spectroscopy (TDLAS) and its use in structural analysis of highly scattering pharmaceutical solids. By utilising a vertical cavity surface emitting laser (VCSEL) for sensing of molecular oxygen dispersed in tablets, we address structural properties such as porosity. Experiments involve working with unknown path lengths, severe backscattering and diffuse light. These unusual experimental conditions has led to the use of the term gas in scattering media absorption spectroscopy (GASMAS). By employing fully digital wavelength modulation spectroscopy and coherent sampling, system sensitivity in ambient air experiments reaches the 10-7 range. Oxygen absorption exhibited by our tablets, being influenced by both sample porosity and scattering, was in the range 8×10-5 to 2×10-3, and corresponds to 2-50 mm of path length through ambient air (Leq). The day-to-day reproducibility was on average 1.8% (0.3 mm Leq), being limited by mechanical positioning. This is the first time sub-millimetre sensitivity is reached in GASMAS. We also demonstrate measurements on gas transport on a 1-s time scale. By employing pulsed illumination and time-correlated single-photon counting, we reveal that GASMAS exhibits excellent correlation with time-domain photon migration. In addition, we introduce an optical measure of porosity by relating oxygen absorption to average photon time-of-flight. Finally, the simplicity, robustness and low cost of this novel TDLAS instrumentation provide industrial potential.

  1. Economic Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-02-01

    The objective of the economic analysis is to prepare a budgetary estimate of capital and operating costs of the O{sub 2}-fired PC power plant as well as for the equivalent conventional PC-fired power plant. Capital and operating costs of conventional steam generation, steam heating, and power generation equipment are estimated based on Foster Wheeler's extensive experience and database. Capital and operating costs of equipment, such as oxygen separation and CO{sub 2} liquefaction, are based on vendor supplied data and FW process plant experience. The levelized cost of electricity is determined for both the air-fired and O{sub 2}-fired power plants as well as the CO{sub 2} mitigation cost. An economic comparison between the O{sub 2}-fired PC and other alternate technologies is presented.

  2. Inverse calculation of biochemical oxygen demand models based on time domain for the tidal Foshan River.

    PubMed

    Er, Li; Xiangying, Zeng

    2014-01-01

    To simulate the variation of biochemical oxygen demand (BOD) in the tidal Foshan River, inverse calculations based on time domain are applied to the longitudinal dispersion coefficient (E(x)) and BOD decay rate (K(x)) in the BOD model for the tidal Foshan River. The derivatives of the inverse calculation have been respectively established on the basis of different flow directions in the tidal river. The results of this paper indicate that the calculated values of BOD based on the inverse calculation developed for the tidal Foshan River match the measured ones well. According to the calibration and verification of the inversely calculated BOD models, K(x) is more sensitive to the models than E(x) and different data sets of E(x) and K(x) hardly affect the precision of the models.

  3. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly...

  4. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule...

  5. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly...

  6. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule...

  7. A Predictive Based Regression Algorithm for Gene Network Selection

    PubMed Central

    Guerrier, Stéphane; Mili, Nabil; Molinari, Roberto; Orso, Samuel; Avella-Medina, Marco; Ma, Yanyuan

    2016-01-01

    Gene selection has become a common task in most gene expression studies. The objective of such research is often to identify the smallest possible set of genes that can still achieve good predictive performance. To do so, many of the recently proposed classification methods require some form of dimension-reduction of the problem which finally provide a single model as an output and, in most cases, rely on the likelihood function in order to achieve variable selection. We propose a new prediction-based objective function that can be tailored to the requirements of practitioners and can be used to assess and interpret a given problem. Based on cross-validation techniques and the idea of importance sampling, our proposal scans low-dimensional models under the assumption of sparsity and, for each of them, estimates their objective function to assess their predictive power in order to select. Two applications on cancer data sets and a simulation study show that the proposal compares favorably with competing alternatives such as, for example, Elastic Net and Support Vector Machine. Indeed, the proposed method not only selects smaller models for better, or at least comparable, classification errors but also provides a set of selected models instead of a single one, allowing to construct a network of possible models for a target prediction accuracy level. PMID:27379155

  8. Online support vector machine based on convex hull vertices selection.

    PubMed

    Wang, Di; Qiao, Hong; Zhang, Bo; Wang, Min

    2013-04-01

    The support vector machine (SVM) method, as a promising classification technique, has been widely used in various fields due to its high efficiency. However, SVM cannot effectively solve online classification problems since, when a new sample is misclassified, the classifier has to be retrained with all training samples plus the new sample, which is time consuming. According to the geometric characteristics of SVM, in this paper we propose an online SVM classifier called VS-OSVM, which is based on convex hull vertices selection within each class. The VS-OSVM algorithm has two steps: 1) the samples selection process, in which a small number of skeleton samples constituting an approximate convex hull in each class of the current training samples are selected and 2) the online updating process, in which the classifier is updated with newly arriving samples and the selected skeleton samples. From the theoretical point of view, the first d+1 (d is the dimension of the input samples) selected samples are proved to be vertices of the convex hull. This guarantees that the selected samples in our approach keep the greatest amount of information of the convex hull. From the application point of view, the new algorithm can update the classifier without reducing its classification performance. Experimental results on benchmark data sets have shown the validity and effectiveness of the VS-OSVM algorithm.

  9. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity

    PubMed Central

    Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  10. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity.

    PubMed

    Toma, Vlad Al; Farcaș, Anca D; Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages.

  11. Release time of residual oxygen after dental bleaching with 35% hydrogen peroxide: effect of a catalase-based neutralizing agent.

    PubMed

    Guasso, Bárbara; Salomone, Paloma; Nascimento, Paulo Cícero; Pozzobon, Roselaine Terezinha

    2016-01-01

    This article assessed the effect of a catalase-based agent on residual oxygen (O2) release from teeth exposed to 35% hydrogen peroxide (H2O2). The use of the catalase-based neutralizer agent for 2-3 minutes was able to release residual O2 5 days after exposure to a 35% H2O2-based bleaching gel.

  12. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-01-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

  13. New solar selective coating based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Abendroth, Thomas; Leupolt, Beate; Mäder, Gerrit; Härtel, Paul; Grählert, Wulf; Althues, Holger; Kaskel, Stefan; Beyer, Eckhard

    2016-05-01

    Carbon nanotubes (CNTs) can be applied to assemble a new type of solar selective coating system for solar thermal applications. In this work the predominant absorption processes occurring by interaction with π-plasmon and Van Hove singularities (VHS) were investigated by UV-VIS-NIR spectroscopy and ellipsometry. Not only optical properties for as deposited SWCNT thin films itself, but also the potential for systematic tailoring will be presented. Besides low cost technologies required, the adjustability of optical properties, as well as their thermal stability render CNT based solar selective coatings as promising alternative to commercially available coating systems.

  14. Object-based wavelet compression using coefficient selection

    NASA Astrophysics Data System (ADS)

    Zhao, Lifeng; Kassim, Ashraf A.

    1998-12-01

    In this paper, we present a novel approach to code image regions of arbitrary shapes. The proposed algorithm combines a coefficient selection scheme with traditional wavelet compression for coding arbitrary regions and uses a shape adaptive embedded zerotree wavelet coding (SA-EZW) to quantize the selected coefficients. Since the shape information is implicitly encoded by the SA-EZW, our decoder can reconstruct the arbitrary region without separate shape coding. This makes the algorithm simple to implement and avoids the problem of contour coding. Our algorithm also provides a sufficient framework to address content-based scalability and improved coding efficiency as described by MPEG-4.

  15. An efficient selective perceptual-based super-resolution estimator.

    PubMed

    Karam, Lina J; Sadaka, Nabil G; Ferzli, Rony; Ivanovski, Zoran A

    2011-12-01

    In this paper, a selective perceptual-based (SELP) framework is presented to reduce the complexity of popular super-resolution (SR) algorithms while maintaining the desired quality of the enhanced images/video. A perceptual human visual system model is proposed to compute local contrast sensitivity thresholds. The obtained thresholds are used to select which pixels are super-resolved based on the perceived visibility of local edges. Processing only a set of perceptually significant pixels reduces significantly the computational complexity of SR algorithms without losing the achievable visual quality. The proposed SELP framework is integrated into a maximum-a posteriori-based SR algorithm as well as a fast two-stage fusion-restoration SR estimator. Simulation results show a significant reduction on average in computational complexity with comparable signal-to-noise ratio gains and visual quality.

  16. Tuning oxygen vacancy photoluminescence in monoclinic Y2WO6 by selectively occupying yttrium sites using lanthanum

    PubMed Central

    Ding, Bangfu; Han, Chao; Zheng, Lirong; Zhang, Junying; Wang, Rongming; Tang, Zilong

    2015-01-01

    The effect of isovalent lanthanum (La) doping on the monoclinic Y2WO6 photoluminescence was studied. Introducing the non-activated La3+ into Y2WO6 brings new excitation bands from violet to visible regions and strong near-infrared emission, while the bands position and intensity depend on the doping concentration. It is interesting to find that doping La3+ into Y2WO6 promotes the oxygen vacancy formation according to the first-principle calculation, Raman spectrum, and synchrotron radiation analysis. Through the Rietveld refinement and X-ray photoelectron spectroscopy results, La3+ is found to mainly occupy the Y2 (2f) site in low-concentration doped samples. With increasing doping concentration, the La3+ occupation number at the Y3 (4g) site increases faster than those at the Y1 (2e) and Y2 (2f) sites. When La3+ occupies different Y sites, the localized energy states caused by the oxygen vacancy pair change their position in the forbidden band, inducing the variation of the excitation and emission bands. This research proposes a feasible method to tune the oxygen vacancy emission, eliminating the challenge of precisely controlling the calcination atmosphere. PMID:25821078

  17. Determination of selected oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) in diesel and air particulate matter standard reference materials (SRMs).

    PubMed

    Nocun, Margarete S; Schantz, Michele M

    2013-06-01

    Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) have recently received much attention in discussions regarding the negative impacts of particulate matter (PM) on human health and the environment. The National Institute of Standards and Technology provides several environmental matrix standard reference materials (SRMs) with certified and reference values for polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs. In this study, the concentrations of oxygenated PAHs are determined in three air PM SRMs (1649b, 1648a, and 2786) and three diesel PM SRMs (1650b, 2975, and 1975) using two independent gas chromatography-mass spectrometry methods. Concentrations of oxy-PAHs were at the milligrams per kilogram level with higher overall concentrations in diesel PM (up to 50 mg/kg for 9,10-anthraquinone). One of the highest oxy-PAH concentrations (up to 5 mg/kg) measured in the air particulate SRMs was for 7,12-benz[a]anthracenquinone. These results suggest that oxygenated PAHs should not be neglected in the analysis of PM as their concentrations can be as high as those of some PAHs and are one to two orders of magnitude higher than those for nitro-PAHs.

  18. Cathode based on molybdenum disulfide nanoflakes for lithium-oxygen batteries.

    SciTech Connect

    Asadi, Mohammad; Kumar, Bijandra; Liu, Cong; Phillips, Patrick; Yasaei, Poya; Behranginia, Amirhossein; Zapol, Peter; Klie, Robert F.; Curtiss, Larry A.; Salehi-Khojin, Amin

    2016-02-01

    Lithium-oxygen (Li-O-2) batteries have been recognized as an emerging technology for energy storage systems owing to their high theoretical specific energy. One challenge is to find an electrolyte/cathode system that is efficient, stable, and cost-effective. We present such a system based on molybdenum disulfide (MoS2) nanoflakes combined with an ionic liquid (IL) that work together as an effective cocatalyst for discharge and charge in a Li-O-2 battery. Cyclic voltammetry results show superior catalytic performance for this cocatalyst for both oxygen reduction and evolution reactions compared to Au and Pt catalysts. It also performs remarkably well in the Li-O-2 battery system with 85% round-trip efficiency and reversibility up to 50 cycles. Density functional calculations provide a mechanistic understanding of the MoS2 nanoflakes/IL system. cocatalyst reported in this work could open the way for exploiting the unique properties of ionic liquids in Li-air batteries in combination with nanostructured MoS2 as a cathode material.

  19. Biofilm reactor based real-time analysis of biochemical oxygen demand.

    PubMed

    Liu, Changyu; Jia, Jianbo; Dong, Shaojun

    2013-04-15

    We reported a biofilm reactor (BFR) based analytical system for real-time biochemical oxygen demand (BOD) monitoring. It does not need a blank solution and other chemical reagents to operate. The initial dissolved oxygen (DO) in sample solution was measured as blank, while DO in the BFR effluent was measured as response. The DO difference obtained before and after the sample solution flowed through the BFR was regarded as an indicator of real-time BOD. The analytical performance of this reagent-free BFR system was equal to the previous BFR system operated using phosphate buffer saline (PBS) and high purity deionized water in reproducibility, accuracy and long-term stability. Besides, this method embraces many notable advantages, such as no secondary pollution. Additionally, the sample solutions are free from temperature controlling and air-saturation before injection. Significantly, this is a real-time BOD analysis method. This method was successfully carried out in a simulated emergency, and the obtained results agreed well with conventional BOD₅. These advantages, coupled with simplicity in device, convenience in operation and minimal maintenance, make such a reagent-free BFR analytical system promising for practical BOD real-time warning.

  20. Oxygen transport membrane reactor based method and system for generating electric power

    DOEpatents

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  1. Assessment of skin flaps using optically based methods for measuring blood flow and oxygenation.

    PubMed

    Payette, Jeri R; Kohlenberg, Elicia; Leonardi, Lorenzo; Pabbies, Arone; Kerr, Paul; Liu, Kan-Zhi; Sowa, Michael G

    2005-02-01

    The objective of this study was to compare two noninvasive techniques, laser Doppler and optical spectroscopy, for monitoring hemodynamic changes in skin flaps. Animal models for assessing these changes in microvascular free flaps and pedicle flaps were investigated. A 2 x 3-cm free flap model based on the epigastric vein-artery pair and a reversed MacFarlane 3 x 10-cm pedicle flap model were used in this study. Animals were divided into four groups, with groups 1 (n = 6) and 2 (n = 4) undergoing epigastric free flap surgery and groups 3 (n = 3) and 4 (n = 10) undergoing pedicle flap surgery. Groups 1 and 4 served as controls for each of the flap models. Groups 2 and 3 served as ischemia-reperfusion models. Optical spectroscopy provides a measure of hemoglobin oxygen saturation and blood volume, and the laser Doppler method measures blood flow. Optical spectroscopy proved to be consistently more reliable in detecting problems with arterial in flow compared with laser Doppler assessments. When spectroscopy was used in an imaging configuration, oxygen saturation images of the entire flap were generated, thus creating a visual picture of global flap health. In both single-point and imaging modes the technique was sensitive to vessel manipulation, with the immediate post operative images providing an accurate prediction of eventual outcome. This series of skin flap studies suggests a potential role for optical spectroscopy and spectroscopic imaging in the clinical assessment of skin flaps.

  2. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  3. Ignition characteristics of the iron-based alloy UNS S66286 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, James W.; Billard, Phillip A.; Hurley, James A.; Mcdermott, Kathleen M.; Vazquez, Isaura

    1988-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the iron based alloy UNS S66286. Ignition of the alloy was achieved by heating the top surface of a cylindrical specimen with a continuous-wave CO2 laser. Two heating procedures were used. In the first, laser power was adjusted to maintain an approximately linear increase in surface temperature. In the second, laser power was periodically increased until autoheating (self-heating) was established. It was found that the alloy would autoheat to destruction from temperatures below the solidus temperature. In addition endothermic events occurred as the alloy was heated, many at reproducible temperatures. Many endothermic events occurred prior to abrupt increases in surface temperature and appeared to accelerate the rate of increase in specimen temperature to rates greater than what would be expected from increased temperature alone. It is suggested that the source of these endotherms may increase the oxidation rate of the alloy. Ignition parameters are defined and the temperatures at which these parameters occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (25 to 2000 psia).

  4. 2H,3H-decafluoropentane-based nanodroplets: new perspectives for oxygen delivery to hypoxic cutaneous tissues.

    PubMed

    Prato, Mauro; Magnetto, Chiara; Jose, Jithin; Khadjavi, Amina; Cavallo, Federica; Quaglino, Elena; Panariti, Alice; Rivolta, Ilaria; Benintende, Emilio; Varetto, Gianfranco; Argenziano, Monica; Troia, Adriano; Cavalli, Roberta; Guiot, Caterina

    2015-01-01

    Perfluoropentane (PFP)-based oxygen-loaded nanobubbles (OLNBs) were previously proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature, including cancer, infection, and autoimmunity. Here we introduce a new platform of oxygen nanocarriers, based on 2H,3H-decafluoropentane (DFP) as core fluorocarbon. These new nanocarriers have been named oxygen-loaded nanodroplets (OLNDs) since DFP is liquid at body temperature, unlike gaseous PFP. Dextran-shelled OLNDs, available either in liquid or gel formulations, display spherical morphology, ~600 nm diameters, anionic charge, good oxygen carrying capacity, and no toxic effects on human keratinocytes after cell internalization. In vitro OLNDs result more effective in releasing oxygen to hypoxic environments than former OLNBs, as demonstrated by analysis through oxymetry. In vivo, OLNDs effectively enhance oxy-hemoglobin levels, as emerged from investigation by photoacoustic imaging. Interestingly, ultrasound (US) treatment further improves transdermal oxygen release from OLNDs. Taken together, these data suggest that US-activated, DFP-based OLNDs might be innovative, suitable and cost-effective devices to topically treat hypoxia-associated pathologies of the cutaneous tissues.

  5. 2H,3H-Decafluoropentane-Based Nanodroplets: New Perspectives for Oxygen Delivery to Hypoxic Cutaneous Tissues

    PubMed Central

    Jose, Jithin; Khadjavi, Amina; Cavallo, Federica; Quaglino, Elena; Panariti, Alice; Rivolta, Ilaria; Benintende, Emilio; Varetto, Gianfranco; Argenziano, Monica; Troia, Adriano; Cavalli, Roberta; Guiot, Caterina

    2015-01-01

    Perfluoropentane (PFP)-based oxygen-loaded nanobubbles (OLNBs) were previously proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature, including cancer, infection, and autoimmunity. Here we introduce a new platform of oxygen nanocarriers, based on 2H,3H-decafluoropentane (DFP) as core fluorocarbon. These new nanocarriers have been named oxygen-loaded nanodroplets (OLNDs) since DFP is liquid at body temperature, unlike gaseous PFP. Dextran-shelled OLNDs, available either in liquid or gel formulations, display spherical morphology, ~600 nm diameters, anionic charge, good oxygen carrying capacity, and no toxic effects on human keratinocytes after cell internalization. In vitro OLNDs result more effective in releasing oxygen to hypoxic environments than former OLNBs, as demonstrated by analysis through oxymetry. In vivo, OLNDs effectively enhance oxy-hemoglobin levels, as emerged from investigation by photoacoustic imaging. Interestingly, ultrasound (US) treatment further improves transdermal oxygen release from OLNDs. Taken together, these data suggest that US-activated, DFP-based OLNDs might be innovative, suitable and cost-effective devices to topically treat hypoxia-associated pathologies of the cutaneous tissues. PMID:25781463

  6. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  7. A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.

  8. A new oxygen barometer for solar system basaltic glasses based on vanadium valence

    SciTech Connect

    Karner, J.M.; Sutton, S.R.; Papike, J.J.; Delaney, J.S.; Shearer, C.K.; Newville, M.; Eng, P.; Rivers, M.; Dyar, M.D.

    2004-05-10

    An oxybarometer based on vanadium valence and applicable to basaltic glasses covers eight orders of magnitude in oxygen fugacity. The determination of oxidation conditions for basaltic magmas derived by the melting of planetary mantles is critical to our understanding of the nature and evolution of planetary interiors. Yet, these determinations are compromised in terrestrial and especially extraterrestrial basalts by our analytical and computational methods for estimating oxygen fugacity (fO{sub 2}). For example, mineralogical barometers (1, 2) can be reduced in effectiveness by subsolidus re-equilibration of mineral assemblages, inversion of mineralogical data to melt characteristics, and deviations of the natural mineral compositions from ideal thermodynamic parameters. Likewise, techniques to estimate fO{sub 2} based on the valence state of Fe (i.e. Fe{sup 3+}/Fe{sup 2+}) are ineffective for materials that crystallized at or below the IW buffer, and only contain Fe{sup 2+} and Fe{sup 0} (3). For these reasons, we have developed an oxybarometer based on the valence state of vanadium in basaltic glasses. This oxybarometer has enormous potential because (1) V valence is measured in basaltic glasses that have been quenched at near liquidus temperatures, thereby recording magmatic fO{sub 2} conditions, and (2) V is a multivalent element, existing as V{sup 2+}, V{sup 3+}, V{sup 4+}, and V{sup 5+}, thus allowing for applicability over a range of redox conditions from the most reduced materials in the solar system, (e.g. calcium aluminum rich inclusions in chondritic meteorites [4]) to the most oxidized terrestrial magmas (this work).

  9. Model-based sensor location selection for helicopter gearbox monitoring

    NASA Technical Reports Server (NTRS)

    Jammu, Vinay B.; Wang, Keming; Danai, Kourosh; Lewicki, David G.

    1996-01-01

    A new methodology is introduced to quantify the significance of accelerometer locations for fault diagnosis of helicopter gearboxes. The basis for this methodology is an influence model which represents the effect of various component faults on accelerometer readings. Based on this model, a set of selection indices are defined to characterize the diagnosability of each component, the coverage of each accelerometer, and the relative redundancy between the accelerometers. The effectiveness of these indices is evaluated experimentally by measurement-fault data obtained from an OH-58A main rotor gearbox. These data are used to obtain a ranking of individual accelerometers according to their significance in diagnosis. Comparison between the experimentally obtained rankings and those obtained from the selection indices indicates that the proposed methodology offers a systematic means for accelerometer location selection.

  10. A novel selectable marker based on Aspergillus niger arginase expression.

    PubMed

    Dave, Kashyap; Ahuja, Manmeet; Jayashri, T N; Sirola, Rekha Bisht; Punekar, Narayan S

    2012-06-10

    Selectable markers are valuable tools in transforming asexual fungi like Aspergillus niger. An arginase (agaA) expression vector and a suitable arginase-disrupted host would define a novel nutritional marker/selection for transformation. The development of such a marker was successfully achieved in two steps. The single genomic copy of A. niger arginase gene was disrupted by homologous integration of the bar marker. The agaA disruptant was subsequently complemented by transforming it with agaA expression vectors. Both citA and trpC promoters were able to drive the expression of arginase cDNA. Such agaA+ transformants displayed arginase expression pattern distinct from that of the parent strain. The results are also consistent with a single catabolic route for arginine in this fungus. A simple yet novel arginine-based selection for filamentous fungal transformation is thus described.

  11. Selective adsorption for removal of nitrogen compounds from hydrocarbon streams over carbon-based adsorbents

    NASA Astrophysics Data System (ADS)

    Almarri, Masoud S.

    desulfurization of model diesel fuel, which contains equimolar concentrations of nitrogen (i.e., quinoline and indole), sulfur (i.e., dibenzothiophene and 4,6-dimethyldibenzothiophene), and aromatic compounds (naphthalene, 1-methylnaphthalene, and fluorene), was examined. The results revealed that when both nitrogen and sulfur compounds coexist in the fuel, the type and density of oxygen functional groups on the surface of the activated carbon are crucial for selective adsorption of nitrogen compounds but have negligible positive effects for sulfur removal. The adsorption of quinoline and indole is largely governed by specific interactions. There is enough evidence to support the importance of dipole--dipole and acid-base-specific interactions for the adsorption of both quinoline and indole. Modified carbon is a promising material for the efficient removal of the nitrogen compounds from light cycle oil (LCO). Adsorptive denitrogenation of LCO significantly improved the hydrodesulfurization (HDS) performance, especially for the removal of the refractory sulfur compounds such as 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene. An essential factor in applying activated carbon for adsorptive denitrogenation and desulfurization of liquid hydrocarbon streams is regeneration after saturation. The regeneration method of the saturated adsorbents consisted of toluene washing followed by heating to remove the remaining toluene. The results show that the spent activated carbon can be regenerated to completely recover the adsorption capacity. The high capacity and selectivity of activated carbon for nitrogen compounds, along with their ability to be regenerated, indicate that activated carbon is a promising adsorbent for the deep denitrogenation of liquid hydrocarbon streams.

  12. Investigation of packaging systems for shelled walnuts based on oxygen absorbers.

    PubMed

    Jensen, Pernille N; Sørensen, Gitte; Brockhoff, Per; Bertelsen, Grete

    2003-08-13

    Storage of nuts at a high oxygen concentration results in rancid nuts whereas storage at a low oxygen concentration results in fine-tasting nuts. During a 13 month experiment, packaging of walnuts with an oxygen absorber was compared to packaging in nitrogen or atmospheric air. At the same time, the effects of oxygen permeability of the packaging material and storage temperature (11 and 21 degrees C) were investigated by determination of hexanal and rancid taste of the walnuts. The optimal storage condition for walnuts is at 11 degrees C or lower, eventually combined with an oxygen absorber. However, without chilled storage and use of an oxygen absorber, it is possible to obtain an acceptable quality of walnuts with a packaging material having a very low oxygen permeability (e.g., laminate with EVOH) combined with nitrogen flushing. The results also revealed that the development of hexanal during time can be described by a second-order polynomial regression model.

  13. In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity.

    PubMed

    Trześniewski, Bartek J; Diaz-Morales, Oscar; Vermaas, David A; Longo, Alessandro; Bras, Wim; Koper, Marc T M; Smith, Wilson A

    2015-12-09

    Ni-based oxygen evolution catalysts (OECs) are cost-effective and very active materials that can be potentially used for efficient solar-to-fuel conversion process toward sustainable energy generation. We present a systematic spectroelectrochemical characterization of two Fe-containing Ni-based OECs, namely nickel borate (Ni(Fe)-B(i)) and nickel oxyhydroxide (Ni(Fe)OOH). Our Raman and X-ray absorption spectroscopy results show that both OECs are chemically similar, and that the borate anions do not play an apparent role in the catalytic process at pH 13. Furthermore, we show spectroscopic evidence for the generation of negatively charged sites in both OECs (NiOO(-)), which can be described as adsorbed "active oxygen". Our data conclusively links the OER activity of the Ni-based OECs with the generation of those sites on the surface of the OECs. The OER activity of both OECs is strongly pH dependent, which can be attributed to a deprotonation process of the Ni-based OECs, leading to the formation of the negatively charged surface sites that act as OER precursors. This work emphasizes the relevance of the electrolyte effect to obtain catalytically active phases in Ni-based OECs, in addition to the key role of the Fe impurities. This effect should be carefully considered in the development of Ni-based compounds meant to catalyze the OER at moderate pHs. Complementarily, UV-vis spectroscopy measurements show strong darkening of those catalysts in the catalytically active state. This coloration effect is directly related to the oxidation of nickel and can be an important factor limiting the efficiency of solar-driven devices utilizing Ni-based OECs.

  14. Selection of Construction Methods: A Knowledge-Based Approach

    PubMed Central

    Skibniewski, Miroslaw

    2013-01-01

    The appropriate selection of construction methods to be used during the execution of a construction project is a major determinant of high productivity, but sometimes this selection process is performed without the care and the systematic approach that it deserves, bringing negative consequences. This paper proposes a knowledge management approach that will enable the intelligent use of corporate experience and information and help to improve the selection of construction methods for a project. Then a knowledge-based system to support this decision-making process is proposed and described. To define and design the system, semistructured interviews were conducted within three construction companies with the purpose of studying the way that the method' selection process is carried out in practice and the knowledge associated with it. A prototype of a Construction Methods Knowledge System (CMKS) was developed and then validated with construction industry professionals. As a conclusion, the CMKS was perceived as a valuable tool for construction methods' selection, by helping companies to generate a corporate memory on this issue, reducing the reliance on individual knowledge and also the subjectivity of the decision-making process. The described benefits as provided by the system favor a better performance of construction projects. PMID:24453925

  15. Selection of construction methods: a knowledge-based approach.

    PubMed

    Ferrada, Ximena; Serpell, Alfredo; Skibniewski, Miroslaw

    2013-01-01

    The appropriate selection of construction methods to be used during the execution of a construction project is a major determinant of high productivity, but sometimes this selection process is performed without the care and the systematic approach that it deserves, bringing negative consequences. This paper proposes a knowledge management approach that will enable the intelligent use of corporate experience and information and help to improve the selection of construction methods for a project. Then a knowledge-based system to support this decision-making process is proposed and described. To define and design the system, semistructured interviews were conducted within three construction companies with the purpose of studying the way that the method' selection process is carried out in practice and the knowledge associated with it. A prototype of a Construction Methods Knowledge System (CMKS) was developed and then validated with construction industry professionals. As a conclusion, the CMKS was perceived as a valuable tool for construction methods' selection, by helping companies to generate a corporate memory on this issue, reducing the reliance on individual knowledge and also the subjectivity of the decision-making process. The described benefits as provided by the system favor a better performance of construction projects.

  16. Improvement of Rice Biomass Yield through QTL-Based Selection

    PubMed Central

    Matsubara, Kazuki; Yamamoto, Eiji; Kobayashi, Nobuya; Ishii, Takuro; Tanaka, Junichi; Tsunematsu, Hiroshi; Yoshinaga, Satoshi; Matsumura, Osamu; Yonemaru, Jun-ichi; Mizobuchi, Ritsuko; Yamamoto, Toshio; Kato, Hiroshi; Yano, Masahiro

    2016-01-01

    Biomass yield of rice (Oryza sativa L.) is an important breeding target, yet it is not easy to improve because the trait is complex and phenotyping is laborious. Using progeny derived from a cross between two high-yielding Japanese cultivars, we evaluated whether quantitative trait locus (QTL)-based selection can improve biomass yield. As a measure of biomass yield, we used plant weight (aboveground parts only), which included grain weight and stem and leaf weight. We measured these and related traits in recombinant inbred lines. Phenotypic values for these traits showed a continuous distribution with transgressive segregation, suggesting that selection can affect plant weight in the progeny. Four significant QTLs were mapped for plant weight, three for grain weight, and five for stem and leaf weight (at α = 0.05); some of them overlapped. Multiple regression analysis showed that about 43% of the phenotypic variance of plant weight was significantly explained (P < 0.0001) by six of the QTLs. From F2 plants derived from the same parental cross as the recombinant inbred lines, we divergently selected lines that carried alleles with positive or negative additive effects at these QTLs, and performed successive selfing. In the resulting F6 lines and parents, plant weight significantly differed among the genotypes (at α = 0.05). These results demonstrate that QTL-based selection is effective in improving rice biomass yield. PMID:26986071

  17. Effect of non-lattice oxygen on ZrO2-based resistive switching memory.

    PubMed

    Lin, Chun-Chieh; Chang, Yi-Peng; Lin, Huei-Bo; Lin, Chu-Hsuan

    2012-03-14

    ZrO2-based resistive switching memory has attracted much attention according to its possible application in the next-generation nonvolatile memory. The Al/ZrO2/Pt resistive switching memory with bipolar resistive switching behavior is revealed in this work. The thickness of the ZrO2 film is only 20 nm. The device yield improved by the non-lattice oxygen existing in the ZrO2 film deposited at room temperature is firstly proposed. The stable resistive switching behavior and the long retention time with a large current ratio are also observed. Furthermore, it is demonstrated that the resistive switching mechanism agrees with the formation and rupture of a conductive filament in the ZrO2 film. In addition, the Al/ZrO2/Pt resistive switching memory is also possible for application in flexible electronic equipment because it can be fully fabricated at room temperature.

  18. Faraday rotation spectroscopy based on permanent magnets for sensitive detection of oxygen at atmospheric conditions.

    PubMed

    Brumfield, Brian; Wysocki, Gerard

    2012-12-31

    A low-power Faraday rotation spectroscopy system that uses permanent rare-earth magnets has been developed for detection of O₂ at 762 nm. The experimental signals are generated using laser wavelength modulation combined with a balanced detection scheme that permits quantum shot noise limited performance. A noise equivalent polarization rotation angle of 8 × 10⁻⁸ rad/Hz¹/² is estimated from the experimental noise, and this agrees well with a theoretical model based on Jones calculus. A bandwidth normalized minimum detection limit to oxygen of 6 ppmv/Hz¹/² with an ultimate minimum of 1.3 ppmv at integration times of ~1 minute has been demonstrated.

  19. Dissolved oxygen prediction using a possibility theory based fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Khan, Usman T.; Valeo, Caterina

    2016-06-01

    A new fuzzy neural network method to predict minimum dissolved oxygen (DO) concentration in a highly urbanised riverine environment (in Calgary, Canada) is proposed. The method uses abiotic factors (non-living, physical and chemical attributes) as inputs to the model, since the physical mechanisms governing DO in the river are largely unknown. A new two-step method to construct fuzzy numbers using observations is proposed. Then an existing fuzzy neural network is modified to account for fuzzy number inputs and also uses possibility theory based intervals to train the network. Results demonstrate that the method is particularly well suited to predicting low DO events in the Bow River. Model performance is compared with a fuzzy neural network with crisp inputs, as well as with a traditional neural network. Model output and a defuzzification technique are used to estimate the risk of low DO so that water resource managers can implement strategies to prevent the occurrence of low DO.

  20. Characterisation of an oxygen sensor based on In/In 2O 3 reference electrode

    NASA Astrophysics Data System (ADS)

    Colominas, S.; Abellà, J.; Victori, L.

    2004-11-01

    A potentiometric sensor for measuring oxygen activity in LBE has been developed since 2000 until today at 'Institut Quimic de Sarria' electrochemistry laboratories. This sensor is based on In/In 2O 3 reference electrode. The last experiments performed with this sensor have been directed to characterise the sensor. For this purpose, the following experiments in stagnant conditions have been performed: effect of the operating temperature from 300 to 500 °C, different covering gases (N 2 + 5% H 2, Ar 99.999%, and N 2 + 10 mg/L O 2) and comparison of different solid electrolytes (ZrO 2/Y 2O 3 and ZrO 2/MgO). Long-term experiments have also been performed to the see the stability of the signal with time.

  1. A combinatorial study of platinum-based oxygen reduction electrocatalysts for hydrogen fuel cells

    NASA Astrophysics Data System (ADS)

    Bonakdarpour, Arman

    This thesis presents measurements of the stability and activities of Pt-based oxygen reduction reaction (ORR) electrocatalysts for proton exchange membrane fuel cells (PEMFC). Because more than 70% of electrochemical losses originate from the cathodic reduction of oxygen, research on ORR catalysts remains very active. Numerous combinatorial libraries of Pt1-xMx (M = Fe, Ni, Mn; 0 ≤ x ≤ 1) and Pt1-x-yMxMy ' (M, M' = Co, Ni, Mn, Fe) were prepared by magnetron sputtering using high surface area nano-structured thin film (NSTF) supports as substrates. The libraries were studied for the corrosion stability of the transition metal elements by acid leaching experiments. The results show that after exposing these libraries to 0.5M H2SO4 (or HClO4) at 80°C for several days, significant amounts of transition metals leach off. When the transition metal content was about 60% or less mostly surface leaching occurred and for more than 60% surface and bulk leaching were observed. The composition of these libraries after acid treatment was very close to the electrocatalysts tested in hydrogen fuel cells, thus showing that acid treatment can mimic the fuel cell environment very well. Alloys of Pt-Ta, on the other hand, showed no dissolution of Ta. However, the presence of more than 10% Ta in the alloy, significantly reduces the ORR activity. The rotating ring-disk electrode technique was used to measure the ORR activity of sputtered Pt1-xCox (0 < x < 0.5) films. After heat treatment a 1.7x gain in the specific current densities were observed. There are claims in the literature that very high activities (about 10x) can be achieved by Pt alloys such as Pt-Co with similar preparation methods. Poor experimental setups are most likely the sources of these observations. High surface area Pt and Pt-Co-Mn catalysts, sputtered onto NSTF supports were studied using the RRDE technique. The Pt-Co-Mn alloy showed a kinetic gain of about 20 mV over Pt for ORR. This is in agreement with the

  2. Uniform design based SVM model selection for face recognition

    NASA Astrophysics Data System (ADS)

    Li, Weihong; Liu, Lijuan; Gong, Weiguo

    2010-02-01

    Support vector machine (SVM) has been proved to be a powerful tool for face recognition. The generalization capacity of SVM depends on the model with optimal hyperparameters. The computational cost of SVM model selection results in application difficulty in face recognition. In order to overcome the shortcoming, we utilize the advantage of uniform design--space filling designs and uniformly scattering theory to seek for optimal SVM hyperparameters. Then we propose a face recognition scheme based on SVM with optimal model which obtained by replacing the grid and gradient-based method with uniform design. The experimental results on Yale and PIE face databases show that the proposed method significantly improves the efficiency of SVM model selection.

  3. Fundamental Investigation of Oxygen Reduction Reaction on Rhodium Sulfide-Based Chalcogenides

    SciTech Connect

    Ziegelbauer, J.; Gatewood, D; Gulla, A; Guinel, M; Ernst, F; Ramaker, D; Mukerjee, S

    2009-01-01

    Synchrotron-based X-ray absorption spectroscopy (XAS), including the surface-specific {Delta}XANES technique, is used to investigate the active reaction site for water activation and the oxygen reduction reaction (ORR) on the novel, mixed-phase chalcogenide electrocatalyst RhxSy/C (De Nora). The specific adsorption of water, OH, and O as a function of overpotential is reported. This study builds on a prior communication based solely on interpreting the XAS spectra of RhxSy with respect to the metallic Rh3S4 phase. Here, a more extensive overview of the electrocatalysis is provided on RhxSy/C, the thermally grown Rh2S3/C and Rh3S4/C preferential phases and a standard 30 wt % Rh/C electrocatalyst, including results obtained by X-ray diffraction (XRD), XAS, high-resolution transmission electron imaging, microanalysis, and electrochemical investigations. Heating of the RhxSy catalysts to prepare the two preferential phases causes Rh segregation and the formation of Rh metal particles, and immersion in TFMSA causes S dissolution and the formation of a Rh skin on the RhxSy samples. It is shown that some Rh-Rh interactions are needed to carry out the ORR. This is present on the Rh6 moieties in both the Rh3S4 and RhxSy catalysts, but a partial Rh skin (present from acid dissolution) is also contributing to the ORR observed on RhxSy. This to our knowledge is the first time a reaction site in a multiphase inorganic framework structure has been investigated in terms of electrocatalytic pathway for oxygen reduction.

  4. Selective Growth of Monoatomic Cu Rows at Step Edges on Si(111) Substrates in Ultralow-Dissolved-Oxygen Water

    NASA Astrophysics Data System (ADS)

    Tokuda, Norio; Nishizawa, Masayasu; Miki, Kazushi; Yamasaki, Satoshi; Hasunuma, Ryu; Yamabe, Kikuo

    2005-04-01

    We have fabricated high-aspect-ratio monoatomic Cu rows along atomic step edges on vicinal Si(111) substrates. The method consists of two wet processes: (1) the formation of a step/terrace structure by immersing a Si(111) substrate in ultralow-dissolved-oxygen water (LOW) and (2) the formation of the nanowires by immersion in LOW containing Cu ions. A systematic investigation of Si(111) surfaces with the nanowire has been performed by means of atomic force microscopy, Fourier-transform infrared absorption spectroscopy, and total-reflection X-ray fluorescence spectroscopy.

  5. Risk-based audit selection of dairy farms.

    PubMed

    van Asseldonk, M A P M; Velthuis, A G J

    2014-02-01

    Dairy farms are audited in the Netherlands on numerous process standards. Each farm is audited once every 2 years. Increasing demands for cost-effectiveness in farm audits can be met by introducing risk-based principles. This implies targeting subpopulations with a higher risk of poor process standards. To select farms for an audit that present higher risks, a statistical analysis was conducted to test the relationship between the outcome of farm audits and bulk milk laboratory results before the audit. The analysis comprised 28,358 farm audits and all conducted laboratory tests of bulk milk samples 12 mo before the audit. The overall outcome of each farm audit was classified as approved or rejected. Laboratory results included somatic cell count (SCC), total bacterial count (TBC), antimicrobial drug residues (ADR), level of butyric acid spores (BAB), freezing point depression (FPD), level of free fatty acids (FFA), and cleanliness of the milk (CLN). The bulk milk laboratory results were significantly related to audit outcomes. Rejected audits are likely to occur on dairy farms with higher mean levels of SCC, TBC, ADR, and BAB. Moreover, in a multivariable model, maxima for TBC, SCC, and FPD as well as standard deviations for TBC and FPD are risk factors for negative audit outcomes. The efficiency curve of a risk-based selection approach, on the basis of the derived regression results, dominated the current random selection approach. To capture 25, 50, or 75% of the population with poor process standards (i.e., audit outcome of rejected), respectively, only 8, 20, or 47% of the population had to be sampled based on a risk-based selection approach. Milk quality information can thus be used to preselect high-risk farms to be audited more frequently.

  6. New RSA-Based (Selectively) Convertible Undeniable Signature Schemes

    NASA Astrophysics Data System (ADS)

    Phong, Le Trieu; Kurosawa, Kaoru; Ogata, Wakaha

    In this paper, we design and analyze some new and practical (selectively) convertible undeniable signature (SCUS) schemes in both random oracle and standard model, which enjoy several merits over existing schemes in the literature. In particular, we design the first practical RSA-based SCUS schemes secure in the standard model. On the path, we also introduce two moduli RSA assumptions, including the strong twin RSA assumption, which is the RSA symmetry of the strong twin Diffie-Hellman assumption (Eurocrypt'08).

  7. Fluorescence-lifetime-based sensors: oxygen sensing and other biomedical applications

    NASA Astrophysics Data System (ADS)

    Randers-Eichhorn, Lisa; Bartlett, Roscoe A.; Sipior, Jeffrey; Frey, Douglas D.; Carter, Gary M.; Lakowicz, Joseph R.; Rao, Govind

    1996-05-01

    Murine hybridomas were cultivated in tissue culture flasks. Dissolved oxygen tensions in the gas and liquid phases during cell growth were measured non-invasively by an optical oxygen sensor. Readings were made with caps both cracked open and completely closed. During cell growth, gas phase oxygen concentrations remained near atmospheric levels, while the oxygen tension at the bottom of the flasks eventually reached zero. These results suggest that the widespread practice of cracking open tissue culture flask caps during cell growth with a view to supplying adequate oxygen to cells is ineffective and unnecessary. The mass transfer characteristics of the tissue culture flask indicate the dominant resistance to oxygen mass transfer to the cells was the liquid media. The mass transfer rates through the liquid layer under standard laboratory conditions were found to be greater than those predicted by diffusion alone, suggesting microscale mixing. Volumetric and specific oxygen consumption rates were calculated from the sensor data, and were comparable to published values. A recently developed single fiber optic oxygen sensor is described. This new sensor will provide oxygen concentrations at various levels in the tissue culture flasks, allowing more accurate modeling of oxygen diffusion.

  8. Modelling Hydrogen Reduction and Hydrodeoxygenation of Oxygenates

    SciTech Connect

    Zhao, Y.; Xu, Q.; Cheah, S.

    2013-01-01

    Based on Density Functional Theory (DFT) simulations, we have studied the reduction of nickel oxide and biomass derived oxygenates (catechol, guaiacol, etc.) in hydrogen. Both the kinetic barrier and thermodynamic favorability are calculated with respect to the modeled reaction pathways. In early-stage reduction of the NiO(100) surface by hydrogen, the pull-off of the surface oxygen atom and simultaneous activation of the nearby Ni atoms coordinately dissociate the hydrogen molecules so that a water molecule can be formed, leaving an oxygen vacancy on the surface. In hydrogen reaction with oxygenates catalyzed by transition metals, hydrogenation of the aromatic carbon ring normally dominates. However, selective deoxygenation is of particular interest for practical application such as biofuel conversion. Our modeling shows that doping of the transition metal catalysts can change the orientation of oxygenates adsorbed on metal surfaces. The correlation between the selectivity of reaction and the orientation of adsorption are discussed.

  9. Probing oxygen consumption in epileptic brain slices with QDs-based FRET sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Chunfeng; Ingram, Justin; Schiff, Steven; Xu, Jian; Xiao, Min

    2011-02-01

    We developed ratiometric optical oxygen sensors to probe the oxygen consumption during epileptic events in rat brain slices. The oxygen sensors consist of the sensing part of phosphorescence dyes (Platinum (II) octaethylporphine ketone) and reference part of nanocystal quantum dots (NQDs) embedded in polymer blends, with pre-designed excitation through fluorescence resonance energy transfer (FRET) from NQDs to the oxygen sensitive dyes (OSDs). The ratiometric FRET sensors with fast temporal response and excellent bio-compatibility are suitable for real time quantitative dissolved oxygen (D.O.) probes in biological microenvironment. Coating the sensors onto the micro-pipettes, we performed simultaneous oxygen probes at pyramidal and oriens layers in rat hippocampal CA1. Different spatiotemporal patterns with maximum D.O. decreases of 9.9+/-1.1 mg/L and 4.9+/-0.7 mg/L during seizure events were observed in pyramidal and oriens layers, respectively.

  10. Sensitive hydrogen sensor based on selectively infiltrated photonic crystal fiber with Pt-loaded WO₃ coating.

    PubMed

    Wang, Ying; Wang, D N; Yang, Fan; Li, Zhi; Yang, Minghong

    2014-07-01

    A sensitive hydrogen sensing device based on a selectively infiltrated photonic crystal fiber (PCF) coated with Pt-loaded WO₃ is demonstrated. With Pt-loaded WO₃ coating acting as the catalytic layer, hydrogen undergoes an exothermic reaction with oxygen and releases heat when the device is exposed to gas mixtures of air and hydrogen, which induces local temperature change in the PCF and hence leads to the resonant wavelength shift of the proposed device. The maximum wavelength shift of 98.5 nm is obtained with a 10-mm-long infiltrated PCF for 4% (v/v) H₂ concentration, and a hydrogen sensitivity of 32.3 nm/% (v/v) H₂ is achieved within the range of 1%-4% (v/v) H₂ in air.

  11. SVM-based classification selection algorithm for the automatic selection of guide star

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng; Xiong, Chengyi; Wu, Weiren; Tian, Jinwen; Liu, Jian

    2003-09-01

    A new general method of the automatic selection of guide star, which based on a new dynamic Visual Magnitude Threshold (VMT) hyper-plane and the Support Vector Machines (SVM), is introduced. The high dimensional nonlinear VMT plane can be easily obtained by using the SVM, then the guide star sets are generated by the SVM classifier. The experiment results demonstrate that the catalog obtained by the proposed algorithm has a lot of advantages including, fewer total numbers, smaller catalog size and better distribution uniformity.

  12. Index Fund Selections with GAs and Classifications Based on Turnover

    NASA Astrophysics Data System (ADS)

    Orito, Yukiko; Motoyama, Takaaki; Yamazaki, Genji

    It is well known that index fund selections are important for the risk hedge of investment in a stock market. The`selection’means that for`stock index futures’, n companies of all ones in the market are selected. For index fund selections, Orito et al.(6) proposed a method consisting of the following two steps : Step 1 is to select N companies in the market with a heuristic rule based on the coefficient of determination between the return rate of each company in the market and the increasing rate of the stock price index. Step 2 is to construct a group of n companies by applying genetic algorithms to the set of N companies. We note that the rule of Step 1 is not unique. The accuracy of the results using their method depends on the length of time data (price data) in the experiments. The main purpose of this paper is to introduce a more`effective rule’for Step 1. The rule is based on turnover. The method consisting of Step 1 based on turnover and Step 2 is examined with numerical experiments for the 1st Section of Tokyo Stock Exchange. The results show that with our method, it is possible to construct the more effective index fund than the results of Orito et al.(6). The accuracy of the results using our method depends little on the length of time data (turnover data). The method especially works well when the increasing rate of the stock price index over a period can be viewed as a linear time series data.

  13. Oxygen sensing glucose biosensors based on alginate nano-micro systems

    NASA Astrophysics Data System (ADS)

    Chaudhari, Rashmi; Joshi, Abhijeet; Srivastava, Rohit

    2014-04-01

    Clinically glucose monitoring in diabetes management is done by point-measurement. However, an accurate, continuous glucose monitoring, and minimally invasive method is desirable. The research aims at developing fluorescence-mediated glucose detecting biosensors based on near-infrared radiation (NIR) oxygen sensitive dyes. Biosensors based on Glucose oxidase (GOx)-Rudpp loaded alginate microspheres (GRAM) and GOx-Platinum-octaethylporphyrin (PtOEP)-PLAalginate microsphere system (GPAM) were developed using air-driven atomization and characterized using optical microscopy, CLSM, fluorescence spectro-photometry etc. Biosensing studies were performed by exposing standard solutions of glucose. Uniform sized GRAM and GPAM with size 50+/-10μm were formed using atomization. CLSM imaging of biosensors suggests that Rudpp and PtOEP nanoparticles are uniformly distributed in alginate microspheres. The GRAM and GPAM showed a good regression constant of 0.974 and of 0.9648 over a range of 0-10 mM of glucose with a high sensitivity of 3.349%/mM (625 nm) and 2.38%/mM (645 nm) at 10 mM of glucose for GRAM and GPAM biosensor. GRAM and GPAM biosensors show great potential in development of an accurate and minimally invasive glucose biosensor. NIR dye based assays can aid sensitive, minimally-invasive and interference-free detection of glucose in diabetic patients.

  14. Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes.

    PubMed

    Wang, Xiaoju; Falk, Magnus; Ortiz, Roberto; Matsumura, Hirotoshi; Bobacka, Johan; Ludwig, Roland; Bergelin, Mikael; Gorton, Lo; Shleev, Sergey

    2012-01-15

    We report on the fabrication and characterisation of a gold-nanoparticle (AuNP)-based mediatorless sugar/oxygen biofuel cell (BFC) operating in neutral sugar-containing buffers and human physiological fluids, such as blood and plasma. First, Corynascus thermophilus cellobiose dehydrogenase (CtCDH) and Myrothecium verrucaria bilirubin oxidase (MvBOx), used as anodic and cathodic bioelements, respectively, were immobilised on gold electrodes modified with 20 nm AuNPs. Detailed characterisation and optimisation of a new CDH/AuNP-based bioanode were performed and the following fundamental parameters were obtained: (i) the redox potential of the haem-containing centre of the enzyme was measured to be 75 mV vs. NHE, (ii) the surface coverage of CtCDH was found to be 0.65 pmol cm(-2) corresponding to a sub-monolayer coverage of the thiol-modified AuNPs by the enzyme, (iii) a turnover number for CtCDH immobilised on thiol-modified AuNPs was calculated to be ca. 0.5 s(-1), and (iv) the maximal current densities as high as 40 μA cm(-2) were registered in sugar-containing neutral buffers. Second, both biomodified electrodes, namely the CtCDH/AuNP-based bioanode and the MvBOx/AuNP-based biocathode, were combined into a functional BFC and the designed biodevices were carefully investigated. The following characteristics of the mediator-, separator- and membrane-less, miniature BFC were obtained: in phosphate buffer; an open-circuit voltage of 0.68 V, a maximum power density of 15 μW cm(-2) at a cell voltage of 0.52 V and in human blood; an open-circuit voltage of 0.65 V, a maximum power density of 3 μW cm(-2) at a cell voltage of 0.45 V, respectively. The estimated half-lives of the biodevices were found to be >12, <8, and <2 h in a sugar-containing buffer, human plasma, and blood, respectively. The basic characteristics of mediatorless sugar/oxygen BFCs were significantly improved compared with previously designed biodevices, because of the usage of three-dimensional Au

  15. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M.; Elzatahry, Ahmed A.; Zheng, Gengfeng

    2015-08-01

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g-1, with excellent capacitance retention (>90%) at 10 A g-1 for over 10 000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm-2 at 1.65 V vs. the RHE.A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific

  16. Image-based modeling of blood flow and oxygen transfer in feto-placental capillaries

    NASA Astrophysics Data System (ADS)

    Pearce, Philip; Jensen, Oliver

    2016-11-01

    During pregnancy, oxygen diffuses from maternal to fetal blood through the placenta. At the smallest scale of the feto-placental vasculature are the "terminal villi", bulbous structures that are thought to be the main sites for oxygen transfer in the final trimester of pregnancy. The objective of this study is to investigate blood flow and oxygen transfer in the terminal villi of the placenta. Three-dimensional representations of villous and capillary surfaces, obtained from confocal laser scanning microscopy, are converted to finite-element meshes. Simulations of blood flow and oxygen transfer are performed to calculate the vascular flow resistance of the capillaries and the total oxygen transfer rate from the maternal blood. Scaling arguments, which predict the oxygen transfer across a range of Peclet numbers, are shown to be an efficient tool for quantifying the effect of statistical variability and experimental uncertainty. The effect of commonly observed localised dilations in the fetal vasculature on oxygen transfer is quantified using an idealised model in a simplified geometry. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximised by an optimal shape of the dilation, leading to an increase in oxygen transfer of up to 15%.

  17. Transition metal ions regulated oxygen evolution reaction performance of Ni-based hydroxides hierarchical nanoarrays

    PubMed Central

    Zhou, Tingting; Cao, Zhen; Zhang, Pan; Ma, Houyi; Gao, Zhen; Wang, Heng; Lu, Yue; He, Jia; Zhao, Yunfeng

    2017-01-01

    Nickel-based hydroxide hierarchical nanoarrays (NiyM(OH)x HNAs M = Fe or Zn) are doped with non-noble transition metals to create nanostructures and regulate their activities for the oxygen evolution reaction. Catalytic performance in these materials depends on their chemical composition and the presence of nanostructures. These novel hierarchical nanostructures contain small secondary nanosheets that are grown on the primary nanowire arrays, providing a higher surface area and more efficient mass transport for electrochemical reactions. The activities of the NiyM(OH)x HNAs for the oxygen evolution reaction (OER) followed the order of Ni2.2Fe(OH)x > Ni(OH)2 > Ni2.1Zn(OH)x, and these trends are supported by density functional theory (DFT) calculations. The Fe-doped nickel hydroxide hierarchical nanoarrays (Ni2.2Fe(OH)x HNAs), which had an appropriate elemental composition and hierarchical nanostructures, achieve the lowest onset overpotential of 234 mV and the smallest Tafel slope of 64.3 mV dec−1. The specific activity, which is normalized to the Brunauer–Emmett–Teller (BET) surface area of the catalyst, of the Ni2.2Fe(OH)x HNAs is 1.15 mA cm−2BET at an overpotential of 350 mV. This is ~4-times higher than that of Ni(OH)2. These values are also superior to those of a commercial IrOx electrocatalyst. PMID:28383065

  18. Solid waste management of a chemical-looping combustion plant using Cu-based oxygen carriers.

    PubMed

    García-Labiano, Francisco; Gayán, Pilar; Adánez, Juan; De Diego, Luis F; Forero, Carmen R

    2007-08-15

    Waste management generated from a Chemical-Looping Combustion (CLC) plant using copper-based materials is analyzed by two ways: the recovery and recycling of the used material and the disposal of the waste. A copper recovery process coupled to the CLC plant is proposed to avoid the loss of active material generated by elutriation from the system. Solid residues obtained from a 10 kWth CLC prototype operated during 100 h with a CuO-Al2O3 oxygen carrier prepared by impregnation were used as raw material in the recovery process. Recovering efficiencies of approximately 80% were obtained in the process, where the final products were an eluate of Cu(NO3)2 and a solid. The eluate was used for preparation of new oxygen carriers by impregnation, which exhibited high reactivity for reduction and oxidation reactions as well as adequate physical and chemical properties to be used in a CLC plant. The proposed recovery process largely decreases the amount of natural resources (Cu and Al203) employed in a CLC power plant as well as the waste generated in the process. To determine the stability of the different solid streams during deposition in a landfill, these were characterized with respect to their leaching behavior according to the European Union normative. The solid residue finally obtained in the CLC plant coupled to the recovery process (composed by Al2O3 and CuAl2O4) can be classified as a stable nonreactive hazardous waste acceptable at landfills for nonhazardous wastes.

  19. Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture.

    PubMed

    He, Feng; Linak, William P; Deng, Shuang; Li, Fanxing

    2017-02-21

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling duct, range between 2 and 5 μm. A notable number of submicrometer particulates are also identified. Oxygen carrier attrition was observed to lead to increased CuO loss resulting from the chemical looping reactions, i.e., Cu is enriched in small particles generated primarily from fragmentation in the size range of 10-75 μm. Cyclic reduction and oxidation reactions in CLC have been determined to weaken the oxygen carrier particles, resulting in increased particulate emission rates when compared to those of oxygen carriers without redox reactions. The generation rate for particulates <10 μm was found to decrease with progressive cycles over as-prepared oxygen carrier particles and then reach a steady state. The surface of the oxygen carrier is also found to be coarsened due to a Kirkendall effect, which also explains the enrichment of Cu on particle surfaces and in small particles.

  20. Optically based quantification of absolute cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution in rodents

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Sakadžić, Sava; Vinogradov, Sergei A.; Boas, David A.

    2010-02-01

    Measuring oxygen delivery in brain tissue is important for identifying the pathophysiological changes associated with brain injury and various diseases such as cancer, stroke, and Alzheimer's disease. We have developed a multi-modal imaging system for minimally invasive measurement of cerebral oxygenation and blood flow in small animals with high spatial resolution. The system allows for simultaneous measurement of blood flow using Fourier-domain optical coherence tomography, and oxygen partial pressure (pO2) using either confocal or multiphoton phosphorescence lifetime imaging with exogenous porphyrin-based dyes sensitive to dissolved oxygen. Here we present the changes in pO2 and blood flow in superficial cortical vessels of Sprague Dawley rats in response to conditions such as hypoxia, hyperoxia, and functional stimulation. pO2 measurements display considerable heterogeneity over distances that cannot be resolved with more widely used oxygen-monitoring techniques such as BOLD-fMRI. Large increases in blood flow are observed in response to functional stimulation and hypoxia. Our system allows for quantification of cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution, providing a better understanding of metabolic dynamics during functional stimulation and under various neuropathologies. Ultimately, better insight into the underlying mechanisms of neuropathologies will facilitate the development of improved therapeutic strategies to minimize damage to brain tissue.

  1. [Wavelength selection of the oximetry based on test analysis of variance].

    PubMed

    Lin, Ling; Li, Wei; Zeng, Rui-Li; Liu, Rui-An; Li, Gang; Wu, Xiao-Rong

    2014-07-01

    In order to improve the precision and reliability of the spectral measurement of blood oxygen saturation, and enhance the validity of the measurement, the method of test analysis of variance was employed. Preferred wavelength combination was selected by the analysis of the distribution of the coefficient of oximetry at different wavelength combinations and rational use of statistical theory. Calculated by different combinations of wavelengths (660 and 940 nm, 660 and 805 nm and 805 and 940 nm) through the clinical data under different oxygen saturation, the single factor test analysis of variance model of the oxygen saturation coefficient was established, the relative preferabe wavelength combination can be selected by comparative analysis of different combinations of wavelengths from the photoelectric volume pulse to provide a reliable intermediate data for further modeling. The experiment results showed that the wavelength combination of 660 and 805 nm responded more significantly to the changes in blood oxygen saturation and the introduced noise and method error were relatively smaller of this combination than other wavelength combination, which could improve the measurement accuracy of oximetry. The study applied the test variance analysis to the selection of wavelength combination in the blood oxygen result measurement, and the result was significant. The study provided a new idea for the blood oxygen measurements and other related spectroscopy quantitative analysis. The method of test analysis of variance can help extract the valid information which represents the measured values from the spectrum.

  2. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    SciTech Connect

    Ju, Hua; Li, Zhihu; Xu, Yanhui

    2015-04-15

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm{sup −2} for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm{sup −2} (the real surface area), and the reaction rate constant has an order of magnitude of 10{sup −7}–10{sup −6} cm s{sup −1}. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER.

  3. Glucose microfluidic fuel cell based on silver bimetallic selective catalysts for on-chip applications

    NASA Astrophysics Data System (ADS)

    Cuevas-Muñiz, F. M.; Guerra-Balcázar, M.; Esquivel, J. P.; Sabaté, N.; Arriaga, L. G.; Ledesma-García, J.

    2012-10-01

    A glucose microfluidic fuel cell with outstanding performance at zero flow condition is presented. Polarization tests showed that bimetallic materials based in silver (AuAg/C as anode, PtAg/C as cathode) exhibit tolerance to byproducts and crossover effect. This allowed achieving one of the highest power densities reported for glucose fuel cells, up to a value of 630 μW cm-2 using two separated laminar flows of reactants. Furthermore, the tolerance to crossover effect caused by the selectivity of PtAg/C to oxygen reduction reaction in presence of glucose permitted using a single flow containing a mixture of glucose/oxygen, yielding a performance as high as 270 μW cm-2. Microfluidic fuel cell was further evaluated with a simulated body fluid solution that contained salts commonly present in the human blood plasma, reaching a power of 240 μW cm-2 at zero flow. These results envisage the incorporation of this fuel cell as a portable power source in Lab-on-a-Chip devices without the need of external pumps.

  4. Selective recognition of americium by peptide-based reagents.

    PubMed

    Özçubukçu, Salih; Mandal, Kalyanaswer; Wegner, Seraphine; Jensen, Mark P; He, Chuan

    2011-09-05

    The separation of lanthanides from minor actinides such as americium and curium is an important step during the recycling process in the treatment of nuclear waste. However, the similar chemistry and ionic size of lanthanide and actinide ions make the separation challenging. Here, we report that a peptide-based reagent can selectively bind trivalent actinides over trivalent lanthanides by means of introducing soft-donor atoms into a peptide known as a lanthanide-binding tag (LBT). Fluorescence spectroscopy has been used to measure the dissociation constant of each metal/peptide complex. A 10-fold selectivity was obtained for Am(3+) over the similarly sized lanthanide cation, Nd(3+), when the asparagine on the fifth position of a LBT was mutated to a cysteine and further functionalized by a pyridine moiety.

  5. Method of assessing blood oxygenation in microcirculation vessels based on Doppler approach

    NASA Astrophysics Data System (ADS)

    Sokolov, Vladimir G.; Korsi, Larissa V.; Egorov, Sergei Y.

    2001-06-01

    Combination of laser Doppler flowmetry and pulse oximetry methods allows for the direct assessment of oxygen supply to tissues at the microcirculatory level, namely, in that part of the vascular network where the transcapillary exchange takes place that is responsible for saturating tissues with oxygen. The microcirculation system comprises arterial and venous microvascular parts that differ in blood flow velocities. Frequency separation of the photodetector signal components related to different velocity ranges makes possible to distinguish the hemodynamic processes in these two parts of the microvascular system. Moreover, numerous studies of collective oscillatory processes in hemodynamics reveal that cardio-oscillations are more pronounced in arterioles, whereas venous hemodynamics is mostly influenced by the breath rhythm. Taking account of the above phenomena allows developing a signal-filtration system for separate characterization of blood-oxygenation states in arterial and venous blood flows. Light absorbance in the skin depends on both light wavelength and blood-oxygenation level. Processing the signals obtained with a two-channel dual-wavelength (630 and 1115 nm) laser Doppler flowmeter provides information about blood oxygenation levels at the entrance and exit of the microvascular system and allows assessing the specific levels of oxygenation levels at the entrance and exit of the microvascular system and allows assessing the specific levels of oxygen consumption in tissues. In particular, this approach allows revealing pathogenic processes resulting from hyper- and hypo-oxygenation in tissues. For instance, rapidly growing malignant tumors are characterized by intensive metabolism, rapid formation of capillaries, and active transcapillary oxygen exchange that results in higher level of oxygen diffusion into tissue, while the level of oxygen is lowered in the microvascular veins.

  6. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  7. Selection of DNA aptamers with two modified bases

    PubMed Central

    Gawande, Bharat N.; Rohloff, John C.; Carter, Jeffrey D.; von Carlowitz, Ira; Zhang, Chi; Schneider, Daniel J.; Janjic, Nebojsa

    2017-01-01

    The nucleobases comprising DNA and RNA aptamers provide considerably less chemical diversity than protein-based ligands, limiting their versatility. The introduction of novel functional groups at just one of the four bases in modified aptamers has recently led to dramatic improvement in the success rate of identifying nucleic acid ligands to protein targets. Here we explore the benefits of additional enhancement in physicochemical diversity by selecting modified DNA aptamers that contain amino-acid–like modifications on both pyrimidine bases. Using proprotein convertase subtilisin/kexin type 9 as a representative protein target, we identify specific pairwise combinations of modifications that result in higher affinity, metabolic stability, and inhibitory potency compared with aptamers with single modifications. Such doubly modified aptamers are also more likely to be encoded in shorter sequences and occupy nonoverlapping epitopes more frequently than aptamers with single modifications. These highly modified DNA aptamers have broad utility in research, diagnostic, and therapeutic applications. PMID:28265062

  8. Selection of DNA aptamers with two modified bases.

    PubMed

    Gawande, Bharat N; Rohloff, John C; Carter, Jeffrey D; von Carlowitz, Ira; Zhang, Chi; Schneider, Daniel J; Janjic, Nebojsa

    2017-03-14

    The nucleobases comprising DNA and RNA aptamers provide considerably less chemical diversity than protein-based ligands, limiting their versatility. The introduction of novel functional groups at just one of the four bases in modified aptamers has recently led to dramatic improvement in the success rate of identifying nucleic acid ligands to protein targets. Here we explore the benefits of additional enhancement in physicochemical diversity by selecting modified DNA aptamers that contain amino-acid-like modifications on both pyrimidine bases. Using proprotein convertase subtilisin/kexin type 9 as a representative protein target, we identify specific pairwise combinations of modifications that result in higher affinity, metabolic stability, and inhibitory potency compared with aptamers with single modifications. Such doubly modified aptamers are also more likely to be encoded in shorter sequences and occupy nonoverlapping epitopes more frequently than aptamers with single modifications. These highly modified DNA aptamers have broad utility in research, diagnostic, and therapeutic applications.

  9. Graphene-Based Non-Noble-Metal Catalysts for Oxygen Reduction Reaction in Acid

    SciTech Connect

    H Byon; J Suntivich; Y Shao-Horn

    2011-12-31

    Non-noble-metal catalysts based on Fe-N-C moieties have shown promising oxygen reduction reaction (ORR) activity in proton exchange membrane fuel cells (PEMFCs). In this study, we report a facile method to prepare a Fe-N-C catalyst based on modified graphene (Fe-N-rGO) from heat treatment of a mixture of Fe salt, graphitic carbon nitride (g-C{sub 3}N{sub 4}), and chemically reduced graphene (rGO). The Fe-N-rGO catalyst was found to have pyridinic N-dominant heterocyclic N (40% atomic concentration among all N components) on the surface and have an average Fe coordination of {approx}3 N (Fe-N{sub 3,average}) in bulk. Rotating disk electrode measurements revealed that Fe-N-rGO had high mass activity in acid and exhibited high stability at 0.5 V at 80 C in acid over 70 h, which was correlated to low H{sub 2}O{sub 2} production shown from rotating ring disk electrode measurements.

  10. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Liu, Huijuan; Liu, Yang; Qu, Jiuhui; Li, Jinghong

    2015-01-01

    The development of low cost, durable and efficient nanocatalysts to substitute expensive and rare noble metals (e.g. Pt, Au and Pd) in overcoming the sluggish kinetic process of the oxygen reduction reaction (ORR) is essential to satisfy the demand for sustainable energy conversion and storage in the future. Graphene based transition metal oxide nanocomposites have extensively been proven to be a type of promising highly efficient and economic nanocatalyst for optimizing the ORR to solve the world-wide energy crisis. Synthesized nanocomposites exhibit synergetic advantages and avoid the respective disadvantages. In this feature article, we concentrate on the recent leading works of different categories of introduced transition metal oxides on graphene: from the commonly-used classes (FeOx, MnOx, and CoOx) to some rare and heat-studied issues (TiOx, NiCoOx and Co-MnOx). Moreover, the morphologies of the supported oxides on graphene with various dimensional nanostructures, such as one dimensional nanocrystals, two dimensional nanosheets/nanoplates and some special multidimensional frameworks are further reviewed. The strategies used to synthesize and characterize these well-designed nanocomposites and their superior properties for the ORR compared to the traditional catalysts are carefully summarized. This work aims to highlight the meaning of the multiphase establishment of graphene-based transition metal oxide nanocomposites and its structural-dependent ORR performance and mechanisms.

  11. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction.

    PubMed

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Zheng, Gengfeng

    2015-09-14

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g(-1), with excellent capacitance retention (>90%) at 10 A g(-1) for over 10,000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm(-2) at 1.65 V vs. the RHE.

  12. HEMORHEOLOGICAL IMPLICATIONS OF PERFLUOROCARBON BASED OXYGEN CARRIER INTERACTION WITH COLLOID PLASMA EXPANDERS AND BLOOD

    PubMed Central

    Vásquez, Diana M.; Ortiz, Daniel; Alvarez, Oscar A.; Briceño, Juan C.; Cabrales, Pedro

    2013-01-01

    Perfluorocarbon (PFC) emulsion based oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically-used PEs. The rheological behavior of the mixtures was analyzed in parallel with in vivo analysis of blood flow in microvessels using intravital microscopy when administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation, and increased blood viscosity. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo relative to non-aggregating mixtures of PFC and PEs. For the PEs evaluated, albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rate (e.g. arterioles, venules, and pulmonary circulation) because aggregates could cause capillary occlusion, decrease perfusion, pulmonary emboli, or focal ischemia. PMID:23606592

  13. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes.

    PubMed

    Yoo, Eunjoo; Zhou, Haoshen

    2016-06-08

    The use of carbon materials as air electrodes in lithium-oxygen (Li-O2 ) batteries is known to be advantageous owing to their good conductivity and because they offer sites suitable for the reversible electrode reactions. However, the exact influence of carbon materials on the electrochemical performance of Li-O2 batteries is not clear. In this study the electrochemical performance of four different types of carbon materials (multiwalled carbon nanotubes (MWCNTs), CMK-3, graphene nanosheets (GNSs), and Ketjen Black (KB)) as air electrodes is examined. We find that a Li-O2 cell based on an electrode of multiwalled carbon nanotubes (MWCNTs) demonstrates good rate performance and cycle stability, when using LiNO3 -LiTFSI/DMSO as electrolyte. Li-O2 cells based on such MWCNT electrodes, with a cut-off capacity of 1000 mAh g(-1) at 500 mA g(-1) , can undergo around 90 cycles without obvious losses of capacity. Even when the discharge depth is increased to 2000 mA h g(-1) , stable cycling is maintained for 45 cycles at a charge potential below 4.0 V.

  14. Eutrophication trends inferred from hypolimnetic dissolved-oxygen dynamics within selected White River reservoirs, northern Arkansas-southern Missouri, 1974-94

    USGS Publications Warehouse

    Green, W.R.

    1996-01-01

    The White River Basin in northern Arkansas and southern Missouri contains four major reservoirs. Beaver, Table Rock, and Bull Shoals Lakes form a chain of reservoirs on the main stem of the White River. Norfork Lake is on the North Fork River, a tributary of the White River. Vertical water- column profiles of temperature and dissolved- oxygen concentrations have been collected monthly, in general, at sites near the dam of each reservoir since 1974. Hypolimnetic dissolved- oxygen dynamics of these reservoirs from 1974 through 1994 were examined based on the near-dam data and used to infer temporal changes in eutrophication. Regression models indicated that a positive relation existed between discharge through the dam during the stratification season and the areal hypolimnetic deficit. Temporal changes in the relative areal hypolimnetic oxygen deficit, a model that adjusts the areal hypolimnetic oxygen deficit to standard temperature and depth, showed a decreasing trend in Beaver Lake from 1974 through 1994, indicating that the level of eutrophication decreased. Little or no change in the relative areal hypolimnetic oxygen deficit occurred in Table Rock, Bull Shoals, or Norfork Lakes over the period of record. Temporal analysis of the residuals from the oxygen deficit-discharge model indicated that the oxygen deficit-discharge function changed over time in Beaver and Table Rock Lakes. There was little or no temporal trend in residuals of areal hypolimnetic oxygen deficit over the period of record for Bull Shoals and Norfork Lakes. Multiple regression using a time variable and discharge through the dam during the stratification season was examined for the four reservoirs. The slope coefficient of the time variable for both Beaver and Table Rock Lakes was negative, indicating that the temporal function driving the discharge related areal hypolimnetic oxygen deficit decreased over the period of record. This temporal function may be an expression of biological

  15. Metallic filament formation by aligned oxygen vacancies in ZnO-based resistive switches

    SciTech Connect

    Gu, Tingkun

    2014-05-28

    The electronic structure of ZnO with defects of oxygen vacancies were investigated by using first-principles methods. Some structure models were constructed in order to investigate the effects of the distribution of oxygen vacancies on the electronic properties of ZnO. By analyzing the calculated results, we found that only the aligned oxygen vacancies can form the conducting channel in ZnO, and the transformation of the oxygen vacancy from charged state to neutral state is consistent with the energetics rule of the forming aligned oxygen vacancies. As for the heterojunction of Pt/ZnO/Pt, the oxygen vacancies near the interface of Pt/ZnO depress the local Schottky barrier effectively, and the aligned oxygen vacancies in ZnO form a conducting filament connecting two Pt electrodes. The metallic filament formation in Pt/ZnO/Pt resistive switching cells should be closely related to the carrier injection from Pt electrode into ZnO and the arrangement of oxygen vacancies in ZnO slab.

  16. Peroxide-based oxygen generating topical wound dressing for enhancing healing of dermal wounds.

    PubMed

    Chandra, Prafulla K; Ross, Christina L; Smith, Leona C; Jeong, Seon S; Kim, Jaehyun; Yoo, James J; Harrison, Benjamin S

    2015-01-01

    Oxygen generating biomaterials represent a new trend in regenerative medicine that aims to generate and supply oxygen at the site of requirement, to support tissue healing and regeneration. To enhance the healing of dermal wounds, we have developed a highly portable, in situ oxygen generating wound dressings that uses sodium percarbonate (SPO) and calcium peroxide (CPO) as chemical oxygen sources. The dressing continuously generated oxygen for more than 3 days, after which it was replaced. In the in vivo testing on porcine full-thickness porcine wound model, the SPO/CPO dressing showed enhanced wound healing during the 8 week study period. Quantitative measurements of wound healing related parameters, such as wound closure, reepithelialization, epidermal thickness and collagen content of dermis showed that supplying oxygen topically using the SPO/CPO dressing significantly accelerated the wound healing. An increase in neovascularization, as determined using Von Willebrand factor (vWF) and CD31 staining, was also observed in the presence of SPO/CPO dressing. This novel design for a wound dressing that contains oxygen generating biomaterials (SPO/CPO) for supplying topical oxygen, may find utility in treating various types of acute to chronic wounds.

  17. Image-Based Modeling of Blood Flow and Oxygen Transfer in Feto-Placental Capillaries

    PubMed Central

    Brownbill, Paul; Janáček, Jiří; Jirkovská, Marie; Kubínová, Lucie; Chernyavsky, Igor L.; Jensen, Oliver E.

    2016-01-01

    During pregnancy, oxygen diffuses from maternal to fetal blood through villous trees in the placenta. In this paper, we simulate blood flow and oxygen transfer in feto-placental capillaries by converting three-dimensional representations of villous and capillary surfaces, reconstructed from confocal laser scanning microscopy, to finite-element meshes, and calculating values of vascular flow resistance and total oxygen transfer. The relationship between the total oxygen transfer rate and the pressure drop through the capillary is shown to be captured across a wide range of pressure drops by physical scaling laws and an upper bound on the oxygen transfer rate. A regression equation is introduced that can be used to estimate the oxygen transfer in a capillary using the vascular resistance. Two techniques for quantifying the effects of statistical variability, experimental uncertainty and pathological placental structure on the calculated properties are then introduced. First, scaling arguments are used to quantify the sensitivity of the model to uncertainties in the geometry and the parameters. Second, the effects of localized dilations in fetal capillaries are investigated using an idealized axisymmetric model, to quantify the possible effect of pathological placental structure on oxygen transfer. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximized by an optimal width of the dilation. The results could explain the prevalence of fetal hypoxia in cases of delayed villous maturation, a pathology characterized by a lack of the vasculo-syncytial membranes often seen in conjunction with localized capillary dilations. PMID:27788214

  18. A lenslet-based device for measuring oxygen saturation in the retina

    NASA Astrophysics Data System (ADS)

    Ramella-Roman, Jessica C.; Kandimalla, H.; Dinga, R.; Nabili, A.; Mathews, Scott A.; Nguyen, Q. D.

    2007-02-01

    Diabetic retinopathy (DR) is a complication of diabetes affecting up to 80% of all diabetic patients. DR can lead to blindness and reduced quality of life. Some authors have hypothesized that changes in the flow dynamics associated with DR as well as changes in retinal oxygenation can lead to macular edema. Measurements of oxygen saturation in the retina could help understand the real mechanisms behind this condition. We present a novel spectroscopic imaging device to measure oxygen saturation in the retina. Our system uses a lenslet array to spatially and spectrocopically divide a fundus image. A three wavelengths algorithm is used to calculate oxygen saturation in small vessels. Only wavelengths in the 500 - 580 nm range are considered in order to minimize the wavelength dependence of the scattering from erythrocytes. Preliminary testing on healthy subjects showed values of oxygen saturation comparable to the one reported in the literature.

  19. Conversion of a heme-based oxygen sensor to a heme oxygenase by hydrogen sulfide: effects of mutations in the heme distal side of a heme-based oxygen sensor phosphodiesterase (Ec DOS).

    PubMed

    Du, Yongming; Liu, Gefei; Yan, Yinxia; Huang, Dongyang; Luo, Wenhong; Martinkova, Marketa; Man, Petr; Shimizu, Toru

    2013-10-01

    The heme-based oxygen-sensor phosphodiesterase from Escherichia coli (Ec DOS), is composed of an N-terminal heme-bound oxygen sensing domain and a C-terminal catalytic domain. Oxygen (O2) binding to the heme Fe(II) complex in Ec DOS substantially enhances catalysis. Addition of hydrogen sulfide (H2S) to the heme Fe(III) complex in Ec DOS also remarkably stimulates catalysis in part due to the heme Fe(III)-SH and heme Fe(II)-O2 complexes formed by H2S. In this study, we examined the roles of the heme distal amino acids, M95 (the axial ligand of the heme Fe(II) complex) and R97 (the O2 binding site in the heme Fe(II)-O2 complex) of the isolated heme-binding domain of Ec DOS (Ec DOS-PAS) in the binding of H2S under aerobic conditions. Interestingly, R97A and R97I mutant proteins formed an oxygen-incorporated modified heme, verdoheme, following addition of H2S combined with H2O2 generated by the reactions. Time-dependent mass spectroscopic data corroborated the findings. In contrast, H2S did not interact with the heme Fe(III) complex of M95H and R97E mutants. Thus, M95 and/or R97 on the heme distal side in Ec DOS-PAS significantly contribute to the interaction of H2S with the Fe(III) heme complex and also to the modification of the heme Fe(III) complex with reactive oxygen species. Importantly, mutations of the O2 binding site of the heme protein converted its function from oxygen sensor to that of a heme oxygenase. This study establishes the novel role of H2S in modifying the heme iron complex to form verdoheme with the aid of reactive oxygen species.

  20. Base excision repair activities in organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation.

    PubMed

    Rolseth, Veslemøy; Rundén-Pran, Elise; Neurauter, Christine Gran; Yndestad, Arne; Luna, Luisa; Aukrust, Pål; Ottersen, Ole Petter; Bjørås, Magnar

    2008-06-01

    The capacity for DNA repair is likely to be one of the factors that determine the vulnerability of neurons to ischemic stress and may influence the pathological outcome of stroke. In this report, initiation of base excision repair (BER) was assessed by analysis of enzyme activity and gene expression level of DNA glycosylases and AP-endonucleases in rat organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) - an in vitro model of stroke. Under basal conditions, AP-endonuclease activity and base removal of ethenoadenine and 8-oxoguanine (8-oxoG) were higher (by approximately 20-35 %) in CA3/fascia dentata (FD) than in CA1. Base removal of uracil did not differ between the two hippocampal regions, while removal of 5-hydroxyuracil (5-OHU) was slightly less efficient in CA3/FD than in CA1. Analyses performed immediately after 30 min of OGD revealed a decreased AP-endonuclease activity (by approximately 20%) in CA1 as well as CA3/FD, and an increased ethenoadenine activity (by approximately 25%) in CA1. Activities for 8-oxoG, 5-OHU and uracil showed no significant changes at this time point. At 8h after OGD, none of the enzyme activities differed from control values. Real-time RT-PCR showed that transcription of DNA glycosylases, including Ogg1, Nth1, Ung, Aag, Neil1 and Neil2 were not changed in response to OGD treatment (t=0 h). The hippocampal expression of Neil2 was low compared with the other DNA glycosylases. These data indicate that CA1 has a lower capacity than CA3/FD for removal of base lesions under basal conditions. The relatively low capacity for BER in basal conditions and the apparent failure to upregulate repair of oxidative damage after OGD might contribute to the high vulnerability of CA1 to ischemic injury.

  1. Experiments on chemical looping combustion of coal with a NiO based oxygen carrier

    SciTech Connect

    Shen, Laihong; Wu, Jiahua; Xiao, Jun

    2009-03-15

    A chemical looping combustion process for coal using interconnected fluidized beds with inherent separation of CO{sub 2} is proposed in this paper. The configuration comprises a high velocity fluidized bed as an air reactor, a cyclone, and a spout-fluid bed as a fuel reactor. The high velocity fluidized bed is directly connected to the spout-fluid bed through the cyclone. Gas composition of both fuel reactor and air reactor, carbon content of fly ash in the fuel reactor, carbon conversion efficiency and CO{sub 2} capture efficiency were investigated experimentally. The results showed that coal gasification was the main factor which controlled the contents of CO and CH{sub 4} concentrations in the flue gas of the fuel reactor, carbon conversion efficiency in the process of chemical looping combustion of coal with NiO-based oxygen carrier in the interconnected fluidized beds. Carbon conversion efficiency reached only 92.8% even when the fuel reactor temperature was high up to 970 C. There was an inherent carbon loss in the process of chemical looping combustion of coal in the interconnected fluidized beds. The inherent carbon loss was due to an easy elutriation of fine char particles from the freeboard of the spout-fluid bed, which was inevitable in this kind of fluidized bed reactor. Further improvement of carbon conversion efficiency could be achieved by means of a circulation of fine particles elutriation into the spout-fluid bed or the high velocity fluidized bed. CO{sub 2} capture efficiency reached to its equilibrium of 80% at the fuel reactor temperature of 960 C. The inherent loss of CO{sub 2} capture efficiency was due to bypassing of gases from the fuel reactor to the air reactor, and the product of residual char burnt with air in the air reactor. Further experiments should be performed for a relatively long-time period to investigate the effects of ash and sulfur in coal on the reactivity of nickel-based oxygen carrier in the continuous CLC reactor

  2. High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis

    SciTech Connect

    Datta, Moni Kanchan; Kadakia, Karan; Velikokhatnyi, Oleg I; Jampani, Prashanth H; Chung, Sung Jae; Poston, James A; Manivannan, Ayyakkannu; Kumta, Prashant N

    2013-01-01

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts comprising compositions with significantly reduced amounts of expensive noble metal contents (e.g. IrO{sub 2}, Pt) with comparable electrochemical performance to the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would signify a major breakthrough in hydrogen generation via water electrolysis. Development of such systems would lead to two primary outcomes: first, a reduction in the overall capital costs of PEM based water electrolyzers, and second, attainment of the targeted hydrogen production costs (<$3.00/gge delivered by 2015) comparable to conventional liquid fuels. In line with these goals, by exploiting a two-pronged theoretical first principles and experimental approach herein, we demonstrate for the very first time a solid solution of SnO{sub 2}:10 wt% F containing only 20 at.% IrO{sub 2} [e.g. (Sn{sub 0.80}Ir{sub 0.20})O{sub 2}:10F] displaying remarkably similar electrochemical activity and comparable or even much improved electrochemical durability compared to pure IrO{sub 2}, the accepted gold standard in oxygen evolution electro-catalysts for PEM based water electrolysis. We present the results of these studies.

  3. Singlet oxygen phosphorescence lifetime imaging based on a fluorescence lifetime imaging microscope.

    PubMed

    Tian, Wenming; Deng, Liezheng; Jin, Shengye; Yang, Heping; Cui, Rongrong; Zhang, Qing; Shi, Wenbo; Zhang, Chunlei; Yuan, Xiaolin; Sha, Guohe

    2015-04-09

    The feasibility of singlet oxygen phosphorescence (SOP) lifetime imaging microscope was studied on a modified fluorescence lifetime imaging microscope (FLIM). SOP results from the infrared radiative transition of O2(a(1)Δg → X(3)Σg(-)) and O2(a(1)Δg) was produced in a C60 powder sample via photosensitization process. To capture the very weak SOP signal, a dichroic mirror was placed between the objective and tube lens of the FLIM and used to divide the luminescence returning from the sample into two beams: the reflected SOP beam and the transmitted photoluminescence of C60 (C60-PL) beam. The C60-PL beam entered the scanner of the FLIM and followed the normal optical path of the FLIM, while the SOP steered clear of the scanner and directly entered a finely designed SOP detection channel. Confocal C60-PL images and nonconfocal SOP images were then simultaneously obtained by using laser-scanning mode. Experimental results show that (1) under laser-scanning mode, the obstacle to confocal SOP imaging is the infrared-incompatible scanner, which can be solved by using an infrared-compatible scanner. Confocal SOP imaging is also expected to be realized under stage-scanning mode when the laser beam is parked and meanwhile a pinhole is added into the SOP detection channel. (2) A great challenge to SOP imaging is its extraordinarily long imaging time, and selecting only a few interesting points from fluorescence images to measure their SOP time-dependent traces may be a correct compromise.

  4. [Role of connectedness in early object-based attentional selection].

    PubMed

    Takeya, Ryuji; Kasai, Tetsuko

    2014-08-01

    It has been suggested that uniform connectedness is the most fundamental factor in forming units of attentional selection, while there are evidences that attention can select a perceptual group that consists of separate elements with similar features. The present study examined the effects of connectedness and a boundary-feature similarity on early spatial-selection processes using a sustained-focal-attention paradigm of event-related potentials (ERPs). Bilateral stimuli were manipulated to have an orthogonal combination of connectedness (C-, C+) and a similarity in boundary feature (S-, S+). ERPs were recorded from 15 participants who were instructed to pay attention to the left or the right visual field and to respond to a target shape that appeared infrequently in the attended field. The ERP attention effect in the N1 latency range (125-185 ms) was decreased for stimuli with connectedness and/or boundary-feature similarity, and the effects of the two grouping factors were independent of each other. The present result suggests that multiple grouping factors, including connectedness, operate in parallel in early processes of object-based attention-spreading.

  5. Dynamic and selective HERV RNA expression in neuroblastoma cells subjected to variation in oxygen tension and demethylation.

    PubMed

    Hu, Lijuan; Uzhameckis, Dmitrijs; Hedborg, Fredrik; Blomberg, Jonas

    2016-01-01

    We studied HERV expression in cell lines after hypoxia, mitogenic stimulation, and demethylation, to better understand if hypoxia may play a role in ERV activation also within the nervous system, as represented by neuroblastoma cell lines. The level of RNA of four human ERV groups (HERVs) (HERVE, I/T, H, and W), and three housekeeping genes, of different cell lines including A549, COS-1, Namalwa, RD-L and Vero-E6, as well as human neuroblastoma cell lines SH-SY5Y, SK-N-DZ, and SK-N-AS were studied using reverse transcription and real-time quantitative PCR (QPCR). During the course of recovery from hypoxia a pronounced and selective activation of RNA expression of HERVW-like sequences, but not of HERVE, I/T, H, and three housekeeping genes, was found in the neuroblastoma cell lines, most pronounced in SK-N-DZ. In the SK-N-DZ cell line, we also tested the expression of HERVs after chemical treatments. HERVW-like sequences were selectively upregulated by 5-azacytidine, a demethylating agent. Some HERVW loci seem especially responsive to hypoxia and demethylation. HERV expression in neuroblastoma cells is selectively and profoundly influenced by some physiological and chemical stimuli.

  6. Atomic oxygen interaction with spacecraft materials: Relationship between orbital and ground-based testing for materials certification

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.; Lan, Esther H.

    1993-01-01

    The effects of atomic oxygen on boron nitride (BN), silicon nitride (Si3N4), Intelsat 6 solar cell interconnects, organic polymers, and MoS2 and WS2 dry lubricant, were studied in Low Earth Orbit (LEO) flight experiments and in a ground based simulation facility. Both the inflight and ground based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and Electron Spectroscopy for Chemical Analysis (ESCA) analysis to measure chemical composition changes. Results are given. The ground based results on the materials studied to date show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground based facility in terms of reproducing LEO flight results. In addition it was demonstrated that ground based simulation is capable of performing more detailed experiments than orbital exposures can presently perform. This allows the development of a fundamental understanding of the mechanisms involved in the LEO environment degradation of materials.

  7. Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture

    EPA Science Inventory

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling...

  8. Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates (External Review Draft)

    EPA Science Inventory

    EPA has released a draft report entitled, Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates, for independent external peer review and public comment. NCEA published the Exposure Factors Handbook in 1997. This comprehens...

  9. Prospective assessment of novice learners in a simulation-based extracorporeal membrane oxygenation (ECMO) education program.

    PubMed

    Chan, Soi-Yu; Figueroa, Mayte; Spentzas, Thomas; Powell, Ashley; Holloway, Ricky; Shah, Samir

    2013-03-01

    This study aimed to assess the impact of integrating a simulation-based education module into an extracorporeal membrane oxygenation (ECMO) curriculum on novice learners and to test the duration of time that skills obtained during this training exercise were retained. The authors hypothesized that multidisciplinary, simulation-based ECMO training would improve comfort and confidence levels among participants. An ECMO training curriculum was developed that incorporated in situ simulation modules to train multidisciplinary health care professionals involved in the management of patients receiving ECMO in the pediatric cardiac intensive care unit (PCICU). During the simulation, a team was assembled similar to the one that would staff the PCICU during a routine workday. Pre- and postparticipation questionnaires were used to determine the effects on the knowledge, ability, and confidence level of the participants. The participants were required to repeat the simulation test within 6-8 months. The study enrolled 26 providers (10 fellow physicians, 12 nurses and nurse practitioners, 4 respiratory therapists). All except one had no previous training in the management of ECMO. Of the 26 participants, 24 passed the initial written and practical tests. One participant failed the written test, whereas another failed the practical test. All the responding participants scored the didactic and scenarios education as useful, at 4 or higher (5 = very useful), in improving their perception of their overall knowledge and their ability to perform the required critical performance criteria on simulated ECMO. The 20 participants who appeared for the 6 month follow-up visit to assess maintenance of competency skills demonstrated success with simulated ECMO emergencies. All four questionnaires were completed by 18 participants. Simulation-based training is an effective method of improving knowledge, ability, and confidence levels among novice ECMO specialists and physician trainees

  10. A program of moderate physical training for Wistar rats based on maximal oxygen consumption.

    PubMed

    Leandro, Carol Góis; Levada, Adriana Cristina; Hirabara, Sandro Massao; Manhães-de-Castro, Raul; De-Castro, Célia Barbosa; Curi, Rui; Pithon-Curi, Tânia Cristina

    2007-08-01

    Moderate physical training is often associated with improved cardiorespiratory fitness in athletes and the general population. In animals, studies are designed to investigate basic physiology that could be invasive and uncomfortable for humans. The standardization of an exercise training protocol for rats based on maximal consumption of oxygen (VO(2)max) is needed. This study validated a program of moderate physical training for Wistar rats based on VO(2)max determined once a week. A 10-stage treadmill running test was developed to measure VO(2)max through an indirect, open circuit calorimeter. Thirty male Wistar rats (210-226 g) were randomly assigned to either a nontrained group or a trained group. The animals were evaluated weekly to follow their VO(2)max during 8 weeks of moderate training and to adjust the intensity of the protocol of training. The soleus muscle was removed for determination of citrate synthase activity. Trained animals maintained their values of VO(2)max during a moderate running training and showed a significant less body weight gain. An increase of 42% in citrate synthase activity of the soleus muscle from trained rats was found after the training program. Our study presents a protocol of moderate physical training for Wistar rats based on VO(2)max. Peripheral adaptations such as the values of citrate synthase activity also responded to the moderate training program imposed as observed for VO(2)max. Other studies can use our protocol of moderate training to study the physiologic adaptations underlying this specific intensity of training. It will provide support for study with humans.

  11. Highly selective CNTFET based sensors using metal diversification methods

    NASA Astrophysics Data System (ADS)

    Bondavalli, P.; Gorintin, L.; Longnos, F.; Feugnet, G.

    2011-10-01

    This contribution deals with Carbon Nanotubes Field Effect transistors (CNTFETs) based gas sensors fabricated using a new dynamic spray based technique for SWCNTs deposition. This technique is compatible with large surfaces, flexible substrates and allows to fabricate high performances transistors exploiting the percolation effect of the SWCNTs networks achieved with extremely reproducible characteristics. Recently, we have been able to achieve extremely selective measurement of NO2 , NH3 and DMMP using four CNTFETS fabricated using different metals as electrodes (Pt, Au, Ti, Pd), exploiting the specific interaction between gas and metal/SWCNT junction. In this way we have identify a sort of electronic fingerprinting of the gas. The time response is evaluated at less than 30sec and the sensitivity can reach 20ppb for NO2, 100ppb for NH3 and 1ppm for DMMP (Di-Methyl-Methyl-Phosphonate).

  12. The influence of extrinsic motivation on competition-based selection.

    PubMed

    Sänger, Jessica; Wascher, Edmund

    2011-10-10

    The biased competition approach to visuo-spatial attention proposes that the selection of competing information is effected by the saliency of the stimulus as well as by an intention-based bias of attention towards behavioural goals. Wascher and Beste (2010) [32] showed that the detection of relevant information depends on its relative saliency compared to irrelevant conflicting stimuli. Furthermore the N1pc, N2pc and N2 of the EEG varied with the strength of the conflict. However, this system could also be modulated by rather global mechanisms like attentional effort. The present study investigates such modulations by testing the influence of extrinsic motivation on the selection of competing stimuli. Participants had to detect a luminance change in various conditions among others against an irrelevant orientation change. Half of the participants were motivated to maximize their performance by the announcement of a monetary reward for correct responses. Participants who were motivated had lower error rates than participants who were not motivated. The event-related lateralizations of the EEG showed no motivation-related effect on the N1pc, which reflects the initial saliency driven orientation of attention towards the more salient stimulus. The subsequent N2pc was enhanced in the motivation condition. Extrinsic motivation was also accompanied by enhanced fronto-central negativities. Thus, the data provide evidence that the improvement of selection performance when participants were extrinsically motivated by announcing a reward was not due to changes in the initial saliency based processing of information but was foremost mediated by improved higher-level mechanisms.

  13. Reference View Selection in DIBR-Based Multiview Coding.

    PubMed

    Maugey, Thomas; Petrazzuoli, Giovanni; Frossard, Pascal; Cagnazzo, Marco; Pesquet-Popescu, Beatrice

    2016-04-01

    Augmented reality, interactive navigation in 3D scenes, multiview video, and other emerging multimedia applications require large sets of images, hence larger data volumes and increased resources compared with traditional video services. The significant increase in the number of images in multiview systems leads to new challenging problems in data representation and data transmission to provide high quality of experience on resource-constrained environments. In order to reduce the size of the data, different multiview video compression strategies have been proposed recently. Most of them use the concept of reference or key views that are used to estimate other images when there is high correlation in the data set. In such coding schemes, the two following questions become fundamental: 1) how many reference views have to be chosen for keeping a good reconstruction quality under coding cost constraints? And 2) where to place these key views in the multiview data set? As these questions are largely overlooked in the literature, we study the reference view selection problem and propose an algorithm for the optimal selection of reference views in multiview coding systems. Based on a novel metric that measures the similarity between the views, we formulate an optimization problem for the positioning of the reference views, such that both the distortion of the view reconstruction and the coding rate cost are minimized. We solve this new problem with a shortest path algorithm that determines both the optimal number of reference views and their positions in the image set. We experimentally validate our solution in a practical multiview distributed coding system and in the standardized 3D-HEVC multiview coding scheme. We show that considering the 3D scene geometry in the reference view, positioning problem brings significant rate-distortion improvements and outperforms the traditional coding strategy that simply selects key frames based on the distance between cameras.

  14. Commercial facility site selection simulating based on MAS

    NASA Astrophysics Data System (ADS)

    Chao, Yi; Li, Qingquan; Zheng, Guizhou

    2008-10-01

    The location of commercial facility decides the benefit of the operator to a large degree. Existing location methods can express the static relationships between site selection result and location factors, but there still are some limites when express the dynamic and uncertain relationship between them. Hence, a dynamic, stochastic and forecastable location model should be built which can introduce the customer's behavior into the model and combine the macro pattern and micro spatial interaction. So the authors proposes Geosim-LM based on MAS. Geosim-LM has 3 kinds of agents, CustAgent, SiteAgent and GovAgent. They represent the customers, commercial fercilities and government. The land type, land price and traffic are the model environment. Then Geosim-LM is applied in the bank branches site evaluation and selection in Liwan district, Guangzhou. In existing bank branches site evaluation, there are 70% consistent in score grade between result of Geosim-LM after 200 round runing and actual rebust location. It proves the model is reliable and feasible. The conclusions can be get from the paper. MAS have advantages in location choice than existed methods. The result of Geosim-LM running can powerfully proves that building location model based on MAS is feasible.

  15. Variable selection based cotton bollworm odor spectroscopic detection

    NASA Astrophysics Data System (ADS)

    Lü, Chengxu; Gai, Shasha; Luo, Min; Zhao, Bo

    2016-10-01

    Aiming at rapid automatic pest detection based efficient and targeting pesticide application and shooting the trouble of reflectance spectral signal covered and attenuated by the solid plant, the possibility of near infrared spectroscopy (NIRS) detection on cotton bollworm odor is studied. Three cotton bollworm odor samples and 3 blank air gas samples were prepared. Different concentrations of cotton bollworm odor were prepared by mixing the above gas samples, resulting a calibration group of 62 samples and a validation group of 31 samples. Spectral collection system includes light source, optical fiber, sample chamber, spectrometer. Spectra were pretreated by baseline correction, modeled with partial least squares (PLS), and optimized by genetic algorithm (GA) and competitive adaptive reweighted sampling (CARS). Minor counts differences are found among spectra of different cotton bollworm odor concentrations. PLS model of all the variables was built presenting RMSEV of 14 and RV2 of 0.89, its theory basis is insect volatilizes specific odor, including pheromone and allelochemics, which are used for intra-specific and inter-specific communication and could be detected by NIR spectroscopy. 28 sensitive variables are selected by GA, presenting the model performance of RMSEV of 14 and RV2 of 0.90. Comparably, 8 sensitive variables are selected by CARS, presenting the model performance of RMSEV of 13 and RV2 of 0.92. CARS model employs only 1.5% variables presenting smaller error than that of all variable. Odor gas based NIR technique shows the potential for cotton bollworm detection.

  16. Electrochemical treatment of rice grain-based distillery effluent: chemical oxygen demand and colour removal.

    PubMed

    Prajapati, Abhinesh Kumar; Chaudhari, Parmesh Kumar

    2014-01-01

    The electrochemical (EC) treatment of rice grain-based distillery wastewater was carried out in a 1.5 dm3 electrolytic batch reactor using aluminium plate electrodes. With the four-plate configurations, a current density (j) of 89.3 A/m2 and pH 8 was found to be optimal, obtaining a maximum chemical oxygen demand (COD) and colour removal of 93% and 87%, respectively. The chemical dissolution of aluminium was strongly influenced by initial pH (pHi). At higher pHi (pH 9.5) anode consumption decreased while energy consumption increased. At the optimal current density 89.3 A/m2, the aluminium electrode consumption was 16.855 g/dm3 wastewater and energy consumption was 31.4 Wh/dm3 achieving a maximum COD removal of 87%. The settling and filterability characteristics ofelectrochemically treated sludge were also analysed at different pH. It was noted that treated slurry at pHi 9.5 gave best settling characteristic, which decreased with increase in pH. EC-treated effluent at pHi 8 had provided best filterability. Characteristics of scum and residues are also analysed at different pH.

  17. A luminol-based micro-flow-injection electrochemiluminescent system to determine reactive oxygen species.

    PubMed

    Chen, Ming; Wei, Xiuhua; Tu, Yifeng

    2011-09-15

    A flow injection analysis (FIA) system with electrochemiluminescent (ECL) detection has been established. Based on a specially designed flow-through ECL cell with a very simple structure, the system possesses rapid response and high sensitivity. With luminol as the ECL reagent, the response of hydrogen peroxide (H(2)O(2)) was investigated on the developed FIA-ECL system. After optimizing the experimental conditions, such as the electric parameters, the buffer condition and the flow rate, it was demonstrated that the developed FIA-ECL system works well for quantified assays. Compared with reported works, the present results indicate that the developed FIA-ECL system has the lowest limit of detection (S/N=3) of 3.0×10(-9) mol/L for H(2)O(2), which is equal to the level of chemiluminescence (CL). The developed system was successfully used to monitor the yield of reactive oxygen species (ROSs) in water vapour during the work of an ultrasonic humidifier with H(2)O(2) as index. And the amount of ROSs in some other real samples, including tap water, drinking water and river water was detected with recoveries from 92.0% to 106%.

  18. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism.

    PubMed

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-12-09

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications.

  19. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism

    PubMed Central

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-01-01

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications. PMID:26690176

  20. Reference concepts for a space-based hydrogen-oxygen combustion, turboalternator, burst power system

    SciTech Connect

    Edenburn, M.W.

    1990-07-01

    This report describes reference concepts for a hydrogen-oxygen combustion, turboalternator power system that supplies power during battle engagement to a space-based, ballistic missile defense platform. All of the concepts are open''; that is, they exhaust hydrogen or a mixture of hydrogen and water vapor into space. We considered the situation where hydrogen is presumed to be free to the power system because it is also needed to cool the platform's weapon and the situation where hydrogen is not free and its mass must be added to that of the power system. We also considered the situation where water vapor is an acceptable exhaust and the situation where it is not. The combination of these two sets of situations required four different power generation systems, and this report describes each, suggests parameter values, and estimates masses for each of the four. These reference concepts are expected to serve as a baseline'' to which other types of power systems can be compared, and they are expected to help guide technology development efforts in that they suggest parameter value ranges that will lead to optimum system designs. 7 refs., 18 figs., 5 tabs.

  1. Oxygen Isotope Effect and Structural Phase Transitions in La2CuO4-Based Superconductors.

    PubMed

    Crawford, M K; Farneth, W E; McCarronn, E M; Harlow, R L; Moudden, A H

    1990-12-07

    The oxygen isotope effect on the superconducting transition temperature (alpha(o)) varies as a function of x in La2-xSrxCuO(4) and La2-xBaxCuO(4), with the maximum alpha(o) values (alpha(o) >/= 0.5) found for x near 0.12. This unusual x dependence implies that the isotope effect is influenced by proximity to the Abma --> P4(2)/ncm structural phase transition in these systems. Synchrotron x-ray difaction measurements reveal little change in lattice parameters or orthorhombicity due to isotope exchange in strontium-doped materials where alpha(o) > 0.5, eliminating static structural distortion as a cause of the large isotope effects. The anomalous behavior of alpha(o) in both strontium- and barium-doped materials, in combination with the previously discovered Abma --> P4(2)/ncm structural phase-transition in La(1.88)B(0.12)CuO(4), suggests that an electronic contribution to the lattice instability is present and maximizes at approximately 1/8 hole per copper atom. These observations indicate a dose connection between hole doping of the Cu-O sheets, tilting instabilities of the CuO(6) octahedra, and superconductivity in La(2)CuO(4)-based superconductors.

  2. Effects of Temperature, Oxygen Partial Pressure, and Materials Selection on Slag Infiltration into Porous Refractories for Entrained-Flow Gasifiers

    NASA Astrophysics Data System (ADS)

    Kaneko, Tetsuya Kenneth

    The penetration rate of molten mineral contents (slag) from spent carbonaceous feedstock into porous ceramic-oxide refractory linings is a critical parameter in determining the lifecycle of integrated gasification combined cycle energy production plants. Refractory linings that withstand longer operation without interruption are desirable because they can mitigate consumable and maintenance costs. Although refractory degradation has been extensively studied for many other high-temperature industrial processes, this work focuses on the mechanisms that are unique to entrained-flow gasification systems. The use of unique feedstock mixtures, temperatures from 1450 °C to 1600 °C, and oxygen partial pressures from 10-7 atm to 10-9 atm pose engineering challenges in designing an optimal refractory material. Experimentation, characterization, and modeling show that gasifier slag infiltration into porous refractory is determined by interactions between the slag and the refractory that either form a physical barrier that impedes fluid flow or induce an increased fluid viscosity that decelerates the velocity of the fluid body. The viscosity of the slag is modified by the thermal profile of the refractory along the penetration direction as well as reactions between the slag and refractory that alter the chemistry, and thereby the thermo-physical properties of the fluid. Infiltration experiments reveal that the temperature gradient inherently present along the refractory lining limits penetration. A refractory in near-isothermal conditions demonstrates deeper slag penetration as compared to one that experiences a steeper thermal profile. The decrease in the local temperatures of the slag as it travels deeper into the refractory increases the viscosity of the fluid, which in turn slows the infiltration velocity of fluid body into the pores of the refractory microstructure. With feedstock mixtures that exhibit high iron-oxide concentrations, a transition-metal-oxide, the oxygen

  3. What is the contribution of human FMO3 in the N-oxygenation of selected therapeutic drugs and drugs of abuse?

    PubMed

    Wagmann, Lea; Meyer, Markus R; Maurer, Hans H

    2016-09-06

    Little is known about the role of flavin-containing monooxygenases (FMOs) in the metabolism of xenobiotics. FMO3 is the isoform in adult human liver with the highest impact on drug metabolism. The aim of the presented study was to elucidate the contribution of human FMO3 to the N-oxygenation of selected therapeutic drugs and drugs of abuse (DOAs). Its contribution to the in vivo hepatic net clearance of the N-oxygenation products was calculated by application of an extended relative activity factor (RAF) approach to differentiate from contribution of cytochrome P450 (CYP) isoforms. FMO3 and CYP substrates were identified using pooled human liver microsomes after heat inactivation and chemical inhibition, or single enzyme incubations. Kinetic parameters were subsequently determined using recombinant human enzymes and mass spectrometric analysis via authentic reference standards or simple peak areas of the products divided by those of the internal standard. FMO3 was identified as enzyme mainly responsible for the formation of N,N-diallyltryptamine N-oxide and methamphetamine hydroxylamine (>80% contribution for both). A contribution of 50 and 30% was calculated for the formation of N,N-dimethyltryptamine N-oxide and methoxypiperamide N-oxide, respectively. However, FMO3 contributed with less than 5% to the formation of 3-bromomethcathinone hydroxylamine, amitriptyline N-oxide, and clozapine N-oxide. There was no significant difference in the contributions when using calibrations with reference metabolite standards or peak area ratio calculations. The successful application of a modified RAF approach including FMO3 proved the importance of FMO3 in the N-oxygenation of DOAs in human metabolism.

  4. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells.

    PubMed

    Kim, Boyun; Kim, Hee Seung; Jung, Eun-Ji; Lee, Jung Yun; K Tsang, Benjamin; Lim, Jeong Mook; Song, Yong Sang

    2016-05-01

    Prolonged accumulation of misfolded or unfolded proteins caused by cellular stress, including oxidative stress, induces endoplasmic reticulum stress, which then activates an unfolded protein response (UPR). ER stress is usually maintained at higher levels in cancer cells as compared to normal cells due to altered metabolism in cancer. Here, we investigated whether curcumin is ER stress-mediated apoptosis in cervical cancer cells, and ROS increased by curcumin are involved in the process as an upstream contributor. Curcumin inhibited proliferation of cervical cancer cells (C33A, CaSki, HeLa, and ME180) and induced apoptotic cell death. Curcumin activated ER-resident UPR sensors, such as PERK, IRE-1α, and ATF6, and their downstream-signaling proteins in cervical cancer cells, but not in normal epithelial cells and peripheral blood mononuclear cells (PBMCs). CHOP, a key factor involved in ER stress-mediated apoptosis, was also activated by curcumin. CHOP decreased the ratio of anti-apoptotic protein Bcl-2 to pro-apoptotic protein Bax expression, and subsequently increased the apoptotic population of cervical cancer cells. Furthermore, curcumin elevated levels of intracellular reactive oxygen species (ROS) in cervical cancer cells, but not in normal epithelial cells. Scavenging ROS resulted in inhibition of ER stress and partially restored cell viability in curcumin-treated cancer cells. Collectively, these observations show that curcumin promotes ER stress-mediated apoptosis in cervical cancer cells through increase of cell type-specific ROS generation. Therefore, modulation of these differential responses to curcumin between normal and cervical cancer cells could be an effective therapeutic strategy without adverse effects on normal cells.

  5. Possible roles of plant sulfurtransferases in detoxification of cyanide, reactive oxygen species, selected heavy metals and arsenate.

    PubMed

    Most, Parvin; Papenbrock, Jutta

    2015-01-14

    Plants and animals have evolved various potential mechanisms to surmount the adverse effects of heavy metal toxicity. Plants possess low molecular weight compounds containing sulfhydryl groups (-SH) that actively react with toxic metals. For instance, glutathione (γ-Glu-Cys-Gly) is a sulfur-containing tripeptide thiol and a substrate of cysteine-rich phytochelatins (γ-Glu-Cys)2-11-Gly (PCs). Phytochelatins react with heavy metal ions by glutathione S-transferase in the cytosol and afterwards they are sequestered into the vacuole for degradation. Furthermore, heavy metals induce reactive oxygen species (ROS), which directly or indirectly influence metabolic processes. Reduced glutathione (GSH) attributes as an antioxidant and participates to control ROS during stress. Maintenance of the GSH/GSSG ratio is important for cellular redox balance, which is crucial for the survival of the plants. In this context, sulfurtransferases (Str), also called rhodaneses, comprise a group of enzymes widely distributed in all phyla, paving the way for the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors, at least in vitro. The best characterized in vitro reaction is the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms have multi-protein families (MPF) of Str. Despite the presence of Str activities in many living organisms, their physiological role has not been clarified unambiguously. In mammals, these proteins are involved in the elimination of cyanide released from cyanogenic compounds. However, their ubiquity suggests additional physiological functions. Furthermore, it is speculated that a member of the Str family acts as arsenate reductase (AR) and is involved in arsenate detoxification. In summary, the role of Str in detoxification processes is still not well understood but seems to be a major function in the organism.

  6. Selective vulnerability of hippocampal sub-fields to oxygen-glucose deprivation is a function of animal age.

    PubMed

    Lalonde, Crystal C; Mielke, John G

    2014-01-16

    For more than a century, the hippocampal sub-fields have been recognized as being differentially vulnerable to injury. While the cause remains unknown, the explanations generally considered have involved either vascular differences, or innate variability among cells. To examine the latter possibility, we prepared acute hippocampal slices from Sprague-Dawley rats, applied a brief period of oxygen-glucose deprivation (OGD; an in vitro model of ischemia), and assessed the viability of dissected sub-fields (CA1, CA3, dentate gyrus) by measuring mitochondrial 2,3,5-triphenyltetrazolium chloride (TTC) metabolism. In slices from young animals (15 weeks of age), post-OGD TTC metabolism was significantly reduced in the CA sub-fields relative to the dentate gyrus. Since previous studies found increasing age may worsen ischemic injury, we completed the same experiment using tissue from animals at 52 weeks of age, and found no differences in TTC metabolism across sub-fields. Given the established role of glutamate receptors in ischemic cell death, we examined two key subunit proteins (GluN1, found in all NMDA receptors, and GluA2, found in most AMPA receptors) across sub-fields and age to determine whether their expression complemented our viability data. We found that, relative to the CA1, the DG displayed greater GluN1 expression and lower GluA2 expression in both young and old animals. Our results confirm that regional vulnerability can be shown in a slice model, that the property is not intransigent, and that these features are likely not attributable to the expression pattern of key glutamate receptor subunits, but another molecular variable that changes over the lifespan.

  7. Oxygen-Induced Degradation in C60-Based Organic Solar Cells: Relation Between Film Properties and Device Performance.

    PubMed

    Bastos, João P; Voroshazi, Eszter; Fron, Eduard; Brammertz, Guy; Vangerven, Tim; Van der Auweraer, Mark; Poortmans, Jef; Cheyns, David

    2016-04-20

    Fullerene-based molecules are the archetypical electron-accepting materials for organic photovoltaic devices. A detailed knowledge of the degradation mechanisms that occur in C60 layers will aid in the development of more stable organic solar cells. Here, the impact of storage in air on the optical and electrical properties of C60 is studied in thin films and in devices. Atmospheric exposure induces oxygen-trap states that are 0.19 eV below the LUMO of the fullerene C60. Moreover, oxygen causes a 4-fold decrease of the exciton lifetime in C60 layers, resulting in a 40% drop of short-circuit current from optimized planar heterojunction solar cells. The presence of oxygen-trap states increases the saturation current of the device, resulting in a 20% loss of open-circuit voltage. Design guidelines are outlined to improve air stability for fullerene-containing devices.

  8. Obviating the requirement for oxygen in SnO2-based solid-state dye-sensitized solar cells.

    PubMed

    Docampo, Pablo; Snaith, Henry J

    2011-06-03

    Organic semiconductors employed in solar cells are perfectly stable to solar irradiation provided oxygen content can be kept below 1 ppm. Paradoxically, the state-of-the-art molecular hole-transporter-based solid-state dye-sensitized solar cells only operate efficiently if measured in an atmosphere containing oxygen. Without oxygen, these devices rapidly lose photovoltage and photocurrent and are rendered useless. Clearly this peculiar requirement has detrimental implications to the long term stability of these devices. Through characterizing the solar cells in air and in oxygen-free atmospheres, and considering the device architecture, we identify that direct contact between the metallic cathode and the mesoporous metal oxide photo-anode is responsible for a shunting path through the device. This metal-metal oxide contact forms a Schottky barrier under ambient conditions and the barrier is suitably high so as to prevent significant shunting of the solar cells. However, under light absorption in an anaerobic atmosphere the barrier reduces significantly, opening a low resistance shunting path which dominates the current-voltage characteristics in the solar cell. By incorporating an extra interlayer of insulating mesoporous aluminum oxide, on top of the mesoporous semiconducting metal oxide electrode, we successfully block this shunting path and subsequently the devices operate efficiently in an oxygen-free atmosphere, enabling the possibility of long term stability of solid-state dye-sensitized solar cells.

  9. A DFT+U study of acetylene selective hydrogenation on oxygen defective anatase (101) and rutile (110) TiO2 supported Pd4 cluster

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Lv, Cun-Qin; Guo, Yong; Wang, Gui-Chang

    2012-03-01

    The reaction mechanisms for selective acetylene hydrogenation on three different supports, Pd4 cluster, oxygen defective anatase (101), and rutile (110) titania supported Pd4, cluster are studied using the density functional theory calculations with a Hubbard U correction (DFT+U). The present calculations show that the defect anatase support binds Pd4 cluster more strongly than that of rutile titania due to the existence of Ti3+ in anatase titania. Consequently, the binding energies of adsorbed species such as acetylene and ethylene on Pd4 cluster become weaker on anatase supported catalysts compared to the rutile supported Pd4 cluster. Anatase catalyst has higher selectivity of acetylene hydrogenation than rutile catalyst. On the one hand, the activation energies of ethylene formation are similar on the two catalysts, while they vary a lot on ethyl formation. The rutile supported Pd catalyst with lower activation energy is preferable for further hydrogenation. On the other hand, the relatively weak adsorption energy of ethylene is gained on anatase surface, which means it is easier for ethylene desorption, hence getting higher selectivity. For further understanding, the energy decomposition method and micro-kinetic analysis are also introduced.

  10. Agent-based modeling of oxygen-responsive transcription factors in Escherichia coli.

    PubMed

    Bai, Hao; Rolfe, Matthew D; Jia, Wenjing; Coakley, Simon; Poole, Robert K; Green, Jeffrey; Holcombe, Mike

    2014-04-01

    In the presence of oxygen (O2) the model bacterium Escherichia coli is able to conserve energy by aerobic respiration. Two major terminal oxidases are involved in this process - Cyo has a relatively low affinity for O2 but is able to pump protons and hence is energetically efficient; Cyd has a high affinity for O2 but does not pump protons. When E. coli encounters environments with different O2 availabilities, the expression of the genes encoding the alternative terminal oxidases, the cydAB and cyoABCDE operons, are regulated by two O2-responsive transcription factors, ArcA (an indirect O2 sensor) and FNR (a direct O2 sensor). It has been suggested that O2-consumption by the terminal oxidases located at the cytoplasmic membrane significantly affects the activities of ArcA and FNR in the bacterial nucleoid. In this study, an agent-based modeling approach has been taken to spatially simulate the uptake and consumption of O2 by E. coli and the consequent modulation of ArcA and FNR activities based on experimental data obtained from highly controlled chemostat cultures. The molecules of O2, transcription factors and terminal oxidases are treated as individual agents and their behaviors and interactions are imitated in a simulated 3-D E. coli cell. The model implies that there are two barriers that dampen the response of FNR to O2, i.e. consumption of O2 at the membrane by the terminal oxidases and reaction of O2 with cytoplasmic FNR. Analysis of FNR variants suggested that the monomer-dimer transition is the key step in FNR-mediated repression of gene expression.

  11. Acid-base thermochemistry of gaseous oxygen and sulfur substituted amino acids (Ser, Thr, Cys, Met).

    PubMed

    Riffet, Vanessa; Frison, Gilles; Bouchoux, Guy

    2011-11-07

    Acid-base thermochemistry of isolated amino acids containing oxygen or sulfur in their side chain (serine, threonine, cysteine and methionine) have been examined by quantum chemical computations. Density functional theory (DFT) was used, with B3LYP, B97-D and M06-2X functionals using the 6-31+G(d,p) basis set for geometry optimizations and the larger 6-311++G(3df,2p) basis set for energy computations. Composite methods CBS-QB3, G3B3, G4MP2 and G4 were applied to large sets of neutral, protonated and deprotonated conformers. Conformational analysis of these species, based on chemical approach and AMOEBA force field calculations, has been used to identify the lowest energy conformers and to estimate the population of conformers expected to be present at thermal equilibrium at 298 K. It is observed that G4, G4MP2, G3B3, CBS-QB3 composite methods and M06-2X DFT lead to similar conformer energies. Thermochemical parameters have been computed using either the most stable conformers or equilibrium populations of conformers. Comparison of experimental and theoretical proton affinities and Δ(acid)H shows that the G4 method provides the better agreement with deviations of less than 1.5 kJ mol(-1). From this point of view, a set of evaluated thermochemical quantities for serine, threonine, cysteine and methionine may be proposed: PA = 912, 919, 903, 938; GB = 878, 886, 870, 899; Δ(acid)H = 1393, 1391, 1396, 1411; Δ(acid)G = 1363, 1362, 1367, 1382 kJ mol(-1). This study also confirms that a non-negligible ΔpS° is associated with protonation of methionine and that the most acidic hydrogen of cysteine in the gas phase is that of the SH group. In several instances new conformers were identified thus suggesting a re-examination of several IRMPD spectra.

  12. Selection Incentives in a Performance-Based Contracting System

    PubMed Central

    Shen, Yujing

    2003-01-01

    Objective To investigate whether a performance-based contracting (PBC) system provides incentives for nonprofit providers of substance abuse treatment to select less severe clients into treatment. Data Sources The Maine Addiction Treatment System (MATS) standardized admission and discharge data provided by the Maine Office of Substance Abuse (OSA) for fiscal years 1991–1995, provides demographic, substance abuse, and social functional information on clients of programs receiving public funding. Study Design We focused on OSA clients (i.e., those patients whose treatment cost was covered by the funding from OSA) and Medicaid clients in outpatient programs. Clients were identified as being “most severe” or not. We compared the likelihood for OSA clients to be “most severe” before PBC and after PBC using Medicaid clients as the control. Multivariate regression analysis was employed to predict the marginal effect of PBC on the probability of OSA clients' being most severe after controlling for other factors. Principal Findings The percentage of OSA outpatient clients classified as most severe users dropped by 7 percent (p<=0.001) after the innovation of performance-based contracting, compared to the increase of 2 percent for Medicaid clients. The regression results also showed that PBC had a significantly negative marginal effect on the probability of OSA clients being most severe. Conclusions Performance-based contracting gave providers of substance abuse treatment financial incentives to treat less severe OSA clients in order to improve their performance outcomes. Fewer OSA clients with the greatest severity were treated in outpatient programs with the implementation of PBC. These results suggest that regulators, or payers, should evaluate programs comprehensively taking this type of selection behavior into consideration. PMID:12785560

  13. ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater.

    PubMed

    Khanal, Samir Kumar; Huang, Ju-Chang

    2003-05-01

    A series of chemostat studies were conducted at a constant influent total organic carbon of 3750 mg/L (equivalent chemical oxygen demand (COD) of 10,000 mg/L) but at different influent sulfates of 1000, 3000 and 5000 mg/L in order to investigate the feasibility of online sulfide toxicity control through periodic oxygenation to the recycled biogas stream. The oxygen dosing for sulfide oxidation was regulated by using oxidation-reduction potential (ORP) as a controlling parameter. During oxygenation at elevated ORPs of -230 and -180 mV (50 and 100 mV above natural ORP of -280 mV, respectively), the dissolved and gaseous sulfides were completely eliminated which resulted in a concomitant improvement in methane yield by 56.3% at 5000 mg/L influent sulfate. However, at influent sulfates of 1000 and 3000 mg/L, both methane generation rate and sulfate removal efficiency were dropped appreciably at elevated ORPs. Facultative heterotrophs were found to consume as high as 66.3% of the influent COD during oxygenation. For effective sulfide oxidation at lower sulfate levels, it was no longer required to raise the ORP by as much as 50 or 100 mV. The actual needed ORP increase depended on the influent sulfate. This study had proven that the ORP-controlled oxygenation was reliable for achieving consistent online sulfide control during anaerobic treatment of high-sulfate wastewater.

  14. Synthesis, characterization and biological relevance of some metal (II) complexes with oxygen, nitrogen and oxygen (ONO) donor Schiff base ligand derived from thiazole and 2-hydroxy-1-naphthaldehyde

    NASA Astrophysics Data System (ADS)

    Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2015-04-01

    The novel Schiff base ligand 2-((2-hydroxynaphthalen-1-yl)methylene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-hydroxy-1-naphthaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), Zn(II) and Cd(II) complexes have been characterized by microanalysis, molar conductance, IR, 1H NMR, ESI-mass, UV-Visible, TGA/DTA, ESR and powder X-ray diffraction data to explicate their structures. The IR results confirmed the tridentate binding of the ligand involving oxygen atom of amide carbonyl, azomethine nitrogen and naphthol oxygen. 1H NMR spectral data of the ligand (L) and its Zn(II) complex agreed well with the proposed structures. Thermogravimetric studies for Cu(II) and Ni(II) complexes indicated the presence of coordinated water molecules and the final product is the metal oxide. In order to appraise the effect of antimicrobial activity of metal ions upon chelation, the newly synthesized ligand and its metal complexes were screened for their antimicrobial activity by minimum inhibitory concentration (MIC) method. The DNA cleavage activities were studied using plasmid DNA pBR322 (Bangal re Genei, Bengaluru, Cat. No 105850) as a target molecule by agarose gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties against Artemia salina. Furthermore, the antioxidant activity were determined in vitro by reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH). The ligand exhibited better in vitro-antioxidant activity than its metal complexes.

  15. Lunar Observer Laser Altimeter observations for lunar base site selection

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Bufton, Jack L.

    1992-01-01

    One of the critical datasets for optimal selection of future lunar landing sites is local- to regional-scale topography. Lunar base site selection will require such data for both engineering and scientific operations purposes. The Lunar Geoscience Orbiter or Lunar Observer is the ideal precursory science mission from which to obtain this required information. We suggest that a simple laser altimeter instrument could be employed to measure local-scale slopes, heights, and depths of lunar surface features important to lunar base planning and design. For this reason, we have designed and are currently constructing a breadboard of a Lunar Observer Laser Altimeter (LOLA) instrument capable of acquiring contiguous-footprint topographic profiles with both 30-m and 300-m along-track resolution. This instrument meets all the severe weight, power, size, and data rate limitations imposed by Observer-class spacecraft. In addition, LOLA would be capable of measuring the within-footprint vertical roughness of the lunar surface, and the 1.06-micron relative surface reflectivity at normal incidence. We have used airborne laser altimeter data for a few representative lunar analog landforms to simulate and analyze LOLA performance in a 100-km lunar orbit. We demonstrate that this system in its highest resolution mode (30-m diameter footprints) would quantify the topography of all but the very smallest lunar landforms. At its global mapping resolution (300-m diameter footprints), LOLA would establish the topographic context for lunar landing site selection by providing the basis for constructing a 1-2 km spatial resolution global, geodetic topographic grid that would contain a high density of observations (e.g., approximately 1000 observations per each 1 deg by 1 deg cell at the lunar equator). The high spatial and vertical resolution measurements made with a LOLA-class instrument on a precursory Lunar Observer would be highly synergistic with high-resolution imaging datasets, and

  16. Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates

    SciTech Connect

    Lyons, J.E.

    1992-01-01

    The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

  17. Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates.

    SciTech Connect

    Lyons, J.E.

    1992-07-01

    The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

  18. A weight based genetic algorithm for selecting views

    NASA Astrophysics Data System (ADS)

    Talebian, Seyed H.; Kareem, Sameem A.

    2013-03-01

    Data warehouse is a technology designed for supporting decision making. Data warehouse is made by extracting large amount of data from different operational systems; transforming it to a consistent form and loading it to the central repository. The type of queries in data warehouse environment differs from those in operational systems. In contrast to operational systems, the analytical queries that are issued in data warehouses involve summarization of large volume of data and therefore in normal circumstance take a long time to be answered. On the other hand, the result of these queries must be answered in a short time to enable managers to make decisions as short time as possible. As a result, an essential need in this environment is in improving the performances of queries. One of the most popular methods to do this task is utilizing pre-computed result of queries. In this method, whenever a new query is submitted by the user instead of calculating the query on the fly through a large underlying database, the pre-computed result or views are used to answer the queries. Although, the ideal option would be pre-computing and saving all possible views, but, in practice due to disk space constraint and overhead due to view updates it is not considered as a feasible choice. Therefore, we need to select a subset of possible views to save on disk. The problem of selecting the right subset of views is considered as an important challenge in data warehousing. In this paper we suggest a Weighted Based Genetic Algorithm (WBGA) for solving the view selection problem with two objectives.

  19. The link of feast-phase dissolved oxygen (DO) with substrate competition and microbial selection in PHA production.

    PubMed

    Wang, Xiaofei; Oehmen, Adrian; Freitas, Elisabete B; Carvalho, Gilda; Reis, Maria A M

    2017-04-01

    Polyhydroxyalkanoates (PHAs) are biobased and biodegradable polyesters with the potential to replace conventional plastics. Aeration requires large amounts of energy in PHA production by mixed microbial cultures (MMCs), particularly during the feast phase due to substrate uptake. The objective of this study was to investigate the impact of DO concentrations on microbial selection, substrate competition and PHA production performance by MMCs. This represents the first study investigating DO impact on PHA production while feeding the multiple volatile fatty acids (VFAs) typically encountered in real fermented feedstocks, as well as the substrate preferences at different DO levels. Efficient microbial cultures were enriched under both high (3.47 ± 1.12 mg/L) and low (0.86 ± 0.50 mg/L) DO conditions in the feast phase containing mostly the same populations but with different relative abundance. The most abundant microorganisms in the two MMCs were Plasticicumulans, Zoogloea, Paracoccus, and Flavobacterium. Butyrate and valerate were found to be the preferred substrates as compared to acetate and propionate regardless of DO concentrations. In the accumulation step, the PHA storage capacity and yield were less affected by the change of DO levels when applying the culture selected under low DO in the feast phase (PHA storage capacity >60% and yield > 0.9 Cmol PHA/Cmol VFA). A high DO level is required for maximal PHA accumulation rates with the four VFAs (acetate, propionate, butyrate and valerate) present, due to the lower specific uptake rates of acetate and propionate under low DO conditions. However, butyrate and valerate specific uptake rates were less impacted by DO levels and hence low DO for PHA accumulation may be effective when feed is composed of these substrates only.

  20. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts.

    PubMed

    Hanson, Susan K; Baker, R Tom

    2015-07-21

    This work began as part of a biomass conversion catalysis project with UC Santa Barbara funded by the first NSF Chemical Bonding Center, CATSB. Recognizing that catalytic aerobic oxidation of diol C-C bonds could potentially be used to break down lignocellulose, we began to synthesize oxovanadium complexes and explore their fundamental reactivity. Of course there were theories regarding the oxidation mechanism, but our mechanistic studies soon revealed a number of surprises of the type that keep all chemists coming back to the bench! We realized that these reactions were also exciting in that they actually used the oxygen-on-every-carbon property of biomass-derived molecules to control the selectivity of the oxidation. When we found that these oxovanadium complexes tended to convert sugars predominantly to formic acid and carbon dioxide, we replaced one of the OH groups with an ether and entered the dark world of lignin chemistry. In this Account, we summarize results from our collaboration and from our individual labs. In particular, we show that oxidation selectivity (C-C vs C-O bond cleavage) of lignin models using air and vanadium complexes depends on the ancillary ligands, the reaction solvent, and the substrate structure (i.e., phenolic vs non-phenolic). Selected vanadium complexes in the presence of added base serve as effective alcohol oxidation catalysts via a novel base-assisted dehydrogenation pathway. In contrast, copper catalysts effect direct C-C bond cleavage of these lignin models, presumably through a radical pathway. The most active vanadium catalyst exhibits unique activity for the depolymerization of organosolv lignin. After Weckhuysen's excellent 2010 review on lignin valorization, the number of catalysis studies and approaches on both lignin models and extracts has expanded rapidly. Today we are seeing new start-ups and lignin production facilities sprouting up across the globe as we all work to prove wrong the old pulp and paper chemist

  1. Wet-chemistry based selective coatings for concentrating solar power

    NASA Astrophysics Data System (ADS)

    Maimon, Eran; Kribus, Abraham; Flitsanov, Yuri; Shkolnik, Oleg; Feuermann, Daniel; Zwicker, Camille; Larush, Liraz; Mandler, Daniel; Magdassi, Shlomo

    2013-09-01

    Spectrally selective coatings are common in low and medium temperature solar applications from solar water heating collectors to parabolic trough absorber tubes. They are also an essential element for high efficiency in higher temperature Concentrating Solar Power (CSP) systems. Selective coatings for CSP are usually prepared using advanced expensive methods such as sputtering and vapor deposition. In this work, coatings were prepared using low-cost wet-chemistry methods. Solutions based on Alumina and Silica sol gel were prepared and then dispersed with black spinel pigments. The black dispersions were applied by spray/roll coating methods on stainless steel plates. The spectral emissivity of sample coatings was measured in the temperature range between 200 and 500°C, while the spectral absorptivity was measured at room temperature and 500°C. Emissivity at wavelengths of 0.4-1.7 μm was evaluated indirectly using multiple measurements of directional reflectivity. Emissivity at wavelengths 2-14 μm was measured directly using a broadband IR camera that acquires the radiation emitted from the sample, and a range of spectral filters. Emissivity measurement results for a range of coated samples will be presented, and the impact of coating thickness, pigment loading, and surface preparation will be discussed.

  2. Duplex-Selective Ruthenium-based DNA Intercalators

    PubMed Central

    Shade, Chad M.; Kennedy, Robert D.; Rouge, Jessica L.; Rosen, Mari S.; Wang, Mary X.; Seo, Soyoung E.; Clingerman, Daniel J.

    2016-01-01

    We report the design and synthesis of small molecules that exhibit enhanced luminescence in the presence of duplex rather than single-stranded DNA. The local environment presented by a well-known [Ru(dipyrido[2,3-a:3',2'-c]phenazine)L2]2+-based DNA intercalator was modified by functionalizing the bipyridine ligands with esters and carboxylic acids. By systematically varying the number and charge of the pendant groups, it was determined that decreasing the electrostatic interaction between the intercalator and the anionic DNA backbone reduced single-strand interactions and translated to better duplex specificity. In studying this class of complexes, a single RuII complex emerged that selectively luminesces in the presence of duplex DNA with little to no background from interacting with single stranded DNA. This complex shows promise as a new dye capable of selectively staining double versus single-stranded DNA in gel electrophoresis, which cannot be done with conventional SYBR dyes. PMID:26119581

  3. A prototype of behavior selection mechanism based on emotion

    NASA Astrophysics Data System (ADS)

    Zhang, Guofeng; Li, Zushu

    2007-12-01

    In bionic methodology rather than in design methodology more familiar with, summarizing the psychological researches of emotion, we propose the biologic mechanism of emotion, emotion selection role in creature evolution and a anima framework including emotion similar to the classical control structure; and consulting Prospect Theory, build an Emotion Characteristic Functions(ECF) that computer emotion; two more emotion theories are added to them that higher emotion is preferred and middle emotion makes brain run more efficiently, emotional behavior mechanism comes into being. A simulation of proposed mechanism are designed and carried out on Alife Swarm software platform. In this simulation, a virtual grassland ecosystem is achieved where there are two kinds of artificial animals: herbivore and preyer. These artificial animals execute four types of behavior: wandering, escaping, finding food, finding sex partner in their lives. According the theories of animal ethnology, escaping from preyer is prior to other behaviors for its existence, finding food is secondly important behavior, rating is third one and wandering is last behavior. In keeping this behavior order, based on our behavior characteristic function theory, the specific functions of emotion computing are built of artificial autonomous animals. The result of simulation confirms the behavior selection mechanism.

  4. Convenient microtiter plate-based, oxygen-independent activity assays for flavin-dependent oxidoreductases based on different redox dyes

    PubMed Central

    Brugger, Dagmar; Krondorfer, Iris; Zahma, Kawah; Stoisser, Thomas; Bolivar, Juan M; Nidetzky, Bernd; Peterbauer, Clemens K; Haltrich, Dietmar

    2014-01-01

    Flavin-dependent oxidoreductases are increasingly recognized as important biocatalysts for various industrial applications. In order to identify novel activities and to improve these enzymes in engineering approaches, suitable screening methods are necessary. We developed novel microtiter-plate-based assays for flavin-dependent oxidases and dehydrogenases using redox dyes as electron acceptors for these enzymes. 2,6-dichlorophenol-indophenol, methylene green, and thionine show absorption changes between their oxidized and reduced forms in the visible range, making it easy to judge visually changes in activity. A sample set of enzymes containing both flavoprotein oxidases and dehydrogenases – pyranose 2-oxidase, pyranose dehydrogenase, cellobiose dehydrogenase, d-amino acid oxidase, and l-lactate oxidase – was selected. Assays for these enzymes are based on a direct enzymatic reduction of the redox dyes and not on the coupled detection of a reaction product as in the frequently used assays based on hydrogen peroxide formation. The different flavoproteins show low Michaelis constants with these electron acceptor substrates, and therefore these dyes need to be added in only low concentrations to assure substrate saturation. In conclusion, these electron acceptors are useful in selective, reliable and cheap MTP-based screening assays for a range of flavin-dependent oxidoreductases, and offer a robust method for library screening, which could find applications in enzyme engineering programs. PMID:24376171

  5. Feature selection gait-based gender classification under different circumstances

    NASA Astrophysics Data System (ADS)

    Sabir, Azhin; Al-Jawad, Naseer; Jassim, Sabah

    2014-05-01

    This paper proposes a gender classification based on human gait features and investigates the problem of two variations: clothing (wearing coats) and carrying bag condition as addition to the normal gait sequence. The feature vectors in the proposed system are constructed after applying wavelet transform. Three different sets of feature are proposed in this method. First, Spatio-temporal distance that is dealing with the distance of different parts of the human body (like feet, knees, hand, Human Height and shoulder) during one gait cycle. The second and third feature sets are constructed from approximation and non-approximation coefficient of human body respectively. To extract these two sets of feature we divided the human body into two parts, upper and lower body part, based on the golden ratio proportion. In this paper, we have adopted a statistical method for constructing the feature vector from the above sets. The dimension of the constructed feature vector is reduced based on the Fisher score as a feature selection method to optimize their discriminating significance. Finally k-Nearest Neighbor is applied as a classification method. Experimental results demonstrate that our approach is providing more realistic scenario and relatively better performance compared with the existing approaches.

  6. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  7. Isotope-selective sensor for medical diagnostics based on PAS

    NASA Astrophysics Data System (ADS)

    Wolff, M.; Groninga, H. G.; Harde, H.

    2005-06-01

    Development of new optical sensor technologies has a major impact on the progression of diagnostic methods. Of the permanently increasing number of non-invasive 13C-breath tests, the Urea Breath Test for detection of Helicobacter pylori is the most prominent. However, many recent developments go beyond gastroenterological applications. We present a new detection scheme for breath analysis that employs an especially compact and simple set-up based on Photoacoustic Spectroscopy. Using a wavelength-modulated DFB-diode laser and taking advantage of acoustical resonances of the sample cell, we performed very sensitive isotope-selective measurements on CO2. Detection limits for 13CO2 of a few ppm and for the variation of the 13CO2 concentration of approximately 1% were achieved.

  8. Frequency Selective Surface Based Bandpass Filter for THz Communication System

    NASA Astrophysics Data System (ADS)

    Das, Subrata; Reza, Khan Mamun; Habib, Md. Ahsan

    2012-11-01

    In this work, a band pass filter based on frequency selective surface (FSS) is presented. The resonance of the FSS is achieved by perforating slot type ring structure on an Aluminum layer. To ensure adequate mechanical strength, this structure is again supported by a dielectric layer. The physical dimensions of the FSS, i.e. ring radius, slot width, cell dimension and width of the layers all are responsible for the resonance behavior. In its electrical equivalent circuit, these dimensions act as inductor and capacitor. The center frequency of the designed filter is at 0.16 THz with a -3 dB bandwidth of 18 GHz. This filter can be utilized as a part of any THz communication system to achieve application specific frequency discrimination. The simulation has been carried by using commercial software-CST Microwave Studio. The performance of the fabricated FSS is evaluated by Microwave Vector Network Analyzer.

  9. Wave impedance selection for passivity-based bilateral teleoperation

    NASA Astrophysics Data System (ADS)

    D'Amore, Nicholas John

    When a task must be executed in a remote or dangerous environment, teleoperation systems may be employed to extend the influence of the human operator. In the case of manipulation tasks, haptic feedback of the forces experienced by the remote (slave) system is often highly useful in improving an operator's ability to perform effectively. In many of these cases (especially teleoperation over the internet and ground-to-space teleoperation), substantial communication latency exists in the control loop and has the strong tendency to cause instability of the system. The first viable solution to this problem in the literature was based on a scattering/wave transformation from transmission line theory. This wave transformation requires the designer to select a wave impedance parameter appropriate to the teleoperation system. It is widely recognized that a small value of wave impedance is well suited to free motion and a large value is preferable for contact tasks. Beyond this basic observation, however, very little guidance exists in the literature regarding the selection of an appropriate value. Moreover, prior research on impedance selection generally fails to account for the fact that in any realistic contact task there will simultaneously exist contact considerations (perpendicular to the surface of contact) and quasi-free-motion considerations (parallel to the surface of contact). The primary contribution of the present work is to introduce an approximate linearized optimum for the choice of wave impedance and to apply this quasi-optimal choice to the Cartesian reality of such a contact task, in which it cannot be expected that a given joint will be either perfectly normal to or perfectly parallel to the motion constraint. The proposed scheme selects a wave impedance matrix that is appropriate to the conditions encountered by the manipulator. This choice may be implemented as a static wave impedance value or as a time-varying choice updated according to the

  10. Biomimetic oxidation with molecular oxygen. Selective carbon-carbon bond cleavage of 1,2-diols by molecular oxygen and dihydropyridine in the presence of iron-porphyrin catalysts

    SciTech Connect

    Okamoto, T.; Sasaki, K.; Oka, S.

    1988-02-17

    The selective carbon-carbon bond cleavage of 1,2-diols in the presence of an iron-porphyrin complex, molecular oxygen, and 1-benzyl-3-carbamoyl-1,4-dihydropyridine is reported. The C-C bonds of aryl-substituted ethane-1,2-diols were cleaved exclusively to aldehydes or ketones as the oxidation products at room temperature. The reaction rates were influenced by the steric hindrance of the substituents both in the catalysts and diols, but no differences in the reactivities were observed between the two stereo isomers (meso and dl) of diols. A kinetic analysis of this bond cleavage reaction is consistent with the reaction mechanism consisting of the initial binding of diol on the active catalyst forming an intermediate complex and its subsequent breakdown in the rate-determining step of the catalytic cycle. The initial binding step is favorable for electron-deficient diols and is influenced by steric hindrance, whereas the rate-determining bond cleavage step is accelerated by electron-rich diols and unaffected by the steric effect. The mechanism of this diol cleavage reaction is discussed on the basis of these observations.

  11. Silicon in Mars' Core: A Prediction Based on Mars Model Using Nitrogen and Oxygen Isotopes in SNC Meteorites

    NASA Technical Reports Server (NTRS)

    Mohapatra, R. K.; Murty, S. V. S.

    2002-01-01

    Chemical and (oxygen) isotopic compositions of SNC meteorites have been used by a number of workers to infer the nature of precursor materials for the accretion of Mars. The idea that chondritic materials played a key role in the formation of Mars has been the central assumption in these works. Wanke and Dreibus have proposed a mixture of two types of chondritic materials, differing in oxygen fugacity but having CI type bulk chemical composition for the nonvolatile elements, for Mars' precursor. But a number of studies based on high pressure and temperature melting experiments do not favor a CI type bulk planet composition for Mars, as it predicts a bulk planet Fe/Si ratio much higher than that reported from the recent Pathfinder data. Oxygen forms the bulk of Mars (approximately 40% by wt.) and might provide clues to the type of materials that formed Mars. But models based on the oxygen isotopic compositions of SNC meteorites predict three different mixtures of precursor materials for Mars: 90% H + 10% CM, 85% H + 11% CV + 4% CI and 45% EH + 55% H. As each of these models has been shown to be consistent with the bulk geophysical properties (such as mean density, and moment of inertia factor) of Mars, the nature of the material that accreted to form Mars remains ambiguous.

  12. Oxygenation of Earth's atmosphere and its impact on the evolution of nitrogen-based metabolisms

    NASA Astrophysics Data System (ADS)

    Papineau, D.; Mojzsis, S. J.

    2002-12-01

    Early Proterozoic. In the anoxic Archean atmosphere, the nitrogen cycle must have been different and the instability of oxidized nitrogen species such as NO3- under low pO2 must have limited its availability. Therefore nitrogen fixation probably was the dominant nitrogen-based metabolic pathway during the Archean until the rise of oxygen in the atmosphere in the Early Proterozoic, which resulted in more favorable conditions for denitrification to become the dominant nitrogen-based metabolism. Stable isotopic ratios can be used to detect denitrification (which positively fractionates δ15N) and nitrogen fixation (which negatively fractionates δ15N) in K+-containing minerals such as biotite and muscovite. In an effort to characterize the transition from the essentially anoxic Archean atmosphere to the modern oxidizing atmosphere, we are investigating sedimentary rocks spanning 2.4 to 1.9 Ga from Rovaniemi, Finland. Structural NH4+ in minerals is characterized by μFTIR spectroscopy. Our new μFTIR measurements of Early Proterozoic metasediments spanning the 2.4 - 1.9 Ga time interval (and focused on the well-represented 2.2 - 1.9 Ga time interval from Rovaniemi) provide a high-resolution record of ammonium content during the GOE as a prelude to future detailed δ15N measurements by laser mass spectrometry. This work traces the evolution of nitrogen fixation in the biosphere, its response to changes in global redox and provides a tool for the investigation of biosignatures in samples returned from other ancient planetary surfaces.

  13. Disorders of consciousness and pharmaceuticals that act on oxygen based amino acid and monoamine neurotransmitter pathways of the brain.

    PubMed

    Clauss, Ralf

    2014-01-01

    Oxygen based neurotransmitters in the synapses of the brain are proposed to play an important role in the generation of consciousness. They include the amino acids glutamate and GABA which use Krebs cycle precursors for their synthesis, and the monoamines dopamine, noradrenalin, adrenalin and serotonin, which are derived from tyrosine and tryptophan. During ischemia after an acute brain injury, a GABA surge often initiates brain suppression. It has been proposed that with chronic ischemia, a secondary, possibly epigenetic response occurs when neurotransmitters deplete, a glucose and oxygen saving mechanism termed neurodormancy that may invoke alternative long term low energy metabolic pathways in the brain, encountered in Disorders of Consciousness. Some medications can reverse Disorders of Consciousness in some patients. Virtually all of them act on neurotransmitter systems that use oxygen as a building block or as an energy source within the brain. Pharmaceuticals that act in the oxygen based amino acid systems of the brain include the GABAergic medications zolpidem and baclofen, while those that act in the monoamine axes include the dopaminergic medications L Dopa, amantadine, bromocriptine, apomorphine and methylphenidate, and the noradrenergic and serotonergic medications desipramine, amitriptyline, protriptyline and fluoxetine. Another group are the cholinesterase inhibitors, responsible for increasing acetylcholine, which is synthesized from the Krebs cycle initiator, acetyl CoA. It appears that pharmaceuticals that are active in the oxygen based neurotransmitter pathways of the brain are successful to arouse to consciousness patients that suffer from its disorders. Research needs to be supported as foundation to understand the biochemical mechanisms that are involved in consciousness disorders and to explore further the pharmacological treatment possibilities for these devastating neurological conditions.

  14. Unsupervised Feature Selection Based on the Morisita Index

    NASA Astrophysics Data System (ADS)

    Golay, Jean; Kanevski, Mikhail

    2016-04-01

    Recent breakthroughs in technology have radically improved our ability to collect and store data. As a consequence, the size of datasets has been increasing rapidly both in terms of number of variables (or features) and number of instances. Since the mechanism of many phenomena is not well known, too many variables are sampled. A lot of them are redundant and contribute to the emergence of three major challenges in data mining: (1) the complexity of result interpretation, (2) the necessity to develop new methods and tools for data processing, (3) the possible reduction in the accuracy of learning algorithms because of the curse of dimensionality. This research deals with a new algorithm for selecting the smallest subset of features conveying all the information of a dataset (i.e. an algorithm for removing redundant features). It is a new version of the Fractal Dimensionality Reduction (FDR) algorithm [1] and it relies on two ideas: (a) In general, data lie on non-linear manifolds of much lower dimension than that of the spaces where they are embedded. (b) The situation describes in (a) is partly due to redundant variables, since they do not contribute to increasing the dimension of manifolds, called Intrinsic Dimension (ID). The suggested algorithm implements these ideas by selecting only the variables influencing the data ID. Unlike the FDR algorithm, it resorts to a recently introduced ID estimator [2] based on the Morisita index of clustering and to a sequential forward search strategy. Consequently, in addition to its ability to capture non-linear dependences, it can deal with large datasets and its implementation is straightforward in any programming environment. Many real world case studies are considered. They are related to environmental pollution and renewable resources. References [1] C. Traina Jr., A.J.M. Traina, L. Wu, C. Faloutsos, Fast feature selection using fractal dimension, in: Proceedings of the XV Brazilian Symposium on Databases, SBBD, pp. 158

  15. Selection of experimental strawberry (Fragaria x ananassa) hybrids based on selection indices.

    PubMed

    Vieira, S D; de Souza, D C; Martins, I A; Ribeiro, G H M R; Resende, L V; Ferraz, A K L; Galvão, A G; de Resende, J T V

    2017-03-08

    The strawberry (Fragaria x ananassa Dutch.), is the only vegetable belonging to the rosacea family. All strawberry species have now emerged from wild species and belong to the genus Fragaria, being that this genus presents more than 45 described species, and only 11 are considered natural species. Due to the octoploid nature of strawberry and its variability after hybridization, selecting one or more characters may result in unfavorable genotypes and even the exclusion of promising ones, because negative genetic correlations have been observed among them that cause inefficient selection. Therefore, the objective of this study was to verify the efficiency of selection indices in selecting experimental strawberry hybrids for in natura consumption and processing. Seven commercial cultivars and 103 hybrids were used, which were obtained from populations derived from their crossings. The experiment was conducted in augmented blocks, in which four agronomical traits (total mass, amount of commercial fruit, amount of noncommercial fruit, and average fruit mass) and seven physical-chemical traits (soluble solids, soluble solids:titratable acidity ratio, total sugars, total pectin, vigor, and internal and external coloration) were evaluated. For hybrid selection, the following indices were used: Mulamba and Mock (1978), Smith (1936), Hazel (1943), and genotype-ideotype, which selected 20% of the genotypes evaluated. The three indices selected about 9% of the hybrids. The selection of two experimental hybrids (89 and 495) and the use of selection indices resulted in larger estimates of selection gains. The Mulamba and Mock (1978), Smith (1936), and Hazel (1943) indices had the highest percentage of gains on selection, and are therefore recommended for the selection of strawberry clones.

  16. Selective lanthanide sorption and mechanism using novel hybrid Lewis base (N-methyl-N-phenyl-1,10-phenanthroline-2-carboxamide) ligand modified adsorbent.

    PubMed

    Awual, Md Rabiul; Kobayashi, Tohru; Miyazaki, Yuji; Motokawa, Ryuhei; Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro; Yaita, Tsuyoshi

    2013-05-15

    This study aims to develop a highly selective Lewis base adsorbent to investigate the selective sorption and recovery of Eu(III) and Sm(III) from wastewater. The oxygen and nitrogen donor atoms containing Lewis base N-methyl-N-phenyl-1,10-phenanthroline-2-carboxamide (MePhPTA) ligand was synthesized and subsequently an adsorbent was prepared by direct immobilization onto mesoporous silica. Determined maximum adsorption capacities were 125.63 and 124.38 mg/g for Eu(III) and Sm(III), respectively. Experiments with mixed-cations solutions showed that the sequence of preferential adsorption was Eu(III)>Sm(III). The lanthanide sorption by hybrid Lewis base adsorbent (HyLBA) was not adversely affected by the presence of sodium, potassium, calcium, magnesium, chloride, sulfate and nitrate ions due to strong affinity between hard Lewis acid lanthanide and hard Lewis base adsorbent. The crystallography for the Sm-MePhPTA complex suggested that MePhPTA was strongly coordinated to Sm(III) with oxygen and nitrogen by forming a stable complex with two 5-membered rings. The data clarified that bond lengths between Sm(III) and amide oxygen (2.475Å) were shorter than SmN (2.662Å) in phenanthroline moiety indicating strong oxygen driven HyLBA. The results suggested that HyLBA has a good prospect of promising applications for separation/sorption of lanthanide ions from effluents.

  17. A sterilization system using ultraviolet photochemical reactions based on nitrous oxide and oxygen gases.

    PubMed

    Ohnishi, Yasutaka; Matsumoto, Hiroyuki; Iwamori, Satoru

    2016-03-01

    Active oxygen species (AOS) generated under ultraviolet (UV) lamps can be applied for various industrial processes owing to extremely strong oxidative abilities. We have already reported on an application of the AOS for a sterilization process of microorganisms. Here, a sterilization method using active oxygen generated under ultraviolet (UV) lamps introducing nitrous oxide (N2O) and oxygen gases into a vacuum chamber was investigated. Nitrogen dioxide (NO2) gas was readily produced from N2O by UV photochemical reactions under the low-pressure mercury lamp and then used to sterilize medical devices. We compared the ability of the N2O gas to sterilize Geobacillus stearothermophilus spores with those of conventional methods. Successful sterilization of spores on various biological indicators was achieved within 60 min, not only in sterilization bags but also in a lumen device.

  18. N′1,N′3-Dimethyl-N′1,N′3-bis(phenylcarbonothioyl) Propanedihydrazide (Elesclomol) Selectively Kills Cisplatin Resistant Lung Cancer Cells through Reactive Oxygen Species (ROS)

    PubMed Central

    Wangpaichitr, Medhi; Wu, Chunjing; You, Min; Maher, Johnathan C.; Dinh, Vy; Feun, Lynn G.; Savaraj, Niramol

    2009-01-01

    Cisplatin is an important chemotherapeutic agent in lung cancer treatment. The mechanism of drug resistance to cisplatin is complex and historically has been difficult to overcome. We report here that cisplatin resistant lung cancer cell lines possess high basal levels of reactive oxygen species (ROS) when compared to normal cells and their parental cell counterparts. These resistant cells also have low thioredoxin (TRX) levels which may be one of the contributory factors to high ROS. N′1,N′3-dimethyl-N′1,N′3-bis(phenylcarbonothioyl) propanedihydrazide (elesclomol), an agent known to increase ROS is selectively toxic to cisplatin-resistant cells, while sparing normal cells and the parental counterpart. The cytotoxic effect of elesclomol in resistant cells is accompanied by further decreases in TRX and glutathione (GSH) antioxidant systems, while opposite results were found in parental cells. The ID50 of elesclomol in cisplatin-resistant cells ranged from 5–10 nM, which is well within clinically achievable ranges. N-Acetylcysteine (NAC), which is known to neutralize ROS, can abolish the cytotoxic effect of elesclomol, suggesting that the cytotoxic effect results from increased ROS. Overall, our data suggest that elesclomol selectively kills cisplatin-resistant tumor cells through increased ROS. This agent may hold potential to overcome cisplatin resistance and should be further explored to treat patients who have failed cisplatin therapy. PMID:20535236

  19. Personalized Clinical Trials in Hepatocellular Carcinoma Based on Biomarker Selection

    PubMed Central

    Zhang, Bingnan; Finn, Richard S.

    2016-01-01

    Background Since the approval of sorafenib there have been numerous failures of new agents in Phase III studies for treatment of advanced hepatocellular carcinoma (HCC). These studies have generally ignored the molecular heterogeneity of HCC and they have not enrolled patients based on predictive markers of response. The development of molecular targeted therapeutics in HCC needs to model the approach that has been taken with great success in other solid tumors, to decrease the likelihood of failure in future studies. Summary Here we review the paradigm taken with novel targeted agents in other solid tumors and highlight ongoing studies in HCC that are incorporating biomarkers in clinical development. Key Messages With the appreciation of the molecular diversity of HCC, clinical development of new agents in HCC will need to be targeted towards those patients who are most likely to benefit. This strategy, based on biomarkers for patient selection, is more likely to yield positive results and mitigate the risk of continued negative Phase III studies. PMID:27493897

  20. Mutual information-based feature selection for radiomics

    NASA Astrophysics Data System (ADS)

    Oubel, Estanislao; Beaumont, Hubert; Iannessi, Antoine

    2016-03-01

    Background The extraction and analysis of image features (radiomics) is a promising field in the precision medicine era, with applications to prognosis, prediction, and response to treatment quantification. In this work, we present a mutual information - based method for quantifying reproducibility of features, a necessary step for qualification before their inclusion in big data systems. Materials and Methods Ten patients with Non-Small Cell Lung Cancer (NSCLC) lesions were followed over time (7 time points in average) with Computed Tomography (CT). Five observers segmented lesions by using a semi-automatic method and 27 features describing shape and intensity distribution were extracted. Inter-observer reproducibility was assessed by computing the multi-information (MI) of feature changes over time, and the variability of global extrema. Results The highest MI values were obtained for volume-based features (VBF). The lesion mass (M), surface to volume ratio (SVR) and volume (V) presented statistically significant higher values of MI than the rest of features. Within the same VBF group, SVR showed also the lowest variability of extrema. The correlation coefficient (CC) of feature values was unable to make a difference between features. Conclusions MI allowed to discriminate three features (M, SVR, and V) from the rest in a statistically significant manner. This result is consistent with the order obtained when sorting features by increasing values of extrema variability. MI is a promising alternative for selecting features to be considered as surrogate biomarkers in a precision medicine context.

  1. A GIS-based methodology for selecting stormwater disconnection opportunities.

    PubMed

    Moore, S L; Stovin, V R; Wall, M; Ashley, R M

    2012-01-01

    The purpose of this paper is to introduce a geographic information system (GIS)-based decision support tool that assists the user to select not only areas where (retrofit) sustainable drainage systems (SuDS) could be implemented within a large catchment (>100 ha), but also to allow discrimination between suitable SuDS techniques based on their likely feasibility and effectiveness. The tool is applied to a case study catchment within London, UK, with the aim of increasing receiving water quality by reducing combined sewer overflow (CSO) spill frequency and volume. The key benefit of the tool presented is to allow rapid assessment of the retrofit SuDS potential of large catchments. It is not intended to replace detailed site investigations, but may help to direct attention to sites that have the greatest potential for retrofit SuDS implementation. Preliminary InfoWorks CS modelling of 'global disconnections' within the case study catchment, e.g. the removal of 50% of the total impervious area, showed that CSO spill volume could be reduced by 55 to 78% during a typical year. Using the disconnection hierarchy developed by the authors, the feasibility of retrofit SuDS deployment within the case study catchment is assessed, and the implications discussed.

  2. Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells

    PubMed Central

    Sawant, Sandesh Y.; Han, Thi Hiep; Cho, Moo Hwan

    2016-01-01

    Microbial fuel cells (MFCs) are a promising green approach for wastewater treatment with the simultaneous advantage of energy production. Among the various limiting factors, the cathodic limitation, with respect to performance and cost, is one of the main obstacles to the practical applications of MFCs. Despite the high performance of platinum and other metal-based cathodes, their practical use is limited by their high cost, low stability, and environmental toxicity. Oxygen is the most favorable electron acceptor in the case of MFCs, which reduces to water through a complicated oxygen reduction reaction (ORR). Carbon-based ORR catalysts possessing high surface area and good electrical conductivity improve the ORR kinetics by lowering the cathodic overpotential. Recently, a range of carbon-based materials have attracted attention for their exceptional ORR catalytic activity and high stability. Doping the carbon texture with a heteroatom improved their ORR activity remarkably through the favorable adsorption of oxygen and weaker molecular bonding. This review provides better insight into ORR catalysis for MFCs and the properties, performance, and applicability of various metal-free carbon-based electrocatalysts in MFCs to find the most appropriate cathodic catalyst for the practical applications. The approaches for improvement, key challenges, and future opportunities in this field are also explored. PMID:28029116

  3. Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells.

    PubMed

    Sawant, Sandesh Y; Han, Thi Hiep; Cho, Moo Hwan

    2016-12-24

    Microbial fuel cells (MFCs) are a promising green approach for wastewater treatment with the simultaneous advantage of energy production. Among the various limiting factors, the cathodic limitation, with respect to performance and cost, is one of the main obstacles to the practical applications of MFCs. Despite the high performance of platinum and other metal-based cathodes, their practical use is limited by their high cost, low stability, and environmental toxicity. Oxygen is the most favorable electron acceptor in the case of MFCs, which reduces to water through a complicated oxygen reduction reaction (ORR). Carbon-based ORR catalysts possessing high surface area and good electrical conductivity improve the ORR kinetics by lowering the cathodic overpotential. Recently, a range of carbon-based materials have attracted attention for their exceptional ORR catalytic activity and high stability. Doping the carbon texture with a heteroatom improved their ORR activity remarkably through the favorable adsorption of oxygen and weaker molecular bonding. This review provides better insight into ORR catalysis for MFCs and the properties, performance, and applicability of various metal-free carbon-based electrocatalysts in MFCs to find the most appropriate cathodic catalyst for the practical applications. The approaches for improvement, key challenges, and future opportunities in this field are also explored.

  4. Microstructure evolution characteristics induced by oxygen vacancy generation in anatase TiO2 based resistive switching devices

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Gao, Bin; Huang, Peng; Kang, Jinfeng

    2017-03-01

    In this work, first principle calculations are employed to study the microstructure characteristics of the anatase TiO2 resistive switching material associated with the generation of oxygen vacancy (V o) based nanofilaments during the switching process. The calculations indicate that both the magnéli phase Ti4O7 and V o-defect phase of anatase TiO2 may be formed with the generation of oxygen vacancies during the forming and SET processes. Based on the calculations, a new physical insight is proposed to clarify the microstructure evolution characteristics of the anatase TiO2 resistive switching material and the correlation with resistive switching behaviors. During the forming or SET process, the anatase TiO2 is first excited to a transition state with the generation of oxygen vacancies, then fully relaxes to a stable V o-defect state. This V o-defect state may either recover to the original state with the recombination of the oxygen vacancies, which causes the reversible resistive switching behavior, or further transform to a much more stable state—the magnéli phase Ti4O7, through a phase transition process with the generation of many more oxygen vacancies. The phase transition from V o- defective anatase phase to magnéli phase Ti4O7 causes the failure of the resistive switching due to the significantly reduced possibility of the reversible phase transition from the magnéli phase to the anatase phase, compared with the possibility of the recombination from the V o-defective anatase.

  5. Oxygen abundance distributions in six late-type galaxies based on SALT spectra of H II regions

    NASA Astrophysics Data System (ADS)

    Zinchenko, I. A.; Kniazev, A. Y.; Grebel, E. K.; Pilyugin, L. S.

    2015-10-01

    Spectra of 34 H ii regions in the late-type galaxies NGC 1087, NGC 2967, NGC 3023, NGC 4030, NGC 4123, and NGC 4517A were observed with the South African Large Telescope (SALT). In all 34 H ii regions, oxygen abundances were determined through the "counterpart" method (C method). Additionally, in two H ii regions in which we detected auroral lines, we measured oxygen abundances with the classic Te method. We also estimated the abundances in our H ii regions using the O3N2 and N2 calibrations and compared those with the C-based abundances. With these data, we examined the radial abundance distributions in the disks of our target galaxies. We derived surface-brightness profiles and other characteristics of the disks (the surface brightness at the disk center and the disk scale length) in three photometric bands for each galaxy using publicly available photometric imaging data. The radial distributions of the oxygen abundances predicted by the relation between abundance and disk surface brightness in the W1 band obtained for spiral galaxies in our previous study are close to the radial distributions of the oxygen abundances determined from the analysis of the emission line spectra for four galaxies where this relation is applicable. Hence, when the surface-brightness profile of a late-type galaxy is known, this parametric relation can be used to estimate the likely present-day oxygen abundance in the disk of the galaxy. Based on observations made with the Southern African Large Telescope, programs 2012-1-RSA_OTH-001, 2012-2-RSA_OTH-003 and 2013-1-RSA_OTH-005.

  6. Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment

    PubMed Central

    Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen

    2015-01-01

    To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability. PMID:26257980

  7. Effect of oxygen-absorbing packaging on the shelf life of a liquid-based component of military operational rations.

    PubMed

    Gomes, Carmen; Castell-Perez, M Elena; Chimbombi, Ezekiel; Barros, Frederico; Sun, Dazhi; Liu, Jia Daniel; Sue, Hung-Jue; Sherman, Peter; Dunne, Patrick; Wright, Alan O

    2009-01-01

    Oxygen within the sealed package can reduce the quality of liquid-based food products with high oil content such as hot-filled meal-ready-to-eat (MRE) cheese spread, a component of military operational rations. The aim of this study was to test a novel oxygen absorber-containing laminate material and its ability to maintain and/or extend shelf life of a cheese-spread MRE item. An iron-based oxygen absorber (ABSO(2)RB(R)) activated by moisture was incorporated into the laminate and used to pack hot-filled cheese spread MREs. The kinetics of oxygen absorption due to humidity and temperature were characterized and peel tests performed to ensure pouch seal integrity. Accelerated shelf-life tests of ABSO(2)RB and regular MRE pouches without the O(2)-absorber were conducted for 3 mo at 51.7 degrees C (125 degrees F), and 6 mo at 37.8 degrees C (100 degrees F) by measuring oxygen concentration (Mocon O(2)-analyzer), microbiological, and physicochemical quality characteristics, including color, texture, moisture, free fatty acid (FFA), pH, water activity, and vitamins and A. Pouches stored at 26.7 degrees C (80 degrees F) for 12 mo served as calibrated controls. Consumer tests were conducted in-house and a confirmatory sensory test was conducted at Natick by a trained panel using a 9-point hedonic scale. ABSO(2)RB-laminates maintain the same seal integrity and strength as those of the control samples. The headspace oxygen concentrations in these pouches reached (P < 0.05) < 0.5% in 11 d of storage at 26.7 degrees C (80 degrees F) and remained below this level throughout the storage period (1 y). No microbial growth (aerobic, coliforms, yeast, and molds) was detected (P < 0.05) for both packages. Overall, the ABSO(2)RB-pouches indicate an improved reduction in oxygen and vitamin C retention compared with MRE controls and maintained product quality (physicochemical and organoleptic). ABSO(2)RB-laminates met the accelerated shelf-life requirement of 1 mo at 51.7 degrees C

  8. High impact of uranyl ions on carrying-releasing oxygen capability of hemoglobin-based blood substitutes.

    PubMed

    Duan, Li; Du, Lili; Jia, Yi; Liu, Wenyuan; Liu, Zhichao; Li, Junbai

    2015-01-07

    The effect of radioactive UO2 (2+) on the oxygen-transporting capability of hemoglobin-based oxygen carriers has been investigated in vitro. The hemoglobin (Hb) microspheres fabricated by the porous template covalent layer-by-layer (LbL) assembly were utilized as artificial oxygen carriers and blood substitutes. Magnetic nanoparticles of iron oxide (Fe3 O4 ) were loaded in porous CaCO3 particles for magnetically assisted chemical separation (MACS). Through the adsorption spectrum of magnetic Hb microspheres after adsorbing UO2 (2+) , it was found that UO2 (2+) was highly loaded in the magnetic Hb microspheres, and it shows that the presence of UO2 (2+) in vivo destroys the structure and oxygen-transporting capability of Hb microspheres. In view of the high adsorption capacity of UO2 (2+) , the as-assembled magnetic Hb microspheres can be considered as a novel, highly effective adsorbent for removing metal toxins from radiation-contaminated bodies, or from nuclear-power reactor effluent before discharge into the environment.

  9. An imaging-based tumour growth and treatment response model: Investigating the effect of tumour oxygenation on radiation therapy response

    PubMed Central

    Jeraj, Robert

    2010-01-01

    A multiscale tumour simulation model employing cell-line-specific biological parameters and functional information derived from pre-therapy PET/CT imaging data was developed to investigate effects of different oxygenation levels on the response to radiation therapy. For each tumour voxel, stochastic simulations were performed to model cellular growth and therapeutic response. Model parameters were fitted to published preclinical experiments of head and neck squamous cell carcinoma (HNSCC). Using the obtained parameters, the model was applied to a human HNSCC case to investigate effects of different uniform and non-uniform oxygenation levels and results were compared for treatment efficacy. Simulations of the preclinical studies showed excellent agreement with published data and underlined the model’s ability to quantitatively reproduce tumour behaviour within experimental uncertainties. When using a simplified transformation to derive non-uniform oxygenation levels from molecular imaging data, simulations of the clinical case showed heterogeneous tumour response and variability in radioresistance with decreasing oxygen levels. Once clinically validated, this model could be used to transform patient-specific data into voxel-based biological objectives for treatment planning and to investigate biologically optimized dose prescriptions. PMID:18677042

  10. Influence of dissolved oxygen concentration on the start-up of the anammox-based process: ELAN®.

    PubMed

    Morales, N; Val del Río, A; Vázquez-Padín, J R; Gutiérrez, R; Fernández-González, R; Icaran, P; Rogalla, F; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-01-01

    The anammox-based process ELAN® was started-up in two different sequencing batch reactor (SBR) pilot plant reactors treating municipal anaerobic digester supernatant. The main difference in the operation of both reactors was the dissolved oxygen (DO) concentration in the bulk liquid. SBR-1 was started at a DO value of 0.4 mg O2/L whereas SBR-2 was started at DO values of 3.0 mg O2/L. Despite both reactors working at a nitrogen removal rate of around 0.6 g N/(L d), in SBR-1, granules represented only a small fraction of the total biomass and reached a diameter of 1.1 mm after 7 months of operation, while in SBR-2 the biomass was mainly composed of granules with an average diameter of 3.2 mm after the same operational period. Oxygen microelectrode profiling revealed that granules from SBR-2 where only fully penetrated by oxygen with DO concentrations of 8 mg O2/L while granules from SBR-1 were already oxygen penetrated at DO concentrations of 1 mg O2/L. In this way granules from SBR-2 performed better due to the thick layer of ammonia oxidizing bacteria, which accounted for up to 20% of all the microbial populations, which protected the anammox bacteria from non-suitable liquid media conditions.

  11. Prediction of In-Space Durability of Protected Polymers Based on Ground Laboratory Thermal Energy Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Rutledge, Sharon; DiFilippo, Frank J.

    1996-01-01

    The probability of atomic oxygen reacting with polymeric materials is orders of magnitude lower at thermal energies (greater than O.1 eV) than at orbital impact energies (4.5 eV). As a result, absolute atomic oxygen fluxes at thermal energies must be orders of magnitude higher than orbital energy fluxes, to produce the same effective fluxes (or same oxidation rates) for polymers. These differences can cause highly pessimistic durability predictions for protected polymers and polymers which develop protective metal oxide surfaces as a result of oxidation if one does not make suitable calibrations. A comparison was conducted of undercut cavities below defect sites in protected polyimide Kapton samples flown on the Long Duration Exposure Facility (LDEF) with similar samples exposed in thermal energy oxygen plasma. The results of this comparison were used to quantify predicted material loss in space based on material loss in ground laboratory thermal energy plasma testing. A microindent hardness comparison of surface oxidation of a silicone flown on the Environmental Oxygen Interaction with Materials-III (EOIM-III) experiment with samples exposed in thermal energy plasmas was similarly used to calibrate the rate of oxidation of silicone in space relative to samples in thermal energy plasmas exposed to polyimide Kapton effective fluences.

  12. Effect of fuel gas composition in chemical-looping combustion with Ni-based oxygen carriers. 1. Fate of sulfur

    SciTech Connect

    Garcia-Labiano, F.; de Diego, L.F.; Gayan, P.; Adanez, J.; Abad, A.; Dueso, C.

    2009-03-15

    Chemical-looping combustion (CLC) has been suggested among the best alternatives to reduce the economic cost of CO{sub 2} capture using fuel gas because CO{sub 2} is inherently separated in the process. For gaseous fuels, natural gas, refinery gas, or syngas from coal gasification can be used. These fuels may contain different amounts of sulfur compounds, such as H{sub 2}S and COS. An experimental investigation of the fate of sulfur during CH{sub 4} combustion in a 500 W{sub th} CLC prototype using a Ni-based oxygen carrier has been carried out. The effect on the oxygen carrier behavior and combustion efficiency of several operating conditions such as temperature and H{sub 2}S concentration has been analyzed. Nickel sulfide, Ni3S{sub 2}, was formed at all operating conditions in the fuel reactor, which produced an oxygen carrier deactivation and lower combustion efficiencies. However, the oxygen carrier recovered their initial reactivity after certain time without sulfur addition. The sulfides were transported to the air reactor where SO{sub 2} was produced as final gas product. Agglomeration problems derived from the sulfides formation were never detected during continuous operation. Considering both operational and environmental aspects, fuels with sulfur contents below 100 vppm H{sub 2}S seem to be adequate to be used in an industrial CLC plant.

  13. The Role of Ir in Ternary Rh-Based Catalysts for Syngas Conversion to C2+ Oxygenates

    SciTech Connect

    Glezakou, Vassiliki Alexandra; Jaffe, John E.; Rousseau, Roger J.; Mei, Donghai; Kathmann, Shawn M.; Albrecht, Karl O.; Gray, Michel J.; Gerber, Mark A.

    2012-07-09

    Transition metal modified Rh-catalysts can be used for converting syngas (CO+H2) into C2+ oxygenates. It has been found that Mn has a favorable effect in the selectivity towards oxygenates, while addition of Ir to the binary Rh-Mn catalysts significantly increases the space-time yield of C2+ oxygenates. In this paper, we use quantum mechanical calculations to investigate the distribution of promoter sites within Rh rich nanoparticles and their role in the conversion of syngas towards ethanol. This work was supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy Biomass Program. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. A portion of the research was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national science user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL.

  14. Metabolically Derived human ventilation rates: A revised approach based upon oxygen consumption rates (Final Report) 2009

    EPA Science Inventory

    The purpose of this report is to provide a revised approach for calculating an individual's ventilation rate directly from their oxygen consumption rate. This revised approach will be used to update the ventilation rate information in the Exposure Factors Handbook, which serve as...

  15. Observations of Oxygen Ion Behavior in the Lithium-Based Electrolytic Reduction of Uranium Oxide

    SciTech Connect

    Steven D. Herrmann; Shelly X. Li; Brenda E. Serrano-Rodriguez

    2009-09-01

    Parametric studies were performed on a lithium-based electrolytic reduction process at bench-scale to investigate the behavior of oxygen ions in the reduction of uranium oxide for various electrochemical cell configurations. Specifically, a series of eight electrolytic reduction runs was performed in a common salt bath of LiCl – 1 wt% Li2O. The variable parameters included fuel basket containment material (i.e., stainless steel wire mesh and sintered stainless steel) and applied electrical charge (i.e., 75 – 150% of the theoretical charge for complete reduction of uranium oxide in a basket to uranium metal). Samples of the molten salt electrolyte were taken at regular intervals throughout each run and analyzed to produce a time plot of Li2O concentrations in the bulk salt over the course of the runs. Following each run, the fuel basket was sectioned and the fuel was removed. Samples of the fuel were analyzed for the extent of uranium oxide reduction to metal and for the concentration of salt constituents, i.e., LiCl and Li2O. Extents of uranium oxide reduction ranged from 43 – 70% in stainless steel wire mesh baskets and 8 – 33 % in sintered stainless steel baskets. The concentrations of Li2O in the salt phase of the fuel product from the stainless steel wire mesh baskets ranged from 6.2 – 9.2 wt%, while those for the sintered stainless steel baskets ranged from 26 – 46 wt%. Another series of tests was performed to investigate the dissolution of Li2O in LiCl at 650 °C across various cathode containment materials (i.e., stainless steel wire mesh, sintered stainless steel and porous magnesia) and configurations (i.e., stationary and rotating cylindrical baskets). Dissolution of identical loadings of Li2O particulate reached equilibrium within one hour for stationary stainless steel wire mesh baskets, while the same took several hours for sintered stainless steel and porous magnesia baskets. Rotation of an annular cylindrical basket of stainless steel

  16. A simple fluorescent probe for the determination of dissolved oxygen based on the catalytic activation of oxygen by iron(II) chelates.

    PubMed

    Luo, Wei; Abbas, M E; Zhu, Lihua; Zhou, Wenyi; Li, Kejing; Tang, Heqing; Liu, Shushen; Li, Weiying

    2009-04-27

    This work aims at establishing a simple fluorescent probe for the determination of dissolved oxygen. It is found that iron(II) ions activate oxygen to produce reactive species being capable of oxidizing non-fluorescent coumarin to fluorescent 7-hydroxycoumarin. However, this process is not effective because the yield of the reactive species is very low in the presence of simple iron(II) salts alone. The addition of organic ligands such as oxalate results in the formation of complexes between iron(II) ions, which leads to considerable increase in the yield of reactive species (such as hydroxyl radicals) and then increase in the fluorescence intensity of 7-hydroxycoumarin to a significant level. It has been observed that in the mixture solution of iron(II) ions, ligand, coumarin, and dissolved oxygen, there is an excellent linear response between the fluorescence and dissolved oxygen. Therefore, a new spectrofluorimetric method has been proposed for the determination of dissolved oxygen by using catalytic activation of O(2) by iron(II) chelates. Under optimized conditions, a linear correlation (r=0.995) has been observed between the fluorescence intensity of 7-hydroxycoumarin at 456 nm and the concentration of dissolved oxygen over the range of 0.96-9.22 mg L(-1). The limit of detection for dissolved oxygen at a signal-to-noise ratio of 3 has been estimated to be 0.35 mg L(-1). The proposed method has been applied to determine the concentration of dissolved oxygen in practical water samples with results as satisfactory as that obtained by the standard iodometric method.

  17. Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion

    SciTech Connect

    Francisco Garcia-Labiano; Juan Adanez; Luis F. de Diego; Pilar Gayan; Alberto Abad

    2006-02-01

    This work analyzes the main characteristics related to the chemical looping combustion (CLC) process necessary to use the syngas obtained in an integrated gasification combined cycle (IGCC) power plant. The kinetics of reduction with H{sub 2} and CO and oxidation with O{sub 2} of three high-reactivity oxygen carriers used in the CLC system have been determined in a thermogravimetric analyzer at atmospheric pressure. The iron- and nickel-based oxygen carriers were prepared by freeze-granulation, and the copper-based oxygen carrier was prepared by impregnation. The changing grain size model (CGSM) was used for the kinetic determination, assuming spherical grains for the freeze-granulated particles containing iron and nickel and a platelike geometry for the reacting surface of the copper-based impregnated particles. The dependence of the reaction rates on temperature was low, with the activation energy values varying from 14 to 33 kJ mol{sup -1} for the reduction and 7 to 15 kJ mol{sup -1} for the oxidation. The reaction order depended on the reacting gas and oxygen carrier, with values ranging from 0.25 to 1. However, an increase in the operating pressure for the IGCC + CLC system increases the thermal efficiency of the process, and the CO{sub 2} is recovered as a high pressure gas, decreasing the energy demand for further compression. The effect of pressure on the behavior of the oxygen carriers has been analyzed in a pressurized thermogravimetric analyzer at 1073 K and pressures up to 30 atm. It has been found that an increase in total pressure has a negative effect on the reaction rates of all the oxygen carriers. Moreover, the use of the CGSM with the kinetic parameters obtained at atmospheric pressure predicted higher reaction rates than those experimentally obtained at higher pressures, and therefore, the kinetic parameters necessary to design pressurized CLC plants must be determined at the operating pressure. 34 refs., 8 figs., 2 tabs.

  18. Bayesian Model Selection with Network Based Diffusion Analysis

    PubMed Central

    Whalen, Andrew; Hoppitt, William J. E.

    2016-01-01

    A number of recent studies have used Network Based Diffusion Analysis (NBDA) to detect the role of social transmission in the spread of a novel behavior through a population. In this paper we present a unified framework for performing NBDA in a Bayesian setting, and demonstrate how the Watanabe Akaike Information Criteria (WAIC) can be used for model selection. We present a specific example of applying this method to Time to Acquisition Diffusion Analysis (TADA). To examine the robustness of this technique, we performed a large scale simulation study and found that NBDA using WAIC could recover the correct model of social transmission under a wide range of cases, including under the presence of random effects, individual level variables, and alternative models of social transmission. This work suggests that NBDA is an effective and widely applicable tool for uncovering whether social transmission underpins the spread of a novel behavior, and may still provide accurate results even when key model assumptions are relaxed. PMID:27092089

  19. Towards an Automatic and Application-Based EigensolverSelection

    SciTech Connect

    Zhang, Yeliang; Li, Xiaoye S.; Marques, Osni

    2005-09-09

    The computation of eigenvalues and eigenvectors is an important and often time-consuming phase in computer simulations. Recent efforts in the development of eigensolver libraries have given users good algorithms without the need for users to spend much time in programming. Yet, given the variety of numerical algorithms that are available to domain scientists, choosing the ''best'' algorithm suited for a particular application is a daunting task. As simulations become increasingly sophisticated and larger, it becomes infeasible for a user to try out every reasonable algorithm configuration in a timely fashion. Therefore, there is a need for an intelligent engine that can guide the user through the maze of various solvers with various configurations. In this paper, we present a methodology and a software architecture aiming at determining the best solver based on the application type and the matrix properties. We combine a decision tree and an intelligent engine to select a solver and a preconditioner combination for the application submitted by the user. We also discuss how our system interface is implemented with third party numerical libraries. In the case study, we demonstrate the feasibility and usefulness of our system with a simplified linear solving system. Our experiments show that our proposed intelligent engine is quite adept in choosing a suitable algorithm for different applications.

  20. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning

    PubMed Central

    Barbosa-Santillán, Liliana I.; Sánchez-Escobar, Juan J.; Calixto-Romo, M. Angeles; Barbosa-Santillán, Luis F.

    2016-01-01

    We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2. PMID:27366202

  1. Selective indole-based ECE inhibitors: synthesis and pharmacological evaluation.

    PubMed

    Brands, Michael; Ergüden, Jens-Kerim; Hashimoto, Kentaro; Heimbach, Dirk; Krahn, Thomas; Schröder, Christian; Siegel, Stephan; Stasch, Johannes-Peter; Tsujishita, Hideki; Weigand, Stefan; Yoshida, Nagahiro H

    2006-01-01

    Inhibition of the metalloprotease ECE-1 may be beneficial for the treatment of coronary heart disease, cancer, renal failure, and urological disorders. A novel class of indole-based ECE inhibitors was identified by high throughput screening. Optimization of the original screening lead structure 6 led to highly potent inhibitors such as 11, which bears a bisaryl amide moiety linked to the indole C2 position through an amide group. Docking of 11 into a model structure of ECE revealed a unique binding mode in which the Zn center of the enzyme is not directly addressed by the inhibitor, but key interactions are suggested for the central amide group. Testing of the lead compound 6 in hypertensive Dahl S rats resulted in a decrease in blood pressure after an initial period in which the blood pressure remained unchanged, most probably the result of ET-1 already present. Indole derivative 6 also displays a cardio-protective effect in a mouse model of acute myocardial infarction after oral administration. The more potent chloropyridine derivative 9 antagonizes big-ET-1-induced increase in blood pressure in rats at intravenous administration of 3 mg kg-1. All ECE inhibitors of the indole class showed high selectivity for ECE over related metalloproteases such as NEP and ACE. Therefore, these compounds might have further potential as drugs for the treatment of coronary heart diseases.

  2. Fabrication and Characterization of Nanocarbon-Based Nanofluids by Using an Oxygen-Acetylene Flame Synthesis System

    NASA Astrophysics Data System (ADS)

    Teng, Tun-Ping; Wang, Wei-Ping; Hsu, Yu-Chun

    2016-06-01

    In this study, an oxygen-acetylene flame synthesis system was developed to fabricate nanocarbon-based nanofluids (NCBNFs) through a one-step synthesis method. Measured in liters per minute (LPM), the flame's fuel flows combined oxygen and acetylene at four ratios: 1.5/2.5 (P1), 1.0/2.5 (P2), 0.5/2.5 (P3), and 0/2.5 (P4). The flow rate of cooling water (base fluid) was fixed at 1.2 LPM to produce different nanocarbon-based materials (NCBMs) and various concentrations of NCBNFs. Tests and analyses were conducted for determining the morphology of NCBMs, NCBM material, optical characteristics, the production rate, suspension performance, average particle size, zeta potential, and other relevant basic characteristics of NCBNFs to understand the characteristics and materials of NCBNFs produced through different process parameters (P1-P4). The results revealed that the NCBMs mainly had flaky and spherical morphologies and the diameters of the spherical NCBMs measured approximately 20-30 nm. X-ray diffraction and Raman spectroscopy revealed that the NCBMs contained graphene oxide (GO) and amorphous carbon (AC) when the oxygen flow rate was lower than 1.0 LPM. In addition, the NCBMs contained reduced GO, crystalline graphite (graphite-2H), and AC when the oxygen flow rate was higher than 1.0 LPM. The process parameters of P1, P2, P3, and P4 resulted in NCBMs produced at concentrations of 0.010, 0.013, 0.040, and 0.023 wt%, respectively, in NCBNFs. All the NCBNFs exhibited non-Newtonian and shear-thinning rheological properties. The P4 ratio showed the highest enhancement rate of thermal conductivity for NCBNFs, at a rate 4.85 % higher than that of water.

  3. Fabrication and Characterization of Nanocarbon-Based Nanofluids by Using an Oxygen-Acetylene Flame Synthesis System.

    PubMed

    Teng, Tun-Ping; Wang, Wei-Ping; Hsu, Yu-Chun

    2016-12-01

    In this study, an oxygen-acetylene flame synthesis system was developed to fabricate nanocarbon-based nanofluids (NCBNFs) through a one-step synthesis method. Measured in liters per minute (LPM), the flame's fuel flows combined oxygen and acetylene at four ratios: 1.5/2.5 (P1), 1.0/2.5 (P2), 0.5/2.5 (P3), and 0/2.5 (P4). The flow rate of cooling water (base fluid) was fixed at 1.2 LPM to produce different nanocarbon-based materials (NCBMs) and various concentrations of NCBNFs. Tests and analyses were conducted for determining the morphology of NCBMs, NCBM material, optical characteristics, the production rate, suspension performance, average particle size, zeta potential, and other relevant basic characteristics of NCBNFs to understand the characteristics and materials of NCBNFs produced through different process parameters (P1-P4). The results revealed that the NCBMs mainly had flaky and spherical morphologies and the diameters of the spherical NCBMs measured approximately 20-30 nm. X-ray diffraction and Raman spectroscopy revealed that the NCBMs contained graphene oxide (GO) and amorphous carbon (AC) when the oxygen flow rate was lower than 1.0 LPM. In addition, the NCBMs contained reduced GO, crystalline graphite (graphite-2H), and AC when the oxygen flow rate was higher than 1.0 LPM. The process parameters of P1, P2, P3, and P4 resulted in NCBMs produced at concentrations of 0.010, 0.013, 0.040, and 0.023 wt%, respectively, in NCBNFs. All the NCBNFs exhibited non-Newtonian and shear-thinning rheological properties. The P4 ratio showed the highest enhancement rate of thermal conductivity for NCBNFs, at a rate 4.85 % higher than that of water.

  4. Oxygen migration in TiO{sub 2}-based higher-k gate stacks

    SciTech Connect

    Kim, Sang Bum; Brown, Stephen L.; Rossnagel, Stephen M.; Bruley, John; Copel, Matthew; Hopstaken, Marco J. P.; Narayanan, Vijay; Frank, Martin M.

    2010-03-15

    We report on the stability of high-permittivity (high-k) TiO{sub 2} films incorporated in metal-oxide-silicon capacitor structures with a TiN metal gate electrode, focusing on oxygen migration. Titanium oxide films are deposited by either Ti sputtering [physical vapor deposition (PVD)] followed by radical shower oxidation or by plasma-enhanced atomic layer deposition (PEALD) from titanium isopropoxide (Ti{l_brace}OCH(CH{sub 3}){sub 2{r_brace}4}) and O{sub 2} plasma. Both PVD and PEALD films result in near-stoichiometric TiO{sub 2} prior to high-temperature annealing. We find that dopant activation anneals of TiO{sub 2}-containing gate stacks at 1000 deg. C cause 5 A or more of additional SiO{sub 2} to be formed at the gate-dielectric/Si-channel interface. Furthermore, we demonstrate for the first time that oxygen released from TiO{sub 2} diffuses through the TiN gate electrode and oxidizes the poly-Si contact. The thickness of this upper SiO{sub 2} layer continues to increase with increasing TiO{sub 2} thickness, while the thickness of the regrown SiO{sub 2} at the gate-dielectric/Si interface saturates. The upper SiO{sub 2} layer degrades gate stack capacitance, and simultaneously the oxygen-deficient TiO{sub x} becomes a poor insulator. In an attempt to mitigate O loss from the TiO{sub 2}, top and bottom Al{sub 2}O{sub 3} layers are added to the TiO{sub 2} gate dielectric as oxygen barriers. However, they are found to be ineffective, due to Al{sub 2}O{sub 3}-TiO{sub 2} interdiffusion during activation annealing. Bottom HfO{sub 2}/Si{sub 3}N{sub 4} interlayers are found to serve as more effective oxygen barriers, reducing, though not preventing, oxygen downdiffusion.

  5. Seasonal changes in blood oxygen transport and acid-base status in the tegu lizard, Tupinambis merianae.

    PubMed

    Andrade, Denis V; Brito, Simone P; Toledo, Luís Felipe; Abe, Augusto S

    2004-05-20

    Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO-(3)]pl) and an elevation of arterial CO2 partial pressure (PaCO2) and CO2 content in the plasma (CplCO2). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O2 partial pressure (PaO2) and O2 content (CaO2) were not affected by season and tended to increase with temperature. Arterial pH (pHa) of dormant animals is reduced compared to active lizards at body temperatures below 15 degrees C, while no significant difference was noticed at higher temperatures.

  6. Increased oxygen load in the prefrontal cortex from mouth breathing: a vector-based near-infrared spectroscopy study

    PubMed Central

    Sano, Sayaka; Oka, Noriyuki; Yoshino, Kayoko; Kato, Toshinori

    2013-01-01

    Individuals who habitually breathe through the mouth are more likely than nasal breathers to have sleep disorders and attention deficit hyperactive disorder. We hypothesized that brain hemodynamic responses in the prefrontal cortex might be different for mouth and nasal breathing. To test this hypothesis, we measured changes in oxyhemoglobin and deoxyhemoglobin in the prefrontal cortex during mouth breathing and nasal breathing in healthy adults (n=9) using vector-based near-infrared spectroscopy. The angle k, calculated from changes in oxyhemoglobin and deoxyhemoglobin and indicating the degree of oxygen exchange, was significantly higher during mouth breathing (P<0.05), indicating an increased oxygen load. Mouth breathing also caused a significant increase in deoxyhemoglobin, but oxyhemoglobin did not increase. This difference in oxygen load in the brain arising from different breathing routes can be evaluated quantitatively using vector-based near-infrared spectroscopy. Phase responses could help to provide an earlier and more reliable diagnosis of a patient’s habitual breathing route than a patient interview. PMID:24169579

  7. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation

    NASA Astrophysics Data System (ADS)

    Czaja, A. D.; Johnson, C.; Roden, E. E.; Beard, B. L.; Voegelin, A. R.; Nagler, T. F.; Beukes, N. J.; Wille, M.

    2011-12-01

    Common estimates for the timing of surface oxidation and models of atmospheric evolution suggest that the amount of free oxygen in Earth's atmosphere stayed below 10-5 times present atmospheric level (PAL) until the Great Oxidation Event (GOE) that occurred between ~2.2 and 2.4 Ga, at which time free O2 in the atmosphere increased to approximately 10-1 to 10-2 times PAL. It is possible that the amount of photosynthetic O2 production was low to insignificant until the GOE, but some studies have suggested that photosynthetically-produced "oxygen oases", reflecting relatively high rates of O2 production, could have existed prior to this time. It has been difficult, however, to constrain absolute O2 concentrations and fluxes in such paleoenvironments. Here we show that free O2 levels in the photic zone of the Late Archean ocean can be constrained by the combined use of Fe and Mo isotope systematics of Ca-Mg carbonates from the 2.68 to 2.50 Ga Campbellrand-Malmani carbonate platform, Kaapvaal Craton, South Africa, and that O2 production is most easily explained by oxygenic photosynthesis. Correlated Fe and Mo isotope compositions of seawater in the photic zone, as sequestered into Ca-Mg carbonates, require a key role for Fe oxide precipitation via oxidation of aqueous Fe(II) by photosynthetically-derived O2, followed by sorption of aqueous Mo to the newly formed Fe oxides. Simulation of this process by use of a dispersion/reaction model illustrates the effects of Fe oxide precipitation and subsequent Mo sorption, and suggests that the balance of O2 production and loss could result in a Late Archean ocean with an oxic photic zone (~30 μM of free O2, which is ~10% of the modern value), an anoxic deep ocean, and an atmosphere that had ≤10-5 times PAL O2. The similarity of the temporal trends in Fe isotope compositions of these Ca-Mg carbonates to those of contemporaneously deposited carbonates from the Pilbara Craton in Western Australia suggests that photic zone

  8. Structural and optical properties of solid-phase singlet oxygen photosensitizers based on fullerene aqueous suspensions

    NASA Astrophysics Data System (ADS)

    Belousova, I. M.; Belousov, V. P.; Kiselev, V. M.; Murav'eva, T. D.; Kislyakov, I. M.; Sirotkin, A. K.; Starodubtsev, A. M.; Kris'ko, T. K.; Bagrov, I. V.; Ermakov, A. V.

    2008-11-01

    The relationship between the structural and photosensitizing properties of solid-phase particles of fullerene C60 in aqueous suspensions is studied using the methods of absorption spectroscopy, electron spin resonance spectroscopy (ESR), X-ray diffraction, and spectrophotometry of solutions of singlet oxygen chemical traps—histidine in combination with p-nitrosodimethylaniline. Two new variants are proposed for obtaining aqueous suspensions of particles of solid-phase fullerene whose structures are disordered and whose degrees of amorphization are 67 and 40%, respectively. It is shown that an increase in the disorder of the structure of particles in suspensions and a decrease in their average size facilitate an increase in the formation efficiency of singlet oxygen by solid-phase fullerene presumably due to an in increase in the concentration of surface localized excitons.

  9. Mechanism of oxygen ion transfer in oxide melts based on V2O5

    NASA Astrophysics Data System (ADS)

    Klimashin, A. A.; Belousov, V. V.

    2016-01-01

    A model of oxygen ion transport in molten V2O5 is proposed. Within the framework of this model, the values of the parabolic rate constant of the catastrophic oxidation of copper in contact with V2O5 and oxygen flux through an ion transport membrane with liquid-channel grain-boundary structure on the basis of V2O5 are calculated as k'' = 2.4 × 10-5 kg2/(m4 s) and J = 2.7 × 10-4 mol/(m2 s) at 700°C. These values are in agreement with the experimental data in order of magnitude, indicating the agreement between theory and experiment.

  10. Graphitic mesoporous carbon based on aromatic polycondensation as catalyst support for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Kong, Jiangrong; Liu, Yaru; Liu, Qicheng; Zhu, Hongze

    2015-03-01

    Mesoporous carbon is constructed by monolithic polyaromatic mesophase deriving from the hexane insoluble of coal-tar pitch. This carbon material exhibits spherical morphology and layered crystallite, and thereby can be graphitized at 900 °C without destroying the mesoporous structure. Electrochemical measurements indicate that graphitic mesoporous carbon (GMC) support not only improves the activity of Pt electrocatalyst to oxygen reduction reaction (ORR), but also shows higher corrosion resistance than commercial XC-72 carbon black in the acid cathode environment.

  11. Artificial immune system based on adaptive clonal selection for feature selection and parameters optimisation of support vector machines

    NASA Astrophysics Data System (ADS)

    Sadat Hashemipour, Maryam; Soleimani, Seyed Ali

    2016-01-01

    Artificial immune system (AIS) algorithm based on clonal selection method can be defined as a soft computing method inspired by theoretical immune system in order to solve science and engineering problems. Support vector machine (SVM) is a popular pattern classification method with many diverse applications. Kernel parameter setting in the SVM training procedure along with the feature selection significantly impacts on the classification accuracy rate. In this study, AIS based on Adaptive Clonal Selection (AISACS) algorithm has been used to optimise the SVM parameters and feature subset selection without degrading the SVM classification accuracy. Several public datasets of University of California Irvine machine learning (UCI) repository are employed to calculate the classification accuracy rate in order to evaluate the AISACS approach then it was compared with grid search algorithm and Genetic Algorithm (GA) approach. The experimental results show that the feature reduction rate and running time of the AISACS approach are better than the GA approach.

  12. A method for modeling oxygen diffusion in an agent-based model with application to host-pathogen infection.

    PubMed

    Sershen, Cheryl L; Plimpton, Steven J; May, Elebeoba E

    2014-01-01

    This paper describes a method for incorporating a diffusion field modeling oxygen usage and dispersion in a multi-scale model of Mycobacterium tuberculosis (Mtb) infection mediated granuloma formation. We implemented this method over a floating-point field to model oxygen dynamics in host tissue during chronic phase response and Mtb persistence. The method avoids the requirement of satisfying the Courant-Friedrichs-Lewy (CFL) condition, which is necessary in implementing the explicit version of the finite-difference method, but imposes an impractical bound on the time step. Instead, diffusion is modeled by a matrix-based, steady state approximate solution to the diffusion equation. Presented in figure 1 is the evolution of the diffusion profiles of a containment granuloma over time.

  13. Photoluminiscence response of Ru(II) complex immobilized in SiO2-based matrix to dissolved oxygen in beer.

    PubMed

    Anastasova, S; Milanova, M; Todorovsky, D

    2008-04-24

    The possibility to use the photoluminescence of Ru(II) tris(4,7-diphenyl-1,10-phenathroline) dichloride, immobilized in sol-gel produced SiO2-based matrix for the determination of dissolved oxygen concentration in beer is studied. Organically-modified silane (octyltriethoxysilane) and mixtures from tetraethoxysilane and octyltriethoxysilane are used as precursors for matrix production. Spin- and dip-coating techniques are applied for films deposition. The predeposition ultrasound treatment of the sol ensures a good sensitivity and a linear sensor quenching response to oxygen in 1/6 ppm O2-concentration interval. The CO2 present practically has no effect on the films performance. Their photoluminescence show rather good stability on prolonged storage in beer.

  14. A method for modeling oxygen diffusion in an agent-based model with application to host-pathogen infection

    DOE PAGES

    Plimpton, Steven J.; Sershen, Cheryl L.; May, Elebeoba E.

    2015-01-01

    This paper describes a method for incorporating a diffusion field modeling oxygen usage and dispersion in a multi-scale model of Mycobacterium tuberculosis (Mtb) infection mediated granuloma formation. We implemented this method over a floating-point field to model oxygen dynamics in host tissue during chronic phase response and Mtb persistence. The method avoids the requirement of satisfying the Courant-Friedrichs-Lewy (CFL) condition, which is necessary in implementing the explicit version of the finite-difference method, but imposes an impractical bound on the time step. Instead, diffusion is modeled by a matrix-based, steady state approximate solution to the diffusion equation. Moreover, presented in figuremore » 1 is the evolution of the diffusion profiles of a containment granuloma over time.« less

  15. A method for modeling oxygen diffusion in an agent-based model with application to host-pathogen infection

    SciTech Connect

    Plimpton, Steven J.; Sershen, Cheryl L.; May, Elebeoba E.

    2015-01-01

    This paper describes a method for incorporating a diffusion field modeling oxygen usage and dispersion in a multi-scale model of Mycobacterium tuberculosis (Mtb) infection mediated granuloma formation. We implemented this method over a floating-point field to model oxygen dynamics in host tissue during chronic phase response and Mtb persistence. The method avoids the requirement of satisfying the Courant-Friedrichs-Lewy (CFL) condition, which is necessary in implementing the explicit version of the finite-difference method, but imposes an impractical bound on the time step. Instead, diffusion is modeled by a matrix-based, steady state approximate solution to the diffusion equation. Moreover, presented in figure 1 is the evolution of the diffusion profiles of a containment granuloma over time.

  16. Fluorescence-based assay for reactive oxygen species: A protective role for creatinine

    SciTech Connect

    Glazer, A.N. )

    1988-06-01

    Attack by reactive oxygen species leads to a decay in phycoerythrin fluorescence emission. This phenomenon provides a versatile new assay for small molecules and macromolecules that can function as protective compounds. With 1-2 {times} 10{sup {minus}8} M phycoerythrin, under conditions where peroxyl radical generation is rate-limiting, the fluorescence decay follows apparent zero-order kinetics. On reaction with HO{center dot}, generated with the ascorbate-Cu{sup 2+} system, the fluorescence decays with apparent first-order kinetics. Examination of the major components of human urine in this assay confirms that at physiological concentrations, urate protects against both types of oxygen radicals. A novel finding is that creatinine protects efficiently by a chelation mechanism against radical damage in the ascorbate-Cu{sup 2+} system at creatinine, ascorbate, and Cu{sup 2+} concentrations comparable to those in normal urine. Urate and creatinine provide complementary modes of protection against reactive oxygen species in the urinary tract.

  17. A Study of Oxidation of Hydrogen Based on Flashback of Hydrogen-Oxygen-Nitrogen Burner Flames

    NASA Technical Reports Server (NTRS)

    Fine, Burton D.

    1959-01-01

    The flashback of hydrogen-oxygen-nitrogen flames was studied as a function of pressure, burner diameter, equivalence ratio, and oxidant strength. The results were treated on the assumption that the product of the critical boundary velocity gradient for flashback and the initial concentration of that reactant which is not in excess is proportional to a mean reaction rate associated with the flame zone. It was further assumed that this reaction rate can be expressed in terms of initial concentrations and flame temperature. Measurements at constant flame temperature yield orders of reaction with respect to hydrogen and oxygen. These do not vary with flame temperature. Measurements in which pressure is varied for several values of oxidant strength at constant equivalence ratio yield a total order of reaction and a function describing the dependence of the mean reaction rate on flame temperature. The total reaction order is independent of flame temperature and equal to the sum of the orders for hydrogen and oxygen. The dependence of the reaction rate on flame temperature cannot be described by a constant activation energy. The activation energy obtained apparently increases with flame temperature. Flashback results can be described by a single rate constant which is independent of equivalence ratio. Values were estimated for this rate constant as a function of flame temperature.

  18. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    NASA Astrophysics Data System (ADS)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  19. Impact of oxygen exchange reaction at the ohmic interface in Ta2O5-based ReRAM devices.

    PubMed

    Kim, Wonjoo; Menzel, Stephan; Wouters, Dirk J; Guo, Yuzheng; Robertson, John; Roesgen, Bernd; Waser, Rainer; Rana, Vikas

    2016-10-20

    Interface reactions constitute essential aspects of the switching mechanism in redox-based resistive random access memory (ReRAM). For example, the modulation of the electronic barrier height at the Schottky interface is considered to be responsible for the toggling of the resistance states. On the other hand, the role of the ohmic interface in the resistive switching behavior is still ambigious. In this paper, the impact of different ohmic metal-electrode (M) materials, namely W, Ta, Ti, and Hf on the characteristics of Ta2O5 ReRAM is investigated. These materials are chosen with respect to their free energy for metal oxide formation and, associated, their impact on the formation energy of oxygen vacancy defects at the M/Ta2O5 interface. The resistive switching devices with Ti and Hf electrodes that have a negative defect formation energy, show an early RESET failure during the switching cycles. This failure process with Ti and Hf electrode is attributed to the accumulation of oxygen vacancies in the Ta2O5 layer, which leads to permanent breakdown of the metal-oxide to a low resistive state. In contrast, the defect formation energy in the Ta2O5 with respect to Ta and W electrodes is positive and for those highly stable resistive switching behavior is observed. During the quasi-static and transient-pulse characterization, the ReRAM devices with the W electrode consistently show an increased high resistance state (HRS) than with the Ta electrode for all RESET stop voltages. This effect is attributed to the faster oxygen exchange reaction at the W-electrode interface during the RESET process in accordance to lower stability of WO3 than Ta2O5. Based on these findings, an advanced resistive switching model, wherein also the oxygen exchange reaction at the ohmic M-electrode interface plays a vital role in determining of the resistance states, is presented.

  20. A Hemoglobin Based Oxygen Carrier, Bovine Polymerized Hemoglobin (HBOC-201) versus Hetastarch (HEX) in an Uncontrolled Liver Injury Hemorrhagic Shock Swine Model with Delayed Evacuation

    DTIC Science & Technology

    2004-10-01

    A Hemoglobin Based Oxygen Carrier, Bovine Polymerized Hemoglobin (HBOC-201) versus Hetastarch (HEX) in an Uncontrolled Liver Injury Hemorrhagic Shock...Transcutaneous tis- sue oxygenation was restored more rap- idly in HBOC-201 pigs, there was a trend to lower lactic acid, and base deficit was less...lactic acidosis and base deficit (BD) abnormalities, indicating on-going hypoperfusion.2–4 As these abnormalities measured upon hospital arrival

  1. FPGA-based RF spectrum merging and adaptive hopset selection

    NASA Astrophysics Data System (ADS)

    McLean, R. K.; Flatley, B. N.; Silvius, M. D.; Hopkinson, K. M.

    The radio frequency (RF) spectrum is a limited resource. Spectrum allotment disputes stem from this scarcity as many radio devices are confined to a fixed frequency or frequency sequence. One alternative is to incorporate cognition within a reconfigurable radio platform, therefore enabling the radio to adapt to dynamic RF spectrum environments. In this way, the radio is able to actively sense the RF spectrum, decide, and act accordingly, thereby sharing the spectrum and operating in more flexible manner. In this paper, we present a novel solution for merging many distributed RF spectrum maps into one map and for subsequently creating an adaptive hopset. We also provide an example of our system in operation, the result of which is a pseudorandom adaptive hopset. The paper then presents a novel hardware design for the frequency merger and adaptive hopset selector, both of which are written in VHDL and implemented as a custom IP core on an FPGA-based embedded system using the Xilinx Embedded Development Kit (EDK) software tool. The design of the custom IP core is optimized for area, and it can process a high-volume digital input via a low-latency circuit architecture. The complete embedded system includes the Xilinx PowerPC microprocessor, UART serial connection, and compact flash memory card IP cores, and our custom map merging/hopset selection IP core, all of which are targeted to the Virtex IV FPGA. This system is then incorporated into a cognitive radio prototype on a Rice University Wireless Open Access Research Platform (WARP) reconfigurable radio.

  2. Global stocks of selected mineral-based commodities

    USGS Publications Warehouse

    Wilburn, David R.; Bleiwas, Donald I.; Karl, Nick A.

    2016-12-05

    IntroductionThe U.S. Geological Survey, National Minerals Information Center, analyzes mineral and metal supply chains by identifying and describing major components of mineral and material flows from ore extraction, through intermediate forms, to a final product. This report focuses on an important component of the world’s supply chain: the amounts and global distribution of major consumer, producer, and exchange stocks of selected mineral commodities. In this report, the term “stock” is used instead of “inventory” and refers to accumulations of mined ore, intermediate products, and refined mineral-based commodities that are in a form that meets the agreed-upon specifications of a buyer or processor of intermediate products. These may include certain ores such as bauxite, concentrates, smelter products, and refined metals. Materials sometimes referred to as inventory for accounting purposes, such as ore contained in a deposit or in a leach pile, or materials that need to be further processed before they can be shipped to a consumer, are not considered. Stocks may be held (owned) by consumers, governments, investors, producers, and traders. They may serve as (1) a means to achieve economic, social, and strategic goals through government policies; (2) a secure source of supply to meet demand and to mitigate potential shortages in the supply chain; (3) a hedge to mitigate price volatility; and (4) vehicles for speculative investment.The paucity and uneven reliability of data for stocks of ores and concentrates and for material held by producers, consumers, and merchants hinder the accurate estimating of the size and distribution of this portion of the supply chain for certain commodities. This paper reviews the more visible stocks held in commodity exchange warehouses distributed throughout the world.

  3. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  4. High selectivity of colorimetric detection of p-nitrophenol based on Ag nanoclusters

    NASA Astrophysics Data System (ADS)

    Qu, Fei; Chen, Ping; Zhu, Shuyun; You, Jinmao

    2017-01-01

    Ag nanoclusters (Ag NCs) templated by hyperbranched polyethyleneimine (PEI) with different terminal groups and molecular weights had been developed as a special optical sensor for detecting p-nitrophenol (p-NP). When adding p-NP into Ag NCs, an obvious color change from pale yellow to deep yellow could be observed by naked eyes, accompanying with an apparent red-shift of absorption peak, and the reason was attributed to the formation of oxygen anion of p-NP based on the transfer of H+ from p-NP to amine groups of PEI. The molecular weights of template would greatly affect the sensitivity of p-NP. Ag NCs capped by PEI terminated ethylenediamine (EDA) possessed better sensitivity than other Ag NCs, showing good linear range from 5 to 140 μM with the limit of detection as low as 1.28 μM. Most importantly, this present system displayed high selectivity toward p-NP even in the presence of other nitrophenols and nitrotoluenes. This reliable method had been successfully applied for the detection of p-NP in real water and soil samples.

  5. High selectivity of colorimetric detection of p-nitrophenol based on Ag nanoclusters.

    PubMed

    Qu, Fei; Chen, Ping; Zhu, Shuyun; You, Jinmao

    2017-01-15

    Ag nanoclusters (Ag NCs) templated by hyperbranched polyethyleneimine (PEI) with different terminal groups and molecular weights had been developed as a special optical sensor for detecting p-nitrophenol (p-NP). When adding p-NP into Ag NCs, an obvious color change from pale yellow to deep yellow could be observed by naked eyes, accompanying with an apparent red-shift of absorption peak, and the reason was attributed to the formation of oxygen anion of p-NP based on the transfer of H(+) from p-NP to amine groups of PEI. The molecular weights of template would greatly affect the sensitivity of p-NP. Ag NCs capped by PEI terminated ethylenediamine (EDA) possessed better sensitivity than other Ag NCs, showing good linear range from 5 to 140μM with the limit of detection as low as 1.28μM. Most importantly, this present system displayed high selectivity toward p-NP even in the presence of other nitrophenols and nitrotoluenes. This reliable method had been successfully applied for the detection of p-NP in real water and soil samples.

  6. Theory of mind selectively predicts preschoolers' knowledge-based selective word learning.

    PubMed

    Brosseau-Liard, Patricia; Penney, Danielle; Poulin-Dubois, Diane

    2015-11-01

    Children can selectively attend to various attributes of a model, such as past accuracy or physical strength, to guide their social learning. There is a debate regarding whether a relation exists between theory-of-mind skills and selective learning. We hypothesized that high performance on theory-of-mind tasks would predict preference for learning new words from accurate informants (an epistemic attribute), but not from physically strong informants (a non-epistemic attribute). Three- and 4-year-olds (N = 65) completed two selective learning tasks, and their theory-of-mind abilities were assessed. As expected, performance on a theory-of-mind battery predicted children's preference to learn from more accurate informants but not from physically stronger informants. Results thus suggest that preschoolers with more advanced theory of mind have a better understanding of knowledge and apply that understanding to guide their selection of informants. This work has important implications for research on children's developing social cognition and early learning.

  7. Theory of mind selectively predicts preschoolers’ knowledge-based selective word learning

    PubMed Central

    Brosseau-Liard, Patricia; Penney, Danielle; Poulin-Dubois, Diane

    2015-01-01

    Children can selectively attend to various attributes of a model, such as past accuracy or physical strength, to guide their social learning. There is a debate regarding whether a relation exists between theory-of-mind skills and selective learning. We hypothesized that high performance on theory-of-mind tasks would predict preference for learning new words from accurate informants (an epistemic attribute), but not from physically strong informants (a non-epistemic attribute). Three- and 4-year-olds (N = 65) completed two selective learning tasks, and their theory of mind abilities were assessed. As expected, performance on a theory-of-mind battery predicted children’s preference to learn from more accurate informants but not from physically stronger informants. Results thus suggest that preschoolers with more advanced theory of mind have a better understanding of knowledge and apply that understanding to guide their selection of informants. This work has important implications for research on children’s developing social cognition and early learning. PMID:26211504

  8. Using oxygen at home

    MedlinePlus

    Oxygen - home use; COPD - home oxygen; Chronic obstructive airways disease - home oxygen; Chronic obstructive lung disease - home oxygen; Chronic bronchitis - home oxygen; Emphysema - home oxygen; Chronic respiratory ...

  9. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

  10. Materialized view selection based on query cost in data warehouse

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Liu, Chi; Liu, Daxin

    2004-04-01

    Selecting views to materialize impacts on the efficiency as well as the total cost of establishing and running a data warehouse. One of the most important decisions in designing a data warehouse is selection of right views to be materialized. This problem is to select a right set of views that minimizes total query response time and the cost of view maintenance under a storage space constraint. In this paper, according to our practical application, the factor that refrains us from materializing all views in the data warehouse is not the space constraint but query response time. For queries fast answers may be required. So we develop algorithms to select a set of views to materialize in data warehouse in order to minimize the total view maintenance time under the constraint of a given query response time. We call it query-cost view select problem. First, we design algorithms for query-cost view select problem, we give view node matrix in order to solve it. Second , we use experiments do demonstrate the power of our approach . The results show that our algorithm works better in practical cases. We implemented our algorithms and a performance study of the algorithms shows that the proposed algorithm delivers an optimal solution. Finally, we discuss the observed behavior of the algorithms. We also identify some important issues for future investigations.

  11. CHull: a generic convex-hull-based model selection method.

    PubMed

    Wilderjans, Tom F; Ceulemans, Eva; Meers, Kristof

    2013-03-01

    When analyzing data, researchers are often confronted with a model selection problem (e.g., determining the number of components/factors in principal components analysis [PCA]/factor analysis or identifying the most important predictors in a regression analysis). To tackle such a problem, researchers may apply some objective procedure, like parallel analysis in PCA/factor analysis or stepwise selection methods in regression analysis. A drawback of these procedures is that they can only be applied to the model selection problem at hand. An interesting alternative is the CHull model selection procedure, which was originally developed for multiway analysis (e.g., multimode partitioning). However, the key idea behind the CHull procedure--identifying a model that optimally balances model goodness of fit/misfit and model complexity--is quite generic. Therefore, the procedure may also be used when applying many other analysis techniques. The aim of this article is twofold. First, we demonstrate the wide applicability of the CHull method by showing how it can be used to solve various model selection problems in the context of PCA, reduced K-means, best-subset regression, and partial least squares regression. Moreover, a comparison of CHull with standard model selection methods for these problems is performed. Second, we present the CHULL software, which may be downloaded from http://ppw.kuleuven.be/okp/software/CHULL/, to assist the user in applying the CHull procedure.

  12. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  13. A New Oxygen Barometer for Solar System Basaltic Glasses Based on Vanadium Valence

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Sutton, S. R.; Papike, S. R.; Delaney, J. S.; Shearer, C. K.; Newville, M.; Eng, P.; Rivers, M.; Dyar, M. D.

    2004-01-01

    The determination of oxidation conditions for basaltic magmas derived by the melting of planetary mantles is critical to our understanding of the nature and evolution of planetary interiors. Yet, these determinations are compromised in terrestrial and especially extraterrestrial basalts by our analytical and computational methods for estimating oxygen fugacity (fO2). For example, mineralogical barometers (1, 2) can be reduced in effectiveness by subsolidus re-equilibration of mineral assemblages, inversion of mineralogical data to melt characteristics, and deviations of the natural mineral compositions from ideal thermodynamic parameters.

  14. Enhancement of Tc in Pb-based cuprate superconductors prepared at high-oxygen-pressure

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Tsutsumi, M.; Yoshimoto, J.; Okai, B.

    1991-12-01

    Samples of nominal compositions, In 0.3Pb 0.7Sr 2Y 0.2Ca 0.6Cu 2O y and Pb 0.5Sr 2.0Y 0.1Ca 0.8Cu 2O y were heat-treated under high oxygen pressure of 6 GPa at 1150°C. The recovered specimens showed superconductivity above 85 K, in the former Tc being nearly 90 K. The content of Indium incorporated in the superconducting phase was found to be less than about 2 atomic% of the total constituting cations.

  15. Cobalt-based layered double hydroxides as oxygen evolving electrocatalysts in neutral electrolyte

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Zhang, Ye; Wang, Gang; Li, Jian-Bao

    2012-06-01

    Co-M (M= Co, Ni, Fe, Mn) layered double hydroxides (LDHs) were successfully fabricated by a hexamethylenetetramine (HMT) pyrolysis method. Composite electrodes were made using a self-assembly fashion at inorganic/organic surface binder-free and were used to catalyze oxygen evolution reaction. Water oxidation can take place in neutral electrolyte operating with modest overpotential. The doping of other transitional metal cations affords mix valences and thus more intimate electronic interactions for reversible chemisorption of dioxygen molecules. The application of employing LDH materials in water oxidation process bodes well to facilitate future hydrogen utilization.

  16. Selecting a risk-based tool to aid in decision making

    SciTech Connect

    Bendure, A.O.

    1995-03-01

    Selecting a risk-based tool to aid in decision making is as much of a challenge as properly using the tool once it has been selected. Failure to consider customer and stakeholder requirements and the technical bases and differences in risk-based decision making tools will produce confounding and/or politically unacceptable results when the tool is used. Selecting a risk-based decisionmaking tool must therefore be undertaken with the same, if not greater, rigor than the use of the tool once it is selected. This paper presents a process for selecting a risk-based tool appropriate to a set of prioritization or resource allocation tasks, discusses the results of applying the process to four risk-based decision-making tools, and identifies the ``musts`` for successful selection and implementation of a risk-based tool to aid in decision making.

  17. Evaluating free vs bound oxygen on ignition of nano-aluminum based energetics leads to a critical reaction rate criterion

    NASA Astrophysics Data System (ADS)

    Zhou, Wenbo; DeLisio, Jeffery B.; Wang, Xizheng; Egan, Garth C.; Zachariah, Michael R.

    2015-09-01

    This study investigates the ignition of nano-aluminum (n-Al) and n-Al based energetic materials (nanothermites) at varying O2 pressures (1-18 atm), aiming to differentiate the effects of free and bound oxygen on ignition and to assess if it is possible to identify a critical reaction condition for ignition independent of oxygen source. Ignition experiments were conducted by rapidly heating the samples on a fine Pt wire at a heating rate of ˜105 °C s-1 to determine the ignition time and temperature. The ignition temperature of n-Al was found to reduce as the O2 pressure increased, whereas the ignition temperatures of nanothermites (n-Al/Fe2O3, n-Al/Bi2O3, n-Al/K2SO4, and n-Al/K2S2O8) had different sensitivities to O2 pressure depending on the formulations. A phenomenological kinetic/transport model was evaluated to correlate the concentrations of oxygen both in condensed and gaseous phases, with the initiation rate of Al-O at ignition temperature. We found that a constant critical reaction rate (5 × 10-2 mol m-2 s-1) for ignition exists which is independent to ignition temperature, heating rate, and free vs bound oxygen. Since for both the thermite and the free O2 reaction the critical reaction rate for ignition is the same, the various ignition temperatures are simply reflecting the conditions when the critical reaction rate for thermal runaway is achieved.

  18. [Research on chemical oxygen demand optical detection method based on the combination of multi-source spectral characteristics].

    PubMed

    Wu, Guo-Qing; Bi, Wei-Hong

    2014-11-01

    A novel method based on multi-source spectral characteristics of the combination is proposed for chemical oxygen demand detection. First, the ultraviolet and near infrared spectrum of the actual water samples are collected respectively. After pretreatment of the spectrum data, the features of the spectrum are extracted by the nonnegative matrix factorization algorithm for training after normalization. Particle swarm and least squares support vector machines algorithm are applied to predicting chemical oxygen demand of the validation set of water samples. The effect of spectrum's base number on the predicted results is discussed. The experimental results show that the best base number of the ultraviolet spectrum is 5, the best base number of the near infrared spectrum is 2; The validation set correlation coefficient of the prediction model is 0.999 8, and the root mean square error of prediction is 3.26 mg x L(-1). Experimental results demonstrate that the nonnegative matrix factorization algorithm is more suitable for feature extraction of spectral data, and the least squares support vector machines algorithm as a quantitative model correction method of the actual water samples can get good prediction accuracy with different feature extraction methods (principal component analysis, independent component analysis), spectroscopic methods (ultraviolet spectrum method, near infrared spectrum method) and different combination pattern (data direct combination, combining data first, then feature extraction) respectively.

  19. Oxygen deficit determinations for a major river in eastern Hong Kong, China.

    PubMed

    Chen, G H; Leong, I M; Liu, J; Huang, J C; Lo, I M; Yen, B C

    2000-07-01

    Determination of oxygen deficit in the Hong Kong Shing-Mun River was based on the oxygen uptake by water, algal respiration and river sediment and the oxygen supplied to the river by surface reaeration and algal photosynthesis. A systematic study was conducted to examine the effect of water temperature, flow velocity and water depth on both the oxygen demands and the oxygen supplies. The oxygen budget of a water column in a selected section of the river was modeled. The results of the oxygen budget analysis showed that when water temperature was around 10 degrees C (the lowest temperature in the river), no deficit was observed. When water temperature was 10 degrees C to 20 degrees C, a small oxygen deficit appeared, especially in the deeper water. At the highest water temperature (30 degrees C), the oxygen deficit was maximal, -6.84 g O2/m2/day, in the night-time during the Spring tide period.

  20. Improving Teacher Selection with Behavior-Based Interviewing

    ERIC Educational Resources Information Center

    Clement, Mary C.

    2008-01-01

    Based on the premise that past behavior is the best predictor of future performance, behavior-based interviewing uses specific questions based on teacher candidates' skills, background, and experience to determine if they can do the job.