Science.gov

Sample records for oxygen species overproduction

  1. Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease.

    PubMed

    Coughlan, Melinda T; Sharma, Kumar

    2016-08-01

    The paradigm that high glucose drives overproduction of superoxide from mitochondria as a unifying theory to explain end organ damage in diabetes complications has been tightly held for more than a decade. With the recent development of techniques and probes to measure the production of distinct reactive oxygen species (ROS) in vivo, this widely held dogma is now being challenged with the emerging view that specific ROS moieties are essential for the function of specific intracellular signaling pathways and represent normal mitochondrial function. This review will provide a balanced overview of the dual nature of ROS, detailing current evidence for ROS overproduction in diabetic kidney disease, with a focus on cell types and sources of ROS. The technical aspects of measurement of mitochondrial ROS, both in isolated mitochondria and emerging in vivo methods will be discussed. The counterargument, that mitochondrial ROS production is reduced in diabetic complications, is consistent with a growing recognition that stimulation of mitochondrial biogenesis and oxidative phosphorylation activity reduces inflammation and fibrosis. It is clear that there is an urgent need to fully characterize ROS production paying particular attention to spatiotemporal aspects and to factor in the relevance of ROS in the regulation of cellular signaling in the pathogenesis of diabetic kidney disease. With improved tools and real-time imaging capacity, a greater understanding of the complex role of ROS will be able to guide novel therapeutic regimens.

  2. Overproduction of reactive oxygen species - obligatory or not for induction of apoptosis by anticancer drugs

    PubMed Central

    Ivanova, Donika; Zhelev, Zhivko; Aoki, Ichio; Bakalova, Rumiana; Higashi, Tatsuya

    2016-01-01

    Many studies demonstrate that conventional anticancer drugs elevate intracellular level of reactive oxygen species (ROS) and alter redox-homeostasis of cancer cells. It is widely accepted that anticancer effect of these chemotherapeutics is due to induction of oxidative stress and ROS-mediated apoptosis in cancer. On the other hand, the harmful side effects of conventional anticancer chemotherapy are also due to increased production of ROS and disruption of redox-homeostasis of normal cells and tissues. This article describes the mechanisms for triggering and modulation of apoptosis through ROS-dependent and ROS-independent pathways. We try to answer the question: "Is it possible to induce highly specific apoptosis only in cancer cells, without overproduction of ROS, as well as without harmful effects on normal cells and tissues?" The review also suggests a new therapeutic strategy for selective killing of cancer cells, without significant impact on viability of normal cells and tissues, by combining anticancer drugs with redox-modulators, affecting specific signaling pathways and avoiding oxidative stress. PMID:27647966

  3. Overproduction of reactive oxygen species - obligatory or not for induction of apoptosis by anticancer drugs.

    PubMed

    Ivanova, Donika; Zhelev, Zhivko; Aoki, Ichio; Bakalova, Rumiana; Higashi, Tatsuya

    2016-08-01

    Many studies demonstrate that conventional anticancer drugs elevate intracellular level of reactive oxygen species (ROS) and alter redox-homeostasis of cancer cells. It is widely accepted that anticancer effect of these chemotherapeutics is due to induction of oxidative stress and ROS-mediated apoptosis in cancer. On the other hand, the harmful side effects of conventional anticancer chemotherapy are also due to increased production of ROS and disruption of redox-homeostasis of normal cells and tissues. This article describes the mechanisms for triggering and modulation of apoptosis through ROS-dependent and ROS-independent pathways. We try to answer the question: "Is it possible to induce highly specific apoptosis only in cancer cells, without overproduction of ROS, as well as without harmful effects on normal cells and tissues?" The review also suggests a new therapeutic strategy for selective killing of cancer cells, without significant impact on viability of normal cells and tissues, by combining anticancer drugs with redox-modulators, affecting specific signaling pathways and avoiding oxidative stress.

  4. Reduction of reactive oxygen species ameliorates metabolism-secretion coupling in islets of diabetic GK rats by suppressing lactate overproduction.

    PubMed

    Sasaki, Mayumi; Fujimoto, Shimpei; Sato, Yuichi; Nishi, Yuichi; Mukai, Eri; Yamano, Gen; Sato, Hiroki; Tahara, Yumiko; Ogura, Kasane; Nagashima, Kazuaki; Inagaki, Nobuya

    2013-06-01

    We previously demonstrated that impaired glucose-induced insulin secretion (IS) and ATP elevation in islets of Goto-Kakizaki (GK) rats, a nonobese model of diabetes, were significantly restored by 30-60-min suppression of endogenous reactive oxygen species (ROS) overproduction. In this study, we investigated the effect of a longer (12 h) suppression of ROS on metabolism-secretion coupling in β-cells by exposure to tempol, a superoxide (O2(-)) dismutase mimic, plus ebselen, a glutathione peroxidase mimic (TE treatment). In GK islets, both H2O2 and O2(-) were sufficiently reduced and glucose-induced IS and ATP elevation were improved by TE treatment. Glucose oxidation, an indicator of Krebs cycle velocity, also was improved by TE treatment at high glucose, whereas glucokinase activity, which determines glycolytic velocity, was not affected. Lactate production was markedly increased in GK islets, and TE treatment reduced lactate production and protein expression of lactate dehydrogenase and hypoxia-inducible factor 1α (HIF1α). These results indicate that the Warburg-like effect, which is characteristic of aerobic metabolism in cancer cells by which lactate is overproduced with reduced linking to mitochondria metabolism, plays an important role in impaired metabolism-secretion coupling in diabetic β-cells and suggest that ROS reduction can improve mitochondrial metabolism by suppressing lactate overproduction through the inhibition of HIF1α stabilization.

  5. Crucial role of membrane potential in heat stress-induced overproduction of reactive oxygen species in avian skeletal muscle mitochondria.

    PubMed

    Kikusato, Motoi; Toyomizu, Masaaki

    2013-01-01

    Heat stress is an environmental factor that causes oxidative stress. We found previously that acute heat stress stimulates the production of reactive oxygen species (ROS) in the skeletal muscle mitochondria of birds, and that this was accompanied by an increase of the mitochondrial membrane potential (ΔΨ) due to increased substrate oxidation by the electron transport chain. We also showed that avian uncoupling protein (avUCP) expression is decreased by the heat exposure. The present study clarifies whether ΔΨ is a major determinant of the overproduction of ROS due to acute heat stress, and if the decrease in avUCP expression is responsible for the elevation in ΔΨ. Control (24°C) and acute heat-stressed (34°C for 12 h) birds exhibited increased succinate-driven mitochondrial ROS production as indicated by an elevation of ΔΨ, with this increase being significantly higher in the heat-stressed group compared with the control group. In glutamate/malate-energized mitochondria, no difference in the ROS production between the groups was observed, though the mitochondrial ΔΨ was significantly higher in the heat-stressed groups compared with the control group. Furthermore, mitochondria energized with either succinate/glutamate or succinate/malate showed increased ROS production and ΔΨ in the heat-stressed group compared with mitochondria from the control group. These results suggest that succinate oxidation could play an important role in the heat stress-induced overproduction of mitochondrial ROS in skeletal muscle. In agreement with the notion of a decrease in avUCP expression in response to heat stress, proton leak, which was likely mediated by UCP (that part which is GDP-inhibited and arachidonic acid-sensitive), was reduced in the heat-exposed group. We suggest that the acute heat stress-induced overproduction of mitochondrial ROS may depend on ΔΨ, which may in turn result not only from increased substrate oxidation but also from a decrease in the

  6. NADPH Oxidase-Derived Overproduction of Reactive Oxygen Species Impairs Postischemic Neovascularization in Mice with Type 1 Diabetes

    PubMed Central

    Ebrahimian, Téni G; Heymes, Christophe; You, Dong; Blanc-Brude, Olivier; Mees, Barend; Waeckel, Ludovic; Duriez, Micheline; Vilar, José; Brandes, Ralph P.; Levy, Bernard I.; Shah, Ajay M.; Silvestre, Jean-Sébastien

    2006-01-01

    We hypothesized that diabetes-induced oxidative stress may affect postischemic neovascularization. The response to unilateral femoral artery ligation was studied in wild-type or gp91phox-deficient control or type 1 diabetic mice or in animals treated with the anti-oxidant N-acetyl-l-cysteine (NAC) or with in vivo electrotransfer of a plasmid encoding dominant-negative Rac1 (50 μg) for 21 days. Postischemic neovascularization was reduced in diabetic mice in association with down-regulated vascular endothelial growth factor-A protein levels. In diabetic animals vascular endothelial growth factor levels and postischemic neovascularization were restored to nondiabetic levels by the scavenging of reactive oxygen species (ROS) by NAC administration or the inhibition of ROS generation by gp91phox deficiency or by administration of dominant-negative Rac1. Finally, diabetes reduced the ability of adherent bone marrow-derived mononuclear cells (BM-MNCs) to differentiate into endothelial progenitor cells. Treatment with NAC (3 mmol/L), apocynin (200 μmol/L), or the p38MAPK inhibitor LY333351 (10 μmol/L) up-regulated the number of endothelial progenitor cell colonies derived from diabetic BM-MNCs by 1.5-, 1.6-, and 1.5-fold, respectively (P < 0.05). In the ischemic hindlimb model, injection of diabetic BM-MNCs isolated from NAC-treated or gp91phox-deficient diabetic mice increased neovascularization by ∼1.5-fold greater than untreated diabetic BM-MNCs (P < 0.05). Thus, inhibition of NADPH oxidase-derived ROS overproduction improves the angiogenic and vasculogenic processes and restores postischemic neovascularization in type 1 diabetic mice. PMID:16877369

  7. NADPH oxidase-derived overproduction of reactive oxygen species impairs postischemic neovascularization in mice with type 1 diabetes.

    PubMed

    Ebrahimian, Téni G; Heymes, Christophe; You, Dong; Blanc-Brude, Olivier; Mees, Barend; Waeckel, Ludovic; Duriez, Micheline; Vilar, José; Brandes, Ralph P; Levy, Bernard I; Shah, Ajay M; Silvestre, Jean-Sébastien

    2006-08-01

    We hypothesized that diabetes-induced oxidative stress may affect postischemic neovascularization. The response to unilateral femoral artery ligation was studied in wild-type or gp91(phox)-deficient control or type 1 diabetic mice or in animals treated with the anti-oxidant N-acetyl-l-cysteine (NAC) or with in vivo electrotransfer of a plasmid encoding dominant-negative Rac1 (50 microg) for 21 days. Postischemic neovascularization was reduced in diabetic mice in association with down-regulated vascular endothelial growth factor-A protein levels. In diabetic animals vascular endothelial growth factor levels and postischemic neovascularization were restored to nondiabetic levels by the scavenging of reactive oxygen species (ROS) by NAC administration or the inhibition of ROS generation by gp91(phox) deficiency or by administration of dominant-negative Rac1. Finally, diabetes reduced the ability of adherent bone marrow-derived mononuclear cells (BM-MNCs) to differentiate into endothelial progenitor cells. Treatment with NAC (3 mmol/L), apocynin (200 micromol/L), or the p38MAPK inhibitor LY333351 (10 micromol/L) up-regulated the number of endothelial progenitor cell colonies derived from diabetic BM-MNCs by 1.5-, 1.6-, and 1.5-fold, respectively (P < 0.05). In the ischemic hindlimb model, injection of diabetic BM-MNCs isolated from NAC-treated or gp91(phox)-deficient diabetic mice increased neovascularization by approximately 1.5-fold greater than untreated diabetic BM-MNCs (P < 0.05). Thus, inhibition of NADPH oxidase-derived ROS overproduction improves the angiogenic and vasculogenic processes and restores postischemic neovascularization in type 1 diabetic mice.

  8. Folate Deficiency Triggered Apoptosis of Synoviocytes: Role of Overproduction of Reactive Oxygen Species Generated via NADPH Oxidase/Mitochondrial Complex II and Calcium Perturbation.

    PubMed

    Hsu, Hung-Chih; Chang, Wen-Ming; Wu, Jin-Yi; Huang, Chin-Chin; Lu, Fung-Jou; Chuang, Yi-Wen; Chang, Pey-Jium; Chen, Kai-Hua; Hong, Chang-Zern; Yeh, Rang-Hui; Liu, Tsan-Zon; Chen, Ching-Hsein

    2016-01-01

    Despite a plethora of literature has documented that osteoarthritis (OA) is veritably associated with oxidative stress-mediated chondrocyte death and matrix degradation, yet the possible involvement of synoviocyte abnormality as causative factor of OA has not been thoroughly investigated. For this reason, we conduct the current studies to insight into how synoviocytes could respond to an episode of folate-deprived (FD) condition. First, when HIG-82 synoviocytes were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature mediated through FD-evoked overproduction of reactive oxygen species (ROS) and drastically released of cytosolic calcium (Ca2+) concentrations. Next, we uncovered that FD-evoked ROS overproduction could only be strongly suppressed by either mitochondrial complex II inhibitors (TTFA and carboxin) or NADPH oxidase (NOX) inhibitors (AEBSF and apocynin), but not by mitochondrial complex I inhibitor (rotenone) and mitochondrial complex III inhibitor (antimycin A). Interestingly, this selective inhibition of FD-evoked ROS by mitochondrial complex II and NOX inhibitors was found to correlate excellently with the suppression of cytosolic Ca2+ release and reduced the magnitude of the apoptotic TUNEL-positive cells. Taken together, we present the first evidence here that FD-triggered ROS overproduction in synoviocytes is originated from mitochondrial complex II and NOX. Both elevated ROS in tandem with cytosolic Ca2+ overload serve as final arbitrators for apoptotic lethality of synoviocytes cultivated under FD condition. Thus, folate supplementation may be beneficial to patients with OA.

  9. Attenuation of 7-ketocholesterol-induced overproduction of reactive oxygen species, apoptosis, and autophagy by dimethyl fumarate on 158N murine oligodendrocytes.

    PubMed

    Zarrouk, Amira; Nury, Thomas; Karym, El-Mostafa; Vejux, Anne; Sghaier, Randa; Gondcaille, Catherine; Andreoletti, Pierre; Trompier, Doriane; Savary, Stéphane; Cherkaoui-Malki, Mustapha; Debbabi, Meryam; Fromont, Agnès; Riedinger, Jean-Marc; Moreau, Thibault; Lizard, Gérard

    2016-02-24

    Mitochondrial dysfunctions and oxidative stress are involved in several non demyelinating or demyelinating neurodegenerative diseases. Some of them, including multiple sclerosis (MS), are associated with lipid peroxidation processes leading to increased levels of 7-ketocholesterol (7KC). So, the eventual protective effect of dimethylfumarate (DMF), which is used for the treatment of MS, was evaluated on 7KC-treated oligodendrocytes, which are myelin synthesizing cells. To this end, murine oligodendrocytes 158N were exposed to 7KC (25, 50μM) for 24h without or with DMF (1, 25, 50μM). The biological activities of DMF associated or not with 7KC were evaluated by phase contrast microscopy, crystal violet and MTT tests. The impact on transmembrane mitochondrial potential (ΔYm), O2(-) and H2O2 production, apoptosis and autophagy was measured by microscopical and flow cytometric methods by staining with DiOC6(3), dihydroethidine and dihydrorhodamine 123, Hoechst 33342, and by Western blotting with the use of specific antibodies raised against uncleaved and cleaved caspase-3 and PARP, and LC3-I/II. DMF attenuates the different effects of 7KC, namely: cell growth inhibition and/or loss of cell adhesion, decrease of ΔΨm, O2(-) and H2O2 overproduction, PARP and caspase-3 cleavage, nuclear condensation and fragmentation, and activation of LC3-I into LC3-II. The ability of DMF to attenuate 7KC-induced reactive oxygen species overproduction, apoptosis, and autophagy on oligodendrocytes reinforces the interest for this molecule for the treatment of MS or other demyelinating diseases.

  10. Edelfosine-induced metabolic changes in cancer cells that precede the overproduction of reactive oxygen species and apoptosis

    PubMed Central

    2010-01-01

    Background Metabolic flux profiling based on the analysis of distribution of stable isotope tracer in metabolites is an important method widely used in cancer research to understand the regulation of cell metabolism and elaborate new therapeutic strategies. Recently, we developed software Isodyn, which extends the methodology of kinetic modeling to the analysis of isotopic isomer distribution for the evaluation of cellular metabolic flux profile under relevant conditions. This tool can be applied to reveal the metabolic effect of proapoptotic drug edelfosine in leukemia Jurkat cell line, uncovering the mechanisms of induction of apoptosis in cancer cells. Results The study of 13C distribution of Jukat cells exposed to low edelfosine concentration, which induces apoptosis in ≤5% of cells, revealed metabolic changes previous to the development of apoptotic program. Specifically, it was found that low dose of edelfosine stimulates the TCA cycle. These metabolic perturbations were coupled with an increase of nucleic acid synthesis de novo, which indicates acceleration of biosynthetic and reparative processes. The further increase of the TCA cycle fluxes, when higher doses of drug applied, eventually enhance reactive oxygen species (ROS) production and trigger apoptotic program. Conclusion The application of Isodyn to the analysis of mechanism of edelfosine-induced apoptosis revealed primary drug-induced metabolic changes, which are important for the subsequent initiation of apoptotic program. Initiation of such metabolic changes could be exploited in anticancer therapy. PMID:20925932

  11. Pinellia ternata lectin exerts a pro-inflammatory effect on macrophages by inducing the release of pro-inflammatory cytokines, the activation of the nuclear factor-κB signaling pathway and the overproduction of reactive oxygen species.

    PubMed

    Yu, Hong-Li; Zhao, Teng-Fei; Wu, Hao; Pan, Yao-Zong; Zhang, Qian; Wang, Kui-Long; Zhang, Chen-Chao; Jin, Yang-Ping

    2015-10-01

    Pinellia ternata (PT) is a widely used traditional Chinese medicine. The raw material has a throat-irritating toxicity that is associated with the PT lectin (PTL). PTL is a monocot lectin isolated from the tubers of PT, which exhibits mouse peritoneal acute inflammatory effects in vivo. The present study aimed to investigate the pro-inflammatory effect of PTL on macrophages. PTL (50 µg/ml)‑stimulated macrophages enhanced the chemotactic activity of neutrophils. PTL (50, 100, 200 and 400 µg/ml) significantly elevated the production of cytokines [tumor necrosis factor‑α (TNF-α) , interleukin (IL)‑1β and IL‑6]. PTL (25, 50 and 100 µg/ml) induced intracellular reactive oxygen species (ROS) overproduction. PTL also caused transfer of p65 from the macrophage cytoplasm to the nucleus and activated the nuclear factor‑κB (NF‑κB) signaling pathway. Scanning electron microscope images revealed severe cell swelling and membrane integrity defection of macrophages following PTL (100 µg/ml) stimulation, which was also associated with inflammation. PTL had pro‑inflammatory activity, involving induced neutrophil migration, cytokine release, ROS overproduction and the activation of the NF-κB signaling pathway, which was associated with the activation of macrophages.

  12. Mechanism of artemisinin phytotoxicity action: induction of reactive oxygen species and cell death in lettuce seedlings.

    PubMed

    Yan, Zhi-Qiang; Wang, Dan-Dan; Ding, Lan; Cui, Hai-Yan; Jin, Hui; Yang, Xiao-Yan; Yang, Jian-She; Qin, Bo

    2015-03-01

    Artemisinin has been recognized as an allelochemical that inhibits growth of several plant species. However, its mode of action is not well clarified. In this study, the mechanism of artemisinin phytotoxicity on lettuce seedlings was investigated. Root and shoot elongation of lettuce seedlings were inhibited by artemisinin in a concentration-dependent manner. The compound effectively arrested cell division and caused loss of cell viability in root tips of lettuce. Overproduction of reactive oxygen species (ROS) was induced by artemisinin. Lipid peroxidation, proline overproduction and reduction of chlorophyll content in lettuce seedlings were found after treatments. These results suggested that artemisinin could induce ROS overproduction, which caused membrane lipids peroxidation and cell death, and impacted mitosis and physiological processes, resulting in growth inhibition of receptor plants.

  13. Reactive oxygen species in periodontitis

    PubMed Central

    Dahiya, Parveen; Kamal, Reet; Gupta, Rajan; Bhardwaj, Rohit; Chaudhary, Karun; Kaur, Simerpreet

    2013-01-01

    Recent epidemiological studies reveal that more than two-third of the world's population suffers from one of the chronic forms of periodontal disease. The primary etiological agent of this inflammatory disease is a polymicrobial complex, predominantly Gram negative anaerobic or facultative bacteria within the sub-gingival biofilm. These bacterial species initiate the production of various cytokines such as interleukin-8 and TNF-α, further causing an increase in number and activity of polymorphonucleocytes (PMN) along with these cytokines, PMNs also produce reactive oxygen species (ROS) superoxide via the respiratory burst mechanism as the part of the defence response to infection. ROS just like the interleukins have deleterious effects on tissue cells when produced in excess. To counter the harmful effects of ROS, human body has its own defence mechanisms to eliminate them as soon as they are formed. The aim of this review is to focus on the role of different free radicals, ROS, and antioxidants in the pathophysiology of periodontal tissue destruction. PMID:24174716

  14. Phytate, reactive oxygen species and colorectal cancer.

    PubMed

    Owen, R W; Spiegelhalder, B; Bartsch, H

    1998-05-01

    Reproducible high-performance liquid chromatography methods have been developed and validated which allow an accurate quantification of phytic acid in faeces and food and reactive oxygen species in an in vitro model system and in faecal specimens. When applied to the evaluation of reactive oxygen species generation by faeces, this method has shown that 1:100 dilutions of matrix obtained from stool samples of adenoma patients are capable of generating significant quantities of reactive oxygen species as evinced by the production of diphenols from salicylic acid. Moreover, it has been shown that the major product of HO. attack on salicylic acid is 2,5-dihydroxy benzoic acid and not 2, 3-dihydroxy benzoic acid as previously reported. In the presence of the antioxidant ascorbic acid the inhibitory capacity of phytic acid on the generation of reactive oxygen species is completely subverted. Therefore, the kinetics of reactive oxygen species production by faeces is currently under further investigation by high-performance liquid chromatography and chemiluminescence in various patient groups and may give an insight into the role of reactive oxygen species in the aetiology of colorectal cancer.

  15. Signaling by reactive oxygen and nitrogen species in skin diseases.

    PubMed

    Afanas'ev, Igor B

    2010-06-01

    For many years the formation of reactive oxygen and nitrogen species (ROS) and (RNS) in living organisms has been considered to be dangerous phenomenon due to their damaging action on biomolecules. However, present studies demonstrated another important activity of ROS and RNS: their signaling functions in physiological and pathological processes. In this work we discuss the new data concerning a role of ROS and RNS in many enzymatic/gene cascades causing damaging changes during the development of skin diseases and pathological disorders (skin cancer, the toxic effects of irradiation on the skin, and skin wounding). It has been suggested that the enhancement of ROS formation in tumor cells through the inactivation of mitochondrial MnSOD or the activation of NADPH oxidase leads to apoptosis and might be applied for developing a new cancer therapy. On the other hand ROS overproduction might stimulate malignant transformation of melanoma. Role of ROS signaling is also considered in the damaging action of UVA, UVB, and IRA irradiation on the skin and the processes of wound healing. In the last part of review the possibility of the right choice of antioxidants and free radical scavengers for the treatment of skin disease is discussed.

  16. Rosacea, Reactive Oxygen Species, and Azelaic Acid

    PubMed Central

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea. PMID:20967185

  17. Superoxide Dismutases and Reactive Oxygen Species

    SciTech Connect

    Cabelli, D.E.

    2011-01-01

    The 'free radical theory' of aging was introduced over a half-century ago. In this theory, much of the deleterious effects of aging were attributed to the cumulative buildup of damage from reactive oxygen species. When discussing reactive oxygen species (ROS) in aerobic systems, both superoxide radicals (O{sub 2}{sup -}) and superoxide dismutases (SODs) are considered to play prominent roles. O{sub 2}{sup -} is formed by attachment of the electron to oxygen (O{sub 2}) that is present in tens to hundreds of micromolar concentration in vivo. SODs are enzymes that serve to eliminate O{sub 2}{sup -} by rapidly converting it to O{sub 2} and hydrogen peroxide (H{sub 2}O{sub 2}). Both the radical and the enzyme will be discussed with the focus on the systems that are present in humans.

  18. Mitochondrial formation of reactive oxygen species

    PubMed Central

    Turrens, Julio F

    2003-01-01

    The reduction of oxygen to water proceeds via one electron at a time. In the mitochondrial respiratory chain, Complex IV (cytochrome oxidase) retains all partially reduced intermediates until full reduction is achieved. Other redox centres in the electron transport chain, however, may leak electrons to oxygen, partially reducing this molecule to superoxide anion (O2−•). Even though O2−• is not a strong oxidant, it is a precursor of most other reactive oxygen species, and it also becomes involved in the propagation of oxidative chain reactions. Despite the presence of various antioxidant defences, the mitochondrion appears to be the main intracellular source of these oxidants. This review describes the main mitochondrial sources of reactive species and the antioxidant defences that evolved to prevent oxidative damage in all the mitochondrial compartments. We also discuss various physiological and pathological scenarios resulting from an increased steady state concentration of mitochondrial oxidants. PMID:14561818

  19. Formation and Detoxification of Reactive Oxygen Species

    ERIC Educational Resources Information Center

    Kuciel, Radoslawa; Mazurkiewicz, Aleksandra

    2004-01-01

    A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also…

  20. Ovarian overproduction of androgens

    MedlinePlus

    ... Overproductive ovaries Follicle development References Bulun SE. The physiology and pathology of the female reproductive axis. In: ... PA: Elsevier; 2016:chap 552. Lobo RA. Hyperandrogenism: physiology, etiology, differential diagnosis, management. In: Lentz GM, Lobo ...

  1. Reactive oxygen species in phagocytic leukocytes

    PubMed Central

    2008-01-01

    Phagocytic leukocytes consume oxygen and generate reactive oxygen species in response to appropriate stimuli. The phagocyte NADPH oxidase, a multiprotein complex, existing in the dissociated state in resting cells becomes assembled into the functional oxidase complex upon stimulation and then generates superoxide anions. Biochemical aspects of the NADPH oxidase are briefly discussed in this review; however, the major focus relates to the contributions of various modes of microscopy to our understanding of the NADPH oxidase and the cell biology of phagocytic leukocytes. PMID:18597105

  2. Antimicrobial Actions of Reactive Oxygen Species

    PubMed Central

    Fang, Ferric C.

    2011-01-01

    ABSTRACT Everything should be as simple as it can be, but not simpler.—Attributed to Albert Einstein (1) Reactive oxygen species (ROS) are produced by host phagocytes and exert antimicrobial actions against a broad range of pathogens. The observable antimicrobial actions of ROS are highly dependent on experimental conditions. This perspective reviews recent controversies regarding ROS in Salmonella-phagocyte interactions and attempts to reconcile conflicting observations from different laboratories. PMID:21896680

  3. REACTIVE OXYGEN SPECIES: IMPACT ON SKELETAL MUSCLE

    PubMed Central

    Powers, Scott K.; Ji, Li Li; Kavazis, Andreas N.; Jackson, Malcolm J.

    2014-01-01

    It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox-regulation of muscle adaptation and oxidant-mediated muscle fatigue. PMID:23737208

  4. Reactive oxygen species in the immune system.

    PubMed

    Yang, Yuhui; Bazhin, Alexandr V; Werner, Jens; Karakhanova, Svetlana

    2013-06-01

    Reactive oxygen species (ROS) are a group of highly reactive chemicals containing oxygen produced either exogenously or endogenously. ROS are related to a wide variety of human disorders, such as chronic inflammation, age-related diseases and cancers. Besides, ROS are also essential for various biological functions, including cell survival, cell growth, proliferation and differentiation, and immune response. At present there are a number of excellent publications including some reviews about functions of these molecules either in normal cell biology or in pathophysiology. In this work, we reviewed available information and recent advances about ROS in the main immune cell types and gave summary about functions of these highly reactive molecules both in innate immunity as conservative defense mechanisms and in essential immune cells involved in adaptive immunity, and particularly in immune suppression.

  5. Reactive oxygen species and the cardiovascular system.

    PubMed

    Taverne, Yannick J H J; Bogers, Ad J J C; Duncker, Dirk J; Merkus, Daphne

    2013-01-01

    Ever since the discovery of free radicals, many hypotheses on the deleterious actions of reactive oxygen species (ROS) have been proposed. However, increasing evidence advocates the necessity of ROS for cellular homeostasis. ROS are generated as inherent by-products of aerobic metabolism and are tightly controlled by antioxidants. Conversely, when produced in excess or when antioxidants are depleted, ROS can inflict damage to lipids, proteins, and DNA. Such a state of oxidative stress is associated with many pathological conditions and closely correlated to oxygen consumption. Although the deleterious effects of ROS can potentially be reduced by restoring the imbalance between production and clearance of ROS through administration of antioxidants (AOs), the dosage and type of AOs should be tailored to the location and nature of oxidative stress. This paper describes several pathways of ROS signaling in cellular homeostasis. Further, we review the function of ROS in cardiovascular pathology and the effects of AOs on cardiovascular outcomes with emphasis on the so-called oxidative paradox.

  6. Complex cellular responses to reactive oxygen species.

    PubMed

    Temple, Mark D; Perrone, Gabriel G; Dawes, Ian W

    2005-06-01

    Genome-wide analyses of yeast provide insight into cellular responses to reactive oxygen species (ROS). Many deletion mutants are sensitive to at least one ROS, but no one oxidant is representative of 'oxidative stress' despite the widespread use of a single compound such as H(2)O(2). This has major implications for studies of pathological situations. Cells have a range of mechanisms for maintaining resistance that involves either induction or repression of many genes and extensive remodeling of the transcriptome. Cells have constitutive defense systems that are largely unique to each oxidant, but overlapping, inducible repair systems. The pattern of the transcriptional response to a particular ROS depends on its concentration, and 'classical' antioxidant systems that are induced by high concentrations of ROS can be repressed when cells adapt to low concentrations of ROS.

  7. Physiological roles of mitochondrial reactive oxygen species.

    PubMed

    Sena, Laura A; Chandel, Navdeep S

    2012-10-26

    Historically, mitochondrial reactive oxygen species (mROS) were thought to exclusively cause cellular damage and lack a physiological function. Accumulation of ROS and oxidative damage have been linked to multiple pathologies, including neurodegenerative diseases, diabetes, cancer, and premature aging. Thus, mROS were originally envisioned as a necessary evil of oxidative metabolism, a product of an imperfect system. Yet few biological systems possess such flagrant imperfections, thanks to the persistent optimization of evolution, and it appears that oxidative metabolism is no different. More and more evidence suggests that mROS are critical for healthy cell function. In this Review, we discuss this evidence following some background on the generation and regulation of mROS.

  8. Influence of reactive oxygen species on the sterilization of microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of reactive oxygen species on living cells, including various microbes, is discussed. A sterilization experiment with bacterial endospores reveals that an argoneoxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby indicating that oxygen radic...

  9. Production and Consumption of Reactive Oxygen Species by Fullerenes

    EPA Science Inventory

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  10. Reactive oxygen species and redox compartmentalization.

    PubMed

    Kaludercic, Nina; Deshwal, Soni; Di Lisa, Fabio

    2014-01-01

    Reactive oxygen species (ROS) formation and signaling are of major importance and regulate a number of processes in physiological conditions. A disruption in redox status regulation, however, has been associated with numerous pathological conditions. In recent years it has become increasingly clear that oxidative and reductive modifications are confined in a spatio-temporal manner. This makes ROS signaling similar to that of Ca(2+) or other second messengers. Some subcellular compartments are more oxidizing (such as lysosomes or peroxisomes) whereas others are more reducing (mitochondria, nuclei). Moreover, although more reducing, mitochondria are especially susceptible to oxidation, most likely due to the high number of exposed thiols present in that compartment. Recent advances in the development of redox probes allow specific measurement of defined ROS in different cellular compartments in intact living cells or organisms. The availability of these tools now allows simultaneous spatio-temporal measurements and correlation between ROS generation and organelle and/or cellular function. The study of ROS compartmentalization and microdomains will help elucidate their role in physiology and disease. Here we will examine redox probes currently available and how ROS generation may vary between subcellular compartments. Furthermore, we will discuss ROS compartmentalization in physiological and pathological conditions focusing our attention on mitochondria, since their vulnerability to oxidative stress is likely at the basis of several diseases.

  11. Skin, Reactive Oxygen Species, and Circadian Clocks

    PubMed Central

    Ndiaye, Mary A.; Nihal, Minakshi; Wood, Gary S.

    2014-01-01

    Abstract Significance: Skin, a complex organ and the body's first line of defense against environmental insults, plays a critical role in maintaining homeostasis in an organism. This balance is maintained through a complex network of cellular machinery and signaling events, including those regulating oxidative stress and circadian rhythms. These regulatory mechanisms have developed integral systems to protect skin cells and to signal to the rest of the body in the event of internal and environmental stresses. Recent Advances: Interestingly, several signaling pathways and many bioactive molecules have been found to be involved and even important in the regulation of oxidative stress and circadian rhythms, especially in the skin. It is becoming increasingly evident that these two regulatory systems may, in fact, be interconnected in the regulation of homeostasis. Important examples of molecules that connect the two systems include serotonin, melatonin, vitamin D, and vitamin A. Critical Issues: Excessive reactive oxygen species and/or dysregulation of antioxidant system and circadian rhythms can cause critical errors in maintaining proper barrier function and skin health, as well as overall homeostasis. Unfortunately, the modern lifestyle seems to contribute to increasing alterations in redox balance and circadian rhythms, thereby posing a critical problem for normal functioning of the living system. Future Directions: Since the oxidative stress and circadian rhythm systems seem to have areas of overlap, future research needs to be focused on defining the interactions between these two important systems. This may be especially important in the skin where both systems play critical roles in protecting the whole body. Antioxid. Redox Signal. 20, 2982–2996. PMID:24111846

  12. REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension. PMID:23897679

  13. Reactive Oxygen Species in Combustion Aerosols

    NASA Astrophysics Data System (ADS)

    Balasubramanian, R.; See, S.

    2007-12-01

    Research on airborne particulate matter (PM) has received increased concern in recent years after it was identified as a major component of the air pollution mix that is strongly associated with premature mortality and morbidity. Particular attention has been paid to understanding the potential health impacts of fine particles (PM2.5), which primarily originate from combustion sources. One group of particulate-bound chemical components of health concern is reactive oxygen species (ROS), which include molecules such as hydrogen peroxide (H2O2), ions such as hypochlorite ion (OCl-), free radicals such as hydroxyl radical (·OH) and superoxide anion (·O2-) which is both an ion and a radical. However, the formation of ROS in PM is not clearly understood yet. Furthermore, the concentration of ROS in combustion particles of different origin has not been quantified. The primary objective of this work is to study the effect of transition metals on the production of ROS in PM2.5 by determining the concentrations of ROS and metals. Both soluble and total metals were measured to evaluate their respective associations with ROS. PM2.5 samples were collected from several outdoor and indoor combustion sources, including those emitted from on-road vehicles, food cooking, incense sticks, and cigarette smoke. PM2.5 samples were also collected from the background air in both the ambient outdoor and indoor environments to assess the levels of particulate-bound transition metals and ROS with no combustion activities in the vicinity of sampling locations. Results obtained from this comprehensive study on particulate-bound ROS will be presented and discussed.

  14. Reactive oxygen species-mediated cardiac-reperfusion injury: Mechanisms and therapies.

    PubMed

    Bagheri, Fereshte; Khori, Vahid; Alizadeh, Ali Mohammad; Khalighfard, Solmaz; Khodayari, Saeed; Khodayari, Hamid

    2016-11-15

    Reperfusion injury is an inherent response to the restoration of blood flow after ischemia. It is a complex process involving numerous mechanisms occurring in the intracellular and extracellular environments, and it is mediated in part by reactive oxygen species (ROS). The imbalance between the cellular formation of free radicals and cells' capacity to defend against them can cause cardiac tissue injuries. In this context, ROS play an essential role in both the organ injury and repair processes. After reperfusion, infiltration into the myocardium of inflammatory leucocytes, such as macrophages and neutrophils, causes further ROS production beyond the initiation of the inflammatory cascade. In this case, ROS overproduction is crucial in cardiac injury, and it can increase the complications related to cardiac reperfusion. In myocardial tissue, ROS can be produced from several sources, such as xanthine oxidase, cytochrome oxidase, cyclooxygenase, mediated unsaturated fatty acid oxidation, oxidation of catecholamines, mitochondrial oxidation, activation of leukocyte nicotinamide adenine dinucleotide phosphate oxidase, iron release, and reduction-oxidation reaction cycling; all of these sources reduce molecular oxygen in the reperfused myocardium. This review discusses about the molecular and therapeutic aspects of cardiac-reperfusion injuries generated by ROS. Experimental and clinical evidence with respect to the use of ischemic preconditioning, Ca(2+), nitric oxide, and conventional antioxidants in cardiac-reperfusion injury are summarized, and causal therapy approaches with various antioxidants are discussed.

  15. Silvering and swimming effects on aerobic metabolism and reactive oxygen species in the European eel.

    PubMed

    Amérand, Aline; Mortelette, Hélène; Belhomme, Marc; Moisan, Christine

    2017-01-01

    Silvering, the last metamorphosis in the eel life cycle induces morphological and physiological modifications in yellow eels (sedentary stage). It pre-adapts them to cope with the extreme conditions they will encounter during their 6000-km spawning migration. A previous study showed that silver eels are able to cope with reactive oxygen species (ROS) over-production linked to an increase in aerobic metabolism during sustained swimming, but the question remains as to whether this mechanism is associated with silvering. A sustained swimming session decreased red muscle in vitro mitochondrial oxygen consumption (MO2) but increased ROS production in both eel stages. The swimming exercise used here was perhaps too intense to induce a stimulation of mitochondrial function or biogenesis even when antioxidant enzyme activities were unchanged. Pro-oxidant/antioxidant imbalance by lipid peroxidation increased in yellow but significantly decreased in silver eels. The silvering process therefore appears to allow a pre-adaptation of red muscle radical metabolism to the demands of spawning migration.

  16. Effects of Reactive Oxygen Species on Tubular Transport along the Nephron.

    PubMed

    Gonzalez-Vicente, Agustin; Garvin, Jeffrey L

    2017-03-23

    Reactive oxygen species (ROS) are oxygen-containing molecules naturally occurring in both inorganic and biological chemical systems. Due to their high reactivity and potentially damaging effects to biomolecules, cells express a battery of enzymes to rapidly metabolize them to innocuous intermediaries. Initially, ROS were considered by biologists as dangerous byproducts of respiration capable of causing oxidative stress, a condition in which overproduction of ROS leads to a reduction in protective molecules and enzymes and consequent damage to lipids, proteins, and DNA. In fact, ROS are used by immune systems to kill virus and bacteria, causing inflammation and local tissue damage. Today, we know that the functions of ROS are not so limited, and that they also act as signaling molecules mediating processes as diverse as gene expression, mechanosensation, and epithelial transport. In the kidney, ROS such as nitric oxide (NO), superoxide (O₂(-)), and their derivative molecules hydrogen peroxide (H₂O₂) and peroxynitrite (ONO₂(-)) regulate solute and water reabsorption, which is vital to maintain electrolyte homeostasis and extracellular fluid volume. This article reviews the effects of NO, O₂(-), ONO₂(-), and H₂O₂ on water and electrolyte reabsorption in proximal tubules, thick ascending limbs, and collecting ducts, and the effects of NO and O₂(-) in the macula densa on tubuloglomerular feedback.

  17. Reactive oxygen species and the central nervous system in salt-sensitive hypertension: possible relationship with obesity-induced hypertension.

    PubMed

    Ando, Katsuyuki; Fujita, Megumi

    2012-01-01

    1. There are multiple and complex mechanisms of salt-induced hypertension; however, central sympathoexcitation plays an important role. In addition, the production of reactive oxygen species (ROS) is increased in salt-sensitive hypertensive humans and animals. Thus, we hypothesized that brain ROS overproduction may increase blood pressure (BP) by central sympathostimulation. 2. Recently, we demonstrated that ROS levels were elevated in the hypothalamus of salt-sensitive hypertensive animals. Moreover, intracerebroventricular anti-oxidants suppressed BP and renal sympathetic nerve activity more in salt-sensitive than non-salt-sensitive hypertensive rats. Thus, brain ROS overproduction increased BP through central sympathoexcitation in salt-sensitive hypertension. 3. Salt sensitivity of BP is enhanced in obesity and metabolic syndrome. Interestingly, it is also suggested that, in obesity-induced hypertension models, increases in BP are caused by brain ROS-induced central sympathoexcitation. 4. Recent studies suggest that increased ROS production in the brain and central sympathoexcitation may share a common pathway that increases BP in both salt- and obesity-induced hypertension.

  18. Balancing the generation and elimination of reactive oxygen species

    USGS Publications Warehouse

    Rodriguez, Rusty; Redman, Regina

    2005-01-01

    Fossil records suggest that bacteria developed the ability to photosynthesize ≈3,500 million years ago (mya), initiating a very slow accumulation of atmospheric oxygen (1). Recent geochemical models suggest that atmospheric oxygen did not accumulate to levels conducive for aerobic life until 500–1,000 mya (2, 3). The oxygenation of Earth's atmosphere resulted in the emergence of aerobic organisms followed by a great diversification of biological species and the eventual evolution of humans.

  19. Reactive oxygen species production by catechol stabilized copper nanoparticles.

    PubMed

    Chen, Cheng; Ahmed, Ishtiaq; Fruk, Ljiljana

    2013-12-07

    Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants.

  20. The oxygen isotope equilibrium fractionation between sulfite species and water

    NASA Astrophysics Data System (ADS)

    Müller, Inigo A.; Brunner, Benjamin; Breuer, Christian; Coleman, Max; Bach, Wolfgang

    2013-11-01

    Sulfite is an important sulfoxy intermediate in oxidative and reductive sulfur cycling in the marine and terrestrial environment. Different aqueous sulfite species exist, such as dissolved sulfur dioxide (SO2), bisulfite (HSO3-), pyrosulfite (S2O52-) and sulfite sensu stricto (SO32-), whereas their relative abundance in solution depends on the concentration and the pH. Conversion of one species into another is rapid and involves in many cases incorporation of oxygen from, or release of oxygen to, water (e.g. SO2 + H2O ↔ HSO3- + H+), resulting in rapid oxygen isotope exchange between sulfite species and water. Consequently, the oxygen isotope composition of sulfite is strongly influenced by the oxygen isotope composition of water. Since sulfate does not exchange oxygen isotopes with water under most earth surface conditions, it can preserve the sulfite oxygen isotope signature that it inherits via oxidative and reductive sulfur cycling. Therefore, interpretation of δO values strongly hinges on the oxygen isotope equilibrium fractionation between sulfite and water which is poorly constrained. This is in large part due to technical difficulties in extraction of sulfite from solution for oxygen isotope analysis.

  1. [Formation of reactive oxygen species during pollen grain germination].

    PubMed

    Smirnova, A V; Matveeva, N P; Polesskaia, O G; Ermakov, I P

    2009-01-01

    The formation of reactive oxygen species in pollen at the early germination stage, which precedes the formation of the pollen tube, was studied. During this period, pollen grain is being hydrated, abruptly increasing its volume, and it passes from the resting state to active metabolism. Fluorescent methods have made it possible to reveal reactive oxygen species in the cytoplasm and inner layer of the pollen wall, intine. The cytoplasmic reactive oxygen species were mostly found in mitochondria, while extracellular ones were localized in aperture zones of intine, as well as in the solution surrounding pollen grains in vitro. The content of extracellular reactive oxygen species decreased after superoxide dismutase (100 units per ml) and diphenylene iodonium (100 microM), which indicates NADPH oxidase as one of possible producent of them. In conditions of suppression of extracellular reactive oxygen species production (100 microM diphenilene iodonium) or their promoted removal (after addition of 10 to 100 microM ascorbic acid), the number of germinating pollen grains increased. This effect disappeared after further increase in the concentration of the listed reagents. The result is evidence of the significance of processes of generation/removal of extracellular reactive oxygen species for pollen germination.

  2. Reactive oxygen species do not contribute to ObgE*-mediated programmed cell death

    PubMed Central

    Dewachter, Liselot; Herpels, Pauline; Verstraeten, Natalie; Fauvart, Maarten; Michiels, Jan

    2016-01-01

    Programmed cell death (PCD) in bacteria is considered an important target for developing novel antimicrobials. Development of PCD-specific therapies requires a deeper understanding of what drives this process. We recently discovered a new mode of PCD in Escherichia coli that is triggered by expression of a mutant isoform of the essential ObgE protein, ObgE*. Our previous findings demonstrate that ObgE*-mediated cell death shares key characteristics with apoptosis in eukaryotic cells. It is well-known that reactive oxygen species (ROS) are formed during PCD in eukaryotes and play a pivotal role as signaling molecules in the progression of apoptosis. Therefore, we explored a possible role for ROS in bacterial killing by ObgE*. Using fluorescent probes and genetic reporters, we found that expression of ObgE* induces formation of ROS. Neutralizing ROS by chemical scavenging or by overproduction of ROS-neutralizing enzymes did not influence toxicity of ObgE*. Moreover, expression of ObgE* under anaerobic conditions proved to be as detrimental to bacterial viability as expression under aerobic conditions. In conclusion, ROS are byproducts of ObgE* expression that do not play a role in the execution or progression of ObgE*-mediated PCD. Targeted therapies should therefore look to exploit other aspects of ObgE*-mediated PCD. PMID:27641546

  3. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis.

    PubMed

    Osakabe, Yuriko; Mizuno, Shinji; Tanaka, Hidenori; Maruyama, Kyonoshin; Osakabe, Keishi; Todaka, Daisuke; Fujita, Yasunari; Kobayashi, Masatomo; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2010-03-19

    RPK1 (receptor-like protein kinase 1) localizes to the plasma membrane and functions as a regulator of abscisic acid (ABA) signaling in Arabidopsis. In our current study, we investigated the effect of RPK1 disruption and overproduction upon plant responses to drought stress. Transgenic Arabidopsis overexpressing the RPK1 protein showed increased ABA sensitivity in their root growth and stomatal closure and also displayed less transpirational water loss. In contrast, a mutant lacking RPK1 function, rpk1-1, was found to be resistant to ABA during these processes and showed increased water loss. RPK1 overproduction in these transgenic plants thus increased their tolerance to drought stress. We performed microarray analysis of RPK1 transgenic plants and observed enhanced expression of several stress-responsive genes, such as Cor15a, Cor15b, and rd29A, in addition to H(2)O(2)-responsive genes. Consistently, the expression levels of ABA/stress-responsive genes in rpk1-1 had decreased compared with wild type. The results suggest that the overproduction of RPK1 enhances both the ABA and drought stress signaling pathways. Furthermore, the leaves of the rpk1-1 plants exhibit higher sensitivity to oxidative stress upon ABA-pretreatment, whereas transgenic plants overproducing RPK1 manifest increased tolerance to this stress. Our current data suggest therefore that RPK1 overproduction controls reactive oxygen species homeostasis and enhances both water and oxidative stress tolerance in Arabidopsis.

  4. Generation of reactive oxygen species by the faecal matrix

    PubMed Central

    Owen, R; Spiegelhalder, B; Bartsch, H

    2000-01-01

    BACKGROUND—Reactive oxygen species are implicated in the aetiology of a range of human diseases and there is increasing interest in their role in the development of cancer.
AIM—To develop a suitable method for the detection of reactive oxygen species produced by the faecal matrix.
METHODS—A refined high performance liquid chromatography system for the detection of reactive oxygen species is described.
RESULTS—The method allows baseline separation of the products of hydroxyl radical attack on salicylic acid in the hypoxanthine/xanthine oxidase system, namely 2,5-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, and catechol. The increased efficiency and precision of the method has allowed a detailed evaluation of the dynamics of reactive oxygen species generation in the faecal matrix. The data show that the faecal matrix is capable of generating reactive oxygen species in abundance. This ability cannot be attributed to the bacteria present, but rather to a soluble component within the matrix. As yet, the nature of this soluble factor is not entirely clear but is likely to be a reducing agent.
CONCLUSIONS—The soluble nature of the promoting factor renders it amenable to absorption, and circumstances may exist in which either it comes into contact with either free or chelated iron in the colonocyte, leading to direct attack on cellular DNA, or else it initiates lipid peroxidation processes whereby membrane polyunsaturated fatty acids are attacked by reactive oxygen species propagating chain reactions leading to the generation of promutagenic lesions such as etheno based DNA adducts.


Keywords: colorectal cancer; faecal matrix; hypoxanthine; phytic acid; reactive oxygen species; xanthine oxidase PMID:10644317

  5. Growth stress triggers riboflavin overproduction in Ashbya gossypii.

    PubMed

    Schlösser, Thomas; Wiesenburg, Andreas; Gätgens, Cornelia; Funke, Andreas; Viets, Ulrike; Vijayalakshmi, Swaminathan; Nieland, Susanne; Stahmann, K-Peter

    2007-09-01

    The filamentous fungus Ashbya gossypii is used for riboflavin biosynthesis on an industrial scale, but even the wild type displays overproduction. Because riboflavin overproduction was known to start at the transition between growth and stationary phase, it was suspected that overproduction was induced at low growth rates. However, chemostatic cultivations performed at different growth rates did not result in any detectable riboflavin formation. In this study, we report that it was not the final growth rate that triggered riboflavin overproduction but a decline in growth rate. Therefore, continuous fermenter cultivations with dilution rate shifts were performed. Peaks of riboflavin overproduction were observed in the wild type and in a RIB3placZ reporter strain after downshifts in dilution rate. Accumulation of riboflavin correlated with an increased expression of lacZ reporter activity. The step size of the downshifts corresponded to the peak size of riboflavin formation and reporter activity. Expression of further RIB genes encoding riboflavin biosynthetic enzymes was analyzed by RT-PCR. RIB mRNA levels of the ribulose-5-phosphate branch of the divided riboflavin biosynthesis pathway (RIB3, RIB4, and RIB5) were found to increase in the riboflavin production phase, whereas the RIB2 and RIB7 mRNA levels belonging to the GTP branch remained constant. We propose that a decline in growth rate triggers the increased expression of RIB3, RIB4, and RIB5 resulting in riboflavin overproduction. Because although a reduction in oxygen supply, temperature increase or decrease, or salt stress did affect growth, but neither did lead to riboflavin overproduction nor did induce RIB3 reporter expression, we conclude that declining nutrition must be the stress stimulus. Because about half of the cells in the hyphae of Ashbya gossypii did not accumulate riboflavin, the regulatory response on the cellular level can be estimated to be at least twice as great in comparison to what we

  6. Comparison of two strategies for detection of reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Gao, Weidong; Zhou, Yuanshu; Gu, Yueqing

    2014-09-01

    Photodynamic therapy (PDT) is a clinically approved treatment that was applied to oncology , dermatology, and ophthalmology. Reactive oxygen species (ROS) play a important role in the efficacy of PDT. Online monitoring of reactive oxygen species is the key to understand effect of PDT treatment. We used Fluorescence probes DPBF and luminescent probe luminal to measure the ROS in cells. And we revaluate the relationship between the amount of light and cell survival. There is strongly correlated between the amount of light and cell kill.

  7. Reactive oxygen species production by catechol stabilized copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Ahmed, Ishtiaq; Fruk, Ljiljana

    2013-11-01

    Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants.Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants. Electronic supplementary information (ESI) available: Details of the synthesis of dopamine linkers and Cu NPs, peroxidase activity tests, H2O2 calibration and degradation tests for resorufin, RB and MB. See DOI: 10.1039/c3nr03563h

  8. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling.

  9. Spectroscopically Characterized Synthetic Mononuclear Nickel-Oxygen Species.

    PubMed

    Corona, Teresa; Company, Anna

    2016-09-12

    Iron, copper, and manganese are the predominant metals found in oxygenases that perform efficient and selective hydrocarbon oxidations and for this reason, a large number of the corresponding metal-oxygen species has been described. However, in recent years nickel has been found in the active site of enzymes involved in oxidation processes, in which nickel-dioxygen species are proposed to play a key role. Owing to this biological relevance and to the existence of different catalytic protocols that involve the use of nickel catalysts in oxidation reactions, there is a growing interest in the detection and characterization of nickel-oxygen species relevant to these processes. In this Minireview the spectroscopically/structurally characterized synthetic superoxo, peroxo, and oxonickel species that have been reported to date are described. From these studies it becomes clear that nickel is a very promising metal in the field of oxidation chemistry with still unexplored possibilities.

  10. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  11. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I.

    PubMed

    Zhang, Bo; Chu, Wei; Wei, Peng; Liu, Ying; Wei, Taotao

    2015-12-01

    Xanthohumol is a prenylflavonoid extracted from hops (Humulus lupulus). It possesses anti-cancer and anti-inflammatory activities in vitro and in vivo, and offers therapeutic benefits for treatment of metabolic syndromes. However, the precise mechanisms underlying its pharmacological effects remain to be elucidated, together with its cellular target. Here, we provide evidence that xanthohumol directly interacts with the mitochondrial electron transfer chain complex I (NADH dehydrogenase), inhibits the oxidative phosphorylation, triggers the production of reactive oxygen species, and induces apoptosis. In addition, we show that as a result of the inhibition of the mitochondrial oxidative phosphorylation, xanthohumol exposure causes a rapid decrease of mitochondrial transmembrane potential. Furthermore, we showed that xanthohumol up-regulates the glycolytic capacity in cells, and thus compensates cellular ATP generation. Dissection of the multiple steps of aerobic respiration by extracellular flux assays revealed that xanthohumol specifically inhibits the activity of mitochondrial complex I, but had little effect on that of complex II, III and IV. Inhibition of complex I by xanthohumol caused the overproduction of reactive oxygen species, which are responsible for the induction of apoptosis in cancer cells. We also found that isoxanthohumol, the structural isomer of xanthohumol, is inactive to cells, suggesting that the reactive 2-hydroxyl group of xanthohumol is crucial for its targeting to the mitochondrial complex I. Together, the remodeling of cell metabolism revealed here has therapeutic potential for the use of xanthohumol.

  12. BIOMONITORING OF REACTIVE OXYGEN SPECIES IN BIOLOGICAL FLUIDS

    EPA Science Inventory

    Elevated levels of reactive oxygen species (ROS) are associated with several disease processes in humans, including cancer, asthma, diabetes, and cardiac disease. We have explored whether ROS can be measured directly in human fluids, and their value as a biomarker of exposure an...

  13. Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem

    NASA Astrophysics Data System (ADS)

    Fu, Jingke; Shao, Yiran; Wang, Liyao; Zhu, Yingchun

    2015-04-01

    Excess reactive oxygen species (ROS) have been proved to damage cancer cells efficiently. ROS overproduction is thus greatly desirable for cancer therapy. To date, ROS production is generally uncontrollable and outside cells, which always bring severe side-effects in the vasculature. Since most ROS share a very short half-life and primarily react close to their site of formation, it would be more efficient if excess ROS are controllably produced inside cancer cells. Herein, we report an efficient lysosome-controlled ROS overproduction via a pH-responsive catalytic nanosystem (FeOx-MSNs), which catalyze the decomposition of H2O2 to produce considerable ROS selectively inside the acidic lysosomes (pH 5.0) of cancer cells. After a further incorporation of ROS-sensitive TMB into the nanosystem (FeOx-MSNs-TMB), both a distinct cell labeling and an efficient death of breast carcinoma cells are obtained. This lysosome-controlled efficient ROS overproduction suggests promising applications in cancer treatments.Excess reactive oxygen species (ROS) have been proved to damage cancer cells efficiently. ROS overproduction is thus greatly desirable for cancer therapy. To date, ROS production is generally uncontrollable and outside cells, which always bring severe side-effects in the vasculature. Since most ROS share a very short half-life and primarily react close to their site of formation, it would be more efficient if excess ROS are controllably produced inside cancer cells. Herein, we report an efficient lysosome-controlled ROS overproduction via a pH-responsive catalytic nanosystem (FeOx-MSNs), which catalyze the decomposition of H2O2 to produce considerable ROS selectively inside the acidic lysosomes (pH 5.0) of cancer cells. After a further incorporation of ROS-sensitive TMB into the nanosystem (FeOx-MSNs-TMB), both a distinct cell labeling and an efficient death of breast carcinoma cells are obtained. This lysosome-controlled efficient ROS overproduction suggests

  14. Properties of reactive oxygen species by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Trout, Bernhardt L; Guidoni, Leonardo

    2014-07-07

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N(3) - N(4), where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  15. Properties of reactive oxygen species by quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-01

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N3 - N4, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  16. Properties of reactive oxygen species by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-07

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} − N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  17. Multiple antioxidant proteins protect Chlorobaculum tepidum against oxygen and reactive oxygen species.

    PubMed

    Li, Hui; Jubelirer, Sara; Garcia Costas, Amaya M; Frigaard, Niels-Ulrik; Bryant, Donald A

    2009-11-01

    The genome of the green sulfur bacterium Chlorobaculum (Cba.) tepidum, a strictly anaerobic photolithoautotroph, is predicted to encode more than ten genes whose products are potentially involved in protection from reactive oxygen species and an oxidative stress response. The encoded proteins include cytochrome bd quinol oxidase, NADH oxidase, rubredoxin oxygen oxidoreductase, several thiol peroxidases, alkyl hydroperoxide reductase, superoxide dismutase, methionine sulfoxide reductase, and rubrerythrin. To test the physiological functions of some of these proteins, ten genes were insertionally inactivated. Wild-type Cba. tepidum cells were very sensitive to oxygen in the light but were remarkably resistant to oxygen in the dark. When wild-type and mutant cells were subjected to air for various times under dark or light condition, significant decreases in viability were detected in most of the mutants relative to wild type. Treatments with hydrogen peroxide (H(2)O(2)), tert-butyl hydroperoxide (t-BOOH) and methyl viologen resulted in more severe effects in most of the mutants than in the wild type. The results demonstrated that these putative antioxidant proteins combine to form an effective defense against oxygen and reactive oxygen species. Reverse-transcriptase polymerase chain reaction studies showed that the genes with functions in oxidative stress protection were constitutively transcribed under anoxic growth conditions.

  18. Hydrazide derivatives produce active oxygen species as hydrazine.

    PubMed

    Timperio, Anna Maria; Rinalducci, Sara; Zolla, Lello

    2005-12-01

    It is well documented that some hydrazines are quite sensitive to oxidation and may serve as the electron donor for the reduction of oxygen, whereas hydrazides are not believed to react directly with oxygen. Data presented in this paper show that both hydrazides and hydrazines share an N-N moiety, which is assumed to react with atmospheric oxygen and produce oxygen radicals, at various degrees of efficiency. Since spectrometric measurements of hydrazide just after solubilization showed that the molecular mass remains constant in the absence of oxygen, we can conclude that hydrazides do not react with the oxygen through a slow spontaneous hydrolytic release of hydrazine. However, hydrazine is more reactive than hydrazide, which requires hours rather than minutes to produce measurable quantities of radical species. Differences were also apparent for various substituted derivatives. The reaction was significantly enhanced by the presence of metal ions. Data reported here demonstrate that hydrazides cause irreversible damage to the prosthetic group of proteins as well as causing degradation of the polypeptide chain into small fragments.

  19. Reactive oxygen species generation and signaling in plants

    PubMed Central

    Tripathy, Baishnab Charan; Oelmüller, Ralf

    2012-01-01

    The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS. PMID:23072988

  20. Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy

    PubMed Central

    Eshaq, Randa S.; Wright, William S.; Harris, Norman R.

    2014-01-01

    Retinal tissue receives its supply of oxygen from two sources – the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C. PMID:24936440

  1. Estrogen potentiates reactive oxygen species (ROS) tolerance to initiate carcinogenesis and promote cancer malignant transformation.

    PubMed

    Tian, Hui; Gao, Zhen; Wang, Gang; Li, Huizhong; Zheng, JunNian

    2016-01-01

    Estrogen-mediated high reactive oxygen species (ROS) tolerance plays an important role in driving carcinogenesis. ROS overproduction acts as the significant effector to increase genomic instability and transduce redox-related signal pathway. Especially, estrogen-mediated mitochondrial ROS promote the mutations in mitochondrial DNA (mtDNA) and the damage to mitochondrial proteins. Moreover, estrogen-mediated ROS contribute to the alteration of energy metabolism and modulate several redox-sensitive proteins responsible for cell proliferation and anti-apoptosis. On the other hand, estrogen simultaneously performs the antioxidative beneficial functions, which protects cancer cells from the potential cytotoxic effects of estrogen-mediated ROS through activation of nuclear factor-erythroid-2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) antioxidant response. Consequently, estrogen potentiates the high ROS tolerance through increase of ROS production as well as acceleration of ROS elimination, which ultimately results in estrogen-mediated carcinogenesis and malignant transformation. However, this overdependence on antioxidant response system to resist ROS-mediated cytotoxicity also represents the "Achilles' Heel" of estrogen-mediated cancer cells. In other words, the destruction of the high ROS tolerance using antioxidant inhibitors may provide a novel and efficacious measure to selectively eliminate these cancer cells without harming normal cells. Of course, it will be necessary to define the exact situation of ROS homeostasis in the different cellular microenvironment and further decipher the mechanisms of redox regulation, which is consequently used as a new avenue to optimize the clinical therapy for estrogen-mediated cancer.

  2. ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    EPA Science Inventory

    ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    Arsenic-associated cancer (lung, bladder, skin, liver, kidney) remains a significant world- wide public health problem (e.g., Taiwan, Chile, Bangladesh, India, China and Thailand). Rece...

  3. ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVIE OXYGEN SPECIES

    EPA Science Inventory

    ARSENIC SPECIES. CAUSE RELEASE OF IRON , FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    Arsenic-associated cancer (lung, bladder, skin, liver, kidney) remains a significant world- wide public health problem (e.g., Taiwan, Chile, Bangladesh, India, China and Thailand). R...

  4. HIV-1, Reactive Oxygen Species and Vascular Complications

    PubMed Central

    Porter, Kristi M.; Sutliff, Roy L.

    2012-01-01

    Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies (HAART) restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species, including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species (ROS) and how these effects likely contribute to vascular dysfunction and disease. PMID:22564529

  5. Diabetes and the impairment of reproductive function: possible role of mitochondria and reactive oxygen species.

    PubMed

    Amaral, Sandra; Oliveira, Paulo J; Ramalho-Santos, João

    2008-02-01

    Diabetes Mellitus (DM), a state of chronic hyperglycemia, is a major cause of serious micro and macrovascular diseases, affecting, therefore, nearly every system in the body. Growing evidence indicates that oxidative stress is increased in diabetes due to overproduction of reactive oxygen species (ROS) and decreased efficiency of antioxidant defences, a process that starts very early and worsens over the course of the disease. During the development of diabetes, oxidation of lipids, proteins and DNA increase with time. Mitochondrial DNA mutations have also been reported in diabetic tissues, suggesting oxidative stress-related mitochondrial damage. Diabetes-related oxidative stress may also be the trigger for many alterations on sexual function, which can also include decreased testicular mitochondrial function. Although sexual disorders have been extensively studied in diabetic men, possible changes in the sexual function of diabetic women have only recently received attention. The prevalence of sexual dysfunction in diabetic men approaches 50%, whereas in diabetic women it seems to be slightly lower. Testicular dysfunction, impotence, decreased fertility potential and retrograde ejaculations are conditions that have been described in diabetic males. Diabetes is also the most common cause of erectile dysfunction in men. Poor semen quality has also been reported in diabetic men, including decreased sperm motility and concentration, abnormal morphology and increased seminal plasma abnormalities. In addition, diabetic men may have decreased serum testosterone due to impaired Leydig cell function. Among diabetic women neuropathy, vascular impairment and psychological complaints have been implicated in the pathogenesis of decreased libido, low arousability, decreased vaginal lubrication, orgasmic dysfunction, and dyspareunia. An association between the production of excess radical oxygen species and disturbed embryogenesis in diabetic pregnancies has also been suggested

  6. The influence of reactive oxygen species on local redox conditions in oxygenated natural waters

    NASA Astrophysics Data System (ADS)

    Rose, Andrew

    2016-11-01

    Redox conditions in natural waters are a fundamental control on biogeochemical processes and ultimately many ecosystem functions. While the dioxygen/water redox couple controls redox thermodynamics in oxygenated aquatic environments on geological timescales, it is kinetically inert in the extracellular environment on the much shorter timescales on which many biogeochemical processes occur. Instead, electron transfer processes on these timescales are primarily mediated by a relatively small group of trace metals and stable radicals, including the reactive oxygen species superoxide. Such processes are of critical biogeochemical importance because many of these chemical species are scarce nutrients, but may also be toxic at high concentrations. Furthermore, their bioavailability and potentially toxicity is typically strongly influenced by their redox state. In this paper, I examine to what extent redox conditions in oxygenated natural waters are expected to be reflected in the redox states of labile redox-active compounds that readily exchange electrons with the dioxygen/superoxide redox couple, and potentially with each other. Additionally, I present the hypothesis that that the relative importance of the dioxygen/superoxide and superoxide/hydrogen peroxide redox couples exerts a governing control on local redox conditions in oxygenated natural waters on biogeochemically important timescales. Given the recent discovery of widespread extracellular superoxide production by a diverse range of organisms, this suggests the existence of a fundamental mechanism for organisms to tightly regulate local redox conditions in their extracellular environment in oxygenated natural waters.

  7. Quantification of reactive oxygen species for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Tan, Zou; Zhang, Jinde; Lin, Lisheng; Li, Buhong

    2016-10-01

    Photodynamic therapy (PDT) is an effective therapeutic modality that uses a light source to activate light-sensitive photosensitizers to treat both oncologic and nononcological indications. Photosensitizers are excited to the long-lived triplet state, and they react with biomolecules via type I or II mechanism resulted in cell death and tumor necrosis. Free radicals and radical ions are formed by electron transfer reactions (type I), which rapidly react with oxygen leading to the production of reactive oxygen species (ROS), including superoxide ions, hydroxyl radicals and hydrogen peroxide. Singlet molecular oxygen is produced in a Type II reaction, in which the excited singlet state of the photosensitizer generated upon photon absorption by the ground-state photosensitizer molecule undergoes intersystem crossing to a long-lived triplet state. In this talk, the fundmental mechanisms and detection techniques for ROS generation in PDT will be introduced. In particular, the quantification of singlet oxygen generation for pre-clinical application will be highlighted, which plays an essential role in the establishment of robust singlet oxygen-mediated PDT dosimetry.

  8. Multi-species simulation of Trichel pulses in oxygen

    NASA Astrophysics Data System (ADS)

    Durán-Olivencia, F. J.; Pontiga, F.; Castellanos, A.

    2014-10-01

    The development of negative corona Trichel pulses in oxygen between a spherical cathode and a plane is investigated using a plasma chemical model of ten selected species, which includes electrons, ions and neutrals. The interaction among these species is described by a model that incorporates the most important plasma chemical processes, such as ionization, electron attachment and detachment, electron impact dissociation and excitation, and clustering. The spatio-temporal evolution of charged and neutral species and their reaction rates are evaluated along different moments during the pulses. The case of the first Trichel pulse is considered separately, since its characteristics clearly differ from the subsequent pulses. The results show that the negative space charge is constituted of different types of ions, depending on the stage of the pulse. Moreover, a spatial segregation of negative ions is observed during the post-pulse period. Regarding neutral species, ozone increases linearly with time, without being considerably affected by the occurrence of pulses.

  9. Mitochondria and Reactive Oxygen Species: Physiology and Pathophysiology

    PubMed Central

    Bolisetty, Subhashini; Jaimes, Edgar A.

    2013-01-01

    The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis. PMID:23528859

  10. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.

    PubMed

    Shahid, Muhammad; Pourrut, Bertrand; Dumat, Camille; Nadeem, Muhammad; Aslam, Muhammad; Pinelli, Eric

    2014-01-01

    As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and

  11. Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem.

    PubMed

    Fu, Jingke; Shao, Yiran; Wang, Liyao; Zhu, Yingchun

    2015-04-28

    Excess reactive oxygen species (ROS) have been proved to damage cancer cells efficiently. ROS overproduction is thus greatly desirable for cancer therapy. To date, ROS production is generally uncontrollable and outside cells, which always bring severe side-effects in the vasculature. Since most ROS share a very short half-life and primarily react close to their site of formation, it would be more efficient if excess ROS are controllably produced inside cancer cells. Herein, we report an efficient lysosome-controlled ROS overproduction via a pH-responsive catalytic nanosystem (FeOx-MSNs), which catalyze the decomposition of H2O2 to produce considerable ROS selectively inside the acidic lysosomes (pH 5.0) of cancer cells. After a further incorporation of ROS-sensitive TMB into the nanosystem (FeOx-MSNs-TMB), both a distinct cell labeling and an efficient death of breast carcinoma cells are obtained. This lysosome-controlled efficient ROS overproduction suggests promising applications in cancer treatments.

  12. Reactive oxygen species produced from chromate pigments and ascorbate.

    PubMed Central

    Lefebvre, Y; Pezerat, H

    1994-01-01

    The reactions of various chromate pigments and ascorbate were investigated by an ESR spin trapping technique. Production of Cr(V) was detected directly and productions of very electrophilic reactive oxygen species (ROS) was detected via the oxidation of formate. We demonstrated previously that both dissolved oxygen and Cr (V) were essential in the production of ROS in this system, and that ROS production was inhibited by catalase. We studied here the effect of solubility of different chromate pigments: sodium, calcium, strontium, basic zinc, basic lead supported on silica, and lead and barium chromates on the production of ROS in buffered medium and cell culture medium (Dublecco's Modified Eagle medium + fetal calf serum). Sodium, calcium, basic zinc, and basic lead chromates were active in the production of ROS in presence of cell culture medium, whereas lead and barium chromates were inactive. PMID:7843106

  13. Rapid Hydrogen and Oxygen Atom Transfer by a High-Valent Nickel-Oxygen Species.

    PubMed

    Corona, Teresa; Draksharapu, Apparao; Padamati, Sandeep K; Gamba, Ilaria; Martin-Diaconescu, Vlad; Acuña-Parés, Ferran; Browne, Wesley R; Company, Anna

    2016-10-05

    Terminal high-valent metal-oxygen species are key reaction intermediates in the catalytic cycle of both enzymes (e.g., oxygenases) and synthetic oxidation catalysts. While tremendous efforts have been directed toward the characterization of the biologically relevant terminal manganese-oxygen and iron-oxygen species, the corresponding analogues based on late-transition metals such as cobalt, nickel or copper are relatively scarce. This scarcity is in part related to the "Oxo Wall" concept, which predicts that late transition metals cannot support a terminal oxido ligand in a tetragonal environment. Here, the nickel(II) complex (1) of the tetradentate macrocyclic ligand bearing a 2,6-pyridinedicarboxamidate unit is shown to be an effective catalyst in the chlorination and oxidation of C-H bonds with sodium hypochlorite as terminal oxidant in the presence of acetic acid (AcOH). Insight into the active species responsible for the observed reactivity was gained through the study of the reaction of 1 with ClO(-) at low temperature by UV-vis absorption, resonance Raman, EPR, ESI-MS, and XAS analyses. DFT calculations aided the assignment of the trapped chromophoric species (3) as a nickel-hypochlorite species. Despite the fact that the formal oxidation state of the nickel in 3 is +4, experimental and computational analysis indicate that 3 is best formulated as a Ni(III) complex with one unpaired electron delocalized in the ligands surrounding the metal center. Most remarkably, 3 reacts rapidly with a range of substrates including those with strong aliphatic C-H bonds, indicating the direct involvement of 3 in the oxidation/chlorination reactions observed in the 1/ClO(-)/AcOH catalytic system.

  14. Activation mechanism of Gi and Go by reactive oxygen species.

    PubMed

    Nishida, Motohiro; Schey, Kevin L; Takagahara, Shuichi; Kontani, Kenji; Katada, Toshiaki; Urano, Yasuteru; Nagano, Tetsuo; Nagao, Taku; Kurose, Hitoshi

    2002-03-15

    Reactive oxygen species are proposed to work as intracellular mediators. One of their target proteins is the alpha subunit of heterotrimeric GTP-binding proteins (Galpha(i) and Galpha(o)), leading to activation. H(2)O(2) is one of the reactive oxygen species and activates purified Galpha(i2). However, the activation requires the presence of Fe(2+), suggesting that H(2)O(2) is converted to more reactive species such as c*OH. The analysis with mass spectrometry shows that seven cysteine residues (Cys(66), Cys(112), Cys(140), Cys(255), Cys(287), Cys(326), and Cys(352)) of Galpha(i2) are modified by the treatment with *OH. Among these cysteine residues, Cys(66), Cys(112), Cys(140), Cys(255), and Cys(352) are not involved in *OH-induced activation of Galpha(i2). Although the modification of Cys(287) but not Cys(326) is required for subunit dissociation, the modification of both Cys(287) and Cys(326) is necessary for the activation of Galpha(i2) as determined by pertussis toxin-catalyzed ADP-ribosylation, conformation-dependent change of trypsin digestion pattern or guanosine 5'-3-O-(thio)triphosphate binding. Wild type Galpha(i2) but not Cys(287)- or Cys(326)-substituted mutants are activated by UV light, singlet oxygen, superoxide anion, and nitric oxide, indicating that these oxidative stresses activate Galpha(i2) by the mechanism similar to *OH-induced activation. Because Cys(287) exists only in G(i) family, this study explains the selective activation of G(i)/G(o) by oxidative stresses.

  15. Production of intracellular reactive oxygen species and change of cell viability induced by atmospheric pressure plasma in normal and cancer cells

    NASA Astrophysics Data System (ADS)

    Ja Kim, Sun; Min Joh, Hea; Chung, T. H.

    2013-10-01

    The effects of atmospheric pressure plasma jet on cancer cells (human lung carcinoma cells) and normal cells (embryonic kidney cells and bronchial epithelial cells) were investigated. Using a detection dye, the production of intracellular reactive oxygen species (ROS) was found to be increased in plasma-treated cells compared to non-treated and gas flow-treated cells. A significant overproduction of ROS and a reduction in cell viability were induced by plasma exposure on cancer cells. Normal cells were observed to be less affected by the plasma-mediated ROS, and cell viability was less changed. The selective effect on cancer and normal cells provides a promising prospect of cold plasma as a cancer therapy.

  16. Reactive oxygen species in regulation of fungal development.

    PubMed

    Gessler, N N; Aver'yanov, A A; Belozerskaya, T A

    2007-10-01

    Reactive oxygen species (ROS) are formed by fungi in the course of metabolic activity. ROS production increases in fungi due to various stress agents such as starvation, light, mechanical damage, and interactions with some other living organisms. Regulation of ROS level appears to be very important during development of the fungal organism. ROS sources in fungal cells, their sensors, and ROS signal transduction pathways are discussed in this review. Antioxidant defense systems in different classes of fungi are characterized in detail. Particular emphasis is placed on ROS functions in interactions of phytopathogenic fungi with plant cells.

  17. Manganese Neurotoxicity and the Role of Reactive Oxygen Species

    PubMed Central

    Martinez-Finley, Ebany J.; Gavin, Claire E; Aschner, Michael; Gunter, Thomas E.

    2013-01-01

    Manganese (Mn) is an essential dietary nutrient but excess or accumulations can be toxic. Disease states, like manganism, are associated with overexposure or accumulation of Mn and are due to the production of reactive oxygen species, free radicals and toxic metabolites, alteration of mitochondrial function and ATP production and depletion of cellular antioxidant defense mechanisms. This review focuses on all of the preceding mechanisms and the scientific studies that support them as well as provides an overview of the absorption, distribution, and excretion of Mn and the stability and transport of Mn compounds in the body. PMID:23395780

  18. Nitric oxide and reactive oxygen species in plant biotic interactions.

    PubMed

    Scheler, Claudia; Durner, Jörg; Astier, Jeremy

    2013-08-01

    Nitric oxide (NO) and reactive oxygen species (ROS) are important signaling molecules in plants. Recent progress has been made in defining their role during plant biotic interactions. Over the last decade, their function in disease resistance has been highlighted and focused a lot of investigations. Moreover, NO and ROS have recently emerged as important players of defense responses after herbivore attacks. Besides their role in plant adaptive response development, NO and ROS have been demonstrated to be involved in symbiotic interactions between plants and microorganisms. Here we review recent data concerning these three sides of NO and ROS functions in plant biotic interactions.

  19. Nanotechnology for Electroanalytical Biosensors of Reactive Oxygen and Nitrogen Species.

    PubMed

    Seenivasan, Rajesh; Kolodziej, Charles; Karunakaran, Chandran; Burda, Clemens

    2017-04-10

    Over the past several decades, nanotechnology has contributed to the progress of biomedicine, biomarker discovery, and the development of highly sensitive electroanalytical / electrochemical biosensors for in vitro and in vivo monitoring, and quantification of oxidative and nitrosative stress markers like reactive oxygen species (ROS) and reactive nitrogen species (RNS). A major source of ROS and RNS is oxidative stress in cells, which can cause many human diseases, including cancer. Therefore, the detection of local concentrations of ROS (e. g. superoxide anion radical; O2(•-) ) and RNS (e. g. nitric oxide radical; NO(•) and its metabolites) released from biological systems is increasingly important and needs a sophisticated detection strategy to monitor ROS and RNS in vitro and in vivo. In this review, we discuss the nanomaterials-based ROS and RNS biosensors utilizing electrochemical techniques with emphasis on their biomedical applications.

  20. Mechanisms of group A Streptococcus resistance to reactive oxygen species

    PubMed Central

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N.

    2015-01-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736

  1. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    PubMed

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress.

  2. In situ reactive oxygen species production for tertiary wastewater treatment.

    PubMed

    Guitaya, Léa; Drogui, Patrick; Blais, Jean François

    2015-05-01

    The goal of this research was to develop a new approach for tertiary water treatment, particularly disinfection and removal of refractory organic compounds, without adding any chemical. Hydrogen peroxide can indeed be produced from dissolved oxygen owing to electrochemical processes. Using various current intensities (1.0 to 4.0 A), it was possible to in situ produce relatively high concentration of H2O2 with a specific production rate of 0.05 × 10(-5) M/min/A. Likewise, by using ultraviolet-visible absorption spectroscopy method, it was shown that other reactive oxygen species (ROS) including HO(*) radical and O3 could be simultaneously formed during electrolysis. The ROS concentration passed from 0.45 × 10(-5) M after 20 min of electrolysis to a concentration of 2.87 × 10(-5) M after 100 min of electrolysis. The disinfection and the organic matter removal were relatively high during the tertiary treatment of municipal and domestic wastewaters. More than 90 % of organic compounds (chemical oxygen demand) can be removed, whereas 99 % of faecal coliform abatement can be reached. Likewise, the process was also effective in removing turbidity (more than 90 % of turbidity was removed) so that the effluent became more and more transparent.

  3. Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions.

    PubMed

    Lagos, Marcelo E; Barneche, Diego R; White, Craig R; Marshall, Dustin J

    2017-02-17

    Biological invasions are one of the biggest threats to global biodiversity. Marine artificial structures are proliferating worldwide and provide a haven for marine invasive species. Such structures disrupt local hydrodynamics, which can lead to the formation of oxygen-depleted microsites. The extent to which native fauna can cope with such low oxygen conditions, and whether invasive species, long associated with artificial structures in flow-restricted habitats, have adapted to these conditions remains unclear. We measured water flow and oxygen availability in marinas and piers at the scales relevant to sessile marine invertebrates (mm). We then measured the capacity of invasive and native marine invertebrates to maintain metabolic rates under decreasing levels of oxygen using standard laboratory assays. We found that marinas reduce water flow relative to piers, and that local oxygen levels can be zero in low flow conditions. We also found that for species with erect growth forms, invasive species can tolerate much lower levels of oxygen relative to native species. Integrating the field and laboratory data showed that up to 30% of available microhabitats within low flow environments are physiologically stressful for native species, while only 18% of the same habitat is physiologically stressful for invasive species. These results suggest that invasive species have adapted to low oxygen habitats associated with manmade habitats, and artificial structures may be creating niche opportunities for invasive species.

  4. Shark cartilage-containing preparation: protection against reactive oxygen species.

    PubMed

    Felzenszwalb, I; Pelielo de Mattos, J C; Bernardo-Filho, M; Caldeira-de-Araújo, A

    1998-12-01

    There is overwhelming evidence to indicate that free radicals cause oxidative damage to lipids, proteins and nucleic acids and are involved in the pathogenesis of several degenerative diseases. Therefore, antioxidants, which can neutralize free radicals, may be of central importance in the prevention of these disease states. The protection that fruits and vegetables provide against disease has been attributed to the various antioxidants contained in them. Recently, an anti-inflammatory and analgesic activity of a water-soluble fraction from shark cartilage has been described. Using electrophoretical assays, bacteria survival and transformation and the Salmonella/mammalian-microsome assay, we investigated the putative role of shark cartilage-containing preparation in protecting cells against reactive oxygen species induced DNA damage and mutagenesis. If antimutagens are to have any impact on human disease, it is essential that they are specifically directed against the most common mutagens in daily life. Our data suggest that shark cartilage-containing preparation can play a scavenger role for reactive oxygen species and protects cells against inactivation and mutagenesis.

  5. Therapeutic Strategies for Oxidative Stress-Related Cardiovascular Diseases: Removal of Excess Reactive Oxygen Species in Adult Stem Cells.

    PubMed

    Kim, Hyunyun; Yun, Jisoo; Kwon, Sang-Mo

    Accumulating evidence indicates that acute and chronic uncontrolled overproduction of oxidative stress-related factors including reactive oxygen species (ROS) causes cardiovascular diseases (CVDs), atherosclerosis, and diabetes. Moreover ROS mediate various signaling pathways underlying vascular inflammation in ischemic tissues. With respect to stem cell-based therapy, several studies clearly indicate that modulating antioxidant production at cellular levels enhances stem/progenitor cell functionalities, including proliferation, long-term survival in ischemic tissues, and complete differentiation of transplanted cells into mature vascular cells. Recently emerging therapeutic strategies involving adult stem cells, including endothelial progenitor cells (EPCs), for treating ischemic CVDs have highlighted the need to control intracellular ROS production, because it critically affects the replicative senescence of ex vivo expanded therapeutic cells. Better understanding of the complexity of cellular ROS in stem cell biology might improve cell survival in ischemic tissues and enhance the regenerative potentials of transplanted stem/progenitor cells. In this review, we will discuss the nature and sources of ROS, drug-based therapeutic strategies for scavenging ROS, and EPC based therapeutic strategies for treating oxidative stress-related CVDs. Furthermore, we will discuss whether primed EPCs pretreated with natural ROS-scavenging compounds are crucial and promising therapeutic strategies for vascular repair.

  6. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris.

    PubMed

    Liu, Lei; Zhu, Bin; Wang, Gao-Xue

    2015-05-01

    This study investigated the short-term toxicity of azoxystrobin (AZ), one of strobilurins used as an effective fungicidal agent to control the Asian soybean rust, on aquatic unicellular algae Chlorella vulgaris. The median percentile inhibition concentration (IC₅₀) of AZ for C. vulgaris was found to be 510 μg L(-1). We showed that the algal cells were obviously depressed or shrunk in 300 and 600 μg L(-1) AZ treatments by using the electron microscopy. Furthermore, 19, 75, and 300 μg L(-1) AZ treatments decreased the soluble protein content and chlorophyll concentrations in C. vulgaris and altered the energy-photosynthesis-related mRNA expression levels in 48- and 96-h exposure periods. Simultaneously, our results showed that AZ could increase the total antioxidant capacity (T-AOC) level and compromise superoxide dismutase (SOD), peroxidase (POD), glutathione S transferase (GST), glutathione peroxidase (GPx) activities, and glutathione (GSH) content. These situations might render C. vulgaris more vulnerable to oxidative damage. Overall, the present study indicated that AZ might be toxic to the growth of C. vulgaris, affect energy-photosynthesis-related mRNA expressions, and induce reactive oxygen species (ROS) overproduction in C. vulgaris.

  7. Therapeutic Strategies for Oxidative Stress-Related Cardiovascular Diseases: Removal of Excess Reactive Oxygen Species in Adult Stem Cells

    PubMed Central

    Yun, Jisoo

    2016-01-01

    Accumulating evidence indicates that acute and chronic uncontrolled overproduction of oxidative stress-related factors including reactive oxygen species (ROS) causes cardiovascular diseases (CVDs), atherosclerosis, and diabetes. Moreover ROS mediate various signaling pathways underlying vascular inflammation in ischemic tissues. With respect to stem cell-based therapy, several studies clearly indicate that modulating antioxidant production at cellular levels enhances stem/progenitor cell functionalities, including proliferation, long-term survival in ischemic tissues, and complete differentiation of transplanted cells into mature vascular cells. Recently emerging therapeutic strategies involving adult stem cells, including endothelial progenitor cells (EPCs), for treating ischemic CVDs have highlighted the need to control intracellular ROS production, because it critically affects the replicative senescence of ex vivo expanded therapeutic cells. Better understanding of the complexity of cellular ROS in stem cell biology might improve cell survival in ischemic tissues and enhance the regenerative potentials of transplanted stem/progenitor cells. In this review, we will discuss the nature and sources of ROS, drug-based therapeutic strategies for scavenging ROS, and EPC based therapeutic strategies for treating oxidative stress-related CVDs. Furthermore, we will discuss whether primed EPCs pretreated with natural ROS-scavenging compounds are crucial and promising therapeutic strategies for vascular repair. PMID:27668035

  8. Galangin prevents aminoglycoside-induced ototoxicity by decreasing mitochondrial production of reactive oxygen species in mouse cochlear cultures.

    PubMed

    Kim, Ye-Ri; Kim, Min-A; Cho, Hyun-Ju; Oh, Se-Kyung; Lee, In-Kyu; Kim, Un-Kyung; Lee, Kyu-Yup

    2016-03-14

    Amikacin is a semi-synthetic aminoglycoside widely used to treat infections caused by gentamicin-resistant gram-negative organisms and nontuberculous mycobacteria. However, the use of this agent often results in ototoxicity due to the overproduction of reactive oxygen species (ROS). Galangin, a natural flavonoid, has been shown to play a protective role against mitochondrial dysfunction by reducing mitochondrial ROS production. In this study, the effect of galangin on amikacin-induced ototoxicity was examined using cultures of cochlear explants. Immunofluorescent staining showed that treatment of inner hair cells (IHCs) and outer hair cells (OHCs) with galangin significantly decreased damage induced by amikacin. Moreover, pretreatment with galangin resulted in decreased amikacin-provoked increase in ROS production in both types of hair cells by MitoSOX-red staining. Attenuation of apoptotic cell death was assessed immunohistochemically using active caspase-3 antibody and with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, compared to explants exposed to amikacin alone (P<0.05). These results indicate that galangin protects hair cells in the organ of Corti from amikacin-induced toxicity by reducing the production of mitochondrial ROS. The results of this study suggest that galangin can potentially be used as an antioxidant and antiapoptotic agent to prevent hearing loss caused by aminoglycoside induced-oxidative stress.

  9. Sex as a response to oxidative stress: a twofold increase in cellular reactive oxygen species activates sex genes.

    PubMed

    Nedelcu, Aurora M; Marcu, Oana; Michod, Richard E

    2004-08-07

    Organisms are constantly subjected to factors that can alter the cellular redox balance and result in the formation of a series of highly reactive molecules known as reactive oxygen species (ROS). As ROS can be damaging to biological structures, cells evolved a series of mechanisms (e.g. cell-cycle arrest, programmed cell death) to respond to high levels of ROS (i.e. oxidative stress). Recently, we presented evidence that in a facultatively sexual lineage--the multicellular green alga Volvox carteri--sex is an additional response to increased levels of stress, and probably ROS and DNA damage. Here we show that, in V. carteri, (i) sex is triggered by an approximately twofold increase in the level of cellular ROS (induced either by the natural sex-inducing stress, namely heat, or by blocking the mitochondrial electron transport chain with antimycin A), and (ii) ROS are responsible for the activation of sex genes. As most types of stress result in the overproduction of ROS, we believe that our findings will prove to extend to other facultatively sexual lineages, which could be indicative of the ancestral role of sex as an adaptive response to stress and ROS-induced DNA damage.

  10. Generation of reactive oxygen species by raphidophycean phytoplankton.

    PubMed

    Oda, T; Nakamura, A; Shikayama, M; Kawano, I; Ishimatsu, A; Muramatsu, T

    1997-10-01

    Chattonella marina, a raphidophycean flagellate, is one of the most toxic red tide phytoplankton and causes severe damage to fish farming. Recent studies demonstrated that Chattonella sp. generates superoxide (O2-), hydrogen peroxide (H2O2), and hydroxyl radicals (.OH), which may be responsible for the toxicity of C. marina. In this study, we found the other raphidophycean flagellates such as Heterosigma akashiwo, Olisthodiscus luteus, and Fibrocapsa japonica also produce O2- and H2O2 under normal growth condition. Among the flagellate species tested, Chattonella has the highest rates of production of O2- and H2O2 as compared on the basis of cell number. This seems to be partly due to differences in their cell sizes, since Chattonella is larger than other flagellate species. The generation of O2- by these flagellate species was also confirmed by a chemiluminescence assay by using 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin++ +-3-one (MCLA). All these raphidophycean flagellates inhibited the proliferation of a marine bacterium, Vibrio alginolyticus, in a flagellates/bacteria co-culture system, and their toxic effects were suppressed by the addition of superoxide dismutase (SOD) or catalase. Our results suggest that the generation of reactive oxygen species is a common feature of raphidophycean flagellates.

  11. Endogenous Cytokinin Overproduction Modulates ROS Homeostasis and Decreases Salt Stress Resistance in Arabidopsis Thaliana

    PubMed Central

    Wang, Yanping; Shen, Wenzhong; Chan, Zhulong; Wu, Yan

    2015-01-01

    Cytokinins in plants are crucial for numerous biological processes, including seed germination, cell division and differentiation, floral initiation and adaptation to abiotic stresses. The salt stress can promote reactive oxygen species (ROS) production in plants which are highly toxic and ultimately results in oxidative stress. However, the correlation between endogenous cytokinin production and ROS homeostasis in responding to salt stress is poorly understood. In this study, we analyzed the correlation of overexpressing the cytokinin biosynthetic gene AtIPT8 (adenosine phosphate-isopentenyl transferase 8) and the response of salt stress in Arabidopsis. Overproduction of cytokinins, which was resulted by the inducible overexpression of AtIPT8, significantly inhibited the primary root growth and true leaf emergence, especially under the conditions of exogenous salt, glucose and mannitol treatments. Upon cytokinin overproduction, the salt stress resistance was declined, and resulted in less survival rates and chlorophyll content. Interestingly, ROS production was obviously increased with the salt treatment, accompanied by endogenously overproduced cytokinins. The activities of catalase (CAT) and superoxide dismutase (SOD), which are responsible for scavenging ROS, were also affected. Transcription profiling revealed that the differential expressions of ROS-producing and scavenging related genes, the photosynthesis-related genes and stress responsive genes were existed in transgenic plants of overproducing cytokinins. Our results suggested that broken in the homeostasis of cytokinins in plant cells could modulate the salt stress responses through a ROS-mediated regulation in Arabidopsis. PMID:26635831

  12. Endogenous Cytokinin Overproduction Modulates ROS Homeostasis and Decreases Salt Stress Resistance in Arabidopsis Thaliana.

    PubMed

    Wang, Yanping; Shen, Wenzhong; Chan, Zhulong; Wu, Yan

    2015-01-01

    Cytokinins in plants are crucial for numerous biological processes, including seed germination, cell division and differentiation, floral initiation and adaptation to abiotic stresses. The salt stress can promote reactive oxygen species (ROS) production in plants which are highly toxic and ultimately results in oxidative stress. However, the correlation between endogenous cytokinin production and ROS homeostasis in responding to salt stress is poorly understood. In this study, we analyzed the correlation of overexpressing the cytokinin biosynthetic gene AtIPT8 (adenosine phosphate-isopentenyl transferase 8) and the response of salt stress in Arabidopsis. Overproduction of cytokinins, which was resulted by the inducible overexpression of AtIPT8, significantly inhibited the primary root growth and true leaf emergence, especially under the conditions of exogenous salt, glucose and mannitol treatments. Upon cytokinin overproduction, the salt stress resistance was declined, and resulted in less survival rates and chlorophyll content. Interestingly, ROS production was obviously increased with the salt treatment, accompanied by endogenously overproduced cytokinins. The activities of catalase (CAT) and superoxide dismutase (SOD), which are responsible for scavenging ROS, were also affected. Transcription profiling revealed that the differential expressions of ROS-producing and scavenging related genes, the photosynthesis-related genes and stress responsive genes were existed in transgenic plants of overproducing cytokinins. Our results suggested that broken in the homeostasis of cytokinins in plant cells could modulate the salt stress responses through a ROS-mediated regulation in Arabidopsis.

  13. Reactive oxygen species and the free radical theory of aging.

    PubMed

    Liochev, Stefan I

    2013-07-01

    The traditional view in the field of free radical biology is that free radicals and reactive oxygen species (ROS) are toxic, mostly owing to direct damage of sensitive and biologically significant targets, and are thus a major cause of oxidative stress; that complex enzymatic and nonenzymatic systems act in concert to counteract this toxicity; and that a major protective role is played by the phenomenon of adaptation. Another part of the traditional view is that the process of aging is at least partly due to accumulated damage done by these harmful species. However, recent workers in this and in related fields are exploring the view that superoxide radical and reactive oxygen species exert beneficial effects. Thus, such ROS are viewed as involved in cellular regulation by acting as (redox) signals, and their harmful effects are seen mostly as a result of compromised signaling, rather than due to direct damage to sensitive targets. According to some followers of this view, ROS such as hydrogen peroxide and superoxide are not just causative agents of aging but may also be agents that increase the life span by acting, for example, as prosurvival signals. The goal of this review is to recall that many of the effects of ROS that are interpreted as beneficial may actually represent adaptations to toxicity and that some of the most extravagant recent claims may be due to misinterpretation, oversimplification, and ignoring the wealth of knowledge supporting the traditional view. Whether it is time to abandon the free radical (oxidative stress) theory of aging is considered.

  14. Emissions of volatile organic compounds (primarily oxygenated species) from pasture

    NASA Astrophysics Data System (ADS)

    Kirstine, Wayne; Galbally, Ian; Ye, Yuerong; Hooper, Martin

    1998-05-01

    The volatile organic compound (VOC) emissions from pasture at a site in southeastern Victoria, Australia, were monitored over a 2 year period using a static chamber technique. Fluxes up to 23,000 μg(C) m-2 h-1 were detected, with the higher fluxes originating from clover rather than from grass species. Gas Chromatographic analyses indicated that emissions from both grass and clover were high in oxygenated hydrocarbons including methanol, ethanol, propanone, butanone, and ethanal, and extremely low in isoprene and monoterpenes. In the case of clover, butanone made up 45-50% of the total emissions. When grass and clover were freshly mown, there were significantly enhanced emissions of VOCs. These enhanced emissions included both those oxygenates emitted from uncut pasture and also C6-oxygenates, including (Z)-3-hexenal, (E)-2-hexenal, (Z)-2-hexen-1-ol, (Z)-3-hexen-l-ol, and (Z)-3-hexenyl acetate. Emissions from the undisturbed pasture increased markedly with temperature and the intensity of solar radiation, peaking at midday and ceasing at night. The fluxes, when normalized to a temperature of 30°C and a light intensity of 1000 μE m-2 s-1 were, for grass and clover respectively, about one eighth and two fifths of the equivalent fluxes reported to occur from U.S. woodlands. The annual integrated emission from the pasture was approximately 1.9 g(C) m-2 or 1.3 mg(C) g-1 (dry matter). The large transient fluxes that occurred following physical damaging of the pasture, when integrated over time, could be of the same order as those emissions that were observed from undisturbed pasture. In the case of methanol, and perhaps ethanol, the emissions from grasslands may be significant global sources of these gases.

  15. Reactive Oxygen Species: A Key Hallmark of Cardiovascular Disease

    PubMed Central

    2016-01-01

    Cardiovascular diseases (CVDs) have been the prime cause of mortality worldwide for decades. However, the underlying mechanism of their pathogenesis is not fully clear yet. It has been already established that reactive oxygen species (ROS) play a vital role in the progression of CVDs. ROS are chemically unstable reactive free radicals containing oxygen, normally produced by xanthine oxidase, nicotinamide adenine dinucleotide phosphate oxidase, lipoxygenases, or mitochondria or due to the uncoupling of nitric oxide synthase in vascular cells. When the equilibrium between production of free radicals and antioxidant capacity of human physiology gets altered due to several pathophysiological conditions, oxidative stress is induced, which in turn leads to tissue injury. This review focuses on pathways behind the production of ROS, its involvement in various intracellular signaling cascades leading to several cardiovascular disorders (endothelial dysfunction, ischemia-reperfusion, and atherosclerosis), methods for its detection, and therapeutic strategies for treatment of CVDs targeting the sources of ROS. The information generated by this review aims to provide updated insights into the understanding of the mechanisms behind cardiovascular complications mediated by ROS. PMID:27774507

  16. [The role of reactive oxygen species and mitochondria in aging].

    PubMed

    Piotrowska, Agnieszka; Bartnik, Ewa

    2014-01-01

    Aging is a biological phenomenon concerning all living multicellular organisms. Many studies have been conducted to identify the mechanisms underlying this process. To date, multiple theories have been proposed to explain the causes of aging. One of them is the free radical theory which postulates that reactive oxygen species (ROS), extremely reactive chemical molecules, are the major cause of the aging process. These free radicals are mainly produced by the mitochondrial respiratory chain as a result of electron transport and the reduction of the oxygen molecule. Toxic effects of ROS on cellular components lead to accumulation of oxidative damage which causes cellular dysfunction with age. The free radical theory has been one of the most popular theories of aging for many years. Scientific research on different model organisms aiming to verify the theory has produced abundant data, supporting the theory or, on the contrary, suggesting strong evidence against it. At present, the free radical theory of aging is no longer considered to be true.

  17. Reactive oxygen species: A radical role in development?

    PubMed

    Hernández-García, David; Wood, Christopher D; Castro-Obregón, Susana; Covarrubias, Luis

    2010-07-15

    Reactive oxygen species (ROS), mostly derived from mitochondrial activity, can damage various macromolecules and consequently cause cell death. This ROS activity has been characterized in vitro, and correlative evidence suggests a role in various pathological conditions. In addition to this passive ROS activity, ROS also participate in cell signaling processes, though the relevance of this function in vivo is poorly understood. Throughout development, elevated cell activity is probably accompanied by highly active metabolism and, consequently, the production of large amounts of ROS. To allow proper development, cells must protect themselves from these potentially damaging ROS. However, to what degree ROS could participate as signaling molecules controlling fundamental and developmentally relevant cellular processes such as proliferation, differentiation, and death is an open question. Here we discuss why available data do not yet provide conclusive evidence on the role of ROS in development, and we review recent methods to detect ROS in vivo and genetic strategies that can be exploited specifically to resolve these uncertainties.

  18. Reactive Oxygen Species in the Regulation of Stomatal Movements.

    PubMed

    Sierla, Maija; Waszczak, Cezary; Vahisalu, Triin; Kangasjärvi, Jaakko

    2016-07-01

    Guard cells form stomatal pores that optimize photosynthetic carbon dioxide uptake with minimal water loss. Stomatal movements are controlled by complex signaling networks that respond to environmental and endogenous signals. Regulation of stomatal aperture requires coordinated activity of reactive oxygen species (ROS)-generating enzymes, signaling proteins, and downstream executors such as ion pumps, transporters, and plasma membrane channels that control guard cell turgor pressure. Accumulation of ROS in the apoplast and chloroplasts is among the earliest hallmarks of stomatal closure. Subsequent increase in cytoplasmic Ca(2+) concentration governs the activity of multiple kinases that regulate the activity of ROS-producing enzymes and ion channels. In parallel, ROS directly regulate the activity of multiple proteins via oxidative posttranslational modifications to fine-tune guard cell signaling. In this review, we summarize recent advances in the role of ROS in stomatal closure and discuss the importance of ROS in regulation of signal amplification and specificity in guard cells.

  19. Reactive oxygen species in eradicating acute myeloid leukemic stem cells

    PubMed Central

    Zhang, Hui; Fang, Hai

    2014-01-01

    Leukemic stem cells (LSCs) have been proven to drive leukemia initiation, progression and relapse, and are increasingly being used as a critical target for therapeutic intervention. As an essential feature in LSCs, reactive oxygen species (ROS) homeostasis has been extensively exploited in the past decade for targeting LSCs in acute myeloid leukemia (AML). Most, if not all, agents that show therapeutic benefits are able to alter redox status by inducing ROS, which confers selectivity in eradicating AML stem cells but sparing normal counterparts. In this review, we provide the comprehensive update of ROS-generating agents in the context of their impacts on our understanding of the pathogenesis of AML and its therapy. We anticipate that further characterizing these ROS agents will help us combat against AML in the coming era of LSC-targeting strategy. PMID:27358859

  20. Reactive oxygen species-activated nanomaterials as theranostic agents

    PubMed Central

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use. PMID:26328770

  1. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity

    PubMed Central

    Beckhauser, Thiago Fernando; Francis-Oliveira, José; De Pasquale, Roberto

    2016-01-01

    In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated. PMID:27625575

  2. Bacterial persistence induced by salicylate via reactive oxygen species

    PubMed Central

    Wang, Tiebin; El Meouche, Imane; Dunlop, Mary J.

    2017-01-01

    Persisters are phenotypic variants of regular cells that exist in a dormant state with low metabolic activity, allowing them to exhibit high tolerance to antibiotics. Despite increasing recognition of their role in chronic and recalcitrant infections, the mechanisms that induce persister formation are not fully understood. In this study, we find that salicylate can induce persister formation in Escherichia coli via generation of reactive oxygen species (ROS). Salicylate-induced ROS cause a decrease in the membrane potential, reduce metabolism and lead to an increase in persistence. These effects can be recovered by culturing cells in the presence of a ROS quencher or in an anaerobic environment. Our findings reveal that salicylate-induced oxidative stress can lead to persistence, suggesting that ROS, and their subsequent impact on membrane potential and metabolism, may play a broad role in persister formation. PMID:28281556

  3. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    PubMed

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule.

  4. In vitro degradation of tropoelastin by reactive oxygen species.

    PubMed

    Hayashi, A; Ryu, A; Suzuki, T; Kawada, A; Tajima, S

    1998-09-01

    The effects of reactive oxygen species (ROS) on elastin molecules (tropoelastin) were studied in vitro. ROS generated by ultraviolet A and hematoporphyrin rapidly degraded tropoelastin within 5 min. Their degradative activity was inhibited by the addition of NaN3. Treatment of tropoelastin with copper sulfate/ascorbic acid resulted in degradation of tropoelastin producing fragments of molecular weight 45, 30 and 10 kDa within 30 min. The degradation of tropoelastin was partially blocked by the addition of mannitol. ROS induced by the xanthine/xanthine oxidase system also degraded tropoelastin within 6 h. The degradation was blocked by catalase but not by superoxide dismutase (SOD). ROS generated by copper-ascorbate seems to be unique in that it cleaves relatively specific sites of the tropoelastin molecule. Thus ROS may play a degradative role in elastin metabolism which may cause the elastolytic changes or the deposition of fragmented elastic fibers in photoaged skin or age-related elastolytic disorders.

  5. Diabetic peripheral neuropathy: role of reactive oxygen and nitrogen species.

    PubMed

    Premkumar, Louis S; Pabbidi, Reddy M

    2013-11-01

    The prevalence of diabetes has reached epidemic proportions. There are two forms of diabetes: type 1 diabetes mellitus is due to auto-immune-mediated destruction of pancreatic β-cells resulting in absolute insulin deficiency and type 2 diabetes mellitus is due to reduced insulin secretion and or insulin resistance. Both forms of diabetes are characterized by chronic hyperglycemia, leading to the development of diabetic peripheral neuropathy (DPN) and microvascular pathology. DPN is characterized by enhanced or reduced thermal, chemical, and mechanical pain sensitivities. In the long-term, DPN results in peripheral nerve damage and accounts for a substantial number of non-traumatic lower-limb amputations. This review will address the mechanisms, especially the role of reactive oxygen and nitrogen species in the development and progression of DPN.

  6. Reactive oxygen species-targeted therapeutic interventions for atrial fibrillation

    PubMed Central

    Sovari, Ali A.; Dudley, Samuel C.

    2012-01-01

    Atrial fibrillation (AF) is the most common arrhythmia that requires medical attention, and its incidence is increasing. Current ion channel blockade therapies and catheter ablation have significant limitations in treatment of AF, mainly because they do not address the underlying pathophysiology of the disease. Oxidative stress has been implicated as a major underlying pathology that promotes AF; however, conventional antioxidants have not shown impressive therapeutic effects. A more careful design of antioxidant therapies and better selection of patients likely are required to treat effectively AF with antioxidant agents. Current evidence suggest inhibition of prominent cardiac sources of reactive oxygen species (ROS) such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and targeting subcellular compartments with the highest levels of ROS may prove to be effective therapies for AF. Increased serum markers of oxidative stress may be an important guide in selecting the AF patients who will most likely respond to antioxidant therapy. PMID:22934062

  7. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology

    PubMed Central

    Cave, Alison; Grieve, David; Johar, Sofian; Zhang, Min; Shah, Ajay M

    2005-01-01

    Chronic heart failure, secondary to left ventricular hypertrophy or myocardial infarction, is a condition with increasing morbidity and mortality. Although the mechanisms underlying the development and progression of this condition remain a subject of intense interest, there is now growing evidence that redox-sensitive pathways play an important role. This article focuses on the involvement of reactive oxygen species derived from a family of superoxide-generating enzymes, termed NADPH oxidases (NOXs), in the pathophysiology of ventricular hypertrophy, the accompanying interstitial fibrosis and subsequent heart failure. In particular, the apparent ability of the different NADPH oxidase isoforms to define the response of a cell to a range of physiological and pathophysiological stimuli is reviewed. If confirmed, these data would suggest that independently targeting different members of the NOX family may hold the potential for therapeutic intervention in the treatment of cardiac disease. PMID:16321803

  8. How reactive oxygen species and proline face stress together.

    PubMed

    Ben Rejeb, Kilani; Abdelly, Chedly; Savouré, Arnould

    2014-07-01

    Reactive oxygen species (ROS) are continuously generated as a consequence of plant metabolic processes due to incomplete reduction of O2. Previously considered to be only toxic by-products of metabolism, ROS are now known to act as second messengers in intracellular signalling cascades to trigger tolerance of various abiotic and biotic stresses. The accumulation of proline is frequently observed during the exposure of plants to adverse environmental conditions. Interestingly proline metabolism may also contribute to ROS formation in mitochondria, which play notably a role in hypersensitive response in plants, life-span extension in worms and tumor suppression in animals. Here we review current knowledge about the regulation of proline metabolism in response to environmental constraints and highlight the key role of ROS in the regulation of this metabolism. The impact of proline on ROS generation is also investigated. Deciphering and integrating these relationships at the whole plant level will bring new perspectives on how plants adapt to environmental stresses.

  9. Radical Oxygen Species, Exercise and Aging: An Update.

    PubMed

    Bouzid, Mohamed Amine; Filaire, Edith; McCall, Alan; Fabre, Claudine

    2015-09-01

    It is now well established that reactive oxygen species (ROS) play a dual role as both deleterious and beneficial species. In fact, ROS act as secondary messengers in intracellular signalling cascades; however, they can also induce cellular senescence and apoptosis. Aging is an intricate phenomenon characterized by a progressive decline in physiological functions and an increase in mortality, which is often accompanied by many pathological diseases. ROS are involved in age-associated damage to macromolecules, and this may cause derangement in ROS-mediated cell signalling, resulting in stress and diseases. Moreover, the role of oxidative stress in age-related sarcopenia provides strong evidence for the important contribution of physical activity to limit this process. Regular physical activity is considered a preventive measure against oxidative stress-related diseases. The aim of this review is to summarize the currently available studies investigating the effects of chronic and/or acute physical exercise on the oxidative stress process in healthy elderly subjects. Although studies on oxidative stress and physical activity are limited, the available information shows that acute exercise increases ROS production and oxidative stress damage in older adults, whereas chronic exercise could protect elderly subjects from oxidative stress damage and reinforce their antioxidant defences. The available studies reveal that to promote beneficial effects of physical activity on oxidative stress, elderly subjects require moderate-intensity training rather than high-intensity exercise.

  10. Role of reactive oxygen species in fungal cellular differentiations.

    PubMed

    Scott, Barry; Eaton, Carla J

    2008-12-01

    Regulated synthesis of reactive oxygen species (ROS) by specific fungal NADPH oxidases (Noxs) plays a key role in fungal cellular differentiation and development. Fungi have up to three different Nox isoforms, NoxA, B and C. The NoxA isoform has a key role in triggering the development of fruiting bodies in several sexual species whereas NoxB plays a key role in ascospore germination. The function of NoxC remains unknown. Both NoxA and NoxB are required for the development of fungal infection structures by some plant pathogens. ROS production by NoxA is critical for maintaining a fungal-plant symbiosis. Localised synthesis of ROS is also important in establishing and maintaining polarised hyphal growth. Activation of NoxA/NoxB requires the regulatory subunit, NoxR, and the small GTPase RacA. The BemA scaffold protein may also be involved in the assembly of the Nox complex. By analogy with mammalian systems MAP and PAK kinases may regulate fungal Nox activation. How fungal cells sense and respond to ROS associated with cellular differentiations remains to be discovered.

  11. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis

    NASA Technical Reports Server (NTRS)

    Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.

    2000-01-01

    The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.

  12. [Generation of reactive oxygen species in water under exposure of visible or infrared irradiation at absorption band of molecular oxygen].

    PubMed

    Gudkov, S V; Karp, O E; Garmash, S A; Ivanov, V E; Chernikov, A V; Manokhin, A A; Astashev, M E; Iaguzhinskiĭ, L S; Bruskov, V I

    2012-01-01

    It is found that in bidistilled water saturated with oxygen hydrogen peroxide and hydroxyl radicals are formed under the influence of visible and infrared radiation in the absorption bands of molecular oxygen. Formation of reactive oxygen species (ROS) occurs under the influence of both solar and artificial light sourses, including the coherent laser irradiation. The oxygen effect, i.e. the impact of dissolved oxygen concentration on production of hydrogen peroxide induced by light, is detected. It is shown that the visible and infrared radiation in the absorption bands of molecular oxygen leads to the formation of 8-oxoguanine in DNA in vitro. Physicochemical mechanisms of ROS formation in water when exposed to visible and infrared light are studied, and the involvement of singlet oxygen and superoxide anion radicals in this process is shown.

  13. Enzymatic Production of Extracellular Reactive Oxygen Species by Marine Microorganisms

    NASA Astrophysics Data System (ADS)

    Diaz, J. M.; Andeer, P. F.; Hansel, C. M.

    2014-12-01

    Reactive oxygen species (ROS) serve as intermediates in a myriad of biogeochemically important processes, including cell signaling pathways, cellular oxidative stress responses, and the transformation of both nutrient and toxic metals such as iron and mercury. Abiotic reactions involving the photo-oxidation of organic matter were once considered the only important sources of ROS in the environment. However, the recent discovery of substantial biological ROS production in marine systems has fundamentally shifted this paradigm. Within the last few decades, marine phytoplankton, including diatoms of the genus Thalassiosira, were discovered to produce ample extracellular quantities of the ROS superoxide. Even more recently, we discovered widespread production of extracellular superoxide by phylogenetically and ecologically diverse heterotrophic bacteria at environmentally significant levels (up to 20 amol cell-1 hr-1), which has introduced the revolutionary potential for substantial "dark" cycling of ROS. Despite the profound biogeochemical importance of extracellular biogenic ROS, the cellular mechanisms underlying the production of this ROS have remained elusive. Through the development of a gel-based assay to identify extracellular ROS-producing proteins, we have recently found that enzymes typically involved in antioxidant activity also produce superoxide when molecular oxygen is the only available electron acceptor. For example, large (~3600 amino acids) heme peroxidases are involved in extracellular superoxide production by a bacterium within the widespread Roseobacter clade. In Thalassiosira spp., extracellular superoxide is produced by flavoproteins such as glutathione reductase and ferredoxin NADP+ reductase. Thus, extracellular ROS production may occur via secreted and/or cell surface enzymes that modulate between producing and degrading ROS depending on prevailing geochemical and/or ecological conditions.

  14. Endophytic Bacterium-Triggered Reactive Oxygen Species Directly Increase Oxygenous Sesquiterpenoid Content and Diversity in Atractylodes lancea

    PubMed Central

    Zhou, Jia-Yu; Yuan, Jie; Li, Xia; Ning, Yi-Fan

    2015-01-01

    Oxygenous terpenoids are active components of many medicinal plants. However, current studies that have focused on enzymatic oxidation reactions cannot comprehensively clarify the mechanisms of oxygenous terpenoid synthesis and diversity. This study shows that an endophytic bacterium can trigger the generation of reactive oxygen species (ROS) that directly increase oxygenous sesquiterpenoid content and diversity in Atractylodes lancea. A. lancea is a famous but endangered Chinese medicinal plant that contains abundant oxygenous sesquiterpenoids. Geo-authentic A. lancea produces a wider range and a greater abundance of oxygenous sesquiterpenoids than the cultivated herb. Our previous studies have shown the mechanisms behind endophytic promotion of the production of sesquiterpenoid hydrocarbon scaffolds; however, how endophytes promote the formation of oxygenous sesquiterpenoids and their diversity is unclear. After colonization by Pseudomonas fluorescens ALEB7B, oxidative burst and oxygenous sesquiterpenoid accumulation in A. lancea occur synchronously. Treatment with exogenous hydrogen peroxide (H2O2) or singlet oxygen induces oxidative burst and promotes oxygenous sesquiterpenoid accumulation in planta. Conversely, pretreatment of plantlets with the ROS scavenger ascorbic acid significantly inhibits the oxidative burst and oxygenous sesquiterpenoid accumulation induced by P. fluorescens ALEB7B. Further in vitro oxidation experiments show that several oxygenous sesquiterpenoids can be obtained from direct oxidation caused by H2O2 or singlet oxygen. In summary, this study demonstrates that endophytic bacterium-triggered ROS can directly oxidize oxygen-free sesquiterpenoids and increase the oxygenous sesquiterpenoid content and diversity in A. lancea, providing a novel explanation of the mechanisms of oxygenous terpenoid synthesis in planta and an essential complementarity to enzymatic oxidation reactions. PMID:26712554

  15. Activation of the ACE2/Ang-(1-7)/Mas pathway reduces oxygen-glucose deprivation induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction

    PubMed Central

    Zheng, Jiaolin; Li, Guangze; Chen, Shuzhen; Chen, Ji; Buck, Joshua; Zhu, Yulan; Xia, Huijing; Lazartigues, Eric; Chen, Yanfang; Olson, James E.

    2014-01-01

    We previously demonstrated that mice which overexpress human renin and angiotensinogen (R+A+) show enhanced cerebral damage in both in vivo and in vitro experimental ischemia models. Angiotensin converting enzyme 2 (ACE2) counteracts the effects of angiotensin (Ang-II) by transforming it into Ang-(1-7), thus reducing the ligand for the AT1 receptor and increasing stimulation of the Mas receptor. Triple transgenic mice, SARA, which specifically overexpress ACE2 in neurons of R+A+ mice were used to study the role of ACE2 in ischemic stroke using oxygen and glucose deprivation (OGD) of brain slices as an in vitro model. We examined tissue swelling, the production of reactive oxygen species (ROS), and cell death in cerebral cortex (CX) and the hippocampal CA1 region during OGD. Expression levels of NADPH oxidase isoforms, Nox2 and Nox4 were measured using western blots. Results show that SARA mice and R+A+ mice treated with the Mas receptor agonist Ang-(1-7) had less swelling, cell death, and ROS production in CX and CA1 areas compared to those in R+A+ animals. Treatment of slices from SARA mice with the Mas antagonist A779 eliminated this protection. Finally, western blots revealed less Nox2 and Nox4 expression in SARA mice compared with R+A+ mice both before and after OGD. We suggest that reduced brain swelling and cell death observed in SARA animals exposed to OGD results from diminished ROS production coupled with lower expression of NADPH oxidases. Thus, the ACE2/Ang-(1-7)/Mas receptor pathway plays a protective role in brain ischemic damage by counteracting the detrimental effects of Ang-II-induced ROS production. PMID:24814023

  16. Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium.

    PubMed

    Rodríguez-Serrano, María; Romero-Puertas, María C; Pazmiño, Diana M; Testillano, Pilar S; Risueño, María C; Del Río, Luis A; Sandalio, Luisa M

    2009-05-01

    Cadmium (Cd) toxicity has been widely studied in different plant species; however, the mechanism involved in its toxicity as well as the cell response against the metal have not been well established. In this work, using pea (Pisum sativum) plants, we studied the effect of Cd on antioxidants, reactive oxygen species (ROS), and nitric oxide (NO) metabolism of leaves using different cellular, molecular, and biochemical approaches. The growth of pea plants with 50 mum CdCl(2) affected differentially the expression of superoxide dismutase (SOD) isozymes at both transcriptional and posttranscriptional levels, giving rise to a SOD activity reduction. The copper/zinc-SOD down-regulation was apparently due to the calcium (Ca) deficiency induced by the heavy metal. In these circumstances, the overproduction of the ROS hydrogen peroxide and superoxide could be observed in vivo by confocal laser microscopy, mainly associated with vascular tissue, epidermis, and mesophyll cells, and the production of superoxide radicals was prevented by exogenous Ca. On the other hand, the NO synthase-dependent NO production was strongly depressed by Cd, and treatment with Ca prevented this effect. Under these conditions, the pathogen-related proteins PrP4A and chitinase and the heat shock protein 71.2, were up-regulated, probably to protect cells against damages induced by Cd. The regulation of these proteins could be mediated by jasmonic acid and ethylene, whose contents increased by Cd treatment. A model is proposed for the cellular response to long-term Cd exposure consisting of cross talk between Ca, ROS, and NO.

  17. Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species.

    PubMed

    Wells, Peter G; Bhuller, Yadvinder; Chen, Connie S; Jeng, Winnie; Kasapinovic, Sonja; Kennedy, Julia C; Kim, Perry M; Laposa, Rebecca R; McCallum, Gordon P; Nicol, Christopher J; Parman, Toufan; Wiley, Michael J; Wong, Andrea W

    2005-09-01

    Developmental pathologies may result from endogenous or xenobiotic-enhanced formation of reactive oxygen species (ROS), which oxidatively damage cellular macromolecules and/or alter signal transduction. This minireview focuses upon several model drugs (phenytoin, thalidomide, methamphetamine), environmental chemicals (benzo[a]pyrene) and gamma irradiation to examine this hypothesis in vivo and in embryo culture using mouse, rat and rabbit models. Embryonic prostaglandin H synthases (PHSs) and lipoxygenases bioactivate xenobiotics to free radical intermediates that initiate ROS formation, resulting in oxidation of proteins, lipids and DNA. Oxidative DNA damage and embryopathies are reduced in PHS knockout mice, and in mice treated with PHS inhibitors, antioxidative enzymes, antioxidants and free radical trapping agents. Thalidomide causes embryonic DNA oxidation in susceptible (rabbit) but not resistant (mouse) species. Embryopathies are increased in mutant mice deficient in the antioxidative enzyme glucose-6-phosphate dehydrogenase (G6PD), or by glutathione (GSH) depletion, or inhibition of GSH peroxidase or GSH reductase. Inducible nitric oxide synthase knockout mice are partially protected. Inhibition of Ras or NF-kB pathways reduces embryopathies, implicating ROS-mediated signal transduction. Atm and p53 knockout mice deficient in DNA damage response/repair are more susceptible to xenobiotic or radiation embryopathies, suggesting a teratological role for DNA damage, consistent with enhanced susceptibility to methamphetamine in ogg1 knockout mice with deficient repair of oxidative DNA damage. Even endogenous embryonic oxidative stress carries a risk, since untreated G6PD- or ATM-deficient mice have increased embryopathies. Thus, embryonic processes regulating the balance of ROS formation, oxidative DNA damage and repair, and ROS-mediated signal transduction may be important determinants of teratological risk.

  18. Reactive oxygen species at the crossroads of inflammasome and inflammation

    PubMed Central

    Harijith, Anantha; Ebenezer, David L.; Natarajan, Viswanathan

    2014-01-01

    Inflammasomes form a crucial part of the innate immune system. These are multi-protein oligomer platforms that are composed of intracellular sensors which are coupled with caspase and interleukin activating systems. Nod-like receptor protein (NLRP) 3, and 6 and NLRC4 and AIM2 are the prominent members of the inflammasome family. Inflammasome activation leads to pyroptosis, a process of programmed cell death distinct from apoptosis through activation of Caspase and further downstream targets such as IL-1β and IL-18 leading to activation of inflammatory cascade. Reactive oxygen species (ROS) serves as important inflammasome activating signals. ROS activates inflammasome through mitogen-activated protein kinases (MAPK) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). Dysregulation of inflammasome plays a significant role in various pathological processes. Viral infections such as Dengue and Respiratory syncytial virus activate inflammasomes. Crystal compounds in silicosis and gout also activate ROS. In diabetes, inhibition of autophagy with resultant accumulation of dysfunctional mitochondria leads to enhanced ROS production activating inflammasomes. Activation of inflammasomes can be dampened by antioxidants such as SIRT-1. Inflammasome and related cascade could serve as future therapeutic targets for various pathological conditions. PMID:25324778

  19. Reactive Oxygen Species (ROS): Beneficial Companions of Plants’ Developmental Processes

    PubMed Central

    Singh, Rachana; Singh, Samiksha; Parihar, Parul; Mishra, Rohit K.; Tripathi, Durgesh K.; Singh, Vijay P.; Chauhan, Devendra K.; Prasad, Sheo M.

    2016-01-01

    Reactive oxygen species (ROS) are generated inevitably in the redox reactions of plants, including respiration and photosynthesis. In earlier studies, ROS were considered as toxic by-products of aerobic pathways of the metabolism. But in recent years, concept about ROS has changed because they also participate in developmental processes of plants by acting as signaling molecules. In plants, ROS regulate many developmental processes such as cell proliferation and differentiation, programmed cell death, seed germination, gravitropism, root hair growth and pollen tube development, senescence, etc. Despite much progress, a comprehensive update of advances in the understanding of the mechanisms evoked by ROS that mediate in cell proliferation and development are fragmentry and the matter of ROS perception and the signaling cascade remains open. Therefore, keeping in view the above facts, an attempt has been made in this article to summarize the recent findings regarding updates made in the regulatory action of ROS at various plant developmental stages, which are still not well-known. PMID:27729914

  20. Reactive oxygen species in response of plants to gravity stress

    NASA Astrophysics Data System (ADS)

    Jadko, Sergiy

    2016-07-01

    Reactive oxygen species (ROS) as second messengers can induce stress response of plants. Thioredoxins (Trx) and peroxiredoxins (Prx) can function as sensors and transmitters of the ROS in stress signaling and antioxidant response. 12-14 days old tissue culture of Arabidopsis thaliana have been investigated. Hypergravity stress was induced by centrifugation at 10 and 20 g during 30 and 90 min and than intensity of spontaneous chemiluminescence (SChL/ROS content), Trx and Prx activities were determined. All experiments were repeated from 3 to 5 times and the obtained data were statistically treated. In the tissue culture under development of the stress there were an increase in intensity of SChL and Trx and Prx activities. Thus, under hypergravity stress in the plant occurred early increase in the ROS level and the ROS induced the increase in the Trx and Prx activities. Prx and Trx can also participate in the formation of stress respons as acceptors and transducers of the redox signals. Increase in the activity of these enzymes primarily aimed at increasing of the total antioxidant activity in the cells to prevent of the plant to development of oxidative degradation by ROS.

  1. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals.

    PubMed

    Prasad, Sahdeo; Gupta, Subash C; Tyagi, Amit K

    2017-02-28

    Extensive research over the past half a century indicates that reactive oxygen species (ROS) play an important role in cancer. Although low levels of ROS can be beneficial, excessive accumulation can promote cancer. One characteristic of cancer cells that distinguishes them from normal cells is their ability to produce increased numbers of ROS and their increased dependence on an antioxidant defense system. ROS are produced as a byproduct intracellularly by mitochondria and other cellular elements and exogenously by pollutants, tobacco, smoke, drugs, xenobiotics, and radiation. ROS modulate various cell signaling pathways, which are primarily mediated through the transcription factors NF-κB and STAT3, hypoxia-inducible factor-1α, kinases, growth factors, cytokines and other proteins, and enzymes; these pathways have been linked to cellular transformation, inflammation, tumor survival, proliferation, invasion, angiogenesis, and metastasis of cancer. ROS are also associated with epigenetic changes in genes, which is helpful in diagnosing diseases. This review considers the role of ROS in the various stages of cancer development. Finally, we provide evidence that nutraceuticals derived from Mother Nature are highly effective in eliminating cancer cells.

  2. Reactive oxygen species: players in the cardiovascular effects of testosterone.

    PubMed

    Tostes, Rita C; Carneiro, Fernando S; Carvalho, Maria Helena C; Reckelhoff, Jane F

    2016-01-01

    Androgens are essential for the development and maintenance of male reproductive tissues and sexual function and for overall health and well being. Testosterone, the predominant and most important androgen, not only affects the male reproductive system, but also influences the activity of many other organs. In the cardiovascular system, the actions of testosterone are still controversial, its effects ranging from protective to deleterious. While early studies showed that testosterone replacement therapy exerted beneficial effects on cardiovascular disease, some recent safety studies point to a positive association between endogenous and supraphysiological levels of androgens/testosterone and cardiovascular disease risk. Among the possible mechanisms involved in the actions of testosterone on the cardiovascular system, indirect actions (changes in the lipid profile, insulin sensitivity, and hemostatic mechanisms, modulation of the sympathetic nervous system and renin-angiotensin-aldosterone system), as well as direct actions (modulatory effects on proinflammatory enzymes, on the generation of reactive oxygen species, nitric oxide bioavailability, and on vasoconstrictor signaling pathways) have been reported. This mini-review focuses on evidence indicating that testosterone has prooxidative actions that may contribute to its deleterious actions in the cardiovascular system. The controversial effects of testosterone on ROS generation and oxidant status, both prooxidant and antioxidant, in the cardiovascular system and in cells and tissues of other systems are reviewed.

  3. Reactive oxygen species a double-edged sword for mesothelioma

    PubMed Central

    Catalani, Simona; Galati, Rossella

    2015-01-01

    It is well known that oxidative stress can lead to chronic inflammation which, in turn, could mediate most chronic diseases including cancer. Oxidants have been implicated in the activity of crocidolite and amosite, the most powerful types of asbestos associated to the occurrence of mesothelioma. Currently rates of mesothelioma are rising and estimates indicate that the incidence of mesothelioma will peak within the next 10–15 years in the western world, while in Japan the peak is predicted not to occur until 40 years from now. Although the use of asbestos has been banned in many countries around the world, production of and the potentially hazardous exposure to asbestos is still present with locally high incidences of mesothelioma. Today a new man-made material, carbon nanotubes, has arisen as a concern; carbon nanotubes may display ‘asbestos-like’ pathogenicity with mesothelioma induction potential. Carbon nanotubes resulted in the greatest reactive oxygen species generation. How oxidative stress activates inflammatory pathways leading to the transformation of a normal cell to a tumor cell, to tumor cell survival, proliferation, invasion, angiogenesis, chemoresistance, and radioresistance, is the aim of this review. PMID:26078352

  4. Generation of reactive oxygen species from silicon nanowires.

    PubMed

    Leonard, Stephen S; Cohen, Guy M; Kenyon, Allison J; Schwegler-Berry, Diane; Fix, Natalie R; Bangsaruntip, Sarunya; Roberts, Jenny R

    2014-01-01

    Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor-liquid-solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals.

  5. Geochemical production of reactive oxygen species from biogeochemically reduced Fe.

    PubMed

    Murphy, Sarah A; Solomon, Benson M; Meng, Shengnan; Copeland, Justin M; Shaw, Timothy J; Ferry, John L

    2014-04-01

    The photochemical reduction of Fe(III) complexes to Fe(II) is a well-known initiation step for the production of reactive oxygen species (ROS) in sunlit waters. Here we show a geochemical mechanism for the same in dark environments based on the tidally driven, episodic movement of anoxic groundwaters through oxidized, Fe(III) rich sediments. Sediment samples were collected from the top 5 cm of sediment in a saline tidal creek in the estuary at Murrell's Inlet, South Carolina and characterized with respect to total Fe, acid volatile sulfides, and organic carbon content. These sediments were air-dried, resuspended in aerated solution, then exposed to aqueous sulfide at a range of concentrations chosen to replicate the conditions characteristic of a tidal cycle, beginning with low tide. No detectable ROS production occurred from this process in the dark until sulfide was added. Sulfide addition resulted in the rapid production of hydrogen peroxide, with maximum concentrations of 3.85 μM. The mechanism of hydrogen peroxide production was tested using a simplified three factor representation of the system based on hydrogen sulfide, Fe(II) and Fe(III). The resulting predictive model for maximum hydrogen peroxide agreed with measured hydrogen peroxide in field-derived samples at the 95% level of confidence, although with a persistent negative bias suggesting a minor undiscovered peroxide source in sediments.

  6. Mechanism of teratogenesis: electron transfer, reactive oxygen species, and antioxidants.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2006-12-01

    Teratogenesis has been a topic of increasing interest and concern in recent years, generating controversy in association with danger to humans and other living things. A veritable host of chemicals is known to be involved, encompassing a wide variety of classes, both organic and inorganic. Contact with these chemicals is virtually unavoidable due to contamination of air, water, ground, food, beverages, and household items, as well as exposure to medicinals. The resulting adverse effects on reproduction are numerous. There is uncertainty regarding the mode of action of these chemicals, although various theories have been advanced, e.g., disruption of the central nervous system (CNS), DNA attack, enzyme inhibition, interference with hormonal action, and insult to membranes, proteins, and mitochondria. This review provides extensive evidence for involvement of oxidative stress (OS) and electron transfer (ET) as a unifying theme. Successful application of the mechanistic approach is made to all of the main classes of toxins, in addition to large numbers of miscellaneous types. We believe it is not coincidental that the vast majority of these substances incorporate ET functionalities (quinone, metal complex, ArNO2, or conjugated iminium) either per se or in metabolites, potentially giving rise to reactive oxygen species (ROS) by redox cycling. Some categories, e.g., peroxides and radiation, appear to generate ROS by non-ET routes. Other mechanisms are briefly addressed; a multifaceted approach to mode of action appears to be the most logical. Our framework should increase understanding and contribute to preventative measures, such as use of antioxidants.

  7. Redox Roles of Reactive Oxygen Species in Cardiovascular Diseases

    PubMed Central

    He, Feng; Zuo, Li

    2015-01-01

    Cardiovascular disease (CVD), a major cause of mortality in the world, has been extensively studied over the past decade. However, the exact mechanism underlying its pathogenesis has not been fully elucidated. Reactive oxygen species (ROS) play a pivotal role in the progression of CVD. Particularly, ROS are commonly engaged in developing typical characteristics of atherosclerosis, one of the dominant CVDs. This review will discuss the involvement of ROS in atherosclerosis, specifically their effect on inflammation, disturbed blood flow and arterial wall remodeling. Pharmacological interventions target ROS in order to alleviate oxidative stress and CVD symptoms, yet results are varied due to the paradoxical role of ROS in CVD. Lack of effectiveness in clinical trials suggests that understanding the exact role of ROS in the pathophysiology of CVD and developing novel treatments, such as antioxidant gene therapy and nanotechnology-related antioxidant delivery, could provide a therapeutic advance in treating CVDs. While genetic therapies focusing on specific antioxidant expression seem promising in CVD treatments, multiple technological challenges exist precluding its immediate clinical applications. PMID:26610475

  8. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling

    PubMed Central

    2014-01-01

    Background Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Conclusions Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling. PMID:24898702

  9. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved?

    PubMed Central

    Görlach, Agnes; Dimova, Elitsa Y.; Petry, Andreas; Martínez-Ruiz, Antonio; Hernansanz-Agustín, Pablo; Rolo, Anabela P.; Palmeira, Carlos M.; Kietzmann, Thomas

    2015-01-01

    Within the last twenty years the view on reactive oxygen species (ROS) has changed; they are no longer only considered to be harmful but also necessary for cellular communication and homeostasis in different organisms ranging from bacteria to mammals. In the latter, ROS were shown to modulate diverse physiological processes including the regulation of growth factor signaling, the hypoxic response, inflammation and the immune response. During the last 60–100 years the life style, at least in the Western world, has changed enormously. This became obvious with an increase in caloric intake, decreased energy expenditure as well as the appearance of alcoholism and smoking; These changes were shown to contribute to generation of ROS which are, at least in part, associated with the occurrence of several chronic diseases like adiposity, atherosclerosis, type II diabetes, and cancer. In this review we discuss aspects and problems on the role of intracellular ROS formation and nutrition with the link to diseases and their problematic therapeutical issues. PMID:26339717

  10. Imaging Reactive Oxygen Species-Induced Modifications in Living Systems

    PubMed Central

    Maulucci, Giuseppe; Bačić, Goran; Bridal, Lori; Schmidt, Harald H.H.W.; Tavitian, Bertrand; Viel, Thomas; Utsumi, Hideo; Yalçın, A. Süha

    2016-01-01

    Abstract Significance: Reactive Oxygen Species (ROS) may regulate signaling, ion channels, transcription factors, and biosynthetic processes. ROS-related diseases can be due to either a shortage or an excess of ROS. Recent Advances: Since the biological activity of ROS depends on not only concentration but also spatiotemporal distribution, real-time imaging of ROS, possibly in vivo, has become a need for scientists, with potential for clinical translation. New imaging techniques as well as new contrast agents in clinically established modalities were developed in the previous decade. Critical Issues: An ideal imaging technique should determine ROS changes with high spatio-temporal resolution, detect physiologically relevant variations in ROS concentration, and provide specificity toward different redox couples. Furthermore, for in vivo applications, bioavailability of sensors, tissue penetration, and a high signal-to-noise ratio are additional requirements to be satisfied. Future Directions: None of the presented techniques fulfill all requirements for clinical translation. The obvious way forward is to incorporate anatomical and functional imaging into a common hybrid-imaging platform. Antioxid. Redox Signal. 24, 939–958. PMID:27139586

  11. Serum levels of reactive oxygen species (ROS) in the bitch.

    PubMed

    Rizzo, Annalisa; Roscino, Maria Teresa; Minoia, Giuseppe; Trisolini, Carmelinda; Spedicato, Massimo; Mutinati, Maddalena; Pantaleo, Marianna; Jirillo, Felicita; Sciorsci, Raffaele L

    2009-06-01

    The aim of this study was to determine the serum concentrations of reactive oxygen species (ROS) during the different phases of the estrous cycle in the bitch, in order to establish their physiological values. 56 healthy mixed-breed bitches were enrolled at this purpose and divided into 4 groups, standing on the different phases of the estrus cycle. Blood samples were collected in all groups and serum ROS concentrations were determined. Proestral concentrations were statistically higher than anestral ones, and statistically lower than those found in estrus (p<0.001). The highest concentrations of ROS were detected at estrus, that is, in the peri-ovulatory period. This sharp increase in ROS concentrations is related to the acute inflammatory process underlying ovulation and to the increase in immune and metabolic activities, cytological changes and myometrial contractility promoted by the high levels of estrogens. In diestrus, the mean concentration of ROS decreases. This reduction did not show any statistically significant difference with the mean value observed in proestrus. In this phase, in fact, the high concentrations of progesterone, exerting an antioxidant and immunodepressive effect, justify the lower mean concentration of ROS detected. In anestrus, the lowest concentrations of ROS were observed, for the reduced metabolic and endocrine activity occurring in this phase of the estrous cycle. In conclusion our results establish the physiologic levels of ROS during the estrous cycle in the bitch and reflect the endocrine morphologic and metabolic changes occurring during it.

  12. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.

    PubMed

    Starkov, Anatoly A; Fiskum, Gary; Chinopoulos, Christos; Lorenzo, Beverly J; Browne, Susan E; Patel, Mulchand S; Beal, M Flint

    2004-09-08

    Mitochondria-produced reactive oxygen species (ROS) are thought to contribute to cell death caused by a multitude of pathological conditions. The molecular sites of mitochondrial ROS production are not well established but are generally thought to be located in complex I and complex III of the electron transport chain. We measured H(2)O(2) production, respiration, and NADPH reduction level in rat brain mitochondria oxidizing a variety of respiratory substrates. Under conditions of maximum respiration induced with either ADP or carbonyl cyanide p-trifluoromethoxyphenylhydrazone,alpha-ketoglutarate supported the highest rate of H(2)O(2) production. In the absence of ADP or in the presence of rotenone, H(2)O(2) production rates correlated with the reduction level of mitochondrial NADPH with various substrates, with the exception of alpha-ketoglutarate. Isolated mitochondrial alpha-ketoglutarate dehydrogenase (KGDHC) and pyruvate dehydrogenase (PDHC) complexes produced superoxide and H(2)O(2). NAD(+) inhibited ROS production by the isolated enzymes and by permeabilized mitochondria. We also measured H(2)O(2) production by brain mitochondria isolated from heterozygous knock-out mice deficient in dihydrolipoyl dehydrogenase (Dld). Although this enzyme is a part of both KGDHC and PDHC, there was greater impairment of KGDHC activity in Dld-deficient mitochondria. These mitochondria also produced significantly less H(2)O(2) than mitochondria isolated from their littermate wild-type mice. The data strongly indicate that KGDHC is a primary site of ROS production in normally functioning mitochondria.

  13. Ethanol stimulates epithelial sodium channels by elevating reactive oxygen species.

    PubMed

    Bao, Hui-Fang; Song, John Z; Duke, Billie J; Ma, He-Ping; Denson, Donald D; Eaton, Douglas C

    2012-12-01

    Alcohol affects total body sodium balance, but the molecular mechanism of its effect remains unclear. We used single-channel methods to examine how ethanol affects epithelial sodium channels (ENaC) in A6 distal nephron cells. The data showed that ethanol significantly increased both ENaC open probability (P(o)) and the number of active ENaC in patches (N). 1-Propanol and 1-butanol also increased ENaC activity, but iso-alcohols did not. The effects of ethanol were mimicked by acetaldehyde, the first metabolic product of ethanol, but not by acetone, the metabolic product of 2-propanol. Besides increasing open probability and apparent density of active channels, confocal microscopy and surface biotinylation showed that ethanol significantly increased α-ENaC protein in the apical membrane. The effects of ethanol on ENaC P(o) and N were abolished by a superoxide scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL) and blocked by the phosphatidylinositol 3-kinase inhibitor LY294002. Consistent with an effect of ethanol-induced reactive oxygen species (ROS) on ENaC, primary alcohols and acetaldehyde elevated intracellular ROS, but secondary alcohols did not. Taken together with our previous finding that ROS stimulate ENaC, the current results suggest that ethanol stimulates ENaC by elevating intracellular ROS probably via its metabolic product acetaldehyde.

  14. Are Reactive Oxygen Species Always Detrimental to Pathogens?

    PubMed Central

    Bozza, Marcelo T.

    2014-01-01

    Abstract Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses. Antioxid. Redox Signal. 20, 1000–1037. PMID:23992156

  15. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    SciTech Connect

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  16. Reactive oxygen species: players in the cardiovascular effects of testosterone

    PubMed Central

    Carneiro, Fernando S.; Carvalho, Maria Helena C.; Reckelhoff, Jane F.

    2015-01-01

    Androgens are essential for the development and maintenance of male reproductive tissues and sexual function and for overall health and well being. Testosterone, the predominant and most important androgen, not only affects the male reproductive system, but also influences the activity of many other organs. In the cardiovascular system, the actions of testosterone are still controversial, its effects ranging from protective to deleterious. While early studies showed that testosterone replacement therapy exerted beneficial effects on cardiovascular disease, some recent safety studies point to a positive association between endogenous and supraphysiological levels of androgens/testosterone and cardiovascular disease risk. Among the possible mechanisms involved in the actions of testosterone on the cardiovascular system, indirect actions (changes in the lipid profile, insulin sensitivity, and hemostatic mechanisms, modulation of the sympathetic nervous system and renin-angiotensin-aldosterone system), as well as direct actions (modulatory effects on proinflammatory enzymes, on the generation of reactive oxygen species, nitric oxide bioavailability, and on vasoconstrictor signaling pathways) have been reported. This mini-review focuses on evidence indicating that testosterone has prooxidative actions that may contribute to its deleterious actions in the cardiovascular system. The controversial effects of testosterone on ROS generation and oxidant status, both prooxidant and antioxidant, in the cardiovascular system and in cells and tissues of other systems are reviewed. PMID:26538238

  17. Soot-driven reactive oxygen species formation from incense burning.

    PubMed

    Chuang, Hsiao-Chi; Jones, Tim P; Lung, Shih-Chun C; BéruBé, Kelly A

    2011-10-15

    This study investigated the effects of reactive oxygen species (ROS) generated as a function of the physicochemistry of incense particulate matter (IPM), diesel exhaust particles (DEP) and carbon black (CB). Microscopical and elemental analyses were used to determine particle morphology and inorganic compounds. ROS was determined using the reactive dye, Dichlorodihydrofluorescin (DCFH), and the Plasmid Scission Assay (PSA), which determine DNA damage. Two common types of soot were observed within IPM, including nano-soot and micro-soot, whereas DEP and CB mainly consisted of nano-soot. These PM were capable of causing oxidative stress in a dose-dependent manner, especially IPM and DEP. A dose of IPM (36.6-102.3μg/ml) was capable of causing 50% oxidative DNA damage. ROS formation was positively correlated to smaller nano-soot aggregates and bulk metallic compounds, particularly Cu. These observations have important implications for respiratory health given that inflammation has been recognised as an important factor in the development of lung injury/diseases by oxidative stress. This study supports the view that ROS formation by combustion-derived PM is related to PM physicochemistry, and also provides new data for IPM.

  18. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis.

    PubMed

    Dan Dunn, Joe; Alvarez, Luis Aj; Zhang, Xuezhi; Soldati, Thierry

    2015-12-01

    Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria.

  19. Generation of Reactive Oxygen Species from Silicon Nanowires

    PubMed Central

    Leonard, Stephen S; Cohen, Guy M; Kenyon, Allison J; Schwegler-Berry, Diane; Fix, Natalie R; Bangsaruntip, Sarunya; Roberts, Jenny R

    2014-01-01

    Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor–liquid–solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals. PMID:25452695

  20. Reactive Oxygen Species, Apoptosis, Antimicrobial Peptides and Human Inflammatory Diseases

    PubMed Central

    Oyinloye, Babatunji Emmanuel; Adenowo, Abiola Fatimah; Kappo, Abidemi Paul

    2015-01-01

    Excessive free radical generation, especially reactive oxygen species (ROS) leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs). Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs) have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance. PMID:25850012

  1. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis

    PubMed Central

    Dan Dunn, Joe; Alvarez, Luis AJ; Zhang, Xuezhi; Soldati, Thierry

    2015-01-01

    Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria. PMID:26432659

  2. NSAIDs and Cardiovascular Diseases: Role of Reactive Oxygen Species

    PubMed Central

    Ghosh, Rajeshwary; Alajbegovic, Azra; Gomes, Aldrin V.

    2015-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs worldwide. NSAIDs are used for a variety of conditions including pain, rheumatoid arthritis, and musculoskeletal disorders. The beneficial effects of NSAIDs in reducing or relieving pain are well established, and other benefits such as reducing inflammation and anticancer effects are also documented. The undesirable side effects of NSAIDs include ulcers, internal bleeding, kidney failure, and increased risk of heart attack and stroke. Some of these side effects may be due to the oxidative stress induced by NSAIDs in different tissues. NSAIDs have been shown to induce reactive oxygen species (ROS) in different cell types including cardiac and cardiovascular related cells. Increases in ROS result in increased levels of oxidized proteins which alters key intracellular signaling pathways. One of these key pathways is apoptosis which causes cell death when significantly activated. This review discusses the relationship between NSAIDs and cardiovascular diseases (CVD) and the role of NSAID-induced ROS in CVD. PMID:26457127

  3. Redox Mechanism of Reactive Oxygen Species in Exercise

    PubMed Central

    He, Feng; Li, Juan; Liu, Zewen; Chuang, Chia-Chen; Yang, Wenge; Zuo, Li

    2016-01-01

    It is well known that regular exercise can benefit health by enhancing antioxidant defenses in the body. However, unaccustomed and/or exhaustive exercise can generate excessive reactive oxygen species (ROS), leading to oxidative stress-related tissue damages and impaired muscle contractility. ROS are produced in both aerobic and anaerobic exercise. Mitochondria, NADPH oxidases and xanthine oxidases have all been identified as potential contributors to ROS production, yet the exact redox mechanisms underlying exercise-induced oxidative stress remain elusive. Interestingly, moderate exposure to ROS is necessary to induce body's adaptive responses such as the activation of antioxidant defense mechanisms. Dietary antioxidant manipulation can also reduce ROS levels and muscle fatigue, as well as enhance exercise recovery. To elucidate the complex role of ROS in exercise, this review updates on new findings of ROS origins within skeletal muscles associated with various types of exercises such as endurance, sprint and mountain climbing. In addition, we will examine the corresponding antioxidant defense systems as well as dietary manipulation against damages caused by ROS. PMID:27872595

  4. Formation of protein S-nitrosylation by reactive oxygen species.

    PubMed

    Hlaing, K Htet; Clément, M-V

    2014-09-01

    In the present study, the formation of whole cellular S-nitrosylated proteins (protein-SNOs) by the reactive oxygen species (ROS), hydrogen peroxide (H2O2), and superoxide (O2(•-)) is demonstrated. A spectrum of protein cysteine oxidative modifications was detected upon incubation of serum-starved mouse embryonic fibroblasts with increasing concentrations of exogenous H2O2, ranging from exclusive protein-SNOs at low concentrations to a mixture of protein-SNOs and other protein oxidation at higher concentrations to exclusively non-SNO protein oxidation at the highest concentrations of the oxidant used. Furthermore, formation of protein-SNOs was also detected upon inhibition of the antioxidant protein Cu/Zn superoxide dismutase that results in an increase in intracellular concentration of O2(•-). These results were further validated using the phosphatase and tensin homologue, PTEN, as a model of a protein sensitive to oxidative modifications. The formation of protein-SNOs by H2O2 and O2(•-) was prevented by the NO scavenger, c-PTIO, as well as the peroxinitrite decomposition catalyst, FETPPS, and correlated with the production or the consumption of nitric oxide (NO), respectively. These data suggest that the formation of protein-SNOs by H2O2 or O2(•-) requires the presence or the production of NO and involves the formation of the nitrosylating intermediate, peroxinitrite.

  5. NO accounts completely for the oxygenated nitrogen species generated by enzymic L-arginine oxygenation.

    PubMed Central

    Mülsch, A; Vanin, A; Mordvintcev, P; Hauschildt, S; Busse, R

    1992-01-01

    We have assessed the stoichiometry of the nitric oxide (NO) synthase reaction by using a novel e.p.r. technique. NO generated by crude and partially purified NO synthase from endothelial cells and Escherichia coli-lipopolysaccharide-activated macrophages was trapped by a ferrous diethyldithiocarbamate complex dispersed in yeast. The paramagnetic ferrous mononitrosyl dithiocarbamate complex formed exhibited a characteristic e.p.r. signal at g perpendicular = 2.035 and g parallel = 2.02 with a triplet hyperfine structure (hfs) at g perpendicular. NO, 3-morpholinosydnonimine and S-nitroso-L-cysteine, but not nitrite or hydroxylamine, generated a similar e.p.r. signal. NO generated by NO synthase and by SIN-1 accumulated at a constant rate for 1 h, as measured by continuous e.p.r. registration at 37 degrees C. The formation of e.p.r.-detectable NO by NO synthases was inhibited by NG-nitro-L-arginine. Incubation with [15N]NG-L-arginine caused an e.p.r. signal with doublet hfs, indicating that the nitrosyl nitrogen derived exclusively from the guanidino nitrogen. The amount of NO generated by NO synthase as measured by e.p.r. technique was compared with formation of L-[3H]citrulline from L-[3H]arginine. NO and L-citrulline were detected at a 1:1 ratio with both NO synthase preparations. GSH and thiol depletion did not significantly affect NO synthase activity, excluding S-nitrosothiols as intermediates in the NO synthase reaction. We conclude that NO fully accounts for the immediate oxygenated nitrogen species derived from the enzymic oxygenation of L-arginine. PMID:1281408

  6. Reactive Oxygen Species (ROS) generation by lunar simulants

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Rickman, Douglas; Schoonen, Martin A.

    2016-05-01

    The current interest in human exploration of the Moon and past experiences of Apollo astronauts has rekindled interest into the possible harmful effects of lunar dust on human health. In comparison to the Apollo-era explorations, human explorers may be weeks on the Moon, which will raise the risk of inhalation exposure. The mineralogical composition of lunar dust is well documented, but its effects on human health are not fully understood. With the aim of understanding the reactivity of dusts that may be encountered on geologically different lunar terrains, we have studied Reactive Oxygen Species (ROS) generation by a suite of lunar simulants of different mineralogical-chemical composition dispersed in water and Simulated Lung Fluid (SLF). To further explore the reactivity of simulants under lunar environmental conditions, we compared the reactivity of simulants both in air and inert atmosphere. As the impact of micrometeorites with consequent shock-induced stresses is a major environmental factor on the Moon, we also studied the effect of mechanical stress on samples. Mechanical stress was induced by hand crushing the samples both in air and inert atmosphere. The reactivity of samples after crushing was analyzed for a period of up to nine days. Hydrogen peroxide (H2O2) in water and SLF was analyzed by an in situ electrochemical probe and hydroxyl radical (•OH) by Electron Spin Resonance (ESR) spectroscopy and Adenine probe. Out of all simulants, CSM-CL-S was found to be the most reactive simulant followed by OB-1 and then JSC-1A simulant. The overall reactivity of samples in the inert atmosphere was higher than in air. Fresh crushed samples showed a higher level of reactivity than uncrushed samples. Simulant samples treated to create agglutination, including the formation of zero-valent iron, showed less reactivity than untreated simulants. ROS generation in SLF is initially slower than in deionized water (DI), but the ROS formation is sustained for as long as 7

  7. Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer.

    PubMed

    Hrycay, Eugene G; Bandiera, Stelvio M

    2015-01-01

    This review examines the involvement of cytochrome P450 (CYP) enzymes in the formation of reactive oxygen species in biological systems and discusses the possible involvement of reactive oxygen species and CYP enzymes in cancer. Reactive oxygen species are formed in biological systems as byproducts of the reduction of molecular oxygen and include the superoxide radical anion (∙O2-), hydrogen peroxide (H2O2), hydroxyl radical (∙OH), hydroperoxyl radical (HOO∙), singlet oxygen ((1)O2), and peroxyl radical (ROO∙). Two endogenous sources of reactive oxygen species are the mammalian CYP-dependent microsomal electron transport system and the mitochondrial electron transport chain. CYP enzymes catalyze the oxygenation of an organic substrate and the simultaneous reduction of molecular oxygen. If the transfer of oxygen to a substrate is not tightly controlled, uncoupling occurs and leads to the formation of reactive oxygen species. Reactive oxygen species are capable of causing oxidative damage to cellular membranes and macromolecules that can lead to the development of human diseases such as cancer. In normal cells, intracellular levels of reactive oxygen species are maintained in balance with intracellular biochemical antioxidants to prevent cellular damage. Oxidative stress occurs when this critical balance is disrupted. Topics covered in this review include the role of reactive oxygen species in intracellular cell signaling and the relationship between CYP enzymes and cancer. Outlines of CYP expression in neoplastic tissues, CYP enzyme polymorphism and cancer risk, CYP enzymes in cancer therapy and the metabolic activation of chemical procarcinogens by CYP enzymes are also provided.

  8. A case of mistaken identity: are reactive oxygen species actually reactive sulfide species?

    PubMed

    DeLeon, Eric R; Gao, Yan; Huang, Evelyn; Arif, Maaz; Arora, Nitin; Divietro, Alexander; Patel, Shivali; Olson, Kenneth R

    2016-04-01

    Stepwise one-electron reduction of oxygen to water produces reactive oxygen species (ROS) that are chemically and biochemically similar to reactive sulfide species (RSS) derived from one-electron oxidations of hydrogen sulfide to elemental sulfur. Both ROS and RSS are endogenously generated and signal via protein thiols. Given the similarities between ROS and RSS, we wondered whether extant methods for measuring the former would also detect the latter. Here, we compared ROS to RSS sensitivity of five common ROS methods: redox-sensitive green fluorescent protein (roGFP), 2', 7'-dihydrodichlorofluorescein, MitoSox Red, Amplex Red, and amperometric electrodes. All methods detected RSS and were as, or more, sensitive to RSS than to ROS. roGFP, arguably the "gold standard" for ROS measurement, was more than 200-fold more sensitive to the mixed polysulfide H2Sn(n = 1-8) than to H2O2 These findings suggest that RSS may be far more prevalent in intracellular signaling than previously appreciated and that the contribution of ROS may be overestimated. This conclusion is further supported by the observation that estimated daily sulfur metabolism and ROS production are approximately equal and the fact that both RSS and antioxidant mechanisms have been present since the origin of life, nearly 4 billion years ago, long before the rise in environmental oxygen 600 million years ago. Although ROS are assumed to be the most biologically relevant oxidants, our results question this paradigm. We also anticipate our findings will direct attention toward development of novel and clinically relevant anti-(RSS)-oxidants.

  9. Reactive Oxygen Species Alter Autocrine and Paracrine Signaling

    SciTech Connect

    Zangar, Richard C.; Bollinger, Nikki; Weber, Thomas J.; Tan, Ruimin; Markillie, Lye Meng; Karin, Norman J.

    2011-12-01

    Cytochrome P450 (P450) 3A4 (CYP3A4) is the most abundant P450 protein in human liver and intestine and is highly inducible by a variety of drugs and other compounds. The P450 catalytic cycle is known to uncouple and release reactive oxygen species (ROS), but the effects of ROS from P450 and other enzymes in the endo-plasmic reticulum have been poorly studied from the perspective of effects on cell biology. In this study, we expressed low levels of CYP3A4 in HepG2 cells, a human hepatocarcinoma cell line, and examined effects on intracellular levels of ROS and on the secretion of a variety of growth factors that are important in extracellular communication. Using the redox-sensitive dye RedoxSensor red, we demonstrate that CYP3A4 expression increases levels of ROS in viable cells. A customELISA microarray platform was employed to demonstrate that expression of CYP3A4 increased secretion of amphiregulin, intracellular adhesion molecule 1, matrix metalloprotease 2, platelet-derived growth factor (PDGF), and vascular endothelial growth factor, but suppressed secretion of CD14. The antioxidant N-acetylcysteine suppressed all P450-dependent changes in protein secretion except for CD14. Quantitative RT-PCR demonstrated that changes in protein secretion were consistently associated with corresponding changes in gene expression. Inhibition of the NF-{kappa}B pathway blocked P450 effects on PDGF secretion. CYP3A4 expression also altered protein secretion in human mammary epithelial cells and C10 mouse lung cells. Overall, these results suggest that increased ROS production in the endoplasmic reticulum alters the secretion of proteins that have key roles in paracrine and autocrine signaling.

  10. Reactive oxygen species signaling in plants under abiotic stress.

    PubMed

    Choudhury, Shuvasish; Panda, Piyalee; Sahoo, Lingaraj; Panda, Sanjib Kumar

    2013-04-01

    Abiotic stresses like heavy metals, drought, salt, low temperature, etc. are the major factors that limit crop productivity and yield. These stresses are associated with production of certain deleterious chemical entities called reactive oxygen species (ROS), which include hydrogen peroxide (H₂O₂), superoxide radical (O₂(-)), hydroxyl radical (OH(-)), etc. ROS are capable of inducing cellular damage by degradation of proteins, inactivation of enzymes, alterations in the gene and interfere in various pathways of metabolic importance. Our understanding on ROS in response to abiotic stress is revolutionized with the advancements in plant molecular biology, where the basic understanding on chemical behavior of ROS is better understood. Understanding the molecular mechanisms involved in ROS generation and its potential role during abiotic stress is important to identify means by which plant growth and metabolism can be regulated under acute stress conditions. ROS mediated oxidative stress, which is the key to understand stress related toxicity have been widely studied in many plants and the results in those studies clearly revealed that oxidative stress is the main symptom of toxicity. Plants have their own antioxidant defense mechanisms to encounter ROS that is of enzymic and non-enzymic nature . Coordinated activities of these antioxidants regulate ROS detoxification and reduces oxidative load in plants. Though ROS are always regarded to impart negative impact on plants, some reports consider them to be important in regulating key cellular functions; however, such reports in plant are limited. Molecular approaches to understand ROS metabolism and signaling have opened new avenues to comprehend its critical role in abiotic stress. ROS also acts as secondary messenger that signals key cellular functions like cell proliferation, apoptosis and necrosis. In higher eukaryotes, ROS signaling is not fully understood. In this review we summarize our understanding on ROS

  11. Are mitochondrial reactive oxygen species required for autophagy?

    SciTech Connect

    Jiang, Jianfei; Maeda, Akihiro; Ji, Jing; Baty, Catherine J.; Watkins, Simon C.; Greenberger, Joel S.; Kagan, Valerian E.

    2011-08-19

    Highlights: {yields} Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. {yields} Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. {yields} Autophagy was detectable in mitochondrial DNA deficient {rho}{sup 0} cells. {yields} Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H{sub 2}O{sub 2} was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient {rho}{sup o} HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  12. Reactive Oxygen Species Tune Root Tropic Responses1[OPEN

    PubMed Central

    Krieger, Gat

    2016-01-01

    The default growth pattern of primary roots of land plants is directed by gravity. However, roots possess the ability to sense and respond directionally to other chemical and physical stimuli, separately and in combination. Therefore, these root tropic responses must be antagonistic to gravitropism. The role of reactive oxygen species (ROS) in gravitropism of maize and Arabidopsis (Arabidopsis thaliana) roots has been previously described. However, which cellular signals underlie the integration of the different environmental stimuli, which lead to an appropriate root tropic response, is currently unknown. In gravity-responding roots, we observed, by applying the ROS-sensitive fluorescent dye dihydrorhodamine-123 and confocal microscopy, a transient asymmetric ROS distribution, higher at the concave side of the root. The asymmetry, detected at the distal elongation zone, was built in the first 2 h of the gravitropic response and dissipated after another 2 h. In contrast, hydrotropically responding roots show no transient asymmetric distribution of ROS. Decreasing ROS levels by applying the antioxidant ascorbate, or the ROS-generation inhibitor diphenylene iodonium attenuated gravitropism while enhancing hydrotropism. Arabidopsis mutants deficient in Ascorbate Peroxidase 1 showed attenuated hydrotropic root bending. Mutants of the root-expressed NADPH oxidase RBOH C, but not rbohD, showed enhanced hydrotropism and less ROS in their roots apices (tested in tissue extracts with Amplex Red). Finally, hydrostimulation prior to gravistimulation attenuated the gravistimulated asymmetric ROS and auxin signals that are required for gravity-directed curvature. We suggest that ROS, presumably H2O2, function in tuning root tropic responses by promoting gravitropism and negatively regulating hydrotropism. PMID:27535793

  13. HIF and reactive oxygen species regulate oxidative phosphorylation in cancer.

    PubMed

    Hervouet, Eric; Cízková, Alena; Demont, Jocelyne; Vojtísková, Alena; Pecina, Petr; Franssen-van Hal, Nicole L W; Keijer, Jaap; Simonnet, Hélène; Ivánek, Robert; Kmoch, Stanislav; Godinot, Catherine; Houstek, Josef

    2008-08-01

    A decrease in oxidative phosphorylation (OXPHOS) is characteristic of many cancer types and, in particular, of clear cell renal carcinoma (CCRC) deficient in von Hippel-Lindau (vhl) gene. In the absence of functional pVHL, hypoxia-inducible factor (HIF) 1-alpha and HIF2-alpha subunits are stabilized, which induces the transcription of many genes including those involved in glycolysis and reactive oxygen species (ROS) metabolism. Transfection of these cells with vhl is known to restore HIF-alpha subunit degradation and to reduce glycolytic genes transcription. We show that such transfection with vhl of 786-0 CCRC (which are devoid of HIF1-alpha) also increased the content of respiratory chain subunits. However, the levels of most transcripts encoding OXPHOS subunits were not modified. Inhibition of HIF2-alpha synthesis by RNA interference in pVHL-deficient 786-0 CCRC also restored respiratory chain subunit content and clearly demonstrated a key role of HIF in OXPHOS regulation. In agreement with these observations, stabilization of HIF-alpha subunit by CoCl(2) decreased respiratory chain subunit levels in CCRC cells expressing pVHL. In addition, HIF stimulated ROS production and mitochondrial manganese superoxide dismutase content. OXPHOS subunit content was also decreased by added H(2)O(2.) Interestingly, desferrioxamine (DFO) that also stabilized HIF did not decrease respiratory chain subunit level. While CoCl(2) significantly stimulates ROS production, DFO is known to prevent hydroxyl radical production by inhibiting Fenton reactions. This indicates that the HIF-induced decrease in OXPHOS is at least in part mediated by hydroxyl radical production.

  14. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  15. Oxygen Pathway Modeling Estimates High Reactive Oxygen Species Production above the Highest Permanent Human Habitation

    PubMed Central

    Cano, Isaac; Selivanov, Vitaly; Gomez-Cabrero, David; Tegnér, Jesper; Roca, Josep; Wagner, Peter D.; Cascante, Marta

    2014-01-01

    The production of reactive oxygen species (ROS) from the inner mitochondrial membrane is one of many fundamental processes governing the balance between health and disease. It is well known that ROS are necessary signaling molecules in gene expression, yet when expressed at high levels, ROS may cause oxidative stress and cell damage. Both hypoxia and hyperoxia may alter ROS production by changing mitochondrial Po2 (). Because depends on the balance between O2 transport and utilization, we formulated an integrative mathematical model of O2 transport and utilization in skeletal muscle to predict conditions to cause abnormally high ROS generation. Simulations using data from healthy subjects during maximal exercise at sea level reveal little mitochondrial ROS production. However, altitude triggers high mitochondrial ROS production in muscle regions with high metabolic capacity but limited O2 delivery. This altitude roughly coincides with the highest location of permanent human habitation. Above 25,000 ft., more than 90% of exercising muscle is predicted to produce abnormally high levels of ROS, corresponding to the “death zone” in mountaineering. PMID:25375931

  16. Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions.

    PubMed

    Hoffman, David L; Brookes, Paul S

    2009-06-12

    The mitochondrial generation of reactive oxygen species (ROS) plays a central role in many cell signaling pathways, but debate still surrounds its regulation by factors, such as substrate availability, [O2] and metabolic state. Previously, we showed that in isolated mitochondria respiring on succinate, ROS generation was a hyperbolic function of [O2]. In the current study, we used a wide variety of substrates and inhibitors to probe the O2 sensitivity of mitochondrial ROS generation under different metabolic conditions. From such data, the apparent Km for O2 of putative ROS-generating sites within mitochondria was estimated as follows: 0.2, 0.9, 2.0, and 5.0 microM O2 for the complex I flavin site, complex I electron backflow, complex III QO site, and electron transfer flavoprotein quinone oxidoreductase of beta-oxidation, respectively. Differential effects of respiratory inhibitors on ROS generation were also observed at varying [O2]. Based on these data, we hypothesize that at physiological [O2], complex I is a significant source of ROS, whereas the electron transfer flavoprotein quinone oxidoreductase may only contribute to ROS generation at very high [O2]. Furthermore, we suggest that previous discrepancies in the assignment of effects of inhibitors on ROS may be due to differences in experimental [O2]. Finally, the data set (see supplemental material) may be useful in the mathematical modeling of mitochondrial metabolism.

  17. The interaction of atmospheric pressure plasma jets with cancer and normal cells: generation of intracellular reactive oxygen species and changes of the cell proliferation and cell cycle

    NASA Astrophysics Data System (ADS)

    Chung, Tae Hun; Joh, Hea Min; Kim, Sun Ja; Leem, Sun Hee

    2013-09-01

    The possibility of atmospheric pressure plasmas is emerging as a candidate in cancer therapy. The primary role is played by reactive oxygen species (ROS), UV photons, charged particles and electric fields. Among them, intracellular ROS induced by plasma are considered to be the key constituents that induce cellular changes and apoptosis. In this study, the effects of atmospheric pressure plasma jet on cancer cells (human lung carcinoma cells) and normal cells (embryonic kidney cells and bronchial epithelial cells) were investigated. The plasma treatment was performed under different working gases, applied voltages, gas flow rates, and with and without additive oxygen flow. Using a detection dye, we observed that plasma exposure leads to the increase of the intracellular ROS and that the intracellular ROS production can be controlled by plasma parameters. A significant ROS generation was induced by plasma exposure on cancer cells and the overproduction of ROS contributes to the reduced cell proliferation. Normal cells were observed to be less affected by the plasma-mediated ROS and cell proliferation was less changed. The plasma treatment also resulted in the alteration of the cell cycle that contributes to the induction of apoptosis in cancer cells. The selective effect on cancer and normal cells provides a promising prospect of cold plasma as cancer therapy. This work was supported by the National Research Foundation of Korea under Contract No. 2012R1A1A2002591 and 2012R1A1A3010213.

  18. Surface Electrochemistry of Chloro(phthalocyaninato)rhodium(III) species, and Oxygen Reduction Electrocatalysis, Formation of a Dimeric Species

    DTIC Science & Technology

    1991-08-20

    rhodium(III) Species, and Oxygen Reduction Electrocatalysis , Formation of a Dimeric Species By Y.-H. Tse, P. Seymour, N. Kobayashi, H. Lam, C.C. Leznoff... Electrocatalysis , Formation of a Dimeric Species 12. PERSONAL AuTI𔃾OR(S)* Y.-H. Ise, P. Sey;mour, N. Kobayashi, H. Lam, C.C. Leznoff, and A.B.P. L...Oxygen Reduction Electrocatalysis . Formation of a Dimeric Species. Yu-Hong Tse, Penny Seymour, Nagao Kobayashi, 1 Herman Lam, Clifford C. Leznoff. and

  19. Upsides and Downsides of Reactive Oxygen Species for Cancer: The Roles of Reactive Oxygen Species in Tumorigenesis, Prevention, and Therapy

    PubMed Central

    Gupta, Subash C.; Hevia, David; Patchva, Sridevi; Park, Byoungduck; Koh, Wonil

    2012-01-01

    Abstract Significance: Extensive research during the last quarter century has revealed that reactive oxygen species (ROS) produced in the body, primarily by the mitochondria, play a major role in various cell-signaling pathways. Most risk factors associated with chronic diseases (e.g., cancer), such as stress, tobacco, environmental pollutants, radiation, viral infection, diet, and bacterial infection, interact with cells through the generation of ROS. Recent Advances: ROS, in turn, activate various transcription factors (e.g., nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], activator protein-1, hypoxia-inducible factor-1α, and signal transducer and activator of transcription 3), resulting in the expression of proteins that control inflammation, cellular transformation, tumor cell survival, tumor cell proliferation and invasion, angiogenesis, and metastasis. Paradoxically, ROS also control the expression of various tumor suppressor genes (p53, Rb, and PTEN). Similarly, γ-radiation and various chemotherapeutic agents used to treat cancer mediate their effects through the production of ROS. Interestingly, ROS have also been implicated in the chemopreventive and anti-tumor action of nutraceuticals derived from fruits, vegetables, spices, and other natural products used in traditional medicine. Critical Issues: These statements suggest both “upside” (cancer-suppressing) and “downside” (cancer-promoting) actions of the ROS. Thus, similar to tumor necrosis factor-α, inflammation, and NF-κB, ROS act as a double-edged sword. This paradox provides a great challenge for researchers whose aim is to exploit ROS stress for the development of cancer therapies. Future Directions: The various mechanisms by which ROS mediate paradoxical effects are discussed in this article. The outstanding questions and future directions raised by our current understanding are discussed. Antioxid. Redox Signal. 16, 1295–1322. PMID:22117137

  20. KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

    PubMed Central

    Goitre, Luca; Balzac, Fiorella; Degani, Simona; Degan, Paolo; Marchi, Saverio; Pinton, Paolo; Retta, Saverio Francesco

    2010-01-01

    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the

  1. KRIT1 regulates the homeostasis of intracellular reactive oxygen species.

    PubMed

    Goitre, Luca; Balzac, Fiorella; Degani, Simona; Degan, Paolo; Marchi, Saverio; Pinton, Paolo; Retta, Saverio Francesco

    2010-07-26

    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1(-/-) cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1(-/-) cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45alpha, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell

  2. Active Oxygen Species Generator by Low Pressure Silent Discharge and its Application to Water Treatment

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaaki; Ikeda, Akira; Tanimura, Yasuhiro; Ohta, Koji; Yoshiyasu, Hajimu

    We have proposed the new water treatment using the active oxygen species such as an atomic oxygen with the oxidation power that is stronger than ozone. Based on the results of simulations we designed the silent discharge type active oxygen generator with a water ejector, which is operated on the discharge conditions of low pressure of 6.6kPa. and high temperature of about 200°C. The experimental results are as follows. (1) The yield of the active oxygen increases with the increase of the discharge tube temperature and the decrease of the gas pressure. (2) The life time of active oxygen is tens msec. (3) The active oxygen oxidizes efficiently the formic acid compared with ozone. It is assumed from these results that the active oxygen species having a strong oxidation power is generated.

  3. Characterization of superoxide overproduction by the D-Loop(Nox4)-Nox2 cytochrome b(558) in phagocytes-Differential sensitivity to calcium and phosphorylation events.

    PubMed

    Carrichon, Laure; Picciocchi, Antoine; Debeurme, Franck; Defendi, Federica; Beaumel, Sylvain; Jesaitis, Algirdas J; Dagher, Marie-Claire; Stasia, Marie-José

    2011-01-01

    NADPH oxidase is a crucial element of phagocytes involved in microbicidal mechanisms. It becomes active when membrane-bound cytochrome b(558), the redox core, is assembled with cytosolic p47(phox), p67(phox), p40(phox), and rac proteins to produce superoxide, the precursor for generation of toxic reactive oxygen species. In a previous study, we demonstrated that the potential second intracellular loop of Nox2 was essential to maintaining NADPH oxidase activity by controlling electron transfer from FAD to O(2). Moreover, replacement of this loop by the Nox4-D-loop (D-loop(Nox4)-Nox2) in PLB-985 cells induced superoxide overproduction. In the present investigation, we demonstrated that both soluble and particulate stimuli were able to induce this superoxide overproduction. Superoxide overproduction was also observed after phosphatidic acid activation in a purified cell-free-system assay. The highest oxidase activity was obtained after ionomycin and fMLF stimulation. In addition, enhanced sensitivity to Ca(2+) influx was shown by thapsigargin, EDTA, or BTP2 treatment before fMLF activation. Mutated cytochrome b(558) was less dependent on phosphorylation triggered by ERK1/2 during fMLF or PMA stimulation and by PI3K during OpZ stimulation. The superoxide overproduction of the D-loop(Nox4)-Nox2 mutant may come from a change of responsiveness to intracellular Ca(2+) level and to phosphorylation events during oxidase activation. Finally the D-loop(Nox4)-Nox2-PLB-985 cells were more effective against an attenuated strain of Pseudomonas aeruginosa compared to WT-Nox2 cells. The killing mechanism was biphasic, an early step of ROS production that was directly bactericidal, and a second oxidase-independent step related to the amount of ROS produced in the first step.

  4. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms.

    PubMed

    Bradbury, Louis M T; Shumskaya, Maria; Tzfadia, Oren; Wu, Shi-Biao; Kennelly, Edward J; Wurtzel, Eleanore T

    2012-07-03

    In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784-11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that CruP aids in preventing accumulation of reactive oxygen species (ROS), thereby reducing accumulation of β-carotene-5,6-epoxide, a ROS-catalyzed autoxidation product, and inhibiting accumulation of anthocyanins, which are known chemical indicators of ROS. Plants with a nonfunctional cruP accumulate substantially higher levels of ROS and β-carotene-5,6-epoxide in green tissues. Plants overexpressing cruP show reduced levels of ROS, β-carotene-5,6-epoxide, and anthocyanins. The observed up-regulation of cruP transcripts under photoinhibitory and lipid peroxidation-inducing conditions, such as high light stress, cold stress, anoxia, and low levels of CO(2), fits with a role for CruP in mitigating the effects of ROS. Phylogenetic distribution of CruP in prokaryotes showed that the gene is only present in cyanobacteria that live in habitats characterized by large variation in temperature and inorganic carbon availability. Therefore, CruP represents a unique target for developing resilient plants and algae needed to supply food and biofuels in the face of global climate change.

  5. Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling.

    PubMed

    Hole, Paul S; Zabkiewicz, Joanna; Munje, Chinmay; Newton, Zarabeth; Pearn, Lorna; White, Paul; Marquez, Nuria; Hills, Robert K; Burnett, Alan K; Tonks, Alex; Darley, Richard L

    2013-11-07

    Excessive production of reactive oxygen species (ROS) is frequently observed in cancer and is known to strongly influence hematopoietic cell function. Here we report that extracellular ROS production is strongly elevated (mean >10-fold) in >60% of acute myeloid leukemia (AML) patients and that this increase is attributable to constitutive activation of nicotinamide adenine dinucleotide phosphate oxidases (NOX). In contrast, overproduction of mitochondrial ROS was rarely observed. Elevated ROS was found to be associated with lowered glutathione levels and depletion of antioxidant defense proteins. We also show for the first time that the levels of ROS generated were able to strongly promote the proliferation of AML cell lines, primary AML blasts, and, to a lesser extent, normal CD34(+) cells, and that the response to ROS is limited by the activation of the oxidative stress pathway mediated though p38(MAPK). Consistent with this, we observed that p38(MAPK) responses were attenuated in patients expressing high levels of ROS. These data show that overproduction of NOX-derived ROS can promote the proliferation of AML blasts and that they also develop mechanisms to suppress the stress signaling that would normally limit this response. Together these adaptations would be predicted to confer a competitive advantage to the leukemic clone.

  6. Reactive oxygen species controllable non-thermal helium plasmas for evaluation of plasmid DNA strand breaks

    NASA Astrophysics Data System (ADS)

    Young Kim, Jae; Lee, Dong-Hoon; Ballato, John; Cao, Weiguo; Kim, Sung-O.

    2012-11-01

    Non-thermal, oxygen-rich helium plasmas were investigated to achieve an enhanced reactive oxygen species concentration at low voltage driving conditions. A non-thermal plasma device was fabricated based on a theta-shaped tube, and its potential was investigated for use in topological alteration of plasmid DNA. The optical emission spectra of the plasma showed that the oxygen flow affected the plasma properties, even though an oxygen plasma was not produced. The plasmid DNA strand breaks became more significant with the addition of oxygen flow to the helium in a single hollow, theta-shaped tube with other experimental conditions being unchanged.

  7. Genotoxicity of volatile and secondary reactive oxygen species generated by photosensitization

    SciTech Connect

    Camoirano, A.; De Flora, S.; Dahl, T.A. Tufts Univ. Veterinary, Boston, MA )

    1993-01-01

    Reactive oxygen species were generated in the gas phase by photosensitization involving illumination of Rose Bengal. Depending on whether the chromophore is dry or solubilized, this system produces either energy-transfer reactions leading to generation of singlet oxygen specifically, or a combination of energy-transfer and electron-transfer reactions, providing both singlet oxygen and reduced forms of oxygen, such as superoxide anion and hydrogen peroxide. In neither case were the reactive species mutagenic in strain TA104 of Salmonella typhimurium, which had been previously shown to be reverted by oxygen species generated by the hypoxanthine-xanthine oxidase system in aqueous medium. However, mixed oxygen species induced an increased lethality in a variety of DNA repair-deficient Escherichia coli strains. This genotoxic effect, mainly reparable by the uvrA and recA mechanisms, was efficiently prevented by the thiol N-acetyl-L-cysteine. Singlet oxygen itself failed to exert direct genotoxic effects, although secondary reactants produced by its reaction with cell components enhanced lethality in some repair-deficient bacteria. Distance-dependence analyses provided measurements of the lifetimes of the oxygen species generated in the gas phase. 35 refs., 7 figs., 2 tabs.

  8. The Over-Production of Freshman English

    ERIC Educational Resources Information Center

    Koon, William

    1974-01-01

    Argues that the proliferation of teaching methods and materials in recent years has resulted in low quality instruction and concludes that the "over-production" of freshman English will cease when teachers begin to feel that what they "teach is worth the trouble." (RB)

  9. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    EPA Science Inventory

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  10. COMPARATIVE ANALYSIS OF REACTIVE OXYGEN SPECIES IN HUMAN PLASMA AND BLOOD

    EPA Science Inventory

    Reactive oxygen species (ROS) are commonly associated with diseased states (including asthma, cardiovascular disease, cancer) infections, and exposure to various toxicants in humans. It is of interest in epidemiology studies to characterize the association of oxidative stress in...

  11. The Effect of Oxygen Potential on the Sulfide Capacity for Slags Containing Multivalent Species

    NASA Astrophysics Data System (ADS)

    Allertz, Carl; Selleby, Malin; Sichen, Du

    2016-10-01

    The dependence of sulfide capacity on the oxygen partial pressure for slags containing multivalent species was investigated experimentally using a slag containing vanadium oxide. Copper-slag equilibration experiments were carried out at 1873 K (1600 °C) in the approximate oxygen partial pressure range 10-15.4 to 10-9 atm. The sulfide capacity was found to be strongly dependent on the oxygen potential in this slag system, increasing with the oxygen partial pressure. The sulfide capacity changed by more than two orders of magnitude over the oxygen partial pressure range. The effect of changing oxygen partial pressure was found to be much greater than the effect of changing slag composition at a fixed oxygen partial pressure.

  12. Species-Level Variability in Extracellular Production Rates of Reactive Oxygen Species by Diatoms

    PubMed Central

    Schneider, Robin J.; Roe, Kelly L.; Hansel, Colleen M.; Voelker, Bettina M.

    2016-01-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 × 10−16 mol cell−1 h−1, while H2O2 production rates ranged from undetectable to 3.4 × 10−16 mol cell−1 h−1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2-. T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94–100% H2O2; 10–80% O2-) were consistently higher than those for live cultures (65–95% H2O2; 10–50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even

  13. Species-level variability in extracellular production rates of reactive oxygen species by diatoms

    NASA Astrophysics Data System (ADS)

    Schneider, Robin; Roe, Kelly; Hansel, Colleen; Voelker, Bettina

    2016-03-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 x 10-16 mol cell-1 hr-1, while H2O2 production rates ranged from undetectable to 3.4 x 10-16 mol cell-1 hr-1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O¬2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2 . T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94-100% H2O2; 10-80% O2-) were consistently higher than those for live cultures (65-95% H2O2; 10-50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even between those that are

  14. Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel.

    PubMed

    Sarmiento, Daniela; Montorfano, Ignacio; Cerda, Oscar; Cáceres, Mónica; Becerra, Alvaro; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Tapia, Pablo; Velásquez, Luis A; Varela, Diego; Simon, Felipe

    2015-03-01

    A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases.

  15. Reactive oxygen species signaling facilitates FOXO-3a/FBXO-dependent vascular BK channel β1 subunit degradation in diabetic mice.

    PubMed

    Lu, Tong; Chai, Qiang; Yu, Ling; d'Uscio, Livius V; Katusic, Zvonimir S; He, Tongrong; Lee, Hon-Chi

    2012-07-01

    Activity of the vascular large conductance Ca(2+)-activated K(+) (BK) channel is tightly regulated by its accessory β(1) subunit (BK-β(1)). Downregulation of BK-β(1) expression in diabetic vessels is associated with upregulation of the forkhead box O subfamily transcription factor-3a (FOXO-3a)-dependent F-box-only protein (FBXO) expression. However, the upstream signaling regulating this process is unclear. Overproduction of reactive oxygen species (ROS) is a common finding in diabetic vasculopathy. We hypothesized that ROS signaling cascade facilitates the FOXO-3a/FBXO-mediated BK-β(1) degradation and leads to diabetic BK channel dysfunction. Using cellular biology, patch clamp, and videomicroscopy techniques, we found that reduced BK-β(1) expression in streptozotocin (STZ)-induced diabetic mouse arteries and in human coronary smooth muscle cells (SMCs) cultured with high glucose was attributable to an increase in protein kinase C (PKC)-β and NADPH oxidase expressions and accompanied by attenuation of Akt phosphorylation and augmentation of atrogin-1 expression. Treatment with ruboxistaurin (a PKCβ inhibitor) or with GW501516 (a peroxisome proliferator-activated receptor δ activator) reduced atrogin-1 expression and restored BK channel-mediated coronary vasodilation in diabetic mice. Our results suggested that oxidative stress inhibited Akt signaling and facilitated the FOXO-3a/FBXO-dependent BK-β(1) degradation in diabetic vessels. Suppression of the FOXO-3a/FBXO pathway prevented vascular BK-β(1) degradation and protected coronary function in diabetes.

  16. Direct mitochondrial dysfunction precedes reactive oxygen species production in amiodarone-induced toxicity in human peripheral lung epithelial HPL1A cells

    SciTech Connect

    Nicolescu, Adrian C. Ji, Yanbin; Comeau, Jeannette L.; Hill, Bruce C.; Takahashi, Takashi; Brien, James F.; Racz, William J.; Massey, Thomas E.

    2008-03-15

    Amiodarone (AM), a drug used in the treatment of cardiac dysrrhythmias, can produce severe pulmonary adverse effects, including fibrosis. Although the pathogenesis of AM-induced pulmonary toxicity (AIPT) is not clearly understood, several hypotheses have been advanced, including increased inflammatory mediator release, mitochondrial dysfunction, and free-radical formation. The hypothesis that AM induces formation of reactive oxygen species (ROS) was tested in an in vitro model relevant for AIPT. Human peripheral lung epithelial HPL1A cells, as surrogates for target cells in AIPT, were susceptible to the toxicity of AM and N-desethylamiodarone (DEA), a major AM metabolite. Longer incubations ({>=} 6 h) of HPL1A cells with 100 {mu}M AM significantly increased ROS formation. In contrast, shorter incubations (2 h) of HPL1A cells with AM resulted in mitochondrial dysfunction and cytoplasmic cytochrome c translocation. Preexposure of HPL1A cells to ubiquinone and {alpha}-tocopherol was more effective than that with Trolox C (registered) or 5,5-dimethylpyrolidine N-oxide (DMPO) at preventing AM cytotoxicity. These data suggest that mitochondrial dysfunction, rather than ROS overproduction, represents an early event in AM-induced toxicity in peripheral lung epithelial cells that may be relevant for triggering AIPT, and antioxidants that target mitochondria may potentially have beneficial effects in AIPT.

  17. Characterization of the Oxygen Transmission Rate of Oak Wood Species Used in Cooperage.

    PubMed

    Del Alamo-Sanza, María; Cárcel, Luis Miguel; Nevares, Ignacio

    2017-01-25

    The oxygen that wine receives while aged in barrels is of interest because it defines the reactions that occur during aging and, therefore, the final properties of the wine. This study is intended to make up for the lack of information concerning the oxygen permeability of eight different woods of Quercus alba L. and Quercus petraea (Matt.) Liebl. commonly used. In addition, it shows how oxygen transfer evolves with the liquid contact time during testing under similar aging conditions to those in wine barrels. French oak woods permitted a higher oxygenation rate than American ones in all cases. A decrease in the oxygen entry caused by impregnation of the wood during the process was observed in all of the species studied. This process is determined by the thickness of the flooded wood layer containing free water, although differently in the two species, possibly due to the anatomical structure and the logging process for each.

  18. Marine species in ambient low-oxygen regions subject to double jeopardy impacts of climate change.

    PubMed

    Stortini, Christine H; Chabot, Denis; Shackell, Nancy L

    2016-10-18

    We have learned much about the impacts of warming on the productivity and distribution of marine organisms, but less about the impact of warming combined with other environmental stressors, including oxygen depletion. Also, the combined impact of multiple environmental stressors requires evaluation at the scales most relevant to resource managers. We use the Gulf of St. Lawrence, Canada, characterized by a large permanently hypoxic zone, as a case study. Species distribution models were used to predict the impact of multiple scenarios of warming and oxygen depletion on the local density of three commercially and ecologically important species. Substantial changes are projected within 20-40 years. A eurythermal depleted species already limited to shallow, oxygen-rich refuge habitat (Atlantic cod) may be relatively uninfluenced by oxygen depletion but increase in density within refuge areas with warming. A more stenothermal, deep-dwelling species (Greenland halibut) is projected to lose ~55% of its high-density areas under the combined impacts of warming and oxygen depletion. Another deep-dwelling, more eurythermal species (Northern shrimp) would lose ~4% of its high-density areas due to oxygen depletion alone, but these impacts may be buffered by warming, which may increase density by 8% in less hypoxic areas, but decrease density by ~20% in the warmest parts of the region. Due to local climate variability and extreme events, and that our models cannot project changes in species sensitivity to hypoxia with warming, our results should be considered conservative. We present an approach to effectively evaluate the individual and cumulative impacts of multiple environmental stressors on a species-by-species basis at the scales most relevant to managers. Our study may provide a basis for work in other low-oxygen regions and should contribute to a growing literature base in climate science, which will continue to be of support for resource managers as climate change

  19. Sensitivity of primary fibroblasts in culture to atmospheric oxygen does not correlate with species lifespan

    PubMed Central

    Patrick, Alison; Seluanov, Michael; Hwang, Chaewon; Tam, Jonathan; Khan, Tanya; Morgenstern, Ari; Wiener, Lauren; Vazquez, Juan M.; Zafar, Hiba; Wen, Robert; Muratkalyeva, Malika; Doerig, Katherine; Zagorulya, Maria; Cole, Lauren; Catalano, Sophia; Lobo Ladd, Aliny AB; Coppi, A. Augusto; Coşkun, Yüksel; Tian, Xiao; Ablaeva, Julia; Nevo, Eviatar; Gladyshev, Vadim N.; Zhang, Zhengdong D.; Vijg, Jan; Seluanov, Andrei; Gorbunova, Vera

    2016-01-01

    Differences in the way human and mouse fibroblasts experience senescence in culture had long puzzled researchers. While senescence of human cells is mediated by telomere shortening, Parrinello et al. demonstrated that senescence of mouse cells is caused by extreme oxygen sensitivity. It was hypothesized that the striking difference in oxygen sensitivity between mouse and human cells explains their different rates of aging. To test if this hypothesis is broadly applicable, we cultured cells from 16 rodent species with diverse lifespans in 3% and 21% oxygen and compared their growth rates. Unexpectedly, fibroblasts derived from laboratory mouse strains were the only cells demonstrating extreme sensitivity to oxygen. Cells from hamster, muskrat, woodchuck, capybara, blind mole rat, paca, squirrel, beaver, naked mole rat and wild-caught mice were mildly sensitive to oxygen, while cells from rat, gerbil, deer mouse, chipmunk, guinea pig and chinchilla showed no difference in the growth rate between 3% and 21% oxygen. We conclude that, although the growth of primary fibroblasts is generally improved by maintaining cells in 3% oxygen, the extreme oxygen sensitivity is a peculiarity of laboratory mouse strains, possibly related to their very long telomeres, and fibroblast oxygen sensitivity does not directly correlate with species' lifespan. PMID:27163160

  20. Pathological overproduction: the bad side of adenosine.

    PubMed

    Borea, Pier Andrea; Gessi, Stefania; Merighi, Stefania; Vincenzi, Fabrizio; Varani, Katia

    2017-03-02

    Adenosine is an endogenous ubiquitous purine nucleoside, which is increased by hypoxia, ischaemia and tissue damage and mediates a number of physiopathological effects by interacting with four GPCRs, identified as A1 , A2A , A2B and A3 . Physiological and acutely increased adenosine is mostly associated with beneficial effects that include vasodilatation and a decrease in inflammation. In contrast, chronic overproduction of adenosine occurs in important pathological states, where long-lasting increases in the nucleoside levels are responsible for the bad side of adenosine associated with chronic inflammation, fibrosis and organ damage. In this review, we describe and critically discuss the pathological overproduction of adenosine and analyse when, where and how adenosine exerts its detrimental effects throughout the body.

  1. Overproduction timing errors in expert dancers.

    PubMed

    Minvielle-Moncla, Joëlle; Audiffren, Michel; Macar, Françoise; Vallet, Cécile

    2008-07-01

    The authors investigated how expert dancers achieve accurate timing under various conditions. They designed the conditions to interfere with the dancers' attention to time and to test the explanation of the interference effect provided in the attentional model of time processing. Participants were 17 expert contemporary dancers who performed a freely chosen duration while walking and executing a bilateral cyclic arm movement over a given distance. The dancers reproduced that duration in different situations of interference. The process yielded temporal overproductions, validating the attentional model and extending its application to expert populations engaged in complex motor situations. The finding that the greatest overproduction occurred in the transfer-with-improvisation condition suggests that improvisation within a time deadline requires specific training.

  2. Overproduction of PIB-Type ATPases.

    PubMed

    Liu, Xiangyu; Sitsel, Oleg; Wang, Kaituo; Gourdon, Pontus

    2016-01-01

    Understanding of the functions and mechanisms of fundamental processes in the cell requires structural information. Structural studies of membrane proteins typically necessitate large amounts of purified and preferably homogenous target protein. Here, we describe a rapid overproduction and purification strategy of a bacterial PIB-type ATPase for isolation of milligrams of target protein per liter Escherichia coli cell culture, with a final quality of the sample which is sufficient for generating high-resolution crystals.

  3. Early joint degeneration and antagonism between growth factors and reactive oxygen species. Is non-surgical management possible?

    PubMed Central

    MANUNTA, ANDREA FABIO; ZEDDE, PIETRO; CUDONI, SEBASTIANO; CAGGIARI, GIANFILIPPO; PINTUS, GIANFRANCO

    2015-01-01

    Purpose in pathological conditions such as osteo-arthritis (OA), overproduction of reactive oxygen species (ROS) may overwhelm the antioxidant defenses of chondrocytes, thus promoting oxidative stress and cell death. It can be hypothesized that increasing the antioxidant machinery of chondrocytes may prevent the age-associated progression of this disease. Growth factors (GFs) play an important role in promoting both the resolution of inflammatory processes and tissue repair. In view of these considerations, we set out to investigate the protective effect, against H2O2-induced oxidative cell death, potentially exerted by fluid drained from the joint postoperatively. Methods the present study was conducted in 20 patients diagnosed with bilateral knee osteoarthritis and treated, between January 2013 and June 2014, with prosthetic knee implantation on the side more affected by the arthritic process, together with intraoperative placement of a closed-circuit drainage aspiration system. As a result, 20 different serum samples were collected from the drained articular fluid, prepared using two different methodologies. In addition, forty blood serum samples were obtained and prepared: 20 from the surgically treated patients and 20 from healthy controls. The present work was undertaken to investigate the potential protective effect of sera obtained from articular fluid drainage against hydrogen peroxide-induced oxidative stress in cultured human chondrocytes. Results exposure of chondrocytes to hydrogen peroxide elicited a dose-dependent increase in oxidative stress and chondrocyte cell death, phenomena that were significantly counteracted by the pre-treatment of cell cultures with sera from articular fluid drainage. Conclusions oxidatively stressed chondrocytes treated with sera obtained from articular fluid drainage lived longer than those treated with blood serum samples and longer than untreated ones. Clinical Relevance synovial fluids are usually discarded once the

  4. Involvement of reactive oxygen species in brominated diphenyl ether-47-induced inflammatory cytokine release from human extravillous trophoblasts in vitro

    SciTech Connect

    Park, Hae-Ryung Kamau, Patricia W.; Loch-Caruso, Rita

    2014-01-15

    Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in human breast milk, serum and placenta. Despite the presence of PBDEs in human placenta, effects of PBDEs on placental cell function are poorly understood. The present study investigated BDE-47-induced reactive oxygen species (ROS) formation and its role in BDE-47-stimulated proinflammatory cytokine release in a first trimester human extravillous trophoblast cell line, HTR-8/SVneo. Exposure of HTR-8/SVneo cells for 4 h to 20 μM BDE-47 increased ROS generation 1.7 fold as measured by the dichlorofluorescein (DCF) assay. Likewise, superoxide anion production increased approximately 5 fold at 10 and 15 μM and 9 fold at 20 μM BDE-47 with a 1-h exposure, as measured by cytochrome c reduction. BDE-47 (10, 15 and 20 μM) decreased the mitochondrial membrane potential by 47–64.5% at 4, 8 and 24 h as assessed with the fluorescent probe Rh123. Treatment with 15 and 20 μM BDE-47 stimulated cellular release and mRNA expression of IL-6 and IL-8 after 12 and 24-h exposures: the greatest increases were a 35-fold increased mRNA expression at 12 h and a 12-fold increased protein concentration at 24 h for IL-6. Antioxidant treatments (deferoxamine mesylate, (±)α-tocopherol, or tempol) suppressed BDE-47-stimulated IL-6 release by 54.1%, 56.3% and 37.7%, respectively, implicating a role for ROS in the regulation of inflammatory pathways in HTR-8/SVneo cells. Solvent (DMSO) controls exhibited statistically significantly decreased responses compared with non-treated controls for IL-6 release and IL-8 mRNA expression, but these responses were not consistent across experiments and times. Nonetheless, it is possible that DMSO (used to dissolve BDE-47) may have attenuated the stimulatory actions of BDE-47 on cytokine responses. Because abnormal activation of proinflammatory responses can disrupt trophoblast functions

  5. Roles of Reactive Oxygen and Nitrogen Species in Pain

    PubMed Central

    Salvemini, Daniela; Little, Joshua W.; Doyle, Timothy; Neumann, William L.

    2011-01-01

    Peroxynitrite (PN, ONOO−) and its reactive oxygen precursor superoxide (SO, O2·−), are critically important in the development of pain of several etiologies including in the development of pain associated with chronic use of opiates such as morphine (also known as opiate-induced hyperalgesia and antinociceptive tolerance). This is now an emerging field in which considerable progress has been made in terms of understanding the relative contribution of SO, PN, and nitroxidative stress in pain signaling at the molecular and biochemical levels. Aggressive research in this area is poised to provide the pharmacological basis for development of novel non-narcotic analgesics that are based upon the unique ability to selectively eliminate SO and/or PN. As we have a better understanding of the role of SO and PN in pathophysiological settings, targeting PN may be a better therapeutic strategy than targeting SO. This is due to the fact that unlike PN, which has no currently known beneficial role, SO may play a significant role in learning and memory [1]. Thus, the best approach may be to spare SO while directly targeting its downstream product, PN. Over the last 15 years, our team has spearheaded research concerning the roles of SO/PN in pain and these results are currently leading to the development of solid therapeutic strategies in this important area. PMID:21277369

  6. Roles of reactive oxygen and nitrogen species in pain.

    PubMed

    Salvemini, Daniela; Little, Joshua W; Doyle, Timothy; Neumann, William L

    2011-09-01

    Peroxynitrite (PN; ONOO⁻) and its reactive oxygen precursor superoxide (SO; O₂•⁻) are critically important in the development of pain of several etiologies including pain associated with chronic use of opiates such as morphine (also known as opiate-induced hyperalgesia and antinociceptive tolerance). This is now an emerging field in which considerable progress has been made in terms of understanding the relative contributions of SO, PN, and nitroxidative stress in pain signaling at the molecular and biochemical levels. Aggressive research in this area is poised to provide the pharmacological basis for development of novel nonnarcotic analgesics that are based upon the unique ability to selectively eliminate SO and/or PN. As we have a better understanding of the roles of SO and PN in pathophysiological settings, targeting PN may be a better therapeutic strategy than targeting SO. This is because, unlike PN, which has no currently known beneficial role, SO may play a significant role in learning and memory. Thus, the best approach may be to spare SO while directly targeting its downstream product, PN. Over the past 15 years, our team has spearheaded research concerning the roles of SO and PN in pain and these results are currently leading to the development of solid therapeutic strategies in this important area.

  7. Reactive Oxygen Species on the Early Earth and Survival of Bacteria

    NASA Technical Reports Server (NTRS)

    Balk, Melikea; Mason, Paul; Stams, Alfons J. M.; Smidt, Hauke; Freund, Friedemann; Rothschild, Lynn

    2011-01-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex, multicellular life to evolve on Earth and possibly elsewhere in the Universe. However it remains unclear how free oxygen first became available on the early Earth. A potentially important, and as yet poorly constrained pathway, is the production of oxygen through the weathering of rocks and release into the near-surface environment. Reactive Oxygen Species (ROS), as precursors to molecular oxygen, are a key step in this process, and may have had a decisive impact on the evolution of life, present and past. ROS are generated from minerals in igneous rocks during hydrolysis of peroxy defects, which consist of pairs of oxygen anions oxidized to the valence state -1 and during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that, despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, organisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defences against the potentially dangerous, even lethal effects of oxygen and its derived ROS. Conversely it appears that microorganisms learned to take advantage of the enormous reactive potential and energy gain provided by nascent oxygen. We investigate how oxygen might be released through weathering. We test microorganisms in contact with rock surfaces and iron sulphides. We model bacteria such as Deionococcus radiodurans and Desulfotomaculum, Moorella and Bacillus species for their ability to grow or survive in the presence of ROS. We examine how early Life might have adapted to oxygen.

  8. Asymmetric dimethylarginine and reactive oxygen species: unwelcome twin visitors to the cardiovascular and kidney disease tables.

    PubMed

    Wilcox, Christopher S

    2012-02-01

    Plasma levels of asymmetric dimethylarginine or markers of reactive oxygen species are increased in subjects with risk factors for cardiovascular disease or chronic kidney disease. We tested the hypothesis that reactive oxygen species generate cellular asymmetric dimethylarginine that together cause endothelial dysfunction that underlies the risk of subsequent disease. Rat preglomerular vascular smooth muscle cells transfected with p22(phox) had increased NADPH oxidase activity, enhanced activity and expression of protein arginine methyltransferase, and reduced activity and protein expression of dimethylarginine dimethylaminotransferase and of cationic amino acid transferase 1 resulting in increased cellular levels of asymmetric dimethylarginine. Rats infused with angiotensin II had oxidative stress. The endothelial function of their mesenteric arterioles was changed from vasodilatation to vasoconstriction, accompanied by increased vascular asymmetric dimethylarginine. All of these changes were prevented by Tempol. In vivo silencing of dimethylarginine dimethylaminotransferase 1 increased plasma levels of asymmetric dimethylarginine, whereas silencing of dimethylarginine dimethylaminotransferase 2 impaired endothelial function. We suggest that initiation factors, such as angiotensin II, expressed in blood vessels or tissues of subjects with cardiovascular and kidney disease risk factors generate reactive oxygen species from NADPH oxidase that enhances cellular asymmetric dimethylarginine in an amplification loop. This leads to adverse changes in vascular and organ functions, as a consequence of reduced tissue levels of NO and increased reactive oxygen species. Thus, we conclude that reactive oxygen species and asymmetric dimethylarginine form a tightly coupled amplification system that translates cardiovascular/kidney risk into overt disease.

  9. Reactive oxygen species mediate lethality induced by far-UV in Escherichia coli cells.

    PubMed

    Gomes, A A; Silva-Júnior, A C T; Oliveira, E B; Asad, L M B O; Reis, N C S C; Felzenszwalb, I; Kovary, K; Asad, N R

    2005-01-01

    The involvement of reactive oxygen species (ROS) in the induction of DNA damage to Escherichia coli cells caused by UVC (254 nm) irradiation was studied. We verified the expression of the soxS gene induced by UVC (254 nm) and its inhibition by sodium azide, a singlet oxygen (1O2) scavenger. Additional results showed that a water-soluble carotenoid (norbixin) protects against the lethal effects of UVC. These results suggest that UVC radiation can also cause ROS-mediated lethality.

  10. Effects of coordination number of Au catalyst on oxygen species and their catalytic roles

    NASA Astrophysics Data System (ADS)

    Ouyang, Gen; Zhu, Kong-Jie; Zhang, Lei; Cui, Peng-Fei; Teng, Bo-Tao; Wen, Xiao-Dong

    2016-11-01

    To explore the effects of coordination number of Au nanoparticles on oxygen species and their catalytic roles is very important in gold catalysis. Based on the systematic study of oxygen adsorption on Au(997) by density functional theory calculation, the quantitative correlation for different oxygen species with coverage and Au coordination number is established in theory. The only O adatoms near step area with relatively low Au coordination numbers exist at low coverage (<1/18 ML), O adatoms adsorb at terrace areas with relatively high Au coordination numbers at medium coverage (1/18-2/9 ML); while oxygen islands form at high coverage (>2/9 ML). The theoretical predictions are in good agreement with the experimental observations in TDS spectrum. On the basis of Langmuir-Hinschelwood and Eley-Rideal mechanisms for NO oxidation, the activities of the three different oxygen species also exhibit correlation with Au coordination number. The oxygen island shows the highest oxidation activity, followed by the O adatom at terrace surface; while the O adatom near step area has the lowest oxidative performance. This work will shed light into the understanding of gold catalysis.

  11. Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface

    SciTech Connect

    Lepeshkin, Sergey; Baturin, Vladimir; Tikhonov, Evgeny; Matsko, Nikita; Uspenskii, Yurii; Naumova, Anastasia; Feya, Oleg; Schoonen, Martin A.; Oganov, Artem R.

    2016-01-01

    Oxidation of silicon nanoclusters depending on the temperature and oxygen pressure is explored from first principles using the evolutionary algorithm, and structural and thermodynamic analysis. From our calculations of 90 SinOm clusters we found that under normal conditions oxidation does not stop at the stoichiometric SiO2 composition, as it does in bulk silicon, but goes further placing extra oxygen atoms on the cluster surface. These extra atoms are responsible for light emission, relevant to reactive oxygen species and many of them are magnetic. We argue that the super-oxidation effect is size-independent and discuss its relevance to nanotechnology and miscellaneous applications, including biomedical ones.

  12. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    PubMed Central

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  13. Electron Spin Resonance (ESR) detection of active oxygen species and organic phases in Martian soils

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1989-01-01

    The presence of active oxygen species (O(-), O2(-), O3(-)) and other strong oxidants (Fe2O3 and Fe3O4) was invoked in interpretations of the Viking biological experiments and a model was also suggested for Martian surface chemistry. The non-biological interpretations of the biological results gain futher support as no organic compounds were detected in the Viking pyrolysis-gas chromatography mass spectrometer (GCSM) experiments at concentrations as low as 10 ppb. Electron spin resonance (ESR) measures the absorption of microwaves by a paramagnetic and/or ferromagnetic center in the presence of an external field. In many instances, ESR has the advantage of detailed submicroscopic identification of the transient species and/or unstable reaction intermediates in their environments. Since the higly active oxygen species (O(-), O2(-), O3(-), and R-O-O(-)) are all paramagnetic in nature, they can be readily detected in native form by the ESR method. Active oxygen species likely to occur in the Martian surface samples were detected by ESR in UV-irradiated samples containing MgO. A miniaturized ESR spectrometer system can be developed for the Mars Rover Sample Return Mission. The instrument can perform the following in situ Martian samples analyses: detection of active oxygen species; characterization of Martian surface chemistry and photooxidation processes; and searching for organic compounds in the form of free radicals preserved in subsoils, and detection of microfossils with Martian carbonate sediments.

  14. Metabolic regulation and overproduction of primary metabolites

    PubMed Central

    Sanchez, Sergio; Demain, Arnold L.

    2008-01-01

    Summary Overproduction of microbial metabolites is related to developmental phases of microorganisms. Inducers, effectors, inhibitors and various signal molecules play a role in different types of overproduction. Biosynthesis of enzymes catalysing metabolic reactions in microbial cells is controlled by well‐known positive and negative mechanisms, e.g. induction, nutritional regulation (carbon or nitrogen source regulation), feedback regulation, etc. The microbial production of primary metabolites contributes significantly to the quality of life. Fermentative production of these compounds is still an important goal of modern biotechnology. Through fermentation, microorganisms growing on inexpensive carbon and nitrogen sources produce valuable products such as amino acids, nucleotides, organic acids and vitamins which can be added to food to enhance its flavour, or increase its nutritive values. The contribution of microorganisms goes well beyond the food and health industries with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum‐derived products as well as the ethanol necessary for liquid fuel. Additional applications of primary metabolites lie in their impact as precursors of many pharmaceutical compounds. The roles of primary metabolites and the microbes which produce them will certainly increase in importance as time goes on. In the early years of fermentation processes, development of producing strains initially depended on classical strain breeding involving repeated random mutations, each followed by screening or selection. More recently, methods of molecular genetics have been used for the overproduction of primary metabolic products. The development of modern tools of molecular biology enabled more rational approaches for strain improvement. Techniques of transcriptome, proteome and metabolome analysis, as well as metabolic flux analysis. have recently been introduced in order to identify new and

  15. Cellular Response of Pea Plants to Cadmium Toxicity: Cross Talk between Reactive Oxygen Species, Nitric Oxide, and Calcium1[W][OA

    PubMed Central

    Rodríguez-Serrano, María; Romero-Puertas, María C.; Pazmiño, Diana M.; Testillano, Pilar S.; Risueño, María C.; del Río, Luis A.; Sandalio, Luisa M.

    2009-01-01

    Cadmium (Cd) toxicity has been widely studied in different plant species; however, the mechanism involved in its toxicity as well as the cell response against the metal have not been well established. In this work, using pea (Pisum sativum) plants, we studied the effect of Cd on antioxidants, reactive oxygen species (ROS), and nitric oxide (NO) metabolism of leaves using different cellular, molecular, and biochemical approaches. The growth of pea plants with 50 μm CdCl2 affected differentially the expression of superoxide dismutase (SOD) isozymes at both transcriptional and posttranscriptional levels, giving rise to a SOD activity reduction. The copper/zinc-SOD down-regulation was apparently due to the calcium (Ca) deficiency induced by the heavy metal. In these circumstances, the overproduction of the ROS hydrogen peroxide and superoxide could be observed in vivo by confocal laser microscopy, mainly associated with vascular tissue, epidermis, and mesophyll cells, and the production of superoxide radicals was prevented by exogenous Ca. On the other hand, the NO synthase-dependent NO production was strongly depressed by Cd, and treatment with Ca prevented this effect. Under these conditions, the pathogen-related proteins PrP4A and chitinase and the heat shock protein 71.2, were up-regulated, probably to protect cells against damages induced by Cd. The regulation of these proteins could be mediated by jasmonic acid and ethylene, whose contents increased by Cd treatment. A model is proposed for the cellular response to long-term Cd exposure consisting of cross talk between Ca, ROS, and NO. PMID:19279198

  16. Dominant Presence of Oxygenated Organic Species in the Remote Southern Hemisphere Troposphere

    NASA Technical Reports Server (NTRS)

    Singh, H.; Chen, Y.; Staudt, A.; Jacob, D.; Blake, D.; Heikes, B.; Snow, J.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Oxygenated organic species are intimately involved with the fate of nitrogen oxides (NO(sub x)) and hydrogen oxides (HO(sub x)), which are necessary for tropospheric ozone formation. A recent airborne experiment (March-April, 1999) focused over the southern hemisphere (SH) Pacific Ocean (PEM-tropics-B) provided a first opportunity for a detailed characterization of the oxygenated organic composition of the remote southern hemisphere troposphere. Three co-located multi-channel airborne instruments measured a dozen key oxygenated species (carbonyls, alcohols, organic nitrates, organic pernitrates, peroxides) along with a comprehensive suite of C2-C8 Nonmethane hydrocarbons (NMHC). These measurements reveal that in the tropical SH (0-30 deg south), oxygenated chemical abundances are extremely large and collectively are nearly five times those of NMHC. Even in the NH remote atmospheres their burden is equal to or greater than that of NMHC. The relatively uniform global distribution oxygenates (EPSILON Ox-org) is indicative of the presence of large natural and distributed sources. A global 3-D model, reflecting the present state of science, is unable to correctly simulate the atmospheric distribution and variability of several of these species.

  17. Deoxyamphimedine, a Pyridoacridine Alkaloid, Damages DNA via the Production of Reactive Oxygen Species

    PubMed Central

    Marshall, Kathryn M.; Andjelic, Cynthia D.; Tasdemir, Deniz; Concepción, Gisela P.; Ireland, Chris M.; Barrows, Louis R.

    2009-01-01

    Marine pyridoacridines are a class of aromatic chemicals that share an 11H-pyrido[4,3,2-mn]acridine skeleton. Pyridoacridine alkaloids display diverse biological activities including cytotoxicity, fungicidal and bactericidal properties, production of reactive oxygen species (ROS) and topoisomerase inhibition. These activities are often dependent on slight modifications to the pyridoacridine skeleton. Here we demonstrate that while structurally similar to neoamphimedine and amphimedine, the biological activity of deoxyamphimedine differs greatly. Deoxyamphimedine damages DNA in vitro independent of topoisomerase enzymes through the generation of reactive oxygen species. Its activity was decreased in low oxygen, with the removal of a reducing agent and in the presence of anti-oxidants. Deoxyamphimedine also showed enhanced toxicity in cells sensitive to single or double strand DNA breaks, consistent with the in vitro activity. PMID:19597581

  18. Deoxyamphimedine, a pyridoacridine alkaloid, damages DNA via the production of reactive oxygen species.

    PubMed

    Marshall, Kathryn M; Andjelic, Cynthia D; Tasdemir, Deniz; Concepción, Gisela P; Ireland, Chris M; Barrows, Louis R

    2009-05-25

    Marine pyridoacridines are a class of aromatic chemicals that share an 11H-pyrido[4,3,2-mn]acridine skeleton. Pyridoacridine alkaloids display diverse biological activities including cytotoxicity, fungicidal and bactericidal properties, production of reactive oxygen species (ROS) and topoisomerase inhibition. These activities are often dependent on slight modifications to the pyridoacridine skeleton. Here we demonstrate that while structurally similar to neoamphimedine and amphimedine, the biological activity of deoxyamphimedine differs greatly. Deoxyamphimedine damages DNA in vitro independent of topoisomerase enzymes through the generation of reactive oxygen species. Its activity was decreased in low oxygen, with the removal of a reducing agent and in the presence of anti-oxidants. Deoxyamphimedine also showed enhanced toxicity in cells sensitive to single or double strand DNA breaks, consistent with the in vitro activity.

  19. Release of elicitors from rice blast spores under the action of reactive oxygen species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of reactive oxygen species (ROS) on secretion of hypothesized elicitors from spores of rice blast causal fungus Magnaporthe grisea were studied. For spore exposure to exogenous ROS, they were germinated for 5 h in 50 µM H2O2 followed by addition of catalase E.C. 1.11.1.6 (to decompose pe...

  20. [Reactive oxygen species and 3,4-dihydroxyphenylacetaldehyde in pathogenesis of Parkinson disease].

    PubMed

    Rybakowska, Iwona; Szreder, Grzegorz; Kaletha, Krystian; Barwina, Małgorzata; Waldman, Wojciech; Sein Anand, Jacek

    2011-01-01

    Reactive oxygen species, which plays a role in pathogenesis of many neurodegenerative diseases, seems to be important also in pathogenesis of the Parkinson's disease. Experiments performed recently, revealed in the cerebrum of patients suffering from this disease (induced by the oxidative stress) elevated levels of 3,4-dihydroxyphenylacetaldehyde (DOPAL)--a strong endogenous neurotoxin to dopamine neurons.

  1. Reactive oxygen species in photochemistry of the red fluorescent protein "Killer Red".

    PubMed

    Vegh, Russell B; Solntsev, Kyril M; Kuimova, Marina K; Cho, Soohee; Liang, Yue; Loo, Bernard L W; Tolbert, Laren M; Bommarius, Andreas S

    2011-05-07

    The fluorescent protein aptly named "Killer Red" (KRed) is capable of killing transfected cells and inactivating fused proteins upon exposure to visible light in the presence of oxygen. We have investigated the source of the bioactive species through a variety of photophysical and photochemical techniques. Our results indicate a Type I (electron transfer mediated) photosensitizing mechanism.

  2. Mitochondrial function and reactive oxygen species action in relation to boar motility.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow cytometric assays of viable boar sperm were developed to measure reactive oxygen species (ROS) formation (oxidization of hydroethidine to ethidium), membrane lipid peroxidation (oxidation of lipophilic probe C11-BODIPY581/591), and mitochondrial inner transmembrane potential (aggregation of mit...

  3. Effects of reactive oxygen species action on sperm function in spermatozoa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive oxygen species (ROS) formation and lipid peroxidation have been recognized as problems for sperm survival and fertility. The precise roles and detection of superoxide (SO), hydrogen peroxide (HP), and membrane lipid peroxidation have been problematic because of the low specificity and sens...

  4. Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress

    PubMed Central

    Pospíšil, Pavel

    2016-01-01

    The effect of various abiotic stresses on photosynthetic apparatus is inevitably associated with formation of harmful reactive oxygen species (ROS). In this review, recent progress on ROS production by photosystem II (PSII) as a response to high light and high temperature is overviewed. Under high light, ROS production is unavoidably associated with energy transfer and electron transport in PSII. Singlet oxygen is produced by the energy transfer form triplet chlorophyll to molecular oxygen formed by the intersystem crossing from singlet chlorophyll in the PSII antennae complex or the recombination of the charge separated radical pair in the PSII reaction center. Apart to triplet chlorophyll, triplet carbonyl formed by lipid peroxidation transfers energy to molecular oxygen forming singlet oxygen. On the PSII electron acceptor side, electron leakage to molecular oxygen forms superoxide anion radical which dismutes to hydrogen peroxide which is reduced by the non-heme iron to hydroxyl radical. On the PSII electron donor side, incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. Under high temperature, dark production of singlet oxygen results from lipid peroxidation initiated by lipoxygenase, whereas incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. The understanding of molecular basis for ROS production by PSII provides new insight into how plants survive under adverse environmental conditions. PMID:28082998

  5. Elevated Cytosolic Na+ Increases Mitochondrial Formation of Reactive Oxygen Species in Failing Cardiac Myocytes

    PubMed Central

    Kohlhaas, Michael; Liu, Ting; Knopp, Andreas; Zeller, Tanja; Ong, Mei Fang; Böhm, Michael; O'Rourke, Brian; Maack, Christoph

    2010-01-01

    Background —Oxidative stress is causally linked to the progression of heart failure, and mitochondria are critical sources of reactive oxygen species in failing myocardium. We previously observed that in heart failure, elevated cytosolic Na+ ([Na+]i) reduces mitochondrial Ca2+ ([Ca2+]m) by accelerating Ca2+ efflux via the mitochondrial Na+/Ca2+ exchanger. Because the regeneration of antioxidative enzymes requires NADPH, which is indirectly regenerated by the Krebs cycle, and Krebs cycle dehydrogenases are activated by [Ca2+]m, we speculated that in failing myocytes, elevated [Na+]i promotes oxidative stress. Methods and Results —We used a patch-clamp–based approach to simultaneously monitor cytosolic and mitochondrial Ca2+ and, alternatively, mitochondrial H2O2 together with NAD(P)H in guinea pig cardiac myocytes. Cells were depolarized in a voltage-clamp mode (3 Hz), and a transition of workload was induced by β-adrenergic stimulation. During this transition, NAD(P)H initially oxidized but recovered when [Ca2+]m increased. The transient oxidation of NAD(P)H was closely associated with an increase in mitochondrial H2O2 formation. This reactive oxygen species formation was potentiated when mitochondrial Ca2+ uptake was blocked (by Ru360) or Ca2+ efflux was accelerated (by elevation of [Na+]i). In failing myocytes, H2O2 formation was increased, which was prevented by reducing mitochondrial Ca2+ efflux via the mitochondrial Na+/Ca2+ exchanger. Conclusions —Besides matching energy supply and demand, mitochondrial Ca2+ uptake critically regulates mitochondrial reactive oxygen species production. In heart failure, elevated [Na+]i promotes reactive oxygen species formation by reducing mitochondrial Ca2+ uptake. This novel mechanism, by which defects in ion homeostasis induce oxidative stress, represents a potential drug target to reduce reactive oxygen species production in the failing heart. PMID:20351235

  6. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species

    PubMed Central

    Asghar, Waseem; Velasco, Vanessa; Kingsley, James L.; Shoukat, Muhammad S.; Shafiee, Hadi; Anchan, Raymond M.; Mutter, George L.; Tüzel, Erkan; Demirci, Utkan

    2014-01-01

    Fertilization and reproduction are central to the survival and propagation of a species. Couples who cannot reproduce naturally have to undergo in vitro clinical procedures. An integral part of these clinical procedures includes isolation of healthy sperm from raw semen. Existing sperm sorting methods are not efficient and isolate sperm having high DNA fragmentation and reactive oxygen species, and suffer from multiple manual steps and variations between embryologists. Inspired by in vivo natural sperm sorting mechanisms where vaginal mucus becomes less viscous to form microchannels to guide sperm towards egg, we present a chip that efficiently sorts healthy, motile and morphologically normal sperm without centrifugation. Higher percentage of sorted sperm show significantly lesser reactive oxygen species and DNA fragmentation than the conventional swim-up method. The presented chip is an easy-to-use high throughput sperm sorter that provides standardized sperm sorting assay with less reliance on embryologist’s skills, facilitating reliable operational steps. PMID:24753434

  7. Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions.

    PubMed

    Long, Ran; Huang, Hao; Li, Yaping; Song, Li; Xiong, Yujie

    2015-11-25

    Oxidation reactions by molecular oxygen (O2 ) over palladium (Pd)-based nanomaterials are a series of processes crucial to the synthesis of fine chemicals. In the past decades, investigations of related catalytic materials have mainly been focused on the synthesis of Pd-based nanomaterials from the angle of tailoring their surface structures, compositions and supporting materials, in efforts to improve their activities in organic reactions. From the perspective of rational materials design, it is imperative to address the fundamental issues associated with catalyst performance, one of which should be oxygen activation by Pd-based nanomaterials. Here, the fundamentals that account for the transformation from O2 to reactive oxygen species over Pd, with a focus on singlet O2 and its analogue, are introduced. Methods for detecting and differentiating species are also presented to facilitate future fundamental research. Key factors for tuning the oxygen activation efficiencies of catalytic materials are then outlined, and recent developments in Pd-catalyzed oxygen-related organic reactions are summarized in alignment with each key factor. To close, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields.

  8. Oxygen stress reduces zoospore survival of Phytophthora species in a simulated aquatic system

    PubMed Central

    2014-01-01

    Background The genus Phytophthora includes a group of agriculturally important pathogens and they are commonly regarded as water molds. They produce motile zoospores that can move via water currents and on their own locomotion in aquatic environments. However, zoosporic response to dissolved oxygen, an important water quality parameter, is not known. Like other water quality parameters, dissolved oxygen concentration in irrigation reservoirs fluctuates dramatically over time. The aim of this study was to determine whether and how zoospore survival may be affected by elevated and low concentrations of dissolved oxygen in water to better understand the aquatic biology of these pathogens in irrigation reservoirs. Results Zoospores of P. megasperma, P. nicotianae, P. pini and P. tropicalis were assessed for survival in 10% Hoagland’s solution at a range of dissolved concentrations from 0.9 to 20.1 mg L-1 for up to seven exposure times from 0 to 72 h. Zoospore survival was measured by resultant colony counts per ml. Zoospores of these species survived the best in control Hoagland’s solution at dissolved oxygen concentrations of 5.3 to 5.6 mg L-1. Zoospore survival rates decreased with increasing and decreasing concentration of dissolved oxygen, depending upon Phytophthora species and exposure time. Overall, P. megasperma and P. pini are less sensitive than P. nicotianae and P. tropicalis to hyperoxia and hypoxia conditions. Conclusion Zoospores in the control solution declined over time and this natural decline process was enhanced under hyperoxia and hypoxia conditions. These findings suggest that dramatic fluctuations of dissolved oxygen in irrigation reservoirs contribute to the population decline of Phytophthora species along the water path in the same reservoirs. These findings advanced our understanding of the aquatic ecology of these pathogens in irrigation reservoirs. They also provided a basis for pathogen risk mitigation by prolonging the turnover

  9. Prostaglandins and radical oxygen species are involved in microvascular effects of hyperoxia.

    PubMed

    Rousseau, A; Tesselaar, E; Henricson, J; Sjöberg, F

    2010-01-01

    Hyperoxia causes vasoconstriction in most tissues, by mechanisms that are not fully understood. We investigated microvascular effects of breathing 100% oxygen in healthy volunteers, using iontophoresis to deliver acetylcholine (ACh) and sodium nitroprusside (SNP). Aspirin and vitamin C were used to test for involvement of prostaglandins and radical oxygen species. Forearm skin perfusion was measured using laser Doppler perfusion imaging. Results were analysed using dose-response modelling. The response to ACh was reduced by 30% during oxygen breathing compared to air breathing [0.98 (0.81-1.15) PU vs. 1.45 (1.30-1.60) PU, p < 0.001]. ED(50) values were unchanged [2.25 (1.84-2.75) vs. 2.21 (1.79-2.74), not significant]. Aspirin pre-treatment abolished the difference in response between oxygen breathing and air breathing [maximum: 1.03 (0.90-1.16) vs. 0.89 (0.77-1.01), not significant; ED(50): 1.83 (1.46-2.30) vs. 1.95 (1.65-2.30), not significant]. ACh-mediated vasodilatation during 100% oxygen breathing was partially restored after pre-treatment with vitamin C. Breathing 100% oxygen did not change the microvascular response to SNP [1.45 (1.28-1.62) vs. 1.40 (1.26-1.53), not significant]. These results favour the hypothesis that hyperoxic vasoconstriction is mediated by inhibition of prostaglandin synthesis. Radical oxygen species may be involved as vitamin C, independently of aspirin, partially restored ACh-mediated vasodilatation during hyperoxia.

  10. Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species

    NASA Technical Reports Server (NTRS)

    Hei, T. K.; Liu, S. X.; Waldren, C.

    1998-01-01

    Arsenite, the trivalent form of arsenic present in the environment, is a known human carcinogen that lacked mutagenic activity in bacterial and standard mammalian cell mutation assays. We show herein that when evaluated in an assay (AL cell assay), in which both intragenic and multilocus mutations are detectable, that arsenite is in fact a strong dose-dependent mutagen and that it induces mostly large deletion mutations. Cotreatment of cells with the oxygen radical scavenger dimethyl sulfoxide significantly reduces the mutagenicity of arsenite. Thus, the carcinogenicity of arsenite can be explained at least in part by it being a mutagen that depends on reactive oxygen species for its activity.

  11. Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia.

    PubMed

    Totzeck, Matthias; Hendgen-Cotta, Ulrike B; Kelm, Malte; Rassaf, Tienush

    2014-01-01

    The systemic response to decreasing oxygen levels is hypoxic vasodilation. While this mechanism has been known for more than a century, the underlying cellular events have remained incompletely understood. Nitrite signaling is critically involved in vessel relaxation under hypoxia. This can be attributed to the presence of myoglobin in the vessel wall together with other potential nitrite reductases, which generate nitric oxide, one of the most potent vasodilatory signaling molecules. Questions remain relating to the precise concentration of nitrite and the exact dose-response relations between nitrite and myoglobin under hypoxia. It is furthermore unclear whether regulatory mechanisms exist which balance this interaction. Nitrite tissue levels were similar across all species investigated. We then investigated the exact fractional myoglobin desaturation in an ex vivo approach when gassing with 1% oxygen. Within a short time frame myoglobin desaturated to 58±12%. Given that myoglobin significantly contributes to nitrite reduction under hypoxia, dose-response experiments using physiological to pharmacological nitrite concentrations were conducted. Along all concentrations, abrogation of myoglobin in mice impaired vasodilation. As reactive oxygen species may counteract the vasodilatory response, we used superoxide dismutase and its mimic tempol as well as catalase and ebselen to reduce the levels of reactive oxygen species during hypoxic vasodilation. Incubation of tempol in conjunction with catalase alone and catalase/ebselen increased the vasodilatory response to nitrite. Our study shows that modest hypoxia leads to a significant nitrite-dependent vessel relaxation. This requires the presence of vascular myoglobin for both physiological and pharmacological nitrite levels. Reactive oxygen species, in turn, modulate this vasodilation response.

  12. Indoxyl sulfate potentiates endothelial dysfunction via reciprocal role for reactive oxygen species and RhoA/ROCK signaling in 5/6 nephrectomized rats.

    PubMed

    Chu, Shuang; Mao, Xiaodong; Guo, Hengjiang; Wang, Li; Li, Zezheng; Zhang, Yang; Wang, Yunman; Wang, Hao; Zhang, Xuemei; Peng, Wen

    2017-03-13

    Accumulative indoxyl sulfate (IS) retained in chronic kidney disease (CKD) can potentiate vascular endothelial dysfunction, and herein, we aim at elucidating the underlying mechanisms from the perspective of possible association between reactive oxygen species (ROS) and RhoA/ROCK pathway. IS-treated nephrectomized rats are administered with antioxidants including NADPH oxidase inhibitor apocynin, SOD analog tempol, and mitochondrion-targeted SOD mimetic mito-TEMPO to scavenge ROS, or ROCK inhibitor fasudil to obstruct RhoA/ROCK pathway. First, we find in response to IS stimulation, antioxidants treatments suppress increased aortic ROCK activity and expression levels. Additionally, ROCK blockade prevent IS-induced increased NADPH oxidase expression (mainly p22phox and p47phox), mitochondrial and intracellular ROS (superoxide and hydrogen peroxide) generation, and decreased Cu/Zn-SOD expression in thoracic aortas. Apocynin, mito-TEMPO, and tempol also reverse these markers of oxidative stress. These results suggest that IS induces excessive ROS production and ROCK activation involving a circuitous relationship in which ROS activate ROCK and ROCK promotes ROS overproduction. Finally, ROS and ROCK depletion attenuate IS-induced decrease in nitric oxide (NO) production and eNOS expression levels, and alleviate impaired vasomotor responses including increased vasocontraction to phenylephrine and decreased vasorelaxation to acetylcholine, thereby preventing cardiovascular complications accompanied by CKD. Taken together, excessive ROS derived from NADPH oxidase and mitochondria coordinate with RhoA/ROCK activation in a form of positive reciprocal relationship to induce endothelial dysfunction through disturbing endothelium-dependent NO signaling upon IS stimulation in CKD status.

  13. The role of reactive oxygen species and subsequent DNA-damage response in the emergence of resistance towards resveratrol in colon cancer models

    PubMed Central

    Colin, D J; Limagne, E; Ragot, K; Lizard, G; Ghiringhelli, F; Solary, É; Chauffert, B; Latruffe, N; Delmas, D

    2014-01-01

    In spite of the novel strategies to treat colon cancer, mortality rates associated with this disease remain consistently high. Tumour recurrence has been linked to the induction of resistance towards chemotherapy that involves cellular events that enable cancer cells to escape cell death. Treatment of colon cancer mainly implicates direct or indirect DNA-damaging agents and increased repair or tolerances towards subsequent lesions contribute to generate resistant populations. Resveratrol (RSV), a potent chemosensitising polyphenol, might share common properties with chemotherapeutic drugs through its indirect DNA-damaging effects reported in vitro. In this study, we investigated how RSV exerts its anticancer effects in models of colon cancer with a particular emphasis on the DNA-damage response (DDR; PIKKs-Chks-p53 signalling cascade) and its cellular consequences. We showed in vitro and in vivo that colon cancer models could progressively escape the repeated pharmacological treatments with RSV. We observed for the first time that this response was correlated with transient activation of the DDR, of apoptosis and senescence. In vitro, a single treatment with RSV induced a DDR correlated with S-phase delay and apoptosis, but prolonged treatments led to transient micronucleations and senescence phenotypes associated with polyploidisation. Ultimately, stable resistant populations towards RSV displaying higher degrees of ploidy and macronucleation as compared to parental cells emerged. We linked these transient effects and resistance emergence to the abilities of these cells to progressively escape RSV-induced DNA damage. Finally, we demonstrated that this DNA damage was triggered by an overproduction of reactive oxygen species (ROS) against which cancer cells could adapt under prolonged exposure to RSV. This study provides a pre-clinical analysis of the long-term effects of RSV and highlights ROS as main agents in RSV's indirect DNA-damaging properties and

  14. Quantum dot-mediated photoproduction of reactive oxygen species for cancer cell annihilation.

    PubMed

    Chen, Ji-Yao; Lee, Yee-Man; Zhao, Dan; Mak, Nai-Ki; Wong, Ricky Ngok-Shun; Chan, Wing-Hong; Cheung, Nai-Ho

    2010-01-01

    While semiconductor quantum dots produce little singlet oxygen, they may undergo Type I photoreactions to produce other reactive oxygen species (ROS) to kill cells. CdTe quantum dots coated with thioglycolic acid were used to test that possibility. Some thiol ligands were purposely removed to regenerate the surface electron traps that were passivated by the ligand. This allowed photoinduced electrons to dwell on the surface long enough to be gathered by nearby oxygen molecules to produce ROS. The photocytotoxicity of these quantum dots was tested on nasopharyngeal carcinoma cells. Photokilling was shown to be drug and light dose dependent. Using 0.6 mum quantum dots for incubation and 4.8 J cm(-2) for irradiation, about 80% of the cells were annihilated. These quantum dots promised to be potent sensitizers for photoannihilation of cancer cells.

  15. Cytochrome P450 Reductase: A Harbinger of Diffusible Reduced Oxygen Species

    PubMed Central

    Manoj, Kelath Murali; Gade, Sudeep Kumar; Mathew, Lazar

    2010-01-01

    The bi-enzymatic system of cytochrome P450 (CYP, a hemoprotein) and cytochrome P450 reductase (CPR, a diflavoenzyme) mediate the redox metabolism of diverse indigenous and xenobiotic molecules in various cellular and organ systems, using oxygen and NADPH. Curiously, when a 1∶1 ratio is seen to be optimal for metabolism, the ubiquitous CYP:CPR distribution ratio is 10 to 100∶1 or higher. Further, the NADPH equivalents consumed in these in vitro or in situ assemblies usually far exceeded the amount of substrate metabolized. We aimed to find the rationale to explain for these two oddities. We report here that CPR is capable of activating molecular oxygen on its own merit, generating diffusible reduced oxygen species (DROS). Also, in the first instance for a flavoprotein, CPR is shown to deplete peroxide via diffusible radical mediated process, thereby leading to the formation of water (but without significant evolution of oxygen). We also quantitatively demonstrate that the rate of oxygen activation and peroxide depletion by CPR accounts for the major reactivity in the CYP+CPR mixture. We show unambiguously that CPR is able to regulate the concentration of diffusible reduced oxygen species in the reaction milieu. These findings point out that CPR mediated processes are bound to be energetically ‘wasteful’ and potentially ‘hazardous’ owing to the unavoidable nature of the CPR to generate and deplete DROS. Hence, we can understand that CPR is distributed at low densities in cells. Some of the activities that were primarily attributed to the heme-center of CYP are now established to be a facet of the flavins of CPR. The current approach of modeling drugs to minimize “uncoupling” on the basis of erstwhile hypothesis stands questionable, considering the ideas brought forth in this work. PMID:20967245

  16. Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy

    PubMed Central

    Wang, Meng; Wu, Xin-Ping; Zheng, Sujuan; Zhao, Li; Li, Lei; Shen, Li; Gao, Yuxian; Xue, Nianhua; Guo, Xuefeng; Huang, Weixin; Gan, Zhehong; Blanc, Frédéric; Yu, Zhiwu; Ke, Xiaokang; Ding, Weiping; Gong, Xue-Qing; Grey, Clare P.; Peng, Luming

    2015-01-01

    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the 17O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency 17O chemical shifts being observed for the lower coordinated surface sites. H217O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. 17O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications. PMID:26601133

  17. Identification of different oxygen species in oxide nanostructures with (17)O solid-state NMR spectroscopy.

    PubMed

    Wang, Meng; Wu, Xin-Ping; Zheng, Sujuan; Zhao, Li; Li, Lei; Shen, Li; Gao, Yuxian; Xue, Nianhua; Guo, Xuefeng; Huang, Weixin; Gan, Zhehong; Blanc, Frédéric; Yu, Zhiwu; Ke, Xiaokang; Ding, Weiping; Gong, Xue-Qing; Grey, Clare P; Peng, Luming

    2015-02-01

    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the (17)O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency (17)O chemical shifts being observed for the lower coordinated surface sites. H2 (17)O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. (17)O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications.

  18. Role of activated oxygen species on the mutagenicity of benzo[a]pyrene.

    PubMed

    Wei, C E; Allen, K; Misra, H P

    1989-06-01

    Different scavengers of active oxygen species (superoxide dismutase, catalase, mannitol and dimethylfuran) were tested in the Ames Salmonella assay to determine the role of the reactive oxygen species in the benzo[a]pyrene (B[a]P) mutagenesis process. Exogenously added superoxide dismutase or catalase at 10-100 micrograms ml-1 top agar, or 3-12 mM mannitol showed no effect on B[a]P mutagenicity in the presence of S9 mix. However, dimethylfuran (DMF), a singlet oxygen scavenger, inhibited in a dose-related manner the mutagenic response of B[a]P in the presence of the microsomal fraction. DMF at 3 and 6 mM inhibited the number of revertants by 69 and 93% for strain TA 100, and 76 and 78% for TA98, respectively. DMF at these levels was neither toxic nor mutagenic to the bacteria. The result indicates that singlet oxygen may play an important role in promoting B[a]P mutagenicity.

  19. Probing oxidative stress: Small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols

    PubMed Central

    Hyman, Lynne M.; Franz, Katherine J.

    2013-01-01

    Oxidative stress is a common feature shared by many diseases, including neurodegenerative diseases. Factors that contribute to cellular oxidative stress include elevated levels of reactive oxygen species, diminished availability of detoxifying thiols, and the misregulation of metal ions (both redox-active iron and copper as well as non-redox active calcium and zinc). Deciphering how each of these components interacts to contribute to oxidative stress presents an interesting challenge. Fluorescent sensors can be powerful tools for detecting specific analytes within a complicated cellular environment. Reviewed here are several classes of small molecule fluorescent sensors designed to detect several molecular participants of oxidative stress. We focus our review on describing the design, function and application of probes to detect metal cations, reactive oxygen species, and intracellular thiol-containing compounds. In addition, we highlight the intricacies and complications that are often faced in sensor design and implementation. PMID:23440254

  20. Modulation of pressure-natriuresis by renal medullary reactive oxygen species and nitric oxide.

    PubMed

    O'Connor, Paul M; Cowley, Allen W

    2010-04-01

    The renal pressure-natriuresis mechanism is the dominant controller of body fluid balance and long-term arterial pressure. In recent years, it has become clear that the balance of reactive oxygen and nitrogen species within the renal medullary region is a key determinant of the set point of the renal pressure-natriuresis curve. The development of renal medullary oxidative stress causes dysfunction of the pressure-natriuresis mechanism and contributes to the development of hypertension in numerous disease models. The purpose of this review is to point out the known mechanisms within the renal medulla through which reactive oxygen and nitrogen species modulate the pressure-natriuresis response and to update the reader on recent advances in this field.

  1. Regulation of signal transduction by reactive oxygen species in the cardiovascular system

    PubMed Central

    Brown, David I.; Griendling, Kathy K.

    2015-01-01

    Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species in normal physiological signaling has been elucidated. Signaling pathways modulated by reactive oxygen species (ROS) are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here we review the current literature regarding ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress. PMID:25634975

  2. Mitochondrial Reactive Oxygen Species at the Heart of the Matter: New Therapeutic Approaches for Cardiovascular Diseases

    PubMed Central

    Kornfeld, Opher S.; Hwang, Sunhee; Disatnik, Marie-Hélène; Chen, Che-Hong; Qvit, Nir; Mochly-Rosen, Daria

    2015-01-01

    Reactive oxygen species (ROS) have been implicated in a variety of age-related diseases including multiple cardiovascular disorders. However, translation of ROS scavengers (anti-oxidants) into the clinic has not been successful. These anti-oxidants grossly reduce total levels of cellular ROS including ROS that participate in physiological signaling. In this review, we challenge the traditional anti-oxidant therapeutic approach that targets ROS directly with novel approaches that improve mitochondrial functions to more effectively treat cardiovascular diseases. PMID:25999419

  3. Reactive oxygen species and antioxidant defense mechanisms in the oral cavity: a literature review.

    PubMed

    San Miguel, Symone M; Opperman, Lynne A; Allen, Edward P; Svoboda, Kathy K H

    2011-01-01

    Through dental procedures and environment, periodontal tissues are exposed to many types of reactive oxygen species (ROS). Recently, various forms of antioxidants have been introduced as an approach to fight dental diseases and improve general gingival health. This article focuses on the classification of antioxidants and the link between oxidative stress and periodontal disease. The protective mechanisms of antioxidants and how routine dental procedures may increase ROS is discussed. The final section reviews the effect of tobacco products on gingival health and disease.

  4. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association.

    PubMed

    Griendling, Kathy K; Touyz, Rhian M; Zweier, Jay L; Dikalov, Sergey; Chilian, William; Chen, Yeong-Renn; Harrison, David G; Bhatnagar, Aruni

    2016-08-19

    Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species.

  5. Reactive oxygen species mediate phorbol ester-stimulated cAMP response in human eosinophils.

    PubMed

    Ezeamuzie, Charles I; Taslim, Najla

    2006-08-14

    Recently, we showed that phorbol 12-myristate 13-acetate (PMA) can cause a direct, PKC-dependent, stimulation of intracellular cAMP in human eosinophils. Since PMA also stimulates the release of reactive oxygen species in these cells, we have investigated whether reactive oxygen species are involved in the cAMP response. Provided eosinophils were incubated for <20 min at 37 degrees C before stimulation, PMA potently stimulated cAMP generation that surpassed that of histamine. Pre-treatment of the cells with the NADPH oxidase inhibitors, diphenyleneiodonium (DPI) and apocynin, strongly inhibited the cAMP production induced by PMA, but not that induced by histamine. This treatment also strongly inhibited the release of superoxide anions (O(2)(-)). The cAMP response was also inhibited by pre-treatment with the specific peroxide scavenger, ebselen, but not superoxide dismutase, or NG-nitro-l-arginine methyl ester (L-NAME), thus, suggesting the possible involvement of a peroxide rather than O(2)(-) or nitric oxide (NO). These results reveal a novel involvement of intracellular reactive oxygen species in protein kinase C (PKC)-dependent stimulation of cAMP production in human eosinophils.

  6. Inhibition of astrocyte glutamate uptake by reactive oxygen species: role of antioxidant enzymes.

    PubMed Central

    Sorg, O.; Horn, T. F.; Yu, N.; Gruol, D. L.; Bloom, F. E.

    1997-01-01

    BACKGROUND: The recent literature suggests that free radicals and reactive oxygen species may account for many pathologies, including those of the nervous system. MATERIALS AND METHODS: The influence of various reactive oxygen species on the rate of glutamate uptake by astrocytes was investigated on monolayers of primary cultures of mouse cortical astrocytes. RESULTS: Hydrogen peroxide and peroxynitrite inhibited glutamate uptake in a concentration-dependent manner. Addition of copper ions and ascorbate increased the potency and the efficacy of the hydrogen peroxide effect, supporting the potential neurotoxicity of the hydroxyl radical. The free radical scavenger dimethylthiourea effectively eliminated the inhibitory potential of a mixture containing hydrogen peroxide, copper sulphate, and ascorbate on the rate of glutamate transport into astrocytes. The inhibitory effect of hydrogen peroxide on glutamate uptake was not altered by the inhibition of glutathione peroxidase, whereas the inhibition of catalase by sodium azide clearly potentiated this effect. Superoxide and nitric oxide had no effect by themselves on the rate of glutamate uptake by astrocytes. The absence of an effect of nitric oxide is not due to an inability of astrocytes to respond to this substance, since the same cultures did respond to nitric oxide with a sustained increase in cytoplasmic free calcium. CONCLUSION: These results confirm that reactive oxygen species have a potential neurotoxicity by means of impairing glutamate transport into astrocytes, and they suggest that preventing the accumulation of hydrogen peroxide in the extracellular space of the brain, especially during conditions that favor hydroxyl radical formation, could be therapeutic. PMID:9260155

  7. Inactivation effects of neutral reactive-oxygen species on Penicillium digitatum spores using non-equilibrium atmospheric-pressure oxygen radical source

    NASA Astrophysics Data System (ADS)

    Hashizume, Hiroshi; Ohta, Takayuki; Fengdong, Jia; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi

    2013-10-01

    The effectiveness of atomic and excited molecular oxygen species at inactivating Penicillium digitatum spores was quantitatively investigated by measuring these species and evaluating the spore inactivation rate. To avoid the effects of ultraviolet light and charged species, a non-equilibrium atmospheric-pressure radical source, which supplies only neutral radicals, was employed. Ground-state atomic oxygen (O(3Pj)) and excited molecular oxygen (O2(1Δg)) species were measured using vacuum ultraviolet absorption spectroscopy. The inactivation rate of spores was evaluated using the colony count method. The lifetimes of O(3Pj) and O2(1Δg) in an argon gas ambient at atmospheric pressure were found to be about 0.5 ms and much more than tens of ms, and their spore inactivation rates were about 10-17 cm3 s-1 and much lower than 10-21 cm3 s-1, respectively.

  8. [Ways of realizing apoptosis of human lymphocytes induced by UV-light and reactive oxygen species].

    PubMed

    Artiukhov, V G; Trubitsyna, M S; Nakvasina, M A; Solov'eva, E V; Lidokhova, O V

    2011-01-01

    Changes of DNA structural condition, the level of membrane Fas-receptor expression, caspase-3 functional activity, concentrations of Ca2+, p53 and cytochrome c proteins of human lymphocytes in dynamics of apoptosis development induced by UV-light (240-390 nm) at doses 151, 1510, 3020 J/m2 and reactive oxygen species (superoxide anion-radical, hydroxyl radicals, hydrogen peroxide, singlet oxygen) have been studied. UV-light and reactive oxygen species have been established to induce fragmentation of lymphocyte DNA after 20 h incubation of the modified cells. It has been shown, that the increase in the expression level of membrane death Fas-receptors is observed during 1-5 h after exposure oflymphocytes to UV-light and ROS compared with intact cells. Also revealed is augmentation of lymphocyte caspase-3 functional activity 4 h after generation of singlet oxygen, hydroxyl radical and hydrogen peroxide addition, as well as 8 and 24 and 6 and 8 h after UV-irradiation of the cells at doses 151 and 1510 J/m2, correspondingly. Using DNA-comet method made it possible to tape that DNA damages (single-strand breaks) appear 15-20 min after lymphocyte UV-irradiation at doses 1510 and 3020 J/m and addition of hydrogen peroxide in concentration 10(-6) mol/l (C1 type comet) and reach their maximum 6 h after modification of the cells (C2 and C3 type comets). It has been observed, that 6 h after exposure oflymphocytes to hydrogen peroxide and UV-light at doses 1510 and 3020 J/m2, the p53 level of investigated cells raises. It has also been shown that the higher level of calcium in lymphocyte cytosol in conditions of UV-light exposure (1510 J/m2) and exogenous generation of reactive oxygen species is caused by Ca2+ exit from intracellular depots as a result of activating the components of the phosphoinositide mechanism for transferring information into a cell. Ideas about correlation between alterations of the calcium level and initiation of programmed cellular destruction of human

  9. Wolbachia Do Not Induce Reactive Oxygen Species-Dependent Immune Pathway Activation in Aedes albopictus

    PubMed Central

    Molloy, Jennifer C.; Sinkins, Steven P.

    2015-01-01

    Aedes albopictus is a major vector of dengue (DENV) and chikungunya (CHIKV) viruses, causing millions of infections annually. It naturally carries, at high frequency, the intracellular inherited bacterial endosymbiont Wolbachia strains wAlbA and wAlbB; transinfection with the higher-density Wolbachia strain wMel from Drosophila melanogaster led to transmission blocking of both arboviruses. The hypothesis that reactive oxygen species (ROS)-induced immune activation plays a role in arbovirus inhibition in this species was examined. In contrast to previous observations in Ae. aegypti, elevation of ROS levels was not observed in either cell lines or mosquito lines carrying the wild-type Wolbachia or higher-density Drosophila Wolbachia strains. There was also no upregulation of genes controlling innate immune pathways or with antioxidant/ROS-producing functions. These data suggest that ROS-mediated immune activation is not an important component of the viral transmission-blocking phenotype in this species. PMID:26287231

  10. Reactive oxygen species: role in the development of cancer and various chronic conditions

    PubMed Central

    Waris, Gulam; Ahsan, Haseeb

    2006-01-01

    Oxygen derived species such as superoxide radical, hydrogen peroxide, singlet oxygen and hydroxyl radical are well known to be cytotoxic and have been implicated in the etiology of a wide array of human diseases, including cancer. Various carcinogens may also partly exert their effect by generating reactive oxygen species (ROS) during their metabolism. Oxidative damage to cellular DNA can lead to mutations and may, therefore, play an important role in the initiation and progression of multistage carcinogenesis. The changes in DNA such as base modification, rearrangement of DNA sequence, miscoding of DNA lesion, gene duplication and the activation of oncogenes may be involved in the initiation of various cancers. Elevated levels of ROS and down regulation of ROS scavengers and antioxidant enzymes are associated with various human diseases including various cancers. ROS are also implicated in diabtes and neurodegenerative diseases. ROS influences central cellular processes such as proliferation a, apoptosis, senescence which are implicated in the development of cancer. Understanding the role of ROS as key mediators in signaling cascades may provide various opportunities for pharmacological intervention. PMID:16689993

  11. UV-B-Induced PR-1 Accumulation Is Mediated by Active Oxygen Species.

    PubMed

    Green, R.; Fluhr, R.

    1995-02-01

    Depletion of the stratospheric ozone layer may result in an increase in the levels of potentially harmful UV-B radiation reaching the surface of the earth. We have found that UV-B is a potent inducer of the plant pathogenesis-related protein PR-1 in tobacco leaves. UV-B fluences required for PR-1 accumulation are similar to those of other UV-B-induced responses. The UV-B-induced PR-1 accumulation was confined precisely to the irradiated area of the leaf but displayed no leaf tissue specificity. A study of some of the possible components of the signal transduction pathway between UV-B and PR-1 induction showed that photosynthetic processes are not essential, and photoreversible DNA damage is not involved. Antioxidants and cycloheximide were able to block the induction of PR-1 by UV-B, and treatment of leaves with a generator of reactive oxygen resulted in the accumulation of PR-1 protein. These results demonstrate an absolute requirement for active oxygen species and protein synthesis in this UV-B signal transduction pathway. In contrast, we also show that other elicitors, notably salicylic acid, are able to elicit PR-1 via nonreactive oxygen species-requiring pathways.

  12. Fluorescence-based assay for reactive oxygen species: A protective role for creatinine

    SciTech Connect

    Glazer, A.N. )

    1988-06-01

    Attack by reactive oxygen species leads to a decay in phycoerythrin fluorescence emission. This phenomenon provides a versatile new assay for small molecules and macromolecules that can function as protective compounds. With 1-2 {times} 10{sup {minus}8} M phycoerythrin, under conditions where peroxyl radical generation is rate-limiting, the fluorescence decay follows apparent zero-order kinetics. On reaction with HO{center dot}, generated with the ascorbate-Cu{sup 2+} system, the fluorescence decays with apparent first-order kinetics. Examination of the major components of human urine in this assay confirms that at physiological concentrations, urate protects against both types of oxygen radicals. A novel finding is that creatinine protects efficiently by a chelation mechanism against radical damage in the ascorbate-Cu{sup 2+} system at creatinine, ascorbate, and Cu{sup 2+} concentrations comparable to those in normal urine. Urate and creatinine provide complementary modes of protection against reactive oxygen species in the urinary tract.

  13. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    SciTech Connect

    Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L.

    2011-01-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  14. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy and beyond

    PubMed Central

    Vatansever, Fatma; de Melo, Wanessa C.M.A.; Avci, Pinar; Vecchio, Daniela; Sadasivam, Magesh; Gupta, Asheesh; Chandran, Rakkiyappan; Karimi, Mahdi; Parizotto, Nivaldo A; Yin, Rui; Tegos, George P; Hamblin, Michael R

    2013-01-01

    Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction of molecular oxygen. Four major ROS are recognized comprising: superoxide (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2), but they display very different kinetics and levels of activity. The effects of O2•− and H2O2 are less acute than those of •OH and 1O2, since the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and non-enzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or 1O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics, and non-pharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma and medicinal honey. A brief final section covers, reactive nitrogen species, and related therapeutics, such as acidified nitrite and nitric oxide releasing nanoparticles. PMID:23802986

  15. Photochemistry of Dissolved Black Carbon Released from Biochar: Reactive Oxygen Species Generation and Phototransformation.

    PubMed

    Fu, Heyun; Liu, Huiting; Mao, Jingdong; Chu, Wenying; Li, Qilin; Alvarez, Pedro J J; Qu, Xiaolei; Zhu, Dongqiang

    2016-02-02

    Dissolved black carbon (BC) released from biochar can be one of the more photoactive components in the dissolved organic matter (DOM) pool. Dissolved BC was mainly composed of aliphatics and aromatics substituted by aromatic C-O and carboxyl/ester/quinone moieties as determined by solid-state nuclear magnetic resonance. It underwent 56% loss of absorbance at 254 nm, almost complete loss of fluorescence, and 30% mineralization during a 169 h simulated sunlight exposure. Photoreactions preferentially targeted aromatic and methyl moieties, generating CH2/CH/C and carboxyl/ester/quinone functional groups. During irradiation, dissolved BC generated reactive oxygen species (ROS) including singlet oxygen and superoxide. The apparent quantum yield of singlet oxygen was 4.07 ± 0.19%, 2-3 fold higher than many well-studied DOM. Carbonyl-containing structures other than aromatic ketones were involved in the singlet oxygen sensitization. The generation of superoxide apparently depended on electron transfer reactions mediated by silica minerals in dissolved BC, in which phenolic structures served as electron donors. Self-generated ROS played an important role in the phototransformation. Photobleaching of dissolved BC decreased its ability to further generate ROS due to lower light absorption. These findings have significant implications on the environmental fate of dissolved BC and that of priority pollutants.

  16. A comparative kinetic and mechanistic study between tetrahydrozoline and naphazoline toward photogenerated reactive oxygen species.

    PubMed

    Criado, Susana; García, Norman A

    2010-01-01

    Kinetic and mechanistic aspects of the vitamin B2 (riboflavin [Rf])-sensitized photo-oxidation of the imidazoline derivates (IDs) naphazoline (NPZ) and tetrahydrozoline (THZ) were investigated in aqueous solution. The process appears as important on biomedical grounds, considering that the vitamin is endogenously present in humans, and IDs are active components of ocular medicaments of topical application. Under aerobic visible light irradiation, a complex picture of competitive interactions between sensitizer, substrates and dissolved oxygen takes place: the singlet and triplet ((3)Rf*) excited states of Rf are quenched by the IDs: with IDs concentrations ca. 5.0 mM and 0.02 mM Rf, (3)Rf* is quenched by IDs, in a competitive fashion with dissolved ground state oxygen. Additionally, the reactive oxygen species: O(2)((1)Delta(g)), O(2)(*-), HO(*) and H(2)O(2), generated from (3)Rf* and Rf(*-), were detected with the employment of time-resolved methods or specific scavengers. Oxygen uptake experiments indicate that, for NPZ, only H(2)O(2) was involved in the photo-oxidation. In the case of THZ, O(2)(*-), HO(*) and H(2)O(2) were detected, whereas only HO(*) was unambiguously identified as THZ oxidative agents. Upon direct UV light irradiation NPZ and THZ generate O(2)((1)Delta(g)), with quantum yields of 0.2 (literature value, employed as a reference) and 0.08, respectively, in acetonitrile.

  17. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans.

    PubMed

    Meyer, Maria; Schweiger, Paul; Deppenmeier, Uwe

    2013-04-01

    The acetic acid bacterium Gluconobacter oxydans incompletely oxidizes carbon sources as a natural part of its metabolism, and this feature has been exploited for many biotechnological applications. The most important enzymes used to harness the biocatalytic oxidative capacity of G. oxydans are the pyrroloquinoline quinone (PQQ)-dependent dehydrogenases. The membrane-bound PQQ-dependent glucose dehydrogenase (mGDH), encoded by gox0265, was used as model protein for homologous membrane protein production using the previously described Gluconobacter expression vector pBBR1p452. The mgdh gene had ninefold higher expression in the overproduction strain compared to the parental strain. Furthermore, membranes from the overexpression strain had a five- and threefold increase of mGDH activity and oxygen consumption rates, respectively. Oxygen consumption rate of the membrane fraction could not be increased by the addition of a substrate combination of glucose and ethanol in the overproduction strain, indicating that the terminal quinol oxidases of the respiratory chain were rate limiting. In contrast, addition of glucose and ethanol to membranes of the control strain increased oxygen consumption rates approaching the observed rates with G. oxydans overproducing mGDH. The higher glucose oxidation rates of the mGDH overproduction strain corresponded to a 70 % increase of the gluconate production rate compared to the control strain. The high rate of glucose oxidation may be useful in the industrial production of gluconates and ketogluconates, or as whole-cell biosensors. Furthermore, mGDH was purified to homogeneity by one-step strep-tactin affinity chromatography and characterized. To our knowledge, this is the first report of a membrane integral quinoprotein being purified by affinity chromatography and serves as a proof-of-principle for using G. oxydans as a host for membrane protein expression and purification.

  18. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology

    PubMed Central

    Oliveira, Matheus P.; Correa Soares, Juliana B. R.; Oliveira, Marcus F.

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  19. On the in vivo photochemical rate parameters for PDT reactive oxygen species modeling

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Ghogare, Ashwini A.; Greer, Alexander; Zhu, Timothy C.

    2017-03-01

    Photosensitizer photochemical parameters are crucial data in accurate dosimetry for photodynamic therapy (PDT) based on photochemical modeling. Progress has been made in the last few decades in determining the photochemical properties of commonly used photosensitizers (PS), but mostly in solution or in vitro. Recent developments allow for the estimation of some of these photochemical parameters in vivo. This review will cover the currently available in vivo photochemical properties of photosensitizers as well as the techniques for measuring those parameters. Furthermore, photochemical parameters that are independent of environmental factors or are universal for different photosensitizers will be examined. Most photosensitizers discussed in this review are of the type II (singlet oxygen) photooxidation category, although type I photosensitizers that involve other reactive oxygen species (ROS) will be discussed as well. The compilation of these parameters will be essential for ROS modeling of PDT.

  20. Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species

    SciTech Connect

    Popolan, Denisia M.; Bernhardt, Thorsten M.

    2011-03-07

    The oxidation of carbon monoxide with nitrous oxide on mass-selected Au{sub 3}{sup +} and Ag{sub 3}{sup +} clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au{sub 3}{sup +} the cluster itself acts as reactive species that facilitates the formation of CO{sub 2} from N{sub 2}O and CO, for silver the oxidized clusters Ag{sub 3}O{sub x}{sup +} (n= 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N{sub 2}O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

  1. The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics

    NASA Astrophysics Data System (ADS)

    Usselman, Robert J.; Chavarriaga, Cristina; Castello, Pablo R.; Procopio, Maria; Ritz, Thorsten; Dratz, Edward A.; Singel, David J.; Martino, Carlos F.

    2016-12-01

    Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regulation. ROS partitioning appears to be mediated during the activation of molecular oxygen (O2) by reduced flavoenzymes, forming spin-correlated radical pairs (RPs). We find that oscillating magnetic fields at Zeeman resonance alter relative yields of cellular superoxide (O2•‑) and hydrogen peroxide (H2O2) ROS products, indicating coherent singlet-triplet mixing at the point of ROS formation. Furthermore, the orientation-dependence of magnetic stimulation, which leads to specific changes in ROS levels, increases either mitochondrial respiration and glycolysis rates. Our results reveal quantum effects in live cell cultures that bridge atomic and cellular levels by connecting ROS partitioning to cellular bioenergetics.

  2. The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics

    PubMed Central

    Usselman, Robert J.; Chavarriaga, Cristina; Castello, Pablo R.; Procopio, Maria; Ritz, Thorsten; Dratz, Edward A.; Singel, David J.; Martino, Carlos F.

    2016-01-01

    Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regulation. ROS partitioning appears to be mediated during the activation of molecular oxygen (O2) by reduced flavoenzymes, forming spin-correlated radical pairs (RPs). We find that oscillating magnetic fields at Zeeman resonance alter relative yields of cellular superoxide (O2•−) and hydrogen peroxide (H2O2) ROS products, indicating coherent singlet-triplet mixing at the point of ROS formation. Furthermore, the orientation-dependence of magnetic stimulation, which leads to specific changes in ROS levels, increases either mitochondrial respiration and glycolysis rates. Our results reveal quantum effects in live cell cultures that bridge atomic and cellular levels by connecting ROS partitioning to cellular bioenergetics. PMID:27995996

  3. Reaction of Paprika Carotenoids, Capsanthin and Capsorubin, with Reactive Oxygen Species.

    PubMed

    Nishino, Azusa; Yasui, Hiroyuki; Maoka, Takashi

    2016-06-15

    The reaction of paprika carotenoids, capsanthin and capsorubin, with reactive oxygen species (ROS), such as superoxide anion radical (·O2(-)), hydroxyl radical (·OH), and singlet oxygen ((1)O2), was analyzed by LC/PDA ESI-MS and ESR spectrometry. Capsanthin formed both the 5,6-epoxide and 5,8-epoxide by reaction with ·O2(-) and ·OH. Furthermore, capsanthin also formed 5,6- and 5,8-endoperoxide on reaction with (1)O2. The same results were obtained in the case of capsanthin diacetate. On the other hand, capsorubin showed higher stability against these ROS. Capsorubin formed 7,8-epoxide on reaction with ·O2(-) and ·OH and 7,8-endoperoxide on reaction with (1)O2.

  4. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Duan, Qiaohong; Kita, Daniel; Johnson, Eric A.; Aggarwal, Mini; Gates, Laura; Wu, Hen-Ming; Cheung, Alice Y.

    2014-01-01

    In flowering plants, sperm are transported inside pollen tubes to the female gametophyte for fertilization. The female gametophyte induces rupture of the penetrating pollen tube, resulting in sperm release and rendering them available for fertilization. Here we utilize the Arabidopsis FERONIA (FER) receptor kinase mutants, whose female gametophytes fail to induce pollen tube rupture, to decipher the molecular mechanism of this critical male-female interactive step. We show that FER controls the production of high levels of reactive oxygen species at the entrance to the female gametophyte to induce pollen tube rupture and sperm release. Pollen tube growth assays in vitro and in the pistil demonstrate that hydroxyl free radicals are likely the most reactive oxygen molecules, and they induce pollen tube rupture in a Ca2+-dependent process involving Ca2+ channel activation. Our results provide evidence for a RHO GTPase-based signalling mechanism to mediate sperm release for fertilization in plants.

  5. Reactive Oxygen Species Generation by Lunar Simulants in Simulated Lung Fluid

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Kaur, J.; Rickman, D.

    2015-12-01

    The current interest in human exploration of the Moon and other airless planetary bodies has rekindled research into the harmful effects of Lunar dust on human health. Our team has evaluated the spontaneous formation of Reactive Oxygen Species (ROS; hydroxyl radicals, superoxide, and hydrogen peroxide) of a suite of lunar simulants when dispersed in deionized water. Of these species, hydroxyl radical reacts almost immediately with any biomolecule leading to oxidative damage. Sustained production of OH radical as a result of mineral exposure can initiate or enhance disease. The results in deionized water indicate that mechanical stress and the absence of molecular oxygen and water, important environmental characteristics of the lunar environment, can lead to enhanced production of ROS in general. On the basis of the results with deionized water, a few of the simulants were selected for additional studies to evaluate the formation of hydrogen peroxide, a precursor of hydroxyl radical in Simulated Lung Fluid. These simulants dispersed in deionized water typically produce a maximum in H2O2 within 10 to 40 minutes. However, experiments in SLF show a slow steady increase in H2O2 concentration that has been documented to continue for as long as 7 hours. Control experiments with one simulant demonstrate that the rise in H2O2 depends on the availability of dissolved O2. We speculate that this continuous rise in oxygenated SLF might be a result of metal ion-mediated oxidation of organic components, such as glycine in SLF. Ion-mediated oxidation essentially allows dissolved molecular oxygen to react with dissolved organic compounds by forming a metal-organic complex. Results of separate experiments with dissolved Fe, Ni, and Cu and speciation calculations support this notion.

  6. MINIMAL ROLE FOR REACTIVE OXYGEN SPECIES IN DICHLOROACETIC ACID-INDUCED DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE.

    EPA Science Inventory

    Administration of dichloroacetate (DCA) to pregnant rats produces craniofacial, heart and other defects in their offspring. Exposure of zebrafish to DCA induces malformations and increases superoxide and nitric oxide production suggesting that reactive oxygen species (ROS) are as...

  7. Function of reactive oxygen species during animal development: passive or active?

    PubMed

    Covarrubias, Luis; Hernández-García, David; Schnabel, Denhí; Salas-Vidal, Enrique; Castro-Obregón, Susana

    2008-08-01

    Oxidative stress is considered causal of aging and pathological cell death, however, very little is known about its function in the natural processes that support the formation of an organism. It is generally thought that cells must continuously protect themselves from the possible damage caused by reactive oxygen species (ROS) (passive ROS function). However, presently, ROS are recognized as physiologically relevant molecules that mediate cell responses to a variety of stimuli, and the activities of several molecules, some developmentally relevant, are directly or indirectly regulated by oxidative stress (active ROS function). Here we review recent data that are suggestive of specific ROS functions during development of animals, particularly mammals.

  8. Calcium and Mitochondrial Reactive Oxygen Species Generation: How to Read the Facts

    PubMed Central

    Adam-Vizi, Vera; Starkov, Anatoly A.

    2011-01-01

    A number of recent discoveries indicate that abnormal Ca2+ signaling, oxidative stress, and mitochondrial dysfunction are involved in the neuronal damage in Alzheimer’s disease. However, the literature on the interactions between these factors is controversial especially in the interpretation of the cause-effect relationship between mitochondrial damage induced by Ca2+ overload and the production of reactive oxygen species (ROS). In this review, we survey the experimental observations on the Ca2+-induced mitochondrial ROS production, explain the sources of controversy in interpreting these results, and discuss the different molecular mechanisms underlying the effect of Ca2+ on the ROS emission by brain mitochondria. PMID:20421693

  9. Reactive oxygen species and antioxidant enzymes activity of Anabaena sp. PCC 7120 (Cyanobacterium) under simulated microgravity.

    PubMed

    Li, Gen-bao; Liu, Yong-ding; Wang, Gao-hong; Song, Li-rong

    2004-12-01

    It was found that reactive oxygen species in Anabaena cells increased under simulated microgravity provided by clinostat. Activities of intracellular antioxidant enzymes, such as superoxide dismutase, catalase were higher than those in the controlled samples during the 7 days' experiment. However, the contents of glutathione [correction of gluathione], an intracellular antioxidant, decreased in comparison with the controlled samples. The results suggested that microgravity provided by clinostat might break the oxidative/antioxidative balance. It indicated a protective mechanism in algal cells, that the total antioxidant system activity increased, which might play an important role for algal cells to adapt the environmental stress of microgravity.

  10. Generation of reactive oxygen species by interaction between antioxidants used as food additive and metal ions.

    PubMed

    Iwasaki, Yusuke; Oda, Momoko; Tsukuda, Yuri; Nagamori, Yuki; Nakazawa, Hiroyuki; Ito, Rie; Saito, Koichi

    2014-01-01

    Food additives, such as preservatives, sweeteners, coloring agents, and flavoring agents, are widely used in food manufacturing. However, their combined effects on the human body are not known. The purpose of this study was to examine whether combinations of antioxidants and metal ions generate reactive oxygen species (ROS) under in vitro conditions using electron spin resonance (ESR). Among the metal ions examined, only iron and copper generated ROS in the presence of antioxidants. Moreover, certain phenolic antioxidants having pro-oxidant activity induced DNA oxidation and degradation via the generation of high levels of ROS in the presence of copper ion, resulting in complete degradation of DNA in vitro.

  11. In utero-initiated cancer: the role of reactive oxygen species.

    PubMed

    Wan, Joanne; Winn, Louise M

    2006-12-01

    It is becoming more evident that not only can drugs and environmental chemicals interfere with normal fetal development by causing structural malformations, such as limb defects, but that xenobiotic exposure during development can also cause biochemical and functional abnormalities that may ultimately lead to cancer later on in life. Fetal toxicity may be partly mediated by the embryonic bioactivation of xenobiotics to free radical intermediates that can lead to oxidative stress and potentially lead, in some cases, to carcinogenesis. Using a number of examples, this review will focus on the role of reactive oxygen species (ROS) in the mechanisms pertaining to in utero initiated cancers.

  12. Arginine deiminase modulates endothelial tip cells via excessive synthesis of reactive oxygen species.

    PubMed

    Zhuo, Wei; Song, Xiaomin; Zhou, Hao; Luo, Yongzhang

    2011-10-01

    ADI (arginine deiminase), an enzyme that hydrolyses arginine, has been reported as an anti-angiogenesis agent. However, its molecular mechanism is unclear. We have demonstrated for the first time that ADI modulates the angiogenic activity of endothelial tip cells. By arginine depletion, ADI disturbs actin filament in endothelial tip cells, causing disordered migratory direction and decreased migration ability. Furthermore, ADI induces excessive synthesis of ROS (reactive oxygen species), and activates caspase 8-, but not caspase 9-, dependent apoptosis in endothelial cells. These findings provide a novel mechanism by which ADI inhibits tumour angiogenesis through modulating endothelial tip cells.

  13. NQO2 is a reactive oxygen species generating off-target for acetaminophen.

    PubMed

    Miettinen, Teemu P; Björklund, Mikael

    2014-12-01

    The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In humans, NQO2 is highly expressed in liver and kidney, the main sites of acetaminophen toxicity. We suggest that NQO2 mediated superoxide production may function as a novel mechanism augmenting acetaminophen toxicity.

  14. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction

    PubMed Central

    Weidinger, Adelheid; Kozlov, Andrey V.

    2015-01-01

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity. PMID:25884116

  15. Oleic acid increases mitochondrial reactive oxygen species production and decreases endothelial nitric oxide synthase activity in cultured endothelial cells.

    PubMed

    Gremmels, Hendrik; Bevers, Lonneke M; Fledderus, Joost O; Braam, Branko; van Zonneveld, Anton Jan; Verhaar, Marianne C; Joles, Jaap A

    2015-03-15

    Elevated plasma levels of free fatty acids (FFA) are associated with increased cardiovascular risk. This may be related to FFA-induced elevation of oxidative stress in endothelial cells. We hypothesized that, in addition to mitochondrial production of reactive oxygen species, endothelial nitric oxide synthase (eNOS)-mediated reactive oxygen species production contributes to oleic acid (OA)-induced oxidative stress in endothelial cells, due to eNOS uncoupling. We measured reactive oxygen species production and eNOS activity in cultured endothelial cells (bEnd.3) in the presence of OA bound to bovine serum albumin, using the CM-H2DCFDA assay and the L-arginine/citrulline conversion assay, respectively. OA induced a concentration-dependent increase in reactive oxygen species production, which was inhibited by the mitochondrial complex II inhibitor thenoyltrifluoroacetone (TTFA). OA had little effect on eNOS activity when stimulated by a calcium-ionophore, but decreased both basal and insulin-induced eNOS activity, which was restored by TTFA. Pretreatment of bEnd.3 cells with tetrahydrobiopterin (BH4) prevented OA-induced reactive oxygen species production and restored inhibition of eNOS activity by OA. Elevation of OA levels leads to both impairment in receptor-mediated stimulation of eNOS and to production of mitochondrial-derived reactive oxygen species and hence endothelial dysfunction.

  16. Exceedingly Fast Oxygen Atom Transfer to Olefins via a Catalytically Competent Nonheme Iron Species.

    PubMed

    Serrano-Plana, Joan; Aguinaco, Almudena; Belda, Raquel; García-España, Enrique; Basallote, Manuel G; Company, Anna; Costas, Miquel

    2016-05-17

    The reaction of [Fe(CF3 SO3 )2 (PyNMe3 )] with excess peracetic acid at -40 °C leads to the accumulation of a metastable compound that exists as a pair of electromeric species, [Fe(III) (OOAc)(PyNMe3 )](2+) and [Fe(V) (O)(OAc)(PyNMe3 )](2+) , in fast equilibrium. Stopped-flow UV/Vis analysis confirmed that oxygen atom transfer (OAT) from these electromeric species to olefinic substrates is exceedingly fast, forming epoxides with stereoretention. The impact of the electronic and steric properties of the substrate on the reaction rate could be elucidated, and the relative reactivities determined for the catalytic oxidations could be reproduced by kinetic studies. The observed fast reaction rates and high selectivities demonstrate that this metastable compound is a truly competent OAT intermediate of relevance for nonheme iron catalyzed epoxidations.

  17. Elevated Cytoplasmic Free Zinc and Increased Reactive Oxygen Species Generation in the Context of Brain Injury.

    PubMed

    Stork, Christian J; Li, Yang V

    2016-01-01

    Intracellular zinc release and the generation of reactive oxygen species (ROS) have been reported to be common ingredients in numerous toxic signaling mechanisms in neurons. A key source for intracellular zinc release is its liberation from metallothionein-III (MT-III). MT-III binds and regulates intracellular zinc levels under physiological conditions, but the zinc-binding thiols readily react with certain ROS and reactive nitrogen species (RNS) to result in intracellular zinc liberation. Liberated zinc induces ROS and RNS generation by multiple mechanisms, including the induction of mitochondrial ROS production, and also promotes ROS formation outside the mitochondria by interaction with the enzymes NADPH oxidase and 12-lipoxygenase. Of particular relevance to neuronal injury in the context of ischemia and prolonged seizures, the positive feedback cycle between ROS/RNS generation and increasing zinc liberation will be examined.

  18. Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress.

    PubMed

    Ke, Qingbo; Wang, Zhi; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Kwak, Sang-Soo

    2015-09-01

    YUCCA6, a member of the YUCCA family of flavin monooxygenase-like proteins, is involved in the tryptophan-dependent IAA biosynthesis pathway and responses to environmental cues in Arabidopsis. However, little is known about the role of the YUCCA pathway in auxin biosynthesis in poplar. Here, we generated transgenic poplar (Populus alba × P. glandulosa) expressing the Arabidopsis YUCCA6 gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SY plants). Three SY lines (SY7, SY12 and SY20) were selected based on the levels of AtYUCCA6 transcript. SY plants displayed auxin-overproduction morphological phenotypes, such as rapid shoot growth and retarded main root development with increased root hair formation. In addition, SY plants had higher levels of free IAA and early auxin-response gene transcripts. SY plants exhibited tolerance to drought stress, which was associated with reduced levels of reactive oxygen species. Furthermore, SY plants showed delayed hormone- and dark-induced senescence in detached leaves due to higher photosystem II efficiency and less membrane permeability. These results suggest that the conserved IAA biosynthesis pathway mediated by YUCCA family members exists in poplar.

  19. Inhibitory activities of soluble and bound millet seed phenolics on free radicals and reactive oxygen species.

    PubMed

    Chandrasekara, Anoma; Shahidi, Fereidoon

    2011-01-12

    Oxidative stress, caused by reactive oxygen species (ROS), is responsible for modulating several pathological conditions and aging. Soluble and bound phenolic extracts of commonly consumed millets, namely, kodo, finger (Ravi), finger (local), foxtail, proso, little, and pearl, were investigated for their phenolic content and inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and ROS, namely, hydroxyl radical, peroxyl radical, hydrogen peroxide (H(2)O(2)), hypochlorous acid (HOCl), and singlet oxygen ((1)O(2)). Inhibition of DPPH and hydroxyl radicals was detrmined using electron paramagnetic resonance (EPR) spectroscopy. The peroxyl radical inhibitory activity was measured using the oxygen radical absorbance capacity (ORAC) assay. The scavenging of H(2)O(2), HOCl, and (1)O(2) was evaluated using colorimetric methods. The results were expressed as micromoles of ferulic acid equivalents (FAE) per gram of grain on a dry weight basis. In addition, major hydroxycinnamic acids were identified and quantified using high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (MS). All millet varieties displayed effective radical and ROS inhibition activities, which generally positively correlated with phenolic contents, except for hydroxyl radical. HPLC analysis revealed the presence of ferulic and p-coumaric acids as major hydroxycinnamic acids in phenolic extract and responsible for the observed effects. Bound extracts of millet contributed 38-99% to ROS scavenging, depending on the variety and the test system employed. Hence, bound phenolics must be included in the evaluation of the antioxidant activity of millets and other cereals.

  20. Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells.

    PubMed

    Li, Tao-Sheng; Marbán, Eduardo

    2010-07-01

    Stem cell cytogenetic abnormalities constitute a roadblock to regenerative therapies. We investigated the possibility that reactive oxygen species (ROSs) influence genomic stability in cardiac and embryonic stem cells. Karyotypic abnormalities in primary human cardiac stem cells were suppressed by culture in physiological (5%) oxygen, but addition of antioxidants to the medium unexpectedly increased aneuploidy. Intracellular ROS levels were moderately decreased in physiological oxygen, but dramatically decreased by the addition of high-dose antioxidants. Quantification of DNA damage in cardiac stem cells and in human embryonic stem cells revealed a biphasic dose-dependence: antioxidants suppressed DNA damage at low concentrations, but potentiated such damage at higher concentrations. High-dose antioxidants decreased cellular levels of ATM (ataxia-telangiectasia mutated) and other DNA repair enzymes, providing a potential mechanistic basis for the observed effects. These results indicate that physiological levels of intracellular ROS are required to activate the DNA repair pathway for maintaining genomic stability in stem cells. The concept of an "oxidative optimum" for genomic stability has broad implications for stem cell biology and carcinogenesis.

  1. Copper elevated embryonic hemoglobin through reactive oxygen species during zebrafish erythrogenesis.

    PubMed

    Zhou, Xin-Ying; Zhang, Ting; Ren, Long; Wu, Jun-Jie; Wang, Weimin; Liu, Jing-Xia

    2016-06-01

    Copper, as an essential trace mineral, can cause diseases such as childhood leukemia at excess levels, but has been applied in anemia therapy for a long time. However, few reports have studied its role during hematopoiesis at the molecular level in an animal model. In this study, by microarray, qRT-PCR, whole-mount in situ hybridization and O-dianisidine staining detections, we revealed the increased expression of hemoglobin in copper-exposed embryos. Secondly, we found that copper-exposed embryos exhibited high levels of reactive oxygen species (ROS), and genes in oxygen binding and oxygen transporting were up-regulated in the embryos. Finally, we found that ROS scavengers NAC, GSH, and DMTU not only inhibited in vivo ROS levels induced by copper, but also significantly decreased high expression of hemoglobin back to almost normal levels in copper exposed embryos, and also helped with copper elimination from the embryos. Our data first demonstrated that ROS mediated copper induced hemoglobin expression in vertebrates, partly revealing the underlying molecular mechanism of copper therapy for anemia. Moreover, we revealed that copper homeostasis was broken by its induced ROS and ROS helped with copper overloading in the body, which could be applied as a novel therapy target for copper-caused diseases.

  2. Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy.

    PubMed

    Rowley, Shane; Liang, Li-Ping; Fulton, Ruth; Shimizu, Takahiko; Day, Brian; Patel, Manisha

    2015-03-01

    Metabolic alterations have been implicated in the etiology of temporal lobe epilepsy (TLE), but whether or not they have a functional impact on cellular energy producing pathways (glycolysis and/or oxidative phosphorylation) is unknown. The goal of this study was to determine if alterations in cellular bioenergetics occur using real-time analysis of mitochondrial oxygen consumption and glycolytic rates in an animal model of TLE. We hypothesized that increased steady-state levels of reactive oxygen species (ROS) initiated by epileptogenic injury result in impaired mitochondrial respiration. We established methodology for assessment of bioenergetic parameters in isolated synaptosomes from the hippocampus of Sprague-Dawley rats at various times in the kainate (KA) model of TLE. Deficits in indices of mitochondrial respiration were observed at time points corresponding with the acute and chronic phases of epileptogenesis. We asked if mitochondrial bioenergetic dysfunction occurred as a result of increased mitochondrial ROS and if it could be attenuated in the KA model by pharmacologically scavenging ROS. Increased steady-state ROS in mice with forebrain-specific conditional deletion of manganese superoxide dismutase (Sod2(fl/fl)NEX(Cre/Cre)) in mice resulted in profound deficits in mitochondrial oxygen consumption. Pharmacological scavenging of ROS with a catalytic antioxidant restored mitochondrial respiration deficits in the KA model of TLE. Together, these results demonstrate that mitochondrial respiration deficits occur in experimental TLE and ROS mechanistically contribute to these deficits. Furthermore, this study provides novel methodology for assessing cellular metabolism during the entire time course of disease development.

  3. Light-responsive polymer nanoreactors: a source of reactive oxygen species on demand

    NASA Astrophysics Data System (ADS)

    Baumann, Patric; Balasubramanian, Vimalkumar; Onaca-Fischer, Ozana; Sienkiewicz, Andrzej; Palivan, Cornelia G.

    2012-12-01

    Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that encapsulate photosensitizer-protein conjugates in polymer vesicles as a source of ``on demand'' reactive oxygen species. Vesicles made of poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) successfully encapsulated the photosensitizer Rose Bengal-bovine serum albumin conjugate (RB-BSA) during a self-assembly process, as demonstrated by UV-Vis spectroscopy. A combination of light scattering and transmission electron microscopy indicated that the nanoreactors are stable over time. They serve a dual role: protecting the photosensitizer in the inner cavity and producing in situ reactive oxygen species (ROS) upon irradiation with appropriate electromagnetic radiation. Illumination with appropriate wavelength light allows us to switch on/off and to control the production of ROS. Because of the oxygen-permeable nature of the polymer membrane of vesicles, ROS escape into the environment around vesicles, as established by electron paramagnetic resonance. The light-sensitive nanoreactor is taken up by HeLa cells in a Trojan horse fashion: it is nontoxic and, when irradiated with the appropriate laser light, produces ROS that induce cell death in a precise area corresponding to the irradiation zone. These nanoreactors can be used in theranostic approaches because they can be detected via the fluorescent photosensitizer signal and simultaneously produce ROS efficiently ``on demand''.Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that

  4. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation

    SciTech Connect

    Meeran, Syed M.; Katiyar, Suchitra; Katiyar, Santosh K.

    2008-05-15

    Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygen species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer.

  5. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review.

    PubMed

    Atashi, Fatemeh; Modarressi, Ali; Pepper, Michael S

    2015-05-15

    Mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering and regenerative medicine. The multipotent stem cell component of MSC isolates is able to differentiate into derivatives of the mesodermal lineage including adipocytes, osteocytes, chondrocytes, and myocytes. Many common pathways have been described in the regulation of adipogenesis and osteogenesis. However, stimulation of osteogenesis appears to suppress adipogenesis and vice-versa. Increasing evidence implicates a tight regulation of these processes by reactive oxygen species (ROS). ROS are short-lived oxygen-containing molecules that display high chemical reactivity toward DNA, RNA, proteins, and lipids. Mitochondrial complexes I and III, and the NADPH oxidase isoform NOX4 are major sources of ROS production during MSC differentiation. ROS are thought to interact with several pathways that affect the transcription machinery required for MSC differentiation including the Wnt, Hedgehog, and FOXO signaling cascades. On the other hand, elevated levels of ROS, defined as oxidative stress, lead to arrest of the MSC cell cycle and apoptosis. Tightly regulated levels of ROS are therefore critical for MSC terminal differentiation, although the precise sources, localization, levels and the exact species of ROS implicated remain to be determined. This review provides a detailed overview of the influence of ROS on adipogenic and osteogenic differentiation in MSCs.

  6. Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium.

    PubMed

    Zinovkin, Roman A; Romaschenko, Valeria P; Galkin, Ivan I; Zakharova, Vlada V; Pletjushkina, Olga Yu; Chernyak, Boris V; Popova, Ekaterina N

    2014-08-01

    Vascular aging is accompanied by increases in circulatory proinflammatory cytokines leading to inflammatory endothelial response implicated in early atherogenesis. To study the possible role of mitochondria-derived reactive oxygen species (ROS) in this phenomenon, we applied the effective mitochondria-targeted antioxidant SkQ1, the conjugate of plastoquinone with dodecyltriphenylphosphonium. Eight months treatment of (CBAxC57BL/6) F1 mice with SkQ1 did not prevent age-related elevation of the major proinflammatory cytokines TNF and IL-6 in serum, but completely abrogated the increase in adhesion molecule ICAM1 expression in aortas of 24-month-old animals. In endothelial cell culture, SkQ1 also attenuated TNF-induced increase in ICAM1, VCAM, and E-selectin expression and secretion of IL-6 and IL-8, and prevented neutrophil adhesion to the endothelial monolayer. Using specific inhibitors to transcription factor NF-κB and stress-kinases p38 and JNK, we demonstrated that TNF-induced ICAM1 expression depends mainly on NF-κB activity and, to a lesser extent, on p38. SkQ1 had no effect on p38 phosphorylation (activation) but significantly reduced NF-κB activation by inhibiting phosphorylation and proteolytic cleavage of the inhibitory subunit IκBα. The data indicate an important role of mitochondrial reactive oxygen species in regulation of the NF-κB pathway and corresponding age-related inflammatory activation of endothelium.

  7. Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide.

    PubMed

    Richardson, David E; Regino, Celeste A S; Yao, Huirong; Johnson, Jodie V

    2003-12-15

    Kinetic and thermodynamic evidence is reported for the role of the peroxymonocarbonate ion, HCO4-, as a reactive oxygen species in biology. Peroxymonocarbonate results from the equilibrium reaction of hydrogen peroxide with bicarbonate via the perhydration of CO2. The kinetic parameters for HCO4- oxidation of free methionine have been obtained (k1 = 0.48 +/- 0.08 M(-1)s(-1) by a spectrophotometric initial rate method). At the physiological concentration of bicarbonate in blood ( approximately 25 mM), it is estimated that peroxymonocarbonate formed in equilibrium with hydrogen peroxide will oxidize methionine approximately 2-fold more rapidly than plasma H2O2 itself. As an example of methionine oxidation in proteins, the bicarbonate-catalyzed hydrogen peroxide oxidation of alpha1-proteinase inhibitor (alpha1-PI) has been investigated via its inhibitory effect on porcine pancreatic elastase activity. The second-order rate constant for HCO4- oxidation of alpha1-PI (0.36 +/- 0.06 M(-1)s(-1)) is comparable to that of free methionine, suggesting that methionine oxidation is occurring. Further evidence for methionine oxidation, specifically involving Met358 and Met351 of the alpha1-PI reactive center loop, has been obtained through amino acid analyses and mass spectroscopic analyses of proteolytic digests of the oxidized alpha1-PI. These results strongly suggest that HCO4- should be considered a reactive oxygen species in aerobic metabolism.

  8. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    PubMed

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  9. Overexpression of stanniocalcin-1 inhibits reactive oxygen species and renal ischemia/reperfusion injury in mice.

    PubMed

    Huang, Luping; Belousova, Tatiana; Chen, Minyi; DiMattia, Gabriel; Liu, Dajun; Sheikh-Hamad, David

    2012-10-01

    Reactive oxygen species, endothelial dysfunction, inflammation, and mitogen-activated protein kinases have important roles in the pathogenesis of ischemia/reperfusion kidney injury. Stanniocalcin-1 (STC1) suppresses superoxide generation in many systems through the induction of mitochondrial uncoupling proteins and blocks the cytokine-induced rise in endothelial permeability. Here we tested whether transgenic overexpression of STC1 protects from bilateral ischemia/reperfusion kidney injury. This injury in wild-type mice caused a halving of the creatinine clearance; severe tubular vacuolization and cast formation; increased infiltration of macrophages and T cells; higher vascular permeability; greater production of superoxide and hydrogen peroxide; and higher ratio of activated extracellular regulated kinase/activated Jun-N-terminal kinase and p38, all compared to sham-treated controls. Mice transgenic for human STC1 expression, however, had resistance to equivalent ischemia/reperfusion injury indicated as no significant change from controls in any of these parameters. Tubular epithelial cells in transgenic mice expressed higher mitochondrial uncoupling protein 2 and lower superoxide generation. Pre-treatment of transgenic mice with paraquat, a generator of reactive oxygen species, before injury restored the susceptibility to ischemia/reperfusion kidney injury, suggesting that STC1 protects by an anti-oxidant mechanism. Thus, STC1 may be a therapeutic target for ischemia/reperfusion kidney injury.

  10. Contribution of reactive oxygen species to (+)-catechin-mediated bacterial lethality.

    PubMed

    Ajiboye, T O; Aliyu, M; Isiaka, I; Haliru, F Z; Ibitoye, O B; Uwazie, J N; Muritala, H F; Bello, S A; Yusuf, I I; Mohammed, A O

    2016-10-25

    The contribution of reactive oxygen species to (+)-catechin-mediated bacterial lethality was investigated. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) of (+)-catechin against E. coli, P. aeruginosa and S. aureus were investigated using 96-well microtitre plate. MIC and MBC of (+)-catechin against E. coli, P. aeruginosa and S. aureus are 600 and 700; 600 and 800; 600 and 800 μg/mL respectively. The optical densities and colony forming units of (+)-catechin-treated bacteria decreased. (+)-Catechin (4× MIC) significantly increased the superoxide anion content of E. coli, P. aeruginosa and S. aureus compared to DMSO. Superoxide dismutase and catalase in (+)-catechin treated E. coli, P. aeruginosa and S. aureus increased significantly. Conversely, level of reduced glutathione in (+)-catechin-treated E. coli, P. aeruginosa and S. aureus decreased significantly while glutathione disulfide increased significantly. Furthermore, malondialdehyde and fragmented DNA increased significantly following exposure to (+)-catechin. From the above findings, (+)-catechin enhanced the generation of reactive oxygen species (superoxide anion radical and hydroxyl radical) in E. coli, P. aeruginosa and S. aureus, possibly by autoxidation, Fenton chemistry and inhibiting electron transport chain resulting into lipid peroxidation and DNA fragmentation and consequentially bacterial cell death.

  11. Nitric oxide and reactive oxygen species are required for systemic acquired resistance in plants.

    PubMed

    El-Shetehy, Mohamed; Wang, Caixia; Shine, M B; Yu, Keshun; Kachroo, Aardra; Kachroo, Pradeep

    2015-01-01

    Systemic acquired resistance (SAR) is a form of broad-spectrum disease resistance that is induced in response to primary infection and that protects uninfected portions of the plant against secondary infections by related or unrelated pathogens. SAR is associated with an increase in chemical signals that operate in a collective manner to confer protection against secondary infections. These include, the phytohormone salicylic acid (SA), glycerol-3-phosphate (G3P), azelaic acid (AzA) and more recently identified signals nitric oxide (NO) and reactive oxygen species (ROS). NO, ROS, AzA and G3P function in the same branch of the SAR pathway, and in parallel to the SA-regulated branch. NO and ROS function upstream of AzA/G3P and different reactive oxygen species functions in an additive manner to mediate chemical cleavage of the C9 double bond on C18 unsaturated fatty acids to generate AzA. The parallel and additive functioning of various chemical signals provides important new insights in the overlapping pathways leading to SAR.

  12. CLOCK Promotes Endothelial Damage by Inducing Autophagy through Reactive Oxygen Species

    PubMed Central

    Tang, Xiao; Lin, Changpo; Guo, Daqiao; Qian, Ruizhe; Li, Xiaobo; Shi, Zhenyu; Liu, Jianjun; Li, Xu

    2016-01-01

    A number of recent studies have implicated that autophagy was activated by reactive oxygen species (ROS). Our previous report indicated that CLOCK increased the accumulation of ROS under hypoxic conditions. In this study, we investigated the mechanisms by which CLOCK mediated endothelial damage, focusing on the involvement of oxidative damage and autophagy. Overexpression of CLOCK in human umbilical vein endothelial cells (HUVECs) showed inhibition of cell proliferation and higher autophagosome with an increased expression of Beclin1 and LC3-I/II under hypoxic conditions. In contrast, CLOCK silencing reversed these effects. Interestingly, pretreatment with 3-methyladenine (3-MA) resulted in the attenuation of CLOCK-induced cell autophagy and but did not influence the production of intracellular reactive oxygen species (ROS). Furthermore, Tiron (4,5-dihydroxy-1,3-benzene disulfonic acid-disodium salt), a ROS scavenger, significantly attenuated CLOCK-induced cell autophagy. In addition, we found that overexpression of CLOCK had no significant effects on the production of ROS and expression of Beclin1 and LC3-I/II under normoxic conditions in HUVEC. In this present investigation, our results suggested a novel mechanism of action of CLOCK in HUVECs, opening up the possibility of targeting CLOCK for the treatment of vascular diseases. PMID:28058089

  13. Reactive oxygen species exacerbate autoimmune hemolytic anemia in New Zealand Black mice.

    PubMed

    Konno, Tasuku; Otsuki, Noriyuki; Kurahashi, Toshihiro; Kibe, Noriko; Tsunoda, Satoshi; Iuchi, Yoshihito; Fujii, Junichi

    2013-12-01

    Elevated reactive oxygen species (ROS) and oxidative damage occur in the red blood cells (RBCs) of SOD1-deficient C57BL/6 mice. This leads to autoimmune responses against RBCs in aged mice that are similar to autoimmune hemolytic anemia (AIHA). We examined whether a SOD1 deficiency and/or the human SOD1 transgene (hSOD1) would affect phenotypes of AIHA-prone New Zealand Black (NZB) mice by establishing three congenic strains: those lacking SOD1, those expressing hSOD1 under a GATA-1 promoter, and those lacking mouse SOD1 but expressing hSOD1. Levels of intracellular ROS and oxidative stress markers increased, and the severity of the AIHA phenotype was aggravated by a SOD1 deficiency. In contrast, the transgenic expression of hSOD1 in an erythroid cell-specific manner averted most of the AIHA phenotype evident in the SOD1-deficient mice and also ameliorated the AIHA phenotype in the mice possessing intrinsic SOD1. These data suggest that oxidative stress in RBCs may be an underlying mechanism for autoimmune responses in NZB mice. These results were consistent with the hypothetical role of reactive oxygen species in triggering the autoimmune reaction in RBCs and may provide a novel approach to mitigating the progression of AIHA by reducing oxidative stress.

  14. The role of reactive oxygen species in the induction of Ty1 retrotransposition in Saccharomyces cerevisiae.

    PubMed

    Stoycheva, Teodora; Pesheva, Margarita; Venkov, Pencho

    2010-05-01

    Here we provide evidence for a dependence between the increased production of reactive oxygen species and the activation of Ty1 retrotransposition. We have found that the strong activator of Ty1 mobility, methylmethane sulphonate, can not induce Ty1 retrotransposition in cells with compromised mitochondrial oxidative phosphorylation (rho(-); sco1Delta), which is the major source for production of reactive oxygen species (ROS) in Saccharomyces cerevisiae. The quantitative estimation of superoxide anions in living cells showed that rho(+) cells exposed to methylmethane sulphonate increase Ty1 retrotransposition and superoxide levels. The increase of superoxide anions by the superoxide generator menadione is accompanied by induction of Ty1 mobility without any treatment with a DNA-damaging agent. Higher frequencies of retrotransposition were found in rho(+) and rho(-) cells treated with exogenously added hydrogen peroxide or in cells with disrupted YAP1 gene characterized by increased intracellular levels of hydrogen peroxide. These data indicate that increased levels of ROS may have an independent and key role in the induction of Ty1 retrotransposition.

  15. Hypoxia-Induced Reactive Oxygen Species Cause Chromosomal Abnormalities in Endothelial Cells in the Tumor Microenvironment

    PubMed Central

    Hida, Yasuhiro; Maishi, Nako; Towfik, Alam Mohammad; Inoue, Nobuo; Shindoh, Masanobu; Hida, Kyoko

    2013-01-01

    There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, >30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment. PMID:24260373

  16. Protective activity of propofol, Diprivan and intralipid against active oxygen species.

    PubMed Central

    Mathy-Hartert, M; Deby-Dupont, G; Hans, P; Deby, C; Lamy, M

    1998-01-01

    We separately studied the antioxidant properties of propofol (PPF), Diprivan (the commercial form of PPF) and intralipid (IL) (the vehicle solution of PPF in Diprivan) on active oxygen species produced by phorbol myristate acetate (10(-6) M)-stimulated human polymorphonuclear leukocytes (PMN: 5 x 10(5) cells/assay), human endothelial cells (5 x 10(5) cells/assay) or cell-free systems (NaOCl or H2O2/peroxidase systems), using luminol (10(-4) M)-enhanced chemiluminescence (CL). We also studied the protective effects of Diprivan on endothelial cells submitted to an oxidant stress induced by H2O2/MPO system: cytotoxicity was assessed by the release of preincorporated 51Cr. Propofol inhibited the CL produced by stimulated PMN in a dose dependent manner (until 5 x 10(-5) M, a clinically relevant concentration), while Diprivan and IL were not dose-dependent inhibitors. The CL produced by endothelial cells was dose-dependently inhibited by Diprivan and PPF, and weakly by IL (not dose-dependent). In cell free systems, dose-dependent inhibitions were obtained for the three products with a lower effect for IL. Diprivan efficaciously protected endothelial cells submitted to an oxidant stress, while IL was ineffective. By HPLC, we demonstrated that PPF was not incorporated into the cells. The drug thus acted by scavenging the active oxygen species released in the extracellular medium. IL acted in the same manner, but was a less powerful antioxidant. PMID:9883967

  17. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    PubMed Central

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)-capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters. PMID:28208642

  18. Warm acclimation and oxygen depletion induce species-specific responses in salmonids.

    PubMed

    Anttila, Katja; Lewis, Mario; Prokkola, Jenni M; Kanerva, Mirella; Seppänen, Eila; Kolari, Irma; Nikinmaa, Mikko

    2015-05-15

    Anthropogenic activities are greatly altering the habitats of animals, whereby fish are already encountering several stressors simultaneously. The purpose of the current study was to investigate the capacity of fish to respond to two different environmental stressors (high temperature and overnight hypoxia) separately and together. We found that acclimation to increased temperature (from 7.7±0.02°C to 14.9±0.05°C) and overnight hypoxia (daily changes from normoxia to 63-67% oxygen saturation), simulating climate change and eutrophication, had both antagonistic and synergistic effects on the capacity of fish to tolerate these stressors. The thermal tolerance of Arctic char (Salvelinus alpinus) and landlocked salmon (Salmo salar m. sebago) increased with warm acclimation by 1.3 and 2.2°C, respectively, but decreased when warm temperature was combined with overnight hypoxia (by 0.2 and 0.4°C, respectively). In contrast, the combination of the stressors more than doubled hypoxia tolerance in salmon and also increased hypoxia tolerance in char by 22%. Salmon had 1.2°C higher thermal tolerance than char, but char tolerated much lower oxygen levels than salmon at a given temperature. The changes in hypoxia tolerance were connected to the responses of the oxygen supply and delivery system. The relative ventricle mass was higher in cold- than in warm-acclimated salmon but the thickness of the compact layer of the ventricle increased with the combination of warm and hypoxia acclimation in both species. Char had also significantly larger hearts and thicker compact layers than salmon. The results illustrate that while fish can have protective responses when encountering a single environmental stressor, the combination of stressors can have unexpected species-specific effects that will influence their survival capacity.

  19. Cell respiration and formation of reactive oxygen species: facts and artefacts.

    PubMed

    Nohl, H; Kozlov, A V; Gille, L; Staniek, K

    2003-12-01

    It is generally taken as an established fact that mitochondrial respiration is associated with the generation of small amounts of ROS (reactive oxygen species). There are many arguments supporting this side activity. A major argument is the particular physico-chemical configuration of dioxygen, which prevents the transfer of a pair of electrons. Instead, oxygen is reduced by the successive transfer of single electrons, necessarily leading to intermediates with odd electrons. The high rate of turnover of oxygen in the respiratory chain in combination with the existence of single-electron carriers supports the concept of mitochondria as the major cellular ROS generator. Experimental evidence on the ability of mitochondria to generate ROS was, however, based essentially on in vitro experiments with isolated mitochondria. A variety of structural and functional alterations associated with the removal of mitochondria from the cell, as well as the routinely applied ROS detection methods, may lead to artefactual deviation of odd electrons to dioxygen. We therefore checked these correlations in view of ROS formation, including the often reported effect of the membrane potential on the establishment of a redox couple with oxygen out of sequence. For this purpose we developed novel methods to prove the authenticity of mitochondria for ROS generation in the living cell. Based on our experiments, we can exclude spontaneous release of ROS from mitochondria. However, we describe conditions under which mitochondria can be transformed to mild ROS generators. The site of single-electron deviation to dioxygen was found to be ubiquinol interacting with the Rieske iron-sulphur protein and low-potential cytochrome b of the bc (1) complex.

  20. The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal

    PubMed Central

    Forman, Henry Jay; Fukuto, Jon M.; Miller, Tom; Zhang, Hongqiao; Rinna, Alessandra; Levy, Smadar

    2008-01-01

    During the past several years, major advances have been made in understanding how reactive oxygen species (ROS) and nitrogen species (RNS) participate in signal transduction. Identification of the specific targets and the chemical reactions involved still remains to be resolved with many of the signaling pathways in which the involvement of reactive species has been determined. Our understanding is that ROS and RNS have second messenger roles. While cysteine residues in the thiolate (ionized) form found in several classes of signaling proteins can be specific targets for reaction with H2O2 and RNS, better understanding of the chemistry, particularly kinetics, suggests that for many signaling events in which ROS and RNS participate, enzymatic catalysis is more likely to be involved than non-enzymatic reaction. Due to increased interest in how oxidation products, particularly lipid peroxidation products, also are involved with signaling, a review of signaling by 4-hydroxy-2-nonenal (HNE) is included. This article focuses on the chemistry of signaling by ROS, RNS, and HNE and will describe reactions with selected target proteins as representatives of the mechanisms rather attempt to comprehensively review the many signaling pathways in which the reactive species are involved. PMID:18602883

  1. Production characteristics of reactive oxygen/nitrogen species in water using atmospheric pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazuhiro; Satoh, Kohki; Itoh, Hidenori; Kawaguchi, Hideki; Timoshkin, Igor; Given, Martin; MacGregor, Scott

    2016-07-01

    A pulsed discharge, a DC corona discharge, and a plasma jet are separately generated above a water surface, and reactive oxygen species and reactive nitrogen species (ROS/RNS) in the water are investigated. ROS/RNS in water after the sparging of the off-gas of a packed-bed dielectric barrier discharge (PB-DBD) are also investigated. H2O2, NO2 -, and NO3 - are detected after plasma exposure and only NO3 - after off-gas sparging. Short-lifetime species in plasma are found to play an important role in H2O2 and NO2 - production and long-lifetime species in NO3 - production. NO x may inhibit H2O2 production through OH consumption to produce HNO2 and HNO3. O3 does not contribute to ROS/RNS production. The pulsed plasma exposure is found to be effective for the production of H2O2 and NO2 -, and the off-gas sparging of the PB-DBD for the production of NO3 -.

  2. Differential accumulation of reactive oxygen and nitrogen species in maize lines with contrasting drought tolerance and aflatoxin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abiotic stresses such as drought stress can exacerbate aflatoxin contamination of maize kernels. Previous studies showed that maize lines resistance to aflatoxin contamination tend to exhibit enhanced drought tolerance and accumulate lower levels of reactive oxygen species (ROS) and nitrogen species...

  3. Evaluation of multistep derivatization methods for identification and quantification of oxygenated species in organic aerosol.

    PubMed

    Flores, Rosa M; Doskey, Paul V

    2015-10-30

    Two, 3-step methods for derivatizing mono- and multi-functional species with carbonyl (CO), carboxylic acid (-COOH), and alcohol (-OH) moieties were compared and optimized. In Method 1, the CO, -COOH, and -OH moieties were converted (1) to methyloximes (R-CN-OCH3) with O-methylhydroxylamine hydrochloride (MHA), (2) to methyl esters (OC-R-OCH3) with (trimethylsilyl)diazomethane in methanol (TMSD/MeOH), and (3) to trimethylsilyl ethers [R-OSi(CH3)3] with N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA) containing 1% trimethylchlorosilane (TMCS), respectively. Steps 1 and 3 of both methods were identical; however, in Step 2 of Method 2, -COOH moieties were derivatized with 10% (v/v) boron trifluoride (BF3) in MeOH or n-butanol (n-BuOH). The BF3/MeOH and BF3/n-BuOH were ineffective at converting species with more than 2-OH moieties. Average standard deviations for derivatization of 36 model compounds by the 3-step methods using TMSD/MeOH and BF3/(MeOH) were 7.4 and 14.8%, respectively. Average derivatization efficiencies for Methods 1 and 2 were 88.0 and 114%, respectively. Despite the lower average derivatization efficiency of Method 1, distinct advantages included a greater certainty of derivatization yield for the entire suite of mono- and multi-functional species and fewer processing steps for sequential derivatization. Detection limits for Method 1 using GC×GC-ToF-MS were 0.3-54pgm(-3). Approximately 100 oxygenated organic species were identified and quantified in aerosol filtered from 39m(3) of air in an urban location. Levels of species were 0.013-17ngm(-3) and were nearly all above the Method 1 limit of detection.

  4. Relationship between Active Oxygen Species, Lipid Peroxidation, Necrosis, and Phytoalexin Production Induced by Elicitins in Nicotiana.

    PubMed Central

    Rusterucci, C.; Stallaert, V.; Milat, M. L.; Pugin, A.; Ricci, P.; Blein, J. P.

    1996-01-01

    Excised leaves of Nicotiana tabacum var Xanthi and Nicotiana rustica were treated with cryptogein and capsicein, basic and acidic elicitins, respectively. Both compounds induced leaf necrosis, the intensity of which depended on concentration and duration of treatment. N. tabacum var Xanthi was the most sensitive species and cryptogein was the most active elicitin. Lipid peroxidation in elicitin-treated Nicotiana leaves was closely correlated with the appearance of necrosis. Elicitin treatments induced a rapid and transient burst of active oxygen species (AOS) in cell cultures of both Nicotiana species, with the production by Xanthi cells being 6-fold greater than that by N. rustica. Similar maximum AOS production levels were observed with both elicitins, but capsicein required 10-fold higher concentrations than those of cryptogein. Phytoalexin production was lower in response to both elicitins in N. tabacum var Xanthi cells than in N. rustica cells, and capsicein was the most efficient elicitor of this response. In cryptogein-treated cell suspensions, phytoalexin synthesis was unaffected by diphenyleneiodonium, which inhibited AOS generation, nor was it affected by tiron or catalase, which suppressed AOS accumulation in the extracellular medium. These results suggest that AOS production, lipid peroxidation, and necrosis are directly related, whereas phytoalexin production depends on neither the presence nor the intensity of these responses. PMID:12226334

  5. Reactive oxygen species in plasma against E. coli cells survival rate

    NASA Astrophysics Data System (ADS)

    Zhou, Ren-Wu; Zhang, Xian-Hui; Zong, Zi-Chao; Li, Jun-Xiong; Yang, Zhou-Bin; Liu, Dong-Ping; Yang, Si-Ze

    2015-08-01

    In this paper, we report on the contrastive analysis of inactivation efficiency of E. coli cells in solution with different disinfection methods. Compared with the hydrogen peroxide solution and the ozone gas, the atmospheric-pressure He plasma can completely kill the E. coli cells in the shortest time. The inactivation efficiency of E. coli cells in solution can be well described by using the chemical reaction rate model. X-ray photoelectron spectroscopy (XPS) analysis shows that the C-O or C=O content of the inactivated E. coli cell surface by plasma is predominantly increased, indicating the quantity of oxygen-containing species in plasma is more than those of two other methods, and then the C-C or C-H bonds can be broken, leading to the etching of organic compounds. Analysis also indicates that plasma-generated species can play a crucial role in the inactivation process by their direct reactions or the decompositions of reactive species, such as ozone into OH radicals in water, then reacting with E. coli cells. Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), and the Funds from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.

  6. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress.

    PubMed

    Airaki, Morad; Leterrier, Marina; Mateos, Rosa M; Valderrama, Raquel; Chaki, Mounira; Barroso, Juan B; Del Río, Luis A; Palma, José M; Corpas, Francisco J

    2012-02-01

    Low temperature is an environmental stress that affects crop production and quality and regulates the expression of many genes, and the level of a number of proteins and metabolites. Using leaves from pepper (Capsicum annum L.) plants exposed to low temperature (8 °C) for different time periods (1 to 3 d), several key components of the metabolism of reactive nitrogen and oxygen species (RNS and ROS, respectively) were analysed. After 24 h of exposure at 8 °C, pepper plants exhibited visible symptoms characterized by flaccidity of stems and leaves. This was accompanied by significant changes in the metabolism of RNS and ROS with an increase of both protein tyrosine nitration (NO(2) -Tyr) and lipid peroxidation, indicating that low temperature induces nitrosative and oxidative stress. During the second and third days at low temperature, pepper plants underwent cold acclimation by adjusting their antioxidant metabolism and reverting the observed nitrosative and oxidative stress. In this process, the levels of the soluble non-enzymatic antioxidants ascorbate and glutathione, and the activity of the main NADPH-generating dehydrogenases were significantly induced. This suggests that ascorbate, glutathione and the NADPH-generating dehydrogenases have a role in the process of cold acclimation through their effect on the redox state of the cell.

  7. Reperfusion injury and reactive oxygen species: The evolution of a concept.

    PubMed

    Granger, D Neil; Kvietys, Peter R

    2015-12-01

    Reperfusion injury, the paradoxical tissue response that is manifested by blood flow-deprived and oxygen-starved organs following the restoration of blood flow and tissue oxygenation, has been a focus of basic and clinical research for over 4-decades. While a variety of molecular mechanisms have been proposed to explain this phenomenon, excess production of reactive oxygen species (ROS) continues to receive much attention as a critical factor in the genesis of reperfusion injury. As a consequence, considerable effort has been devoted to identifying the dominant cellular and enzymatic sources of excess ROS production following ischemia-reperfusion (I/R). Of the potential ROS sources described to date, xanthine oxidase, NADPH oxidase (Nox), mitochondria, and uncoupled nitric oxide synthase have gained a status as the most likely contributors to reperfusion-induced oxidative stress and represent priority targets for therapeutic intervention against reperfusion-induced organ dysfunction and tissue damage. Although all four enzymatic sources are present in most tissues and are likely to play some role in reperfusion injury, priority and emphasis has been given to specific ROS sources that are enriched in certain tissues, such as xanthine oxidase in the gastrointestinal tract and mitochondria in the metabolically active heart and brain. The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source (e.g., Nox) to activate and enhance ROS production by a second source (e.g., mitochondria). This review provides a synopsis of the evidence implicating ROS in reperfusion injury, the clinical implications of this phenomenon, and summarizes current understanding of the four most frequently invoked enzymatic sources of ROS production in post-ischemic tissue.

  8. High-throughput spectrophotometric assay of reactive oxygen species in serum.

    PubMed

    Hayashi, Ikue; Morishita, Yukari; Imai, Kazue; Nakamura, Masakazu; Nakachi, Kei; Hayashi, Tomonori

    2007-07-10

    The derivatives of reactive oxygen metabolites (D-ROM) test has been developed to determine the amount of oxygen-centered free radicals in a blood sample as a marker of oxidative stress. This study aims to improve the D-ROM test and develop an automated assay system by use of a clinical chemistry analyzer. Five microliters of serum was added to 1 well of a 96-well microtiter plate for a total 240microl of reaction solution containing alkylamine and metals. This was followed by automatic mixing, incubation and measurement of reactive oxygen species (ROS) levels as a color development at 505nm using a spectrophotometer with catalytic capability for transition metals. This assay system was used to measure serum levels of ROS in cigarette smokers and never-smokers, by way of example. The levels of serum ROS determined by this system correlate with the amounts of free radicals and peroxides, which reacted with various molecules in the body and formed stable metabolites. This test can use frozen sera as well as fresh ones. The inter- and intra-deviation of this system was within 5% and showed consistent linearity in the range between 4 and 500mg/l of hydrogen peroxides. Serum ROS levels among smokers increased with the number of cigarettes smoked per day (36.5% increment per pack per day; P<0.0001). This assay system will be a simple, inexpensive, and reliable tool for assessing oxidative stress in human populations. Our preliminary results on cigarette smoking imply that this assay system has potential for application in various epidemiological and clinical settings.

  9. Reperfusion injury and reactive oxygen species: The evolution of a concept☆

    PubMed Central

    Granger, D. Neil; Kvietys, Peter R.

    2015-01-01

    Reperfusion injury, the paradoxical tissue response that is manifested by blood flow-deprived and oxygen-starved organs following the restoration of blood flow and tissue oxygenation, has been a focus of basic and clinical research for over 4-decades. While a variety of molecular mechanisms have been proposed to explain this phenomenon, excess production of reactive oxygen species (ROS) continues to receive much attention as a critical factor in the genesis of reperfusion injury. As a consequence, considerable effort has been devoted to identifying the dominant cellular and enzymatic sources of excess ROS production following ischemia-reperfusion (I/R). Of the potential ROS sources described to date, xanthine oxidase, NADPH oxidase (Nox), mitochondria, and uncoupled nitric oxide synthase have gained a status as the most likely contributors to reperfusion-induced oxidative stress and represent priority targets for therapeutic intervention against reperfusion-induced organ dysfunction and tissue damage. Although all four enzymatic sources are present in most tissues and are likely to play some role in reperfusion injury, priority and emphasis has been given to specific ROS sources that are enriched in certain tissues, such as xanthine oxidase in the gastrointestinal tract and mitochondria in the metabolically active heart and brain. The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source (e.g., Nox) to activate and enhance ROS production by a second source (e.g., mitochondria). This review provides a synopsis of the evidence implicating ROS in reperfusion injury, the clinical implications of this phenomenon, and summarizes current understanding of the four most frequently invoked enzymatic sources of ROS production in post-ischemic tissue. PMID:26484802

  10. Enterovirus 71 Induces Mitochondrial Reactive Oxygen Species Generation That is Required for Efficient Replication

    PubMed Central

    Cheng, Mei-Ling; Weng, Shiue-Fen; Kuo, Chih-Hao; Ho, Hung-Yao

    2014-01-01

    Redox homeostasis is an important host factor determining the outcome of infectious disease. Enterovirus 71 (EV71) infection has become an important endemic disease in Southeast Asia and China. We have previously shown that oxidative stress promotes viral replication, and progeny virus induces oxidative stress in host cells. The detailed mechanism for reactive oxygen species (ROS) generation in infected cells remains elusive. In the current study, we demonstrate that mitochondria were a major ROS source in EV71-infected cells. Mitochondria in productively infected cells underwent morphologic changes and exhibited functional anomalies, such as a decrease in mitochondrial electrochemical potential ΔΨm and an increase in oligomycin-insensitive oxygen consumption. Respiratory control ratio of mitochondria from infected cells was significantly lower than that of normal cells. The total adenine nucleotide pool and ATP content of EV71-infected cells significantly diminished. However, there appeared to be a compensatory increase in mitochondrial mass. Treatment with mito-TEMPO reduced eIF2α phosphorylation and viral replication, suggesting that mitochondrial ROS act to promote viral replication. It is plausible that EV71 infection induces mitochondrial ROS generation, which is essential to viral replication, at the sacrifice of efficient energy production, and that infected cells up-regulate biogenesis of mitochondria to compensate for their functional defect. PMID:25401329

  11. Mitochondrial dysfunction in rat brain with aging Involvement of complex I, reactive oxygen species and cardiolipin.

    PubMed

    Petrosillo, G; Matera, M; Casanova, G; Ruggiero, F M; Paradies, G

    2008-11-01

    Reactive oxygen species (ROS) are considered a key factor in brain aging process. Mitochondrial respiration is an important site of ROS production and hence a potential contributor to brain functional changes with aging. In this study we examined the effect of aging on complex I activity, oxygen consumption, ROS production and phospholipid composition in rat brain mitochondria. The activity of complex I was reduced by 30% in brain mitochondria from 24 months aged rats relative to young animals. These changes in complex I activity were associated with parallel changes in state 3 respiration. H(2)O(2) generation was significantly increased in mitochondria isolated from aged rats. The mitochondrial content of cardiolipin, a phospholipid required for optimal activity of complex I, decreased by 31% as function of aging, while there was a significant increase in the level of peroxidized cardiolipin. The age-related decrease in complex I activity in brain mitochondria could be reversed by exogenously added cardiolipin. This effect of cardiolipin could not be replaced by other phospholipids. It is proposed that aging causes brain mitochondrial complex I dysfunction which can be attributed to ROS-induced cardiolipin oxidation. These findings may prove useful in elucidating the mechanism underlying mitochondrial dysfunction associated with brain aging.

  12. Inhibitory effects of fluvastain and its metabolites on the formation of several reactive oxygen species.

    PubMed

    Nakashima, A; Ohtawa, M; Iwasaki, K; Wada, M; Kuroda, N; Nakashima, K

    2001-08-10

    We investigated the inhibitory effects of fluvastain (FV) and its metabolites (M-2, M-3, M-4, M-5, and M-7) on the formation of several reactive oxygen species (ROS), such as singlet oxygen (1O2), superoxide anion (O2-), hydroxy radical (*OH), hypochlorite ion (OCL-), and linoleic acid peroxide (LOO*). Inhibitory effects of pravastatin (PV), simvastatin (SV), probucol (PR) and alpha-tocopherol (TOC) were also tested. The inhibitory effects of 5-hydroxy FV (M-2) and 6-hydroxy FV (M-3) on the formation of 1O2, O2-, *OH, and OCL- were strongest. Scavenging of 1O2 by M-4, M-5, (+)-FV, and (-)-FV was also noted. The inhibitory effects of (+)-FV on the formation of 1O2 were comparable to those of (-)-FV, PV, SV, PR and M-7 had little or no inhibitory effect on the formation of several ROS. In conclusion, FV and its metabolites, particulary M-2 and M-3, have the potential to protect against oxidative stress mediated by several ROS.

  13. Development of micellar reactive oxygen species assay for photosafety evaluation of poorly water-soluble chemicals.

    PubMed

    Seto, Yoshiki; Kato, Masashi; Yamada, Shizuo; Onoue, Satomi

    2013-09-01

    A reactive oxygen species (ROS) assay was previously developed for photosafety assessment; however, the phototoxic potential of some chemicals cannot be evaluated because of their limited aqueous solubility. The present study was undertaken to develop a new micellar ROS (mROS) assay system for poorly water-soluble chemicals using a micellar solution of 0.5% (v/v) Tween 20 for solubility enhancement. In repeated mROS assay, intra- and inter-day precisions (coefficient of variation) were found to be below 11%, and the Z'-factors for singlet oxygen and superoxide suggested a large separation band between positive and negative standards. The ROS and mROS assays were applied to 65 phototoxins and 18 non-phototoxic compounds for comparative purposes. Of all 83 chemicals, 25 were unevaluable in the ROS assay due to poor solubility, but only 2 were in the mROS assay. Upon mROS assay on these model chemicals, the individual specificity was 76.5%, and the positive and negative predictivities were found to be 93.9% and 86.7%, respectively. The mROS assay provided 2 false negative predictions, although negative predictivity for the ROS assay was found to be 100%. Considering the pros and cons of these assays, strategic combined use of the ROS and mROS assays might be efficacious for reliable photosafety assessment with high applicability and predictivity.

  14. Contribution of reactive oxygen species to UV-B-induced damage in bacteria.

    PubMed

    Santos, Ana L; Gomes, Newton C M; Henriques, Isabel; Almeida, Adelaide; Correia, António; Cunha, Ângela

    2012-12-05

    The present work aimed to identify the reactive oxygen species (ROS) produced during UV-B exposure and their biochemical targets, in a set of bacterial isolates displaying different UV susceptibilities. For that, specific exogenous ROS scavengers (catalase/CAT, superoxide dismutase/SOD, sodium azide and mannitol) were used. Biological effects were assessed from total bacterial number, colony counts and heterotrophic activity (glucose uptake and respiration). DNA strand breakage, ROS generation, oxidative damage to proteins and lipids were used as markers of oxidative stress. Sodium azide conferred a statistically significant protection in terms of lipid oxidation and cell survival, suggesting that singlet oxygen might play an important role in UV-B induced cell inactivation. Mannitol exerted a significant protection against DNA strand breakage and protein carbonylation, assigning hydroxyl radicals to DNA and protein damage. The addition of exogenous CAT and SOD significantly protected the capacity for glucose uptake and respiration, suggesting that superoxide and H(2)O(2) are involved in the impairment of activity during UV-B exposure. The observation that amendment with ROS scavengers can sometimes also exert a pro-oxidant effect suggests that the intracellular oxidant status of the cell ultimately determines the efficiency of antioxidant defenses.

  15. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy

    PubMed Central

    Pearson, Jennifer N.; Rowley, Shane; Liang, Li-Ping; White, Andrew M.; Day, Brian J.; Patel, Manisha

    2016-01-01

    Cognitive dysfunction is an important comorbidity of temporal lobe epilepsy (TLE). However, no targeted therapies are available and the mechanisms underlying cognitive impairment, specifically deficits in learning and memory associated with TLE remain unknown. Oxidative stress is known to occur in the pathogenesis of TLE but its functional role remains to be determined. Here, we demonstrate that oxidative stress and resultant processes contribute to cognitive decline associated with epileptogenesis. Using a synthetic catalytic antioxidant, we show that pharmacological removal of reactive oxygen species (ROS) prevents 1) oxidative stress, 2) deficits in mitochondrial oxygen consumption rates, 3) hippocampal neuronal loss and 4) cognitive dysfunction without altering the intensity of the initial status epilepticus (SE) or epilepsy development in a rat model of SE-induced TLE. Moreover, the effects of the catalytic antioxidant on cognition persisted beyond the treatment period suggestive of disease-modification. The data implicate oxidative stress as a novel mechanism by which cognitive dysfunction can arise during epileptogenesis and suggest a potential disease-modifying therapeutic approach to target it. PMID:26184893

  16. Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species.

    PubMed

    Pan, Leiting; Wang, Xiaoxu; Yang, Shuying; Wu, Xian; Lee, Imshik; Zhang, Xinzheng; Rupp, Romano A; Xu, Jingjun

    2012-01-01

    Ultraviolet (UV) light has a potent effect on biological organisms. Hemoglobin, an oxygen-transport protein, plays an irreplaceable role in sustaining life of all vertebrates. In this study we scrutinize the effects of ultraviolet irradiation (UVI) as well as visible irradiation on the fluorescence characteristics of bovine hemoglobin (BHb) in vitro. Data show that UVI results in fluorescence enhancement of BHb in a dose-dependent manner. Furthermore, UVI-induced fluorescence enhancement is significantly increased when BHb is pretreated with hydrogen peroxide (H(2)O(2)), a type of reactive oxygen species (ROS). Meanwhile, The water-soluble antioxidant vitamin C suppresses this UVI-induced fluorescence enhancement. In contrast, green light irradiation does not lead to fluorescence enhancement of BHb no matter whether H(2)O(2) is acting on the BHb solution or not. Taken together, these results indicate that catalysis of ROS and UVI-dependent irradiation play two key roles in the process of UVI-induced fluorescence enhancement of BHb.

  17. Mutagenicity induced by UVC in Escherichia coli cells: reactive oxygen species involvement.

    PubMed

    Silva-Júnior, A C T; Asad, L M B O; Felzenszwalb, I; Asad, N R

    2011-01-01

    We previously demonstrated that reactive oxygen species (ROS) could be involved in the DNA damage induced by ultraviolet-C (UVC). In this study, we evaluated singlet oxygen ((1)O(2)) involvement in UVC-induced mutagenesis in Escherichia coli cells. First, we found that treatment with sodium azide, an (1)O(2) chelator, protected cells against UVC-induced lethality. The survival assay showed that the fpg mutant was more resistant to UVC lethality than the wild-type strain. The rifampicin mutagenesis assay showed that UVC mutagenesis was inhibited five times more in cells treated with sodium azide, and stimulated 20% more fpg mutant. These results suggest that (1)O(2) plays a predominant role in UVC-induced mutagenesis. (1)O(2) generates a specific mutagenic lesion, 8-oxoG, which is repaired by Fpg protein. This lesion was measured by GC-TA reversion in the CC104 strain, its fpg mutant (BH540), and both CC104 and BH540 transformed with the plasmid pFPG (overexpression of Fpg protein). This assay showed that mutagenesis was induced 2.5-fold in the GC-TA strain and 7-fold in the fpg mutant, while the fpg mutant transformed with pFPG was similar to GC-TA strain. This suggests that UVC can also cause ROS-mediated mutagenesis and that the Fpg protein may be involved in this repair.

  18. Detecting, visualizing and quantitating the generation of reactive oxygen species in an amoeba model system.

    PubMed

    Zhang, Xuezhi; Soldati, Thierry

    2013-11-05

    Reactive oxygen species (ROS) comprise a range of reactive and short-lived, oxygen-containing molecules, which are dynamically interconverted or eliminated either catalytically or spontaneously. Due to the short life spans of most ROS and the diversity of their sources and subcellular localizations, a complete picture can be obtained only by careful measurements using a combination of protocols. Here, we present a set of three different protocols using OxyBurst Green (OBG)-coated beads, or dihydroethidium (DHE) and Amplex UltraRed (AUR), to monitor qualitatively and quantitatively various ROS in professional phagocytes such as Dictyostelium. We optimised the beads coating procedures and used OBG-coated beads and live microscopy to dynamically visualize intraphagosomal ROS generation at the single cell level. We identified lipopolysaccharide (LPS) from E. coli as a potent stimulator for ROS generation in Dictyostelium. In addition, we developed real time, medium-throughput assays using DHE and AUR to quantitatively measure intracellular superoxide and extracellular H2O2 production, respectively.

  19. Sensitivity of dark mutants of various strains of luminescent bacteria to reactive oxygen species.

    PubMed

    Lyzeń, Robert; Wegrzyn, Grzegorz

    2005-03-01

    Recent studies indicated that bioluminescence of the marine bacterium Vibrio harveyi may both stimulate DNA repair and contribute to detoxification of deleterious oxygen derivatives. Therefore, it was also proposed that these reactions can be considered biological roles of bacterial luminescence and might act as evolutionary drives in development of luminous systems. However, experimental evidence for the physiological role of luciferase in protection of cells against oxidative stress has been demonstrated only in one bacterial species, raising the question whether this is a specific or a more general phenomenon. Here we demonstrate that in the presence of various oxidants (hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide and ferrous ions) growth of dark mutants of different strains of Vibrio fischeri and Photobacterium leiognathi is impaired relative to wild-type bacteria, though to various extents. Deleterious effects of oxidants on the mutants could be reduced (with different efficiency) by addition of antioxidants, A-TEMPO or 4OH-TEMPO. These results support the hypotheses that (1) activities of bacterial luciferases may detoxify deleterious oxygen derivatives, and (2) significantly different efficiencies of this reaction are characteristic for various luciferases.

  20. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacitúa, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought.

  1. Vitamin B1 as a scavenger of reactive oxygen species photogenerated by vitamin B2.

    PubMed

    Natera, José; Massad, Walter A; García, Norman A

    2011-01-01

    Kinetics and mechanism of photoprocesses generated by visible light-irradiation of the system riboflavin (Rf, vitamin B2) plus Thiamine (Th) and Thiamine pyrophosphate (ThDP), representing vitamin B1, was studied in pH 7 water. A weak dark complex vitamin B2-vitamin B1, with a mean value of 4 ± 0.4 M(-1) is formed. An intricate mechanism of competitive reactions operates upon photoirradiation, being the light only absorbed by Rf. Th and ThDP quench excited singlet and triplet states of Rf, with rate constants in the order of 10(9) and 10(6 ) M(-1 ) s(-1), respectively. With Vitamin B1 in a concentration similar to that of dissolved molecular oxygen in water, the quenching of triplet excited Rf by the latter is highly predominant, resulting in the generation of O(2)((1)Δ(g)). Superoxide radical anion was not detected under work conditions. A relatively slow O(2)((1)Δ(g))-mediated photodegradation of Th and ThDP was observed. Nevertheless, Th and especially ThDP behave as efficient physical deactivators of O(2)((1)Δ(g)). The thiazol structure in vitamin B1 appears as a good scavenger of this reactive oxygen species. This characteristic, that presents at vitamin B1 as a potential photoprotector of biological entities against O(2)((1)Δ(g)) attack, was been experimentally confirmed employing the protein lisozime as a photo-oxidizable target.

  2. The early embryo response to intracellular reactive oxygen species is developmentally regulated.

    PubMed

    Bain, Nathan T; Madan, Pavneesh; Betts, Dean H

    2011-01-01

    In vitro embryo production (IVP) suffers from excessive developmental failure. Its inefficiency is linked, in part, to reactive oxygen species (ROS) brought on by high ex vivo oxygen (O(2)) tensions. To further delineate the effects of ROS on IVP, the intracellular ROS levels of early bovine embryos were modulated by: (1) varying O(2) tension; (2) exogenous H(2)O(2) treatment; and (3) antioxidant supplementation. Although O(2) tension did not significantly affect blastocyst frequencies (P>0.05), 20% O(2) accelerated the rate of first cleavage division and significantly decreased and increased the proportion of permanently arrested 2- to 4-cell embryos and apoptotic 9- to 16-cell embryos, respectively, compared with embryos cultured in 5% O(2) tension. Treatment with H(2)O(2), when applied separately to oocytes, zygotes, 2- to 4-cell embryos or 9- to 16-cell embryos, resulted in a significant (P<0.05) dose-dependent decrease in blastocyst development in conjunction with a corresponding increase in the induction of either permanent embryo arrest or apoptosis in a stage-dependent manner. Polyethylene glycol-catalase supplementation reduced ROS-induced embryo arrest and/or death, resulting in a significant (P<0.05) increase in blastocyst frequencies under high O(2) culture conditions. Together, these results indicate that intracellular ROS may be signalling molecules that, outside an optimal range, result in various developmentally regulated modes of embryo demise.

  3. Hypoxia-Dependent Reactive Oxygen Species Signaling in the Pulmonary Circulation: Focus on Ion Channels

    PubMed Central

    Veit, Florian; Pak, Oleg; Brandes, Ralf P.

    2015-01-01

    Abstract Significance: An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. Recent Advances: Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. Critical Issues and Future Directions: In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation. Antioxid. Redox Signal. 22, 537–552 PMID:25545236

  4. Involvement of reactive oxygen species derived from mitochondria in neuronal injury elicited by methylmercury

    PubMed Central

    Ishihara, Yasuhiro; Tsuji, Mayumi; Kawamoto, Toshihiro; Yamazaki, Takeshi

    2016-01-01

    Methylmercury induces oxidative stress and subsequent neuronal injury. However, the mechanism by which methylmercury elicits reactive oxygen species (ROS) production remains under debate. In this study, we investigated the involvement of mitochondrial ROS in methylmercury-induced neuronal cell injury using human neuroblastoma SH-SY5Y-derived ρ0 cells, which have a deletion of mitochondrial DNA and thus decreased respiratory activity. SH-SY5Y cells were cultured for 60 days in the presence of ethidium bromide to produce ρ0 cells. Our ρ0 cells showed decreases in the cytochrome c oxidase expression and activity as well as oxygen consumption compared with original SH-SY5Y cells. Methylmercury at a concentration of 1 µM induced cell death with oxidative stress in original SH-SY5Y cells, but not ρ0 cells, indicating that ρ0 cells are resistant to methylmercury-induced oxidative stress. ρ0 cells also showed tolerance against hydrogen peroxide and superoxide anion, suggesting that ρ0 cells are resistant to total ROS. These data indicate that mitochondrial ROS are clearly involved in oxidative stress and subsequent cell death induced by methylmercury. Considering that the dominant mechanism of ROS generation elicited by methylmercury is due to direct antioxidant enzyme inhibition, mitochondria might play a role in amplifying ROS in methylmercury-induced neurotoxicity. PMID:27895385

  5. Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory

    PubMed Central

    Klann, Eric

    2011-01-01

    Abstract The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function. Antioxid. Redox Signal. 14, 2013–2054. PMID:20649473

  6. Targeting and Regulation of Reactive Oxygen Species Generation by Nox Family NADPH Oxidases

    PubMed Central

    Morand, Stanislas; Hurt, Darrell; Ueyama, Takehiko

    2009-01-01

    Abstract Nox family NADPH oxidases serve a variety of functions requiring reactive oxygen species (ROS) generation, including antimicrobial defense, biosynthetic processes, oxygen sensing, and redox-based cellular signaling. We explored targeting, assembly, and activation of several Nox family oxidases, since ROS production appears to be regulated both spatially and temporally. Nox1 and Nox3 are similar to the phagocytic (Nox2-based) oxidase, functioning as multicomponent superoxide-generating enzymes. Factors regulating their activities include cytosolic activator and organizer proteins and GTP-Rac. Their regulation varies, with the following rank order: Nox2 > Nox1 > Nox3. Determinants of subcellular targeting include: (a) formation of Nox-p22phox heterodimeric complexes allowing plasma membrane translocation, (b) phospholipids-binding specificities of PX domain-containing organizer proteins (p47phox or Nox organizer 1 (Noxo1 and p40phox), and (c) variably splicing of Noxo1 PX domains directing them to nuclear or plasma membranes. Dual oxidases (Duox1 and Duox2) are targeted by different mechanisms. Plasma membrane targeting results in H2O2 release, not superoxide, to support extracellular peroxidases. Human Duox1 and Duox2 have no demonstrable peroxidase activity, despite their extensive homology with heme peroxidases. The dual oxidases were reconstituted by Duox activator 2 (Duoxa2) or two Duoxa1 variants, which dictate maturation, subcellular localization, and the type of ROS generated by forming stable complexes with Duox. Antioxid Redox Signal. 11, 2607–2619. PMID:19438290

  7. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD.

    PubMed

    Liu, Yukun; He, Chengzhong

    2016-05-01

    Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.

  8. Anthrax edema toxin inhibits Nox1-mediated formation of reactive oxygen species by colon epithelial cells.

    PubMed

    Kim, Jun-Sub; Bokoch, Gary M

    2009-01-01

    One major route of intoxication by Bacillus anthracis (anthrax) spores is via their ingestion and subsequent uptake by the intestinal epithelium. Anthrax edema toxin (ETx) is an adenylate cyclase that causes persistent elevation of cAMP in intoxicated cells. NADPH oxidase enzymes (Nox1-Nox5, Duox1 and 2) generate reactive oxygen species (ROS) as components of the host innate immune response to bacteria, including Nox1 in gastrointestinal epithelial tissues. We show that ETx effectively inhibits ROS formation by Nox1 in HT-29 colon epithelial cells. This inhibition requires the PKA-mediated phosphorylation of the Nox1-regulatory component, NoxA1, and the subsequent binding of 14-3-3zeta. Inhibition of Nox1-mediated ROS formation in the gut epithelium may be a mechanism used by B. anthracis to circumvent the innate immune response.

  9. Fhit interaction with ferredoxin reductase triggers generation of reactive oxygen species and apoptosis of cancer cells.

    PubMed

    Trapasso, Francesco; Pichiorri, Flavia; Gaspari, Marco; Palumbo, Tiziana; Aqeilan, Rami I; Gaudio, Eugenio; Okumura, Hiroshi; Iuliano, Rodolfo; Di Leva, Giampiero; Fabbri, Muller; Birk, David E; Raso, Cinzia; Green-Church, Kari; Spagnoli, Luigi G; Venuta, Salvatore; Huebner, Kay; Croce, Carlo M

    2008-05-16

    Fhit protein is lost in most cancers, its restoration suppresses tumorigenicity, and virus-mediated FHIT gene therapy induces apoptosis and suppresses tumors in preclinical models. We have used protein cross-linking and proteomics methods to characterize a Fhit protein complex involved in triggering Fhit-mediated apoptosis. The complex includes Hsp60 and Hsp10 that mediate Fhit stability and may affect import into mitochondria, where it interacts with ferredoxin reductase, responsible for transferring electrons from NADPH to cytochrome P450 via ferredoxin. Viral-mediated Fhit restoration increases production of intracellular reactive oxygen species, followed by increased apoptosis of lung cancer cells under oxidative stress conditions; conversely, Fhit-negative cells escape apoptosis, carrying serious oxidative DNA damage that may contribute to an increased mutation rate. Characterization of Fhit interacting proteins has identified direct effectors of the Fhit-mediated apoptotic pathway that is lost in most cancers through loss of Fhit.

  10. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    NASA Astrophysics Data System (ADS)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  11. Protective mechanisms of helminths against reactive oxygen species are highly promising drug targets.

    PubMed

    Perbandt, Markus; Ndjonka, Dieudonne; Liebau, Eva

    2014-01-01

    Helminths that are the causative agents of numerous neglected tropical diseases continue to be a major problem for human global health. In the absence of vaccines, control relies solely on pharmacoprophylaxis and pharmacotherapy to reduce transmission and to relieve symptoms. There are only a few drugs available and resistance in helminths of lifestock has been observed to the same drugs that are also used to treat humans. Clearly there is an urgent need to find novel antiparasitic compounds. Not only are helminths confronted with their own metabolically derived toxic and redox-active byproducts but also with the production of reactive oxygen species (ROS) by the host immune system, adding to the overall oxidative burden of the parasite. Antioxidant enzymes of helminths have been identified as essential proteins, some of them biochemically distinct to their host counterpart and thus appealing drug targets. In this review we have selected a few enzymatic antioxidants of helminths that are thought to be druggable.

  12. Reactive oxygen species production and antioxidant enzyme activity during epididymal sperm maturation in Corynorhinus mexicanus bats.

    PubMed

    Arenas-Ríos, Edith; Rosado García, Adolfo; Cortés-Barberena, Edith; Königsberg, Mina; Arteaga-Silva, Marcela; Rodríguez-Tobón, Ahiezer; Fuentes-Mascorro, Gisela; León-Galván, Miguel Angel

    2016-03-01

    Prolonged sperm storage in the epididymis of Corynorhinus mexicanus bats after testicular regression has been associated with epididymal sperm maturation in the caudal region, although the precise factors linked with this phenomenon are unknown. The aim of this work is to determine the role of reactive oxygen species (ROS) and changes in antioxidant enzymatic activity occurring in the spermatozoa and epididymal fluid over time, in sperm maturation and storage in the caput, corpus and cauda of the bat epididymis. Our data showed that an increment in ROS production coincided with an increase in superoxide dismutase (SOD) activity in epididymal fluid and with a decrease in glutathione peroxidase (GPX) activity in the spermatozoa in at different time points and epididymal regions. The increase in ROS production was not associated with oxidative damage measured by lipid peroxidation. The results of the current study suggest the existence of a shift in the redox balance, which might be associated with sperm maturation and storage.

  13. Endothelial GRK2 regulates vascular homeostasis through the control of free radical oxygen species

    PubMed Central

    Ciccarelli, Michele; Sorriento, Daniela; Franco, Antonietta; Fusco, Anna; Giudice, Carmine Del; Annunziata, Roberto; Cipolletta, Ersilia; Monti, Maria Gaia; Dorn, Gerald W; Trimarco, Bruno; Iaccarino, Guido

    2014-01-01

    Objective The role of endothelial GRK2 was investigated in mice with selective deletion of the kinase in the endothelium (Tie2-CRE/GRK2fl/fl). Approach and Results Aortas from Tie2-CRE/GRK2fl/fl presented functional and structural alterations as compared to control GRK2fl/fl mice. In particular, vasoconstriction was blunted to different agonists, and collagen and elastic rearrangement and macrophage infiltration were observed. In primary cultured endothelial cells deficient for GRK2, mitochondrial reactive oxygen species (ROS) was increased, leading to expression of cytokines. Chronic treatment with a ROS scavenger in mice corrected the vascular phenotype by recovering vasoconstriction, structural abnormalities and reducing macrophage infiltration. Conclusions These results demonstrate that GRK2 removal compromises vascular phenotype and integrity by increasing endothelial ROS production. PMID:23950144

  14. Oxygen-derived species: their relation to human disease and environmental stress.

    PubMed Central

    Halliwell, B; Cross, C E

    1994-01-01

    Free radicals and other reactive oxygen species (ROS) are constantly formed in the human body, often for useful metabolic purposes. Antioxidant defenses protect against them, but these defenses are not completely adequate, and systems that repair damage by ROS are also necessary. Mild oxidative stress often induces antioxidant defense enzymes, but severe stress can cause oxidative damage to lipids, proteins, and DNA within cells, leading to such events as DNA strand breakage and disruption of calcium ion metabolism. Oxidative stress can result from exposure to toxic agents, and by the process of tissue injury itself. Ozone, oxides of nitrogen, and cigarette smoke can cause oxidative damage; but the molecular targets that they damage may not be the same. PMID:7705305

  15. Role of Mitochondrial Reactive Oxygen Species in the Activation of Cellular Signals, Molecules, and Function.

    PubMed

    Indo, Hiroko P; Hawkins, Clare L; Nakanishi, Ikuo; Matsumoto, Ken-Ichiro; Matsui, Hirofumi; Suenaga, Shigeaki; Davies, Michael J; St Clair, Daret K; Ozawa, Toshihiko; Majima, Hideyuki J

    2017-02-08

    Mitochondria are a major source of intracellular energy and reactive oxygen species in cells, but are also increasingly being recognized as a controller of cell death. Here, we review evidence of signal transduction control by mitochondrial superoxide generation via the nuclear factor-κB (NF-κB) and GATA signaling pathways. We have also reviewed the effects of ROS on the activation of MMP and HIF. There is significant evidence to support the hypothesis that mitochondrial superoxide can initiate signaling pathways following transport into the cytosol. In this study, we provide evidence of TATA signal transductions by mitochondrial superoxide. Oxidative phosphorylation via the electron transfer chain, glycolysis, and generation of superoxide from mitochondria could be important factors in regulating signal transduction, cellular homeostasis, and cell death.

  16. Biological and physiological role of reactive oxygen species--the good, the bad and the ugly.

    PubMed

    Zuo, L; Zhou, T; Pannell, B K; Ziegler, A C; Best, T M

    2015-07-01

    Reactive oxygen species (ROS) are chemically reactive molecules that are naturally produced within biological systems. Research has focused extensively on revealing the multi-faceted and complex roles that ROS play in living tissues. In regard to the good side of ROS, this article explores the effects of ROS on signalling, immune response and other physiological responses. To review the potentially bad side of ROS, we explain the consequences of high concentrations of molecules that lead to the disruption of redox homeostasis, which induces oxidative stress damaging intracellular components. The ugly effects of ROS can be observed in devastating cardiac, pulmonary, neurodegenerative and other disorders. Furthermore, this article covers the regulatory enzymes that mitigate the effects of ROS. Glutathione peroxidase, superoxide dismutase and catalase are discussed in particular detail. The current understanding of ROS is incomplete, and it is imperative that future research be performed to understand the implications of ROS in various therapeutic interventions.

  17. Reactive oxygen species (ROS) and dimethylated sulphur compounds in coral explants under acute thermal stress.

    PubMed

    Gardner, Stephanie G; Raina, Jean-Baptiste; Ralph, Peter J; Petrou, Katherina

    2017-03-08

    Coral bleaching is intensifying with global climate change. While the causes for these catastrophic events are well understood, the cellular mechanism that triggers bleaching is not well established. Our understanding of coral bleaching processes is hindered by the lack of robust methods for studying interactions between host and symbiont at the single-cell level. Here we exposed coral explants to acute thermal stress and measured oxidative stress, more specifically, reactive oxygen species (ROS), in individual symbiont cells. Furthermore, we measured concentrations of dimethylsulphoniopropionate (DMSP) and dimethylsulphoxide (DMSO) to elucidate the role of these compounds in coral antioxidant function. This work demonstrates the application of coral explants for investigating coral physiology and biochemistry under thermal stress and delivers a new approach to study host-symbiont interactions at the microscale, allowing us to directly link intracellular ROS with DMSP and DMSO dynamics.

  18. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases.

    PubMed

    Callaway, Danielle A; Jiang, Jean X

    2015-07-01

    Osteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. However, there are still many unanswered questions that remain. This review will examine the mechanisms by which ROS can be produced in osteoclasts as well as how it may affect osteoclast differentiation and activity through its actions on osteoclastogenesis signaling pathways. In addition, the contribution of ROS to the aging-associated disease of osteoporosis will be addressed and how targeting ROS may lead to the development of novel therapeutic treatment options.

  19. Mitochondria, reactive oxygen species, and chronological aging: a message from yeast.

    PubMed

    Pan, Yong

    2011-11-01

    As a major intracellular source of reactive oxygen species (ROS), mitochondria are involved in aging and lifespan regulation. Using the yeast chronological aging model, researchers have identified conserved signaling pathways that affect lifespan by modulating mitochondrial functions. Caloric restriction and a genetic mimetic with reduced target of rapamycin signaling globally upregulate the mitochondrial proteome and respiratory functions. Recent discoveries support the notion that an altered mitochondrial proteome induces mitohormesis. Mitohormesis involves a variety of ROS during several growth stages and extends lifespan in yeast and other organisms. Here we recap recent advances in understanding of ROS as signals that decelerate chronological aging in yeast. We also discuss parallels between yeast and worm hypoxic signaling. In sum, this mini-review covers mitochondrial regulation by nutrient-sensing pathways and the complex underlying interactions of ROS, metabolic pathways, and chronological aging.

  20. Role of reactive oxygen species in the defective regeneration seen in aging muscle.

    PubMed

    Vasilaki, Aphrodite; Jackson, Malcolm J

    2013-12-01

    The ability of muscles to regenerate successfully following damage diminishes with age and this appears to be a major contributor to the development of muscle weakness and physical frailty. Successful muscle regeneration is dependent on appropriate reinnervation of regenerating muscle. Age-related changes in the interactions between nerve and muscle are poorly understood but may play a major role in the defective regeneration. During aging there is defective redox homeostasis and an accumulation of oxidative damage in nerve and muscle that may contribute to defective regeneration. The aim of this review is to summarise the evidence that abnormal reactive oxygen species (ROS) generation in nerve and/or muscle may be responsible for the defective regeneration that contributes to the degeneration of skeletal muscle observed during aging. Identifying the importance of ROS generation in skeletal muscle during aging could have fundamental implications for interventions to prevent muscle degeneration and treatments to reverse the age-related decline in muscle mass and function.

  1. Regulation of signal transduction by reactive oxygen species in the cardiovascular system.

    PubMed

    Brown, David I; Griendling, Kathy K

    2015-01-30

    Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species (ROS) in normal physiological signaling has been elucidated. Signaling pathways modulated by ROS are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here, we review the current literature on ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases, including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy, and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis, and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress.

  2. Mold elicits atopic dermatitis by reactive oxygen species: Epidemiology and mechanism studies.

    PubMed

    Kim, Ha-Jung; Lee, Eun; Lee, Seung-Hwa; Kang, Mi-Jin; Hong, Soo-Jong

    2015-12-01

    Mold has been implicated in the development of atopic dermatitis (AD); however, the underlying mechanisms remain unknown. The aim of the study was to investigate the effects of mold exposure in early life through epidemiologic and mechanistic studies in vivo and in vitro. Exposure to visible mold inside the home during the first year of life was associated with an increased risk for current AD by two population-based cross-sectional human studies. Children with the AG+GG genotype of GSTP1 showed increased risk for current AD when exposed to mold. In the mouse model, treatment with patulin induced and aggravated clinically significant AD and Th2-related inflammation of the affected mouse skin. Additionally, reactive oxygen species (ROS) were released in the mouse skin as well by human keratinocytes. In conclusions, mold exposure increases the risk for AD related to ROS generation mediated by Th2-promoting inflammatory cytokines.

  3. Modulation of macrophage-mediated cytotoxicity by kerosene soot: Possible role of reactive oxygen species

    SciTech Connect

    Arif, J.M.; Khan, S.G.; Ashquin, M.; Rahman, Q. )

    1993-05-01

    The involvement of reactive oxygen species (ROS) in the cytotoxicity of soot on rat alveolar macrophages has been postulated. A single intratracheal injection of soot (5 mg) in corn oil significantly induced the macrophage population, hydrogen peroxide (H[sub 2]O[sub 2]) generation, thiobarbituric acid (TBA)-reactive substanced of lipid peroxidation, and the activities of extracellular acid phosphatase (AP) and lactate dehydrogenase (LDH) at 1, 4, 8, and 16 days of postinoculation. The activities of glutathione peroxidase (GPX) and catalase (CAT) were significantly inhibited at all the stages, while glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) showed a different pattern. These results show that soot is cytotoxic to alveolar macrophages and suggest that ROS may play a primary role in the cytotoxic process. 28 refs., 4 figs., 1 tab.

  4. Interaction of hyperlipidemia and reactive oxygen species: Insights from the lipid-raft platform

    PubMed Central

    Amiya, Eisuke

    2016-01-01

    Reactive oxygen species (ROS) and oxidative stress are closely associated with the development of atherosclerosis, and the most important regulator of ROS production in endothelial cells is NADPH oxidase. Activation of NADPH oxidase requires the assembly of multiple subunits into lipid rafts, which include specific lipid components, including free cholesterol and specific proteins. Disorders of lipid metabolism such as hyperlipidemia affect the cellular lipid components included in rafts, resulting in modification of cellular reactions that produce ROS. In the similar manner, several pathways associating ROS production are affected by the presence of lipid disorder through raft compartments. In this manuscript, we review the pathophysiological implications of hyperlipidemia and lipid rafts in the production of ROS. PMID:28070236

  5. Electrocatalytic performances of N-doped graphene with anchored iridium species in oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Choi, Kwangrok; Lee, Seungjun; Shim, Yeonjun; Oh, Junghoon; Kim, Sujin; Park, Sungjin

    2015-09-01

    Development of new systems with high catalytic performances in the oxygen reduction reaction (ORR) for practical applications in fuel cells and metal-air batteries is a challenge. We develop a one-pot solution method for producing a novel hybrid material consisting of Ir species anchored on N-doped graphene. The hybrid is synthesized by reacting graphene oxide with IrCl3 · xH2O in dimethylformamide under reflux. Chemical and structural analyses confirm the attachment of Ir atoms to the N and O atoms of the N-doped graphene-based materials. The hybrid shows a good electrocatalytic performance for the ORR in alkaline media, with an onset potential of 0.88 V (versus the reversible hydrogen electrode), high long-term durability, and good tolerance for methanol poisoning.

  6. Balance of nitric oxide and reactive oxygen species in myocardial reperfusion injury and protection.

    PubMed

    Folino, Anna; Losano, Gianni; Rastaldo, Raffaella

    2013-12-01

    Depending on their concentrations, both nitric oxide (NO) and reactive oxygen species (ROS) take part either in myocardial ischemia reperfusion injury or in protection by ischemic and pharmacological preconditioning (Ipre) and postconditioning (Ipost). At the beginning of reperfusion, a transient release of NO is promptly scavenged by ROS to form the highly toxic peroxynitrite, which is responsible for a further increase of ROS through endothelial nitric oxide synthase uncoupling. The protective role of NO has suggested the use of NO donors to mimic Ipre and Ipost. However, NO donors have not always given the expected protection, possibly because they are responsible for the production of different amounts of ROS that depend on the amount of released NO. This review is focused on the role of the balance of NO and ROS in myocardial injury and its prevention by Ipre and Ipost and after the use of NO donors given with or without antioxidant compounds to mimic Ipre and Ipost.

  7. UVB dependence of quantum dot reactive oxygen species generation in common skin cell models

    PubMed Central

    MORTENSEN, LUKE J.; FAULKNOR, RENEA; RAVICHANDRAN, SUPRIYA; ZHENG, HONG; DELOUISE, LISA A.

    2015-01-01

    Studies have shown that UVB can slightly increase the penetration of nanoparticles through skin and significantly alter skin cell biology, thus it is important to understand if and how UVB may impact subsequent nanoparticle skin cell interactions. The research presented herein evaluates the effect of UVB on quantum dot (QD) uptake and reactive oxygen species (ROS) generation in primary keratinocytes, primary melanocytes, and related cell lines. QD exposure induced cell type dependent ROS responses increased by pre-exposing cells to UVB and correlated with the level of QD uptake. Our results suggest that keratinocytes may be at greater risk for QD induced ROS generation than melanocytes, and raise awareness about the differential cellular effects that topically applied nanomaterials may have on UVB exposed skin. PMID:26485933

  8. Evidence for photochemical production of reactive oxygen species in desert soils.

    PubMed

    Georgiou, Christos D; Sun, Henry J; McKay, Christopher P; Grintzalis, Konstantinos; Papapostolou, Ioannis; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Zhang, Gaosen; Koutsopoulou, Eleni; Christidis, George E; Margiolaki, Irene

    2015-05-11

    The combination of intense solar radiation and soil desiccation creates a short circuit in the biogeochemical carbon cycle, where soils release significant amounts of CO2 and reactive nitrogen oxides by abiotic oxidation. Here we show that desert soils accumulate metal superoxides and peroxides at higher levels than non-desert soils. We also show the photogeneration of equimolar superoxide and hydroxyl radical in desiccated and aqueous soils, respectively, by a photo-induced electron transfer mechanism supported by their mineralogical composition. Reactivity of desert soils is further supported by the generation of hydroxyl radical via aqueous extracts in the dark. Our findings extend to desert soils the photogeneration of reactive oxygen species by certain mineral oxides and also explain previous studies on desert soil organic oxidant chemistry and microbiology. Similar processes driven by ultraviolet radiation may be operating in the surface soils on Mars.

  9. Reactive oxygen species, redox signaling and neuroinflammation in Alzheimer's disease: the NF-κB connection.

    PubMed

    Kaur, Upinder; Banerjee, Priyanjalee; Bir, Aritri; Sinha, Maitrayee; Biswas, Atanu; Chakrabarti, Sasanka

    2015-01-01

    Oxidative stress and inflammatory response are important elements of Alzheimer's disease (AD) pathogenesis, but the role of redox signaling cascade and its cross-talk with inflammatory mediators have not been elucidated in details in this disorder. The review summarizes the facts about redox-signaling cascade in the cells operating through an array of kinases, phosphatases and transcription factors and their downstream components. The biology of NF-κB and its activation by reactive oxygen species (ROS) and proinflammatory cytokines in the pathogenesis of AD have been specially highlighted citing evidence both from post-mortem studies in AD brain and experimental research in animal or cell-based models of AD. The possibility of identifying new disease-modifying drugs for AD targeting NF-κBsignaling cascade has been discussed in the end.

  10. Catalytic Coupling of Oxidative Phosphorylation, ATP Demand, and Reactive Oxygen Species Generation

    PubMed Central

    Bazil, Jason N.; Beard, Daniel A.; Vinnakota, Kalyan C.

    2016-01-01

    Competing models of mitochondrial energy metabolism in the heart are highly disputed. In addition, the mechanisms of reactive oxygen species (ROS) production and scavenging are not well understood. To deepen our understanding of these processes, a computer model was developed to integrate the biophysical processes of oxidative phosphorylation and ROS generation. The model was calibrated with experimental data obtained from isolated rat heart mitochondria subjected to physiological conditions and workloads. Model simulations show that changes in the quinone pool redox state are responsible for the apparent inorganic phosphate activation of complex III. Model simulations predict that complex III is responsible for more ROS production during physiological working conditions relative to complex I. However, this relationship is reversed under pathological conditions. Finally, model analysis reveals how a highly reduced quinone pool caused by elevated levels of succinate is likely responsible for the burst of ROS seen during reperfusion after ischemia. PMID:26910433

  11. Pomegranate-Derived Polyphenols Reduce Reactive Oxygen Species Production via SIRT3-Mediated SOD2 Activation

    PubMed Central

    Zhao, Chong; Sakaguchi, Takenori; Fujita, Kosuke; Ito, Hideyuki; Nishida, Norihisa; Nagatomo, Akifumi; Tanaka-Azuma, Yukimasa

    2016-01-01

    Pomegranate-derived polyphenols are expected to prevent life-style related diseases. In this study, we evaluated the ability of 8 pomegranate-derived polyphenols, along with other polyphenols, to augment SIRT3, a mammalian SIR2 homolog localized in mitochondria. We established a system for screening foods/food ingredients that augment the SIRT3 promoter in Caco-2 cells and identified 3 SIRT3-augmenting pomegranate-derived polyphenols (eucalbanin B, pomegraniin A, and eucarpanin T1). Among them, pomegraniin A activated superoxide dismutase 2 (SOD2) through SIRT3-mediated deacetylation, thereby reducing intracellular reactive oxygen species. The other SIRT3-augmenting polyphenols tested also activated SOD2, suggesting antioxidant activity. Our findings clarify the underlying mechanisms involved in the antioxidant activity of pomegraniin A. PMID:27840668

  12. The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi

    PubMed Central

    Paes, Marcia Cristina; Cosentino-Gomes, Daniela; de Souza, Cíntia Fernandes; Nogueira, Natália Pereira de Almeida; Meyer-Fernandes, José Roberto

    2011-01-01

    Trypanosoma cruzi, the protozoan responsible for Chagas disease, has a complex life cycle comprehending two distinct hosts and a series of morphological and functional transformations. Hemoglobin degradation inside the insect vector releases high amounts of heme, and this molecule is known to exert a number of physiological functions. Moreover, the absence of its complete biosynthetic pathway in T. cruzi indicates heme as an essential molecule for this trypanosomatid survival. Within the hosts, T. cruzi has to cope with sudden environmental changes especially in the redox status and heme is able to increase the basal production of reactive oxygen species (ROS) which can be also produced as byproducts of the parasite aerobic metabolism. In this regard, ROS sensing is likely to be an important mechanism for the adaptation and interaction of these organisms with their hosts. In this paper we discuss the main features of heme and ROS susceptibility in T. cruzi biology. PMID:22007287

  13. The association between microenvironmental reactive oxygen species and embryo development in assisted reproduction technology cycles.

    PubMed

    Lee, Tsung-Hsien; Lee, Maw-Sheng; Liu, Chung-Hsien; Tsao, Hui-Mei; Huang, Chun-Chia; Yang, Yu-Shih

    2012-07-01

    This study was designed to determine the relevance between the levels of reactive oxygen species (ROS) in microenvironment (follicular fluid or culture media) and the embryo development in IVF/ICSI cycles. A total of 466 follicles from 174 IVF/ICSI cycles were collected for this study. The ROS levels in monofollicular fluid and spent culture media were evaluated by chemiluminescence assay with luminol as a probe. The results demonstrated that it is in ICSI cycles that elevated ROS levels in follicular fluid were associated with day 3 poor embryo quality. The ROS levels in spent culture media were correlated with advanced degree of fragmentation. In addition, ROS levels in culture media, instead of in follicular fluid, were negatively correlated with implantation potential of embryos. The ROS levels in culture media may be viewed as an embryo metabolic marker and function as an adjuvant criterion for embryo selection.

  14. High osmotic pressure increases reactive oxygen species generation in rabbit corneal epithelial cells by endoplasmic reticulum

    PubMed Central

    Wang, Peng; Sheng, Minjie; Li, Bing; Jiang, Yaping; Chen, Yihui

    2016-01-01

    Tear high osmotic pressure (HOP) has been recognized as the core mechanism underlying ocular surface inflammation, injury and symptoms and is closely associated with many ocular surface diseases, especially dry eye. The endoplasmic reticulum (ER) is a multi-functional organelle responsible for protein synthesis, folding and transport, biological synthesis of lipids, vesicle transport and intracellular calcium storage. Accumulation of unfolded proteins and imbalance of calcium ion in the ER would induce ER stress and protective unfolded protein response (UPR). Many studies have demonstrated that ER stress can induce cell apoptosis. However, the association between tear HOP and ER stress has not been studied systematically. In the present study, rabbit corneal epithelial cells were treated with HOP and results showed that the production of reactive oxygen species increased markedly, which further activated the ER signaling pathway and ultimately induced cell apoptosis. These findings shed new lights on the pathogenesis and clinical treatment of dry eye and other ocular surface diseases. PMID:27158374

  15. Using consensus bayesian network to model the reactive oxygen species regulatory pathway.

    PubMed

    Hu, Liangdong; Wang, Limin

    2013-01-01

    Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.

  16. Targeted interception of signaling reactive oxygen species in the vascular endothelium

    PubMed Central

    Han, Jingyan; Shuvaev, Vladimir V; Muzykantov, Vladimir R

    2017-01-01

    Reactive oxygen species (ROS) are implicated as injurious and as signaling agents in human maladies including inflammation, hyperoxia, ischemia-reperfusion and acute lung injury. ROS produced by the endothelium play an important role in vascular pathology. They quench, for example, nitric oxide, and mediate pro-inflammatory signaling. Antioxidant interventions targeted for the vascular endothelium may help to control these mechanisms. Animal studies have demonstrated superiority of targeting ROS-quenching enzymes catalase and superoxide dismutase to endothelial cells over nontargeted formulations. A diverse arsenal of targeted antioxidant formulations devised in the last decade shows promising results for specific quenching of endothelial ROS. In addition to alleviation of toxic effects of excessive ROS, these targeted interventions suppress pro-inflammatory mechanisms, including endothelial cytokine activation and barrier disruption. These interventions may prove useful in experimental biomedicine and, perhaps, in translational medicine. PMID:22834201

  17. Polyglutamine expansion inhibits respiration by increasing reactive oxygen species in isolated mitochondria

    SciTech Connect

    Puranam, Kasturi L.; Wu, Guanghong; Strittmatter, Warren J.; Burke, James R. . E-mail: james.burke@duke.edu

    2006-03-10

    Huntington's disease results from expansion of the polyglutamine (PolyQ) domain in the huntingtin protein. Although the cellular mechanism by which pathologic-length PolyQ protein causes neurodegeneration is unclear, mitochondria appear central in pathogenesis. We demonstrate in isolated mitochondria that pathologic-length PolyQ protein directly inhibits ADP-dependent (state 3) mitochondrial respiration. Inhibition of mitochondrial respiration by PolyQ protein is not due to reduction in the activities of electron transport chain complexes, mitochondrial ATP synthase, or the adenine nucleotide translocase. We show that pathologic-length PolyQ protein increases the production of reactive oxygen species in isolated mitochondria. Impairment of state 3 mitochondrial respiration by PolyQ protein is reversed by addition of the antioxidants N-acetyl-L-cysteine or cytochrome c. We propose a model in which pathologic-length PolyQ protein directly inhibits mitochondrial function by inducing oxidative stress.

  18. Signaling Networks Involving Reactive Oxygen Species and Ca2+ in Plants

    NASA Astrophysics Data System (ADS)

    Kuchitsu, Kazuyuki

    2013-01-01

    Although plants never evolved central information processing organs such as brains, plants have evolved distributed information processing systems and are able to sense various environmental changes and reorganize their body plan coordinately without moving. Recent molecular biological studies revealed molecular bases for elementary processes of signal transduction in plants. Though reactive oxygen species (ROS) are highly toxic substances produced through aerobic respiration and photosynthesis, plants possess ROS-producing enzymes whose activity is highly regulated by binding of Ca2+. In turn, Ca2+- permeable channel proteins activated by ROS are shown to be localized to the cell membrane. These two components are proposed to constitute a positive feedback loop to amplify cellular signals. Such molecular physiological studies should be important steps to understand information processing systems in plants and future application for technology related to environmental, energy and food sciences.

  19. Caffeine protects human skin fibroblasts from acute reactive oxygen species-induced necrosis.

    PubMed

    Silverberg, Jonathan I; Patel, Mital; Brody, Neil; Jagdeo, Jared

    2012-11-01

    Oxidative damage by reactive oxygen species (ROS) plays a major role in aging and carcinogenesis. Little is known about either the effects of acute ROS in necrosis and inflammation of skin or the therapeutic agents for prevention and treatment. Previously, our laboratory identified caffeine as an inhibitor of hydrogen peroxide (H2O2)-generated lipid peroxidation products in human skin fibroblasts. Here, we study effects of caffeine on acute ROS-mediated necrosis. Human skin fibroblasts were incubated with caffeine, followed by H2O2 challenge. Flow cytometry was used to analyze cell morphology, counts, apoptosis and necrosis, and ROS. We found that caffeine protects from H2O2 cell damage at lower (0.01 mM) and intermediate (0.1 mM) doses. The beneficial effects of caffeine appear to be mediated by a mechanism other than antioxidant function.

  20. The Role of Mitochondria in Reactive Oxygen Species Metabolism and Signaling

    PubMed Central

    Starkov, Anatoly A.

    2010-01-01

    Oxidative stress is considered a major contributor to the etiology of both “normal” senescence and severe pathologies with serious public health implications. Several cellular sources, including mitochondria, are known to produce significant amounts of reactive oxygen species (ROS) that may contribute to intracellular oxidative stress. Mitochondria possess at least 10 known sites that are capable of generating ROS, but they also feature a sophisticated multilayered ROS defense system that is much less studied. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal at the level of mitochondria. An integrative systemic approach is applied to analysis of mitochondrial ROS metabolism, which is “dissected” into ROS generation, ROS emission, and ROS scavenging. The in vitro ROS-producing capacity of several mitochondrial sites is compared in the metabolic context and the role of mitochondria in ROS-dependent intracellular signaling is discussed. PMID:19076429

  1. Pharmacology of Free Radicals and the Impact of Reactive Oxygen Species on the Testis

    PubMed Central

    Aprioku, Jonah Sydney

    2013-01-01

    The role of free radicals in normal cellular functions and different pathological conditions has been a focus of pharmacological studies in the recent past. Reactive oxygen species (ROS) and free radicals in general are essential for cell signaling and other vital physiological functions; however, excessive amounts can cause alteration in cellular reduction-oxidation (redox) balance, and disrupt normal biological functions. When there is an imbalance between activities of ROS and antioxidant/scavenging defense systems, oxidative stress (OS) occurs. A good number of studies have shown OS is involved in the development of several disease conditions, including male infertility. In the present article, generation of free radicals and their effects, as well as the mechanisms of antioxidant/scavenging defense systems are discussed, with particular focus on the testis. The review also discusses the contribution of OS on testicular dysfunction and briefly focuses on some OS-induced conditions that will alter testicular function. PMID:24551570

  2. Early Increase of Reactive Oxygen Species in Pea Seedling Roots Under Hypergravity

    NASA Astrophysics Data System (ADS)

    Jadko, Sergiy; Syvash, Alexander; Klymchuk, Dmytro

    Early increase of intensity of peroxidation and formation of reactive oxygen species (ROS) in plant cells take place under various impacts. The ROS can act as second messengers in mechanism of cell responses (Mittler et al 2006; Jadko et al 2007). Early stages of ROS content (chemiluminescence, ChL) in pea root cells under 3, 5, 10 and 15g during centrifugation have been investigated. After 30 min of centrifugation, especially under 10 and 15g, the intensity of ChL increased and was higher on 40-50% comparing to controls. Than the ChL slowly decreased and reached the controls in 1 hour. The changes of the ChL depend on both the dose and the duration of centrifugation. The role of ROS in mechanism of cell response to hypergravity is discussed.

  3. Reactive oxygen species (ROS) production by amoebocytes of Asterias rubens (Echinodermata).

    PubMed

    Coteur, Geoffroy; Warnau, Michel; Jangoux, Michel; Dubois, Philippe

    2002-03-01

    An adapted peroxidase, luminol-enhanced chemiluminescence method in an EDTA-free, Ca++-containing medium is described and used to characterise reactive oxygen species (ROS) production by starfish immunocytes using a standard microplate reader luminometer. ROS production was stimulated by direct interaction of immunocytes with bacteria or bacterial wall components, but not by the soluble stimulant PMA nor the lectin concanavalin A. Produced ROS detected by this method are apparently superoxide anions, hydrogen peroxide and peroxynitrite. Comparison with other chemiluminescence methods indicates that the described method is the only one to detect the stimulation of starfish immunocytes by the Gram-positive bacteria, Micrococcus luteus, a fact that questions previous reports indicating a lack of stimulation by pathogens. The adapted method provides a rapid determination of the overall ROS production, which is suitable for both disease control and immunotoxicological studies in echinoderms.

  4. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species

    PubMed Central

    Jones, Rheinallt M; Luo, Liping; Ardita, Courtney S; Richardson, Arena N; Kwon, Young Man; Mercante, Jeffrey W; Alam, Ashfaqul; Gates, Cymone L; Wu, Huixia; Swanson, Phillip A; Lambeth, J David; Denning, Patricia W; Neish, Andrew S

    2013-01-01

    The resident prokaryotic microbiota of the metazoan gut elicits profound effects on the growth and development of the intestine. However, the molecular mechanisms of symbiotic prokaryotic–eukaryotic cross-talk in the gut are largely unknown. It is increasingly recognized that physiologically generated reactive oxygen species (ROS) function as signalling secondary messengers that influence cellular proliferation and differentiation in a variety of biological systems. Here, we report that commensal bacteria, particularly members of the genus Lactobacillus, can stimulate NADPH oxidase 1 (Nox1)-dependent ROS generation and consequent cellular proliferation in intestinal stem cells upon initial ingestion into the murine or Drosophila intestine. Our data identify and highlight a highly conserved mechanism that symbiotic microorganisms utilize in eukaryotic growth and development. Additionally, the work suggests that specific redox-mediated functions may be assigned to specific bacterial taxa and may contribute to the identification of microbes with probiotic potential. PMID:24141879

  5. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture.

    PubMed

    López, E; Arce, C; Oset-Gasque, M J; Cañadas, S; González, M P

    2006-03-15

    Cadmium is a toxic agent that it is also an environmental contaminant. Cadmium exposure may be implicated in some humans disorders related to hyperactivity and increased aggressiveness. This study presents data indicating that cadmium induces cellular death in cortical neurons in culture. This death could be mediated by an apoptotic and a necrotic mechanism. The apoptotic death may be mediated by oxidative stress with reactive oxygen species (ROS) formation which could be induced by mitochondrial membrane dysfunction since this cation produces: (a) depletion of mitochondrial membrane potential and (b) diminution of ATP levels with ATP release. Necrotic death could be mediated by lipid peroxidation induced by cadmium through an indirect mechanism (ROS formation). On the other hand, 40% of the cells survive cadmium action. This survival seems to be mediated by the ability of these cells to activate antioxidant defense systems, since cadmium reduced the intracellular glutathione levels and induced catalase and SOD activation in these cells.

  6. Regulatory mechanisms of nitric oxide and reactive oxygen species generation and their role in plant immunity.

    PubMed

    Yoshioka, Hirofumi; Mase, Keisuke; Yoshioka, Miki; Kobayashi, Michie; Asai, Shuta

    2011-08-01

    Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in diverse physiological processes, such as programmed cell death, development, cell elongation and hormonal signaling, in plants. Much attention has been paid to the regulation of plant innate immunity by these signal molecules. Recent studies provide evidence that an NADPH oxidase, respiratory burst oxidase homolog, is responsible for pathogen-responsive ROS burst. However, we still do not know about NO-producing enzymes, except for nitrate reductase, although many studies suggest the existence of NO synthase-like activity responsible for NO burst in plants. Here, we introduce regulatory mechanisms of NO and ROS bursts by mitogen-activated protein kinase cascades, calcium-dependent protein kinase or riboflavin and its derivatives, flavin mononucleotide and flavin adenine dinucleotide, and we discuss the roles of the bursts in defense responses against plant pathogens.

  7. The Injury and Therapy of Reactive Oxygen Species in Intracerebral Hemorrhage Looking at Mitochondria

    PubMed Central

    Qu, Jie; Chen, Weixiang; Hu, Rong; Feng, Hua

    2016-01-01

    Intracerebral hemorrhage is an emerging major health problem often resulting in death or disability. Reactive oxygen species (ROS) have been identified as one of the major damaging factors in ischemic stroke. However, there is less discussion about ROS in hemorrhage stroke. Metabolic products of hemoglobin, excitatory amino acids, and inflammatory cells are all sources of ROS, and ROS harm the central nervous system through cell death and structural damage, especially disruption of the blood-brain barrier. We have considered the antioxidant system of the CNS itself and the drugs aiming to decrease ROS after ICH, and we find that mitochondria are key players in all of these aspects. Moreover, when the mitochondrial permeability transition pore opens, ROS-induced ROS release, which leads to extensive liberation of ROS and mitochondrial failure, occurs. Therefore, the mitochondrion may be a significant target for elucidating the problem of ROS in ICH; however, additional experimental support is required. PMID:27293511

  8. The involvement of reactive oxygen species in hypoxic injury to rat liver.

    PubMed

    Younes, M; Strubelt, O

    1988-03-01

    Isolated perfused livers from fasted, but not from fed rats showed hepatotoxic responses when subjected to 30 min of hypoxia followed by 60 min of reoxygenation. Toxicity was evident by a release of glutamate-pyruvate-transaminase, lactate dehydrogenase and glutathione into the perfusate, by a depletion of hepatic glutathione and by an accumulation of calcium in the liver. This indicates, that the liver is resistant to hypoxic injury as long as glycogen is present to maintain anaerobic ATP-synthesis. This is substantiated by the fact that addition of fructose--but not glucose--to the medium resulted in a protection of the liver against hypoxic injury concomitant with its degradation to lactate + pyruvate. Superoxide dismutase, catalase, desferrioxamine and allopurinol prevented hypoxic liver injury suggesting a substantial role of reactive oxygen species formed via the xanthine oxidase reaction in mediating hypoxic liver injury.

  9. The Role of Reactive Oxygen Species in Antibiotic-Mediated Killing of Bacteria.

    PubMed

    Van Acker, Heleen; Coenye, Tom

    2017-01-12

    Recently, it was proposed that there is a common mechanism behind the activity of bactericidal antibiotics, involving the production of reactive oxygen species (ROS). However, the involvement of ROS in antibiotic-mediated killing has become the subject of much debate. In the present review, we provide an overview of the data supporting the ROS hypothesis; we also present data that explain the contradictory results often obtained when studying antibiotic-induced ROS production. For this latter aspect we will focus on the importance of taking the experimental setup into consideration and on the importance of some technical aspects of the assays typically used. Finally, we discuss the link between ROS production and toxin-antitoxin modules, and present an overview of implications for treatment.

  10. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration

    PubMed Central

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-01-01

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40phox and p47phox) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration. PMID:26853930

  11. Atrial fibrillation in the elderly: the potential contribution of reactive oxygen species

    PubMed Central

    Schillinger, Kurt J.; Patel, Vickas V.

    2012-01-01

    Atrial fibrillation (AF) is the most commonly encountered cardiac arrhythmia, and is a significant source of healthcare expenditures throughout the world. It is an arrhythmia with a very clearly defined predisposition for individuals of advanced age, and this fact has led to intense study of the mechanistic links between aging and AF. By promoting oxidative damage to multiple subcellular and cellular structures, reactive oxygen species (ROS) have been shown to induce the intra- and extra-cellular changes necessary to promote the pathogenesis of AF. In addition, the generation and accumulation of ROS have been intimately linked to the cellular processes which underlie aging. This review begins with an overview of AF pathophysiology, and introduces the critical structures which, when damaged, predispose an otherwise healthy atrium to AF. The available evidence that ROS can lead to damage of these critical structures is then reviewed. Finally, the evidence linking the process of aging to the pathogenesis of AF is discussed. PMID:23341843

  12. Betulin induces reactive oxygen species-dependent apoptosis in human gastric cancer SGC7901 cells.

    PubMed

    Li, Yang; Liu, Xiaokang; Jiang, Dan; Lin, Yingjia; Wang, Yushi; Li, Qing; Liu, Linlin; Jin, Ying-Hua

    2016-09-01

    Betulin, an abundant natural compound, significantly inhibited the cell viability of advanced human gastric cancer SGC7901 cells. Mechanism study demonstrated that betulin induced apoptosis through mitochondrial Bax and Bak accumulation-mediated intrinsic apoptosis pathway. Downregulation of the anti-apoptosis proteins Bcl-2 and XIAP was involved during betulin-induced cell apoptosis. Reactive oxygen species (ROS) was generated in cells after betulin treatment in a time- and dose-dependent manner. Addition of antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated betulin-induced ROS generation as well as Bcl-2 and XIAP downregulation. The mitochondrial accumulation of Bax and Bak, as well as caspase activity, was also remarkably inhibited by NAC treatment, indicating that ROS are important signaling intermediates that lead to betulin-induced apoptosis by modulating multiple apoptosis-regulating proteins in SGC7901 cells.

  13. Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death

    PubMed Central

    Wang, Yiqin; Loake, Gary J.; Chu, Chengcai

    2013-01-01

    In plants, programed cell death (PCD) is an important mechanism to regulate multiple aspects of growth and development, as well as to remove damaged or infected cells during responses to environmental stresses and pathogen attacks. Under biotic and abiotic stresses, plant cells exhibit a rapid synthesis of nitric oxide (NO) and a parallel accumulation of reactive oxygen species (ROS). Frequently, these responses trigger a PCD process leading to an intrinsic execution of plant cells. The accumulating evidence suggests that both NO and ROS play key roles in PCD. These redox active small molecules can trigger cell death either independently or synergistically. Here we summarize the recent progress on the cross-talk of NO and ROS signals in the hypersensitive response, leaf senescence, and other kinds of plant PCD caused by diverse cues. PMID:23967004

  14. Reactive oxygen species induce neurite degeneration before induction of cell death

    PubMed Central

    Fukui, Koji

    2016-01-01

    Reactive oxygen species (ROS) induce neuronal cell death in a time- and concentration-dependent manner. Treatment of cultured cells with a low concentration of hydrogen peroxide induces neurite degeneration, but not cell death. Neurites (axons and dendrites) are vulnerable to ROS. Neurite degeneration (shrinkage, accumulation, and fragmentation) has been found in neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. However, the mechanism of ROS-related neurite degeneration is not fully understood. Many studies have demonstrated the relationship between mitochondrial dysfunction and microtubule destabilization. These dysfunctions are deeply related to changes in calcium homeostasis and ROS production in neurites. Treatment with antioxidant substances, such as vitamin E, prevents neurite degeneration in cultured cells. This review describes the possibility that ROS induces neurite degeneration before the induction of cell death. PMID:27895381

  15. Computational Models of Reactive Oxygen Species as Metabolic Byproducts and Signal-Transduction Modulators

    PubMed Central

    Pereira, Elizabeth J.; Smolko, Christian M.; Janes, Kevin A.

    2016-01-01

    Reactive oxygen species (ROS) are widely involved in intracellular signaling and human pathologies, but their precise roles have been difficult to enumerate and integrate holistically. The context- and dose-dependent intracellular effects of ROS can lead to contradictory experimental results and confounded interpretations. For example, lower levels of ROS promote cell signaling and proliferation, whereas abundant ROS cause overwhelming damage to biomolecules and cellular apoptosis or senescence. These complexities raise the question of whether the many facets of ROS biology can be joined under a common mechanistic framework using computational modeling. Here, we take inventory of some current models for ROS production or ROS regulation of signaling pathways. Several models captured non-intuitive observations or made predictions that were later verified by experiment. There remains a need for systems-level analyses that jointly incorporate ROS production, handling, and modulation of multiple signal-transduction cascades. PMID:27965578

  16. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses.

    PubMed

    Leonard, Stephen S; Xia, Chang; Jiang, Bin-Hua; Stinefelt, Beth; Klandorf, Hillar; Harris, Gabriel K; Shi, Xianglin

    2003-10-03

    Scavenging or quenching of the reactive oxygen species (ROS) involved in oxidative stress has been the subject of many recent studies. Resveratrol, found in various natural food products, has been linked to decreased coronary artery disease and preventing cancer development. The present study measured the effect of resveratrol on several different systems involving the hydroxyl, superoxide, metal/enzymatic-induced, and cellular generated radicals. The rate constant for reaction of resveratrol with the hydroxyl radical was determined, and resveratrol was found to be an effective scavenger of hydroxyl, superoxide, and metal-induced radicals as well as showing antioxidant abilities in cells producing ROS. Resveratrol exhibits a protective effect against lipid peroxidation in cell membranes and DNA damage caused by ROS. Resveratrol was also found to have a significant inhibitory effect on the NF-kappaB signaling pathway after cellular exposure to metal-induced radicals. It was concluded that resveratrol in foods plays an important antioxidant role.

  17. Mitochondrial STAT3 and reactive oxygen species: A fulcrum of adipogenesis?

    PubMed Central

    Kramer, Adam H; Kadye, Rose; Houseman, Pascalene S; Prinsloo, Earl

    2015-01-01

    The balance between cellular lineages can be controlled by reactive oxygen species (ROS). Cellular differentiation into adipocytes is highly dependent on the production of ROS to initiate the process through activation of multiple interlinked factors that stimulate mitotic clonal expansion and cellular maturation. The signal transducer and activator of transcription family of signaling proteins have accepted roles in adipogenesis and associated lipogenesis. Non-canonical mitochondrial localization of STAT3 and other members of the STAT family however opens up new avenues for investigation of its role in the aforementioned processes. Following recent observations of differences in mitochondrially localized serine 727 phosphorylated STAT3 (mtSTAT3-pS727) in preadipocytes and adipocytes, here, we hypothesize and speculate further on the role of mitochondrial STAT3 in adipogenesis. PMID:27127727

  18. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration.

    PubMed

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-02-08

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40(phox) and p47(phox)) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration.

  19. Fast, Ultrasensitive Detection of Reactive Oxygen Species Using a Carbon Nanotube Based-Electrocatalytic Intracellular Sensor

    PubMed Central

    2015-01-01

    Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular “pulse” of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection. PMID:26438964

  20. A role for reactive oxygen species in the antibacterial properties of carbon monoxide-releasing molecules.

    PubMed

    Tavares, Ana Filipa N; Nobre, Lígia S; Saraiva, Lígia M

    2012-11-01

    Carbon monoxide-releasing molecules (CO-RMs) are, in general, transition metal carbonyl complexes that liberate controlled amounts of CO. In animal models, CO-RMs have been shown to reduce myocardial ischaemia, inflammation and vascular dysfunction, and to provide a protective effect in organ transplantation. Moreover, CO-RMs are bactericides that kill both Gram-positive and Gram-negative bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa. Herein are reviewed the microbial genetic and biochemical responses associated with CO-RM-mediated cell death. Particular emphasis is given to the data revealing that CO-RMs induce the generation of reactive oxygen species (ROS), which contribute to the antibacterial activity of these compounds.

  1. The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses.

    PubMed

    Zhang, Ming; Smith, J Andrew C; Harberd, Nicholas P; Jiang, Caifu

    2016-08-01

    Soil salinity is one of the most commonly encountered environmental stresses affecting plant growth and crop productivity. Accordingly, plants have evolved a variety of morphological, physiological and biochemical strategies that enable them to adapt to saline growth conditions. For example, it has long been known that salinity-stress increases both the production of the gaseous stress hormone ethylene and the in planta accumulation of reactive oxygen species (ROS). Recently, there has been significant progress in understanding how the fine-tuning of ethylene biosynthesis and signaling transduction can promote salinity tolerance, and how salinity-induced ROS accumulation also acts as a signal in the mediation of salinity tolerance. Furthermore, recent advances have indicated that ethylene signaling modulates salinity responses largely via regulation of ROS-generating and ROS-scavenging mechanisms. This review focuses on these recent advances in understanding the linked roles of ethylene and ROS in salt tolerance.

  2. Reactive oxygen species-mediated unfolded protein response pathways in preimplantation embryos

    PubMed Central

    Ali, Ihsan; Shah, Syed Zahid Ali; Jin, Yi; Li, Zhong-Shu; Ullah, Obaid

    2017-01-01

    Excessive production of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress-mediated responses are critical to embryonic development in the challenging in vitro environment. ROS production increases during early embryonic development with the increase in protein requirements for cell survival and growth. The ER is a multifunctional cellular organelle responsible for protein folding, modification, and cellular homeostasis. ER stress is activated by a variety of factors including ROS. Such stress leads to activation of the adaptive unfolded protein response (UPR), which restores homeostasis. However, chronic stress can exceed the toleration level of the ER, resulting in cellular apoptosis. In this review, we briefly describe the generation and impact of ROS in preimplantation embryo development, the ROS-mediated activation mechanism of the UPR via the ER, and the subsequent activation of signaling pathways following ER stress in preimplantation embryos. PMID:28057903

  3. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis

    PubMed Central

    Liu, Rui-Ming; Desai, Leena P.

    2015-01-01

    Transforming growth factor beta (TGF-β) is the most potent pro-fibrogenic cytokine and its expression is increased in almost all of fibrotic diseases. Although signaling through Smad pathway is believed to play a central role in TGF-β's fibrogenesis, emerging evidence indicates that reactive oxygen species (ROS) modulate TGF-β's signaling through different pathways including Smad pathway. TGF-β1 increases ROS production and suppresses antioxidant enzymes, leading to a redox imbalance. ROS, in turn, induce/activate TGF-β1 and mediate many of TGF-β's fibrogenic effects, forming a vicious cycle (see graphic flow chart on the right). Here, we review the current knowledge on the feed-forward mechanisms between TGF-β1 and ROS in the development of fibrosis. Therapeutics targeting TGF-β-induced and ROS-dependent cellular signaling represents a novel approach in the treatment of fibrotic disorders. PMID:26496488

  4. Reactive Oxygen Species and Autophagy Modulation in Non-Marine Drugs and Marine Drugs

    PubMed Central

    Farooqi, Ammad Ahmad; Fayyaz, Sundas; Hou, Ming-Feng; Li, Kun-Tzu; Tang, Jen-Yang; Chang, Hsueh-Wei

    2014-01-01

    It is becoming more understandable that an existing challenge for translational research is the development of pharmaceuticals that appropriately target reactive oxygen species (ROS)-mediated molecular networks in cancer cells. In line with this approach, there is an overwhelmingly increasing list of many non-marine drugs and marine drugs reported to be involved in inhibiting and suppressing cancer progression through ROS-mediated cell death. In this review, we describe the strategy of oxidative stress-based therapy and connect the ROS modulating effect to the regulation of apoptosis and autophagy. Finally, we focus on exploring the function and mechanism of cancer therapy by the autophagy modulators including inhibitors and inducers from non-marine drugs and marine drugs. PMID:25402829

  5. Diffusion of a multi-species component and its role in oxygen and water transport in silicates

    NASA Technical Reports Server (NTRS)

    Zhang, Youxue; Stolper, E. M.; Wasserburg, G. J.

    1991-01-01

    The diffusion of a multispecies component is complicated by the different diffusion coefficient of each species and the interconversion reactions among the species. A diffusion equation is derived that incorporates the diffusive fluxes of all species contributing to the component's concentration. The effect of speciation on diffusion is investigated experimentally by measuring concentration profiles of all species developed during diffusion experiments. Data on water diffusion in rhyolitic glasses indicate that H2O molecules predominate over OH groups as the diffusing species at very low to high water concentrations. A simple theoretical relationship is drawn between the effective total oxygen diffusion coefficient and the total water concentration of silicates at low water content.

  6. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines

    SciTech Connect

    Huang, Qiang; Gao, Bo; Wang, Long; Hu, Ya-Qian; Lu, Wei-Guang; Yang, Liu; Luo, Zhuo-Jing; Liu, Jian

    2014-11-01

    Oxidative stress is a crucial pathogenic factor in the development of osteoporosis. Myricitrin, isolated from Myrica cerifera, is a potent antioxidant. We hypothesized that myricitrin possessed protective effects against osteoporosis by partially reducing reactive oxygen species (ROS) and bone-resorbing cytokines in osteoblastic MC3T3-E1 cells and human bone marrow stromal cells (hBMSCs). We investigated myricitrin on osteogenic differentiation under oxidative stress. Hydrogen peroxide (H{sub 2}O{sub 2}) was used to establish an oxidative cell injury model. Our results revealed that myricitrin significantly improved some osteogenic markers in these cells. Myricitrin decreased lipid production and reduced peroxisome proliferator-activated receptor gamma-2 (PPARγ2) expression in hBMSCs. Moreover, myricitrin reduced the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and IL-6 and partially suppressed ROS production. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Our results demonstrated that myricitrin supplementation reduced serum malondialdehyde (MDA) activity and increased reduced glutathione (GSH) activity. Importantly, it ameliorated the micro-architecture of trabecular bones in the 4th lumbar vertebrae (L4) and distal femur. Taken together, these results indicated that the protective effects of myricitrin against osteoporosis are linked to a reduction in ROS and bone-resorbing cytokines, suggesting that myricitrin may be useful in bone metabolism diseases, particularly osteoporosis. - Highlights: • Myricitrin protects MC3T3-E1 cells and hBMSCs from oxidative stress. • It is accompanied by a decrease in oxidative stress and bone-resorbing cytokines. • Myricitrin decreases serum reactive oxygen species to some degree. • Myricitrin partly reverses ovariectomy effects in vivo. • Myricitrin may represent a beneficial anti-osteoporosis treatment method.

  7. Histone Deacetylase Inhibitors Promote Mitochondrial Reactive Oxygen Species Production and Bacterial Clearance by Human Macrophages.

    PubMed

    Ariffin, Juliana K; das Gupta, Kaustav; Kapetanovic, Ronan; Iyer, Abishek; Reid, Robert C; Fairlie, David P; Sweet, Matthew J

    2015-12-28

    Broad-spectrum histone deacetylase inhibitors (HDACi) are used clinically as anticancer agents, and more isoform-selective HDACi have been sought to modulate other conditions, including chronic inflammatory diseases. Mouse studies suggest that HDACi downregulate immune responses and may compromise host defense. However, their effects on human macrophage antimicrobial responses are largely unknown. Here, we show that overnight pretreatment of human macrophages with HDACi prior to challenge with Salmonella enterica serovar Typhimurium or Escherichia coli results in significantly reduced intramacrophage bacterial loads, which likely reflect the fact that this treatment regime impairs phagocytosis. In contrast, cotreatment of human macrophages with HDACi at the time of bacterial challenge did not impair phagocytosis; instead, HDACi cotreatment actually promoted clearance of intracellular S. Typhimurium and E. coli. Mechanistically, treatment of human macrophages with HDACi at the time of bacterial infection enhanced mitochondrial reactive oxygen species generation by these cells. The capacity of HDACi to promote the clearance of intracellular bacteria from human macrophages was abrogated when cells were pretreated with MitoTracker Red CMXRos, which perturbs mitochondrial function. The HDAC6-selective inhibitor tubastatin A promoted bacterial clearance from human macrophages, whereas the class I HDAC inhibitor MS-275, which inhibits HDAC1 to -3, had no effect on intracellular bacterial loads. These data are consistent with HDAC6 and/or related HDACs constraining mitochondrial reactive oxygen species production from human macrophages during bacterial challenge. Our findings suggest that, whereas long-term HDACi treatment regimes may potentially compromise host defense, selective HDAC inhibitors may have applications in treating acute bacterial infections.

  8. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Arangio, Andrea M.; Tong, Haijie; Socorro, Joanna; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-10-01

    Fine particulate matter plays a central role in the adverse health effects of air pollution. Inhalation and deposition of aerosol particles in the respiratory tract can lead to the release of reactive oxygen species (ROS), which may cause oxidative stress. In this study, we have detected and quantified a wide range of particle-associated radicals using electron paramagnetic resonance (EPR) spectroscopy. Ambient particle samples were collected using a cascade impactor at a semi-urban site in central Europe, Mainz, Germany, in May-June 2015. Concentrations of environmentally persistent free radicals (EPFR), most likely semiquinone radicals, were found to be in the range of (1-7) × 1011 spins µg-1 for particles in the accumulation mode, whereas coarse particles with a diameter larger than 1 µm did not contain substantial amounts of EPFR. Using a spin trapping technique followed by deconvolution of EPR spectra, we have also characterized and quantified ROS, including OH, superoxide (O2-) and carbon- and oxygen-centered organic radicals, which were formed upon extraction of the particle samples in water. Total ROS amounts of (0.1-3) × 1011 spins µg-1 were released by submicron particle samples and the relative contributions of OH, O2-, C-centered and O-centered organic radicals were ˜ 11-31, ˜ 2-8, ˜ 41-72 and ˜ 0-25 %, respectively, depending on particle sizes. OH was the dominant species for coarse particles. Based on comparisons of the EPR spectra of ambient particulate matter with those of mixtures of organic hydroperoxides, quinones and iron ions followed by chemical analysis using liquid chromatography mass spectrometry (LC-MS), we suggest that the particle-associated ROS were formed by decomposition of organic hydroperoxides interacting with transition metal ions and quinones contained in atmospheric humic-like substances (HULIS).

  9. Effects of C60 on the Photochemical Formation of Reactive Oxygen Species from Natural Organic Matter.

    PubMed

    Yin, Lijuan; Zhou, Huaxi; Lian, Lushi; Yan, Shuwen; Song, Weihua

    2016-11-01

    Buckminsterfullerenes (C60) are widely used nanomaterials that are present in surface water. The combination of C60 and humic acid (HA) generates reactive oxygen species (ROS) under solar irradiation, but this process is not well understood. Thus, the present study focused on the photochemical formation of singlet oxygen ((1)O2), hydroxyl radical (HO(•))-like species, superoxide radicals (O2(•-)), hydrogen peroxide (H2O2), and triplet excited states ((3)C60*/(3)HA*) in solutions containing both C60 and HA. The quantum yield coefficients of excited triplet states (fTMP) and apparent quantum yields of ROS were measured and compared to the calculated values, which were based on the conservative mixing model. Although C60 proved to have only a slight impact on the (1)O2 formation from HA, C60 played a key role in the inhibition of O2(•-). The photochemical formation of H2O2 followed the conservative mixing model due to the reaction of C60(•-) with HO2(•)/O2(•-), and the biomolecular reaction rate constant has been measured as (7.4 ± 0.6) × 10(6) M(-1) s(-1). The apparent fTMP was significantly lower than the calculated value, indicating that the steric effect of HA was significant in the reaction of (3)C60* with the TMP probe. In contrast, C60 did not have an effect on the photochemical formation of HO(•) from HA, suggesting that HO(•) is elevated from the hydrophilic surface of HA. The aforementioned results may be useful for predicting the photochemical influence of C60 on aqueous environments.

  10. Histone Deacetylase Inhibitors Promote Mitochondrial Reactive Oxygen Species Production and Bacterial Clearance by Human Macrophages

    PubMed Central

    Ariffin, Juliana K.; das Gupta, Kaustav; Kapetanovic, Ronan; Iyer, Abishek; Reid, Robert C.; Fairlie, David P.

    2015-01-01

    Broad-spectrum histone deacetylase inhibitors (HDACi) are used clinically as anticancer agents, and more isoform-selective HDACi have been sought to modulate other conditions, including chronic inflammatory diseases. Mouse studies suggest that HDACi downregulate immune responses and may compromise host defense. However, their effects on human macrophage antimicrobial responses are largely unknown. Here, we show that overnight pretreatment of human macrophages with HDACi prior to challenge with Salmonella enterica serovar Typhimurium or Escherichia coli results in significantly reduced intramacrophage bacterial loads, which likely reflect the fact that this treatment regime impairs phagocytosis. In contrast, cotreatment of human macrophages with HDACi at the time of bacterial challenge did not impair phagocytosis; instead, HDACi cotreatment actually promoted clearance of intracellular S. Typhimurium and E. coli. Mechanistically, treatment of human macrophages with HDACi at the time of bacterial infection enhanced mitochondrial reactive oxygen species generation by these cells. The capacity of HDACi to promote the clearance of intracellular bacteria from human macrophages was abrogated when cells were pretreated with MitoTracker Red CMXRos, which perturbs mitochondrial function. The HDAC6-selective inhibitor tubastatin A promoted bacterial clearance from human macrophages, whereas the class I HDAC inhibitor MS-275, which inhibits HDAC1 to -3, had no effect on intracellular bacterial loads. These data are consistent with HDAC6 and/or related HDACs constraining mitochondrial reactive oxygen species production from human macrophages during bacterial challenge. Our findings suggest that, whereas long-term HDACi treatment regimes may potentially compromise host defense, selective HDAC inhibitors may have applications in treating acute bacterial infections. PMID:26711769

  11. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities.

    PubMed

    Paravicini, Tamara M; Touyz, Rhian M

    2008-02-01

    Reactive oxygen species (ROS) influence many physiological processes including host defense, hormone biosynthesis, fertilization, and cellular signaling. Increased ROS production (termed "oxidative stress") has been implicated in various pathologies, including hypertension, atherosclerosis, diabetes, and chronic kidney disease. A major source for vascular and renal ROS is a family of nonphagocytic NAD(P)H oxidases, including the prototypic Nox2 homolog-based NAD(P)H oxidase, as well as other NAD(P)H oxidases, such as Nox1 and Nox4. Other possible sources include mitochondrial electron transport enzymes, xanthine oxidase, cyclooxygenase, lipoxygenase, and uncoupled nitric oxide synthase. NAD(P)H oxidase-derived ROS plays a physiological role in the regulation of endothelial function and vascular tone and a pathophysiological role in endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, fibrosis, angiogenesis, and rarefaction, important processes underlying cardiovascular and renal remodeling in hypertension and diabetes. These findings have evoked considerable interest because of the possibilities that therapies against nonphagocytic NAD(P)H oxidase to decrease ROS generation and/or strategies to increase nitric oxide (NO) availability and antioxidants may be useful in minimizing vascular injury and renal dysfunction and thereby prevent or regress target organ damage associated with hypertension and diabetes. Here we highlight current developments in the field of reactive oxygen species and cardiovascular disease, focusing specifically on the recently identified novel Nox family of NAD(P)H oxidases in hypertension. We also discuss the potential role of targeting ROS as a therapeutic possibility in the management of hypertension and cardiovascular disease.

  12. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes.

    PubMed

    Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F

    2015-03-17

    Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in

  13. Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1.

    PubMed

    De Filippis, Bianca; Valenti, Daniela; de Bari, Lidia; De Rasmo, Domenico; Musto, Mattia; Fabbri, Alessia; Ricceri, Laura; Fiorentini, Carla; Laviola, Giovanni; Vacca, Rosa Anna

    2015-06-01

    Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene associated with severe intellectual disability, movement disorders, and autistic-like behaviors. Its pathogenesis remains mostly not understood and no effective therapy is available. High circulating levels of oxidative stress markers in patients and the occurrence of oxidative brain damage in MeCP2-deficient mouse models suggest the involvement of oxidative stress in RTT pathogenesis. However, the molecular mechanism and the origin of the oxidative stress have not been elucidated. Here we demonstrate that a redox imbalance arises from aberrant mitochondrial functionality in the brain of MeCP2-308 heterozygous female mice, a condition that more closely recapitulates that of RTT patients. The marked increase in the rate of hydrogen peroxide generation in the brain of RTT mice seems mainly produced by the dysfunctional complex II of the mitochondrial respiratory chain. In addition, both membrane potential generation and mitochondrial ATP synthesis are decreased in RTT mouse brains when succinate, the complex II respiratory substrate, is used as an energy source. Respiratory chain impairment is brain area specific, owing to a decrease in either cAMP-dependent phosphorylation or protein levels of specific complex subunits. Further, we investigated whether the treatment of RTT mice with the bacterial protein CNF1, previously reported to ameliorate the neurobehavioral phenotype and brain bioenergetic markers in an RTT mouse model, exerts specific effects on brain mitochondrial function and consequently on hydrogen peroxide production. In RTT brains treated with CNF1, we observed the reactivation of respiratory chain complexes, the rescue of mitochondrial functionality, and the prevention of brain hydrogen peroxide overproduction. These results provide definitive evidence of mitochondrial reactive oxygen species overproduction in RTT mouse brain and

  14. Induction of reactive oxygen species in marine phytoplankton under crude oil exposure.

    PubMed

    Ozhan, Koray; Zahraeifard, Sara; Smith, Aaron P; Bargu, Sibel

    2015-12-01

    Exposure of phytoplankton to the water-accommodated fraction of crude oil can elicit a number of stress responses, but the mechanisms that drive these responses are unclear. South Louisiana crude oil was selected to investigate its effects on population growth, chlorophyll a (Chl a) content, antioxidative defense, and lipid peroxidation, for the marine diatom, Ditylum brightwellii, and the dinoflagellate, Heterocapsa triquetra, in laboratory-based microcosm experiments. The transcript levels of several possible stress-responsive genes in D. brightwellii were also measured. The microalgae were exposed to crude oil for up to 96 h, and Chl a content, superoxide dismutase (SOD), the glutathione pool (GSH and GSSG), and lipid peroxidation content were analyzed. The cell growth of both phytoplankton species was inhibited with increasing crude oil concentrations. Crude oil exposure did not affect Chl a content significantly in cells. SOD activities showed similar responses in both species, being enhanced at 4- and 8-mg/L crude oil exposure. Only H. triquetra demonstrated enhanced activity in GSSG pool and lipid peroxidation at 8-mg/L crude oil exposure, suggesting that phytoplankton species have distinct physiological responses and tolerance levels to crude oil exposure. This study indicated the activation of reactive oxygen species (ROS) in phytoplankton under crude oil exposure; however, the progressive damage in cells is still unknown. Thus, ROS-related damage in nucleic acid, lipids, proteins, and DNA, due to crude oil exposure could be a worthwhile subject of study to better understand crude oil toxicity at the base of the food web.

  15. Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy

    PubMed Central

    Weissmann, Norbert; Kuzkaya, Nermin; Fuchs, Beate; Tiyerili, Vedat; Schäfer, Rolf U; Schütte, Hartwig; Ghofrani, Hossein A; Schermuly, Ralph T; Schudt, Christian; Sydykov, Akylbek; Egemnazarow, Bakytbek; Seeger, Werner; Grimminger, Friedrich

    2005-01-01

    Background The sources and measurement of reactive oxygen species (ROS) in intact organs are largely unresolved. This may be related to methodological problems associated with the techniques currently employed for ROS detection. Electron spin resonance (ESR) with spin trapping is a specific method for ROS detection, and may address some these technical problems. Methods We have established a protocol for the measurement of intravascular ROS release from isolated buffer-perfused and ventilated rabbit and mouse lungs, combining lung perfusion with the spin probe l-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) and ESR spectroscopy. We then employed this technique to characterize hypoxia-dependent ROS release, with specific attention paid to NADPH oxidase-dependent superoxide formation as a possible vasoconstrictor pathway. Results While perfusing lungs with CPH over a range of inspired oxygen concentrations (1–21 %), the rate of CP• formation exhibited an oxygen-dependence, with a minimum at 2.5 % O2. Addition of superoxide dismutase (SOD) to the buffer fluid illustrated that a minor proportion of this intravascular ROS leak was attributable to superoxide. Stimulation of the lungs by injection of phorbol-12-myristate-13-acetate (PMA) into the pulmonary artery caused a rapid increase in CP• formation, concomitant with pulmonary vasoconstriction. Both the PMA-induced CPH oxidation and the vasoconstrictor response were largely suppressed by SOD. When the PMA challenge was performed at different oxygen concentrations, maximum superoxide liberation and pulmonary vasoconstriction occurred at 5 % O2. Using a NADPH oxidase inhibitor and NADPH-oxidase deficient mice, we illustrated that the PMA-induced superoxide release was attributable to the stimulation of NADPH oxidases. Conclusion The perfusion of isolated lungs with CPH is suitable for detection of intravascular ROS release by ESR spectroscopy. We employed this technique to demonstrate that 1) PMA

  16. Antimalarial action of artesunate involves DNA damage mediated by reactive oxygen species.

    PubMed

    Gopalakrishnan, Anusha M; Kumar, Nirbhay

    2015-01-01

    Artemisinin-based combination therapy (ACT) is the recommended first-line treatment for Plasmodium falciparum malaria. It has been suggested that the cytotoxic effect of artemisinin is mediated by free radicals followed by the alkylation of P. falciparum proteins. The endoperoxide bridge, the active moiety of artemisinin derivatives, is cleaved in the presence of ferrous iron, generating reactive oxygen species (ROS) and other free radicals. However, the emergence of resistance to artemisinin in P. falciparum underscores the need for new insights into the molecular mechanisms of antimalarial activity of artemisinin. Here we show that artesunate (ART) induces DNA double-strand breaks in P. falciparum in a physiologically relevant dose- and time-dependent manner. DNA damage induced by ART was accompanied by an increase in the intracellular ROS level in the parasites. Mannitol, a ROS scavenger, reversed the cytotoxic effect of ART and reduced DNA damage, and modulation of glutathione (GSH) levels was found to impact ROS and DNA damage induced by ART. Accumulation of ROS, increased DNA damage, and the resulting antiparasite effect suggest a causal relationship between ROS, DNA damage, and parasite death. Finally, we also show that ART-induced ROS production involves a potential role for NADPH oxidase, an enzyme involved in the production of superoxide anions. Our results with P. falciparum provide novel insights into previously unknown molecular mechanisms underlying the antimalarial activity of artemisinin derivatives and may help in the design of next-generation antimalarial drugs against the most virulent Plasmodium species.

  17. Mitochondrial metabolic suppression in fasting and daily torpor: consequences for reactive oxygen species production.

    PubMed

    Brown, Jason C L; Staples, James F

    2011-01-01

    Abstract Daily torpor results in an ∼70% decrease in metabolic rate (MR) and a 20%-70% decrease in state 3 (phosphorylating) respiration rate of isolated liver mitochondria in both dwarf Siberian hamsters and mice even when measured at 37°C. This study investigated whether mitochondrial metabolic suppression also occurs in these species during euthermic fasting, when MR decreases significantly but torpor is not observed. State 3 respiration rate measured at 37°C was 20%-30% lower in euthermic fasted animals when glutamate but not succinate was used as a substrate. This suggests that electron transport chain complex I is inhibited during fasting. We also investigated whether mitochondrial metabolic suppression alters mitochondrial reactive oxygen species (ROS) production. In both torpor and euthermic fasting, ROS production (measured as H(2)O(2) release rate) was lower with glutamate in the presence (but not absence) of rotenone when measured at 37°C, likely reflecting inhibition at or upstream of the complex I ROS-producing site. ROS production with succinate (with rotenone) increased in torpor but not euthermic fasting, reflecting complex II inhibition during torpor only. Finally, mitochondrial ROS production was twofold more temperature sensitive than mitochondrial respiration (as reflected by Q(10) values). These data suggest that electron leak from the mitochondrial electron transport chain, which leads to ROS production, is avoided more efficiently at the lower body temperatures experienced during torpor.

  18. The potential of extracts of Caryocar villosum pulp to scavenge reactive oxygen and nitrogen species.

    PubMed

    Chisté, Renan Campos; Freitas, Marisa; Mercadante, Adriana Zerlotti; Fernandes, Eduarda

    2012-12-01

    Caryocar villosum (piquiá) is a native fruit from the Amazonian region, considered to be an interesting source of bioactive compounds. In this paper, five extracts of C. villosum pulp were obtained, using solvents with different polarities and their in vitro scavenging capacity against reactive oxygen species (ROS) and reactive nitrogen species (RNS) was determined. Additionally, the phenolic compounds and carotenoids in each extract were identified and quantified by a high performance liquid chromatography coupled to diode array and mass spectrometer detectors (HPLC-DAD-MS/MS). The ethanol/water and water extracts, which presented the highest phenolic contents (5163 and 1745μg/g extract, respectively), with ellagic acid as the major phenolic compound, proved to have the highest ROS and RNS scavenging potential. Nevertheless, in general, ellagic acid was less effective in scavenging ROS (IC(50) from 1.7 to 108μg/ml) and RNS (IC(50) from 0.05 to 0.59μg/ml), when compared to gallic acid (IC(50) from 0.4 to 226μg/ml for ROS and IC(50) from 0.04 to 0.12μg/ml for RNS). The results obtained in the present study clearly demonstrated that the in vitro antioxidant efficiency of C. villosum extracts was closely related to their contents of phenolic compounds.

  19. Modulation of reactive oxygen species by salicylic acid in Arabidopsis seed germination under high salinity.

    PubMed

    Lee, Sangmin; Park, Chung-Mo

    2010-12-01

    Potential roles of salicylic acid (SA) on seed germination have been explored in many plant species. However, it is still controversial how SA regulates seed germination, mainly because the results have been somewhat variable, depending on plant genotypes used and experimental conditions employed. We found that SA promotes seed germination under high salinity in Arabidopsis. Seed germination of the sid2 mutant, which has a defect in SA biosynthesis, is hypersensitive to high salinity, but the inhibitory effects are reduced in the presence of physiological concentrations of SA. Abiotic stresses, including high salinity, impose oxidative stress on plants. Endogenous contents of H(2)O(2) are higher in the sid2 mutant seeds. However, exogenous application of SA reduces endogenous level of reactive oxygen species (ROS), indicating that SA is involved in plant responses to ROS-mediated damage under abiotic stress conditions. Gibberellic acid (GA), a plant hormone closely associated with seed germination, also reverses the inhibitory effects of high salinity on seed germination and seedling establishment. Under high salinity, GA stimulates SA biosynthesis by inducing the SID2 gene. Notably, SA also induces genes encoding GA biosynthetic enzymes. These observations indicate that SA promotes seed germination under high salinity by modulating antioxidant activity through signaling crosstalks with GA.

  20. Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets.

    PubMed

    Graciano, Maria Fernanda Rodrigues; Valle, Maíra M R; Kowluru, Anjan; Curi, Rui; Carpinelli, Angelo R

    2011-01-01

    Free fatty acids regulate insulin secretion through metabolic and intracellular signaling mechanisms such as induction of malonyl-CoA/long-chain CoA pathway, production of lipids, GPRs (G protein-coupled receptors) activation and the modulation of calcium currents. Fatty acids (FA) are also important inducers of ROS (reactive oxygen species) production in β-cells. Production of ROS for short periods is associated with an increase in GSIS (glucose-stimulated insulin secretion), but excessive or sustained production of ROS is negatively correlated with the insulin secretory process. Several mechanisms for FA modulation of ROS production by pancreatic β-cells have been proposed, such as the control of mitochondrial complexes and electron transport, induction of uncoupling proteins, NADPH oxidase activation, interaction with the renin-angiotensin system, and modulation of the antioxidant defense system. The major sites of superoxide production within mitochondria derive from complexes I and III. The amphiphilic nature of FA favors their incorporation into mitochondrial membranes, altering the membrane fluidity and facilitating the electron leak. The extra-mitochondrial ROS production induced by FA through the NADPH oxidase complex is also an important source of these species in β-cells.

  1. The role of reactive oxygen and nitrogen species in airway epithelial gene expression.

    PubMed Central

    Martin, L D; Krunkosky, T M; Voynow, J A; Adler, K B

    1998-01-01

    The body first encounters deleterious inhaled substances, such as allergens, industrial particles, pollutants, and infectious agents, at the airway epithelium. When this occurs, the epithelium and its resident inflammatory cells respond defensively by increasing production of cytokines, mucus, and reactive oxygen and nitrogen species (ROS/RNS). As inflammation in the airway increases, additional infiltrating cells increase the level of these products. Recent interest has focused on ROS/RNS as potential modulators of the expression of inflammation-associated genes important to the pathogenesis of various respiratory diseases. ROS/RNS appear to play a variety of roles that lead to changes in expression of genes such as interleukin-6 and intercellular adhesion molecule 1. By controlling this regulation, the reactive species can serve as exogenous stimuli, as intercellular signaling molecules, and as modulators of the redox state in epithelial cells. Unraveling the molecular mechanisms affected by ROS/RNS acting in these capacities should aid in the understanding of how stimulated defense mechanisms within the airway can lead to disease. Images Figure 1 PMID:9788898

  2. Titan's photochemical model: Further update, oxygen species, and comparison with Triton and Pluto

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.

    2012-12-01

    The photochemical model for Titan's atmosphere and ionosphere is improved using the Troe approximation for termolecular reactions and inclusion of four radiative association reactions from those calculated by Vuitton et al. (2012). Proper fitting of eddy diffusion results in a reduction of the mean difference between 63 observed mixing ratios and their calculated values from a factor of 5 in our previous Titan's models to a factor of 3 in the current model. Oxygen chemistry on Titan is initiated by influxes of H2O from meteorites and O+ from magnetospheric interactions with the Saturn rings and Enceladus. Two versions of the model were calculated, with and without the O+ flux. Balances of CO, CO2, H2O, and H2CO are discussed in detail for both versions. The calculated model with the O+ flux agrees with the observations of CO, CO2, and H2O, including recent H2O CIRS limb observations and measurements by the Herschel Space Observatory. Major observational data and photochemical models for Triton and Pluto are briefly discussed. While the basic atmospheric species N2, CH4, and CO are similar on Triton and Pluto, properties of their atmospheres are very different with dominating atomic species and ions in Triton's upper atmosphere and ionosphere opposed to the molecular composition on Pluto. Calculations favor a transition between two types of photochemistry at the CH4 mixing ratio of ~5×10-4. Therefore the current Triton's photochemistry is still similar to that at the Voyager flyby despite the observed increase in N2 and CH4. The meteorite H2O results in precipitation of CO on Triton and CO2 on Pluto near perihelion. Main oxygen species on Titan: observations and the model. Solid lines show the model with both meteorite influx of H2O and magnetospheric flux of O+. Thin lines show the model without flux of O+. Observations: (1) CIRS (de Kok et al. 2007), (2) CIRS at 5°N (Vinatier et al. 2010), (3) ISO (Coustenis et al. 1998), (4) INMS (Cui et al., 2009), (5) CIRS

  3. Mechanism of citrinin-induced dysfunction of mitochondria. V. Effect on the homeostasis of the reactive oxygen species.

    PubMed

    Ribeiro, S M; Chagas, G M; Campello, A P; Klüppel, M L

    1997-09-01

    The effects of citrinin in the maintenance of the homeostasis of the reactive oxygen species in rat liver cells were evaluated. Citrinin (CTN) modifies the antioxidant enzymatic defences of cells through the inhibition of GSSG-reductase and transhydrogenase. No effect was observed on GSH-peroxidase, catalase, glucose 6-phosphate and 6 phosphogluconate dehydrogenases, and superoxide dismutase. The mycotoxin increased the generation of reactive oxygen species, stimulating the production of the superoxide anion in the respiratory chain. The results suggest that oxidative stress is an important mechanism, side by side with other effects previously shown, in the establishment of the cytotoxicity and cellular death provoked by CTN in several tissues.

  4. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    SciTech Connect

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin; Yin, Jun-Jie; Zheng, Zhi

    2014-05-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors.

  5. Pyrite-driven reactive oxygen species formation in simulated lung fluid: implications for coal workers' pneumoconiosis.

    PubMed

    Harrington, Andrea D; Hylton, Shavonne; Schoonen, Martin A A

    2012-08-01

    The origin of coal worker's pneumoconiosis (CWP) has been long debated. A recent epidemiological study shows a correlation between what is essentially the concentration of pyrite within coal and the prevalence of CWP in miners. Hydrogen peroxide and hydroxyl radical, both reactive oxygen species (ROS), form as byproducts of pyrite oxidative dissolution in air-saturated water. Motivated by the possible importance of ROS in the pathogenesis of CWP, we conducted an experimental study to evaluate if ROS form as byproducts in the oxidative dissolution of pyrite in simulated lung fluid (SLF) under biologically applicable conditions and to determine the persistence of pyrite in SLF. While the rate of pyrite oxidative dissolution in SLF is suppressed by 51% when compared to that in air-saturated water, the initial amount of hydrogen peroxide formed as a byproduct in SLF is nearly doubled. Hydroxyl radical is also formed in the experiments with SLF, but at lower concentrations than in the experiments with water. The formation of these ROS indicates that the reaction mechanism for pyrite oxidative dissolution in SLF is no different from that in water. The elevated hydrogen peroxide concentration in SLF suggests that the decomposition, via the Fenton mechanism to hydroxyl radical or with Fe(III) to form water and molecular oxygen, is initially inhibited by the presence of SLF components. On the basis of the oxidative dissolution rate of pyrite measured in this paper, it is calculated that a respirable two micron pyrite particle will take over 3 years to dissolve completely.

  6. Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: reactive oxygen species production in water.

    PubMed

    Chen, Chia-Ying; Jafvert, Chad T

    2010-09-01

    Very limited information exists on transformation processes of carbon nanotubes in the natural aquatic environment. Because the conjugated pi-bond structure of these materials is efficient in absorbing sunlight, photochemical transformations are a potential fate process with reactivity predicted to vary with their diameter, chirality, number and type of defects, functionalization, residual metal catalyst and amorphous carbon content, and with the composition of the water, including the type and composition of materials that act to disperse them into the aqueous environment. In this study, the photochemical reactions involving colloidal dispersions of carboxylated single-walled carbon nanotubes (SWNT-COOH) in sunlight were examined. Production of reactive oxygen species (ROS) during irradiation occurs and is evidence for potential further phototransformation and may be significant in assessing their overall environmental impacts. In aerated samples exposed to sunlight or to lamps that emit light only within the solar spectrum, the probe compounds, furfuryl alcohol (FFA), tetrazolium salts (NBT2+ and XTT), and p-chlorobenzoic acid (pCBA), were used to indicate production of 1O2, O2.-, and .OH, respectively. All three ROS were produced in the presence of SWNT-COOH and molecular oxygen (3O2). 1O2 production was confirmed by observing enhanced FFA decay in deuterium oxide, attenuated decay of FFA in the presence of azide ion, and the lack of decay of FFA in deoxygenated solutions. Photogeneration of O2.- and .OH was confirmed by applying superoxide dismutase (SOD) and tert-butanol assays, respectively. In air-equilibrated suspensions, the loss of 0.2 mM FFA in 10 mg/L SWNT-COOH was approximately 85% after 74 h. Production of 1O2 was not dependent on pH from 7 to 11; however photoinduced aggregation was observed at pH 3.

  7. Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity.

    PubMed

    Raghunathan, Vijay Krishna; Devey, Michael; Hawkins, Sue; Hails, Lauren; Davis, Sean A; Mann, Stephen; Chang, Isaac T; Ingham, Eileen; Malhas, Ashraf; Vaux, David J; Lane, Jon D; Case, Charles P

    2013-05-01

    Patients with cobalt chrome (CoCr) metal-on-metal (MOM) implants may be exposed to a wide size range of metallic nanoparticles as a result of wear. In this study we have characterised the biological responses of human fibroblasts to two types of synthetically derived CoCr particles [(a) from a tribometer (30 nm) and (b) thermal plasma technology (20, 35, and 80 nm)] in vitro, testing their dependence on nanoparticle size or the generation of oxygen free radicals, or both. Metal ions were released from the surface of nanoparticles, particularly from larger (80 nm) particles generated by thermal plasma technology. Exposure of fibroblasts to these nanoparticles triggered rapid (2 h) generation of reactive oxygen species (ROS) that could be eliminated by inhibition of NADPH oxidase, suggesting that it was mediated by phagocytosis of the particles. The exposure also caused a more prolonged, MitoQ sensitive production of ROS (24 h), suggesting involvement of mitochondria. Consequently, we recorded elevated levels of aneuploidy, chromosome clumping, fragmentation of mitochondria and damage to the cytoskeleton particularly to the microtubule network. Exposure to the nanoparticles resulted in misshapen nuclei, disruption of mature lamin B1 and increased nucleoplasmic bridges, which could be prevented by MitoQ. In addition, increased numbers of micronuclei were observed and these were only partly prevented by MitoQ, and the incidence of micronuclei and ion release from the nanoparticles were positively correlated with nanoparticle size, although the cytogenetic changes, modifications in nuclear shape and the amount of ROS were not. These results suggest that cells exhibit diverse mitochondrial ROS-dependent and independent responses to CoCr particles, and that nanoparticle size and the amount of metal ion released are influential.

  8. Phototoxicity Evaluation of Pharmaceutical Substances with a Reactive Oxygen Species Assay Using Ultraviolet A

    PubMed Central

    Lee, Yong Sun; Yi, Jung-Sun; Lim, Hye Rim; Kim, Tae Sung; Ahn, Il Young; Ko, Kyungyuk; Kim, JooHwan; Park, Hye-Kyung; Sohn, Soo Jung; Lee, Jong Kwon

    2017-01-01

    With ultraviolet and visible light exposure, some pharmaceutical substances applied systemically or topically may cause phototoxic skin irritation. The major factor in phototoxicity is the generation of reactive oxygen species (ROS) such as singlet oxygen and superoxide anion that cause oxidative damage to DNA, lipids and proteins. Thus, measuring the generation of ROS can predict the phototoxic potential of a given substance indirectly. For this reason, a standard ROS assay (ROS assay) was developed and validated and provides an alternative method for phototoxicity evaluation. However, negative substances are over-predicted by the assay. Except for ultraviolet A (UVA), other UV ranges are not a major factor in causing phototoxicity and may lead to incorrect labeling of some non-phototoxic substances as being phototoxic in the ROS assay when using a solar simulator. A UVA stimulator is also widely used to evaluate phototoxicity in various test substances. Consequently, we identified the applicability of a UVA simulator to the ROS assay for photoreactivity. In this study, we tested 60 pharmaceutical substances including 50 phototoxins and 10 non-phototoxins to predict their phototoxic potential via the ROS assay with a UVA simulator. Following the ROS protocol, all test substances were dissolved in dimethyl sulfoxide or sodium phosphate buffer. The final concentration of the test solutions in the reaction mixture was 20 to 200 μM. The exposure was with 2.0~2.2 mW/cm2 irradiance and optimization for a relevant dose of UVA was performed. The generation of ROS was compared before and after UVA exposure and was measured by a microplate spectrophotometer. Sensitivity and specificity values were 85.7% and 100.0% respectively, and the accuracy was 88.1%. From this analysis, the ROS assay with a UVA simulator is suitable for testing the photoreactivity and estimating the phototoxic potential of various test pharmaceutical substances. PMID:28133512

  9. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    PubMed

    Kwon, Kwang-Chul; Verma, Dheeraj; Jin, Shuangxia; Singh, Nameirakpam D; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a

  10. Oxygen Metabolic Responses of Three Species of Large Benthic Foraminifers with Algal Symbionts to Temperature Stress

    PubMed Central

    Fujita, Kazuhiko; Okai, Takaaki; Hosono, Takashi

    2014-01-01

    Water temperature affects the physiology of large benthic foraminifers (LBFs) with algal symbionts dwelling in coral reef environments. However, the detailed physiological responses of LBF holobionts to temperature ranges occurring in their habitats are not known. We report net oxygen (O2) production and respiration rates of three LBF holobionts (Baculogypsina sphaerulata and Calcarina gaudichaudii hosting diatom symbionts, and Amphisorus kudakajimensis hosting dinoflagellate symbionts) measured in the laboratory at water temperatures ranging from 5°C to 45°C in 2.5°C or 5°C intervals and with light saturation levels of ∼500 µmol m−2 s−1. In addition, the recovery of net O2 production and respiration rates after exposure to temperature stress was assessed. The net O2 production and respiration rates of the three LBF holobionts peaked at ∼30°C, indicating their optimal temperature for a short exposure period. At extreme high temperatures (≥40°C), the net O2 production rates of all three LBF holobionts declined to less than zero and the respiration rates slightly decreased, indicating that photosynthesis of algal symbionts was inactivated. At extreme low temperatures (≤10°C for two calcarinid species and ≤5°C for A. kudakajimensis), the net O2 production and respiration rates were near zero, indicating a weakening of holobiont activity. After exposure to extreme high or low temperature, the net O2 production rates did not recover until the following day, whereas the respiration rates recovered rapidly, suggesting that a longer time (days) is required for recovery from damage to the photosystem by temperature stress compared to the respiration system. These results indicate that the oxygen metabolism of LBF holobionts can generally cope well with conditions that fluctuate diurnally and seasonally in their habitats. However, temporal heat and cold stresses with high light levels may induce severe damage to algal symbionts and also damage to host

  11. Reactive oxygen species are involved in nickel inhibition of dna repair

    SciTech Connect

    Lynn, S.; Yew, F.H.; Chen, K.S.; Jan, K.Y.

    1997-06-01

    Nickel has been shown to inhibit DNA repair in a way that may play a role in its toxicity. Since nickel treatment increases cellular reactive oxygen species (ROS), we have investigated the involvement of ROS in nickel inhibition of DNA repair. Inhibition of glutathione synthesis or catalase activity increased the enhancing effect of nickel on the cytotoxicity of ultraviolet (UV) light. Inhibition of catalase and glutathione peroxidase activities also enhanced the retardation effect of nickel on the rejoining of DNA strand breaks accumulated by hydroxyurea plus cytosine-{beta}-D-arabinofuranoside in UV-irradiated cells. Since DNA polymerization and ligation are involved in the DNA-break rejoining, we have investigated the effect of ROS on these two steps in an extract of Chinese hamster ovary cells. Nickel inhibition of the incorporation of ({sup 3}H)dTTP into the DNase l-activated calf thymus DNA was stronger than the ligation of poly(dA){center_dot}oligo(dT), whereas H{sub 2}O{sub 2} was more potent in inhibiting DNA ligation than DNA polymerization. Nickel, in the presence of H{sub 2}O{sub 2}, exhibited a synergistic inhibition on both DNA polymerization and ligation and caused protein fragmentation. In addition, glutathione could completely recover the inhibition by nickel or H{sub 2}O{sub 2} alone but only partially recover the inhibition by nickel plus H{sub 2}O{sub 2}. Therefore, nickel may bind to DNA-repair enzymes and generate oxygen-free radicals to cause protein degradation in situ. This irreversible damage to the proteins involved in DNA repair, replication, recombination, and transcription could be important for the toxic effects of nickel. 60 refs., 6 figs., 4 tabs.

  12. Reactive Oxygen Species Prevent Imiquimod-Induced Psoriatic Dermatitis through Enhancing Regulatory T Cell Function

    PubMed Central

    Choi, Eun-Jeong; Hong, Min-Pyo; Kie, Jeong-Hae; Lim, Woosung; Lee, Hyeon Kook; Moon, Byung-In; Seoh, Ju-Young

    2014-01-01

    Psoriasis is a chronic inflammatory skin disease resulting from immune dysregulation. Regulatory T cells (Tregs) are important in the prevention of psoriasis. Traditionally, reactive oxygen species (ROS) are known to be implicated in the progression of inflammatory diseases, including psoriasis, but many recent studies suggested the protective role of ROS in immune-mediated diseases. In particular, severe cases of psoriasis vulgaris have been reported to be successfully treated by hyperbaric oxygen therapy (HBOT), which raises tissue level of ROS. Also it was reported that Treg function was closely associated with ROS level. However, it has been only investigated in lowered levels of ROS so far. Thus, in this study, to clarify the relationship between ROS level and Treg function, as well as their role in the pathogenesis of psoriasis, we investigated imiquimod-induced psoriatic dermatitis (PD) in association with Treg function both in elevated and lowered levels of ROS by using knockout mice, such as glutathione peroxidase-1−/− and neutrophil cytosolic factor-1−/− mice, as well as by using HBOT or chemicals, such as 2,3-dimethoxy-1,4-naphthoquinone and N-acetylcysteine. The results consistently showed Tregs were hyperfunctional in elevated levels of ROS, whereas hypofunctional in lowered levels of ROS. In addition, imiquimod-induced PD was attenuated in elevated levels of ROS, whereas aggravated in lowered levels of ROS. For the molecular mechanism that may link ROS level and Treg function, we investigated the expression of an immunoregulatory enzyme, indoleamine 2,3-dioxygenase (IDO) which is induced by ROS, in PD lesions. Taken together, it was implied that appropriately elevated levels of ROS might prevent psoriasis through enhancing IDO expression and Treg function. PMID:24608112

  13. Generation of Reactive Oxygen Species Contributes to the Development of Carbon Black Cytotoxicity to Vascular Cells

    PubMed Central

    Lee, Jong Gwan; Noh, Won Jun; Kim, Hwa

    2011-01-01

    Carbon black, a particulate form of pure elemental carbon, is an industrial chemical with the high potential of occupational exposure. Although the relationship between exposure to particulate matters (PM) and cardiovascular diseases is well established, the cardiovascular risk of carbon black has not been characterized clearly. In this study, the cytotoxicity of carbon black to vascular smooth muscle and endothelial cells were examined to investigate the potential vascular toxicity of carbon black. Carbon black with distinct particle size, N330 (primary size, 28~36 nm) and N990 (250~350 nm) were treated to A-10, rat aortic smooth muscle cells and human umbilical vein endothelial cell line, ECV304, and cell viability was assessed by lactate dehydrogenase (LDH) leakage assay. Treatment of carbon black N990 resulted in the significant reduction of viability in A-10 cells at 100 μg/ml, the highest concentration tested, while N330 failed to cause cell death. Cytotoxicity to ECV304 cells was induced only by N330 at higher concentration, 200 μg/ml, suggesting that ECV304 cells were relatively resistant to carbon black. Treatment of 100 μg/ml N990 led to the elevation of reactive oxygen species (ROS) detected by dichlorodihydrofluorescein (DCF) in A-10 cells. Pretreatment of antioxidants, N-acetylcysteine (NAC) and sulforaphane restored decreased viability of N990-treated A-10 cells, and N-acetylcysteine, but not sulforaphane, attenuated N990-induced ROS generation in A-10 cells. Taken together, present study shows that carbon black is cytotoxic to vascular cells, and the generation of reactive oxygen contributes to the development of cytotoxicity. ROS scavenging antioxidant could be a potential strategy to attenuate the toxicity induced by carbon black exposure. PMID:24278567

  14. Reactive oxygen species are involved in BMP-induced dendritic growth in cultured rat sympathetic neurons.

    PubMed

    Chandrasekaran, Vidya; Lea, Charlotte; Sosa, Jose Carlo; Higgins, Dennis; Lein, Pamela J

    2015-07-01

    Previous studies have shown that bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, the downstream signaling molecules that mediate the dendrite promoting activity of BMPs are not well characterized. Here we test the hypothesis that reactive oxygen species (ROS)-mediated signaling links BMP receptor activation to dendritic growth. In cultured rat sympathetic neurons, exposure to any of the three mechanistically distinct antioxidants, diphenylene iodinium (DPI), nordihydroguaiaretic acid (NGA) or desferroxamine (DFO), blocked de novo BMP-induced dendritic growth. Addition of DPI to cultures previously induced with BMP to extend dendrites caused dendritic retraction while DFO and NGA prevented further growth of dendrites. The inhibition of the dendrite promoting activity of BMPs by antioxidants was concentration-dependent and occurred without altering axonal growth or neuronal cell survival. Antioxidant treatment did not block BMP activation of SMAD 1,5 as determined by nuclear localization of these SMADs. While BMP treatment did not cause a detectable increase in intracellular ROS in cultured sympathetic neurons as assessed using fluorescent indicator dyes, BMP treatment increased the oxygen consumption rate in cultured sympathetic neurons as determined using the Seahorse XF24 Analyzer, suggesting increased mitochondrial activity. In addition, BMPs upregulated expression of NADPH oxidase 2 (NOX2) and either pharmacological inhibition or siRNA knockdown of NOX2 significantly decreased BMP-7 induced dendritic growth. Collectively, these data support the hypothesis that ROS are involved in the downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that ROS-mediated signaling positively modulates dendritic complexity in peripheral neurons.

  15. Oxygen metabolic responses of three species of large benthic foraminifers with algal symbionts to temperature stress.

    PubMed

    Fujita, Kazuhiko; Okai, Takaaki; Hosono, Takashi

    2014-01-01

    Water temperature affects the physiology of large benthic foraminifers (LBFs) with algal symbionts dwelling in coral reef environments. However, the detailed physiological responses of LBF holobionts to temperature ranges occurring in their habitats are not known. We report net oxygen (O2) production and respiration rates of three LBF holobionts (Baculogypsina sphaerulata and Calcarina gaudichaudii hosting diatom symbionts, and Amphisorus kudakajimensis hosting dinoflagellate symbionts) measured in the laboratory at water temperatures ranging from 5°C to 45°C in 2.5°C or 5°C intervals and with light saturation levels of ∼500 µmol m(-2) s(-1). In addition, the recovery of net O2 production and respiration rates after exposure to temperature stress was assessed. The net O2 production and respiration rates of the three LBF holobionts peaked at ∼30°C, indicating their optimal temperature for a short exposure period. At extreme high temperatures (≥40°C), the net O2 production rates of all three LBF holobionts declined to less than zero and the respiration rates slightly decreased, indicating that photosynthesis of algal symbionts was inactivated. At extreme low temperatures (≤10°C for two calcarinid species and ≤5°C for A. kudakajimensis), the net O2 production and respiration rates were near zero, indicating a weakening of holobiont activity. After exposure to extreme high or low temperature, the net O2 production rates did not recover until the following day, whereas the respiration rates recovered rapidly, suggesting that a longer time (days) is required for recovery from damage to the photosystem by temperature stress compared to the respiration system. These results indicate that the oxygen metabolism of LBF holobionts can generally cope well with conditions that fluctuate diurnally and seasonally in their habitats. However, temporal heat and cold stresses with high light levels may induce severe damage to algal symbionts and also damage to host

  16. Mobile Phone Radiation Induces Reactive Oxygen Species Production and DNA Damage in Human Spermatozoa In Vitro

    PubMed Central

    De Iuliis, Geoffry N.; Newey, Rhiannon J.; King, Bruce V.; Aitken, R. John

    2009-01-01

    Background In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved have not been established, however, human spermatozoa are known to be particularly vulnerable to oxidative stress by virtue of the abundant availability of substrates for free radical attack and the lack of cytoplasmic space to accommodate antioxidant enzymes. Moreover, the induction of oxidative stress in these cells not only perturbs their capacity for fertilization but also contributes to sperm DNA damage. The latter has, in turn, been linked with poor fertility, an increased incidence of miscarriage and morbidity in the offspring, including childhood cancer. In light of these associations, we have analyzed the influence of RF-EMR on the cell biology of human spermatozoa in vitro. Principal Findings Purified human spermatozoa were exposed to radio-frequency electromagnetic radiation (RF-EMR) tuned to 1.8 GHz and covering a range of specific absorption rates (SAR) from 0.4 W/kg to 27.5 W/kg. In step with increasing SAR, motility and vitality were significantly reduced after RF-EMR exposure, while the mitochondrial generation of reactive oxygen species and DNA fragmentation were significantly elevated (P<0.001). Furthermore, we also observed highly significant relationships between SAR, the oxidative DNA damage bio-marker, 8-OH-dG, and DNA fragmentation after RF-EMR exposure. Conclusions RF-EMR in both the power density and frequency range of mobile phones enhances mitochondrial reactive oxygen species generation by human spermatozoa, decreasing the motility and vitality of these cells while stimulating DNA base adduct formation and, ultimately DNA fragmentation. These findings have clear implications for the safety of

  17. Photoactivation of the nematicidal compound alpha-terthienyl from roots of marigolds (Tagetes species). A possible singlet oxygen role.

    PubMed

    Bakker, J; Gommers, F J; Nieuwenhuis, I; Wynberg, H

    1979-03-25

    The nematicidal compound alpha-terthienyl from roots of Tagetes species generates upon irradiation with near ultraviolet light reactive oxygen species on which the in vitro nematicidal activity depends. This system was studied by following the inhibition of glucose-6-phosphate dehydrogenase by photoactivated alpha-terthienyl and protection of the enzyme activity in the absence of oxygen and by various additions. Addition of mannitol, benzoate, superoxide dismutase or catalase did not have any effect nor did H2O2. This suggests that OH., O-.2, and H2O2 are not the reactive oxygen species involved. The enzyme was protected against photoactivated alpha-terthienyl in air-saturated solutions by singlet oxygen quenchers such as histidine, methionine, tryptophan, bovine serum albumin, and NaN3. Furthermore, inactivation of the enzyme was about 3.5 times faster in D2O than in H2O. When alpha-terthienyl in CH2Cl2 was irradiated in the presence of the olefin adamantylideneadamantane, a stable dioxetane was formed which decomposed to adamantanone when heated above its melting point. These results indicate a singlet oxygen-mediated process.

  18. Surface functionalization of titanium dioxide nanoparticles: Photo-stability and reactive oxygen species (ROS) generation

    NASA Astrophysics Data System (ADS)

    Louis, Kacie M.

    Metal oxide nanoparticles are becoming increasingly prevalent in society for applications of sunscreens, cosmetics, paints, biomedical imaging, and photovoltaics. Due to the increased surface area to volume ratio of nanoparticles compared to bulk materials, it is important to know the health and safety impacts of these materials. One mechanism of toxicity of nominally "safe" materials such as TiO 2 is through the photocatalytic generation of reactive oxygen species (ROS). ROS production and ligand degradation can affect the bioavailability of these particles in aqueous organisms. We have investigated ROS generation by functionalized TiO2 nanoparticles and its influence on aggregation and bioavailability and toxicity to zebrafish embryos/larvae. For these studies we investigated anatase TiO2 nanoparticles. For application purposes and solution stability, the TiO2 nanoparticles were functionalized with a variety of ligands such as citrate, 3,4-dihydroxybenzaldehyde, and ascorbate. We quantitatively examined the amount of ROS produced in aqueous solution using fluorescent probes and see that more ROS is produced under UV light than in the dark control. Our measurements show that TiO2 toxicity reaches a maximum for nanoparticles with smaller diameters, and is correlated with surface area dependent changes in ROS generation. In an effort to reduce toxicity through control of the surface and surface ligands, we synthesized anatase nanoparticles of different sizes, functionalized them with different ligands, and examined the resulting ROS generation and ligand stability. Using a modular ligand containing a hydrophobic inner region and a hydrophilic outer region, we synthesized water-stable nanoparticles, via two different chemical reactions, having much-reduced ROS generation and thus reduced toxicity. These results suggest new strategies for making safer nanoparticles while still retaining their desired properties. We also examine the degradation of the different ligands

  19. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species

    PubMed Central

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-01

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm–2 had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm–2 plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization. PMID:21653568

  20. Identifying the role of reactive oxygen species (ROSs) in Fusarium solani spores inactivation.

    PubMed

    Du, Yilin; Xiong, Houfeng; Dong, Shuangshi; Zhang, Jun; Ma, Dongmei; Zhou, Dandan

    2016-12-01

    The inactivation mechanism of photocatalytic disinfectants on bacteria is well known. In contrast, the potential inactivation of fungal spores by visible-light induced photocatalysis has been recognized, but the inactivation mechanism is poorly understood. We hypothesize that photocatalytically generated reactive oxygen species (ROSs) are directly involved in this mechanism. To test this hypothesis, we identified the roles of ROSs in the inactivation of Fusarium solani spores. As the photocatalysts, we doped TiO2 with 3 typical dopants, forming Ag/TiO2, N/TiO2 and Er(3+):YAlO3/TiO2. The Ag/TiO2 photocatalysis was dominated by H2O2, with the longest lifetime among the investigated ROSs. Ag/TiO2 photocatalysis yielded almost 100 % inactivation efficiency and preserved the cell-wall shape of the spores, thus minimizing the biomolecule leakage. Er(3+):YAlO3/TiO2 was dominated by h(+) ROSs, yielding an inactivation efficiency of 91 %; however, the severe leakage released large numbers of molecular bio-products. Severe damage to the cell walls by the h(+) species was confirmed in micrograph observations. Subsequent to cell wall breakage, the Er(3+):YAlO3/TiO2 nanoparticles entered the spore cells and directly oxidized the intracellular material. The N/TiO2 photocatalysis, with •O2(-) dominated ROSs, delivered intermediate performance. In conclusion, photocatalysts that generate H2O2-dominated ROSs are most preferred for spore inactivation.

  1. The allelochemical L-DOPA increases melanin production and reduces reactive oxygen species in soybean roots.

    PubMed

    Soares, Anderson Ricardo; de Lourdes Lucio Ferrarese, Maria; de Cássia Siqueira-Soares, Rita; Marchiosi, Rogério; Finger-Teixeira, Aline; Ferrarese-Filho, Osvaldo

    2011-08-01

    The non-protein amino acid, L-3,4-dihydroxyphenylalanine (L-DOPA), is the main allelochemical released from the roots of velvetbean and affects seed germination and root growth of several plant species. In the work presented here, we evaluated, in soybean roots, the effects of L-DOPA on the following: polyphenol oxidase (PPO), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities; superoxide anion (O·-2), hydrogen peroxide (H(2)O(2)), and melanin contents; and lipid peroxidation. To this end, 3-day-old seedlings were cultivated in half-strength Hoagland's solution (pH 6.0), with or without 0.1 to 1.0 mM L-DOPA in a growth chamber (at 25°C, with a light/dark photoperiod of 12/12 hr and a photon flux density of 280 μmol m(-2) s(-1)) for 24 hr. The results showed that L-DOPA increased the PPO activity and, further, the melanin content. The activities of SOD and POD increased, but CAT activity decreased after the chemical exposure. The contents of reactive oxygen species (ROS), such as O·-2 and H(2)O(2), and the levels of lipid peroxidation significantly decreased under all concentrations of L-DOPA tested. These results suggest that L-DOPA was absorbed by the soybean roots and metabolized to melanin. It was concluded that the reduction in the O·-2 and H(2)O(2) contents and lipid peroxidation in soybean roots was due to the enhanced SOD and POD activities and thus a possible antioxidant role of L-DOPA.

  2. Studies of Hematopoietic Cell Differentiation with a Ratiometric and Reversible Sensor of Mitochondrial Reactive Oxygen Species

    PubMed Central

    Kaur, Amandeep; Jankowska, Karolina; Pilgrim, Chelsea; Fraser, Stuart T.

    2016-01-01

    Abstract Aims: Chronic elevations in cellular redox state are known to result in the onset of various pathological conditions, but transient increases in reactive oxygen species (ROS)/reactive nitrogen species (RNS) are necessary for signal transduction and various physiological functions. There is a distinct lack of reversible fluorescent tools that can aid in studying and unraveling the roles of ROS/RNS in physiology and pathology by monitoring the variations in cellular ROS levels over time. In this work, we report the development of ratiometric fluorescent sensors that reversibly respond to changes in mitochondrial redox state. Results: Photophysical studies of the developed flavin–rhodamine redox sensors, flavin–rhodamine redox sensor 1 (FRR1) and flavin–rhodamine redox sensor 2 (FRR2), confirmed the reversible response of the probes upon reduction and re-oxidation over more than five cycles. The ratiometric output of FRR1 and FRR2 remained unaltered in the presence of other possible cellular interferants (metals and pH). Microscopy studies indicated clear mitochondrial localization of both probes, and FRR2 was shown to report the time-dependent increase of mitochondrial ROS levels after lipopolysaccharide stimulation in macrophages. Moreover, it was used to study the variations in mitochondrial redox state in mouse hematopoietic cells at different stages of embryonic development and maturation. Innovation: This study provides the first ratiometric and reversible probes for ROS, targeted to the mitochondria, which reveal variations in mitochondrial ROS levels at different stages of embryonic and adult blood cell production. Conclusions: Our results suggest that with their ratiometric and reversible outputs, FRR1 and FRR2 are valuable tools for the future study of oxidative stress and its implications in physiology and pathology. Antioxid. Redox Signal. 24, 667–679. PMID:26865422

  3. Arginine Decarboxylase expression, polyamines biosynthesis and reactive oxygen species during organogenic nodule formation in hop.

    PubMed

    Fortes, Ana M; Costa, Joana; Santos, Filipa; Seguí-Simarro, José M; Palme, Klaus; Altabella, Teresa; Tiburcio, Antonio F; Pais, Maria S

    2011-02-01

    Hop (Humulus lupulus L.) is an economically important plant species used in beer production and as a health-promoting medicine. Hop internodes develop upon stress treatments organogenic nodules which can be used for genetic transformation and micropropagation. Polyamines are involved in plant development and stress responses. Arginine decarboxylase (ADC; EC 4·1.1·19) is a key enzyme involved in the biosynthesis of putrescine in plants. Here we show that ADC protein was increasingly expressed at early stages of hop internode culture (12h). Protein continued accumulating until organogenic nodule formation after 28 days, decreasing thereafter. The same profile was observed for ADC transcript suggesting transcriptional regulation of ADC gene expression during morphogenesis. The highest transcript and protein levels observed after 28 days of culture were accompanied by a peak in putrescine levels. Reactive oxygen species accumulate in nodular tissues probably due to stress inherent to in vitro conditions and enhanced polyamine catabolism. Conjugated polyamines increased during plantlet regeneration from nodules suggesting their involvement in plantlet formation and/or in the control of free polyamine levels. Immunogold labeling revealed that ADC is located in plastids, nucleus and cytoplasm of nodular cells. In vacuolated cells, ADC immunolabelling in plastids doubled the signal of proplastids in meristematic cells. Location of ADC in different subcellular compartments may indicate its role in metabolic pathways taking place in these compartments. Altogether these data suggest that polyamines play an important role in organogenic nodule formation and represent a progress towards understanding the role played by these growth regulators in plant morphogenesis.

  4. Effect of reactive oxygen species (ROS) generating system for control of airborne microorganisms in meat processing environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of reactive oxygen species (ROS) generating AirOcare equipment on the reduction of airborne bacteria in a meat processing environment was determined. Serratia marcescens and lactic acid bacteria (Lactococcus lactis subsp. lactis and Lactobacillus plantarum) were used to artificiall...

  5. Using fluorescence-activated flow cytometry to determine reactive oxygen species formation and membrane lipid peroxidation in viable boar spermatozoa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluorescence-activated flow cytometry analyses were developed for determination of reactive oxygen species (ROS) formation and membrane lipid peroxidation in live spermatozoa loaded with, respectively, hydroethidine (HE) or the lipophilic probe 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-d...

  6. Study of the photochemically generated of oxygen species by fullerene photosensitized CoS{sub 2} nanocompounds

    SciTech Connect

    Meng, Ze-Da; Zhu, Lei; Ullah, Kefayat; Ye, Shu; Sun, Qian; Jang, Won Kweon; Oh, Won-Chun

    2014-01-01

    Graphical abstract: - Highlights: • Reactive oxygen species was detected through oxidation reaction from DPCI to DPCO. • Generated reactive oxygen species and hydroxyl radicals can be analysis by DPCI degradation. • C{sub 60} has good effect during the photo-degradation processes. • Photocatalytic activity attributed to photo-absorption effect by C{sub 60} and cooperative effect of CoS{sub 2}. - Abstract: Reactive oxygen species (ROS) can be produced by interactions between sunlight and light-absorbing substance in natural water environment and can completely destroy various organic pollutants in wastewaters. In this study, CoS{sub 2} and CoS{sub 2}–fullerene were irradiated by visible light respectively. The generation of reactive oxygen species were detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). In comparison with the separate effects of CoS{sub 2} and fullerene nanoparticles, the photochemically effect of the fullerene photosensitized CoS{sub 2} composites is increased significantly due to the synergetic effect between the fullerene and the CoS{sub 2} nanoparticles.

  7. Eicosanoids up-regulate production of reactive oxygen species by NADPH-dependent oxidase in Spodoptera exigua phagocytic hemocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eicosanoids mediate cellular immune responses in insects, including phagocytosis of invading microbes. Phagocytosis entails two major steps, the internalization of microbes and the subsequent killing of them via formation of reactive oxygen species (ROS). Here, we posed the hypothesis that eicosanoi...

  8. Role of NADPH oxidases and reactive oxygen species in regulation of bone turnover and the skeletal toxicity of alcohol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies with genetically modified mice and dietary antioxidants have suggested an important role for superoxide derived from NADPH oxidase (NOX) enzymes and other reactive oxygen species (ROS) such as hydrogen peroxide in regulation of normal bone turnover during development and also in the r...

  9. REACTIVE OXYGEN SPECIES IN WHOLE BLOOD, BLOOD PLASMA AND BREAST MILK: VALIDATION OF A POTENTIAL MARKER OF EXPOSURE AND EFFECT

    EPA Science Inventory

    Reactive oxygen species (ROS) are recognized to contribute to the pathobiology of many diseases. We have applied a simple chemiluminescent (CL) probe to detect ROS in various biological fluids (plasma, whole blood, urine and breast milk) in an environmental arsenic drinking wate...

  10. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid

    PubMed Central

    Luo, Shun-Tao; Zhang, Dong-Mei; Qin, Qing; Lu, Lian; Luo, Min; Guo, Fu-Chun; Shi, Hua-Shan; Jiang, Li; Shao, Bin; Li, Meng; Yang, Han-Shuo; Wei, Yu-Quan

    2017-01-01

    The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA+ cells. Also, increases in haematocrit and CD71−/Ter119+ erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34+/CD117− cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions. PMID:28165036

  11. Development of nitroxide radicals-containing polymer for scavenging reactive oxygen species from cigarette smoke

    NASA Astrophysics Data System (ADS)

    Yoshitomi, Toru; Kuramochi, Kazuhiro; Binh Vong, Long; Nagasaki, Yukio

    2014-06-01

    We developed a nitroxide radicals-containing polymer (NRP), which is composed of poly(4-methylstyrene) possessing nitroxide radicals as a side chain via amine linkage, to scavenge reactive oxygen species (ROS) from cigarette smoke. In this study, the NRP was coated onto cigarette filters and its ROS-scavenging activity from streaming cigarette smoke was evaluated. The intensity of electron spin resonance signals of the NRP in the filter decreased after exposure to cigarette smoke, indicating consumption of nitroxide radicals. To evaluate the ROS-scavenging activity of the NRP-coated filter, the amount of peroxy radicals in an extract of cigarette smoke was measured using UV-visible spectrophotometry and 1,1-diphenyl-2-picrylhydrazyl (DPPH). The absorbance of DPPH at 517 nm decreased with exposure to cigarette smoke. When NRP-coated filters were used, the decrease in the absorbance of DPPH was prevented. In contrast, both poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters, which have no nitroxide radical, did not show any effect, indicating that the nitroxide radicals in the NRP scavenge the ROS in cigarette smoke. As a result, the extract of cigarette smoke passed through the NRP-coated filter has a lower cellular toxicity than smoke passed through poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters. Accordingly, NRP is a promising material for ROS scavenging from cigarette smoke.

  12. Development of nitroxide radicals-containing polymer for scavenging reactive oxygen species from cigarette smoke.

    PubMed

    Yoshitomi, Toru; Kuramochi, Kazuhiro; Binh Vong, Long; Nagasaki, Yukio

    2014-06-01

    We developed a nitroxide radicals-containing polymer (NRP), which is composed of poly(4-methylstyrene) possessing nitroxide radicals as a side chain via amine linkage, to scavenge reactive oxygen species (ROS) from cigarette smoke. In this study, the NRP was coated onto cigarette filters and its ROS-scavenging activity from streaming cigarette smoke was evaluated. The intensity of electron spin resonance signals of the NRP in the filter decreased after exposure to cigarette smoke, indicating consumption of nitroxide radicals. To evaluate the ROS-scavenging activity of the NRP-coated filter, the amount of peroxy radicals in an extract of cigarette smoke was measured using UV-visible spectrophotometry and 1,1-diphenyl-2-picrylhydrazyl (DPPH). The absorbance of DPPH at 517 nm decreased with exposure to cigarette smoke. When NRP-coated filters were used, the decrease in the absorbance of DPPH was prevented. In contrast, both poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters, which have no nitroxide radical, did not show any effect, indicating that the nitroxide radicals in the NRP scavenge the ROS in cigarette smoke. As a result, the extract of cigarette smoke passed through the NRP-coated filter has a lower cellular toxicity than smoke passed through poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters. Accordingly, NRP is a promising material for ROS scavenging from cigarette smoke.

  13. C-phycocyanin protects against low fertility by inhibiting reactive oxygen species in aging mice.

    PubMed

    Li, Yan-Jiao; Han, Zhe; Ge, Lei; Zhou, Cheng-Jie; Zhao, Yue-Fang; Wang, Dong-Hui; Ren, Jing; Niu, Xin-Xin; Liang, Cheng-Guang

    2016-04-05

    Women over 35 have higher rates of infertility, largely due to deterioration of oocyte quality characterized by fragmentation, abnormal meiotic spindle-chromosome complexes, and oxidative stress. C-phycocyanin (PC) is a biliprotein enriched in Spirulina platensis that is known to possess antioxidant, anti-inflammatory, and radical-scavenging properties. D-galactose-induced aging acceleration in mice has been extensively used to study aging mechanisms and for pharmaceutical screening. In this study, adult female B6D2F/1 mice injected with D-galactose were used as a model to test the age-reversing effects of PC on degenerated reproductive ability. Our results show that PC can prevent oocyte fragmentation and aneuploidy by maintaining cytoskeletal integrity. Moreover, PC can reverse the expression of antioxidant genes, increase superoxide dismutase (SOD) activity and decrease methane dicarboxylic aldehyde (MDA) content, and normalize mitochondria distribution. PC exerts its benefit by inhibiting reactive oxygen species (ROS) production, which decreases apoptosis. Finally, we observe a significant increase in litter size after PC administration to D-galactose-induced aging mice. Our study demonstrates for the first time that D-galactose-induced impaired female reproductive capability can be partially rescued by the antioxidant effects of PC.

  14. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance.

    PubMed

    Xia, Xiao-Jian; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Foyer, Christine H; Yu, Jing-Quan

    2015-05-01

    As a consequence of a sessile lifestyle, plants are continuously exposed to changing environmental conditions and often life-threatening stresses caused by exposure to excessive light, extremes of temperature, limiting nutrient or water availability, and pathogen/insect attack. The flexible coordination of plant growth and development is necessary to optimize vigour and fitness in a changing environment through rapid and appropriate responses to such stresses. The concept that reactive oxygen species (ROS) are versatile signalling molecules in plants that contribute to stress acclimation is well established. This review provides an overview of our current knowledge of how ROS production and signalling are integrated with the action of auxin, brassinosteroids, gibberellins, abscisic acid, ethylene, strigolactones, salicylic acid, and jasmonic acid in the coordinate regulation of plant growth and stress tolerance. We consider the local and systemic crosstalk between ROS and hormonal signalling pathways and identify multiple points of reciprocal control, as well as providing insights into the integration nodes that involve Ca(2+)-dependent processes and mitogen-activated protein kinase phosphorylation cascades.

  15. Reactive oxygen species contribute to lipopolysaccharide-induced teratogenesis in mice.

    PubMed

    Zhao, Lei; Chen, Yuan-Hua; Wang, Hua; Ji, Yan-Li; Ning, Huan; Wang, Su-Fang; Zhang, Cheng; Lu, Jin-Wei; Duan, Zi-Hao; Xu, De-Xiang

    2008-05-01

    Lipopolysaccharide (LPS) has been associated with adverse developmental outcome, including embryonic resorption, fetal death and growth retardation, and preterm delivery. In the present study, we showed that an ip injection with LPS daily from gestational day (gd) 8 to gd 12 resulted in the incidence of external malformations. The highest incidence of malformed fetuses was observed in fetuses from dams exposed to 20 microg/kg LPS, in which 34.9% of fetuses per litter were externally malformed. In addition, 17.4% of fetuses per litter in 30 microg/kg group and 12.5% of fetuses per litter in 10 microg/kg group were externally malformed. Importantly, external malformations were also observed in fetuses from dams exposed to only two doses of LPS (20 microg/kg, ip) on gd 8, in which 76.5% (13/17) of litters and 39.1% of fetuses per litter were affected. LPS-induced teratogenicity seemed to be associated with oxidative stress in fetal environment, measured by lipid peroxidation, nitrotyrosine residues, and glutathione (GSH) depletion in maternal liver, embryo, and placenta. alpha-Phenyl-N-t-butylnitrone (PBN, 100 mg/kg, ip), a free radical spin-trapping agent, abolished LPS-induced lipid peroxidation, nitrotyrosine residues, and GSH depletion. Consistent with its antioxidant effects, PBN decreased the incidence of external malformations. Taken together, these results suggest that reactive oxygen species might be, at least partially, involved in LPS-induced teratogenesis.

  16. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles.

    PubMed

    Abdal Dayem, Ahmed; Hossain, Mohammed Kawser; Lee, Soo Bin; Kim, Kyeongseok; Saha, Subbroto Kumar; Yang, Gwang-Mo; Choi, Hye Yeon; Cho, Ssang-Goo

    2017-01-10

    Nanoparticles (NPs) possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS). The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices.

  17. Aggregatibacter actinomycetemcomitans Invasion Induces Interleukin-1β Production Through Reactive Oxygen Species and Cathepsin B.

    PubMed

    Okinaga, Toshinori; Ariyoshi, Wataru; Nishihara, Tatsuji

    2015-06-01

    Interleukin-1 (IL-1) cytokines, IL-1α, IL-1β, and IL-18 play a crucial role in inflammatory responses in a variety of diseases including periodontitis. In this study, the periodontopathic bacterial pathogen, Aggregatibacter actinomycetemcomitans, induced cell death and cytokine release in macrophages. Cell viability was reduced by A. actinomycetemcomitans invasion using (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assay. The production of IL-1β in A. actinomycetemcomitans-invaded macrophage cells was detected by real-time reverse transcriptase-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. Treatment with a caspase-1 inhibitor and silencing of the caspase-1 gene had no effect on IL-1β secretion induced by A. actinomycetemcomitans invasion. Pattern recognition receptor, NLRP3 was upregulated in A. actinomycetemcomitans-invaded macrophages. However, NLRP3 knockdown had no effect on the secretion of IL-1β in A. actinomycetemcomitans-invaded RAW 264 cells. In addition, A. actinomycetemcomitans invasion induced the generation of reactive oxygen species (ROS) and the release of cathepsin B in RAW 264 cells. Interestingly, CA074-Me, a cathepsin B inhibitor, and N-Acetyl-l-cysteine, a ROS inhibitor, prevented the production of IL-1β induced by A. actinomycetemcomitans. Taken together, these results suggest A. actinomycetemcomitans induce IL-1β production in RAW 264 cells through the production of ROS and cathepsin B, but not through the NLRP3/caspase-1 pathway.

  18. Antioxidant properties of UCP1 are evolutionarily conserved in mammals and buffer mitochondrial reactive oxygen species.

    PubMed

    Oelkrug, Rebecca; Goetze, Nadja; Meyer, Carola W; Jastroch, Martin

    2014-12-01

    Mitochondrial uncoupling reduces reactive oxygen species (ROS) production and appears to be important for cellular signaling/protection, making it a focus for the treatment of metabolic and age-related diseases. Whereas the physiological role of uncoupling protein 1 (UCP1) of brown adipose tissue is established for thermogenesis, the function of UCP1 in the reduction of ROS in cold-exposed animals is currently under debate. Here, we investigated the role of UCP1 in mitochondrial ROS handling in the Lesser hedgehog tenrec (Echinops telfairi), a unique protoendothermic Malagasy mammal with recently identified brown adipose tissue (BAT). We show that the reduction of ROS by UCP1 activity also occurs in BAT mitochondria of the tenrec, suggesting that the antioxidative role of UCP1 is an ancient mammalian trait. Our analysis shows that the quantity of UCP1 displays strong control over mitochondrial hydrogen peroxide release, whereas other factors, such as mild cold, nonshivering thermogenesis, oxidative capacity, and mitochondrial respiration, do not correlate. Furthermore, hydrogen peroxide release from recoupled BAT mitochondria was positively associated with mitochondrial membrane potential. These findings led to a model of UCP1 controlling mitochondrial ROS release and, presumably, being controlled by high membrane potential, as proposed in the canonical model of "mild uncoupling". Our study further promotes a conserved role for UCP1 in the prevention of oxidative stress, which was presumably established during evolution before UCP1 was physiologically integrated into nonshivering thermogenesis.

  19. Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives.

    PubMed

    Singh, Rachana; Parihar, Parul; Singh, Samiksha; Mishra, Rohit Kumar; Singh, Vijay Pratap; Prasad, Sheo Mohan

    2017-04-01

    Reactive oxygen species (ROS), a by-product of aerobic metabolism were initially studied in context to their damaging effect but recent decades witnessed significant advancements in understanding the role of ROS as signaling molecules. Contrary to earlier views, it is becoming evident that ROS production is not necessarily a symptom of cellular dysfunction but it might represent a necessary signal in adjusting the cellular machinery according to the altered conditions. Stomatal movement is controlled by multifaceted signaling network in response to endogenous and environmental signals. Furthermore, the stomatal aperture is regulated by a coordinated action of signaling proteins, ROS-generating enzymes, and downstream executors like transporters, ion pumps, plasma membrane channels, which control the turgor pressure of the guard cell. The earliest hallmarks of stomatal closure are ROS accumulation in the apoplast and chloroplasts and thereafter, there is a successive increase in cytoplasmic Ca(2+) level which rules the multiple kinases activity that in turn regulates the activity of ROS-generating enzymes and various ion channels. In addition, ROS also regulate the action of multiple proteins directly by oxidative post translational modifications to adjust guard cell signaling. Notwithstanding, an active progress has been made with ROS signaling mechanism but the regulatory action for ROS signaling processes in stomatal movement is still fragmentary. Therefore, keeping in view the above facts, in this mini review the basic concepts and role of ROS signaling in the stomatal movement have been presented comprehensively along with recent highlights.

  20. Catalase eliminates reactive oxygen species and influences the intestinal microbiota of shrimp.

    PubMed

    Yang, Hui-Ting; Yang, Ming-Chong; Sun, Jie-Jie; Guo, Fang; Lan, Jiang-Feng; Wang, Xian-Wei; Zhao, Xiao-Fan; Wang, Jin-Xing

    2015-11-01

    Intestinal innate immune response is an important defense mechanism of animals and humans against external pathogens. The mechanism of microbiota homeostasis in host intestines has been well studied in mammals and Drosophila. The reactive oxygen species (ROS) and antimicrobial peptides have been reported to play important roles in homeostasis. However, how to maintain the microbiota homeostasis in crustacean intestine needs to be elucidated. In this study, we identified a novel catalase (MjCAT) involved in ROS elimination in kuruma shrimp, Marsupenaeus japonicus. MjCAT mRNA was widely distributed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine. After the shrimp were challenged with pathogenic bacteria via oral infection, the expression level of MjCAT was upregulated, and the enzyme activity was increased in the intestine. ROS level was also increased in the intestine at early time after oral infection and recovered rapidly. When MjCAT was knocked down by RNA interference (RNAi), high ROS level maintained longer time, and the number of bacteria number was declined in the shrimp intestinal lumen than those in the control group, but the survival rate of the MjCAT-RNAi shrimp was declined. Further study demonstrated that the intestinal villi protruded from epithelial lining of the intestinal wall were damaged by the high ROS level in MjCAT-knockdown shrimp. These results suggested that MjCAT participated in the intestinal host-microbe homeostasis by regulating ROS level.

  1. Removal of reactive oxygen species induced 3’-blocked ends by XPF-ERCC1

    PubMed Central

    Fisher, Laura A.; Samson, Laura; Bessho, Tadayoshi

    2011-01-01

    XPF-ERCC1 is a structure-specific endonuclease that is essential for nucleotide excision repair and DNA interstrand cross-link repair in mammalian cells. The yeast counterpart of XPF-ERCC1, Rad1-Rad10, plays multiple roles in DNA repair. Rad1-Rad10 is implicated to be involved in the repair of oxidative DNA damage. To explore the role(s) of XPF-ERCC1 in the repair of DNA damage induced by reactive oxygen species (ROS), cellular sensitivity of the XPF-deficient Chinese hamster ovary cell-line UV41 to ROS was investigated. The XPF-deficient UV41 showed sensitivity to hydrogen peroxide, bleomycin and paraquat. Furthermore, XPF-ERCC1 showed an ability to remove 3’-blocked ends such as 3’-phosphoglycolate from the 3’-end of DNA in vitro. These data suggest that XPF-ERCC1 plays a role in the repair of ROS-induced DNA damage by trimming 3’-blocked ends. The accumulation of various types of DNA damage, including ROS-induced DNA damage due to defects in multiple XPF-ERCC1-mediated DNA repair pathways, could contribute to the accelerated aging phenotypes observed in an XPF-ERCC1 deficient patient. PMID:22007867

  2. Peroxiredoxin-3 Is Involved in Bactericidal Activity through the Regulation of Mitochondrial Reactive Oxygen Species

    PubMed Central

    Lee, Sena; Wi, Sae Mi; Min, Yoon

    2016-01-01

    Peroxiredoxin-3 (Prdx3) is a mitochondrial protein of the thioredoxin family of antioxidant peroxidases and is the principal peroxidase responsible for metabolizing mitochondrial hydrogen peroxide. Recent reports have shown that mitochondrial reactive oxygen species (mROS) contribute to macrophage-mediated bactericidal activity in response to Toll-like receptors. Herein, we investigated the functional effect of Prdx3 in bactericidal activity. The mitochondrial localization of Prdx3 in HEK293T cells was confirmed by cell fractionation and confocal microscopy analyses. To investigate the functional role of Prdx3 in bactericidal activity, Prdx3-knockdown (Prdx3KD) THP-1 cells were generated. The mROS levels in Prdx3KD THP-1 cells were significantly higher than those in control THP-1 cells. Moreover, the mROS levels were markedly increased in response to lipopolysaccharide. Notably, the Salmonella enterica serovar Typhimurium infection assay revealed that the Prdx3KD THP-1 cells were significantly resistant to S. Typhimurium infection, as compared with control THP-1 cells. Taken together, these results indicate that Prdx3 is functionally important in bactericidal activity through the regulation of mROS. PMID:28035213

  3. Differential production of reactive oxygen species in distinct brain regions of hypoglycemic mice.

    PubMed

    Amador-Alvarado, Leticia; Montiel, Teresa; Massieu, Lourdes

    2014-09-01

    Hypoglycemia is a serious complication of insulin therapy in patients suffering from type 1 Diabetes Mellitus. Severe hypoglycemia leading to coma (isoelectricity) induces massive neuronal death in vulnerable brain regions such as the hippocampus, the striatum and the cerebral cortex. It has been suggested that the production of reactive oxygen species (ROS) and oxidative stress is involved in hypoglycemic brain damage, and that ROS generation is stimulated by glucose reintroduction (GR) after the hypoglycemic coma. However, the distribution of ROS in discrete brain regions has not been studied in detail. Using the oxidation sensitive marker dihydroethidium (DHE) we have investigated the distribution of ROS in different regions of the mouse brain during prolonged severe hypoglycemia without isoelectricity, as well as the effect of GR on ROS levels. Results show that ROS generation increases in the hippocampus, the cerebral cortex and the striatum after prolonged severe hypoglycemia before the coma. The hippocampus showed the largest increases in ROS levels. GR further stimulated ROS production in the hippocampus and the striatum while in the cerebral cortex, only the somatosensory and parietal areas were significantly affected by GR. Results suggest that ROS are differentially produced during the hypoglycemic insult and that a different response to GR is present among distinct brain regions.

  4. Promotion of behavior and neuronal function by reactive oxygen species in C. elegans

    PubMed Central

    Li, Guang; Gong, Jianke; Lei, Haoyun; Liu, Jianfeng; Xu, X. Z. Shawn

    2016-01-01

    Reactive oxygen species (ROS) are well known to elicit a plethora of detrimental effects on cellular functions by causing damages to proteins, lipids and nucleic acids. Neurons are particularly vulnerable to ROS, and nearly all forms of neurodegenerative diseases are associated with oxidative stress. Here, we report the surprising finding that exposing C. elegans to low doses of H2O2 promotes, rather than compromises, sensory behavior and the function of sensory neurons such as ASH. This beneficial effect of H2O2 is mediated by an evolutionarily conserved peroxiredoxin-p38/MAPK signaling cascade. We further show that p38/MAPK signals to AKT and the TRPV channel OSM-9, a sensory channel in ASH neurons. AKT phosphorylates OSM-9, and such phosphorylation is required for H2O2-induced potentiation of sensory behavior and ASH neuron function. Our results uncover a beneficial effect of ROS on neurons, revealing unexpected complexity of the action of oxidative stressors in the nervous system. PMID:27824033

  5. Extracellular ultrathin fibers sensitive to intracellular reactive oxygen species: Formation of intercellular membrane bridges

    SciTech Connect

    Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon; Kim, Young-Myeong; Ha, Kwon-Soo

    2011-07-15

    Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainly comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.

  6. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation.

    PubMed

    Aizawa, Ken; Takahari, Youko; Higashijima, Naoko; Serizawa, Kenichi; Yogo, Kenji; Ishizuka, Nobuhiko; Endo, Koichi; Fukuyama, Naoto; Hirano, Katsuya; Ishida, Hideyuki

    2015-03-01

    Sirolimus (SRL) is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS) play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC), an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs), SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22(phox) mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  7. The Emerging Role of Reactive Oxygen Species Signaling during Lateral Root Development1[C][W

    PubMed Central

    Manzano, Concepción; Pallero-Baena, Mercedes; Casimiro, Ilda; De Rybel, Bert; Orman-Ligeza, Beata; Van Isterdael, Gert; Beeckman, Tom; Draye, Xavier; Casero, Pedro; del Pozo, Juan C.

    2014-01-01

    Overall root architecture is the combined result of primary and lateral root growth and is influenced by both intrinsic genetic programs and external signals. One of the main questions for root biologists is how plants control the number of lateral root primordia and their emergence through the main root. We recently identified S-phase kinase-associated protein2 (SKP2B) as a new early marker for lateral root development. Here, we took advantage of its specific expression pattern in Arabidopsis (Arabidopsis thaliana) in a cell-sorting and transcriptomic approach to generate a lateral root-specific cell sorting SKP2B data set that represents the endogenous genetic developmental program. We first validated this data set by showing that many of the identified genes have a function during root growth or lateral root development. Importantly, genes encoding peroxidases were highly represented in our data set. Thus, we next focused on this class of enzymes and showed, using genetic and chemical inhibitor studies, that peroxidase activity and reactive oxygen species signaling are specifically required during lateral root emergence but, intriguingly, not for primordium specification itself. PMID:24879433

  8. The Emerging Role of Reactive Oxygen Species Signaling during Lateral Root Development.

    PubMed

    Manzano, Concepción; Pallero-Baena, Mercedes; Casimiro, Ilda; De Rybel, Bert; Orman-Ligeza, Beata; Van Isterdael, Gert; Beeckman, Tom; Draye, Xavier; Casero, Pedro; Del Pozo, Juan C

    2014-07-01

    Overall root architecture is the combined result of primary and lateral root growth and is influenced by both intrinsic genetic programs and external signals. One of the main questions for root biologists is how plants control the number of lateral root primordia and their emergence through the main root. We recently identified S-phase kinase-associated protein2 (SKP2B) as a new early marker for lateral root development. Here, we took advantage of its specific expression pattern in Arabidopsis (Arabidopsis thaliana) in a cell-sorting and transcriptomic approach to generate a lateral root-specific cell sorting SKP2B data set that represents the endogenous genetic developmental program. We first validated this data set by showing that many of the identified genes have a function during root growth or lateral root development. Importantly, genes encoding peroxidases were highly represented in our data set. Thus, we next focused on this class of enzymes and showed, using genetic and chemical inhibitor studies, that peroxidase activity and reactive oxygen species signaling are specifically required during lateral root emergence but, intriguingly, not for primordium specification itself.

  9. Cryptococcus neoformans capsule protects cell from oxygen reactive species generated by antimicrobial photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Prates, Renato Araujo; Hamblin, Michael R.; Kato, Ilka T.; Fuchs, Beth; Mylonakis, Eleytherios; Simões Ribeiro, Martha; Tegos, George

    2011-03-01

    Antimicrobial photodynamic inactivation (APDI) is based on the utilization of substances that can photosensitize biological tissues and are capable of being activated in the presence of light. Cryptococcus neoformans is an yeast surrounded by a capsule composed primarily of glucoronoxylomannan that plays an important role in its virulence. This yeast causes infection on skin, lungs and brain that can be associated with neurological sequelae and neurosurgical interventions, and its conventional treatment requires prolonged antifungal therapy, which presents important adverse effects. The aim of this study was to evaluate the protective effect of Cryptococcus neoformans capsule against reactive oxygen species generated by APDI. Cryptococcus neoformans KN99α, which is a strain able to produce capsule, and CAP59 that does not present capsule production were submitted to APDI using methylene blue (MB), rose bengal (RB), and pL-ce6 as photosensitizers (PS). Then microbial inactivation was evaluated by counting colony form units following APDI and confocal laser scanning microscopy (CLSM) illustrated localization as well as the preferential accumulation of PS into the fungal cells. C. neoformans KN99α was more resistant to APDI than CAP59 for all PSs tested. CLSM showed incorporation of MB and RB into the cytoplasm and a preferential uptake in mitochondria. A nuclear accumulation of MB was also observed. Contrarily, pL-ce6 appears accumulated in cell wall and cell membrane and minimal florescence was observed inside the fungal cells. In conclusion, the ability of C. neoformans to form capsule enhances survival following APDI.

  10. TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species.

    PubMed

    Niles, Brad J; Powers, Ted

    2014-12-01

    The evolutionarily conserved mTOR complex 2 (mTORC2) signaling pathway is an important regulator of actin cytoskeletal architecture and, as such, is a candidate target for preventing cancer cell motility and invasion. Remarkably, the precise mechanism(s) by which mTORC2 regulates the actin cytoskeleton have remained elusive. Here we show that in budding yeast, TORC2 and its downstream kinase Ypk1 regulate actin polarization by controlling reactive oxygen species (ROS) accumulation. Specifically, we find that TORC2-Ypk1 regulates actin polarization both by vacuole-related ROS, controlled by the phospholipid flippase kinase Fpk1 and sphingolipids, and by mitochondria-mediated ROS, controlled by the PKA subunit Tpk3. In addition, we find that the protein kinase C (Pkc1)/MAPK cascade, a well-established regulator of actin, acts downstream of Ypk1 to regulate ROS, in part by promoting degradation of the oxidative stress responsive repressor, cyclin C. Furthermore, we show that Ypk1 regulates Pkc1 activity through proper localization of Rom2 at the plasma membrane, which is also dependent on Fpk1 and sphingolipids. Together these findings demonstrate important links between TORC2/Ypk1 signaling, Fpk1, sphingolipids, Pkc1, and ROS as regulators of actin and suggest that ROS may play an important role in mTORC2-dependent dysregulation of the actin cytoskeleton in cancer cells.

  11. p53 activation contributes to patulin-induced nephrotoxicity via modulation of reactive oxygen species generation

    PubMed Central

    Jin, Huan; Yin, Shutao; Song, Xinhua; Zhang, Enxiang; Fan, Lihong; Hu, Hongbo

    2016-01-01

    Patulin is a major mycotoxin found in fungal contaminated fruits and their derivative products. Previous studies showed that patulin was able to induce increase of reactive oxygen species (ROS) generation and oxidative stress was suggested to play a pivotal role in patulin-induced multiple toxic signaling. The objective of the present study was to investigate the functional role of p53 in patulin-induced oxidative stress. Our study demonstrated that higher levels of ROS generation and DNA damage were induced in wild-type p53 cell lines than that found in either knockdown or knockout p53 cell lines in response to patulin exposure, suggesting p53 activation contributed to patulin-induced ROS generation. Mechanistically, we revealed that the pro-oxidant role of p53 in response to patulin was attributed to its ability to suppress catalase activity through up-regulation of PIG3. Moreover, these in vitro findings were further validated in the p53 wild-type/knockout mouse model. To the best of our knowledge, this is the first report addressing the functional role of p53 in patulin-induced oxidative stress. The findings of the present study provided novel insights into understanding mechanisms behind oxidative stress in response to patulin exposure. PMID:27071452

  12. Nutritional Countermeasures Targeting Reactive Oxygen Species in Cancer: From Mechanisms to Biomarkers and Clinical Evidence

    PubMed Central

    Samoylenko, Anatoly; Hossain, Jubayer Al; Mennerich, Daniela; Kellokumpu, Sakari; Hiltunen, Jukka Kalervo

    2013-01-01

    Abstract Reactive oxygen species (ROS) exert various biological effects and contribute to signaling events during physiological and pathological processes. Enhanced levels of ROS are highly associated with different tumors, a Western lifestyle, and a nutritional regime. The supplementation of food with traditional antioxidants was shown to be protective against cancer in a number of studies both in vitro and in vivo. However, recent large-scale human trials in well-nourished populations did not confirm the beneficial role of antioxidants in cancer, whereas there is a well-established connection between longevity of several human populations and increased amount of antioxidants in their diets. Although our knowledge about ROS generators, ROS scavengers, and ROS signaling has improved, the knowledge about the direct link between nutrition, ROS levels, and cancer is limited. These limitations are partly due to lack of standardized reliable ROS measurement methods, easily usable biomarkers, knowledge of ROS action in cellular compartments, and individual genetic predispositions. The current review summarizes ROS formation due to nutrition with respect to macronutrients and antioxidant micronutrients in the context of cancer and discusses signaling mechanisms, used biomarkers, and its limitations along with large-scale human trials. Antioxid. Redox Signal. 19, 2157–2196. PMID:23458328

  13. Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells.

    PubMed

    Sun, Wenwu; Wang, Zhonghua; Cao, Jianping; Cui, Haiyang; Ma, Zhuang

    2016-03-01

    Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca(2+)]c, which was completely attenuated by removing Ca(2+) from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca(2+)]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.

  14. Effect of aging on formation of reactive oxygen species by mitochondria of rat heart.

    PubMed

    Kuka, Stanislav; Tatarkova, Zuzana; Racay, Peter; Lehotsky, Jan; Dobrota, Dusan; Kaplan, Peter

    2013-09-01

    Mitochondrial electron transport chain is thought to be a major source of reactive oxygen species (ROS) during aging. However, this view is supported mainly by accumulation of mitochondrial oxidative damage with age and the exact sites of ROS formation remains unknown. In the present study, we measured rate of ROS formation using 2',7'-dichlorofluorescein (DCF) probe in cardiac mitochondria from adult (6-month-old), old (15-month-old) and senescent (26-month-old) rats. In mitochondria oxidizing complex II substrate, succinate, the rate of ROS formation progressively increased with age. In the presence of complex I inhibitor rotenone or complex III inhibitor antimycin A, the rate ROS formation significantly decreased, but even the combination of inhibitors could not fully prevent generation of ROS. Age-dependent increase of ROS formation was accompanied by a loss of thiol groups, tryptophan degradation and increased lipid peroxidation. These data suggest that in addition to complex I and complex II other mitochondrial sites can contribute to accelerated ROS generation and oxidative damage during aging.

  15. Reactive Oxygen Species and Aging in Caenorhabditis elegans: Causal or Casual Relationship?

    PubMed

    Van Raamsdonk, Jeremy Michael; Hekimi, Siegfried

    2010-12-15

    The free radical theory of aging proposes a causal relationship between reactive oxygen species (ROS) and aging. While it is clear that oxidative damage increases with age, its role in the aging process is uncertain. Testing the free radical theory of aging requires experimentally manipulating ROS production or detoxification and examining the resulting effects on lifespan. In this review, we examine the relationship between ROS and aging in the genetic model organism Caenorhabditis elegans, summarizing experiments using long-lived mutants, mutants with altered mitochondrial function, mutants with decreased antioxidant defenses, worms treated with antioxidant compounds, and worms exposed to different environmental conditions. While there is frequently a negative correlation between oxidative damage and lifespan, there are many examples in which they are uncoupled. Neither is resistance to oxidative stress sufficient for a long life nor are all long-lived mutants more resistant to oxidative stress. Similarly, sensitivity to oxidative stress does not necessarily shorten lifespan and is in fact compatible with long life. Overall, the data in C. elegans indicate that oxidative damage can be dissociated from aging in experimental situations.

  16. Alliin Attenuated RANKL-Induced Osteoclastogenesis by Scavenging Reactive Oxygen Species through Inhibiting Nox1

    PubMed Central

    Chen, Yueqi; Sun, Jingjing; Dou, Ce; Li, Nan; Kang, Fei; Wang, Yuan; Cao, Zhen; Yang, Xiaochao; Dong, Shiwu

    2016-01-01

    The healthy skeleton requires a perfect coordination of the formation and degradation of bone. Metabolic bone disease like osteoporosis is resulted from the imbalance of bone formation and/or bone resorption. Osteoporosis also reflects lower level of bone matrix, which is contributed by up-regulated osteoclast-mediated bone resorption. It is reported that monocytes/macrophage progenitor cells or either hematopoietic stem cells (HSCs) gave rise to multinucleated osteoclasts. Thus, inhibition of osteoclastic bone resorption generally seems to be a predominant therapy for treating osteoporosis. Recently, more and more natural compounds have been discovered, which have the ability of inhibiting osteoclast differentiation and fusion. Alliin (S-allyl-l-cysteine sulfoxides, SACSO) is the major component of aged garlic extract (AGE), bearing broad-spectrum natural antioxidant properties. However, its effects on bone health have not yet been explored. Hence, we designed the current study to explore its effects and role in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast fusion and differentiation. It was revealed that alliin had an inhibitory effect in osteoclasteogenesis with a dose-dependent manner via blocking the c-Fos-NFATc1 signaling pathway. In addition, alliin decreased the generation of reactive oxygen species (ROS) and down-regulated the expression of NADPH oxidase 1 (Nox1). The overall results revealed that alliin could be a potential therapeutic agent in the treatment of osteoporosis. PMID:27657047

  17. Photoreactivity of Metal-Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production.

    PubMed

    Liu, Kai; Gao, Yanxin; Liu, Jing; Wen, Yifan; Zhao, Yingcan; Zhang, Kunyang; Yu, Gang

    2016-04-05

    Promising applications of metal-organic frameworks (MOFs) in various fields have raised concern over their environmental fate and safety upon inevitable discharge into aqueous environments. Currently, no information regarding the transformation processes of MOFs is available. Due to the presence of repetitive π-bond structure and semiconductive property, photochemical transformations are an important fate process that affects the performance of MOFs in practical applications. In the current study, the generation of reactive oxygen species (ROS) in isoreticular MIL-53s was studied. Scavengers were employed to probe the production of (1)O2, O2(•-), and •OH, respectively. In general, MIL-53(Cr) and MIL-53(Fe) are dominated by type I and II photosensitization reactions, respectively, and MIL-53(Al) appears to be less photoreactive. The generation of ROS in MIL-53(Fe) may be underestimated due to dismutation. Further investigation of MIL-53(Fe) encapsulated diclofenac transformation revealed that diclofenac can be easily transformed by MIL-53(Fe) generated ROS. However, the cytotoxicity results implied that the ROS generated from MIL-53s have little effect on the viability of the human hepatocyte (HepG2) cell line. These results suggest that the photogeneration of ROS by MOFs may be metal-node dependent, and the application of MIL-53s as drug carriers needs to be carefully considered due to their high photoreactivity.

  18. Noninvasive bioluminescence imaging of the dynamics of sanguinarine induced apoptosis via activation of reactive oxygen species

    PubMed Central

    Dai, Yunpeng; Shi, Yaru; Zeng, Qi; Wang, Fu

    2016-01-01

    Most chemotherapeutic drugs exert their anti-tumor effects primarily by triggering a final pathway leading to apoptosis. Noninvasive imaging of apoptotic events in preclinical models would greatly facilitate the development of apoptosis-inducing compounds and evaluation of their therapeutic efficacy. Here we employed a cyclic firefly luciferase (cFluc) reporter to screen potential pro-apoptotic compounds from a number of natural agents. We demonstrated that sanguinarine (SANG) could induce apoptosis in a dose- and time-dependent manner in UM-SCC-22B head and neck cancer cells. Moreover, SANG-induced apoptosis was associated with the generation of reactive oxygen species (ROS) and activation of c-Jun-N-terminal kinase (JNK) and nuclear factor-kappaB (NF-κB) signal pathways. After intravenous administration with SANG in 22B-cFluc xenograft models, a dramatic increase of luminescence signal can be detected as early as 48 h post-treatment, as revealed by longitudinal bioluminescence imaging in vivo. Remarkable apoptotic cells reflected from ex vivo TUNEL staining confirmed the imaging results. Importantly, SANG treatment caused distinct tumor growth retardation in mice compared with the vehicle-treated group. Taken together, our results showed that SANG is a candidate anti-tumor drug and noninvasive imaging of apoptosis using cFluc reporter could provide a valuable tool for drug development and therapeutic efficacy evaluation. PMID:26968950

  19. Long-Term Alteration of Reactive Oxygen Species Led to Multidrug Resistance in MCF-7 Cells

    PubMed Central

    Cen, Juan; Zhang, Li; Liu, Fangfang

    2016-01-01

    Reactive oxygen species (ROS) play an important role in multidrug resistance (MDR). This study aimed to investigate the effects of long-term ROS alteration on MDR in MCF-7 cells and to explore its underlying mechanism. Our study showed both long-term treatments of H2O2 and glutathione (GSH) led to MDR with suppressed iROS levels in MCF-7 cells. Moreover, the MDR cells induced by 0.1 μM H2O2 treatment for 20 weeks (MCF-7/ROS cells) had a higher viability and proliferative ability than the control MCF-7 cells. MCF-7/ROS cells also showed higher activity or content of intracellular antioxidants like glutathione peroxidase (GPx), GSH, superoxide dismutase (SOD), and catalase (CAT). Importantly, MCF-7/ROS cells were characterized by overexpression of MDR-related protein 1 (MRP1) and P-glycoprotein (P-gp), as well as their regulators NF-E2-related factor 2 (Nrf2), hypoxia-inducible factor 1 (HIF-1α), and the activation of PI3K/Akt pathway in upstream. Moreover, several typical MDR mediators, including glutathione S-transferase-π (GST-π) and c-Myc and Protein Kinase Cα (PKCα), were also found to be upregulated in MCF-7/ROS cells. Collectively, our results suggest that ROS may be critical in the generation of MDR, which may provide new insights into understanding of mechanisms of MDR. PMID:28058088

  20. Phosphate enhances Fgf23 expression through reactive oxygen species in UMR-106 cells.

    PubMed

    Hori, Michiko; Kinoshita, Yuka; Taguchi, Manabu; Fukumoto, Seiji

    2016-03-01

    Fibroblast growth factor 23 (FGF23) has been shown to work as a phosphotropic hormone. Although FGF23 reduces the serum phosphate level, it has not been established that phosphate directly regulates FGF23 production. In this study, we investigated whether phosphate can enhance Fgf23 expression using the rat osteoblastic cell line UMR-106, which has been shown to express Fgf23 in response to 1,25-dihydroxyvitamin D [1,25(OH)2D]. Phosphate increased Fgf23 expression in a dose- and time-dependent manner in the presence of 1,25(OH)2D. Phosphate also increased Fgf23 promoter activity, but showed no effect on the half-life of Fgf23 messenger RNA. Phosphonoformic acid and PD98059, an inhibitor of MEK, inhibited the effects of phosphate on Fgf23 expression and promoter activity. In addition, phosphate enhanced production of reactive oxygen species (ROS) in UMR-106 cells, and hydrogen peroxide enhanced FGF23 production in a dose- and time-dependent manner. Hydrogen peroxide also enhanced Elk1 reporter activity, a target of the MEK-extracellular-signal-regulated kinase (ERK) pathway. Furthermore, the effect of phosphate on ROS production and Fgf23 expression was inhibited by apocynin, an inhibitor of NADPH oxidase. These results indicate that phosphate directly enhances Fgf23 transcription without affecting the stability of Fgf23 messenger RNA by stimulating NADPH-induced ROS production and the MEK-ERK pathway in UMR-106 cells.

  1. Reactive oxygen species and cytotoxicity in rainbow trout hepatocytes: effects of medium and incubation time.

    PubMed

    Yazdani, Mazyar; Paulsen, Ragnhild Elisabeth; Gjøen, Tor; Hylland, Ketil

    2015-02-01

    This study evaluated the effects of exposure medium and culture age on intracellular reactive oxygen species (ROS) development and cytotoxicity in fish hepatocytes following exposure to copper (Cu). ROS was quantified using the fluorescent probes DHR 123 and CM-H2DCFDA following exposure to Cu in Leibovitz' medium (L-15) or Tris-buffered saline (TBS). Similarly, culture age effects were investigated using 1-, 2- and 4-day-old cultured hepatocytes by exposing them to Cu in TBS. The exposure in L-15 resulted in significantly higher ROS compared to TBS using CM-H2DCFDA, but not DHR 123. The age of the primary cultures significantly affected the development of ROS for both probes. None of the exposures caused cytotoxicity in the hepatocytes. The results showed that both factors may affect responses to stressors, and suggested that the use of a simple medium such as TBS may be preferable for some applications. It is also preferable to use 1-day-old primary hepatocyte cultures.

  2. Aryl hydrocarbon receptor protects against bacterial infection by promoting macrophage survival and reactive oxygen species production.

    PubMed

    Kimura, Akihiro; Abe, Hiromi; Tsuruta, Sanae; Chiba, Sayuri; Fujii-Kuriyama, Yoshiaki; Sekiya, Takashi; Morita, Rimpei; Yoshimura, Akihiko

    2014-04-01

    Aryl hydrocarbon receptor (AhR) is crucial for various immune responses. The relationship between AhR and infection with the intracellular bacteria Listeria monocytogenes (LM) is poorly understood. Here, we show that in response to LM infection, AhR is required for bacterial clearance by promoting macrophage survival and reactive oxygen species (ROS) production. AhR-deficient mice were more susceptible to listeriosis, and AhR deficiency enhances bacterial growth in vivo and in vitro. On the other hand, pro-inflammatory cytokines were increased in AhR-deficient macrophages infected with LM despite enhanced susceptibility to LM infection in AhR-deficient mice. Subsequent studies demonstrate that AhR protects against macrophage cell death induced by LM infection through the induction of the antiapoptotic factor, the apoptosis inhibitor of macrophages, which promotes macrophage survival in the setting of LM infection. Furthermore, AhR promotes ROS production for bacterial clearance. Our results demonstrate that AhR is essential to the resistance against LM infection as it promotes macrophage survival and ROS production. This suggests that the activation of AhR by its ligands may be an effective strategy against listeriosis.

  3. Reactive oxygen species are important mediators of taurine release from skeletal muscle cells.

    PubMed

    Ørtenblad, Niels; Young, Jette Feveile; Oksbjerg, Niels; Nielsen, Jacob Holm; Lambert, Ian Henry

    2003-06-01

    The present study illustrates elements of the signal cascades involved in the activation of taurine efflux pathways in myotubes derived from skeletal muscle cells. Exposing primary skeletal muscle cells, loaded with (14)C-taurine, to 1) hypotonic media, 2) the phospholipase A(2) (PLA(2)) activator melittin, 3) anoxia, or 4) lysophosphatidyl choline (LPC) causes an increase in (14)C-taurine release and a concomitant production of reactive oxygen species (ROS). The antioxidants butulated hydroxy toluene and vitamin E inhibit the taurine efflux after cell swelling, anoxia, and addition of LPC. The muscle cells possess two separate taurine efflux pathways, i.e., a swelling- and melittin-induced pathway that requires 5-lipoxygenase activity for activation and a LPC-induced pathway. The two pathways are distinguished by their opposing sensitivity toward the anion channel blocker DIDS and cholesterol. These data provide evidence for PLA(2) products and ROS as key mediators of the signal cascade leading to taurine efflux in muscle.

  4. Decomposition of reactive oxygen species by copper(II) bis(1-pyrazolyl)methane complexes.

    PubMed

    Schepetkin, Igor; Potapov, Andrei; Khlebnikov, Andrei; Korotkova, Elena; Lukina, Anna; Malovichko, Galina; Kirpotina, Lilia; Quinn, Mark T

    2006-06-01

    Two bis(1-pyrazolyl)alkane ligands, bis(3,5-dimethyl-1-pyrazolyl)methane and bis(4-iodo-3,5-dimethyl-1-pyrazolyl)methane, and their copper(II) complexes, bis(3,5-dimethyl-1-pyrazolyl)methanedinitratocopper(II) [CuL1(NO3)2] and bis(4-iodo-3,5-dimethyl-1-pyrazolyl)methanedinitratocopper(II) [CuL2(NO3)2] x 2H2O, were prepared. Physiochemical properties of the copper(II) complexes were studied by spectroscopic (UV-vis, IR, EPR) techniques and cyclic voltammetry. Spectroscopic analysis revealed a 1:1 stoichiometry of ligand:copper(II) ion and a bidentate coordination mode for the nitrate ions in both of the complexes. According to experimental and theoretical ab initio data, the copper(II) ion is located in an octahedral hexacoordinated environment. Both complexes were able to catalyze the dismutation of superoxide anion (O2*-) (pH 7.5) and decomposition of H2O2 (pH 7.5) and peroxynitrite (pH 10.9). In addition, both complexes exhibited superoxide dismutase (SOD) like activity toward extracellular and intracellular reactive oxygen species produced by activated human neutrophils in whole blood. Thus, these complexes represent useful SOD mimetics with a broad range of antioxidant activity toward a variety of reactive oxidants.

  5. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction

    PubMed Central

    Sun, Lingmei; Liao, Kai; Hang, Chengcheng; Wang, Dayong

    2017-01-01

    Objective To investigate the effects of honokiol on induction of reactive oxygen species (ROS), antioxidant defense systems, mitochondrial dysfunction, and apoptosis in Candida albicans. Methods To measure ROS accumulation, 2′,7′-dichlorofluorescein diacetate fluorescence was used. Lipid peroxidation was assessed using both fluorescence staining and a thiobarbituric acid reactive substances (TBARS) assay. Protein oxidation was determined using dinitrophenylhydrazine derivatization. Antioxidant enzymatic activities were measured using commercially available detection kits. Superoxide dismutase (SOD) genes expression was measured using real time RT-PCR. To assess its antifungal abilities and effectiveness on ROS accumulation, honokiol and the SOD inhibitor N,N′-diethyldithiocarbamate (DDC) were used simultaneously. Mitochondrial dysfunction was assessed by measuring the mitochondrial membrane potential (mtΔψ). Honokiol-induced apoptosis was assessed using an Annexin V-FITC apoptosis detection kit. Results ROS, lipid peroxidation, and protein oxidation occurred in a dose-dependent manner in C. albicans after honokiol treatment. Honokiol caused an increase in antioxidant enzymatic activity. In addition, honokiol treatment induced SOD genes expression in C. albicans cells. Moreover, addition of DDC resulted in increased endogenous ROS levels and potentiated the antifungal activity of honokiol. Mitochondrial dysfunction was confirmed by measured changes to mtΔψ. The level of apoptosis increased in a dose-dependent manner after honokiol treatment. Conclusions Collectively, these results indicate that honokiol acts as a pro-oxidant in C. albicans. Furthermore, the SOD inhibitor DDC can be used to potentiate the activity of honokiol against C. albicans. PMID:28192489

  6. Mitochondrial reactive oxygen species mediate hypoxic down-regulation of hERG channel protein.

    PubMed

    Nanduri, Jayasri; Wang, Ning; Bergson, Pamela; Yuan, Guoxiang; Ficker, Eckhard; Prabhakar, Nanduri R

    2008-08-22

    Previous studies suggest that reactive oxygen species (ROS) play an important role in physiological responses to hypoxia. In the present study, we examined the effects of hypoxia on human ether-a-go-go related gene (hERG) channel protein expression and assessed the role of ROS. Hypoxia, in a stimulus- and time-dependent manner, decreased hERG protein with marked reduction in hERG K+ conductance in human embryonic kidney cells stably expressing the hERG alpha subunit. Down-regulation of hERG by hypoxia was not due to increased proteasomal degradation or decreased transcription but due to decreased synthesis of the protein. Hypoxia increased ROS in a time-dependent manner. Antioxidants prevented hypoxia-evoked down-regulation of hERG protein and exogenous oxidants mimicked the effects of hypoxia. Hypoxia-evoked down-regulation of hERG protein and elevation in ROS were absent in p(O) cells, which are devoid of mitochondrial DNA. Inhibitors of NADPH oxidase failed to prevent the effects of hypoxia. These results demonstrate that hypoxia enhances the production of ROS in the mitochondria, resulting in down-regulation of hERG translation and decreased hERG-mediated K+ conductance.

  7. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma.

    PubMed

    Ahn, Hak Jun; Kim, Kang Il; Hoan, Nguyen Ngoc; Kim, Churl Ho; Moon, Eunpyo; Choi, Kyeong Sook; Yang, Sang Sik; Lee, Jong-Soo

    2014-01-01

    The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH-, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells.

  8. Heavy metals generate reactive oxygen species in terrestrial and aquatic ciliated protozoa.

    PubMed

    Rico, Daniel; Martín-González, Ana; Díaz, Silvia; de Lucas, Pilar; Gutiérrez, Juan-Carlos

    2009-01-01

    Reactive oxygen species (ROS) induction by exposure to heavy metals (Cd, Cu or Zn) in diverse free-living ciliated protozoa (Tetrahymena sp. and three strains of Colpoda steinii, isolated from freshwater and soils with different level of metal pollution) has been evaluated. Using specific fluorophores, such as 2',7'-dichlorofluorescein diacetate, hydroethidine and dihydrorhodamine 123, and a fluorescence microscope with the program MetaMorph Imaging System 4.0, we have analyzed both the average fluorescence emission and the heterogeneous distribution of fluorescence in control and treated cells. This is the first time that these fluorophores are used to detect ROS production in ciliated protozoa. All metals generate ROS, mainly superoxide and peroxides, showing a remarkable inter- and intra-specific variations. Likewise, resistance against each metal was also very diverse. Cu and specially Cd, the most toxic heavy metal for these ciliates, are the best oxidative stress inducers. However, a correlation between fluorescence emission intensity and cellular metal sensitivity for each strain cannot be established. Results are discussed and compared with similar findings previously published in other unicellular and pluricellular organisms.

  9. Molecular Characterization of Reactive Oxygen Species in Myocardial Ischemia-Reperfusion Injury.

    PubMed

    Zhou, Tingyang; Chuang, Chia-Chen; Zuo, Li

    2015-01-01

    Myocardial ischemia-reperfusion (I/R) injury is experienced by individuals suffering from cardiovascular diseases such as coronary heart diseases and subsequently undergoing reperfusion treatments in order to manage the conditions. The occlusion of blood flow to the tissue, termed ischemia, can be especially detrimental to the heart due to its high energy demand. Several cellular alterations have been observed upon the onset of ischemia. The danger created by cardiac ischemia is somewhat paradoxical in that a return of blood to the tissue can result in further damage. Reactive oxygen species (ROS) have been studied intensively to reveal their role in myocardial I/R injury. Under normal conditions, ROS function as a mediator in many cell signaling pathways. However, stressful environments significantly induce the generation of ROS which causes the level to exceed body's antioxidant defense system. Such altered redox homeostasis is implicated in myocardial I/R injury. Despite the detrimental effects from ROS, low levels of ROS have been shown to exert a protective effect in the ischemic preconditioning. In this review, we will summarize the detrimental role of ROS in myocardial I/R injury, the protective mechanism induced by ROS, and potential treatments for ROS-related myocardial injury.

  10. Oxidized low density lipoprotein increases acetylcholinesterase activity correlating with reactive oxygen species production.

    PubMed

    Yamchuen, Panit; Aimjongjun, Sathid; Limpeanchob, Nanteetip

    2014-12-01

    Hyperlipidemia, low density lipoproteins (LDL) and their oxidized forms, and oxidative stress are suspected to be a key combination in the onset of AD and acetylcholinesterase (AChE) plays a part in this pathology. The present study aimed to link these parameters using differentiated SH-SY5Y human neuroblastoma cells in culture. Both mildly and fully oxidized human LDL (mox- and fox-LDL), but not native (non-oxidized) LDL were cytotoxic in dose- and time-dependent patterns and this was accompanied by an increased production of intracellular reactive oxygen species (ROS). Oxidized LDL (10-200 μg/mL) augmented AChE activity after 4 and 24h treatments, respectively while the native LDL was without effect. The increased AChE with oxidized LDLs was accompanied by a proportionate increase in intracellular ROS formation (R=0.904). These findings support the notion that oxidized LDLs are cytotoxic and that their action on AChE may reduce central cholinergic transmission in AD and affirm AChE as a continued rational for anticholinesterase therapy but in conjunction with antioxidant/antihyperlipidemic cotreatments.

  11. Roles of Reactive Oxygen Species in Anticancer Therapy with Salvia miltiorrhiza Bunge.

    PubMed

    Hung, Yu-Chiang; Pan, Tai-Long; Hu, Wen-Long

    2016-01-01

    Cancer is a leading cause of death worldwide. We aim to provide a systematic review about the roles of reactive oxygen species (ROS) in anticancer therapy with Salvia miltiorrhiza Bunge (Danshen). Danshen, including its lipophilic and hydrophilic constituents, is potentially beneficial for treating various cancers. The mechanisms of ROS-related anticancer effects of Danshen vary depending on the specific type of cancer cells involved. Danshen may enhance TNF-α-induced apoptosis, upregulate caspase-3, caspase-8, caspase-9, endoplasmic reticulum stress, P21, P53, Bax/Bcl-2, DR5, and AMP-activated protein kinase, or activate the p38/JNK, mitogen-activated protein kinase, and FasL signaling pathways. Conversely, Danshen may downregulate human telomerase reverse transcriptase mRNA, telomerase, survivin, vascular endothelial growth factor/vascular endothelial growth factor receptor 2, CD31, NF-κB, Erk1/2, matrix metalloproteinases, microtubule assembly, and receptor tyrosine kinases including epidermal growth factor receptors, HER2, and P-glycoprotein and inhibit the PI3K/Akt/mTOR or estrogen receptor signaling pathways. Therefore, Danshen may inhibit cancer cells proliferation through antioxidation on tumor initiation and induce apoptosis or autophagy through ROS generation on tumor progression, tumor promotion, and tumor metastasis. Based on the available evidence regarding its anticancer properties, this review provides new insights for further anticancer research or clinical trials with Danshen.

  12. Isoalantolactone Induces Reactive Oxygen Species Mediated Apoptosis in Pancreatic Carcinoma PANC-1 Cells

    PubMed Central

    Khan, Muhammad; Ding, Chuan; Rasul, Azhar; Yi, Fei; Li, Ting; Gao, Hongwen; Gao, Rong; Zhong, Lili; Zhang, Kun; Fang, Xuedong; Ma, Tonghui

    2012-01-01

    Isoalantolactone, a sesquiterpene lactone compound possesses antifungal, antibacteria, antihelminthic and antiproliferative activities. In the present study, we found that isoalantolactone inhibits growth and induces apoptosis in pancreatic cancer cells. Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of reactive oxygen species, cardiolipin oxidation, reduced mitochondrial membrane potential, release of cytochrome c and cell cycle arrest at S phase. N-Acetyl Cysteine (NAC), a specific ROS inhibitor restored cell viability and completely blocked isoalantolactone-mediated apoptosis in PANC-1 cells indicating that ROS are involved in isoalantolactone-mediated apoptosis. Western blot study showed that isoalantolactone increased the expression of phosphorylated p38 MAPK, Bax, and cleaved caspase-3 and decreased the expression of Bcl-2 in a dose-dependent manner. No change in expression of phosphorylated p38 MAPK and Bax was found when cells were treated with isoalantolactone in the presence of NAC, indicating that activation of these proteins is directly dependent on ROS generation. The present study provides evidence for the first time that isoalantolactone induces ROS-dependent apoptosis through intrinsic pathway. Furthermore, our in vivo toxicity study demonstrated that isoalantolactone did not induce any acute or chronic toxicity in liver and kidneys of CD1 mice at dose of 100 mg/kg body weight. Therefore, isoalantolactone may be a safe chemotherapeutic candidate for the treatment of human pancreatic carcinoma. PMID:22532787

  13. Fine tuning of reactive oxygen species homeostasis regulates primed immune responses in Arabidopsis.

    PubMed

    Pastor, Victoria; Luna, Estrella; Ton, Jurriaan; Cerezo, Miguel; García-Agustín, Pilar; Flors, Victor

    2013-11-01

    Selected stimuli can prime the plant immune system for a faster and stronger defense reaction to pathogen attack. Pretreatment of Arabidopsis with the chemical agent β-aminobutyric acid (BABA) augmented H2O2 and callose production after induction with the pathogen-associated molecular pattern (PAMP) chitosan, or inoculation with the necrotrophic fungus Plectosphaerella cucumerina. However, BABA failed to prime H2O2 and callose production after challenge with the bacterial PAMP Flg22. Analysis of Arabidopsis mutants in reactive oxygen species (ROS) production (rbohD) or ROS scavenging (pad2, vtc1, and cat2) suggested a regulatory role for ROS homeostasis in priming of chitosan- and P. cucumerina-inducible callose and ROS. Moreover, rbohD and pad2 were both impaired in BABA-induced resistance against P. cucumerina. Gene expression analysis revealed direct induction of NADPH/respiratory burst oxidase protein D (RBOHD), γ-glutamylcysteine synthetase 1 (GSH1), and vitamin C defective 1 (VTC1) genes after BABA treatment. Conversely, ascorbate peroxidase 1 (APX1) transcription was repressed by BABA after challenge with chitosan or P. cucumerina, probably to provide a more oxidized environment in the cell and facilitate augmented ROS accumulation. Measuring ratios between reduced and oxidized glutathione confirmed that augmented defense expression in primed plants is associated with a more oxidized cellular status. Together, our data indicate that an altered ROS equilibrium is required for augmented defense expression in primed plants.

  14. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase.

    PubMed

    Kobayashi, Michie; Ohura, Ikuko; Kawakita, Kazuhito; Yokota, Naohiko; Fujiwara, Masayuki; Shimamoto, Ko; Doke, Noriyuki; Yoshioka, Hirofumi

    2007-03-01

    Reactive oxygen species (ROS) are implicated in plant innate immunity. NADPH oxidase (RBOH; for Respiratory Burst Oxidase Homolog) plays a central role in the oxidative burst, and EF-hand motifs in the N terminus of this protein suggest possible regulation by Ca(2+). However, regulatory mechanisms are largely unknown. We identified Ser-82 and Ser-97 in the N terminus of potato (Solanum tuberosum) St RBOHB as potential phosphorylation sites. An anti-phosphopeptide antibody (pSer82) indicated that Ser-82 was phosphorylated by pathogen signals in planta. We cloned two potato calcium-dependent protein kinases, St CDPK4 and St CDPK5, and mass spectrometry analyses showed that these CDPKs phosphorylated only Ser-82 and Ser-97 in the N terminus of St RBOHB in a calcium-dependent manner. Ectopic expression of the constitutively active mutant of St CDPK5, St CDPK5VK, provoked ROS production in Nicotiana benthamiana leaves. The CDPK-mediated ROS production was disrupted by knockdown of Nb RBOHB in N. benthamiana. The loss of function was complemented by heterologous expression of wild-type potato St RBOHB but not by a mutant (S82A/S97A). Furthermore, the heterologous expression of St CDPK5VK phosphorylated Ser-82 of St RBOHB in N. benthamiana. These results suggest that St CDPK5 induces the phosphorylation of St RBOHB and regulates the oxidative burst.

  15. Phosphoinositol 3-phosphate acts as a timer for reactive oxygen species production in the phagosome.

    PubMed

    Song, Zhi Min; Bouchab, Leïla; Hudik, Elodie; Le Bars, Romain; Nüsse, Oliver; Dupré-Crochet, Sophie

    2017-01-17

    Production of reactive oxygen species (ROS) in the phagosome by the NADPH oxidase is critical for mammalian immune defense against microbial infections and phosphoinositides are important regulators in this process. Phosphoinositol 3-phosphate (PI(3)P) regulates ROS production at the phagosome via p40(phox) by an unknown mechanism. This study tested the hypothesis that PI(3)P controls ROS production by regulating the presence of p40(phox) and p67(phox) at the phagosomal membrane. Pharmacologic inhibition of PI(3)P synthesis at the phagosome decreased the ROS production both in differentiated PLB-985 cells and human neutrophils. It also releases p67(phox), the key cytosolic subunit of the oxidase, and p40(phox) from the phagosome. The knockdown of the PI(3)P phosphatase MTM1 or Rubicon or both increases the level of PI(3)P at the phagosome. That increase enhances ROS production inside the phagosome and triggers an extended accumulation of p67(phox) at the phagosome. Furthermore, the overexpression of MTM1 at the phagosomal membrane induces the disappearance of PI(3)P from the phagosome and prevents sustained ROS production. In conclusion, PI(3)P, indeed, regulates ROS production by maintaining p40(phox) and p67(phox) at the phagosomal membrane.

  16. Pseudomonas aeruginosa Pyocyanin Induces Neutrophil Death via Mitochondrial Reactive Oxygen Species and Mitochondrial Acid Sphingomyelinase

    PubMed Central

    Managò, Antonella; Becker, Katrin Anne; Carpinteiro, Alexander; Wilker, Barbara; Soddemann, Matthias; Seitz, Aaron P.; Edwards, Michael J.; Grassmé, Heike

    2015-01-01

    Abstract Aims: Pulmonary infections with Pseudomonas aeruginosa are a serious clinical problem and are often lethal. Because many strains of P. aeruginosa are resistant to antibiotics, therapeutic options are limited. Neutrophils play an important role in the host's early acute defense against pulmonary P. aeruginosa. Therefore, it is important to define the mechanisms by which P. aeruginosa interacts with host cells, particularly neutrophils. Results: Here, we report that pyocyanin, a membrane-permeable pigment and toxin released by P. aeruginosa, induces the death of wild-type neutrophils; its interaction with the mitochondrial respiratory chain results in the release of reactive oxygen species (ROS), the activation of mitochondrial acid sphingomyelinase, the formation of mitochondrial ceramide, and the release of cytochrome c from mitochondria. A genetic deficiency in acid sphingomyelinase prevents both the activation of this pathway and pyocyanin-induced neutrophil death. This reduced death, on the other hand, is associated with an increase in the release of interleukin-8 from pyocyanin-activated acid sphingomyelinase-deficient neutrophils but not from wild-type cells. Innovation: These studies identified the mechanisms by which pyocyanin induces the release of mitochondrial ROS and by which ROS induce neutrophil death via mitochondrial acid sphingomyelinase. Conclusion: These findings demonstrate a novel mechanism of pyocyanin-induced death of neutrophils and show how this apoptosis balances innate immune reactions. Antioxid. Redox Signal. 22, 1097–1110. PMID:25686490

  17. Iron- and ferritin-dependent reactive oxygen species distribution: impact on Arabidopsis root system architecture.

    PubMed

    Reyt, Guilhem; Boudouf, Soukaina; Boucherez, Jossia; Gaymard, Frédéric; Briat, Jean-Francois

    2015-03-01

    Iron (Fe) homeostasis is integrated with the production of reactive oxygen species (ROS), and distribution at the root tip participates in the control of root growth. Excess Fe increases ferritin abundance, enabling the storage of Fe, which contributes to protection of plants against Fe-induced oxidative stress. AtFer1 and AtFer3 are the two ferritin genes expressed in the meristematic zone, pericycle and endodermis of the Arabidopsis thaliana root, and it is in these regions that we observe Fe stained dots. This staining disappears in the triple fer1-3-4 ferritin mutant. Fe excess decreases primary root length in the same way in wild-type and in fer1-3-4 mutant. In contrast, the Fe-mediated decrease of lateral root (LR) length and density is enhanced in fer1-3-4 plants due to a defect in LR emergence. We observe that this interaction between excess Fe, ferritin, and root system architecture (RSA) is in part mediated by the H2O2/O2·- balance between the root cell proliferation and differentiation zones regulated by the UPB1 transcription factor. Meristem size is also decreased in response to Fe excess in ferritin mutant plants, implicating cell cycle arrest mediated by the ROS-activated SMR5/SMR7 cyclin-dependent kinase inhibitors pathway in the interaction between Fe and RSA.

  18. Analysis of reactive oxygen species in the guard cell of wheat stoma with confocal microscope.

    PubMed

    Liu, Dongwu; Chen, Zhiwei; Shi, Peiguo; Wang, Xue; Cai, Weiwei

    2011-09-01

    Recently, the laser-scanning confocal microscope has become a routine technique and indispensable tool for cell biological studies. Previous studies indicated that reactive oxygen species (ROS) were generated in tobacco epidermal cells with confocal microscope. In the present studies, the probe 2',7'-dichlorof luorescein diacetate (H₂DCF-DA) was used to research the change of ROS in the guard cell of wheat stoma, and catalase (CAT) was used to demonstrate that ROS had been labeled. The laser-scanning mode of confocal microscope was XYT, and the time interval between two sections was 1.6351 s. Sixty optical sections were acquired with the laser-scanning confocal microscope, and CAT (60,000 U mg⁻¹) was added after four optical sections were scanned. Furthermore, the region of interest (ROI) was circled and the fluorescence intensity of ROS was quantified with Leica Confocal Software. The quantitative data were exported and the trend chart was made with software Excell. The results indicated that ROS were produced intracellularly in stomatal guard cells, and the quantified fluorescence intensity of ROS was declined with CAT added. It is a good method to research the instantaneous change of ROS in plant cells with confocal microscope and fluorescence probe H₂DCF-DA.

  19. The essential oil of bergamot stimulates reactive oxygen species production in human polymorphonuclear leukocytes.

    PubMed

    Cosentino, Marco; Luini, Alessandra; Bombelli, Raffaella; Corasaniti, Maria T; Bagetta, Giacinto; Marino, Franca

    2014-08-01

    Bergamot (Citrus aurantium L. subsp. bergamia) essential oil (BEO) is used in folk medicine as an antiseptic and anthelminthic and to facilitate wound healing. Evidence indicates that BEO has substantial antimicrobial activity; however its effects on immunity have never been examined. We studied the effects of BEO on reactive oxygen species (ROS) production in human polymorphonuclear leukocytes (PMN) and the role of Ca(2+) in the functional responses evoked by BEO in these cells. Results show that BEO increased intracellular ROS production in human PMN, an effect that required the contribution of extracellular (and, to a lesser extent, of intracellular) Ca(2+) . Bergamot essential oil also significantly increased ROS production induced by the chemotactic peptide N-formyl-Met-Leu-Phe and reduced the response to the protein kinase C activator phorbol myristate acetate. In conclusion, this is the first report showing the ability of BEO to increase ROS production in human PMN. This effect could both contribute to the activity of BEO in infections and in tissue healing as well as underlie an intrinsic proinflammatory potential. The relevance of these findings for the clinical uses of BEO needs careful consideration.

  20. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid.

    PubMed

    Luo, Shun-Tao; Zhang, Dong-Mei; Qin, Qing; Lu, Lian; Luo, Min; Guo, Fu-Chun; Shi, Hua-Shan; Jiang, Li; Shao, Bin; Li, Meng; Yang, Han-Shuo; Wei, Yu-Quan

    2017-02-06

    The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA(+) cells. Also, increases in haematocrit and CD71(-)/Ter119(+) erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34(+)/CD117(-) cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions.

  1. Air purifiers that diffuse reactive oxygen species potentially cause DNA damage in the lung.

    PubMed

    Kawamoto, Kosuke; Sato, Itaru; Yoshida, Midori; Tsuda, Shuji

    2010-12-01

    Several appliance manufacturers have recently released new type air purifiers that can disinfect bacteria, fungi and viruses by diffusing reactive oxygen species (ROS) into the air. In this study, mice were exposed to the outlet air from each of 3 air purifiers from different manufacturers (A, B, C), and the lung was examined for DNA damage, lipid peroxidation and histopathology to confirm the safety of these air purifiers. Neither abnormal behavior during exposure nor gross abnormality at necropsy was observed. No histopathological changes were also observed in the lung. However, significant increase of DNA damage was detected by the comet assay in the lung immediately after the direct exposure for 48 hr to models A and B, and for 16 hr to model B. As for model B, DNA migration was also increased by 2 hr exposure in a 1 m(3) plastic chamber but not by 48 hr exposure in a room (12.6 m(3)). Model C did not cause DNA damage. Lipid peroxidation and 8-hydroxy deoxyguanosine (8-OH-dG) was not increased under the conditions DNA damage was detected by the comet assay. The present results revealed that some models of air purifiers that diffuse ROS potentially cause DNA damage in the lung although the mechanism was left unsolved.

  2. Synergistic triggering of superoxide flashes by mitochondrial Ca2+ uniport and basal reactive oxygen species elevation.

    PubMed

    Hou, Tingting; Zhang, Xing; Xu, Jiejia; Jian, Chongshu; Huang, Zhanglong; Ye, Tao; Hu, Keping; Zheng, Ming; Gao, Feng; Wang, Xianhua; Cheng, Heping

    2013-02-15

    Mitochondrial superoxide flashes reflect a quantal, bursting mode of reactive oxygen species (ROS) production that arises from stochastic, transient opening of the mitochondrial permeability transition pore (mPTP) in many types of cells and in living animals. However, the regulatory mechanisms and the exact nature of the flash-coupled mPTP remain poorly understood. Here we demonstrate a profound synergistic effect between mitochondrial Ca(2+) uniport and elevated basal ROS production in triggering superoxide flashes in intact cells. Hyperosmotic stress potently augmented the flash activity while simultaneously elevating mitochondrial Ca(2+) and ROS. Blocking mitochondrial Ca(2+) transport by knockdown of MICU1 or MCU, newly identified components of the mitochondrial Ca(2+) uniporter, or scavenging mitochondrial basal ROS markedly diminished the flash response. More importantly, whereas elevating Ca(2+) or ROS production alone was inefficacious in triggering the flashes, concurrent physiological Ca(2+) and ROS elevation served as the most powerful flash activator, increasing the flash incidence by an order of magnitude. Functionally, superoxide flashes in response to hyperosmotic stress participated in the activation of JNK and p38. Thus, physiological levels of mitochondrial Ca(2+) and ROS synergistically regulate stochastic mPTP opening and quantal ROS production in intact cells, marking the flash as a coincidence detector of mitochondrial Ca(2+) and ROS signals.

  3. Reactive Oxygen Species as Additional Determinants for Cytotoxicity of Clostridium difficile Toxins A and B

    PubMed Central

    Frädrich, Claudia; Beer, Lara-Antonia; Gerhard, Ralf

    2016-01-01

    Clostridium difficile infections can induce mild to severe diarrhoea and the often associated characteristic pseudomembranous colitis. Two protein toxins, the large glucosyltransferases TcdA and TcdB, are the main pathogenicity factors that can induce all clinical symptoms in animal models. The classical molecular mode of action of these homologous toxins is the inhibition of Rho GTPases by mono-glucosylation. Rho-inhibition leads to breakdown of the actin cytoskeleton, induces stress-activated and pro-inflammatory signaling and eventually results in apoptosis of the affected cells. An increasing number of reports, however, have documented further qualities of TcdA and TcdB, including the production of reactive oxygen species (ROS) by target cells. This review summarizes observations dealing with the production of ROS induced by TcdA and TcdB, dissects pathways that contribute to this phenomenon and speculates about ROS in mediating pathogenesis. In conclusion, ROS have to be considered as a discrete, glucosyltransferase-independent quality of at least TcdB, triggered by different mechanisms. PMID:26797634

  4. Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide.

    PubMed

    Korge, Paavo; Ping, Peipei; Weiss, James N

    2008-10-10

    Mitochondria are an important source of reactive oxygen species (ROS), implicated in ischemia/reperfusion injury. When isolated from ischemic myocardium, mitochondria demonstrate increased ROS production as a result of damage to electron transport complexes. To investigate the mechanisms, we studied effects of hypoxia/reoxygenation on ROS production by isolated energized heart mitochondria. ROS production, tracked using Fe(2+)-catalyzed, H(2)O(2)-dependent H(2)DCF oxidation or Amplex Red, was similar during normoxia and hypoxia but markedly increased during reoxygenation, in proportion to the duration of hypoxia. In contrast, if mitochondria were rapidly converted from normoxia to near-anoxia ([O(2)], <1 micromol/L), the increase in H(2)DCF oxidation rate during reoxygenation was markedly blunted. To elicit the robust increase in H(2)DCF oxidation rate during reoxygenation, hypoxia had to be severe enough to cause partial, but not complete, respiratory chain inhibition (as shown by partial dissipation of membrane potential and increased NADH autofluorescence). Consistent with its cardioprotective actions, nitric oxide ( O) abrogated increased H(2)DCF oxidation under these conditions, as well as attenuating ROS-induced increases in matrix [Fe(2+)] and aconitase inhibition caused by antimycin. Collectively, these results suggest that (1) hypoxia that is sufficient to cause partial respiratory inhibition is more damaging to mitochondria than near-anoxia; and (2) O suppresses ROS-induced damage to electron transport complexes, probably by forming O-Fe(2+) complexes in the presence of glutathione, which inhibit hydroxyl radical formation.

  5. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.

    PubMed

    Korge, Paavo; Calmettes, Guillaume; Weiss, James N

    2015-01-01

    Both extremes of redox balance are known to cause cardiac injury, with mounting evidence revealing that the injury induced by both oxidative and reductive stress is oxidative in nature. During reductive stress, when electron acceptors are expected to be mostly reduced, some redox proteins can donate electrons to O2 instead, which increases reactive oxygen species (ROS) production. However, the high level of reducing equivalents also concomitantly enhances ROS scavenging systems involving redox couples such as NADPH/NADP+ and GSH/GSSG. Here our objective was to explore how reductive stress paradoxically increases net mitochondrial ROS production despite the concomitant enhancement of ROS scavenging systems. Using recombinant enzymes and isolated permeabilized cardiac mitochondria, we show that two normally antioxidant matrix NADPH reductases, glutathione reductase and thioredoxin reductase, generate H2O2 by leaking electrons from their reduced flavoprotein to O2 when electron flow is impaired by inhibitors or because of limited availability of their natural electron acceptors, GSSG and oxidized thioredoxin. The spillover of H2O2 under these conditions depends on H2O2 reduction by peroxiredoxin activity, which may regulate redox signaling in response to endogenous or exogenous factors. These findings may explain how ROS production during reductive stress overwhelms ROS scavenging capability, generating the net mitochondrial ROS spillover causing oxidative injury. These enzymes could potentially be targeted to increase cancer cell death or modulate H2O2-induced redox signaling to protect the heart against ischemia/reperfusion damage.

  6. Correlation between cell migration and reactive oxygen species under electric field stimulation.

    PubMed

    Wu, Shang-Ying; Hou, Hsien-San; Sun, Yung-Shin; Cheng, Ji-Yen; Lo, Kai-Yin

    2015-09-01

    Cell migration is an essential process involved in the development and maintenance of multicellular organisms. Electric fields (EFs) are one of the many physical and chemical factors known to affect cell migration, a phenomenon termed electrotaxis or galvanotaxis. In this paper, a microfluidics chip was developed to study the migration of cells under different electrical and chemical stimuli. This chip is capable of providing four different strengths of EFs in combination with two different chemicals via one simple set of agar salt bridges and Ag/AgCl electrodes. NIH 3T3 fibroblasts were seeded inside this chip to study their migration and reactive oxygen species (ROS) production in response to different EF strengths and the presence of β-lapachone. We found that both the EF and β-lapachone level increased the cell migration rate and the production of ROS in an EF-strength-dependent manner. A strong linear correlation between the cell migration rate and the amount of intracellular ROS suggests that ROS are an intermediate product by which EF and β-lapachone enhance cell migration. Moreover, an anti-oxidant, α-tocopherol, was found to quench the production of ROS, resulting in a decrease in the migration rate.

  7. Hydrolase stabilization via entanglement in poly(propylene sulfide) nanoparticles: stability towards reactive oxygen species.

    PubMed

    Allen, Brett L; Johnson, Jermaine D; Walker, Jeremy P

    2012-07-27

    In the advancement of green syntheses and sustainable reactions, enzymatic biocatalysis offers extremely high reaction rates and selectivity that goes far beyond the reach of chemical catalysts; however, these enzymes suffer from typical environmental constraints, e.g. operational temperature, pH and tolerance to oxidative environments. A common hydrolase enzyme, diisopropylfluorophosphatase (DFPase, EC 3.1.8.2), has demonstrated a pronounced efficacy for the hydrolysis of a variety of substrates for potential toxin remediation, but suffers from the aforementioned limitations. As a means to enhance DFPase's stability in oxidative environments, enzymatic covalent immobilization within the polymeric matrix of poly(propylene sulfide) (PPS) nanoparticles was performed. By modifying the enzyme's exposed lysine residues via thiolation, DFPase is utilized as a comonomer/crosslinker in a mild emulsion polymerization. The resultant polymeric polysulfide shell acts as a 'sacrificial barrier' by first oxidizing to polysulfoxides and polysulfones, rendering DFPase in an active state. DFPase-PPS nanoparticles thus retain activity upon exposure to as high as 50 parts per million (ppm) of hypochlorous acid (HOCl), while native DFPase is observed as inactive at 500 parts per billion (ppb). This trend is also confirmed by enzyme-generated (chloroperoxidase (CPO), EC 1.11.1.10) reactive oxygen species (ROS) including both HOCl (3 ppm) and ClO(2) (100 ppm).

  8. Reactive oxygen species in Hevea brasiliensis latex and relevance to Tapping Panel Dryness.

    PubMed

    Zhang, Yi; Leclercq, Julie; Montoro, Pascal

    2016-11-29

    Environmental stress can lead to oxidative stress resulting from an increase in reactive oxygen species (ROS) and involves redox adjustments. Natural rubber is synthesized in laticifers, which is a non-photosynthetic tissue particularly prone to oxidative stress. This paper reviews the current state of knowledge on the ROS production and ROS-scavenging systems in laticifers. These regulations have been the subject of intense research into a physiological syndrome, called Tapping Panel Dryness (TPD), affecting latex production in Hevea brasiliensis In order to prevent TPD occurrence, monitoring thiol content appeared to be a crucial factor of latex diagnosis. Thiols, ascorbate and γ-tocotrienol are the major antioxidants in latex. They are involved in membrane protection from ROS and likely have an effect on the quality of raw rubber. Some transcription factors might play a role in the redox regulatory network in Hevea, in particular ethylene response factors, which have been the most intensively studied given the role of ethylene on rubber production. Current challenges for rubber research and development with regard to redox systems will involve improving antioxidant capacity using natural genetic variability.

  9. Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types.

    PubMed

    Andrews, Elizabeth S; Crain, Philip R; Fu, Yuqing; Howe, Daniel K; Dobson, Stephen L

    2012-01-01

    Heterologous transinfection with the endosymbiotic bacterium Wolbachia has been shown previously to induce pathogen interference phenotypes in mosquito hosts. Here we examine an artificially infected strain of Aedes polynesiensis, the primary vector of Wuchereria bancrofti, which is the causative agent of Lymphatic filariasis (LF) throughout much of the South Pacific. Embryonic microinjection was used to transfer the wAlbB infection from Aedes albopictus into an aposymbiotic strain of Ae. polynesiensis. The resulting strain (designated "MTB") experiences a stable artificial infection with high maternal inheritance. Reciprocal crosses of MTB with naturally infected wild-type Ae. polynesiensis demonstrate strong bidirectional incompatibility. Levels of reactive oxygen species (ROS) in the MTB strain differ significantly relative to that of the wild-type, indicating an impaired ability to regulate oxidative stress. Following a challenge with Brugia pahangi, the number of filarial worms achieving the infective stage is significantly reduced in MTB as compared to the naturally infected and aposymbiotic strains. Survivorship of MTB differed significantly from that of the wild-type, with an interactive effect between survivorship and blood feeding. The results demonstrate a direct correlation between decreased ROS levels and decreased survival of adult female Aedes polynesiensis. The results are discussed in relation to the interaction of Wolbachia with ROS production and antioxidant expression, iron homeostasis and the insect immune system. We discuss the potential applied use of the MTB strain for impacting Ae. polynesiensis populations and strategies for reducing LF incidence in the South Pacific.

  10. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress

    PubMed Central

    Hossain, M. Sazzad; Dietz, Karl-Josef

    2016-01-01

    Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g., the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS) generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH), alternative oxidase (AOX), the plastid terminal oxidase (PTOX) and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants. PMID:27242807

  11. Compartment-specific Control of Reactive Oxygen Species Scavenging by Antioxidant Pathway Enzymes.

    PubMed

    Dey, Swati; Sidor, Agnieszka; O'Rourke, Brian

    2016-05-20

    Oxidative stress arises from an imbalance in the production and scavenging rates of reactive oxygen species (ROS) and is a key factor in the pathophysiology of cardiovascular disease and aging. The presence of parallel pathways and multiple intracellular compartments, each having its own ROS sources and antioxidant enzymes, complicates the determination of the most important regulatory nodes of the redox network. Here we quantified ROS dynamics within specific intracellular compartments in the cytosol and mitochondria and determined which scavenging enzymes exert the most control over antioxidant fluxes in H9c2 cardiac myoblasts. We used novel targeted viral gene transfer vectors expressing redox-sensitive GFP fused to sensor domains to measure H2O2 or oxidized glutathione. Using genetic manipulation in heart-derived H9c2 cells, we explored the contribution of specific antioxidant enzymes to ROS scavenging and glutathione redox potential within each intracellular compartment. Our findings reveal that antioxidant flux is strongly dependent on mitochondrial substrate catabolism, with availability of NADPH as a major rate-controlling step. Moreover, ROS scavenging by mitochondria significantly contributes to cytoplasmic ROS handling. The findings provide fundamental information about the control of ROS scavenging by the redox network and suggest novel interventions for circumventing oxidative stress in cardiac cells.

  12. The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus

    SciTech Connect

    Pendergrass, Karl D.; Gwathmey, TanYa M.; Michalek, Ryan D.; Grayson, Jason M.; Chappell, Mark C.

    2009-06-26

    We and others have reported significant expression of the Ang II Type 1 receptor (AT1R) on renal nuclei; thus, the present study assessed the functional pathways and distribution of the intracellular AT1R on isolated nuclei. Ang II (1 nM) stimulated DCF fluorescence, an intranuclear indicator of reactive oxygen species (ROS), while the AT1R antagonist losartan or the NADPH oxidase (NOX) inhibitor DPI abolished the increase in ROS. Dual labeling of nuclei with antibodies against nucleoporin 62 (Nup62) and AT1R or the NADPH oxidase isoform NOX4 revealed complete overlap of the Nup62 and AT1R (99%) by flow cytometry, while NOX4 was present on 65% of nuclei. Treatment of nuclei with a PKC agonist increased ROS while the PKC inhibitor GF109203X or PI3 kinase inhibitor LY294002 abolished Ang II stimulation of ROS. We conclude that the Ang II-AT1R-PKC axis may directly influence nuclear function within the kidney through a redox sensitive pathway.

  13. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling.

    PubMed

    Sena, Laura A; Li, Sha; Jairaman, Amit; Prakriya, Murali; Ezponda, Teresa; Hildeman, David A; Wang, Chyung-Ru; Schumacker, Paul T; Licht, Jonathan D; Perlman, Harris; Bryce, Paul J; Chandel, Navdeep S

    2013-02-21

    It is widely appreciated that T cells increase glycolytic flux during activation, but the role of mitochondrial flux is unclear. Here, we have shown that mitochondrial metabolism in the absence of glucose metabolism is sufficient to support interleukin-2 (IL-2) induction. Furthermore, we used mice with reduced mitochondrial reactive oxygen species (mROS) production in T cells (T-Uqcrfs(-/-) mice) to show that mitochondria are required for T cell activation to produce mROS for activation of nuclear factor of activated T cells (NFAT) and subsequent IL-2 induction. These mice could not induce antigen-specific expansion of T cells in vivo, but Uqcrfs1(-/-) T cells retained the ability to proliferate in vivo under lymphopenic conditions. This suggests that Uqcrfs1(-/-) T cells were not lacking bioenergetically but rather lacked specific ROS-dependent signaling events needed for antigen-specific expansion. Thus, mitochondrial metabolism is a critical component of T cell activation through the production of complex III ROS.

  14. Mechanism regulating reactive oxygen species in tumor induced myeloid-derived suppressor cells1

    PubMed Central

    Corzo, Cesar A.; Cotter, Matthew J.; Cheng, Pingyan; Cheng, Fendong; Kusmartsev, Sergei; Sotomayor, Eduardo; Padhya, Tapan; McCaffrey, Thomas V.; McCaffrey, Judith C.; Gabrilovich, Dmitry I.

    2010-01-01

    Myeloid-derived suppressor cells (MDSC) are a major component of the immune suppressive network described in cancer and many other pathological conditions. Recent studies have demonstrated that one of the major mechanisms of MDSC-induced immune suppression is mediated by reactive oxygen species (ROS). However, the mechanism of this phenomenon remained unknown. In this study we observed a substantial up-regulation of ROS by MDSC in all of seven different tumor models and in patients with head and neck cancer. The increased ROS production by MDSC is mediated by up-regulated activity of NADPH oxidase (NOX2). MDSC from tumor-bearing mice had significantly higher expression of NOX2 subunits, primarily p47phox and gp91phox, compared to immature myeloid cells from tumor-free mice. Expression of NOX2 subunits in MDSC was controlled by the STAT3 transcription factor. In the absence of NOX2 activity, MDSC lost the ability to suppress T-cell responses and quickly differentiated into mature macrophages and dendritic cells. These findings expand our fundamental understanding of the biology of MDSC and may also open new opportunities for therapeutic regulation of these cells in cancer. PMID:19380816

  15. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells.

    PubMed

    Corzo, Cesar A; Cotter, Matthew J; Cheng, Pingyan; Cheng, Fendong; Kusmartsev, Sergei; Sotomayor, Eduardo; Padhya, Tapan; McCaffrey, Thomas V; McCaffrey, Judith C; Gabrilovich, Dmitry I

    2009-05-01

    Myeloid-derived suppressor cells (MDSC) are a major component of the immune suppressive network described in cancer and many other pathological conditions. Recent studies have demonstrated that one of the major mechanisms of MDSC-induced immune suppression is mediated by reactive oxygen species (ROS). However, the mechanism of this phenomenon remained unknown. In this study, we observed a substantial up-regulation of ROS by MDSC in all of seven different tumor models and in patients with head and neck cancer. The increased ROS production by MDSC is mediated by up-regulated activity of NADPH oxidase (NOX2). MDSC from tumor-bearing mice had significantly higher expression of NOX2 subunits, primarily p47(phox) and gp91(phox), compared with immature myeloid cells from tumor-free mice. Expression of NOX2 subunits in MDSC was controlled by the STAT3 transcription factor. In the absence of NOX2 activity, MDSC lost the ability to suppress T cell responses and quickly differentiated into mature macrophages and dendritic cells. These findings expand our fundamental understanding of the biology of MDSC and may also open new opportunities for therapeutic regulation of these cells in cancer.

  16. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: Modulation by antioxidants

    SciTech Connect

    Perez-de-Arce, Karen; Foncea, Rocio . E-mail: rfoncea@med.puc.cl; Leighton, Federico

    2005-12-16

    It has been proposed that homocysteine (Hcy)-induces endothelial dysfunction and atherosclerosis by generation of reactive oxygen species (ROS). A previous report has shown that Hcy promotes mitochondrial damage. Considering that oxidative stress can affect mitochondrial biogenesis, we hypothesized that Hcy-induced ROS in endothelial cells may lead to increased mitochondrial biogenesis. We found that Hcy-induced ROS (1.85-fold), leading to a NF-{kappa}B activation and increase the formation of 3-nitrotyrosine. Furthermore, expression of the mitochondrial biogenesis factors, nuclear respiratory factor-1 and mitochondrial transcriptio