Zinchuk, V V; Shul'ga, E V; Guliaĭ, I E
2010-01-01
We aimed to study the erythropoietin influence on oxygen transport function of blood and prooxidant/antioxidant balance in rabbits under lipopolysaccharide injection. Recombinant human erythropoietin-alpha was administered intraperitoneally in the dose 1000 U/kg 30 minutes before intravenous injection of 500 mkg/kg lipopolysaccharide from E. coli. After 12 hours, blood samples were collected for the assessment of oxygen transport function of blood; nitrate/nitrite levels and tissue samples were collected for measurement of conjugated dienes, malondialdehyde, alpha-tocopherol and catalase. Erythropoietin improves parameters of oxygen transport function of blood, increases hemoglobin-oxygen affinity through the NO-dependent mechanism, reduces activity of free radical processes, and increases antioxidant protection under lipopolysaccharide injection.
[Hemoglobin oxygen transport capacity in surgical endotoxicosis ].
Poryadin, G V; Vlasov, A P; Trofimov, V A; Vlasova, T I; Kamkina, O V; Grigoryev, A G; Vlasov, P A
2016-01-01
In surgical endointoxication hemoglobin oxygen transport capacity of red blood cells (hemoglobin affinity ligands: the ability to bind and release ligands) is reduced and is associated with the severity of endogenous intoxication. Violation of oxygen transport function of hemoglobin at endogenous intoxication is associated with conformational changes of a biomolecule, and its possible influence on reactive oxygen species, which confirmed in experiments in vitro: under the influence of oxygen-iron ascorbate ability of hemoglobin deteriorates. Largely similar structural and functional changes in hemoglobin occur in patients with surgical endotoxicosis.
Skopets, A A; Lomivorotov, V V; Karakhalis, N B; Makarov, A A; Duman'ian, E S; Lomivorotova, L V
2009-01-01
The purpose of the study was to evaluate the efficiency of oxygen-transporting function of the circulatory system under sevoflurane anesthesia during myocardial revascularization operations under extracorporeal circulation. Twenty-five patients with coronary heart disease were examined. Mean blood pressure, heart rate, cardiac index, total peripheral vascular resistance index, pulmonary pressure, pulmonary wedge pressure, and central venous pressure were measured. Arterial and mixed venous blood oxygen levels, oxygen delivery and consumption index, arteriovenous oxygen difference, and glucose and lactate concentrations were calculated. The study has demonstrated that sevoflurane is an effective and safe anesthetic for myocardial revascularization operations in patients with coronary heart disease. The use of sevoflurane contributes to steady-state oxygen-transporting function of the circulatory system at all surgical stages.
OXYGEN TRANSPORT IN THE MICROCIRCULATION AND ITS REGULATION
Pittman, Roland N.
2012-01-01
Cells require energy to carry out their functions and they typically use oxidative phosphorylation to generate the needed ATP. Thus, cells have a continuous need for oxygen which they receive by diffusion from the blood through the interstitial fluid. The circulatory system pumps oxygen-rich blood through a network of increasingly minute vessels, the microcirculation. The structure of the microcirculation is such that all cells have at least one nearby capillary for diffusive exchange of oxygen and red blood cells release the oxygen bound to hemoglobin as they traverse capillaries. This review focuses first on the historical development of techniques to measure oxygen at various sites in the microcirculation, including the blood, interstitium and cells. Next, approaches are described as to how these techniques have been employed to make discoveries about different aspects of oxygen transport. Finally, ways in which oxygen might participate in the regulation of blood flow toward matching oxygen supply to oxygen demand is discussed. Overall, the transport of oxygen to the cells of the body is one of the most critical functions of the cardiovascular system and it is in the microcirculation where the final local determinants of oxygen supply, oxygen demand and their regulation are decided. PMID:23025284
McClintock, David S.; Santore, Matthew T.; Lee, Vivian Y.; Brunelle, Joslyn; Budinger, G. R. Scott; Zong, Wei-Xing; Thompson, Craig B.; Hay, Nissim; Chandel, Navdeep S.
2002-01-01
The mechanisms underlying cell death during oxygen deprivation are unknown. We report here a model for oxygen deprivation-induced apoptosis. The death observed during oxygen deprivation involves a decrease in the mitochondrial membrane potential, followed by the release of cytochrome c and the activation of caspase-9. Bcl-XL prevented oxygen deprivation-induced cell death by inhibiting the release of cytochrome c and caspase-9 activation. The ability of Bcl-XL to prevent cell death was dependent on allowing the import of glycolytic ATP into the mitochondria to generate an inner mitochondrial membrane potential through the F1F0-ATP synthase. In contrast, although activated Akt has been shown to inhibit apoptosis induced by a variety of apoptotic stimuli, it did not prevent cell death during oxygen deprivation. In addition to Bcl-XL, cells devoid of mitochondrial DNA (ρ° cells) that lack a functional electron transport chain were resistant to oxygen deprivation. Further, murine embryonic fibroblasts from bax−/− bak−/− mice did not die in response to oxygen deprivation. These data suggest that when subjected to oxygen deprivation, cells die as a result of an inability to maintain a mitochondrial membrane potential through the import of glycolytic ATP. Proapoptotic Bcl-2 family members and a functional electron transport chain are required to initiate cell death in response to oxygen deprivation. PMID:11739725
[Sauna effect on blood oxygen transport function and proxidant/antioxidant balance in youths].
Zinchuk, V V; Zhad'ko, D D
2012-01-01
There was investigated sauna effect on blood oxygen transport function and proxidant/antioxidant balance in 18 to 22 years old males. Subjects being tested underwent thermal exposure once per week over a period of 5 months (20 procedures). There were two exposure over the course of sauna bathing (temperature 85-90 degrees C, humidity 10-15%): the first exposure lasted for 5 minutes and the second one for 10 minutes. Dry air sauna in youth's leads to respiratory alkalosis, increases pO2, decreases haemoglobin binding capacity to venous blood oxygen thus facilitating oxygen transport into body tissues. Single sauna visit results in oxidative stress (augmentation of free radical processes and deterioration of antioxidant defence mechanisms), while its manifestations being diminished after multiple thermal exposures. Increase in nitrogen monoxide formation being observed might matter for the modification of the oxygen dependent processes of the human body.
Boĭko, N V; Kolmakova, T S; Bykova, V V
2010-01-01
This work was designed to study the development of compensatory processes during posthemorrhagic anemia in 82 patients presenting with nasal bleeding (NB). The patients were allocated to three groups. Group 1 included patients with isolated episodes of NB, group 2 was comprised of patients in a moderately severe condition with recurring NB, group 3 was composed of patients in a severe condition with recurring NB. The general medical examination was supplemented by the evaluation of factors maintaining the oxygen-transporting function of the blood (hemoglobin affinity for oxygen, erythrocyte content of 2.3-diphosphoglyceric (2.3-DPG) acid as the principal modulator of hemoglobin affinity for oxygen) and indicators of energy (carbohydrate) metabolism in plasma and erythrocytes (glucose-6-phosphate dehydrogenase (G-6-PDH) activity, pyruvic acid (PA), lactate and lactate dehydrogenase (LDH) levels). Changes of biochemical parameters in patients presenting with incidental episodes of NB (group 1) suggested a compensatory increase in functional potential of the blood oxygen-transporting system. Patients of group 2 showed evidence of development of the modulation-type adaptive and compensatory mechanisms. Those of group 3 experienced a decrease of the 2.3-DPH level in erythrocytes and enhancement of hemoglobin affinity for oxygen which slowed down its uptake by the tissues. Tissue hypoxia and accompanying acidosis aggravated the impairment of gas-transporting function of the blood. In is concluded that patients of group 3 are at risk of uncompensated hypoxic hypoxia associated with the unfavourable changes in the oxygen-transporting function and the impairment of the functional potential of erythrocytes. Taken together, these untoward factors may be responsible for the severe clinical conditions of these patients.
Modeling oxygen transport in human placental terminal villi.
Gill, J S; Salafia, C M; Grebenkov, D; Vvedensky, D D
2011-12-21
Oxygen transport from maternal blood to fetal blood is a primary function of the placenta. Quantifying the effectiveness of this exchange remains key in identifying healthy placentas because of the great variability in capillary number, caliber and position within the villus-even in placentas deemed clinically "normal". By considering villous membrane to capillary membrane transport, stationary oxygen diffusion can be numerically solved in terminal villi represented by digital photomicrographs. We aim to provide a method to determine whether and if so to what extent diffusional screening may operate in placental villi. Segmented digital photomicrographs of terminal villi from the Pregnancy, Infection and Nutrition study in North Carolina 2002 are used as a geometric basis for solving the stationary diffusion equation. Constant maternal villous oxygen concentration and perfect fetal capillary membrane absorption are assumed. System efficiency is defined as the ratio of oxygen flux into a villus and the sum of the capillary areas contained within. Diffusion screening is quantified by comparing numerical and theoretical maximum oxygen fluxes. A strong link between various measures of villous oxygen transport efficiency and the number of capillaries within a villus is established. The strength of diffusional screening is also related to the number of capillaries within a villus. Our measures of diffusional efficiency are shown to decrease as a function of the number of capillaries per villus. This low efficiency, high capillary number relationship supports our hypothesis that diffusional screening is present in this system. Oxygen transport per capillary is reduced when multiple capillaries compete for diffusing oxygen. A complete picture of oxygen fluxes, capillary and villus areas is obtainable and presents an opportunity for future work. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Simple Question to Think about When Considering the Hemoglobin Function
ERIC Educational Resources Information Center
Ruiz-Larrea, M. Begona
2002-01-01
Hemoglobin is a complex protein formed by various subunits interacting with each other. These noncovalent interactions, quaternary structure, are responsible for hemoglobin functioning as an excellent oxygen transporter, loading up with oxygen in the lungs and delivering it to tissues, where the oxygen pressure is lower. The communications between…
NASA Astrophysics Data System (ADS)
Yang, Jing; Youssef, Mostafa; Yildiz, Bilge
2018-01-01
In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.
Spin transport in oxygen adsorbed graphene nanoribbon
NASA Astrophysics Data System (ADS)
Kumar, Vipin
2018-04-01
The spin transport properties of pristine graphene nanoribbons (GNRs) have been most widely studied using theoretical and experimental tools. The possibilities of oxidation of fabricated graphene based nano electronic devices may change the device characteristics, which motivates to further explore the properties of graphene oxide nanoribbons (GONRs). Therefore, we present a systematic computational study on the spin polarized transport in surface oxidized GNR in antiferromagnetic (AFM) spin configuration using density functional theory combined with non-equilibrium Green's function (NEGF) method. It is found that the conductance in oxidized GNRs is significantly suppressed in the valance band and the conduction band. A further reduction in the conductance profile is seen in presence of two oxygen atoms on the ribbon plane. This change in the conductance may be attributed to change in the surface topology of the ribbon basal plane due to presence of the oxygen adatoms, where the charge transfer take place between the ribbon basal plane and the oxygen atoms.
Milosh, T S; Maksimovich, N E
2014-01-01
Experiments on a group of 74 pregnant rats upon intramuscular introduction of E. coli lipopolysaccharides during pregnancy revealed the correction effect of taurine on the blood oxygen transport function, prooxidant - antioxidant status, and vasoactive characteristics of vascular endothelium.
Barrett, Matthew JP; Suresh, Vinod
2013-01-01
Neural activation triggers a rapid, focal increase in blood flow and thus oxygen delivery. Local oxygen consumption also increases, although not to the same extent as oxygen delivery. This ‘uncoupling' enables a number of widely-used functional neuroimaging techniques; however, the physiologic mechanisms that govern oxygen transport under these conditions remain unclear. Here, we explore this dynamic process using a new mathematical model. Motivated by experimental observations and previous modeling, we hypothesized that functional recruitment of capillaries has an important role during neural activation. Using conventional mechanisms alone, the model predictions were inconsistent with in vivo measurements of oxygen partial pressure. However, dynamically increasing net capillary permeability, a simple description of functional recruitment, led to predictions consistent with the data. Increasing permeability in all vessel types had the same effect, but two alternative mechanisms were unable to produce predictions consistent with the data. These results are further evidence that conventional models of oxygen transport are not sufficient to predict dynamic experimental data. The data and modeling suggest that it is necessary to include a mechanism that dynamically increases net vascular permeability. While the model cannot distinguish between the different possibilities, we speculate that functional recruitment could have this effect in vivo. PMID:23673433
Barts, Nicholas; Greenway, Ryan; Passow, Courtney N; Arias-Rodriguez, Lenin; Kelley, Joanna L; Tobler, Michael
2018-04-01
Hydrogen sulfide (H 2 S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H 2 S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H 2 S-along with related lineages from non-sulfidic environments-to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H 2 S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H 2 S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H 2 S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H 2 S-rich environments are not necessarily repeatable across replicated lineages.
Safaeian, Navid; David, Tim
2013-10-01
The oxygen exchange and correlation between the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) in the cortical capillary levels for normal and pathologic brain functions remain the subject of debate. A 3D realistic mesoscale model of the cortical capillary network (non-tree like) is constructed using a random Voronoi tessellation in which each edge represents a capillary segment. The hemodynamics and oxygen transport are numerically simulated in the model, which involves rheological laws in the capillaries, oxygen diffusion, and non-linear binding of oxygen to hemoglobin, respectively. The findings show that the cerebral hypoxia due to a significant decreased perfusion (as can occur in stroke) can be avoided by a moderate reduction in oxygen demand. Oxygen extraction fraction (OEF) can be an important indicator for the brain oxygen metabolism under normal perfusion and misery-perfusion syndrome (leading to ischemia). The results demonstrated that a disproportionately large increase in blood supply is required for a small increase in the oxygen demand, which, in turn, is strongly dependent on the resting OEF. The predicted flow-metabolism coupling in the model supports the experimental studies of spatiotemporal stimulations in humans by positron emission tomography and functional magnetic resonance imaging.
Safaeian, Navid; David, Tim
2013-01-01
The oxygen exchange and correlation between the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) in the cortical capillary levels for normal and pathologic brain functions remain the subject of debate. A 3D realistic mesoscale model of the cortical capillary network (non-tree like) is constructed using a random Voronoi tessellation in which each edge represents a capillary segment. The hemodynamics and oxygen transport are numerically simulated in the model, which involves rheological laws in the capillaries, oxygen diffusion, and non-linear binding of oxygen to hemoglobin, respectively. The findings show that the cerebral hypoxia due to a significant decreased perfusion (as can occur in stroke) can be avoided by a moderate reduction in oxygen demand. Oxygen extraction fraction (OEF) can be an important indicator for the brain oxygen metabolism under normal perfusion and misery-perfusion syndrome (leading to ischemia). The results demonstrated that a disproportionately large increase in blood supply is required for a small increase in the oxygen demand, which, in turn, is strongly dependent on the resting OEF. The predicted flow-metabolism coupling in the model supports the experimental studies of spatiotemporal stimulations in humans by positron emission tomography and functional magnetic resonance imaging. PMID:23921901
Model of the transient neurovascular response based on prompt arterial dilation
Kim, Jung Hwan; Khan, Reswanul; Thompson, Jeffrey K; Ress, David
2013-01-01
Brief neural stimulation results in a stereotypical pattern of vascular and metabolic response that is the basis for popular brain-imaging methods such as functional magnetic resonance imagine. However, the mechanisms of transient oxygen transport and its coupling to cerebral blood flow (CBF) and oxygen metabolism (CMRO2) are poorly understood. Recent experiments show that brief stimulation produces prompt arterial vasodilation rather than venous vasodilation. This work provides a neurovascular response model for brief stimulation based on transient arterial effects using one-dimensional convection–diffusion transport. Hemoglobin oxygen dissociation is included to enable predictions of absolute oxygen concentrations. Arterial CBF response is modeled using a lumped linear flow model, and CMRO2 response is modeled using a gamma function. Using six parameters, the model successfully fit 161/166 measured extravascular oxygen time courses obtained for brief visual stimulation in cat cerebral cortex. Results show how CBF and CMRO2 responses compete to produce the observed features of the hemodynamic response: initial dip, hyperoxic peak, undershoot, and ringing. Predicted CBF and CMRO2 response amplitudes are consistent with experimental measurements. This model provides a powerful framework to quantitatively interpret oxygen transport in the brain; in particular, its intravascular oxygen concentration predictions provide a new model for fMRI responses. PMID:23756690
Iankovskaia, A V; Zinchuk, M A
2007-01-01
Parameters of oxygen-transport function of the blood and function of the endothelium were studied in 49 patients with stable angina pectoris of I and II functional class with or without concomitant 2nd degree arterial hypertension. All patients received pathogenetic therapy. Signs of endothelial dysfunction were found in group III in which endothelium dependent vasodilation (8.22 +/- 1.71%) was 73.4% (p1 < 0.001) lower than in control group and 47.2% (p3 < 0.05) lower than in patients with class I angina. In all groups baseline content of nitrates/nitrites was lower. Main parameters of acid-base balance were lowered in patients of group III evidencing for emergence of signs of metabolic acidosis and hypoxia. Lowering of hemoglobin affinity to oxygen and its rise after therapy was also revealed. Maximal lowering of this parameter (-10.2%, p2 < 0.05) reflecting shift of oxyhemoglobin dissociation curve to the right was noted in group II. Endothelium can participate in formation of these disturbances because its dysfunction is associated with deranged release of NO in various parts of vascular tree. This affects formation of various NO-derivatives of hemoglobin and oxygen transport system of the blood.
NASA Astrophysics Data System (ADS)
Hou, Chen
Space-filling fractal surfaces play a fundamental role in how organisms function at various levels and in how structure determines function at different levels. In this thesis, we develop a quantitative theory of oxygen transport to and across the surface of the highly branched, space-filling system of alveoli, the fundamental gas exchange unit (acinar airways), in the human lung. Oxygen transport in the acinar airways is by diffusion, and we treat the two steps---diffusion through the branched airways, and transfer across the alveolar membranes---as a stationary diffusion-reaction problem, taking into account that there may be steep concentration gradients between the entrance and remote alveoli (screening). We develop a renormalization treatment of this screening effect and derive an analytic formula for the oxygen current across the cumulative alveolar membrane surface, modeled as a fractal, space-filling surface. The formula predicts the current from a minimum of morphological data of the acinus and appropriate values of the transport parameters, through a number of power laws (scaling laws). We find that the lung at rest operates near the borderline between partial screening and no screening; that it switches to no screening under exercise; and that the computed currents agree with measured values within experimental uncertainties. From an analysis of the computed current as a function of membrane permeability, we find that the space-filling structure of the gas exchanger is simultaneously optimal with respect to five criteria. The exchanger (i) generates a maximum oxygen current at minimum permeability; (ii) 'wastes' a minimum of surface area; (iii) maintains a minimum residence time of oxygen in the acinar airways; (iv) has a maximum fault tolerance to loss of permeability; and (v) generates a maximum current increase when switching from rest to exercise.
Optimisation of oxygen ion transport in materials for ceramic membrane devices.
Kilner, J A
2007-01-01
Oxygen transport in ceramic oxide materials has received much attention over the past few decades. Much of this interest has stemmed from the desire to construct high temperature electrochemical devices for energy conversion, an example being the solid oxide fuel cell. In order to achieve high performance for these devices, insights are needed in how to achieve optimum performance from the functional components such as the electrolytes and electrodes. This includes the optimisation of oxygen transport through the crystal lattice of electrode and electrolyte materials and across the homogeneous (grain boundary) and heterogeneous interfaces that exist in real devices. Strategies are discussed for the optimisation of these quantities and current problems in the characterisation of interfacial transport are explored.
Matiushichev, V B; Shamratova, V G; Krapivko, Iu K
2009-12-01
Factor analysis was used to study the pattern of relationships of a number of hematological parameters in clinically healthy young subjects and in patients with moderate anemia. The level of total hemoglobin and the concentration of red blood cells were ascertained to control blood oxygen-transporting function in not full measure and these might be referred to as basic characteristics only conventionally. To clarify the picture, these criteria should be supplemented by the information on other parameters. It is concluded that the introduction of the ratio of a number of hemoglobin derivatives, blood oxygen regimen and acid-base balance can substantially increase the validity of clinical opinions as to this blood function.
Nitrite transport into pig erythrocytes and its potential biological role.
Jensen, F B
2005-07-01
To study nitrite transport and its oxygenation dependency in pig erythrocytes, as this is fundamental to the possible participation of nitrite in blood flow regulation via its reduction to nitric oxide by deoxygenated haemoglobin (Hb). Pig red blood cells (RBCs) were tonometer-equilibrated to physiological pCO2 in oxygenated and deoxygenated states. Nitrite was added and the kinetics of NO2- influx and methaemoglobin (metHb) formation were assessed at variable temperature and haematocrit. Nitrite quickly permeated and equilibrated across the membrane, and then continued to enter RBCs as a consequence of its intracellular removal (via reactions with Hb to form nitrate and metHb in oxygenated cells, and NO and metHb in deoxygenated cells). The membrane permeation as such showed little oxygenation dependency, but as metHb formation was significantly higher in oxygenated than deoxygenated RBCs, nitrite transport tended to be largest into oxygenated RBCs. This contrasts with a preferential permeation of deoxygenated RBCs in some fish species. Nitrite transport showed low temperature sensitivity but was speeded up at low haematocrit via more rapid intracellular nitrite removal (metHb formation). Nitrite influx was not affected by inhibitors of facilitated diffusion (DIDS, phloretin and PCMB) and may occur via conductive transport. Extracellular pH was stable during nitrite transport. Nitrite extensively permeates both oxygenated and deoxygenated pig RBCs, which may enable a dual function of nitrite entry: viz. conversion to NO at low pO2 to promote blood flow and detoxification to non-toxic nitrate at inappropriate high nitrite levels.
Wrobeln, Anna; Schlüter, Klaus D; Linders, Jürgen; Zähres, Manfred; Mayer, Christian; Kirsch, Michael; Ferenz, Katja B
2017-06-01
The aim of this study was to prove whether albumin-derived perfluorocarbon-based nanoparticles (capsules) can operate as a novel artificial oxygen carrier in a rat Langendorff-heart perfusion model. Hearts perfused with capsules showed increased left ventricular pressure and rate pressure product compared to hearts perfused with pure Krebs-Henseleit (KH)-buffer. The capsules prevented the myocardium from functional fail when in their absence a noxious ischemia was observed. Capsules did not change rheological properties of KH-buffer and could repeatedly reload with oxygen. This albumin-derived perfluorocarbon-based artificial oxygen carrier preserved the function of rat hearts due to the transport of oxygen in a satisfactory manner. Because of these positive results, the functionality of the applied capsules should be verified in living animals.
Computational modeling of the structure-function relationship in human placental terminal villi.
Plitman Mayo, R; Olsthoorn, J; Charnock-Jones, D S; Burton, G J; Oyen, M L
2016-12-08
Placental oxygen transport takes place at the final branches of the villous tree and is dictated by the relative arrangement of the maternal and fetal circulations. Modeling techniques have failed to accurately assess the structure-function relationship in the terminal villi due to the geometrical complexity. Three-dimensional blood flow and oxygen transport was modeled in four terminal villi reconstructed from confocal image stacks. The blood flow was analyzed along the center lines of capillary segments and the effect of the variability in capillary diameter, tortuosity and branching was investigated. Additionally, a validation study was performed to corroborate the simulation results. The results show how capillary variations impact motion of the fetal blood, and how their bends and dilatations can decelerate the flow by up to 80%. Vortical flow is also demonstrated not to develop in the fetal capillaries. The different geometries are shown to dictate the transport of gases with differences of over 100% in the oxygen flux between samples. Capillary variations are key for efficient oxygen uptake by the fetus; they allow the blood to decelerate where the villous membrane is thinnest allowing for a better oxygenation, but also by reducing the vessel diameter they carry the oxygenated blood away fast. The methodology employed herein could become a platform to simulate complicated in-vivo and in-vitro scenarios of pregnancy complications. Copyright © 2016 Elsevier Ltd. All rights reserved.
The environmental impact of the Glostavent® anesthetic machine.
Eltringham, Roger J; Neighbour, Robert C
2015-06-01
Because anesthetic machines have become more complex and more expensive, they have become less suitable for use in the many isolated hospitals in the poorest countries in the world. In these situations, they are frequently unable to function at all because of interruptions in the supply of oxygen or electricity and the absence of skilled technicians for maintenance and servicing. Despite these disadvantages, these machines are still delivered in large numbers, thereby expending precious resources without any benefit to patients. The Glostavent was introduced primarily to enable an anesthetic service to be delivered in these difficult circumstances. It is smaller and less complex than standard anesthetic machines and much less expensive to produce. It combines a drawover anesthetic system with an oxygen concentrator and a gas-driven ventilator. It greatly reduces the need for the purchase and transport of cylinders of compressed gases, reduces the impact on the environment, and enables considerable savings. Cylinder oxygen is expensive to produce and difficult to transport over long distances on poor roads. Consequently, the supply may run out. However, when using the Glostavent, oxygen is normally produced at a fraction of the cost of cylinders by the oxygen concentrator, which is an integral part of the Glostavent. This enables great savings in the purchase and transport cost of oxygen cylinders. If the electricity fails and the oxygen concentrator ceases to function, oxygen from a reserve cylinder automatically provides the pressure to drive the ventilator and oxygen for the breathing circuit. Consequently, economy is achieved because the ventilator has been designed to minimize the amount of driving gas required to one-seventh of the patient's tidal volume. Additional economies are achieved by completely eliminating spillage of oxygen from the breathing system and by recycling the driving gas into the breathing system to increase the Fraction of Inspired Oxygen (FIO2) at no extra cost. Savings also are accrued when using the drawover breathing system as the need for nitrous oxide, compressed air, and soda lime are eliminated. The Glostavent enables the administration of safe anesthesia to be continued when standard machines are unable to function and can do so with minimal harm to the environment.
Cloned Hemoglobin Genes Enhance Growth Of Cells
NASA Technical Reports Server (NTRS)
Khosla, Chaitan; Bailey, James E.
1991-01-01
Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.
On optima: the case of myoglobin-facilitated oxygen diffusion.
Wittenberg, Jonathan B
2007-08-15
The process of myoglobin/leghemoglobin-facilitated oxygen diffusion is adapted to function in different environments in diverse organisms. We enquire how the functional parameters of the process are optimized in particular organisms. The ligand-binding properties of the proteins, myoglobin and plant symbiotic hemoglobins, we discover, suggest that they have been adapted under genetic selection pressure for optimal performance. Since carrier-mediated oxygen transport has probably evolved independantly many times, adaptation of diverse proteins for a common functionality exemplifies the process of convergent evolution. The progenitor proteins may be built on the myoglobin scaffold or may be very different.
2,3-Diphosphoglycerate: its role in health and disease.
Juel, R
1979-01-01
2,3-Diphosphoglycerate (2,3-DPG) was first discovered and isolated in 1925. However, it was not until 1967 that the function of 2,3-DPG was explained. This resulted in multiple research projects devoted to elucidating the mechanism by which 2,3-DPG exerts it effect on the oxygen affinity of hemoglobin. In addition, a vast amount of research has been devoted to assessing the role of 2,3-DPG in oxygen transport in various physiological and pathophysiological states. In many instances, the results of this research have produced conflicting data which have dampened the initial enthusiasm which followed the discovery of the function of 2,3-DPG. However, much of this conflicting data can be explained by the fact that 2,3-DPG is only one of a number of factors influencing the transport of oxygen to the tissues. Several of these factors influence oxygen transport independently as well as by altering the synthesis of 2,3-DPG and modifying its effect on hemoglobin. In spite of the conflicting results, the overall data gathered thus far appears to be sound enough to warrant the extensive research now being done, particularly in the area of blood storage and transfusion therapy.
Oxygen sensitivity of mitochondrial function in rat arterial chemoreceptor cells
Buckler, Keith J; Turner, Philip J
2013-01-01
The mechanism of oxygen sensing in arterial chemoreceptors is unknown but has often been linked to mitochondrial function. A common criticism of this hypothesis is that mitochondrial function is insensitive to physiological levels of hypoxia. Here we investigate the effects of hypoxia (down to 0.5% O2) on mitochondrial function in neonatal rat type-1 cells. The oxygen sensitivity of mitochondrial [NADH] was assessed by monitoring autofluorescence and increased in hypoxia with a P50 of 15 mm Hg (1 mm Hg = 133.3 Pa) in normal Tyrode or 46 mm Hg in Ca2+-free Tyrode. Hypoxia also depolarised mitochondrial membrane potential (ψm, measured using rhodamine 123) with a P50 of 3.1, 3.3 and 2.8 mm Hg in normal Tyrode, Ca2+-free Tyrode and Tyrode containing the Ca2+ channel antagonist Ni2+, respectively. In the presence of oligomycin and low carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP; 75 nm) ψm is maintained by electron transport working against an artificial proton leak. Under these conditions hypoxia depolarised ψm/inhibited electron transport with a P50 of 5.4 mm Hg. The effects of hypoxia upon cytochrome oxidase activity were investigated using rotenone, myxothiazol, antimycin A, oligomycin, ascorbate and the electron donor tetramethyl-p-phenylenediamine. Under these conditions ψm is maintained by complex IV activity alone. Hypoxia inhibited cytochrome oxidase activity (depolarised ψm) with a P50 of 2.6 mm Hg. In contrast hypoxia had little or no effect upon NADH (P50= 0.3 mm Hg), electron transport or cytochrome oxidase activity in sympathetic neurons. In summary, type-1 cell mitochondria display extraordinary oxygen sensitivity commensurate with a role in oxygen sensing. The reasons for this highly unusual behaviour are as yet unexplained. PMID:23671162
Electrochemical Reduction of Dissolved Oxygen in Alkaline, Solid Polymer Electrolyte Films.
Novitski, David; Kosakian, Aslan; Weissbach, Thomas; Secanell, Marc; Holdcroft, Steven
2016-11-30
Mass transport of oxygen through an ionomer contained within the cathode catalyst layer in an anion exchange membrane fuel cell is critical for a functioning fuel cell, yet is relatively unexplored. Moreover, because water is a reactant in the oxygen reduction reaction (ORR) in alkaline media, an adequate supply of water is required. In this work, ORR mass transport behavior is reported for methylated hexamethyl-p-terphenyl polymethylbenzimidazoles (HMT-PMBI), charge balanced by hydroxide ions (IEC from 2.1 to 2.5 mequiv/g), and commercial Fumatec FAA-3 membranes. Electrochemical mass transport parameters are determined by potential step chronoamperometry using a Pt microdisk solid-state electrochemical cell, in air at 60 °C, with relative humidity controlled between 70% and 98%. The oxygen diffusion coefficient (D bO2 ), oxygen concentration (c bO2 ), and oxygen permeability (D bO2 ·c bO2 ) were obtained by nonlinear curve fitting of the current transients using the Shoup-Szabo equation. Mass transport parameters are correlated to water content of the ionomer membrane. It is found that the oxygen diffusion coefficients decreased by 2 orders of magnitude upon reducing the water content of the ionomer membrane by lowering the relative humidity. The limitation of the Shoup-Szabo equation for extracting ORR mass transport parameters using thin ionomer films was evaluated by numerical modeling of the current transients, which revealed that a significant discrepancy (up to 29% under present conditions) was evident for highly hydrated membranes for which the oxygen diffusion coefficient was largest, and in which the oxygen depletion region reached the ionomer/gas interface during the chronoamperometric analysis.
Lücker, Adrien; Secomb, Timothy W.; Weber, Bruno; Jenny, Patrick
2016-01-01
Objective Oxygen transport to parenchymal cells occurs mainly at the microvascular level, and depends on convective red blood cell (RBC) flux, which is proportional in an individual capillary to the product of capillary hematocrit and red blood cell velocity. This study investigates the relative influence of these two factors on tissue oxygen partial pressure (Po2). Methods A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity and flow on tissue oxygenation around capillaries. Predicted tissue Po2 levels are compared with a detailed computational model. Results Hematocrit is shown to have a larger influence on tissue Po2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained and the discrepancies are explained. Significant dependence of mass transfer coefficients on RBC velocity at low hematocrit is demonstrated. Conclusions For a given RBC flux in a capillary, the Po2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing intravascular resistance to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as occur in functional hyperemia in the brain. PMID:27893186
Lücker, Adrien; Secomb, Timothy W; Weber, Bruno; Jenny, Patrick
2017-04-01
Oxygen transport to parenchymal cells occurs mainly at the microvascular level and depends on convective RBC flux, which is proportional in an individual capillary to the product of capillary hematocrit and RBC velocity. This study investigates the relative influence of these two factors on tissue PO 2 . A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity, and RBC flow on tissue oxygenation around capillaries. Predicted tissue PO 2 levels are compared with a detailed computational model. Hematocrit is shown to have a larger influence on tissue PO 2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained, and the discrepancies are explained. Significant dependence of MTCs on RBC velocity at low hematocrit is demonstrated. For a given RBC flux in a capillary, the PO 2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing IVR to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as those that occur in functional hyperemia in the brain. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Roy, Rajarshi; Thapa, Ranjit; Chakrabarty, Soubhik; Jha, Arunava; Midya, Priyanka R.; Kumar, E. Mathan; Chattopadhyay, Kalyan K.
2017-06-01
Here we report, structural and electrical transport properties of reduced graphene oxide as a function of oxygen bonding configuration. We find that mainly epoxy (Csbnd Osbnd C) and carbonyl (Cdbnd O) functional groups remain as major residual components after reduction using three different reducing agents. We calculate the band structure in the presence of epoxy and carbonyl groups and defects. Finally, we calculate the theoretical band mobility and find that it is less for the carbonyl with epoxy system. We correlate the distortion of linear dispersion and opening of bandgap at K-point with conductance for different graphene system in presence of oxygen moieties.
Foley, Brian M; Hernández, Sandra C; Duda, John C; Robinson, Jeremy T; Walton, Scott G; Hopkins, Patrick E
2015-08-12
The high mobility exhibited by both supported and suspended graphene, as well as its large in-plane thermal conductivity, has generated much excitement across a variety of applications. As exciting as these properties are, one of the principal issues inhibiting the development of graphene technologies pertains to difficulties in engineering high-quality metal contacts on graphene. As device dimensions decrease, the thermal and electrical resistance at the metal/graphene interface plays a dominant role in degrading overall performance. Here we demonstrate the use of a low energy, electron-beam plasma to functionalize graphene with oxygen, fluorine, and nitrogen groups, as a method to tune the thermal and electrical transport properties across gold-single layer graphene (Au/SLG) interfaces. We find that while oxygen and nitrogen groups improve the thermal boundary conductance (hK) at the interface, their presence impairs electrical transport leading to increased contact resistance (ρC). Conversely, functionalization with fluorine has no impact on hK, yet ρC decreases with increasing coverage densities. These findings indicate exciting possibilities using plasma-based chemical functionalization to tailor the thermal and electrical transport properties of metal/2D material contacts.
The Biology of Bioavailability: The Role of Functional Ecology in Exposure Processes
2017-01-30
and solute (22Na), transport experiments oxygenation was provided through silicone tubing placed in each cell, and the suitable temperature for the...its consumption in the anaerobic sediment. ERDC/EL TR-17-2 180 Figure 82. Increase in solute flux ( oxygen ) as a function of burrow density. The...Protection Agency USEPA Environmental Effects Research Laboratory Atlantic Ecology Division / ORD 27 Tarzwell Drive Narragansett, RI 02882
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaibo, J.; Zhang, Q. Y., E-mail: qyzhang@dlut.edu.cn; Hu, H. C.
2016-08-14
Electric transport coefficients such as carrier type, density, and mobility are the important physical parameters in designing functional devices. In this work, we report the study on the electric transport coefficients of the highly epitaxial LaBaCo{sub 2}O{sub 5 + δ} (LBCO) films, which were discussed as a function of electric conductivity for the first time and compared with the results calculated by the theory for mixed conduction. The mobility in the LBCO films was determined to be ∼0.85 and ∼40 cm{sup 2}/V s for holes and electrons, respectively, and the density of p-type carriers strongly depends on the oxygen deficiency. Solid evidence ismore » presented to demonstrate that the oxygen deficiency cannot make LBCO materials changed from p- to n-type. The n-type conduction observed in experiment is a counterfeit phenomenon caused by the deficiency in Hall measurement, rather than a realistic transition induced by oxygen deficiency. In addition, the temperature-dependent conductivity was discussed using the differential coefficients, which might be useful in the study of the samples with magnetic transition.« less
Kulkarni, Aditi C; Kuppusamy, Periannan; Parinandi, Narasimham
2007-10-01
Aerobic life has evolved a dependence on molecular oxygen for its mere survival. Mitochondrial oxidative phosphorylation absolutely requires oxygen to generate the currency of energy in aerobes. The physiologic homeostasis of these organisms is strictly maintained by optimal cellular and tissue-oxygenation status through complex oxygen-sensing mechanisms, signaling cascades, and transport processes. In the event of fluctuating oxygen levels leading to either an increase (hyperoxia) or decrease (hypoxia) in cellular oxygen, the organism faces a crisis involving depletion of energy reserves, altered cell-signaling cascades, oxidative reactions/events, and cell death or tissue damage. Molecular oxygen is activated by both nonenzymatic and enzymatic mechanisms into highly reactive oxygen species (ROS). Aerobes have evolved effective antioxidant defenses to counteract the reactivity of ROS. Although the ROS are also required for many normal physiologic functions of the aerobes, overwhelming production of ROS coupled with their insufficient scavenging by endogenous antioxidants will lead to detrimental oxidative stress. Needless to say, molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. This review focuses on the biology and pathophysiology of oxygen, with an emphasis on transport, sensing, and activation of oxygen, oxidative phosphorylation, oxygenation, oxidative stress, and oxygen therapy.
Activation of Hypoxia-Inducible Factors Prevents Diabetic Nephropathy
Nordquist, Lina; Friederich-Persson, Malou; Fasching, Angelica; Liss, Per; Shoji, Kumi; Nangaku, Masaomi; Hansell, Peter
2015-01-01
Hyperglycemia results in increased oxygen consumption and decreased oxygen tension in the kidney. We tested the hypothesis that activation of hypoxia-inducible factors (HIFs) protects against diabetes-induced alterations in oxygen metabolism and kidney function. Experimental groups consisted of control and streptozotocin-induced diabetic rats treated with or without chronic cobalt chloride to activate HIFs. We elucidated the involvement of oxidative stress by studying the effects of acute administration of the superoxide dismutase mimetic tempol. Compared with controls, diabetic rats displayed tissue hypoxia throughout the kidney, glomerular hyperfiltration, increased oxygen consumption, increased total mitochondrial leak respiration, and decreased tubular sodium transport efficiency. Diabetic kidneys showed proteinuria and tubulointerstitial damage. Cobalt chloride activated HIFs, prevented the diabetes-induced alterations in oxygen metabolism, mitochondrial leak respiration, and kidney function, and reduced proteinuria and tubulointerstitial damage. The beneficial effects of tempol were less pronounced after activation of HIFs, indicating improved oxidative stress status. In conclusion, activation of HIFs prevents diabetes-induced alteration in kidney oxygen metabolism by normalizing glomerular filtration, which reduces tubular electrolyte load, preventing mitochondrial leak respiration and improving tubular transport efficiency. These improvements could be related to reduced oxidative stress and account for the reduced proteinuria and tubulointerstitial damage. Thus, pharmacologic activation of the HIF system may prevent development of diabetic nephropathy. PMID:25183809
Endeward, Volker; Gros, Gerolf; Jürgens, Klaus D
2010-07-01
The mechanisms by which the left ventricular wall escapes anoxia during the systolic phase of low blood perfusion are investigated, especially the role of myoglobin (Mb), which can (i) store oxygen and (ii) facilitate intracellular oxygen transport. The quantitative role of these two Mb functions is studied in the maximally working human heart. Because discrimination between Mb functions has not been achieved experimentally, we use a Krogh cylinder model here. At a heart rate of 200 beats/min and a 1:1 ratio of diastole/systole, the systole lasts for 150 ms. The basic model assumption is that, with mobile Mb, the oxygen stored in the end-diastolic left ventricle wall exactly meets the demand during the 150 ms of systolic cessation of blood flow. The coronary blood flow necessary to achieve this agrees with literature data. By considering Mb immobile or setting its concentration to zero, respectively, we find that, depending on Mb concentration, Mb-facilitated O(2) transport maintains O(2) supply to the left ventricle wall during 22-34 of the 150 ms, while Mb storage function accounts for a further 12-17 ms. When Mb is completely absent, anoxia begins to develop after 116-99 ms. While Mb plays no significant role during diastole, it supplies O(2) to the left ventricular wall for < or = 50 ms of the 150 ms systole, whereas capillary haemoglobin is responsible for approximately 80 ms. Slight increases in haemoglobin concentration, blood flow, or capillary density can compensate the absence of Mb, a finding which agrees well with the observations using Mb knockout mice.
Phloem Metabolism and Function Have to Cope with Low Internal Oxygen1
van Dongen, Joost T.; Schurr, Ulrich; Pfister, Michelle; Geigenberger, Peter
2003-01-01
We have investigated the consequences of endogenous limitations in oxygen delivery for phloem transport in Ricinus communis. In situ oxygen profiles were measured directly across stems of plants growing in air (21% [v/v] oxygen), using a microsensor with a tip diameter of approximately 30 μm. Oxygen levels decreased from 21% (v/v) at the surface to 7% (v/v) in the vascular region and increased again to 15% (v/v) toward the hollow center of the stem. Phloem sap exuding from small incisions in the bark of the stem was hypoxic, and the ATP to ADP ratio (4.1) and energy charge (0.78) were also low. When 5-cm stem segments of intact plants were exposed to zero external oxygen for 90 min, oxygen levels within the phloem decreased to approximately 2% (v/v), and ATP to ADP ratio and adenylate energy charge dropped further to 1.92 and 0.68, respectively. This was accompanied by a marked decrease in the phloem sucrose (Suc) concentration and Suc transport rate, which is likely to be explained by the inhibition of retrieval processes in the phloem. Germinating seedlings were used to analyze the effect of a stepwise decrease in oxygen tension on phloem transport and energy metabolism in more detail. Within the endosperm embedding the cotyledons—next to the phloem loading sites—oxygen decreased from approximately 14% (v/v) in 6-d-old seedlings down to approximately 6% (v/v) in 10-d-old seedlings. This was paralleled by a similar decrease of oxygen inside the hypocotyl. When the endosperm was removed and cotyledons incubated in a 100 mm Suc solution with 21%, 6%, 3%, or 0.5% (v/v) oxygen for 3 h before phloem sap was analyzed, decreasing oxygen tensions led to a progressive decrease in phloem energy state, indicating a partial inhibition of respiration. The estimated ratio of NADH to NAD+ in the phloem exudate remained low (approximately 0.0014) when oxygen was decreased to 6% and 3% (v/v) but increased markedly (to approximately 0.008) at 0.5% (v/v) oxygen, paralleled by an increase in lactate and ethanol. Suc concentration and translocation decreased when oxygen was decreased to 3% and 0.5% (v/v). Falling oxygen led to a progressive increase in amino acids, especially of alanine, γ-aminobutyrat, methionine, and isoleucine, a progressive decrease in the C to N ratio, and an increase in the succinate to malate ratio in the phloem. These results show that oxygen concentration is low inside the transport phloem in planta and that this results in adaptive changes in phloem metabolism and function. PMID:12692313
The role of hemoglobin oxygen affinity in oxygen transport at high altitude.
Winslow, Robert M
2007-09-30
Hemoglobin is involved in the regulation of O(2) transport in two ways: a long-term adjustment in red cell mass is mediated by erythropoietin (EPO), a response to renal oxgyenation. Short-term, rapid-response adjustments are mediated by ventilation, cardiac output, hemoglobin oxygen affinity (P50), barriers to O(2) diffusion, and the control of local microvascular tissue perfusion. The distribution of O(2) between dissolved (PO2) and hemoglobin-bound (saturation) is the familiar oxygen equilibrium curve, whose position is noted as P50. Human hemoglobin is not genetically adapted for function at high altitude. However, more specialized species native to high altitudes (guinea pig and bar-headed goose, for example) seem to have a lower P50 than their sea level counterparts, an adaptation that presumably promotes O(2) uptake from a hypoxic environment. Humans, native to very high altitude either in the Andes or Himalayan mountains, also can increase O(2) affinity, not because of a fundamental difference in hemoglobin structure or function, but because of extreme hyperventilation and alkalosis.
Glutkina, N V
2013-01-01
The effects of simvastatin on the blood oxygen transport function and indices of prooxidant - antioxidant balance at incubation have been studied. Simvastatin at a concentration of 100 ng/ml increases p50 (the blood pO2 corresponding to its 50% oxygen saturation) at real values of pH and pCO2 from 39.53 + 2.41 (p <0.05) to 36.60 (36, 40, 37, 60) (p <0.05) mm Hg. An increase in the drug concentration led to a decrease in the level of this parameter, but in a dose-independent manner. In addition, the level of nitrates/nitrites in the blood plasma was also increased, which was evidence of increasing activity of the L-arginine-NO system. The indices of prooxidant - antioxidant balance exhibited no significant changes. The results demonstrate a new pleiotropic effect of simvastatin, which is realized via a change in the hemoglobin - oxygen affinity through modification of NO production. This effect must be taken into account in the treatment of pathology in the blood circulation.
Ghysels, An; Venable, Richard M; Pastor, Richard W; Hummer, Gerhard
2017-06-13
A Bayesian-based methodology is developed to estimate diffusion tensors from molecular dynamics simulations of permeants in anisotropic media, and is applied to oxygen in lipid bilayers. By a separation of variables in the Smoluchowski diffusion equation, the multidimensional diffusion is reduced to coupled one-dimensional diffusion problems that are treated by discretization. The resulting diffusivity profiles characterize the membrane transport dynamics as a function of the position across the membrane, discriminating between diffusion normal and parallel to the membrane. The methodology is first validated with neat water, neat hexadecane, and a hexadecane slab surrounded by water, the latter being a simple model for a lipid membrane. Next, a bilayer consisting of pure 1-palmitoyl 2-oleoylphosphatidylcholine (POPC), and a bilayer mimicking the lipid composition of the inner mitochondrial membrane, including cardiolipin, are investigated. We analyze the detailed time evolution of oxygen molecules, in terms of both normal diffusion through and radial diffusion inside the membrane. Diffusion is fast in the more loosely packed interleaflet region, and anisotropic, with oxygen spreading more rapidly in the membrane plane than normal to it. Visualization of the propagator shows that oxygen enters the membrane rapidly, reaching its thermodynamically favored center in about 1 ns, despite the free energy barrier at the headgroup region. Oxygen transport is quantified by computing the oxygen permeability of the membranes and the average radial diffusivity, which confirm the anisotropy of the diffusion. The position-dependent diffusion constants and free energies are used to construct compartmental models and test assumptions used in estimating permeability, including Overton's rule. In particular, a hexadecane slab surrounded by water is found to be a poor model of oxygen transport in membranes because the relevant energy barriers differ substantially.
The Steady-State Transport of Oxygen through Hemoglobin Solutions
Keller, K. H.; Friedlander, S. K.
1966-01-01
The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated. PMID:5943608
NASA Astrophysics Data System (ADS)
Wang, Minglang; Wang, Hao; Zhang, Guangping; Wang, Yongfeng; Sanvito, Stefano; Hou, Shimin
2018-05-01
The relationship between the molecular structure and the electronic transport properties of molecular junctions based on thiol-terminated oligoethers, which are obtained by replacing every third methylene unit in the corresponding alkanethiols with an oxygen atom, is investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the low-bias conductance depends strongly on the conformation of the oligoethers in the junction. Specifically, in the cases of trans-extended conformation, the oxygen-dominated transmission peaks are very sharp and well below the Fermi energy, EF, thus hardly affect the transmission around EF; the Au-S interface hybrid states couple with σ-bonds in the molecular backbone forming the conduction channel at EF, resulting in a conductance decay against the molecular length close to that for alkanethiols. By contrast, for junctions with oligoethers in helical conformations, some π-type oxygen orbitals coupling with the Au-S interface hybrid states contribute to the transmission around EF. The molecule-electrode electronic coupling is also enhanced at the non-thiol side due to the specific spatial orientation introduced by the twist of the molecular backbone. This leads to a much smaller conductance decay constant. Our findings highlight the important role of the molecular conformation of oligoethers in their electronic transport properties and are also helpful for the design of molecular wires with heteroatom-substituted alkanethiols.
Variable Lysozyme Transport Dynamics on Oxidatively Functionalized Polystyrene Films.
Moringo, Nicholas A; Shen, Hao; Tauzin, Lawrence J; Wang, Wenxiao; Bishop, Logan D C; Landes, Christy F
2017-10-17
Tuning protein adsorption dynamics at polymeric interfaces is of great interest to many biomedical and material applications. Functionalization of polymer surfaces is a common method to introduce application-specific surface chemistries to a polymer interface. In this work, single-molecule fluorescence microscopy is utilized to determine the adsorption dynamics of lysozyme, a well-studied antibacterial protein, at the interface of polystyrene oxidized via UV exposure and oxygen plasma and functionalized by ligand grafting to produce varying degrees of surface hydrophilicity, surface roughness, and induced oxygen content. Single-molecule tracking indicates lysozyme loading capacities, and surface mobility at the polymer interface is hindered as a result of all functionalization techniques. Adsorption dynamics of lysozyme depend on the extent and the specificity of the oxygen functionalities introduced to the polystyrene surface. Hindered adsorption and mobility are dominated by hydrophobic effects attributed to water hydration layer formation at the functionalized polystyrene surfaces.
Tamburrini, M; Romano, M; Giardina, B; di Prisco, G
1999-02-01
In the framework of a study on molecular adaptations of the oxygen-transport and storage systems to extreme conditions in Antarctic marine organisms, we have investigated the structure/function relationship in Emperor penguin (Aptenodytes forsteri) myoglobin, in search of correlation with the bird life style. In contrast with previous reports, the revised amino acid sequence contains one additional residue and 15 differences. The oxygen-binding parameters seem well adapted to the diving behaviour of the penguin and to the environmental conditions of the Antarctic habitat. Addition of lactate has no major effect on myoglobin oxygenation over a large temperature range. Therefore, metabolic acidosis does not impair myoglobin function under conditions of prolonged physical effort, such as diving.
Charge Transport and the Nature of Traps in Oxygen Deficient Tantalum Oxide.
Gritsenko, Vladimir A; Perevalov, Timofey V; Voronkovskii, Vitalii A; Gismatulin, Andrei A; Kruchinin, Vladimir N; Aliev, Vladimir Sh; Pustovarov, Vladimir A; Prosvirin, Igor P; Roizin, Yakov
2018-01-31
Optical and transport properties of nonstoichiometric tantalum oxide thin films grown by ion beam deposition were investigated in order to understand the dominant charge transport mechanisms and reveal the nature of traps. The TaO x films composition was analyzed by X-ray photoelectron spectroscopy and by quantum-chemistry simulation. From the optical absorption and photoluminescence measurements and density functional theory simulations, it was concluded that the 2.75 eV blue luminescence excited in a TaO x by 4.45 eV photons, originates from oxygen vacancies. These vacancies are also responsible for TaO x conductivity. The thermal trap energy of 0.85 eV determined from the transport experiments coincides with the half of the Stokes shift of the blue luminescence band. It is argued that the dominant charge transport mechanism in TaO x films is phonon-assisted tunneling between the traps.
Eisenhut, Michael; Wallace, Helen
2011-04-01
Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.
49 CFR 175.501 - Special requirements for oxidizers and compressed oxygen.
Code of Federal Regulations, 2012 CFR
2012-10-01
... oxygen. 175.501 Section 175.501 Transportation Other Regulations Relating to Transportation PIPELINE AND... Special requirements for oxidizers and compressed oxygen. (a) Compressed oxygen, when properly labeled Oxidizer or Oxygen, may be loaded and transported as provided in this section. Except for Oxygen...
49 CFR 175.501 - Special requirements for oxidizers and compressed oxygen.
Code of Federal Regulations, 2014 CFR
2014-10-01
... oxygen. 175.501 Section 175.501 Transportation Other Regulations Relating to Transportation PIPELINE AND... Special requirements for oxidizers and compressed oxygen. (a) Compressed oxygen, when properly labeled Oxidizer or Oxygen, may be loaded and transported as provided in this section. Except for Oxygen...
49 CFR 175.501 - Special requirements for oxidizers and compressed oxygen.
Code of Federal Regulations, 2010 CFR
2010-10-01
... oxygen. 175.501 Section 175.501 Transportation Other Regulations Relating to Transportation PIPELINE AND... Special requirements for oxidizers and compressed oxygen. (a) Compressed oxygen, when properly labeled Oxidizer or Oxygen, may be loaded and transported as provided in this section. Except for Oxygen...
49 CFR 175.501 - Special requirements for oxidizers and compressed oxygen.
Code of Federal Regulations, 2013 CFR
2013-10-01
... oxygen. 175.501 Section 175.501 Transportation Other Regulations Relating to Transportation PIPELINE AND... Special requirements for oxidizers and compressed oxygen. (a) Compressed oxygen, when properly labeled Oxidizer or Oxygen, may be loaded and transported as provided in this section. Except for Oxygen...
49 CFR 175.501 - Special requirements for oxidizers and compressed oxygen.
Code of Federal Regulations, 2011 CFR
2011-10-01
... oxygen. 175.501 Section 175.501 Transportation Other Regulations Relating to Transportation PIPELINE AND... Special requirements for oxidizers and compressed oxygen. (a) Compressed oxygen, when properly labeled Oxidizer or Oxygen, may be loaded and transported as provided in this section. Except for Oxygen...
Oxygen transport and cardiovascular function at extreme altitude: lessons from Operation Everest II
NASA Technical Reports Server (NTRS)
Sutton, J. R.; Reeves, J. T.; Groves, B. M.; Wagner, P. D.; Alexander, J. K.; Hultgren, H. N.; Cymerman, A.; Houston, C. S.
1992-01-01
Operation Everest II was designed to examine the physiological responses to gradual decompression simulating an ascent of Mt Everest (8,848 m) to an inspired PO2 of 43 mmHg. The principal studies conducted were cardiovascular, respiratory, muscular-skeletal and metabolic responses to exercise. Eight healthy males aged 21-31 years began the "ascent" and six successfully reached the "summit", where their resting arterial blood gases were PO2 = 30 mmHg and PCO2 = 11 mmHg, pH = 7.56. Their maximal oxygen uptake decreased from 3.98 +/- 0.2 L/min at sea level to 1.17 +/- 0.08 L/min at PIO2 43 mmHg. The principal factors responsible for oxygen transport from the atmosphere to tissues were (1) Alveolar ventilation--a four fold increase. (2) Diffusion from the alveolus to end capillary blood--unchanged. (3) Cardiac function (assessed by hemodynamics, echocardiography and electrocardiography)--normal--although maximum cardiac output and heart rate were reduced. (4) Oxygen extraction--maximal with PvO2 14.8 +/- 1 mmHg. With increasing altitude maximal blood and muscle lactate progressively declined although at any submaximal intensity blood and muscle lactate was higher at higher altitudes.
2016-01-01
TBI), hemorrhagic shock and burns by enhanced delivery of oxygen . A class-based side effect of PFC (day 2-5 after infusion in 30-50%) may be...anesthesia level assessment. Animals were transported to the laboratory. Then, the animals were intubated and ventilated with 70% nitrogen/30% oxygen ...intubated with an endotracheal tube (ID= 9~10 mm with cuff), an orogastric tube placed to expel vomit, and ventilated with mixed nitrogen/ oxygen (80:20
Sun, Shaohui; Yang, Ruishu; Wang, Xin; Yan, Shaokang
2018-04-01
An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C 5 -C 20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA) can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.
Extraterrestrial consumables production and utilization
NASA Technical Reports Server (NTRS)
Sanders, A. P.
1972-01-01
Potential oxygen requirements for lunar-surface, lunar-orbit, and planetary missions are presented with emphasis on: (1) emergency survival of the crew, (2) provision of energy consumables for vehicles, and (3) nondependency on an earth supply of oxygen. Although many extraterrestrial resource processes are analytically feasible, this study has considered hydrogen and fluorine processing concepts to obtain oxygen or water (or both). The results are quite encouraging and are extrapolatable to other processes. Preliminary mission planning and sequencing analysis has enabled the programmatic evaluation of using lunar-derived oxygen relative to transportation cost as a function of vehicle delivery and operational capability.
Oxygen transport by hemoglobin.
Mairbäurl, Heimo; Weber, Roy E
2012-04-01
Hemoglobin (Hb) constitutes a vital link between ambient O2 availability and aerobic metabolism by transporting oxygen (O2) from the respiratory surfaces of the lungs or gills to the O2-consuming tissues. The amount of O2 available to tissues depends on the blood-perfusion rate, as well as the arterio-venous difference in blood O2 contents, which is determined by the respective loading and unloading O2 tensions and Hb-O2-affinity. Short-term adjustments in tissue oxygen delivery in response to decreased O2 supply or increased O2 demand (under exercise, hypoxia at high altitude, cardiovascular disease, and ischemia) are mediated by metabolically induced changes in the red cell levels of allosteric effectors such as protons (H(+)), carbon dioxide (CO2), organic phosphates, and chloride (Cl(-)) that modulate Hb-O2 affinity. The long-term, genetically coded adaptations in oxygen transport encountered in animals that permanently are subjected to low environmental O2 tensions commonly result from changes in the molecular structure of Hb, notably amino acid exchanges that alter Hb's intrinsic O2 affinity or its sensitivity to allosteric effectors. Structure-function studies of animal Hbs and human Hb mutants illustrate the different strategies for adjusting Hb-O2 affinity and optimizing tissue oxygen supply. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012.
van Dongen, Joost T; Licausi, Francesco
2015-01-01
Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.
Oxygen Consumption in the First Stages of Strenuous Work as a Function of Prior Exercise.
ERIC Educational Resources Information Center
Gutin, Bernard; And Others
This study examined the extent to which 10 minutes of prior exercise (PE) at a workload adjusted to maintain a heart rate (HR) of 140 beats per minute could facilitate the mobilization of the oxygen transport system in a strenuous criterion task (CT). The control treatment involved completion of the CT following 10 minutes of rest on the…
Feed gas contaminant removal in ion transport membrane systems
Underwood, Richard Paul [Allentown, PA; Makitka, III, Alexander; Carolan, Michael Francis [Allentown, PA
2012-04-03
An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Exceptions for cylinders of compressed oxygen or... Exceptions for cylinders of compressed oxygen or other oxidizing gases transported within the State of Alaska. (a) Exceptions. When transported in the State of Alaska, cylinders of compressed oxygen or other...
A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors
Shipley, RJ; Davidson, AJ; Chan, K; Chaudhuri, JB; Waters, SL; Ellis, MJ
2011-01-01
The development of tissue engineering hollow fiber bioreactors (HFB) requires the optimal design of the geometry and operation parameters of the system. This article provides a strategy for specifying operating conditions for the system based on mathematical models of oxygen delivery to the cell population. Analytical and numerical solutions of these models are developed based on Michaelis–Menten kinetics. Depending on the minimum oxygen concentration required to culture a functional cell population, together with the oxygen uptake kinetics, the strategy dictates the model needed to describe mass transport so that the operating conditions can be defined. If cmin ≫ Km we capture oxygen uptake using zero-order kinetics and proceed analytically. This enables operating equations to be developed that allow the user to choose the medium flow rate, lumen length, and ECS depth to provide a prescribed value of cmin. When , we use numerical techniques to solve full Michaelis–Menten kinetics and present operating data for the bioreactor. The strategy presented utilizes both analytical and numerical approaches and can be applied to any cell type with known oxygen transport properties and uptake kinetics. PMID:21370228
Peng, Tao; Berghoff, Bork A.; Oh, Jeong-Il; Weber, Lennart; Schirmer, Jasmin; Schwarz, Johannes; Glaeser, Jens; Klug, Gabriele
2016-01-01
ABSTRACT Singlet oxygen is generated by bacteriochlorophylls when light and oxygen are simultaneously present in Rhodobacter sphaeroides. Singlet oxygen triggers a specific response that is partly regulated by the alternative sigma factor RpoHI/HII. The sRNA RSs2461 has previously been identified as an RpoHI/HII-dependent sRNA and is derived from the 3′ UTR of the mRNA for an OmpR-type transcriptional regulator. Similar to the RpoHI/HII-dependent CcsR and SorY sRNAs, RSs2461 affects the resistance of R. sphaeroides against singlet oxygen and was therefore renamed here SorX. Furthermore, SorX has a strong impact on resistance against organic hydroperoxides that usually occur as secondary damages downstream of singlet oxygen. The 75-nt SorX 3′ fragment, which is generated by RNase E cleavage and highly conserved among related species, represents the functional entity. A target search identified potA mRNA, which encodes a subunit of a polyamine transporter, as a direct SorX target and stress resistance via SorX could be linked to potA. The PotABCD transporter is an uptake system for spermidine in E. coli. While spermidine is generally described as beneficial during oxidative stress, we observed significantly increased sensitivity of R. sphaeroides to organic hydroperoxides in the presence of spermidine. We therefore propose that the diminished import of spermidine, due to down-regulation of potA by SorX, counteracts oxidative stress. Together with results from other studies this underlines the importance of regulated transport to bacterial stress defense. PMID:27420112
Peng, Tao; Berghoff, Bork A; Oh, Jeong-Il; Weber, Lennart; Schirmer, Jasmin; Schwarz, Johannes; Glaeser, Jens; Klug, Gabriele
2016-10-02
Singlet oxygen is generated by bacteriochlorophylls when light and oxygen are simultaneously present in Rhodobacter sphaeroides. Singlet oxygen triggers a specific response that is partly regulated by the alternative sigma factor RpoHI/HII. The sRNA RSs2461 has previously been identified as an RpoHI/HII-dependent sRNA and is derived from the 3' UTR of the mRNA for an OmpR-type transcriptional regulator. Similar to the RpoHI/HII-dependent CcsR and SorY sRNAs, RSs2461 affects the resistance of R. sphaeroides against singlet oxygen and was therefore renamed here SorX. Furthermore, SorX has a strong impact on resistance against organic hydroperoxides that usually occur as secondary damages downstream of singlet oxygen. The 75-nt SorX 3' fragment, which is generated by RNase E cleavage and highly conserved among related species, represents the functional entity. A target search identified potA mRNA, which encodes a subunit of a polyamine transporter, as a direct SorX target and stress resistance via SorX could be linked to potA. The PotABCD transporter is an uptake system for spermidine in E. coli. While spermidine is generally described as beneficial during oxidative stress, we observed significantly increased sensitivity of R. sphaeroides to organic hydroperoxides in the presence of spermidine. We therefore propose that the diminished import of spermidine, due to down-regulation of potA by SorX, counteracts oxidative stress. Together with results from other studies this underlines the importance of regulated transport to bacterial stress defense.
Hot Oxygen Transport Model for Martian Coronal Retrievals with MAVEN's IUVS Instrument
NASA Astrophysics Data System (ADS)
Deighan, Justin; Stewart, I.; Schneider, N.
2013-10-01
One of the primary goals of the upcoming Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is the study of non-thermal escape of atomic oxygen to space. In support of this goal, the Imaging Ultraviolet Spectrograph (IUVS) instrument will make regular observations of the gravitationally bound O corona surrounding the planet. Interpreting these measurements requires a computationally efficient forward model to calculate collisional transport of hot O through the exosphere. To accurately treat the strong forward scattering of O at energies of a few eV, we are developing a model which applies the δ-M approximation from radiative transport theory. This method consolidates the strong forward peak of the scattering phase function into a δ-function, leaving the residual as a sum of smoothly varying Legendre polynomials. Preliminary Monte Carlo results with this approach show great promise, producing coronal O densities and escape rates with accuracies of ~5% or better. Our objective is to integrate this δ-M technique into a Markov-Chain transport model. The Markov-Chain method produces hot O particle densities and velocity distributions as a function of altitude by quantizing all possible particle states and calculating the probabilities of state transition, then solving for equilibrium using standard matrix routines. This allows for forward model run-times on the order of seconds, enabling real-time pipeline retrievals from IUVS measurements. The general method is applicable to rapidly calculating the transport of any strongly forward scattering species through a background medium.
Oxygen Mass Transport in Stented Coronary Arteries.
Murphy, Eoin A; Dunne, Adrian S; Martin, David M; Boyle, Fergal J
2016-02-01
Oxygen deficiency, known as hypoxia, in arterial walls has been linked to increased intimal hyperplasia, which is the main adverse biological process causing in-stent restenosis. Stent implantation has significant effects on the oxygen transport into the arterial wall. Elucidating these effects is critical to optimizing future stent designs. In this study the most advanced oxygen transport model developed to date was assessed in two test cases and used to compare three coronary stent designs. Additionally, the predicted results from four simplified blood oxygen transport models are compared in the two test cases. The advanced model showed good agreement with experimental measurements within the mass-transfer boundary layer and at the luminal surface; however, more work is needed in predicting the oxygen transport within the arterial wall. Simplifying the oxygen transport model within the blood flow produces significant errors in predicting the oxygen transport in arteries. This study can be used as a guide for all future numerical studies in this area and the advanced model could provide a powerful tool in aiding design of stents and other cardiovascular devices.
NASA Astrophysics Data System (ADS)
Zhou, Si; Liu, Cheng-Cheng; Zhao, Jijun; Yao, Yugui
2018-03-01
Monolayer group-III monochalcogenides (MX, M = Ga, In; X = S, Se, Te), an emerging category of two-dimensional (2D) semiconductors, hold great promise for electronics, optoelectronics and catalysts. By first-principles calculations, we show that the phonon dispersion and Raman spectra, as well as the electronic and topological properties of monolayer MX can be tuned by oxygen functionalization. Chemisorption of oxygen atoms on one side or both sides of the MX sheet narrows or even closes the band gap, enlarges work function, and significantly reduces the carrier effective mass. More excitingly, InS, InSe, and InTe monolayers with double-side oxygen functionalization are 2D topological insulators with sizeable bulk gap up to 0.21 eV. Their low-energy bands near the Fermi level are dominated by the px and py orbitals of atoms, allowing band engineering via in-plane strains. Our studies provide viable strategy for realizing quantum spin Hall effect in monolayer group-III monochalcogenides at room temperature, and utilizing these novel 2D materials for high-speed and dissipationless transport devices.
The role of intraluminal thrombus on oxygen transport in abdominal aortic aneurysms
NASA Astrophysics Data System (ADS)
Madhavan, Sudharsan; Cherry Kemmerling, Erica
2017-11-01
Abdominal aortic aneurysm is ranked as the 13th leading cause of death in the United States. The presence of intraluminal thrombus is thought to cause hypoxia in the vessel wall eventually aggravating the condition. Our work investigates oxygen transport and consumption in a patient-specific model of an abdominal aortic aneurysm. The model includes intraluminal thrombus and consists of the abdominal aorta, renal arteries, and iliac arteries. Oxygen transport to and within the aortic wall layer was modeled, accounting for oxygen consumption and diffusion. Flow and transport in the lumen layer were modeled using coupled Navier-Stokes and scalar transport equations. The thrombus layer was assumed to be biomechanically inactive but permeable to oxygen transport in accordance with previously-measured diffusion coefficients. Plots of oxygen concentration through the layers illustrating reduced oxygen supply to the vessel walls in parts of the model that include thrombus will be presented.
Ceramic oxygen transport membrane array reactor and reforming method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles
2016-11-08
The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.
Oxygen transport in the internal xenon plasma of a dispenser hollow cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capece, Angela M., E-mail: acapece@pppl.gov; Shepherd, Joseph E.; Polk, James E.
2014-04-21
Reactive gases such as oxygen and water vapor modify the surface morphology of BaO dispenser cathodes and degrade the electron emission properties. For vacuum cathodes operating at fixed temperature, the emission current drops rapidly when oxygen adsorbs on top of the low work function surface. Previous experiments have shown that plasma cathodes are more resistant to oxygen poisoning and can operate with O{sub 2} partial pressures one to two orders of magnitude higher than vacuum cathodes before the onset of poisoning occurs. Plasma cathodes used for electric thrusters are typically operated with xenon; however, gas phase barium, oxygen, and tungstenmore » species may be found in small concentrations. The densities of these minor species are small compared with the plasma density, and thus, their presence in the discharge does not significantly alter the xenon plasma parameters. It is important, however, to consider the transport of these minor species as they may deposit on the emitter surface and affect the electron emission properties. In this work, we present the results of a material transport model used to predict oxygen fluxes to the cathode surface by solving the species conservation equations in a cathode with a 2.25 mm diameter orifice operated at a discharge current of 15 A, a Xe flow rate of 3.7 sccm, and 100 ppm of O{sub 2}. The dominant ionization process for O{sub 2} is resonant charge exchange with xenon ions. Ba is effectively recycled in the plasma; however, BaO and O{sub 2} are not. The model shows that the oxygen flux to the surface is not diffusion-limited; therefore, the high resistance to oxygen poisoning observed in plasma cathodes likely results from surface processes not considered here.« less
Correction of biochemical and functional disorders in brain ischaemia with laser therapy
NASA Astrophysics Data System (ADS)
Musienko, Julia I.; Nechipurenko, Natalia I.; Vasilevskaya, Ludmila A.
2005-08-01
Application of intravenous laser irradiation of blood (ILIB) is considered to be the most effective method of laser therapy and its application is expedient pathogenetically in the ischemic disturbances. The aim of this study is to investigate ILIB influence with red helium-neon laser (HNL) with 630 nm wavelength and different powers on blood oxygen transport (BOT), cerebral and dermal microhaemodynamics (MGD), hydro-ion balance in normal rabbits and after modeling of local ischemia of brain (LIB). Experimental cerebral ischemia is characterized by development of BOT disturbance, ionic disbalance and edema in the ischemic brain region. Microcirculation disturbances with worsening of the cerebral and dermal MHD were revealed. ILIB with HNL radiation of 2.5 and 4.5 mW powers provokes dehydratation of brain structure alone with the K+, Na+ concentration decreasing and hemoglobin-oxygen affinity increasing in intact group of animals. There was not revealed marked changes of cerebral MHD condition here. Using of ILIB in rabbits after LIB contributes for improving function of BOT, normalizing of water content in all cerebral structures compared to operated animals. Preventive ILIB provoked improvement of speckl-optical parameters and marked protective effect on microhaemodynamics processes in superficial brain structures. HNL radiation with 1.0 mW power results in worsening of oxygen transport, cerebral and skin MHD, hydro-ion homeostasis in animals with LIB modeling. Thus, laser haemotherapy contributes for improving of hydro-ion status, blood oxygen transport and cerebral microcirculation in brain ischemia, what allows considering that helium-neon radiation with the pointed regimen is substantiated pathogenetically in brain ischaemia.
Shoemaker, W C; Patil, R; Appel, P L; Kram, H B
1992-11-01
A generalized decision tree or clinical algorithm for treatment of high-risk elective surgical patients was developed from a physiologic model based on empirical data. First, a large data bank was used to do the following: (1) describe temporal hemodynamic and oxygen transport patterns that interrelate cardiac, pulmonary, and tissue perfusion functions in survivors and nonsurvivors; (2) define optimal therapeutic goals based on the supranormal oxygen transport values of high-risk postoperative survivors; (3) compare the relative effectiveness of alternative therapies in a wide variety of clinical and physiologic conditions; and (4) to develop criteria for titration of therapy to the endpoints of the supranormal optimal goals using cardiac index (CI), oxygen delivery (DO2), and oxygen consumption (VO2) as proxy outcome measures. Second, a general purpose algorithm was generated from these data and tested in preoperatively randomized clinical trials of high-risk surgical patients. Improved outcome was demonstrated with this generalized algorithm. The concept that the supranormal values represent compensations that have survival value has been corroborated by several other groups. We now propose a unique approach to refine the generalized algorithm to develop customized algorithms and individualized decision analysis for each patient's unique problems. The present article describes a preliminary evaluation of the feasibility of artificial intelligence techniques to accomplish individualized algorithms that may further improve patient care and outcome.
Oxygen transport membrane system and method for transferring heat to catalytic/process reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.
A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reactionmore » wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5« less
Oxygen transport membrane system and method for transferring heat to catalytic/process reactors
Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles
2014-01-07
A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.
Effect of hemoglobin polymerization on oxygen transport in hemoglobin solutions.
Budhiraja, Vikas; Hellums, J David
2002-09-01
The effect of hemoglobin (Hb) polymerization on facilitated transport of oxygen in a bovine hemoglobin-based oxygen carrier was studied using a diffusion cell. In high oxygen tension gradient experiments (HOTG) at 37 degrees C the diffusion of dissolved oxygen in polymerized Hb samples was similar to that in unpolymerized Hb solutions during oxygen uptake. However, in the oxygen release experiments, the transport by diffusion of dissolved oxygen was augmented by diffusion of oxyhemoglobin over a range of oxygen saturations. The augmentation was up to 30% in the case of polymerized Hb and up to 100% in the case of unpolymerized Hb solution. In experiments performed at constant, low oxygen tension gradients in the range of physiological significance, the augmentation effect was less than that in the HOTG experiments. Oxygen transport in polymerized Hb samples was approximately the same as that in unpolymerized samples over a wide range of oxygen tensions. However, at oxygen tensions lower than 30 mm Hg, there were more significant augmentation effects in unpolymerized bovine Hb samples than in polymerized Hb. The results presented here are the first accurate, quantitative measurements of effective diffusion coefficients for oxygen transport in hemoglobin-based oxygen carriers of the type being evaluated to replace red cells in transfusions. In all cases the oxygen carrier was found to have higher effective oxygen diffusion coefficients than blood.
Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics
Yu, Jianguo; Bai, Xian -Ming; El-Azab, Anter; ...
2015-03-05
In this study, oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO 2) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo (KMC) method has been used to investigate the kinetics of oxygen transport in UO 2 under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable offstoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO 2-x, oxygenmore » transport is well described by the vacancy diffusion mechanism while in hyper-stoichiometric UO 2+x, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that diinterstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing a explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.« less
Dynamic Factors Affecting Gaseous Ligand Binding in an Artificial Oxygen Transport Protein‡
Zhang, Lei; Andersen, Eskil M.E.; Khajo, Abdelahad; Magliozzo, Richard S.; Koder, Ronald L.
2013-01-01
We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7 this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime which may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when when exposed to oxygen. Compared to HP7, distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off-rate. EPR comparison of these ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation greatly increases water penetration into the protein core. The inability of the mutant protein to bind oxygen may be due to increased water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together these data underline the importance of the control of protein dynamics in the design of functional artificial proteins. PMID:23249163
Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein.
Zhang, Lei; Andersen, Eskil M E; Khajo, Abdelahad; Magliozzo, Richard S; Koder, Ronald L
2013-01-22
We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.
Cox, Laura A; Schlabritz-Loutsevitch, Natalia; Hubbard, Gene B; Nijland, Mark J; McDonald, Thomas J; Nathanielsz, Peter W
2006-01-01
Interpretation of gene array data presents many potential pitfalls in adult tissues. Gene array techniques applied to fetal tissues present additional confounding pitfalls. The left lobe of the fetal liver is supplied with blood containing more oxygen than the right lobe. Since synthetic activity and cell function are oxygen dependent, we hypothesized major differences in mRNA expression between the fetal right and left liver lobes. Our aim was to demonstrate the need to evaluate RNA samples from both lobes. We performed whole genome expression profiling on left and right liver lobe RNA from six 90-day gestation baboon fetuses (term 180 days). Comparing right with left, we found 875 differentially expressed genes – 312 genes were up-regulated and 563 down-regulated. Pathways for damaged DNA binding, endonuclease activity, interleukin binding and receptor activity were up-regulated in right lobe; ontological pathways related to cell signalling, cell organization, cell biogenesis, development, intracellular transport, phospholipid metabolism, protein biosynthesis, protein localization, protein metabolism, translational regulation and vesicle mediated transport were down-regulated in right lobe. Molecular pathway analysis showed down-regulation of pathways related to heat shock protein binding, ion channel and transporter activities, oxygen binding and transporter activities, translation initiation and translation regulator activities. Genes involved in amino acid biosynthesis, lipid biosynthesis and oxygen transport were also differentially expressed. This is the first demonstration of RNA differences between the two lobes of the fetal liver. The data support the argument that a complete interpretation of gene expression in the developing liver requires data from both lobes. PMID:16484296
Ceramic oxygen transport membrane array reactor and reforming method
Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.
2017-10-03
The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.
NASA Astrophysics Data System (ADS)
Srouji, A. K.; Zheng, L. J.; Dross, R.; Aaron, D.; Mench, M. M.
2017-10-01
Limiting current measurements are used to evaluate oxygen transport resistance in the catalyst layer of a polymer electrolyte fuel cell (PEFC). The pressure independent oxygen transport resistance in the electrode is quantified for two cell architectures and two cathode Pt loadings (0.4 and 0.07 mgPt.cm-2). The compounded effect of the flow field and Pt loading is used to shed light on the nature of the observed transport resistance, especially its response to fundamentally different flow fields, which is shown to directly or indirectly scale with Pt loading in the open literature. By varying gas pressure and using low oxygen concentrations, the total oxygen transport resistance is divided into intermolecular gas diffusion (a pressure-dependent component) and a pressure independent component, which can be attributed to Knudsen diffusion or dissolution film resistance. The pressure-independent oxygen transport resistance in the catalyst layer varies between 13.3 and 34.4 s/m. It is shown that the pressure independent oxygen transport resistance increases with reduced Pt loading, but that effect is greatly exacerbated by using conventional channel/lands. The results indicate that open metallic element architecture improves the oxygen transport resistance in ultra-low Pt loading electrodes, likely due to enhanced water management at the catalyst layer.
Loss of Mitochondrial Function Impairs Lysosomes.
Demers-Lamarche, Julie; Guillebaud, Gérald; Tlili, Mouna; Todkar, Kiran; Bélanger, Noémie; Grondin, Martine; Nguyen, Angela P; Michel, Jennifer; Germain, Marc
2016-05-06
Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Diffusive flux in a model of stochastically gated oxygen transport in insect respiration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.
Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and themore » perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.« less
Diffusive flux in a model of stochastically gated oxygen transport in insect respiration.
Berezhkovskii, Alexander M; Shvartsman, Stanislav Y
2016-05-28
Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.
Silicon Micropore-Based Parallel Plate Membrane Oxygenator.
Dharia, Ajay; Abada, Emily; Feinberg, Benjamin; Yeager, Torin; Moses, Willieford; Park, Jaehyun; Blaha, Charles; Wright, Nathan; Padilla, Benjamin; Roy, Shuvo
2018-02-01
Extracorporeal membrane oxygenation (ECMO) is a life support system that circulates the blood through an oxygenating system to temporarily (days to months) support heart or lung function during cardiopulmonary failure until organ recovery or replacement. Currently, the need for high levels of systemic anticoagulation and the risk for bleeding are main drawbacks of ECMO that can be addressed with a redesigned ECMO system. Our lab has developed an approach using microelectromechanical systems (MEMS) fabrication techniques to create novel gas exchange membranes consisting of a rigid silicon micropore membrane (SμM) support structure bonded to a thin film of gas-permeable polydimethylsiloxane (PDMS). This study details the fabrication process to create silicon membranes with highly uniform micropores that have a high level of pattern fidelity. The oxygen transport across these membranes was tested in a simple water-based bench-top set-up as well in a porcine in vivo model. It was determined that the mass transfer coefficient for the system using SµM-PDMS membranes was 3.03 ± 0.42 mL O 2 min -1 m -2 cm Hg -1 with pure water and 1.71 ± 1.03 mL O 2 min -1 m -2 cm Hg -1 with blood. An analytic model to predict gas transport was developed using data from the bench-top experiments and validated with in vivo testing. This was a proof of concept study showing adequate oxygen transport across a parallel plate SµM-PDMS membrane when used as a membrane oxygenator. This work establishes the tools and the equipoise to develop future generations of silicon micropore membrane oxygenators. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Fierro, Michael A; Daneshmand, Mani A; Bartz, Raquel R
2018-01-01
The use of venovenous extracorporeal membrane oxygenation is increasing worldwide. These patients often require noncardiac surgery. In the perioperative period, preoperative assessment, patient transport, choice of anesthetic type, drug dosing, patient monitoring, and intraoperative and postoperative management of common patient problems will be impacted. Furthermore, common monitoring techniques will have unique limitations. Importantly, patients on venovenous extracorporeal membrane oxygenation remain subject to hypoxemia, hypercarbia, and acidemia in the perioperative setting despite extracorporeal support. Treatments of these conditions often require both manipulation of extracorporeal membrane oxygenation settings and physiologic interventions. Perioperative management of anticoagulation, as well as thresholds to transfuse blood products, remain highly controversial and must take into account the specific procedure, extracorporeal membrane oxygenation circuit function, and patient comorbidities. We will review the physiologic management of the patient requiring surgery while on venovenous extracorporeal membrane oxygenation.
Charge doping and large lattice expansion in oxygen-deficient heteroepitaxial WO3
NASA Astrophysics Data System (ADS)
Mattoni, Giordano; Filippetti, Alessio; Manca, Nicola; Zubko, Pavlo; Caviglia, Andrea D.
2018-05-01
Tungsten trioxide (WO3) is a versatile material with widespread applications ranging from electrochromics and optoelectronics to water splitting and catalysis of chemical reactions. For technological applications, thin films of WO3 are particularly appealing, taking advantage from a high surface-to-volume ratio and tunable physical properties. However, the growth of stoichiometric crystalline thin films is challenging because the deposition conditions are very sensitive to the formation of oxygen vacancies. In this paper, we show how background oxygen pressure during pulsed laser deposition can be used to tune the structural and electronic properties of WO3 thin films. By performing x-ray diffraction and low-temperature electrical transport measurements, we find changes in the WO3 lattice volume of up to 10% concomitantly with a resistivity drop of more than five orders of magnitude at room temperature as a function of increased oxygen deficiency. We use advanced ab initio calculations to describe in detail the properties of the oxygen vacancy defect states and their evolution in terms of excess charge concentration. Our results depict an intriguing scenario where structural, electronic, optical, and transport properties of WO3 single-crystal thin films can all be purposely tuned by controlling the oxygen vacancy formation during growth.
System and method for air temperature control in an oxygen transport membrane based reactor
Kelly, Sean M
2016-09-27
A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.
System and method for temperature control in an oxygen transport membrane based reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Sean M.
A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.
Artificial oxygen transport protein
Dutton, P. Leslie
2014-09-30
This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.
Ceramic oxygen transport membrane array reactor and reforming method
Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.
2016-09-27
A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.
NASA Astrophysics Data System (ADS)
Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L. J.; Mitchell, D. G.; Kletzing, C.
2017-12-01
It is known that proton is main contributor of the ring current and oxygen ions can make significant contribution during major magnetic storms. Ions are supplied to the ring current by radial transport from the plasma sheet. Convective transport of lower-energy protons and diffusive transport of higher-energy protons were reported to contribute to the storm-time and quiet-time ring current respectively [e.g., Gkioulidou et al., 2016]. However, supply mechanisms of the oxygen ions are not clear. To characterize the supply of oxygen ions to the ring current during magnetic storms, we studied the properties of energetic proton and oxygen ion phase space densities (PSDs) for specific magnetic moment (μ) during the April 23-25, 2013, geomagnetic storm observed by the Van Allen Probes mission. We here report on radial transport of high-energy (μ ≥ 0.5 keV/nT) oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm. Since protons show little change during this period, this oxygen radial transport is inferred to cause the development of the late main phase. Enhancement of poloidal magnetic fluctuations is simultaneously observed. We estimated azimuthal mode number ≤5 by using cross wavelet analysis with ground-based observation of IMAGE ground magnetometers. The fluctuations can resonate with drift and bounce motions of the oxygen ions. The results suggest that combination of the drift and drift-bounce resonances is responsible for the radial transport of high-energy oxygen ions into the deep inner magnetosphere. We also report on the radial transport of the high-energy oxygen ions into the deep inner magnetosphere during other magnetic storms.
Portable bioreactor for perfusion and electrical stimulation of engineered cardiac tissue.
Tandon, Nina; Taubman, Alanna; Cimetta, Elisa; Saccenti, Laetitia; Vunjak-Novakovic, Gordana
2013-01-01
Cardiac tissue engineering aims to create functional tissue constructs that can reestablish the structure and function of injured myocardium. Although bioreactors have facilitated the engineering of cardiac patches of clinically relevant size in vitro, a major drawback remains the transportation of the engineered tissues from a production facility to a medical operation facility while maintaining tissue viability and preventing contamination. Furthermore, after implantation, most of the cells are endangered by hypoxic conditions that exist before vascular flow is established. We developed a portable device that provides the perfusion and electrical stimulation necessary to engineer cardiac tissue in vitro, and to transport it to the site where it will be implantated. The micropump-powered perfusion apparatus may additionally function as an extracorporeal active pumping system providing nutrients and oxygen supply to the graft post-implantation. Such a system, through perfusion of oxygenated media and bioactive molecules (e.g. growth factors), could transiently support the tissue construct until it connects to the host vasculature and heart muscle, after which it could be taken away or let biodegrade.
NASA Technical Reports Server (NTRS)
1996-01-01
NASA's standard for oxygen system design, materials selection, operation, and transportation is presented. Minimum guidelines applicable to NASA Headquarters and all NASA Field Installations are contained.
NASA Technical Reports Server (NTRS)
Graf, John; Taylor, Dale; Martinez, James
2014-01-01
More than a metric ton of water is transported to the International Space Station (ISS) each year to provide breathing oxygen for the astronauts. Water is a safe and compact form of stored oxygen. The water is electrolyzed on ISS and ambient pressure oxygen is delivered to the cabin. A much smaller amount of oxygen is used each year in spacesuits to conduct Extra Vehicular Activities (EVAs). Space suits need high pressure (>1000 psia) high purity oxygen (must meet Aviator Breathing Oxygen "ABO" specifications, >99.5% O2). The water / water electrolysis system cannot directly provide high pressure, high purity oxygen, so oxygen for EVAs is transported to ISS in high pressure gas tanks. The tanks are relatively large and heavy, and the majority of the system launch weight is for the tanks and not the oxygen. Extracting high purity oxygen from cabin air and mechanically compressing the oxygen might enable on-board production of EVA grade oxygen using the existing water / water electrolysis system. This capability might also benefit human spaceflight missions, where oxygen for EVAs could be stored in the form of water, and converted into high pressure oxygen on-demand. Cerium oxide solid electrolyte-based ion transport membranes have been shown to separate oxygen from air, and a supported monolithic wafer form of the CeO2 electrolyte membrane has been shown to deliver oxygen at pressures greater than 300 psia. These supported monolithic wafers can withstand high pressure differentials even though the membrane is very thin, because the ion transport membrane is supported on both sides (Fig 1). The monolithic supported wafers have six distinct layers, each with matched coefficients of thermal expansion. The wafers are assembled into a cell stack which allows easy air flow across the wafers, uniform current distribution, and uniform current density (Fig 2). The oxygen separation is reported to be "infinitely selective" to oxygen [1] with reported purity of 99.99% [2]. Combined with a mechanical compressor, a Solid Electrolyte Oxygen Separator (SEOS) should be capable of producing ABO grade oxygen at pressures >2400 psia, on the space station. Feasibility tests using a SEOS integrated with a mechanical compressor identified an unexpected contaminant in the oxygen: water vapour was found in the oxygen product, sometimes at concentrations higher than 40 ppm (the ABO limit for water vapour is 7 ppm). If solid electrolyte membranes are really "infinitely selective" to oxygen as they are reported to be, where did the water come from? If water is getting into the oxygen, what other contaminants might get into the oxygen? Microscopic analyses of wafers, welds, and oxygen delivery tubes were performed in an attempt to find the source of the water vapour contamination. Hot and cold pressure decay tests were performed. Measurements of water vapour as a function of O2 delivery rate, O2 delivery pressure, and process air humidity levels were the most instructive in finding the source of water contamination (Fig 3). Water contamination was directly affected by oxygen delivery rate (doubling the oxygen production rate cut the water level in half). Water was affected by process air humidity levels and delivery pressure in a way that indicates the water was diffusing into the oxygen delivery system.
ERIC Educational Resources Information Center
Quaresima, Valentina; Bisconti, Silvia; Ferrari, Marco
2012-01-01
Upon stimulation, real time maps of cortical hemodynamic responses can be obtained by non-invasive functional near-infrared spectroscopy (fNIRS) which measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. The current commercially available transportable fNIRS systems have…
Oxygen Transport: A Simple Model for Study and Examination.
ERIC Educational Resources Information Center
Gaar, Kermit A., Jr.
1985-01-01
Describes an oxygen transport model computer program (written in Applesoft BASIC) which uses such variables as amount of time lapse from beginning of the simulation, arterial blood oxygen concentration, alveolar oxygen pressure, and venous blood oxygen concentration and pressure. Includes information on obtaining the program and its documentation.…
49 CFR 173.168 - Chemical oxygen generators.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen generator...
49 CFR 173.168 - Chemical oxygen generators.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen generator...
49 CFR 173.168 - Chemical oxygen generators.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen generator...
49 CFR 173.168 - Chemical oxygen generators.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen generator...
49 CFR 173.168 - Chemical oxygen generators.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen generator...
Structure-Function of the Cytochrome b 6f Complex of Oxygenic Photosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cramer, W. A.; Yamashita, E.; Baniulis, D.
2014-03-20
Structure–function of the major integral membrane cytochrome b 6f complex that functions in cyanobacteria, algae, and green plants to transfer electrons between the two reaction center complexes in the electron transport chain of oxygenic photosynthesis is discussed in the context of recently obtained crystal structures of the complex and soluble domains of cytochrome f and the Rieske iron–sulfur protein. The energy-transducing function of the complex, generation of the proton trans-membrane electrochemical potential gradient, centers on the oxidation/reduction pathways of the plastoquinol/plastoquinone (QH 2/Q), the proton donor/acceptor within the complex. These redox reactions are carried out by five redox prosthetic groupsmore » embedded in each monomer, the high potential two iron–two sulfur cluster and the heme of cytochrome f on the electropositive side (p) of the complex, two noncovalently bound b-type hemes that cross the complex and the membrane, and a covalently bound c-type heme (c n) on the electronegative side (n). These five redox-active groups are organized in high- (cyt f/[2Fe–2S] and low-potential (hemes b p, b n, c n) electron transport pathways that oxidize and reduce the quinol and quinone on the p- and n-sides in a Q-cycle-type mechanism, while translocating as many as 2 H + to the p-side aqueous side for every electron transferred through the high potential chain to the photosystem I reaction center. The presence of heme c n and the connection of the n-side of the membrane and b 6f complex to the cyclic electron transport chain indicate that the Q cycle in the oxygenic photosynthetic electron transport chain differs from those connected to the bc 1 complex in the mitochondrial respiratory chain and the chain in photosynthetic bacteria. Inferences from the structure and C2 symmetry of the complex for the pathway of QH 2/Q transfer within the complex, problems posed by the presence of lipid in the inter-monomer cavity, and the narrow portal for QH2 passage through the p-side oxidation site proximal to the [2Fe–2S] cluster are discussed.« less
Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream
Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.
2016-09-27
A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.
Gene Duplication and Evolutionary Innovations in Hemoglobin-Oxygen Transport
2016-01-01
During vertebrate evolution, duplicated hemoglobin (Hb) genes diverged with respect to functional properties as well as the developmental timing of expression. For example, the subfamilies of genes that encode the different subunit chains of Hb are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different developmental stages. In some vertebrate taxa, functional differentiation between co-expressed Hb isoforms may also contribute to physiologically important divisions of labor. PMID:27053736
Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae.
Elbing, Karin; Larsson, Christer; Bill, Roslyn M; Albers, Eva; Snoep, Jacky L; Boles, Eckhard; Hohmann, Stefan; Gustafsson, Lena
2004-09-01
The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.
Role of Hexose Transport in Control of Glycolytic Flux in Saccharomyces cerevisiae
Elbing, Karin; Larsson, Christer; Bill, Roslyn M.; Albers, Eva; Snoep, Jacky L.; Boles, Eckhard; Hohmann, Stefan; Gustafsson, Lena
2004-01-01
The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations. PMID:15345416
Oxygen Impurities Link Bistability and Magnetoresistance in Organic Spin Valves.
Bergenti, Ilaria; Borgatti, Francesco; Calbucci, Marco; Riminucci, Alberto; Cecchini, Raimondo; Graziosi, Patrizio; MacLaren, Donald A; Giglia, Angelo; Rueff, Jean Pascal; Céolin, Denis; Pasquali, Luca; Dediu, Valentin
2018-03-07
Vertical crossbar devices based on manganite and cobalt injecting electrodes and a metal-quinoline molecular transport layer are known to manifest both magnetoresistance (MR) and electrical bistability. The two effects are strongly interwoven, inspiring new device applications such as electrical control of the MR and magnetic modulation of bistability. To explain the device functionality, we identify the mechanism responsible for electrical switching by associating the electrical conductivity and the impedance behavior with the chemical states of buried layers obtained by in operando photoelectron spectroscopy. These measurements revealed that a significant fraction of oxygen ions migrate under voltage application, resulting in a modification of the electronic properties of the organic material and of the oxidation state of the interfacial layer with the ferromagnetic contacts. Variable oxygen doping of the organic molecules represents the key element for correlating bistability and MR, and our measurements provide the first experimental evidence in favor of the impurity-driven model describing the spin transport in organic semiconductors in similar devices.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... compressed oxygen without rigid outer packaging when no other means of transportation exist. 14860-M Alaska... authorizing the transportation in commerce of compressed oxygen without rigid outer packaging when no other... transportation in commerce of compressed oxygen without rigid outer packaging when no other means of...
Management of foetal asphyxia by intrauterine foetal resuscitation
Velayudhareddy, S.; Kirankumar, H
2010-01-01
Management of foetal distress is a subject of gynaecological interest, but an anaesthesiologist should know about resuscitation, because he should be able to treat the patient, whenever he is directly involved in managing the parturient patient during labour analgesia and before an emergency operative delivery. Progressive asphyxia is known as foetal distress; the foetus does not breathe directly from the atmosphere, but depends on maternal circulation for its oxygen requirement. The oxygen delivery to the foetus depends on the placental (maternal side), placental transfer and foetal circulation. Oxygen transport to the foetus is reduced physiologically during uterine contractions in labour. Significant impairment of oxygen transport to the foetus, either temporary or permanent may cause foetal distress, resulting in progressive hypoxia and acidosis. Intrauterine foetal resuscitation comprises of applying measures to a mother in active labour, with the intention of improving oxygen delivery to the distressed foetus to the base line, if the placenta is functioning normally. These measures include left lateral recumbent position, high flow oxygen administration, tocolysis to reduce uterine contractions, rapid intravenous fluid administration, vasopressors for correction of maternal hypotension and amnioinfusion for improving uterine blood flow. Intrauterine Foetal Resuscitation measures are easy to perform and do not require extensive resources, but the results are encouraging in improving the foetal well-being. The anaesthesiologist plays a major role in the application of intrauterine foetal resuscitation measures. PMID:21189876
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarikurt, Sevil; Çakır, Deniz; Keçeli, Murat
The structural model ( i.e. adsorption site of oxygen atom on the surface of MXene) has a paramount impact on the electronic and thermoelectric properties of MXene crystals, which can be exploited to engineer the thermoelectric properties of these materials.
Sarikurt, Sevil; Çakır, Deniz; Keçeli, Murat; ...
2018-01-01
The structural model ( i.e. adsorption site of oxygen atom on the surface of MXene) has a paramount impact on the electronic and thermoelectric properties of MXene crystals, which can be exploited to engineer the thermoelectric properties of these materials.
Feasibility of electrokinetic oxygen supply for soil bioremediation purposes.
Mena Ramírez, E; Villaseñor Camacho, J; Rodrigo Rodrigo, M A; Cañizares Cañizares, P
2014-12-01
This paper studies the possibility of providing oxygen to a soil by an electrokinetic technique, so that the method could be used in future aerobic polluted soil bioremediation treatments. The oxygen was generated from the anodic reaction of water electrolysis and transported to the soil in a laboratory-scale electrokinetic cell. Two variables were tested: the soil texture and the voltage gradient. The technique was tested in two artificial soils (clay and sand) and later in a real silty soil, and three voltage gradients were used: 0.0 (control), 0.5, and 1.0 V cm(-1). It was observed that these two variables strongly influenced the results. Oxygen transport into the soil was only available in the silty and sandy soils by oxygen diffusion, obtaining high dissolved oxygen concentrations, between 4 and 9 mg L(-1), useful for possible aerobic biodegradation processes, while transport was not possible in fine-grained soils such as clay. Electro-osmotic flow did not contribute to the transport of oxygen, and an increase in voltage gradients produced higher oxygen transfer rates. However, only a minimum fraction of the electrolytically generated oxygen was efficiently used, and the maximum oxygen transport rate observed, approximately 1.4 mgO2 L(-1)d(-1), was rather low, so this technique could be only tested in slow in-situ biostimulation processes for organics removal from polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.
Mailloux, Ryan J; McBride, Skye L; Harper, Mary-Ellen
2013-12-01
During the cellular oxidation of fuels, electrons are used to power the proton pumps of the mitochondrial electron transport chain (ETC) and ultimately drive ATP synthesis and the reduction of molecular oxygen to water. During these oxidative processes, some electrons can 'spin off' during fuel oxidation and electron transport to univalently reduce O2, forming reactive oxygen species (ROS). In excess, ROS can be detrimental; however, at low concentrations oxyradicals are essential signaling molecules. Mitochondria thus use a battery of systems to finely control types and levels of ROS, including antioxidants. Several antioxidant systems depend on glutathione. Here, we review mitochondrial ROS homeostatic systems, including emerging knowledge about roles of glutathione in redox balance and the control of protein function by post-translational modification. Copyright © 2013 Elsevier Ltd. All rights reserved.
Positive selection in octopus haemocyanin indicates functional links to temperature adaptation.
Oellermann, Michael; Strugnell, Jan M; Lieb, Bernhard; Mark, Felix C
2015-07-05
Octopods have successfully colonised the world's oceans from the tropics to the poles. Yet, successful persistence in these habitats has required adaptations of their advanced physiological apparatus to compensate impaired oxygen supply. Their oxygen transporter haemocyanin plays a major role in cold tolerance and accordingly has undergone functional modifications to sustain oxygen release at sub-zero temperatures. However, it remains unknown how molecular properties evolved to explain the observed functional adaptations. We thus aimed to assess whether natural selection affected molecular and structural properties of haemocyanin that explains temperature adaptation in octopods. Analysis of 239 partial sequences of the haemocyanin functional units (FU) f and g of 28 octopod species of polar, temperate, subtropical and tropical origin revealed natural selection was acting primarily on charge properties of surface residues. Polar octopods contained haemocyanins with higher net surface charge due to decreased glutamic acid content and higher numbers of basic amino acids. Within the analysed partial sequences, positive selection was present at site 2545, positioned between the active copper binding centre and the FU g surface. At this site, methionine was the dominant amino acid in polar octopods and leucine was dominant in tropical octopods. Sites directly involved in oxygen binding or quaternary interactions were highly conserved within the analysed sequence. This study has provided the first insight into molecular and structural mechanisms that have enabled octopods to sustain oxygen supply from polar to tropical conditions. Our findings imply modulation of oxygen binding via charge-charge interaction at the protein surface, which stabilize quaternary interactions among functional units to reduce detrimental effects of high pH on venous oxygen release. Of the observed partial haemocyanin sequence, residue 2545 formed a close link between the FU g surface and the active centre, suggesting a role as allosteric binding site. The prevalence of methionine at this site in polar octopods, implies regulation of oxygen affinity via increased sensitivity to allosteric metal binding. High sequence conservation of sites directly involved in oxygen binding indicates that functional modifications of octopod haemocyanin rather occur via more subtle mechanisms, as observed in this study.
Computational insights of water droplet transport on graphene sheet with chemical density
NASA Astrophysics Data System (ADS)
Zhang, Liuyang; Wang, Xianqiao
2014-05-01
Surface gradient has been emerging as an intriguing technique for nanoscale particle manipulation and transportation. Owing to its outstanding and stable chemical properties, graphene with covalently bonded chemical groups represents extraordinary potential for the investigation of nanoscale transport in the area of physics and biology. Here, we employ molecular dynamics simulations to investigate the fundamental mechanism of utilizing a chemical density on a graphene sheet to control water droplet motions on it. Simulation results have demonstrated that the binding energy difference among distinct segment of graphene in terms of interaction between the covalently bonded oxygen atoms on graphene and the water molecules provides a fundamental driving force to transport the water droplet across the graphene sheet. Also, the velocity of the water droplet has showed a strong dependence on the relative concentration of oxygen atoms between successive segments. Furthermore, a multi-direction channel provides insights to guide the transportation of objects towards a targeted position, separating the mixtures with a system of specific chemical functionalization. Our findings shed illuminating lights on the surface gradient method and therefore provide a feasible way to control nanoscale motion on the surface and mimic the channelless microfluidics.
Stray-Gundersen, James; Parsons, Dora Beth; Thompson, Jeffrey R.
2016-01-01
Patients treated with hemodialysis develop severely reduced functional capacity, which can be partially ameliorated by correcting anemia and through exercise training. In this study, we determined perturbations of an erythroid-stimulating agent and exercise training to examine if and where limitation to oxygen transport exists in patients on hemodialysis. Twenty-seven patients on hemodialysis completed a crossover study consisting of two exercise training phases at two hematocrit (Hct) values: 30% (anemic) and 42% (physiologic; normalized by treatment with erythroid-stimulating agent). To determine primary outcome measures of peak power and oxygen consumption (VO2) and secondary measures related to components of oxygen transport and utilization, all patients underwent numerous tests at five time points: baseline, untrained at Hct of 30%, after training at Hct of 30%, untrained at Hct of 42%, and after training at Hct of 42%. Hct normalization, exercise training, or the combination thereof significantly improved peak power and VO2 relative to values in the untrained anemic phase. Hct normalization increased peak arterial oxygen and arteriovenous oxygen difference, whereas exercise training improved cardiac output, citrate synthase activity, and peak tissue diffusing capacity. However, although the increase in arterial oxygen observed in the combination phase reached a value similar to that in healthy sedentary controls, the increase in peak arteriovenous oxygen difference did not. Muscle biopsy specimens showed markedly thickened endothelium and electron–dense interstitial deposits. In conclusion, exercise and Hct normalization had positive effects but failed to normalize exercise capacity in patients on hemodialysis. This effect may be caused by abnormalities identified within skeletal muscle. PMID:27153927
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-08
... Airworthiness Directives; Various Transport Category Airplanes Equipped With Chemical Oxygen Generators... the chemical oxygen generators in the lavatory. This AD was prompted by reports that the current design of these oxygen generators presents a hazard that could jeopardize flight safety. We are issuing...
Consumption, supply and transport: self-organization without direct communication
NASA Technical Reports Server (NTRS)
Kessler, J. O.
1996-01-01
Swimming bacteria of the species Bacillus subtilis require and consume oxygen. In static liquid cultures the cells' swimming behaviour leads them to accumulate up oxygen concentration gradients generated by consumption and supply. Since the density of bacterial cells exceeds that of the fluid in which they live, fluid regions where cells have accumulated are denser than depleted regions. These density variations cause convection. The fluid motion is dynamically maintained by the swimming of the cells toward regions of attraction: the air-fluid interface and the fluctuating advecting attractors, gradients of oxygen concentration that are embedded in the convecting fluid. Because of the fluid dynamical conservation laws, these complex physical and biological factors generate patterns ordered over distances > 10000 bacterial cell diameters. The convection enhances long-range transport and mixing of oxygen, cells and extracellular products by orders of magnitude. Thus, through the interplay of physical and biological factors, a population of undifferentiated selfish cells creates functional dynamic patterns. Populations of bacteria that have organised themselves into regularly patterned regions of vigorous convection and varying cell concentration interact with their environment as if they were one purposeful, coherent multicellular individual. The mathematical and experimental ingredients of these remarkable phenomena are presented here.
Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Li, Siqi; van Bodegom, Peter M.; Cornelissen, Johannes H. C.
2016-01-01
Background and Aims Flooding imposes stress upon terrestrial plants because it results in oxygen deficiency, which is considered a major problem for submerged plants. A common response of terrestrial plants to flooding is the formation of aquatic adventitious roots. Some studies have shown that adventitious roots on submerged plants are capable of absorbing water and nutrients. However, there is no experimental evidence for the possible oxygen uptake function of adventitious roots or for how important this function might be for the survival of plants during prolonged submergence. This study aims to investigate whether adventitious roots absorb oxygen from the water column, and whether this new function is beneficial to the survival of completely submerged plants. Methods Taking Alternanthera philoxeroides (Mart.) Griseb. as a representative species, the profiling of the underwater oxygen gradient towards living and dead adventitious roots on completely submerged plants was conducted, the oxygen concentration in stem nodes with and without adventitious roots was measured, and the growth, survival and non-structural carbohydrate content of completely submerged plants with and without adventitious roots was investigated. Key Results Oxygen profiles in the water column of adventitious roots showed that adventitious roots absorbed oxygen from water. It is found that the oxygen concentration in stem nodes having adventitious roots was higher than that in stem nodes without adventitious roots, which implies that the oxygen absorbed by adventitious roots from water was subsequently transported from the roots to other plant tissues. Compared with plants whose adventitious roots had been pruned, those with intact adventitious roots had slower leaf shedding, slower plant mass reduction, more efficient carbohydrate economy and prolonged survival when completely submerged. Conclusions The adventitious roots of A. philoxeroides formed upon submergence can absorb oxygen from ambient water, thereby alleviating the adverse effects of oxygen deficiency, enabling efficient utilization of carbohydrates and delaying the death of completely submerged plants. PMID:27063366
Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers.
Koehler, Raymond C; Fronticelli, Clara; Bucci, Enrico
2008-10-01
The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4-34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery.
Schabel, M C; Roberts, V H J; Lo, J O; Platt, S; Grant, K A; Frias, A E; Kroenke, C D
2016-11-01
To characterize spatial patterns of T2* in the placenta of the rhesus macaque (Macaca mulatta), to correlate these patterns with placental perfusion determined using dynamic contrast-enhanced MRI (DCE-MRI), and to evaluate the potential for using the blood oxygen level-dependent effect to quantify placental perfusion without the use of exogenous contrast reagent. MRI was performed on three pregnant rhesus macaques at gestational day 110. Multiecho spoiled gradient echo measurements were used to compute maps of T2*. Spatial maxima in these maps were compared with foci of early enhancement determined by DCE-MRI. Local maxima in T2* maps were strongly correlated with spiral arteries identified by DCE-MRI, with mean spatial separations ranging from 2.34 to 6.11 mm in the three animals studied. Spatial patterns of R2* ( = 1/ T2*) within individual placental lobules can be quantitatively analyzed using a simple model to estimate fetal arterial oxyhemoglobin concentration [Hbo,f] and a parameter viPS/Φ, reflecting oxygen transport to the fetus. Estimated mean values of [Hbo,f] ranged from 4.25 mM to 4.46 mM, whereas viPS/Φ ranged from 2.80 × 10 5 cm -3 to 1.61 × 10 6 cm -3 . Maternal spiral arteries show strong spatial correlation with foci of extended T2* observed in the primate placenta. A simple model of oxygen transport accurately describes the spatial dependence of R2* within placental lobules and enables assessment of placental function and oxygenation without requiring administration of an exogenous contrast reagent. Magn Reson Med 76:1551-1562, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
Diffusion of oxygen through cork stopper: is it a Knudsen or a Fickian mechanism?
Lagorce-Tachon, Aurélie; Karbowiak, Thomas; Simon, Jean-Marc; Gougeon, Régis; Bellat, Jean-Pierre
2014-09-17
The aim of this work is to identify which law governs oxygen transfer through cork: Knudsen or Fickian mechanism. This is important to better understand wine oxidation during post-bottling aging. Oxygen transfer through cork wafers is measured at 298 K using a manometric permeation technique. Depending on the mechanism, we can extract the transport coefficients. Increasing the initial pressure of oxygen from 50 to 800 hPa leads to a change in the values of the transport coefficients. This implies that oxygen transport through cork does not obey the Knudsen law. From these results, we conclude that the limiting step of oxygen transport through cork occurs in the cell wall following Fickian law. From the diffusion dependence's coefficients with pressure, we also extract by applying transition state theory an apparent activation volume of 45 ± 4 nm(3). This high value indicates that oxygen molecules also diffuse from one site to another by passing through a gas phase.
Human respiratory considerations for civil transport aircraft oxygen system.
DOT National Transportation Integrated Search
1978-01-01
This report is intended to acquaint personnel involved in the design, inspection, and maintenance of civil transport oxygen systems with the human respiratory requirements and oxygen system design considerations necessary to effect an interface and p...
Oxygen-permeable microwell device maintains islet mass and integrity during shipping
Rojas-Canales, Darling M; Waibel, Michaela; Forget, Aurelien; Penko, Daniella; Nitschke, Jodie; Harding, Fran J; Delalat, Bahman; Blencowe, Anton; Loudovaris, Thomas; Grey, Shane T; Thomas, Helen E; Kay, Thomas W H; Drogemuller, Chris J; Voelcker, Nicolas H; Coates, Patrick T
2018-01-01
Islet transplantation is currently the only minimally invasive therapy available for patients with type 1 diabetes that can lead to insulin independence; however, it is limited to only a small number of patients. Although clinical procedures have improved in the isolation and culture of islets, a large number of islets are still lost in the pre-transplant period, limiting the success of this treatment. Moreover, current practice includes islets being prepared at specialized centers, which are sometimes remote to the transplant location. Thus, a critical point of intervention to maintain the quality and quantity of isolated islets is during transportation between isolation centers and the transplanting hospitals, during which 20–40% of functional islets can be lost. The current study investigated the use of an oxygen-permeable PDMS microwell device for long-distance transportation of isolated islets. We demonstrate that the microwell device protected islets from aggregation during transport, maintaining viability and average islet size during shipping. PMID:29483160
Oxygen-permeable microwell device maintains islet mass and integrity during shipping.
Rojas-Canales, Darling M; Waibel, Michaela; Forget, Aurelien; Penko, Daniella; Nitschke, Jodie; Harding, Fran J; Delalat, Bahman; Blencowe, Anton; Loudovaris, Thomas; Grey, Shane T; Thomas, Helen E; Kay, Thomas W H; Drogemuller, Chris J; Voelcker, Nicolas H; Coates, Patrick T
2018-03-01
Islet transplantation is currently the only minimally invasive therapy available for patients with type 1 diabetes that can lead to insulin independence; however, it is limited to only a small number of patients. Although clinical procedures have improved in the isolation and culture of islets, a large number of islets are still lost in the pre-transplant period, limiting the success of this treatment. Moreover, current practice includes islets being prepared at specialized centers, which are sometimes remote to the transplant location. Thus, a critical point of intervention to maintain the quality and quantity of isolated islets is during transportation between isolation centers and the transplanting hospitals, during which 20-40% of functional islets can be lost. The current study investigated the use of an oxygen-permeable PDMS microwell device for long-distance transportation of isolated islets. We demonstrate that the microwell device protected islets from aggregation during transport, maintaining viability and average islet size during shipping. © 2018 The authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun
Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complexmore » III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.« less
Evaluation of Stroma-Free Hemoglobin Solutions as Resuscitative Fluids for the Injured Soldier
1988-11-01
consultation with members of UCSD. The evaluations utilized measurements of blood gases , oxygen contents, blood lactate, cardiac and peripheral pressures...there were additional marked differences in oxygen consumption, total oxygen transport , and aortic pressure. Lactate production and left arterial...unlike the albumin animals these SFHS animals showed no changes in oxygen consumption, oxygen transport , lactate production, heart rate, dF/dt, or
Case-Based Learning of Blood Oxygen Transport
ERIC Educational Resources Information Center
Cliff, William H.
2006-01-01
A case study about carbon monoxide poisoning was used help students gain a greater understanding of the physiology of oxygen transport by the blood. A review of student answers to the case questions showed that students can use the oxygen-hemoglobin dissociation curve to make meaningful determinations of oxygen uptake and delivery. However, the…
Farrell, K; Wasser, T
1997-01-01
We describe a new derived hemodynamic oxygenation parameter, the S factor (S). The factor is based on oxygen delivery and oxygen consumption and can range from -3 to 1. It allows simplified mathematical modeling of clinical problems of oxygen transport and can be applied to many clinical situations. A new hemodynamic oxygenation parameter, the S factor (S), is introduced as an aid to mathematical modeling. It is defined as follows: [formula: see text] (DO2 = oxygen delivery, VO2 = oxygen consumption) S can theoretically vary from -3 (DO2 = VO2) to +1 (VO2 = 0). When DO2/VO2 = 4 (ie. OER = 0.25), S = 0. An S < 0 implies utilization of reserve oxygen transport capacity. An S > 0 implies increased oxygen delivery in relation to oxygen consumption (ie. "shunted oxygen delivery"). By algebraic manipulation and substitution of the components of DO2 into Equation 1: DO2 = Q x Ca x 10 DO2 = Q [(Hb)(Sat)(1.36) + PaO2(.0031)] 10 (2) the following equations can be derived: [formula: see text] [formula: see text] Ca - Cv (Ca = arterial content, Cv = venous content) can be determined by substituting components of oxygen consumption: VO2 = Q (Ca - Cv) x 10 (5) into equation 1 and solving for Ca - Cv. [formula: see text] Equation 6 can be simplified to: [formula: see text] A previously defined relationship between mixed venous PO2 (PvO2) and DO2/VO2 (where calculated P50 is 26.6 +/- 1.0) can be used to modify S in a clinically relevant manner. PvO2 = 5.44D O2/VO2 + 18.16 (8) The relationship between S and PvO2 can be defined by substituting Equation 4 into Equation 1 and solving for PvO2 PvO2 = [21.76/(1-S)] + 18.16 (9) As an example, at a PvO2 of 28 torr (anaerobic threshold), S = -1.2. The relationship between PvO2 and S is shown in Figure 1. S, which can also be defined as 1-4(VO2/DO2) or 1-4(OER), is a useful tool for mathematical modeling of global problems of oxygen transport because the previously derived equations with the S value allow the components of oxygen transport to be interrelated in a clinically relevant manner. Additional advantages of using S in mathematical modeling are: 1. Conceptually it 'fits' in that in regards to the sign (+ or -), as a -S implies utilization of reserve oxygen transport capacity and a +S implies wasted or excess oxygen delivery (shunted). 2. These concepts are easily quantified using the S factor. 3. It 'spreads out' the difference between values for parameters (OER or S) integrating components of oxygen transport, ie. in the 'normal state' regarding oxygen transport, OER = 0.25 and S = 0. At the anaerobic threshold (PvO2 = 28 torr), OER = 0.55 and S = -1.2. Thus, the change in OER from 'normal state' to anaerobic threshold is 0.3 (0.55-0.25) and the change in S is 1.2. This represents a four-fold increase. Four examples of mathematical modeling of global problems of oxygen transport using the S factor are described below.
Neuroglobin and cytoglobin: two new members of globin family
Tosqui, Priscilla; Colombo, Marcio Francisco
2011-01-01
The globin family has long been defined by myoglobin and hemoglobin, proteins with the functions of oxygen storage and transportation, respectively. Recently, two new members of this family were discovered: neuroglobin present in neurons and retinal cells and cytoglobin found in various types of tissue. The increased expression of these proteins in hypoxic conditions first suggested a role in oxygen supply. However structural and functional differences, such as the hexacoordinated heme, a high autoxidation rate and different concentrations between different cellular types, have dismissed this hypothesis. The protective role of these globins has already been established. In vitro and in vivo studies have demonstrated increased survival of neurons under stress in the presence of neuroglobin and increased resistance to neurodegenerative diseases. However the mechanism remains unknown. Functions, including detoxification of nitric oxide, free radical scavenging and as an antioxidant and signaling of apoptosis, have also been suggested for neuroglobin and an antifibrotic function for cytoglobin. PMID:23049323
Zatevahina, M V; Farzutdinov, A F; Rahimov, A A; Makrushin, I M; Kvachantiradze, G Y
2015-01-01
The purpose of the study is to examine the perioperative dynamics of strategic blood oxygen transport indicators: delivery (DO2), consumption (VO2), the coefficient of oxygen uptake (CUO2) and their composition, as well as the dynamics of blood lactate indicators in patients with ischaemic heart disease (IHD) who underwent surgery under cardiopulmonary bypass with high thoracic epidural anaesthesia (HTEA) as the main component of anesthesia. Research was conducted in 30 patients with a critical degree of operational risk, during the correction of post-infarction heart aneurysmn using the V. Dor method in combination with coronary artery bypass grafting. The strategic blood oxygen transport indicators (delivery, consumption and the oxygen uptake coefficient) showed a statistically significant decrease compared to the physiological norm and to the initial data at two points of the research: the intubation of the trachea and during cardiopulmonary bypass. The system components of oxygen were influenced at problematic stages by the dynamics of SvO2 (increase), AVD (decrease), hemodilution withe fall of the HIb- in the process of JR in the persence of superficial hypothermia. The maintenance of optimal CA in the context of HTEA, combined with a balanced volemic load and a minimized cardiotonic support ensured the stabilisation of strategic blood oxygen transport indicators aithe postperfusion stage and during the immediate postoperative period The article is dedicated to the study of strategic blood oxygen transport indicators and their components during the operation of geometric reconstruc-tion of the left ventricle combined with coronary artery-bypass using cardiopulmonary bypass and with high thoracic epidural anesthesia as the main component of general anaesthesia. The analysis has covered the stagewise delivery dynamics, consumption and the oxygen uptake coefficient at II stages of the operation and of the immediate postoperative period. The study has ident (fled the causes qf reduced oxygen transport during the preperfu- sion and postperfusion periods, under IR and during the immediate postoperative period. Values of CA, SvO2, AVD, Hb, hemnodilution, T qf the body in oxygen transport indicator dynamics have been proven. A way of maintaining oxygen transport indicators close to the physiological norm in the immediate postoperative period has been justified.
Segregation and Migration of the Oxygen Vacancies in the 3 (111) Tilt Grain Boundaries of Ceria
Yuan, Fenglin; Liu, Bin; Zhang, Yanwen; ...
2016-03-01
In nanocrystalline materials, defect-grain boundary (GB) interaction plays a key role in determining the structure stability, as well as size-dependent ionic, electronic, magnetic and chemical properties. In this study, we systematically investigated using density functional theory segregation and migration of oxygen vacancies at the Σ3 [110] / (111) grain boundary of ceria. Three oxygen layers near the GB are predicted to be segregation sites for oxygen vacancies. Moreover, the presence of oxygen vacancies stabilizes this tilt GB at a low Fermi level and/or oxygen poor conditions. An atomic strain model was proposed to rationalize layer dependency of the relaxation energymore » for +2 charged oxygen vacancy. The structural origin of large relaxation energies at layers 1 and 2 was determined to be free-volume space that induces ion relaxation towards the GB. Our results not only pave the way for improving the oxygen transport near GBs of ceria, but also provide important insights into engineering the GB structure for better ionic, magnetic and chemical properties of nanocrystalline ceria.« less
Glossosoma nigrior (Trichoptera: Glossosomatidae) respiration in moving fluid.
Morris, Mark W L; Hondzo, Miki
2013-08-15
Laboratory measurements of dissolved oxygen (DO) uptake by Glossosoma nigrior Banks were conducted in a sealed, recirculating flume under variable fluid flow velocities. Measurements were performed in similar water temperatures, DO concentrations and fluid flow velocities to field conditions in the stream where the larvae were obtained. Total oxygen uptake by both cased larvae and corresponding cases without larvae were quantified. An increased fluid flow velocity corresponded to an increased larval DO uptake rate. Oxygen uptake by the larval cases alone was not as sensitive to changes in the Peclet (Pe) number, the dimensionless ratio of advective to diffusive DO transport, as uptake by larvae themselves. The flux of DO to larvae and their cases was up to seven times larger in a moving fluid in comparison to non-moving fluid conditions in the proximity of larvae for 0
Cavitating Jet Method and System for Oxygenation of Liquids
NASA Technical Reports Server (NTRS)
Chahine, Georges L.
2012-01-01
Reclamation and re-use of water is critical for space-based life support systems. A number of functions must be performed by any such system including removal of various contaminants and oxygenation. For long-duration space missions, this must be done with a compact, reliable system that requires little or no use of expendables and minimal power. DynaJets cavitating jets can oxidize selected organic compounds with much greater energy efficiency than ultrasonic devices typically used in sonochemistry. The focus of this work was to develop cavitating jets to simultaneously accomplish the functions of oxygenation and removal of contaminants of importance to space-structured water reclamation systems. The innovation is a method to increase the concentration of dissolved oxygen or other gasses in a liquid. It utilizes a particular form of novel cavitating jet operating at low to moderate pressures to achieve a high-efficiency means of transporting and mixing the gas into the liquid. When such a jet is utilized to simultaneously oxygenate the liquid and to oxidize organic compounds within the liquid, such as those in waste water, the rates of contaminant removal are increased. The invention is directed toward an increase in the dissolved gas content of a liquid, in general, and the dissolved oxygen content of a liquid in particular.
Osmotic phenomena in application for hyperbaric oxygen treatment.
Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G
2011-03-01
Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood plasma drops and the nitrogen concentration gradient becomes directed from blood to tissue. On the assumption of weak interaction between the inert nitrogen and the human tissue, normal osmosis for the nitrogen transport takes place. Thus, the directions of anomalous osmotic flow caused by the oxygen concentration gradient coincide with the directions of normal osmotic flow, caused by the nitrogen concentration gradient. This leads to the conclusion that the presence of nitrogen in the human body promotes the oxygen delivery under HBO conditions, rendering the overall success of the hyperbaric oxygen treatment procedure. 2010 Elsevier B.V. All rights reserved.
Tuning the conductivity along atomic chains by selective chemisorption
NASA Astrophysics Data System (ADS)
Edler, F.; Miccoli, I.; Stöckmann, J. P.; Pfnür, H.; Braun, C.; Neufeld, S.; Sanna, S.; Schmidt, W. G.; Tegenkamp, C.
2017-03-01
Adsorption of Au on vicinal Si(111) surfaces results in growth of long-range ordered metallic quantum wires. In this paper, we utilized site-specific and selective adsorption of oxygen to modify chemically the transport via different channels in the systems Si(553)-Au and Si(557)-Au. They were analyzed by electron diffraction and four-tip STM-based transport experiments. Modeling of the adsorption process by density functional theory shows that the adatoms and rest atoms on Si(557)-Au provide energetically favored adsorption sites, which predominantly alter the transport along the wire direction. Since this structural motif is missing on Si(553)-Au, the transport channels remain almost unaffected by oxidation.
Augmentation of oxygen transport by various hemoglobins as determined by pulsed field gradient NMR.
Budhiraja, Vikas; Hellums, J David; Post, Jan F M
2002-11-01
Diffusion of oxyhemoglobin has been shown to augment the oxygen transport inside the red blood cells. Measurement of hemoglobin diffusion coefficients by pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) technique can be used for estimating this augmentation effect. Self-diffusion coefficients of polymerized and unpolymerized bovine hemoglobin (Hb) and several other proteins were measured using this technique. The Hb diffusion coefficient was used to determine the effective permeability of oxygen and augmentation of oxygen transport through samples of Hb solutions due to diffusion of oxyhemoglobin. The values compared well with our previous diffusion cell measurements of effective diffusivity and augmentation. Our NMR studies show that even at low concentrations the augmentation of oxygen transport due to diffusion can be significant. The PFG NMR technique can thus provide an accurate and easy method for measuring augmentation of oxygen transport, especially in dilute samples of Hb. The results on polyhemoglobin and high-molecular-weight hemoglobin are of both basic interest and practical value in assessing the promise and performance of hemoglobin-based blood substitutes.
NASA Astrophysics Data System (ADS)
Smart, Tyler J.; Ping, Yuan
2017-10-01
Hematite (α-Fe2O3) is a promising candidate as a photoanode material for solar-to-fuel conversion due to its favorable band gap for visible light absorption, its stability in an aqueous environment and its relatively low cost in comparison to other prospective materials. However, the small polaron transport nature in α-Fe2O3 results in low carrier mobility and conductivity, significantly lowering its efficiency from the theoretical limit. Experimentally, it has been found that the incorporation of oxygen vacancies and other dopants, such as Sn, into the material appreciably enhances its photo-to-current efficiency. Yet no quantitative explanation has been provided to understand the role of oxygen vacancy or Sn-doping in hematite. We employed density functional theory to probe the small polaron formation in oxygen deficient hematite, N-doped as well as Sn-doped hematite. We computed the charged defect formation energies, the small polaron formation energy and hopping activation energies to understand the effect of defects on carrier concentration and mobility. This work provides us with a fundamental understanding regarding the role of defects on small polaron formation and transport properties in hematite, offering key insights into the design of new dopants to further improve the efficiency of transition metal oxides for solar-to-fuel conversion.
Mohamed Abubakkar, M; Saraboji, K; Ponnuswamy, M N
2013-02-01
Haemoglobin (Hb) is a respiratory pigment; it is a tetrameric protein that ferries oxygen from the lungs to tissues and transports carbon dioxide on the return journey. The oxygen affinity of haemoglobin is regulated by the concentration of oxygen surrounding it and several efforts have revealed the shapes of Hb in different states and with different functions. However, study of the molecular basis of Hbs from low-oxygen-affinity species is critically needed in order to increase the understanding of the mechanism behind oxygen adaptation. The present study reports the preliminary crystallographic study of low-oxygen-affinity haemoglobin from mongoose, a burrowing mammal. Haemoglobin from mongoose was purified by anion-exchange chromatography, crystallized using the hanging-drop vapour-diffusion method and diffraction data sets were collected from monoclinic (2.3 Å resolution) and orthorhombic (2.9 Å resolution) crystal forms obtained by pH variation. The monoclinic and orthorhombic asymmetric units contained half and a whole biological molecule, respectively.
Guo, Zhongyuan; Martucci, Nicole J.; Moreno-Olivas, Fabiola; Tako, Elad; Mahler, Gretchen J.
2017-01-01
Ingestion of titanium dioxide (TiO2) nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface between the body and the external environment, and is the site of essential nutrient absorption. The goal of this study was to examine the effects of ingesting the 30 nm TiO2 nanoparticles with an in vitro cell culture model of the small intestinal epithelium, and to determine how acute or chronic exposure to nano-TiO2 influences intestinal barrier function, reactive oxygen species generation, proinflammatory signaling, nutrient absorption (iron, zinc, fatty acids), and brush border membrane enzyme function (intestinal alkaline phosphatase). A Caco-2/HT29-MTX cell culture model was exposed to physiologically relevant doses of TiO2 nanoparticles for acute (four hours) or chronic (five days) time periods. Exposure to TiO2 nanoparticles significantly decreased intestinal barrier function following chronic exposure. Reactive oxygen species (ROS) generation, proinflammatory signaling, and intestinal alkaline phosphatase activity all showed increases in response to nano-TiO2. Iron, zinc, and fatty acid transport were significantly decreased following exposure to TiO2 nanoparticles. This is because nanoparticle exposure induced a decrease in absorptive microvilli in the intestinal epithelial cells. Nutrient transporter protein gene expression was also altered, suggesting that cells are working to regulate the transport mechanisms disturbed by nanoparticle ingestion. Overall, these results show that intestinal epithelial cells are affected at a functional level by physiologically relevant exposure to nanoparticles commonly ingested from food. PMID:28944308
A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs
Giomi, Folco; Pörtner, Hans-Otto
2013-01-01
Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming can be characterized by two phases. During initial warming, oxygen consumption and heart rate increase, while stroke volume and haemolymph oxygen partial pressure decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance (OCLTT), this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph) oxygen transport in a eurythermal invertebrate. PMID:23720633
A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.
Giomi, Folco; Pörtner, Hans-Otto
2013-01-01
Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming can be characterized by two phases. During initial warming, oxygen consumption and heart rate increase, while stroke volume and haemolymph oxygen partial pressure decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance (OCLTT), this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph) oxygen transport in a eurythermal invertebrate.
Numerical study of oxygen transport in a carotid bifurcation
NASA Astrophysics Data System (ADS)
Tada, Shigeru
2010-07-01
This study investigates the oxygen mass transport in the region around the human carotid bifurcation, particularly addressing the effects of bifurcation geometry and pulsatile blood flow on the oxygen transport between the blood flow and artery wall tissue, coupled with the metabolic oxygen consumption and oxygen diffusion in the artery wall tissue. The temporal variations and spatial distributions of the oxygen tension are predicted quantitatively using a geometric model of the human carotid bifurcation and realistic blood flow waveforms. Results reveal that the flow separation at the outside wall of the sinus of the internal carotid artery (ICA) can markedly alter the flow pattern, oxygen tension and the oxygen wall flux. Results also clarify that the flow unsteadiness has a secondary effect on the oxygen tension inside the wall. The non-dimensional oxygen flux, the Sherwood number Sh, at the outside wall of the ICA sinus, takes markedly lower values of about 45 than at other sites because the rates of oxygen transport by the convective flow are reduced at the outside wall of the ICA sinus. The transverse distributions of the oxygen tension inside the artery wall show parabolic profiles having minima in the middle of the wall thickness, with the lowest value of 35 mmHg. These predicted distributions of the oxygen tension inside the wall closely resemble those obtained from experiments. The results demonstrate that hypoxic zones appear inside the artery walls at locations where atherosclerotic lesions are prone to develop.
Control mechanisms in mitochondrial oxidative phosphorylation☆
Hroudová, Jana; Fišar, Zdeněk
2013-01-01
Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5’- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5’-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by “second control mechanisms,” such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5’-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production. PMID:25206677
Control mechanisms in mitochondrial oxidative phosphorylation.
Hroudová, Jana; Fišar, Zdeněk
2013-02-05
Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5'- triphosphate production is regulated by many control mechanism-firstly by oxygen, substrate level, adenosine-5'-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by "second control mechanisms," such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5'-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.
Multimodal optical imaging of microvessel network convective oxygen transport dynamics.
Dedeugd, Casey; Wankhede, Mamta; Sorg, Brian S
2009-04-01
Convective oxygen transport by microvessels depends on several parameters, including red blood cell flux and oxygen saturation. We demonstrate the use of intravital microscopy techniques to measure hemoglobin saturations, red blood cell fluxes and velocities, and microvessel cross-sectional areas in regions of microvascular networks containing multiple vessels. With these methods, data can be obtained at high spatial and temporal resolution and correlations between oxygen transport and hemodynamic parameters can be assessed. In vivo data are presented for a mouse mammary adenocarcinoma grown in a dorsal skinfold window chamber model.
Carpenter, Chandra; Payne, Shelley M
2014-04-01
Iron is an essential nutrient for most bacteria. Depending on the oxygen available in the surrounding environment, iron is found in two distinct forms: ferrous (Fe(II)) or ferric (Fe(III)). Bacteria utilize different transport systems for the uptake of the two different forms of iron. In oxic growth conditions, iron is found in its insoluble, ferric form, and in anoxic growth conditions iron is found in its soluble, ferrous form. Enterobacteriaceae have adapted to transporting the two forms of iron by utilizing the global, oxygen-sensing regulators, ArcA and Fnr to regulate iron transport genes in response to oxygen. Copyright © 2014 Elsevier Inc. All rights reserved.
Reverse electron transport effects on NADH formation and metmyoglobin reduction.
Belskie, K M; Van Buiten, C B; Ramanathan, R; Mancini, R A
2015-07-01
The objective was to determine if NADH generated via reverse electron flow in beef mitochondria can be used for electron transport-mediated reduction and metmyoglobin reductase pathways. Beef mitochondria were isolated from bovine hearts (n=5) and reacted with combinations of succinate, NAD, and mitochondrial inhibitors to measure oxygen consumption and NADH formation. Mitochondria and metmyoglobin were reacted with succinate, NAD, and mitochondrial inhibitors to measure electron transport-mediated metmyoglobin reduction and metmyoglobin reductase activity. Addition of succinate and NAD increased oxygen consumption, NADH formation, electron transport-mediated metmyoglobin reduction, and reductase activity (p<0.05). Addition of antimycin A prevented electron flow beyond complex III, therefore, decreasing oxygen consumption and electron transport-mediated metmyoglobin reduction. Addition of rotenone prevented reverse electron flow, increased oxygen consumption, increased electron transport-mediated metmyoglobin reduction, and decreased NADH formation. Succinate and NAD can generate NADH in bovine tissue postmortem via reverse electron flow and this NADH can be used by both electron transport-mediated and metmyoglobin reductase pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers
Koehler, Raymond C.; Fronticelli, Clara; Bucci, Enrico
2008-01-01
The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4–34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery. PMID:18230370
Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba.
Hoffmann, Friederike; Røy, Hans; Bayer, Kristina; Hentschel, Ute; Pfannkuchen, Martin; Brümmer, Franz; de Beer, Dirk
2008-01-01
The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba specimens with Clark-type oxygen microelectrodes (tip diameters 18-30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges, which allows total oxygen consumption rates of 6-12 μmol cm -3 sponge day -1 . Sponges of different sizes had similar diffusional uptake rates, which is explained by their similar surface/volume ratios. In pumping sponges, oxygen consumption rates were between 22 and 37 μmol cm -3 sponge day -1 , and the entire tissue was oxygenated. Combining different approaches of direct oxygen measurement in living sponges with a dynamic model, we can show that tissue anoxia is a direct function of the pumping behavior. The sponge-microbe system of A. aerophoba thus has the possibility to switch actively between aerobic and anaerobic metabolism by stopping the water flow for more than 15 min. These periods of anoxia will greatly influence physiological variety and activity of the sponge microbes. Detailed knowledge about the varying chemical microenvironments in sponges will help to develop protocols to cultivate sponge-associated microbial lineages and improve our understanding of the sponge-microbe-system.
Patton, Jaqunda N; Palmer, Andre F
2006-01-01
This work represents a culmination of research on oxygen transport to muscle tissue, which takes into account oxygen transport due to convection, diffusion, and the kinetics of simultaneous reactions between oxygen and hemoglobin and myoglobin. The effect of adding hemoglobin-based oxygen carriers (HBOCs) to the plasma layer of blood in a single capillary surrounded by muscle tissue based on the geometry of the Krogh tissue cylinder is examined for a range of HBOC oxygen affinity, HBOC concentration, capillary inlet oxygen tension (pO(2)), and hematocrit. The full capillary length of the hamster retractor muscle was modeled under resting (V(max) = 1.57 x 10(-4) mLO(2) mL(-1) s(-1), cell velocity (v(c)) = 0.015 cm/s) and working (V(max) = 1.57 x 10(-3) mLO(2) mL(-1) s(-1), v(c) = 0.075 cm/s) conditions. Two spacings between the red blood cell (RBC) and the capillary wall were examined, corresponding to a capillary with and without an endothelial surface layer. Simulations led to the following conclusions, which lend physiological insight into oxygen transport to muscle tissue in the presence of HBOCs: (1) The reaction kinetics between oxygen and myoglobin in the tissue region, oxygen and HBOCs in the plasma, and oxygen and RBCs in the capillary lumen should not be neglected. (2) Simulation results yielded new insight into possible mechanisms of oxygen transport in the presence of HBOCs. (3) HBOCs may act as a source or sink for oxygen in the capillary and may compete with RBCs for oxygen. (4) HBOCs return oxygen delivery to muscle tissue to normal for varying degrees of hypoxia (inlet capillary pO(2) < 30 mmHg) and anemia (hematocrit < 46%) for the hamster model.
Kim, Junhwan; Fujioka, Hisashi; Oleinick, Nancy L.; Anderson, Vernon E.
2010-01-01
Singlet oxygen is produced by absorption of red light by the phthalocyanine dye, Pc 4, followed by energy transfer to dissolved triplet oxygen. Mitochondria pre-incubated with Pc 4 were illuminated by red light and the damage to mitochondrial structure and function by the generated singlet oxygen was studied. At early illumination times (3–5 min. of red light exposure), state 3 respiration was inhibited (50%) while state 4 activity increased, resulting in effectively complete uncoupling. Individual complex activities were measured and only complex IV activity was significantly reduced and exhibited a dose response while the activities of electron transport complexes I, II and III were not significantly affected. Cyt c release was an increasing function of irradiation time with 30% being released following 5 min. of illumination. Mitochondrial expansion along with changes in the structure of the cristae were observed by transmission electron microscopy following 5 min. of irradiation with an increase of large vacuoles and membrane rupture occurring following more extensive exposures. PMID:20510354
Samaja, Michele; Crespi, Tiziano; Guazzi, Marco; Vandegriff, Kim D
2003-10-01
Altitude hypoxia is a major challenge to the blood O2 transport system, and adjustments of the blood-O2 affinity might contribute significantly to hypoxia adaptation. In principle, lowering the blood-O2 affinity is advantageous because it lowers the circulatory load required to assure adequate tissue oxygenation up to a threshold corresponding to about 5,000 m altitude, whereas at higher altitudes an increased blood-O2 affinity appears more advantageous. However, the rather contradictory experimental evidence raises the question whether other factors superimpose on the apparent changes of the blood-O2 affinity. The most important of these are as follows: (1) absolute temperature and temperature gradients within the body; (2) the intracapillary Bohr effect; (3) the red cell population heterogeneity in terms of O2 affinity; (4) control of altitude alkalosis; (5) the possible role of hemoglobin as a carrier of the vasodilator nitric oxide; (6) the effect of varied red cell transit times through the capillaries.
Tunable anomalous hall effect induced by interfacial catalyst in perpendicular multilayers
NASA Astrophysics Data System (ADS)
Zhang, J. Y.; Peng, W. L.; Sun, Q. Y.; Liu, Y. W.; Dong, B. W.; Zheng, X. Q.; Yu, G. H.; Wang, C.; Zhao, Y. C.; Wang, S. G.
2018-04-01
The interfacial structures, playing a critical role on the transport properties and the perpendicular magnetic anisotropy in thin films and multilayers, can be modified by inserting an ultrathin functional layer at the various interfaces. The anomalous Hall effect (AHE) in the multilayers with core structure of Ta/CoFeB/X/MgO/Ta (X: Hf or Pt) is tuned by interfacial catalytic engineering. The saturation anomalous Hall resistance (RAH) is increased by 16.5% with 0.1 nm Hf insertion compared with the reference sample without insertion. However, the RAH value is decreased by 9.0% with 0.1 nm Pt insertion. The interfacial states were characterized by the X-ray photoelectron spectroscopy (XPS). The XPS results indicate that a strong bonding between Hf and O for Hf insertion, but no bonding between Pt and O for Pt insertion. The bonding between metal and oxygen leads to various oxygen migration behavior at the interfaces. Therefore, the opposite behavior about the RAH originates from the different oxygen behavior due to various interfacial insertion. This work provides a new approach to manipulate spin transport property for the potential applications.
Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions
Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken
2011-01-01
Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p50 of 3.4±0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution. PMID:20859293
Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.
Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken
2011-01-01
Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.
Mathematical modeling of kidney transport.
Layton, Anita T
2013-01-01
In addition to metabolic waste and toxin excretion, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, nitrogen, and acid-base. In this review, we describe representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, epithelial transport, and regulation of renal oxygen transport. We discuss the extent to which these modeling efforts have expanded our understanding of renal function in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.
De Rosa, Maria Cristina; Carelli Alinovi, Cristiana; Galtieri, Antonio; Russo, Annamaria; Giardina, Bruno
2008-02-01
Within the red blood cell the hemoglobin molecule is subjected to modulation mechanisms, namely homo- and heterotropic interactions, which optimize its functional behavior to the specific physiological requirements. At the cellular level, these modulation mechanisms are utilized to perform a number of other functions that are not minor with respect to the basic function of oxygen transport. Here we report some key examples concerning: (i) the interaction of hemoglobin with band 3 and its influence on glucose metabolism; (ii) the role of the ligand-linked quaternary transition of hemoglobin in the control of "NO bioactivity" and of gas diffusion; (iii) the interaction of plasma membrane with the various oxidative derivatives of the hemoglobin molecule. (c) 2008 IUBMB.
Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells.
Ishikawa, Makoto; Sawada, Yu; Yoshitomi, Takeshi
2015-04-01
The interphotoreceptor matrix (IPM) is a highly organized structure with interconnected domains surrounding cone and rod photoreceptor cells and extends throughout the subretinal space. Based on known roles of the extracellular matrix in other tissues, the IPM is thought to have several prominent functions including serving as a receptor for growth factors, regulating retinoid transport, participating in cytoskeletal organization in surrounding cells, and regulation of oxygen and nutrient transport. In addition, a number of studies suggest that the IPM also may play a significant role in the etiology of retinal degenerative disorders. In this review, we describe the present knowledge concerning the structure and function of the IPM under physiological and pathological conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
A 3D analysis of oxygen transfer in a low-cost micro-bioreactor for animal cell suspension culture.
Yu, P; Lee, T S; Zeng, Y; Low, H T
2007-01-01
A 3D numerical model was developed to study the flow field and oxygen transport in a micro-bioreactor with a rotating magnetic bar on the bottom to mix the culture medium. The Reynolds number (Re) was kept in the range of 100-716 to ensure laminar environment for animal cell culture. The volumetric oxygen transfer coefficient (k(L)a) was determined from the oxygen concentration distribution. It was found that the effect of the cell consumption on k(L)a could be negligible. A correlation was proposed to predict the liquid-phase oxygen transfer coefficient (k(Lm)) as a function of Re. The overall oxygen transfer coefficient (k(L)) was obtained by the two-resistance model. Another correlation, within an error of 15%, was proposed to estimate the minimum oxygen concentration to avoid cell hypoxia. By combination of the correlations, the maximum cell density, which the present micro-bioreactor could support, was predicted to be in the order of 10(12) cells m(-3). The results are comparable with typical values reported for animal cell growth in mechanically stirred bioreactors.
Paving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces.
Frechero, M A; Rocci, M; Sánchez-Santolino, G; Kumar, Amit; Salafranca, J; Schmidt, Rainer; Díaz-Guillén, M R; Durá, O J; Rivera-Calzada, A; Mishra, R; Jesse, Stephen; Pantelides, S T; Kalinin, Sergei V; Varela, M; Pennycook, S J; Santamaria, J; Leon, C
2015-12-17
The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together with a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements, and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. Besides the possible effect of the modified chemical bonding, this negative charge gives rise to an additional barrier for ion transport at the grain boundary.
Paving the way to nanoionics: Atomic origin of barriers for ionic transport through interfaces
Frechero, M. A.; Rocci, M.; Sanchez-Santolino, G.; ...
2015-12-17
The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together withmore » a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements, and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. In conclusion, besides the possible effect of the modified chemical bonding, this negative charge gives rise to an additional barrier for ion transport at the grain boundary.« less
Oxygen in the regulation of intestinal epithelial transport
Ward, Joseph B J; Keely, Simon J; Keely, Stephen J
2014-01-01
The transport of fluid, nutrients and electrolytes to and from the intestinal lumen is a primary function of epithelial cells. Normally, the intestine absorbs approximately 9 l of fluid and 1 kg of nutrients daily, driven by epithelial transport processes that consume large amounts of cellular energy and O2. The epithelium exists at the interface of the richly vascularised mucosa, and the anoxic luminal environment and this steep O2 gradient play a key role in determining the expression pattern of proteins involved in fluid, nutrient and electrolyte transport. However, the dynamic nature of the splanchnic circulation necessitates that the epithelium can evoke co-ordinated responses to fluctuations in O2 availability, which occur either as a part of the normal digestive process or as a consequence of several pathophysiological conditions. While it is known that hypoxia-responsive signals, such as reactive oxygen species, AMP-activated kinase, hypoxia-inducible factors, and prolyl hydroxylases are all important in regulating epithelial responses to altered O2 supply, our understanding of the molecular mechanisms involved is still limited. Here, we aim to review the current literature regarding the role that O2 plays in regulating intestinal transport processes and to highlight areas of research that still need to be addressed. PMID:24710059
Prediction of oxygen distribution in aortic valve leaflet considering diffusion and convection.
Wang, Ling; Korossis, Sotirios; Fisher, John; Ingham, Eileen; Jin, Zhongmin
2011-07-01
Oxygen supply and transport is an important consideration in the development of tissue engineered constructs. Previous studies from our group have focused on the effect of tissue thickness on the oxygen diffusion within a three-dimensional aortic valve leaflet model, and highlighted the necessity for additional transport mechanisms such as oxygen convection. The aims of this study were to investigate the effect of interstitial fluid flow within the aortic valve leaflet, induced by the cyclic loading of the leaflet, on oxygen transport. Indentation testing and finite element modelings were employed to derive the biphasic properties of the leaflet tissue. The biphasic properties were subsequently used in the computational modeling of oxygen convection in the leaflet, which was based on the effective interstitial fluid velocity and the tissue deformation. Subsequently, the oxygen profile was predicted within the valve leaflet model by solving the diffusion and convection equation simultaneously utilizing the finite difference method. The compression modulus (E) and hydraulic permeability were determined by adapting a finite element model to the experimental indentation test on valvular tissue, E = 0.05MPa, and k =2.0 mm4/Ns. Finite element model of oxygen convection in valvular tissue incorporating the predicted biphasic properties was developed and the interstitial fluid flow rate was calculated falling in range of 0.025-0.25 mm/s depending on the tissue depth. Oxygen distribution within valvular tissue was predicted using one-dimensional oxygen diffusion model taking into consider the interstitial fluid effect. It was found that convection did enhance the oxygen transport in valvular tissue by up to 68% increase in the minimum oxygen tension within the tissue, depending on the strain level of the tissue as reaction of the magnitude and frequencies of the cardiac loading. The effective interstitial fluid velocity was found to play an important role in enhancing the oxygen transport within the valve leaflet. Such an understanding is important in the development of valvular tissue engineered constructs.
Vadlapatla, Ramya; Vadlapudi, Aswani Dutt; Ponnaluri, VK Chaithanya; Pal, Dhananjay; Mukherji, Mridul; Mitra, Ashim K.
2013-01-01
A decrease in tissue oxygen levels (aka hypoxia) mediates a number of vascular retinal diseases. Despite introduction of novel therapeutics, treatment of retinal disorders remains challenging, possibly due to complex nature of hypoxia signaling. To date, the differential effect of hypoxia on expression of efflux and influx transporters in retinal cells has not been studied. Therefore, the objective of this study was to delineate molecular and functional expression of membrane transporters in human retinal pigment epithelial (RPE) cells cultured under normoxic and hypoxic conditions. Quantitative real time polymerase chain reaction (qPCR), ELISA and immunoblot analysis were performed to examine the RNA and protein expression levels of transporters. Further, functional activity was evaluated by performing the uptake of various substrates in both normoxic and hypoxic conditions. qPCR analysis showed elevated expression of efflux transporters (P-glycoprotein, multidrug resistant protein 2, breast cancer resistant protein) and influx transporters (folate receptor-α, cationic and neutral amino acid transporter, sodium dependent multivitamin transporter) in a time dependent manner. Immunoblot analysis further confirmed elevated expression of breast cancer resistant protein and sodium dependent multivitamin transporter. A decrease in the uptake of efflux transporter substrates (digoxin, lopinavir and abacavir) and enhanced uptake of influx transporter substrates (arginine, folic acid and biotin) in hypoxia relative to normoxia further confirmed elevated expression of transporters, respectively. This study demonstrates for the first time that hypoxic conditions may alter expression of efflux and influx transporters in RPE cells. These findings suggest that hypoxia may further alter disposition of ophthalmic drugs. PMID:23827654
Impact of renal medullary three-dimensional architecture on oxygen transport.
Fry, Brendan C; Edwards, Aurélie; Sgouralis, Ioannis; Layton, Anita T
2014-08-01
We have developed a highly detailed mathematical model of solute transport in the renal medulla of the rat kidney to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies. The model represents the arrangement of tubules around a vascular bundle in the outer medulla and around a collecting duct cluster in the upper inner medulla. Model simulations yield marked gradients in intrabundle and interbundle interstitial fluid oxygen tension (PO2), NaCl concentration, and osmolality in the outer medulla, owing to the vigorous active reabsorption of NaCl by the thick ascending limbs. In the inner medulla, where the thin ascending limbs do not mediate significant active NaCl transport, interstitial fluid composition becomes much more homogeneous with respect to NaCl, urea, and osmolality. Nonetheless, a substantial PO2 gradient remains, owing to the relatively high oxygen demand of the inner medullary collecting ducts. Perhaps more importantly, the model predicts that in the absence of the three-dimensional medullary architecture, oxygen delivery to the inner medulla would drastically decrease, with the terminal inner medulla nearly completely deprived of oxygen. Thus model results suggest that the functional role of the three-dimensional medullary architecture may be to preserve oxygen delivery to the papilla. Additionally, a simulation that represents low medullary blood flow suggests that the separation of thick limbs from the vascular bundles substantially increases the risk of the segments to hypoxic injury. When nephrons and vessels are more homogeneously distributed, luminal PO2 in the thick ascending limb of superficial nephrons increases by 66% in the inner stripe. Furthermore, simulations predict that owing to the Bohr effect, the presumed greater acidity of blood in the interbundle regions, where thick ascending limbs are located, relative to that in the vascular bundles, facilitates the delivery of O2 to support the high metabolic requirements of the thick limbs and raises NaCl reabsorption. Copyright © 2014 the American Physiological Society.
Gittleson, Forrest S.; Jones, Reese E.; Ward, Donald K.; ...
2017-02-15
Li–air or Li–oxygen batteries promise significantly higher energies than existing commercial battery technologies, yet their development has been hindered by a lack of suitable electrolytes. In this article, we evaluate the physical properties of varied electrolyte compositions to form generalized criteria for electrolyte design. We show that oxygen transport through non-aqueous electrolytes has a critical impact on the discharge rate and capacity of Li–air batteries. Through experiments and molecular dynamics simulations, we highlight that the choice of salt species and concentration have an outsized influence on oxygen solubility, while solvent choice is the major influence on oxygen diffusivity. The stabilitymore » of superoxide reaction intermediates, key to the oxygen reduction mechanism, is also affected by variations in salt concentration and the choice of solvent. The importance of reactant transport is confirmed through Li–air cell discharge, which demonstrates good agreement between the observed and calculated mass transport-limited currents. Furthermore, these results showcase the impact of electrolyte composition on transport in metal–air batteries and provide guiding principles and simulation-based tools for future electrolyte design.« less
Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries.
De Souza, Roger A; Pietrowski, Martha J; Anselmi-Tamburini, Umberto; Kim, Sangtae; Munir, Zuhair A; Martin, Manfred
2008-04-21
The transport of oxygen in dense samples of yttria-stabilized zirconia (YSZ), of average grain size d approximately 50 nm, has been studied by means of 18O/16O exchange annealing and secondary ion mass spectrometry (SIMS). Oxygen diffusion coefficients (D*) and oxygen surface exchange coefficients (k*) were measured for temperatures 673
Surface studies of praseodymium by electron spectroscopies
NASA Astrophysics Data System (ADS)
Krawczyk, Mirosław; Pisarek, Marcin; Lisowski, Wojciech; Jablonski, Aleksander
2016-12-01
Electron transport properties in praseodymium (Pr) foil samples were studied by elastic-peak electron spectroscopy (EPES). Prior to EPES measurements, the Pr sample surface was pre-sputtered by Ar ions with ion energy of 2-3 keV. After such treatment, the Pr sample still contained about 10 at.% of residual oxygen in the surface region, as detected by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses. The inelastic mean free path (IMFP), characterizing electron transport within this region (4 nm-thick), was evaluated from EPES using both Ni and Au standards as a function of energy in the range of 0.5-2 keV. Experimental IMFPs, λ, were approximated by the simple function λ = kEp, where E is energy (in eV), and k = 0.1549 and p = 0.7047 were the fitted parameters. These values were compared with IMFPs for the praseodymium surface in which the presence of oxygen was tentatively neglected, and also with IMFPs resulting from the TPP-2M predictive equation for bulk praseodymium. We found that the measured IMFP values to be only slightly affected by neglect of oxygen in calculations. The fitted function applied here was consistent with the energy dependence of the EPES-measured IMFPs. Additionally, the measured IMFPs were found to be from 2% to 4.2% larger than the predicted IMFPs for praseodymium in the energy range of 500-1000 eV. For electron energies of 1500 eV and 2000 eV, there was an inverse correlation between these values, and then the resulting deviations of -0.4% and -2.7%, respectively, were calculated.
Novitski, David; Holdcroft, Steven
2015-12-16
Oxygen mass transport resistance through the ionomer component in the cathode catalyst layer is considered to contribute overpotential losses in polymer electrolyte membrane fuel cells. Whereas it is known that water uptake, water transport, and proton conductivity are reduced upon reducing relative humidity, the effect on oxygen mass transport remains unknown. We report a two-electrode approach to determine mass transport coefficients for the oxygen reduction reaction in air at the Pt/perfluorosulfonic acid ionomer membrane interface between 90 and 30% RH at 70 °C using a Pt microdisk in a solid state electrochemical cell. Potential-step chronoamperometry was performed at specific mass-transport limiting potentials to allow for the elucidation of the oxygen diffusion coefficient (D(bO2)) and oxygen concentration (c(bO2)). In our efforts, novel approaches in data acquisition, as well as analysis, were examined because of the dynamic nature of the membrane under lowered hydration conditions. Linear regression analysis reveals a decrease in oxygen permeability (D(bO2c(bO2)) by a factor of 1.7 and 3.4 from 90 to 30% RH for Nafion 211 membrane and membranes cast from Nafion DE2020 ionomer solutions, respectively. Additionally, nonlinear curve fitting by way of the Shoup-Szabo equation is employed to analyze the entire current transient during potential step controlled ORR. We also report on the presence of an RH dependence of our previously reported time-dependency measurements for O2 mass transport coefficients.
Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells
Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li
2013-01-01
Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer biology and therapeutics. PMID:23704904
Patching, Simon G
2017-03-01
Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.
Impaired organic ion transport in proximal tubules of rats with Heymann nephritis.
Park, E K; Hong, S K; Goldinger, J; Andres, G; Noble, B
1985-10-01
Organic ion transport across the basolateral membrane of proximal tubules was measured by means of the tissue slice technique in each of the four different stages of Heymann nephritis. Impairment of both organic anion and cation transport was detected early in Stage 2, and became more severe in Stage 3 of Heymann nephritis. The decreased transport function was associated with extensive damage to proximal tubule cells, including loss of brush border microvilli and basal infoldings. Despite these abnormalities of structure and function, oxygen consumption of proximal tubule cells remained essentially normal. Partial recovery of organic cation transport was noted late in Heymann nephritis (Stage 4). Recovery of the cation transport function was associated with a partial restoration of brush border microvilli and basal infoldings to proximal tubule cells. However, organic anion transport remained depressed throughout the entire course of disease. Impairment of organic ion transport in rats with Heymann nephritis appeared to result from damage to basolateral membrane transport elements rather than general deterioration of the metabolic machinery of proximal tubule cells. Decreased organic cation transport appeared to be the consequence of a reduction in the number of carrier sites, a phenomenon that could have resulted from decreased membrane surface area. However, the depression of organic anion transport was associated with decreased substrate affinity of the anion carrier, indicating that qualitative, rather than quantitative changes, were primarily responsible for that defect. Specific antibody-mediated damage to the anion transport elements in basolateral membranes of proximal tubules is postulated to occur in Heymann nephritis.
NASA Technical Reports Server (NTRS)
1986-01-01
Due to large amounts of oxygen required for space travel, a method of mining, transporting, and storing this oxygen in space would facilitate further space exploration. The following project deals specifically with the methods for transporting liquid oxygen from the lunar surface to the Lunar Orbit (LO) space station, and then to the Lower Earth Orbit (LEO) space station. Two vehicles were designed for operation between the LEO and LO space stations. The first of these vehicles is an aerobraked design vehicle. The Aerobrake Orbital Transfer Vehicle (OTV) is capable of transporting 5000 lbm of payload to LO while returning to LEO with 60,000 lbm of liquid oxygen, and thus meet mission requirements. The second vehicle can deliver 18,000 lbm of payload to LO and is capable of bringing 60,000 lbm of liquid oxygen back to LEO. A lunar landing vehicle was also designed for operation between LO and the established moon base. The use of an electromagnetic railgun as a method for launching the lunar lander was also investigated. The feasibility of the railgun is doubtful at this time. A system of spheres was also designed for proper storing and transporting of the liquid oxygen. The system assumes a safe means for transferring the liquid oxygen from tank to tank is operational. A sophisticated life support system was developed for both the OTV and the lunar lander. This system focuses on such factors as the vehicle environment, waste management, water requirements, food requirements, and oxygen requirements.
Li, Dongxing; Redding, Gabe P; Bronlund, John E
2013-01-01
The rate of oxygen consumption by granulosa cells is a key parameter in mathematical models that describe oxygen transport across ovarian follicles. This work measured the oxygen consumption rate of bovine granulosa cells in vitro to be in the range 2.1-3.3×10⁻¹⁶ mol cell⁻¹ s⁻¹ (0.16-0.25 mol m⁻³ s⁻¹). The implications of the rates for oxygen transport in large bovine preantral follicles were examined using a mathematical model. The results indicate that oocyte oxygenation becomes increasingly constrained as preantral follicles grow, reaching hypoxic levels near the point of antrum formation. Beyond a preantral follicle radius of 134 µm, oxygen cannot reach the oocyte surface at typical values of model parameters. Since reported sizes of large bovine preantral follicles range from 58 to 145 µm in radius, this suggests that oocyte oxygenation is possible in all but the largest preantral follicles, which are on the verge of antrum formation. In preantral bovine follicles, the oxygen consumption rate of granulosa cells and fluid voidage will be the key determinants of oxygen levels across the follicle.
Fu, Keke; Wang, Rongbin; Katase, Takayoshi; Ohta, Hiromichi; Koch, Norbert; Duhm, Steffen
2018-03-28
Using photoemission spectroscopy, we show that the surface electronic structure of VO 2 is determined by the temperature-dependent metal-insulator phase transition and the density of oxygen vacancies, which depends on the temperature and ultrahigh vacuum (UHV) conditions. The atomically clean and stoichiometric VO 2 surface is insulating at room temperature and features an ultrahigh work function of up to 6.7 eV. Heating in UHV just above the phase transition temperature induces the expected metallic phase, which goes in hand with the formation of oxygen defects (up to 6% in this study), but a high work function >6 eV is maintained. To demonstrate the suitability of VO 2 as hole injection contact for organic semiconductors, we investigated the energy-level alignment with the prototypical organic hole transport material N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found, rendering an Ohmic contact for holes.
Fago, Angela; Parraga, Daniel Garcia; Petersen, Elin E; Kristensen, Niels; Giouri, Lea; Jensen, Frank B
2017-03-01
The ability of marine mammals to hunt prey at depth is known to rely on enhanced oxygen stores and on selective distribution of blood flow, but the molecular mechanisms regulating blood flow and oxygen transport remain unresolved. To investigate the molecular mechanisms that may be important in regulating blood flow, we measured concentration of nitrite and S-nitrosothiols (SNO), two metabolites of the vasodilator nitric oxide (NO), in the blood of 5 species of marine mammals differing in their dive duration: bottlenose dolphin, South American sea lion, harbor seal, walrus and beluga whale. We also examined oxygen affinity, sensitivity to 2,3-diphosphoglycerate (DPG) and nitrite reductase activity of the hemoglobin (Hb) to search for possible adaptive variations in these functional properties. We found levels of plasma and red blood cells nitrite similar to those reported for terrestrial mammals, but unusually high concentrations of red blood cell SNO in bottlenose dolphin, walrus and beluga whale, suggesting enhanced SNO-dependent signaling in these species. Purified Hbs showed similar functional properties in terms of oxygen affinity and sensitivity to DPG, indicating that reported large variations in blood oxygen affinity among diving mammals likely derive from phenotypic variations in red blood cell DPG levels. The nitrite reductase activities of the Hbs were overall slightly higher than that of human Hb, with the Hb of beluga whale, capable of longest dives, having the highest activity. Taken together, these results underscore adaptive variations in circulatory NO metabolism in diving mammals but not in the oxygenation properties of the Hb. Copyright © 2016 Elsevier Inc. All rights reserved.
Oxygen and the spatial structure of microbial communities.
Fenchel, Tom; Finlay, Bland
2008-11-01
Oxygen has two faces. On one side it is the terminal electron acceptor of aerobic respiration - the most efficient engine of energy metabolism. On the other hand, oxygen is toxic because the reduction of molecular O2 creates reactive oxygen species such as the superoxide anion, peroxide, and the hydroxyl radical. Probably most prokaryotes, and virtually all eukaryotes, depend on oxygen respiration, and we show that the ambiguous relation to oxygen is both an evolutionary force and a dominating factor driving functional interactions and the spatial structure of microbial communities.We focus on microbial communities that are specialised for life in concentration gradients of oxygen, where they acquire the full panoply of specific requirements from limited ranges of PO2, which also support the spatial organisation of microbial communities. Marine and lake sediments provide examples of steep O2 gradients, which arise because consumption or production of oxygen exceeds transport rates of molecular diffusion. Deep lakes undergo thermal stratification in warm waters, resulting in seasonal anaerobiosis below the thermocline, and lakes with a permanent pycnocline often have permanent anoxic deep water. The oxycline is here biologically similar to sediments, and it harbours similar microbial biota, the main difference being the spatial scale. In sediments, transport is dominated by molecular diffusion, and in the water column, turbulent mixing dominates vertical transport. Cell size determines the minimum requirement of aerobic organisms. For bacteria (and mitochondria), the half-saturation constant for oxygen uptake ranges within 0.05-0.1% atmospheric saturation; for the amoeba Acanthamoeba castellanii it is 0.2%, and for two ciliate species measuring around 150 microm, it is 1-2 % atmospheric saturation. Protection against O2 toxicity has an energetic cost that increases with increasing ambient O2 tension. Oxygen sensing seems universal in aquatic organisms. Many aspects of oxygen sensing are incompletely understood, but the mechanisms seem to be evolutionarily conserved. A simple method of studying oxygen preference in microbes is to identify the preferred oxygen tension accumulating in O2 gradients. Microorganisms cannot sense the direction of a chemical gradient directly, so they use other devices to orient themselves. Different mechanisms in different prokaryotic and eukaryotic microbes are described. In O2 gradients, many bacteria and protozoa are vertically distributed according to oxygen tension and they show a very limited range of preferred PO2. In some pigmented protists the required PO2 is contingent on light due to photochemically generated reactive oxygen species. In protists that harbour endosymbiotic phototrophs, orientation towards light is mediated through the oxygen production of their photosynthetic symbionts. Oxygen plays a similar role for the distribution of small metazoans (meiofauna) in sediments, but there is little experimental evidence for this. Thus the oxygenated sediments surrounding ventilated animal burrows provide a special habitat for metazoan meiofauna as well as unicellular organisms.
**1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.
Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.
1986-01-01
Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.
The nursing perspective on monitoring hemodynamics and oxygen transport.
Tucker, Dawn; Hazinski, Mary Fran
2011-07-01
Maintenance of adequate systemic oxygen delivery requires careful clinical assessment integrated with hemodynamic measurements and calculations to detect and treat conditions that may compromise oxygen delivery and lead to life-threatening shock, respiratory failure, or cardiac arrest. The bedside nurse constantly performs such assessments and measurements to detect subtle changes and trends in patient condition. The purpose of this editorial is to highlight nursing perspectives about the hemodynamic and oxygen transport monitoring systems summarized in the Pediatric Cardiac Intensive Care Society Evidence- Based Review and Consensus Statement on Monitoring of Hemodynamics and Oxygen Transport Balance. There is no substitute for the observations of a knowledgeable and experienced clinician who understands the patient's condition and potential causes of deterioration and is able to evaluate response to therapy.
NASA Astrophysics Data System (ADS)
Oh, Hwanyeong; Lee, Yoo il; Lee, Guesang; Min, Kyoungdoug; Yi, Jung S.
2017-03-01
Oxygen transport resistance is a major obstacle for obtaining high performance in a polymer electrolyte membrane fuel cell (PEMFC). To distinguish the major components that inhibit oxygen transport, an experimental method is established to dissect the oxygen transport resistance of the components of the PEMFC, such as the substrate, micro-porous layer (MPL), catalyst layer, and ionomer film. The Knudsen numbers are calculated to determine the types of diffusion mechanisms at each layer by measuring the pore sizes with either mercury porosimetry or BET analysis. At the under-saturated condition where condensation is mostly absent, the molecular diffusion resistance is dissected by changing the type of inert gas, and ionomer film permeation is separated by varying the inlet gas humidity. Moreover, the presence of the MPL and the variability of the substrate thickness allow the oxygen transport resistance at each component of a PEMFC to be dissected. At a low relative humidity of 50% and lower, an ionomer film had the largest resistance, while the contribution of the MPL was largest for the other humidification conditions.
Single-cell measurement of red blood cell oxygen affinity.
Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan
2015-08-11
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.
Mitochondrial Ion Channels/Transporters as Sensors and Regulators of Cellular Redox Signaling
Ryu, Shin-Young; Jhun, Bong Sook; Hurst, Stephen
2014-01-01
Abstract Significance: Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. Recent Advances: Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. Critical Issues: Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. Future Directions: Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters. Antioxid. Redox Signal. 21, 987–1006. PMID:24180309
Haworth, P; Hess, F D
1988-03-01
The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10(-4) molar and paraquat) and also under temperature conditions (3 degrees C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10(-9) molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane.
Haworth, Phil; Hess, F. Dan
1988-01-01
The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10−4 molar and paraquat) and also under temperature conditions (3°C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10−9 molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane. PMID:16665968
Computation Of Facilitated Transport of O2 In Hemoglobin
NASA Technical Reports Server (NTRS)
Davis, Sanford
1991-01-01
Report describes computations of unsteady facilitated transport of oxygen through liquid membrane of hemoglobin. Used here, "facilitated transport" means diffusion of permeant through membrane in which that diffusion enhanced by reversible chemical reaction between permeant and membrane. In this case, reversible reactions between hemoglobin and oxygen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokhansanj, Shahabaddine; Kuang, Xingya; Shankar, T.S.
Few papers have been published in the open literature on the emissions from biomass fuels, including wood pellets, during the storage and transportation and their potential health impacts. The purpose of this study is to provide data on the concentrations, emission factors, and emission rate factors of CO2, CO, and CH4 from wood pellets stored with different headspace to container volume ratios with different initial oxygen levels, in order to develop methods to reduce the toxic off-gas emissions and accumulation in storage spaces. Metal containers (45 l, 305 mm diameter by 610 mm long) were used to study the effectmore » of headspace and oxygen levels on the off-gas emissions from wood pellets. Concentrations of CO2, CO, and CH4 in the headspace were measured using a gas chromatograph as a function of storage time. The results showed that the ratio of the headspace ratios and initial oxygen levels in the storage space significantly affected the off-gas emissions from wood pellets stored in a sealed container. Higher peak emission factors and higher emission rates are associated with higher headspace ratios. Lower emissions of CO2 and CO were generated at room temperature under lower oxygen levels, whereas CH4 emission is insensitive to the oxygen level. Replacing oxygen with inert gases in the storage space is thus a potentially effective method to reduce the biomass degradation and toxic off-gas emissions. The proper ventilation of the storage space can also be used to maintain a high oxygen level and low concentrations of toxic off-gassing compounds in the storage space, which is especially useful during the loading and unloading operations to control the hazards associated with the storage and transportation of wood pellets.« less
Electrical transport properties of sputtered Nd2-xCexCuO4±δ thin films
NASA Astrophysics Data System (ADS)
Guarino, Anita; Leo, Antonio; Avella, Adolfo; Avitabile, Francesco; Martucciello, Nadia; Grimaldi, Gaia; Romano, Alfonso; Pace, Sandro; Romano, Paola; Nigro, Angela
2018-05-01
Thin films of the electron-doped high-temperature superconductor Nd2-xCexCuO4±δ have been deposited by dc sputtering technique on (100) SrTiO3 substrates. A tuning of the oxygen content in the as-grown non-superconducting samples has been achieved by changing the oxygen partial pressure during the growth in the Argon sputtering atmosphere. All samples show the superconducting transition after a suitable two-step thermal treatment in an oxygen-reducing environment. Structural and electrical transport properties on the as-grown as well as on the superconducting samples have been investigated. We find that the structural properties are consistent with a deficiency of the oxygen content with respect to optimally annealed samples, and that the transition to the superconducting phase is always accompanied by an increase of the c-axis lattice parameter. Measurements of the Hall coefficient RH as a function of temperature and in the normal state of our epitaxial films are presented and discussed. RH results negative for all the films regardless of the oxygen content and it decreases with the temperature. In particular, the Hall coefficient is only about 10% lower than the value measured in the as-grown oxygen-deficient phase, in contrast to the results reported in literature. The removal of the excess oxygen in as-grown samples seems not to be the only requirement for triggering the superconducting transition in electron-doped compounds. The microstructural change associated with the increase of the c-axis parameter in our deoxygenated samples could help in understanding the microscopic mechanism underlying the reduction process of n-type superconductors, which is still under debate.
Georgieva, Dessislava; Schwark, Daniel; Nikolov, Peter; Idakieva, Krassimira; Parvanova, Katja; Dierks, Karsten; Genov, Nicolay; Betzel, Christian
2005-01-01
Hemocyanins are dioxygen-transporting proteins freely dissolved in the hemolymph of mollusks and arthropods. Dynamic light scattering and time-resolved fluorescence measurements show that the oxygenated and apo-forms of the Rapana thomasiana hemocyanin, its structural subunits RtH1 and RtH2, and those of the functional unit RtH2e, exist in different conformations. The oxygenated respiratory proteins are less compact and more asymmetric than the respective apo-forms. Different conformational states were also observed for the R. thomasiana hemocyanin in the absence and presence of an allosteric regulator. The results are in agreement with a molecular mechanism for cooperative dioxygen binding in molluscan hemocyanins including transfer of conformational changes from one functional unit to another. PMID:15533921
Chittiboina, Prashant; Guthikonda, Bharat; Wollblad, Christian; Conrad, Steven A
2011-01-01
Cerebral vasospasm after aneurysmal subarachnoid hemorrhage is a potentially severe sequel. The induction of hypertension, hypervolemia, and hemodilution is advocated for vasospasm, but it is unclear whether hemodilution confers any benefit. A finite element model of oxygen transport in the proximal middle cerebral artery (MCA) was used to evaluate the complex relationship among hematocrit, viscosity, oxygen content, and blood flow in the setting of vasospasm. A single-phase non-Newtonian finite element model based on three-dimensional incompressible Navier–Stokes equations was constructed of the M1 segment. The model was solved at vessel stenoses ranging from 0% to 90% and hematocrit from 0.2 to 0.6. A small area of poststenotic recirculation was seen with mild (30%) stenosis. Poststenotic eddy formation was noted with more severe (60% to 90%) stenosis. Volumetric flow was inversely related to hematocrit at mild stenosis (0% to 30%). With near-complete stenosis (90%), a paradoxical increase in flow was seen with increasing hematocrit. Oxygen transport across the segment was related to hematocrit at all levels of stenosis with increasing oxygen transport despite a reduction in blood flow, suggesting that with clinically significant vasospasm in the MCA, hemodilution does not improve oxygen transport, but to the contrary, that ischemia may be worsened. PMID:21629259
Lin, Mabelle; Mauroy, Benjamin; James, Joanna L; Tawhai, Merryn H; Clark, Alys R
2016-11-07
The placenta is critical to fetal health during pregnancy as it supplies oxygen and nutrients to maintain life. It has a complex structure, and alterations to this structure across spatial scales are associated with several pregnancy complications, including intrauterine growth restriction (IUGR). The relationship between placental structure and its efficiency as an oxygen exchanger is not well understood in normal or pathological pregnancies. Here we present a computational framework that predicts oxygen transport in the placenta which accounts for blood and oxygen transport in the space around a placental functional unit (the villous tree). The model includes the well-defined branching structure of the largest villous tree branches, as well as a smoothed representation of the small terminal villi that comprise the placenta's gas exchange interfaces. The model demonstrates that oxygen exchange is sensitive to villous tree geometry, including the villous branch length and volume, which are seen to change in IUGR. This is because, to be an efficient exchanger, the architecture of the villous tree must provide a balance between maximising the surface area available for exchange, and the opposing condition of allowing sufficient maternal blood flow to penetrate into the space surrounding the tree. The model also predicts an optimum oxygen exchange when the branch angle is 24 °, as villous branches and TBs are spread out sufficiently to channel maternal blood flow deep into the placental tissue for oxygen exchange without being shunted directly into the DVs. Without concurrent change in the branch length and angles, the model predicts that the number of branching generations has a small influence on oxygen exchange. The modelling framework is presented in 2D for simplicity but is extendible to 3D or to incorporate the high-resolution imaging data that is currently evolving to better quantify placental structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mohamed Abubakkar, M.; Saraboji, K.; Ponnuswamy, M. N.
2013-01-01
Haemoglobin (Hb) is a respiratory pigment; it is a tetrameric protein that ferries oxygen from the lungs to tissues and transports carbon dioxide on the return journey. The oxygen affinity of haemoglobin is regulated by the concentration of oxygen surrounding it and several efforts have revealed the shapes of Hb in different states and with different functions. However, study of the molecular basis of Hbs from low-oxygen-affinity species is critically needed in order to increase the understanding of the mechanism behind oxygen adaptation. The present study reports the preliminary crystallographic study of low-oxygen-affinity haemoglobin from mongoose, a burrowing mammal. Haemoglobin from mongoose was purified by anion-exchange chromatography, crystallized using the hanging-drop vapour-diffusion method and diffraction data sets were collected from monoclinic (2.3 Å resolution) and orthorhombic (2.9 Å resolution) crystal forms obtained by pH variation. The monoclinic and orthorhombic asymmetric units contained half and a whole biological molecule, respectively. PMID:23385751
Narcosis studies and oxygen poisoning of mice
NASA Technical Reports Server (NTRS)
1973-01-01
The research for a mechanism by which narcotic gases alter metabolism is reported. Possible sites of action by narcotic and anesthetic gases in isolated electron transport particles were explored. Using the relative activities of the NADH-oxygen, NADH-ferricyanide, succinate-cytochrome C and succinate-NAD oxidoreductase systems as parameters, the relative potency of volatile anesthetics were tested. Testing the relative ability of human subjects to contract and repay an oxygen debt while in the narcotic versus alert state, it was found that narcosis induced by 33% nitrous oxide increased the size of the oxygen debt contracted and the amount of oxygen required to repay it during recovery. Mice acclimatized to sea level (760 mm Hg), 5000 feet (632 mm Hg) or 15,000 feet 437 mm Hg) for from one to eight weeks were found to be more susceptible to convulsion and death as a function of altitude acclimatization when tested in hyperoxic environments. There were no reasonable explanations for the connection between hypoxia and oxygen poisoning but several practical implications for persons living at altitude are discussed.
Oxygen transport in the Sr{sub 2}Fe{sub 3{minus}x}Co{sub x}O{sub y} system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, B.
The mixed-conducting Sr-Fe-Co oxide has potential use as a gas separation membrane. Its superior oxygen transport reveals the feasibility of using oxide membranes in large-scale oxygen separation. Sr{sub 2}Fe{sub 3{minus}x}Co{sub x}O{sub y} (with x = 0.0, 0.3, 0.6, and 1.0) samples were made by solid state reaction. To understand the oxygen transport mechanism in this system, conductivity and thermogravimetry experiments were conducted at high temperature in various oxygen partial pressure environments. The oxygen diffusion coefficient was determined from the time relaxation transient behavior of the specimen after switching the surrounding atmosphere. Mobility of the charge carrier was derived from relativemore » conductivity and weight changes. X-ray diffraction experiments were carried out on these samples to determine their crystal structures.« less
Wagner, Peter D
2012-01-01
Exercise is the example par excellence of the body functioning as a physiological system. Conventionally we think of the O(2) transport process as a major manifestation of that system linking and integrating pulmonary, cardiovascular, hematological and skeletal muscular contributions to the task of getting O(2) from the air to the mitochondria, and this process has been well described. However, exercise invokes system responses at levels additional to those of macroscopic O(2) transport. One such set of responses appears to center on muscle intracellular PO(2), which falls dramatically from rest to exercise. At rest, it approximates 4 kPa, but during heavy endurance exercise it falls to about 0.4-0.5 kPa, an amazingly low value for a tissue absolutely dependent on the continual supply of O(2) to meet very high energy demands. One wonders why intracellular PO(2) is allowed to fall to such levels. The proposed answer, to be presented in the review, is that a low intramyocyte PO(2) is pivotal in: (a) optimizing oxygen's own physiological transport, and (b) stimulating adaptive gene expression that, after translation, enables greater exercise capacity-all the while maintaining PO(2) at levels sufficient to allow oxidative phosphorylation to operate sufficiently fast enough to support intense muscle contraction. Thus, during exercise, reductions of intracellular PO(2) to less than 1% of that in the atmosphere enables an integrated response that fundamentally and simultaneously optimizes physiological, biochemical and molecular events that support not only the exercise as it happens but the adaptive changes to increase exercise capacity over the longer term.
Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes.
Cho, Hyun-Hee; Smith, Billy A; Wnuk, Joshua D; Fairbrother, D Howard; Ball, William P
2008-04-15
As greater quantities of carbon nanotubes (CNTs) enter the environment, they will have an increasingly important effect on the availability and transport of aqueous contaminants. As a consequence of purification, deliberate surface functionalization, and/or exposure to oxidizing agents after release to the environment, CNTs often contain surface oxides (i.e., oxygen containing functional groups). To probe the influence that surface oxides exert on CNT sorption properties, multiwalled CNTs (MWCNTs) with varying oxygen concentrations were studied with respect to their sorption properties toward naphthalene. For pristine (as-received) MWCNTs, the sorption capacity was intermediate between that of a natural char and a granular activated carbon. Sorption data also reveal that a linear relationship exists between the oxygen content of MWCNTs and their maximum adsorption capacity for naphthalene, with 10% surface oxygen concentration resulting in a roughly 70% decrease in maximum adsorption capacity. The relative distribution of sorption energies, as characterized by Freundlich isotherm exponents was, however, unaffected by oxidation. Thus, the data are consistent with the idea that incorporated surface oxides create polar regions that reduce the surface area available for naphthalene sorption. These results highlight the important role of surface chemistry in controlling the environmental properties of CNTs.
Effect of oxidation on transport properties of zirconium-1% niobium alloy
NASA Astrophysics Data System (ADS)
Peletsky, V. E.; Musayeva, Z. A.
1995-11-01
The thermal conductivity and electrical resistivity of zirconium-1 wt% niobium samples were measured before and after the process of their oxidation in air. A special procedure was used to dissolve the gas and to smooth out its concentration in the alloy. The basic experiments were performed under high vacuum under steady-state temperature conditions. The temperature range was 300 1600 K. for the pure alloy and 300 1100 K for the samples containing oxygen. It was found that the thermal conductivity—oxygen concentration relation reverses its sign from negative at low and middle temperatures to positive at temperatures above 900 K. The relation between the electrical resistivity and the oxygen content does not show this feature. The Lorenz function was found to have an anomalous temperature dependence.
Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes
NASA Astrophysics Data System (ADS)
Yu, Anthony S.
Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two approaches to increase surface reaction kinetics and decrease Rs that were examined in this thesis involved modifying the surface microstructure, as well as adding both metallic (e.g. Pt) and oxide (e.g. CeO2, La0.8Sr0.2FeO3) catalysts to both membrane surfaces. These two approaches were investigated for single-phase MIEC membrane reactors (La0.9Ca0.1FeO3-delta ), as well as composite membrane reactors composed of an electronic conductor (La0.8Sr-0.2CrO3-delta) and an ionic conductor (YSZ). The use of catalysts and microstructure modifications to decrease interfacial losses is equally important for SOFCs. In this thesis, the electrochemical activity and microstructure of metallic catalysts formed by "ex-solving" metals from an oxide lattice, and oxide catalysts deposited by Atomic Layer Deposition (ALD) were investigated. It is shown that these methods for depositing catalysts resulted in very different effects on electrode performance when compared to the same catalysts deposited by wet impregnation. For example, when transition metals, such as Ni and Co, were "ex-solved" from a La0.8Sr0.2CrO3-delta anode lattice, these "ex-solved" metal particles not only exhibited great catalytic activity, they were also less prone to coking compared to their wet impregnated counterparts. On the cathode side, thin layers of various oxides (e.g. Al 2O3, CeOx, SrO) that were deposited using ALD also exhibited drastically different electrochemical activity compared to their wet impregnated counterparts. It was determined that differences in electrochemical activity could be attributed to a difference in the oxide morphology, showing that a catalyst's microstructure and morphology are very important in dictating its overall activity in SOFC electrodes.
Redox polymer mediation for enzymatic biofuel cells
NASA Astrophysics Data System (ADS)
Gallaway, Joshua
Mediated biocatalytic cathodes prepared from the oxygen-reducing enzyme laccase and redox-conducting osmium hydrogels were characterized for use as cathodes in enzymatic biofuel cells. A series of osmium-based redox polymers was synthesized with redox potentials spanning the range from 0.11 V to 0.85 V (SHE), and the resulting biocatalytic electrodes were modeled to determine reaction kinetic constants using the current response, measured osmium concentration, and measured apparent electron diffusion. As in solution-phase systems, the bimolecular rate constant for mediation was found to vary greatly with mediator potential---from 250 s-1M-1 when mediator and enzyme were close in potential to 9.4 x 10 4 s-1M-1 when this overpotential was large. Optimum mediator potential for a cell operating with a non-limiting platinum anode and having no mass transport limitation from bulk solution was found to be 0.66 V (SHE). Redox polymers were synthesized under different concentrations, producing osmium variation. An increase from 6.6% to 7.2% osmium increased current response from 1.2 to 2.1 mA/cm2 for a planar film in 40°C oxygen-saturated pH 4 buffer, rotating at 900 rpm. These results translated to high surface area electrodes, nearly doubling current density to 13 mA/cm2, the highest to date for such an electrode. The typical fungal laccase from Trametes versicolor was replaced by a bacterially-expressed small laccase from Streptomyces coelicolor, resulting in biocatalytic films that reduced oxygen at increased pH, with full functionality at pH 7, producing 1.5 mA/cm 2 in planar configuration. Current response was biphasic with pH, matching the activity profile of the free enzyme in solution. The mediated enzyme electrode system was modeled with respect to apparent electron diffusion, mediator concentration, and transport of oxygen from bulk solution, all of which are to some extent controlled by design. Each factor was found to limit performance in certain circumstances. In systems relying on stagnant solution, oxygen transport was found to dominate. However, if mass transport was efficient, differences in mediator design greatly affected performance.
Fraser, Graham M.; Goldman, Daniel; Ellis, Christopher G.
2016-01-01
Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices. PMID:27829071
Sové, Richard J; Fraser, Graham M; Goldman, Daniel; Ellis, Christopher G
2016-01-01
Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices.
ROS regulation of axonal mitochondrial transport is mediated by Ca2+ and JNK in Drosophila
Liao, Pin-Chao; Tandarich, Lauren C.
2017-01-01
Mitochondria perform critical functions including aerobic ATP production and calcium (Ca2+) homeostasis, but are also a major source of reactive oxygen species (ROS) production. To maintain cellular function and survival in neurons, mitochondria are transported along axons, and accumulate in regions with high demand for their functions. Oxidative stress and abnormal mitochondrial axonal transport are associated with neurodegenerative disorders. However, we know little about the connection between these two. Using the Drosophila third instar larval nervous system as the in vivo model, we found that ROS inhibited mitochondrial axonal transport more specifically, primarily due to reduced flux and velocity, but did not affect transport of other organelles. To understand the mechanisms underlying these effects, we examined Ca2+ levels and the JNK (c-Jun N-terminal Kinase) pathway, which have been shown to regulate mitochondrial transport and general fast axonal transport, respectively. We found that elevated ROS increased Ca2+ levels, and that experimental reduction of Ca2+ to physiological levels rescued ROS-induced defects in mitochondrial transport in primary neuron cell cultures. In addition, in vivo activation of the JNK pathway reduced mitochondrial flux and velocities, while JNK knockdown partially rescued ROS-induced defects in the anterograde direction. We conclude that ROS have the capacity to regulate mitochondrial traffic, and that Ca2+ and JNK signaling play roles in mediating these effects. In addition to transport defects, ROS produces imbalances in mitochondrial fission-fusion and metabolic state, indicating that mitochondrial transport, fission-fusion steady state, and metabolic state are closely interrelated in the response to ROS. PMID:28542430
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishide, Hiroyuki; Suzuki, Takayuki; Kawakami, Hiroyoshi
1994-05-12
New derivatives of (meso-[alpha],[alpha],[alpha],[alpha]-tetrakis(o-pivalamidophenyl)porphinato)cobalt (CoPs) were characterized by oxygen-binding equilibrium and rate constants of the cobalt centered in the porphyrins. They depended on the structure of the porphyrin; for example, the rate constants of oxygen binding and dissociation (k[sub on] and k[sub off]) for [alpha][sup 3][beta]-CoP[sub 4]P were 3 and 20 times as large as those for [alpha][sup 4]-CoB[sub 4]P, respectively. Oxygen transport through the polymer membranes containing CoPs as the fixed oxygen carriers was facilitated and was affected by the oxygen-binding character or the structure of CoPs. The logarithmically linear correlation of the oxygen-dissociation rate constant of CoPs (k[submore » off] = (3-66) x 10[sup 3] S[sup [minus]1]) with the diffusion constant of oxygen via CoPs fixed in the membranes (D[sub cc] = (3-140) x 10[sup [minus]9] cm[sup 2] s[sup [minus]1]) was given for those six CoP derivatives. 26 refs., 5 figs., 2 tabs.« less
Sambandam, Satheesh; Parrondo, Javier; Ramani, Vijay
2013-09-28
The oxygen permeability of perfluorinated and hydrocarbon polymer electrolyte membranes (PEMs; Nafion®, SPEEK and SPSU), which are used as electrolytes and electrode ionomers in polymer electrolyte fuel cells (PEFCs), was estimated using chronoamperometry using a modified fuel cell set-up. A thin, cylindrical microelectrode was embedded into the PEM and used as the working electrode. The PEM was sandwiched between 2 gas diffusion electrodes, one of which was catalyzed and served as the counter and pseudo-reference electrode. Independently, from fuel cell experiments, the oxygen transport resistance arising due to transport through the ionomer film covering the catalyst active sites was estimated at the limiting current and decoupled from the overall mass transport resistance. The in situ oxygen permeability measured at 80 °C and 75% RH of perfluorinated ionomers such as Nafion® (3.85 × 10(12) mol cm(-1) s(-1)) was observed to be an order of magnitude higher than that of hydrocarbon-based PEMs such as SPEEK (0.27 × 10(12) mol cm(-1) s(-1)) and SPSU (0.15 × 10(12) mol cm(-1) s(-1)). The obtained oxygen transport (through ionomer film) resistance values (Nafion® - 1.6 s cm(-1), SPEEK - 2.2 s cm(-1) and SPSU - 3.0 s cm(-1); at 80 °C and 75% RH) correlated well with the measured oxygen permeabilities in these ion-containing polymers.
Three-Dimensional Mathematical Model of Oxygen Transport Behavior in Electroslag Remelting Process
NASA Astrophysics Data System (ADS)
Huang, Xuechi; Li, Baokuan; Liu, Zhongqiu
2018-04-01
A transient three-dimensional model has been proposed to investigate the oxygen transport behavior in electroslag remelting process. The electromagnetism, heat transfer, multiphase flow, and species transport were calculated simultaneously by finite volume method. The volume of fluid approach was adopted to trace the metal-slag-air three-phase flow. Based on the necessary thermodynamics of oxygen transport behavior, a kinetic model was established to predict the mass source terms in species transport equation. The kinetic correction factor was proposed to account for the effect of the oxide scale formed on the electrode on the FeO content in slag. Finally, the effect of applied current on the oxygen transfer was studied. The predicted result agrees well with the measured data when the kinetic correction factor is set to be 0.5. The temperature distribution that affects the thermodynamics differs at the interfaces. The oxygen in air is absorbed into slag due to the oxidation at the slag/air interface. The Fe2O3 in slag and the oxide scale contribute to the increase of FeO content in slag, and the latter one plays the leading role. The oxygen transfer from slag to metal mainly occurs during the formation of the droplet at the slag/metal droplet interface. With the current increasing from 1200 to 1800 A, the oxygen content increases from 76.4 to 89.8 ppm, and then slightly declines to 89.2 ppm when the current increases to 2100 A.
Physiological responses to environmental factors related to space flight
NASA Technical Reports Server (NTRS)
Pace, N.; Grunbaum, B. W.; Kodama, A. M.; Mains, R. C.; Rahlmann, D. F.
1975-01-01
Physiological procedures and instrumentation developed for the measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are described along with the physiological response of monkeys to weightlessness. Specific areas examined include: cardiovascular studies; thyroid function; blood oxygen transport; growth and reproduction; excreta analysis for metabolic balance studies; and electrophoretic separation of creatine phosphokinase isoenzymes in human blood.
S.R. Pezeshki; R.D. DeLaune
2000-01-01
Characterization of hydric soils and the relationship between soil oxidation-reduction processes and wetland plant distribution are critical to the identification and delineation of wetlands and to our understanding of soil processes and plant functioning in wetland ecosystems. However, the information on the relationship between flood response of wetland plants and...
Balodite, Elina; Strazdina, Inese; Galinina, Nina; McLean, Samantha; Rutkis, Reinis; Poole, Robert K; Kalnenieks, Uldis
2014-09-01
The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase. © 2014 The Authors.
Effect of Processing and Storage on RBC function in vivo
Doctor, Allan; Spinella, Phil
2012-01-01
Red Blood Cell (RBC) transfusion is indicated to improve oxygen delivery to tissue, and for no other purpose. We have come to appreciate that donor RBCs are fundamentally altered during processing and storage, in a fashion that both impairs oxygen transport efficacy and introduces additional risk by perturbing both immune and coagulation systems. The protean biophysical and physiologic changes in RBC function arising from storage are termed the ‘storage lesion’; many have been understood for some time; for example, we know that the oxygen affinity of stored blood rises during the storage period1 and that intracellular allosteric regulators, notably 2,3-bisphosphoglyceric acid (DPG) and ATP, are depleted during storage. Our appreciation of other storage lesion features has emerged with improved understanding of coagulation, immune and vascular signaling systems. Herein we review key features of the ‘storage lesion’. Additionally, we call particular attention to the newly appreciated role of RBCs in regulating linkage between regional blood flow and regional O2 consumption by regulating the bioavailability of key vasoactive mediators in plasma, as well as discuss how processing and storage disturbs this key signaling function and impairs transfusion efficacy. PMID:22818545
Single-cell measurement of red blood cell oxygen affinity
Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan
2015-01-01
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen–Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2–3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability. PMID:26216973
Gloviczki, Monika L; Glockner, James; Gomez, Sabas I; Romero, Juan C; Lerman, Lilach O; McKusick, Michael; Textor, Stephen C
2009-09-01
Imaging of the kidney using blood oxygen level dependent MR presents a major opportunity to examine differences in tissue oxygenation within the cortex and medulla applicable to human disease. We sought to define the differences between regions within kidneys and to optimize selection of regions of interest for study with 1.5 and 3 Tesla systems. Studies in 38 subjects were performed under baseline conditions and after administration of furosemide intravenously to examine changes in R2* as a result of suppressing oxygen consumption related to medullary tubular solute transport. These studies were carried out in patients with atherosclerotic renal artery stenosis (n = 24 kidneys) or essential hypertension or nonstenotic kidneys (n = 39). All patients but one were treated with agents to block the renin angiotensin system (ACE inhibitors or angiotensin receptor blockers). For each kidney, 3 levels (upper pole, hilum, and lower pole) were examined, including 3 individual segments (anterior, lateral, and posterior). Low basal R2* levels in kidney cortex (12.06 +/- 0.84 s(-1)) at 1.5 Tesla reflected robust blood flow and oxygenation and agreed closely with values obtained at 3.0 Tesla (13.62 +/- 0.56 s(-1), NS). Coefficients of variation ranged between 15% and 20% between segments and levels at both field strengths. By contrast, inner medullary R2* levels were higher at 3 T (31.66 +/- 0.74 s(-1)) as compared with 1.5 T (22.19 +/- 1.52 s(-1), P < 0.01). Medullary R2* values fell after furosemide administration reflecting reduced deoxyhemoglobin levels associated with blocked energy-dependent transport. The fall in medullary R2* at 3.0 Tesla (-12.61 +/- 0.97 s(-1)) was greater than observed at 1.5 T (-6.07 +/- 1.38 s(-1), P < 0.05). Cortical R2* levels remained low after furosemide and did not vary with field strength. Correlations between measurements of defined cortical and medullary regions of interest within kidneys were greater at each sampling level and segment at 3.0 T as compared to 1.5 T. For patients studied with 3.0 T, furosemide administration induced a lesser fall in R2* in poststenotic kidneys at 3.0 T (-10.61 +/- 1.61 s(-1)) versus nonstenotic kidneys (-13.21 +/- 0.72 s(-1), P < 0.05). This difference was not evident in comparisons made at 1.5 T. The magnitude of furosemide-suppressible oxygen consumption at 3.0 T (-43%) corresponded more closely with reported experimental differences observed during direct measurement with tissue electrodes (45%-50%) than changes measured at 1.5 T. These results indicate that blood oxygen level dependent MR measurements at high field strength can better distinguish discrete cortical and inner medullary regions of the kidney and approximate measured differences in oxygen tension. Maneuvers that reduce oxygen consumption related to tubular solute transport allow functional evaluation of the interstitial compartment as a function of tissue oxygenation. Impaired response to alterations in oxygen consumption can be detected at 3 T more effectively than at 1.5 T and may provide real-time tools to examine developing parenchymal injury associated with impaired oxygenation.
Progress in Ion Transport Membranes for Gas Separation Applications
NASA Astrophysics Data System (ADS)
Bose, Arun C.; Stiegel, Gary J.; Armstrong, Phillip A.; Halper, Barry J.; (Ted) Foster, E. P.
This chapter describes the evolution and advances of ion transport membranes for gas separation applications, especially separation of oxygen from air. In partnership with the US Department of Energy (DOE), Air Products and Chemicals, Inc. (Air Products) successfully developed a novel class of mixed ion-electron conducting materials and membrane architecture. These novel materials are referred to as ion transport membranes (ITM). Generically, ITMs consist of modified perovskite and brownmillerite oxide solid electrolytes and provide high oxygen anion and electron conduction typically at high temperatures driven by an oxygen potential gradient without the need for external power. The partial pressure ratio across the ITM layer creates the driving force for oxygen separation.
NASA Astrophysics Data System (ADS)
Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.
2016-10-01
This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.
Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; ...
2016-08-15
This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions inmore » a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.« less
Hartman, Mor-Li; Shirihai, Orian S.; Holbrook, Monika; Xu, Guoquan; Kocherla, Marsha; Shah, Akash; Fetterman, Jessica L.; Kluge, Matthew A.; Frame, Alissa A.; Hamburg, Naomi M.; Vita, Joseph A.
2014-01-01
Recent studies have shown mitochondrial dysfunction and increased production of reactive oxygen species in peripheral blood mononuclear cells (PBMC’s) and endothelial cells from patients with diabetes mellitus. Mitochondria oxygen consumption is coupled to ATP production and also occurs in an uncoupled fashion during formation of reactive oxygen species by components of the electron transport chain and other enzymatic sites. We therefore hypothesized that diabetes would be associated with higher total and uncoupled oxygen consumption in PBMC’s that would correlate with endothelial dysfunction. We developed a method to measure oxygen consumption in freshly isolated PBMC’s and applied it to 26 patients with type 2 diabetes mellitus and 28 non-diabetic controls. Basal (192±47 vs. 161±44 pMoles/min, P=0.01), uncoupled (64±16 vs. 53±16 pMoles/min, P=0.007), and maximal (795±87 vs. 715±128 pMoles/min, P=0.01) oxygen consumption rates were higher in diabetic patients compared to controls. There were no significant correlations between oxygen consumption rates and endothelium-dependent flow-mediated dilation measured by vascular ultrasound. Non-endothelium-dependent nitroglycerin-mediated dilation was lower in diabetics (10.1±6.6 vs. 15.8±4.8%, P=0.03) and correlated with maximal oxygen consumption (R= −0.64, P=0.001). In summary, we found that diabetes mellitus is associated with a pattern of mitochondrial oxygen consumption consistent with higher production of reactive oxygen species. The correlation between oxygen consumption and nitroglycerin-mediated dilation may suggest a link between mitochondrial dysfunction and vascular smooth muscle cell dysfunction that merits further study. Finally, the described method may have utility for assessment of mitochondrial function in larger scale observational and interventional studies in humans. PMID:24558030
Matsuno, Asuka; Gai, Zuoqi; Tanaka, Miyuki; Kato, Koji; Kato, Sanae; Katoh, Tsuyoshi; Shimizu, Takeshi; Yoshioka, Takeya; Kishimura, Hideki; Tanaka, Yoshikazu; Yao, Min
2015-06-01
Many molluscs transport oxygen using a very large cylindrical multimeric copper-containing protein named hemocyanin. The molluscan hemocyanin forms a decamer (cephalopods) or multidecamer (gastropods) of approximately 330-450kDa subunits, resulting in a molecular mass >3.3MDa. Therefore, molluscan hemocyanin is one of the largest proteins. The reason why these organisms use such a large supermolecule for oxygen transport remains unclear. Atomic-resolution X-ray crystallographic analysis is necessary to unveil the detailed molecular structure of this mysterious large molecule. However, its propensity to dissociate in solution has hampered the crystallization of its intact form. In the present study, we successfully obtained the first crystals of an intact decameric molluscan hemocyanin. The diffraction dataset at 3.0-Å resolution was collected by merging the datasets of two isomorphic crystals. Electron microscopy analysis of the dissolved crystals revealed cylindrical particles. Furthermore, self-rotation function analysis clearly showed the presence of a fivefold symmetry with several twofold symmetries perpendicular to the fivefold axis. The absorption spectrum of the crystals showed an absorption peak around 345nm. These results indicated that the crystals contain intact hemocyanin decamers in the oxygen-bound form. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, R.; Lear, S.; Cohen, R.
1989-09-01
The effects of various organotins on membrane function and electrolyte transport were studied in the marine elasmobranch, Squalus acanthias. The isolated perfused rectal gland was used as a model of electrolyte transport. This gland can be stimulated to secrete chloride by atrial natriuretic peptide, veratrine, and vasoactive intestinal polypeptide although the mechanism of action of each secretagogue is different. By analysis of the inhibitory effect of an organotin in the presence of each secretagogue, the mechanism of inhibition can be inferred. Tributyltin (TBT) produced a reversible inhibition of epithelial transport at 10(-8) to 10(-7) M which resulted from inhibition ofmore » stimulus-secretion coupling in VIP-containing neurons within the gland. The transporting epithelial cells were unaffected at these concentrations. Trimethytin (TMT) produced inhibition at 10(-7) M which was not reversible and which affected primarily the transporting epithelial cells. Triethyltin and triphenyltin were without effect. The inhibitory effect of TBT and TMT was not affected by simultaneous administration of dithiothreitol. TBT also produced inhibition of oxygen consumption, Na+,K-ATPase, and proton ATPase in dispersed rectal gland cells. These results indicate that organotins are toxic to cell membrane functions which are intimately involved in the movement of electrolytes. This is the first evidence of toxicity to membrane transport functions in a marine species which is at risk from environmental exposure.« less
Role of Auxin-Induced Reactive Oxygen Species in Root Gravitropism1
Joo, Jung Hee; Bae, Yun Soo; Lee, June Seung
2001-01-01
We report our studies on root gravitropism indicating that reactive oxygen species (ROS) may function as a downstream component in auxin-mediated signal transduction. A transient increase in the intracellular concentration of ROS in the convex endodermis resulted from either gravistimulation or unilateral application of auxin to vertical roots. Root bending was also brought about by unilateral application of ROS to vertical roots pretreated with the auxin transport inhibitor N-1-naphthylphthalamic acid. Furthermore, the scavenging of ROS by antioxidants (N-acetylcysteine, ascorbic acid, and Trolox) inhibited root gravitropism. These results indicate that the generation of ROS plays a role in root gravitropism. PMID:11457956
The Bohr Effect Is Not a Likely Promoter of Renal Preglomerular Oxygen Shunting
Olgac, Ufuk; Kurtcuoglu, Vartan
2016-01-01
The aim of this study was to evaluate whether possible preglomerular arterial-to-venous oxygen shunting is affected by the interaction between renal preglomerular carbon dioxide and oxygen transport. We hypothesized that a reverse (venous-to-arterial) shunting of carbon dioxide will increase partial pressure of carbon dioxide and decrease pH in the arteries and thereby lead to increased oxygen offloading and consequent oxygen shunting. To test this hypothesis, we employed a segment-wise three-dimensional computational model of coupled renal oxygen and carbon dioxide transport, wherein coupling is achieved by shifting the oxygen-hemoglobin dissociation curve in dependence of local changes in partial pressure of carbon dioxide and pH. The model suggests that primarily due to the high buffering capacity of blood, there is only marginally increased acidity in the preglomerular vasculature compared to systemic arterial blood caused by carbon dioxide shunting. Furthermore, effects of carbon dioxide transport do not promote but rather impair preglomerular oxygen shunting, as the increase in acidity is higher in the veins compared to that in the arteries. We conclude that while substantial arterial-to-venous oxygen shunting might take place in the postglomerular vasculature, the net amount of oxygen shunted at the preglomerular vasculature appears to be marginal. PMID:27833564
Numerical investigation of oxygen transport by hemoglobin-based carriers through microvessels.
Hyakutake, Toru; Kishimoto, Takumi
2017-12-01
The small size of hemoglobin-based oxygen carriers (HBOCs) may expand the realm of new treatment possibilities for various circulatory diseases. The parametric evaluation of HBOC performance for oxygen transport within tissue is essential for effectively characterizing its performance for each circulatory disease assessed. Thus, the overarching objective of this present study was to numerically investigate the reaction-diffusion phenomenon of oxygenated HBOCs and oxygen on tissues through microvessels. We considered dissociation rate coefficients, oxygen affinity, and diffusion coefficients due to Brownian motion as the biophysical parameters for estimating HBOC performance for oxygen transport. A two-dimensional computational domain, including vessel and tissue regions, was, therefore, accordingly assumed. It was observed that HBOC flows in a microvessel with a diameter of 25 μm and a length of 1 mm, and that the dissociated oxygen diffuses to the tissue region. The results indicated that oxyhemoglobin saturation and partial oxygen tension in a downstream region changed according to each biophysical parameter of HBOC. Moreover, the change in oxygen consumption rate in the tissue region had considerable influence on the oxyhemoglobin saturation level within the vessel. Comparison between simulation results and existing in vitro experimental data of actual HBOCs and RBC showed qualitatively good agreement. These results provide important information for the effective design of robust HBOCs in future.
Lucu, Čedomil; Ziegler, Andreas
2017-09-01
Effects of hypoxia on the osmorespiratory functions of the posterior gills of the shore crab Carcinus maenas acclimated to 12ppt seawater (DSW) were studied. Short-circuit current (Isc) across the hemilamella (one epithelium layer supported by cuticle) was substantially reduced under exposure to 1.6, 2.0, or 2.5mg O 2 /L hypoxic saline (both sides of epithelium) and fully recovered after reoxygenation. Isc was reduced equally in the epithelium exposed to 1.6mg O 2 /L on both sides and when the apical side was oxygenated and the basolateral side solely exposed to hypoxia. Under 1.6mg O 2 /L, at the level of maximum inhibition of Isc, conductance was decreased from 40.0mScm -2 to 34.7mScm -2 and fully recovered after reoxygenation. Isc inhibition under hypoxia and reduced 86 Rb + (K + ) fluxes across apically located K + channels were caused preferentially by reversible inhibition of basolaterally located and ouabain sensitive Na + ,K + -ATPase mediated electrogenic transport. Reversible inhibition of Isc is discussed as decline in active transport energy supply down regulating metabolic processes and saving energy during oxygen deprivation. In response to a 4day exposure of Carcinus to 2.0mg O 2 /L, hemolymph Na + and Cl - concentration decreased, i.e. hyperosmoregulation was weakened. Variations of the oxygen concentration level and exposure time to hypoxia lead to an increase of the surface of mitochondria per epithelium area and might in part compensate for the decrease in oxygen availability under hypoxic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses
NASA Astrophysics Data System (ADS)
Ataide, Filipe Andre Prata
The enhancement of fluid properties, namely thermal conductivity and mass diffusivity for a wide range of applications, through the use of nanosized particles' suspensions has been gathering increasing interest in the scientific community. In previous studies, Olle et al. (2006) showed an enhancement in oxygen absorption to aqueous solutions of up to 6-fold through the use of functionalized nanosized magnetic particles with oleic acid coating. Krishnamurthy et al. (2006) showed a remarkable 26-fold enhancement in dye diffusion in water. These two publications are landmarks in mass transfer enhancement in chemical systems through the use of nanoparticles. The central goal of this Ph.D. thesis was to develop functionalized magnetic nanoparticles to enhance oxygen transport in bioprocesses. The experimental protocol for magnetic nanoparticles synthesis and purification adopted in this thesis is a modification of that reported by Olle et al. (2006). This is facilitated by employing twice the quantity of ammonia, added at a slower rate, and by filtering the final nanoparticle solution in a cross-flow filtration modulus against 55 volumes of distilled water. This modification in the protocol resulted in improved magnetic nanoparticles with measurably higher mass transfer enhancement. Magnetic nanoparticles with oleic acid and Hitenol-BC coating were screened for oxygen transfer enhancement, since these particles are relatively inexpensive and easy to synthesize. A glass 0.5-liter reactor was custom manufactured specifically for oxygen transport studies in magnetic nanoparticles suspensions. The reactor geometry, baffles and Rushton impeller are of standard dimensions. Mass transfer tests were conducted through the use of the sulphite oxidation method, applying iodometric back-titration. A 3-factor central composite circumscribed design (CCD) was adopted for design of experiments in order to generate sufficiently informative data to model the effect of magnetic nanoparticles on interfacial area and mass transfer coefficient. The parameters ranges used were: 250-750 rpm for stirring speed, 0-2 vvm for aeration and 0-0.00120 g g?1 magnetic nanoparticles mass fraction. It was found that 36 nm-sized nanoparticles produced during the course of this dissertation enhanced the volumetric mass transfer coefficient up to 3.3-fold and the interfacial area up to 3.3-fold in relation to gas-liquid dispersions without nanoparticles. These results are concordant with previously published enhancement data (kLa enhancement by 7.1-fold and a enhancement by 4.1-fold) (Olle et al. 2006). The magnetic nanoparticles synthesized in this thesis were stable (constant diameter) over a 1wide pH range (2-9). Statistical regression models showed that both kLa and a have high sensitivity to the nanoparticles loading. Empirical correlation models were derived for kLa and for interfacial area, a, as function of physical properties and nanoparticles loading. These correlations lay out a methodology that can help the scientific community to design and scale-up oxygen transfer systems that are based on nanoparticle suspensions. None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None
A theoretical study of diffusional transport over the alveolar surfactant layer.
Aberg, Christoffer; Sparr, Emma; Larsson, Marcus; Wennerström, Håkan
2010-10-06
In this communication, we analyse the passage of oxygen and carbon dioxide over the respiratory membrane. The lung surfactant membrane at the alveolar interface can have a very special arrangement, which affects the diffusional transport. We present a theoretical model for the diffusion of small molecules in membranes with a complex structure, and we specifically compare a membrane composed of a tubular bilayer network with a membrane consisting of a stack of bilayers. Oxygen and carbon dioxide differ in terms of their solubility in the aqueous and the lipid regions of the membrane, and we show that this difference clearly influences their transport properties in the different membrane structures. During normal respiration, the rate-limiting step for carbon dioxide transport is in the gas phase of the different compartments in the lung. For oxygen, on the other hand, the rate is limited by the transport between alveoli and the capillary blood vessels, including the lung surfactant membrane. In a membrane with a structure of a continuous tubular lipid network, oxygen transport is facilitated to a significant extent compared with the structure of aligned lipid bilayers. The model calculations in the present study show that transport of oxygen through the tubular structure is indeed ca 30 per cent faster than transport through a membrane composed of stacked bilayers. The tubular network will also facilitate the transport of apolar substances between the gas phase and the blood. Important examples are ethanol and other volatile liquids that can leave the blood through the lungs, and gaseous anaesthetics or volatile solvents that are inhaled. This exemplifies a new physiological role of a tubular lipid network in the lung surfactant membrane.
Materials characterization of impregnated W and W-Ir cathodes after oxygen poisoning
NASA Astrophysics Data System (ADS)
Polk, James E.; Capece, Angela M.
2015-05-01
Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten-iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W-Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W-Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W-Ir. However, the W-Ir emitter exhibited less erosion and redeposition at the upstream end than the pure W emitter.
van Beek, J H; Westerhof, N
1990-01-01
We determined the speed with which mitochondrial oxygen consumption and therefore the mitochondrial ATP-synthesis adapted to changes in metabolic demand in the rabbit heart. This was done by measuring the oxygen uptake of the whole heart during a stepwise change in heart rate and correcting for the time taken by diffusion and by convective transport in the blood vessels. Data for the correction for transport time were obtained from the response of venous oxygen concentration to a stepwise change of arterial oxygen concentration. The time constant of the response of mitochondrial oxygen consumption to a step change in heart rate was found to be 4-8 s.
Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S
2008-01-01
Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P < .05). Postoperatively, cerebral oxygen saturation was closely and positively correlated with systemic arterial pressure, arterial oxygen saturation, and arterial oxygen tension and negatively with oxygen extraction ratio (P < .0001 for all). Cerebral oxygen saturation was moderately and positively correlated with systemic blood flow and oxygen delivery (P < .0001 for both). It was weakly and positively correlated with pulmonary blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.
Respiratory and Metabolic Impacts of Crustacean Immunity: Are there Implications for the Insects?
Burnett, Karen G; Burnett, Louis E
2015-11-01
Extensive similarities in the molecular architecture of the crustacean immune system to that of insects give credence to the current view that the Hexapoda, including Insecta, arose within the clade Pancrustacea. The crustacean immune system is mediated largely by hemocytes, relying on suites of pattern recognition receptors, effector functions, and signaling pathways that parallel those of insects. In crustaceans, as in insects, the cardiovascular system facilitates movement of hemocytes and delivery of soluble immune factors, thereby supporting immune surveillance and defense along with other physiological functions such as transport of nutrients, wastes, and hormones. Crustaceans also rely heavily on their cardiovascular systems to mediate gas exchange; insects are less reliant on internal circulation for this function. Among the largest crustaceans, the decapods have developed a condensed heart and a highly arteriolized cardiovascular system that supports the metabolic demands of their often large body size. However, recent studies indicate that mounting an immune response can impair gas exchange and metabolism in their highly developed vascular system. When circulating hemocytes detect the presence of potential pathogens, they aggregate rapidly with each other and with the pathogen. These growing aggregates can become trapped in the microvasculature of the gill where they are melanized and may be eliminated at the next molt. Prior to molting, trapped aggregates of hemocytes also can impair hemolymph flow and oxygenation at the gill. Small shifts to anaerobic metabolism only partially compensate for this decrease in oxygen uptake. The resulting metabolic depression is likely to impact other energy-expensive cellular processes and whole-animal performance. For crustaceans that often live in microbially-rich, but oxygen-poor aquatic environments, there appear to be distinct tradeoffs, based on the gill's multiple roles in respiration and immunity. Insects have developed a separate tracheal system for the delivery of oxygen to tissues, so this particular tradeoff between oxygen transport and immune function is avoided. Few studies in crustaceans or insects have tested whether mounting an immune response might impact other functions of the cardiovascular system or alter integrity of the gut, respiratory, and reproductive epithelia where processes of the attack on pathogens, defense by the host, and physiological functions play out. Such tradeoffs might be fruitfully addressed by capitalizing on the ease of molecular and genetic manipulation in insects. Given the extensive similarities between the insect and the crustacean immune systems, such models of epithelial infection could benefit our understanding of the physiological consequences of immune defense in all of the Pancrustacea. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves
NASA Astrophysics Data System (ADS)
Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas
2010-03-01
Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (p<0.001, ANOVA repeated measures design) and mean tissue fractions of 1.6% (cytochrome aa3) and 1.1% (hemo- and myoglobin). Cardiac arrest in two calves gave an oxygen saturation lower than 5%. In two calves (group B), a left ventricular assistive device (LVAD pump) was implanted. Oxygen saturation in group B animals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.
Larsen, N; Brøsted Werner, B; Jespersen, L
2016-08-01
Milk acidification and metabolic activity of the starter cultures are affected by oxygen; however, molecular factors related to the redox changes are poorly defined. The objective of the study was to investigate transcriptional responses in Lactococcus lactis subsp. cremoris CHCCO2 grown in milk to the shifts of oxygen and redox potential (Eh7 ). Transcriptomic studies were performed with the use of Illumina HiSeq 2000 mRNA sequencing and validated by the real-time quantitative PCR. In total 105 differentially expressed genes were assigned functional gene names. Most of the differentially expressed genes were detected during aerobic reduction phase. Upregulated genes were implicated in lactose utilization, glycogen biosynthesis, amino sugar metabolism, oxidation-reduction, pyrimidine biosynthesis and DNA integration processes. Genes of purine nucleotide biosynthesis and genes encoding amino acid, multidrug resistance and ion ABC transporters were mostly downregulated, while oligopeptide transporter genes were reduced during oxygen depletion and induced at minimum Eh7 . Understanding of gene responses in starter cultures to the changes of oxidation-reduction state is important for the better control and reproducibility of dairy fermentations. We applied mRNA sequencing by Illumina HiSeq 2000 to investigate gene expression profile in a dairy strain of Lactococcus lactis subsp. cremoris during milk acidification. Novelty of this study lies in linking transcriptional responses to oxygen depletion and the changes of redox potential with the fermentation kinetics and clarification of molecular factors specifically expressed in milk which might be essential for bacterial performance and the final quality of cheeses. © 2016 The Society for Applied Microbiology.
Kawasaki, K; Yin, J J; Subczynski, W K; Hyde, J S; Kusumi, A
2001-01-01
A pulse saturation-recovery electron paramagnetic resonance (EPR) method has been developed that allows estimation of the exchange rates of a spin-labeled lipid between the bulk domain and the protein-rich membrane domain, in which the rate of collision between the spin label and molecular oxygen is reduced (slow-oxygen transport domain, or SLOT domain). It is based on the measurements of saturation-recovery signals of a lipid spin label as a function of concentrations of both molecular oxygen and the spin label. Influenza viral membrane, one of the simplest paradigms for the study of biomembranes, showed the presence of two membrane domains with slow and fast collision rates with oxygen (a 16-fold difference) at 30 degrees C. The outbound rate from and the inbound rate into the SLOT domain (or possibly the rate of the domain disintegration and formation) were estimated to be 7.7 x 10(4) and 4.6 x 10(4) s(-1), (15 micros residency time), respectively, indicating that the SLOT domain is highly dynamic and that the entire SLOT domain represents about one-third of the membrane area. Because the oxygen transport rate in the SLOT domain is a factor of two smaller than that in purple membrane, where bacteriorhodopsin is aggregated, we propose that the SLOT domain in the viral membrane is the cholesterol-rich raft domain stabilized by the trimers of hemagglutinin and/or the tetramers of neuraminidase. PMID:11159441
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Technical Reports Server (NTRS)
Good, Brian S.
2015-01-01
Ytterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the transport of oxygen and water vapor through these coatings to the ceramic substrate is undesirable if high temperature oxidation is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated and interstitial oxygen diffusion in Ytterbium disilicate. Oxygen vacancy and interstitial site energies, vacancy and interstitial formation energies, and migration barrier energies were computed using Density Functional Theory. We have found that, in the case of vacancy-mediated diffusion, many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small. In the case of interstitial diffusion, migration barrier energies are typically around one electron volt, but the interstitial defect formation energies are positive, with the result that the disilicate is unlikely to exhibit experience significant oxygen permeability except at very high temperature.
Farrell, A P
2007-11-29
A prolonged swimming trial is the most common approach in studying steady-state changes in oxygen uptake, cardiac output and tissue oxygen extraction as a function of swimming speed in salmonids. The data generated by these sorts of studies are used here to support the idea that a maximum oxygen uptake is reached during a critical swimming speed test. Maximum oxygen uptake has a temperature optimum. Potential explanations are advanced to explain why maximum aerobic performance falls off at high temperature. The valuable information provided by critical swimming tests can be confounded by non-steady-state swimming behaviours, which typically occur with increasing frequency as salmonids approach fatigue. Two major concerns are noted. Foremost, measurements of oxygen uptake during swimming can considerably underestimate the true cost of transport near critical swimming speed, apparently in a temperature-dependent manner. Second, based on a comparison with voluntary swimming ascents in a raceway, forced swimming trials in a swim tunnel respirometer may underestimate critical swimming speed, possibly because fish in a swim tunnel respirometer are unable to sustain a ground speed.
Hydrogen peroxide scavenger, catalase, alleviates ion transport dysfunction in murine colitis.
Barrett, Kim E; McCole, Declan F
2016-11-01
Reactive oxygen species (ROS) such as hydrogen peroxide (H 2 O 2 ) contribute to epithelial damage and ion transport dysfunction (key events in inflammatory diarrhoea) in inflammatory bowel disease (IBD). The aim of this study was to identify if H 2 O 2 mediates suppression of colonic ion transport function in the murine dextran sulfate sodium (DSS) colitis model by using the H 2 O 2 degrading enzyme, catalase. Colitis was induced by administering DSS (4%) in drinking water for 5 days followed by 3 days on normal H 2 O. Mice were administered either pegylated catalase or saline at day -1, 0 and +1 of DSS treatment. Ion transport responses to the Ca 2+ -dependent agonist, carbachol (CCh), or the cAMP-dependent agonist, forskolin, were measured across distal colonic mucosa mounted in Ussing chambers. Parameters of DSS-induced inflammation (loss in body weight, decreased colon length, altered stool consistency), were only partially alleviated by catalase while histology was only minimally improved. However, catalase significantly reversed the DSS-induced reduction in baseline ion transport as well as colonic I sc responses to CCh. However, ion transport responses to forskolin were not significantly restored. Catalase also reduced activation of ERK MAP kinase in the setting of colitis, and increased expression of the Na + -K + -2Cl - cotransporter, NKCC1, consistent with restoration of ion transport function. Ex vivo treatment of inflamed colonic mucosae with catalase also partially restored ion transport function. Therefore, catalase partially prevents, and rescues, the loss of ion transport properties in DSS colitis even in the setting of unresolved tissue inflammation. These findings indicate a prominent role for ROS in ion transport dysfunction in colitis and may suggest novel strategies for the treatment of inflammatory diarrhoea. © 2016 John Wiley & Sons Australia, Ltd.
The Hydrogen Peroxide Scavenger, Catalase, Alleviates Ion Transport Dysfunction in Murine Colitis
Barrett, Kim E.; McCole, Declan F.
2016-01-01
Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) contribute to epithelial damage and ion transport dysfunction (key events in inflammatory diarrhea) in inflammatory bowel disease (IBD). The aim of this study was to identify if H2O2 mediates suppression of colonic ion transport function in the murine dextran sulfate sodium (DSS) colitis model by using the H2O2 degrading enzyme, catalase. Colitis was induced by administering DSS (4%) in drinking water for 5 days followed by 3 days on normal H2O. Mice were administered either pegylated-catalase or saline at day −1, 0 and +1 of DSS treatment. Ion transport responses to the Ca2+-dependent agonist, carbachol (CCh), or the cAMP-dependent agonist, forskolin, were measured across distal colonic mucosa mounted in Ussing chambers. Parameters of DSS-induced inflammation (loss in body weight, decreased colon length, altered stool consistency), were only partially alleviated by catalase while histology was only minimally improved. However, catalase significantly reversed the DSS-induced reduction in baseline ion transport as well as colonic Isc responses to CCh. However, ion transport responses to forskolin were not significantly restored. Catalase also reduced activation of ERK MAP kinase in the setting of colitis, and increased expression of the Na+-K+-2Cl− cotransporter, NKCC1, consistent with restoration of ion transport function. Ex vivo treatment of inflamed colonic mucosae with catalase also partially restored ion transport function. Therefore, catalase partially prevents, and rescues, the loss of ion transport properties in DSS colitis even in the setting of unresolved tissue inflammation. These findings indicate a prominent role for ROS in ion transport dysfunction in colitis and may suggest novel strategies for the treatment of inflammatory diarrhea. PMID:27543846
NASA Technical Reports Server (NTRS)
Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.
1992-01-01
The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.
Andriunas, Felicity A.; Zhang, Hui-Ming; Xia, Xue; Patrick, John W.; Offler, Christina E.
2013-01-01
Transfer cells (TCs) are ubiquitous throughout the plant kingdom. Their unique ingrowth wall labyrinths, supporting a plasma membrane enriched in transporter proteins, provides these cells with an enhanced membrane transport capacity for resources. In certain plant species, TCs have been shown to function to facilitate phloem loading and/or unloading at cellular sites of intense resource exchange between symplasmic/apoplasmic compartments. Within the phloem, the key cellular locations of TCs are leaf minor veins of collection phloem and stem nodes of transport phloem. In these locations, companion and phloem parenchyma cells trans-differentiate to a TC morphology consistent with facilitating loading and re-distribution of resources, respectively. At a species level, occurrence of TCs is significantly higher in transport than in collection phloem. TCs are absent from release phloem, but occur within post-sieve element unloading pathways and particularly at interfaces between generations of developing Angiosperm seeds. Experimental accessibility of seed TCs has provided opportunities to investigate their inductive signaling, regulation of ingrowth wall formation and membrane transport function. This review uses this information base to explore current knowledge of phloem transport function and inductive signaling for phloem-associated TCs. The functional role of collection phloem and seed TCs is supported by definitive evidence, but no such information is available for stem node TCs that present an almost intractable experimental challenge. There is an emerging understanding of inductive signals and signaling pathways responsible for initiating trans-differentiation to a TC morphology in developing seeds. However, scant information is available to comment on a potential role for inductive signals (auxin, ethylene and reactive oxygen species) that induce seed TCs, in regulating induction of phloem-associated TCs. Biotic phloem invaders have been used as a model to speculate on involvement of these signals. PMID:23847631
Ward, W. Kenneth
2007-01-01
Amperometric sensors for continuous glucose monitoring could prevent acute and chronic complications of diabetes, but research is needed to improve accuracy and stability. In designing sensors, interference from non-glucose analytes can be minimized by use of filtration membranes or electron transfer mediators that allow polarization at low potentials. If oxygen is required for the enzymatic reaction with glucose, then the outer permselective membrane must have substantial oxygen permeability. For this reason, during development of permselective membranes, permeability studies (such as performed by Tipnis and colleagues in this issue) can be used to measure transport of glucose and oxygen and optimize membrane structure. Tipnis and colleagues present a novel biosensor based with separate layers for glucose-oxygen permselectivity, enzymatic conversion, and avoidance of interference. They also address sensor stability, in part by comparing sensor function during ascending vs descending glucose levels. By measuring the difference, they were able to minimize this aspect of instability (hysterisis), which assisted them in selecting a promising permselective membrane based on iron and humic acid. PMID:19888407
1997-04-19
KENNEDY SPACE CENTER, FLA. -- McDonnell Douglas-SPACEHAB technicians look over a Russian-made oxygen generator which has just been placed on the floor of a SPACEHAB Double Module being prepared for flight on Space Shuttle Mission STS-84. The module is being processed in the SPACEHAB Payload Processing Facility just outside of Gate 1 on Cape Canaveral Air Station. The Space Shuttle Atlantis will transport the oxygen generator to the Russian Space Station Mir to replace one of two Mir units that have been malfunctioning recently. The nearly 300-pound generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet long with a diameter of 1.4 feet. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 launch. It will be the sixth Shuttle-Mir docking
1997-04-19
KENNEDY SPACE CENTER, FLA. -- McDonnell Douglas-SPACEHAB technicians prepare to place a Russian-made oxygen generator into position for transport in a SPACEHAB Double Module being processed for flight on Space Shuttle Mission STS-84. The module is undergoing preflight preparations in the SPACEHAB Payload Processing Facility just outside of Gate 1 on Cape Canaveral Air Station. The Space Shuttle Atlantis will carry the oxygen generator to the Russian Space Station Mir to replace one of two Mir units that have been malfunctioning recently. The nearly 300-pound generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet long with a diameter of 1.4 feet. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 launch. It will be the sixth Shuttle-Mir docking
Ward, W Kenneth
2007-03-01
Amperometric sensors for continuous glucose monitoring could prevent acute and chronic complications of diabetes, but research is needed to improve accuracy and stability. In designing sensors, interference from non-glucose analytes can be minimized by use of filtration membranes or electron transfer mediators that allow polarization at low potentials. If oxygen is required for the enzymatic reaction with glucose, then the outer permselective membrane must have substantial oxygen permeability. For this reason, during development of permselective membranes, permeability studies (such as performed by Tipnis and colleagues in this issue) can be used to measure transport of glucose and oxygen and optimize membrane structure. Tipnis and colleagues present a novel biosensor based with separate layers for glucose-oxygen permselectivity, enzymatic conversion, and avoidance of interference. They also address sensor stability, in part by comparing sensor function during ascending vs descending glucose levels. By measuring the difference, they were able to minimize this aspect of instability (hysterisis), which assisted them in selecting a promising permselective membrane based on iron and humic acid.
78 FR 1765 - Requirements for Chemical Oxygen Generators Installed on Transport Category Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... the supplemental oxygen supply can also complicate activating the oxygen flow, since that is generally... oxygen quantity requirements of Sec. 25.1443, Minimum mass flow of supplemental oxygen. E. Related...-0812; Notice No. 13-01] RIN 2120-AK14 Requirements for Chemical Oxygen Generators Installed on...
Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins
2017-01-01
As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal–oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal–oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron–oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we envision that new enzymatic and synthetic transformations will emerge based on the radical processes mediated by metalloproteins and their synthetic analogs. PMID:29286645
Proximal detection of energetic materials on fabrics by UV-Raman spectroscopy
NASA Astrophysics Data System (ADS)
Chirico, R.; Almaviva, S.; Colao, F.; Fiorani, L.; Nuvoli, M.; Schweikert, W.; Schnürer, F.; Cassioli, L.; Grossi, S.; Mariani, L.; Angelini, F.; Menicucci, I.; Palucci, A.
2014-05-01
In the last decades there have been several terroristic attacks with improvised explosive devices (IED) that have raised the need for new instrumentation, for homeland security applications, to obtain a reliable and effective fight against terrorism. Public transportation has been around for about 150 years, but terroristic attacks against buses, trains, subways, etc., is a relatively recent phenomenon [1]. Since 1970, transportation has been an increasingly attractive target for terrorists. Most of the attacks to transport infrastructures take place in countries where public transportation is the primary way to move. Terrorists prefer to execute a smaller-scale attack with certainty of success rather than a complex and demanding operation to cause massive death and destruction. [1]. Many commonly available materials, such as fertilizer, gunpowder, and hydrogen peroxide, can be used as explosives and other materials, such as nails, glass, or metal fragments, can be used to increase the amount of shrapnel propelled by the explosion. The majority of substances that are classified as chemical explosives generally contain oxygen, nitrogen and oxidable elements such as carbon and hydrogen [2]. The most common functional group in military explosives is NO2. That functionality can be attached to oxygen (ONO2) in the nitrate esters (PETN), to carbon (C-NO2) in the nitroarenes (TNT) and nitroalkanes (Nitromethane), and to nitrogen (N-NO2) as in the nitramines (RDX). Some organic peroxides, such as TATP and HMTD, are popular amongst terrorists because they are powerful initiators that can be easily prepared from easily available ingredients. Azides are also powerful primary explosives commonly used as initiators (commercial detonators) in civilian and military operations, therefore they could be potentially used by terrorists as initiators for IEDs.
Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N
2016-01-01
Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (<0.5 μg/mL) and GO (<20 μg/mL) did not decrease cell viability, generate reactive oxygen species, or disrupt mitochondrial function. However, graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO.
Jaworski, Jacek; Redlarski, Grzegorz
2014-08-01
This paper presents a model of alveolar-capillary oxygen diffusion with dynamics of air transport through the respiratory tract. For this purpose electrical model representing the respiratory tract mechanics and differential equations representing oxygen membrane diffusion are combined. Relevant thermodynamic relations describing the mass of oxygen transported into the human body are proposed as the connection between these models, as well as the influence of ventilation-perfusion mismatch on the oxygen diffusion. The model is verified based on simulation results of varying exercise intensities and statistical calculations of the results obtained during various clinical trials. The benefit of the approach proposed is its application in simulation-based research aimed to generate quantitative data of normal and pathological conditions. Based on the model presented, taking into account many essential physiological processes and air transport dynamics, comprehensive and combined studies of the respiratory efficiency can be performed. The impact of physical exercise, precise changes in respiratory tract mechanics and alterations in breathing pattern can be analyzed together with the impact of various changes in alveolar-capillary oxygen diffusion. This may be useful in simulation of effects of many severe medical conditions and increased activity level. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sensitive photo-thermal response of graphene oxide for mid-infrared detection
NASA Astrophysics Data System (ADS)
Bae, Jung Jun; Yoon, Jung Hyun; Jeong, Sooyeon; Moon, Byoung Hee; Han, Joong Tark; Jeong, Hee Jin; Lee, Geon-Woong; Hwang, Ha Ryong; Lee, Young Hee; Jeong, Seung Yol; Lim, Seong Chu
2015-09-01
This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability.This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04039f
Xu, Feng; Wu, Lijun; Meng, Qingping; Kaltak, Merzuk; Huang, Jianping; Durham, Jessica L; Fernandez-Serra, Marivi; Sun, Litao; Marschilok, Amy C; Takeuchi, Esther S; Takeuchi, Kenneth J; Hybertsen, Mark S; Zhu, Yimei
2017-05-24
Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. We report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable by orthorhombic distortion. Subsequently, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. These results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.
Xu, Feng; Wu, Lijun; Meng, Qingping; ...
2017-05-24
Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. Here, we report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable bymore » orthorhombic distortion. As a result, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. Our results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Feng; Wu, Lijun; Meng, Qingping
Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. Here, we report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable bymore » orthorhombic distortion. As a result, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. Our results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.« less
Bertrand, R
2012-09-01
Though hemoglobin (Hb) is best known for transporting oxygen and metabolic wastes throughout the circulatory system, this erythrocyte protein also acts as a hypoxic sensor, its oxygen saturation dependent on the oxygen partial pressure (pO(2)) which varies throughout the vasculature. The production and transport of the endogenous vasodilator nitric oxide (NO) by Hb is dependent on Hb's oxygen saturation, thereby allowing the protein to auto-regulate blood flow efficiency to meet the relative demands of respiring tissues. Erythrocyte concentrations of 2,3-bisphosphoglycerate (BPG), an enhancer of oxygen off-loading from Hb, is very sensitive to changes in glycolytic rates because its synthesis by BPG synthase is dependent on the availability of the glycolytic intermediate 1,3-bisphosphoglycerate. BPG synthase, as well as some glycolytic enzymes, are also very sensitive to pH changes, and variations in BPG levels have direct consequences on the oxygen off-loading function of Hb. I hypothesize that NO may suppress BPG production by (1) inhibiting glyceraldehyde-3-phosphate dehydrogenase (G3PDH), the most critical glycolytic enzyme for the bioavailability of 1,3-bisphosphoglycerate; and to a lesser extent by (2) associated pH changes in the deoxy-Hb-catalyzed depletion of nitrite, a metabolic reservoir of NO. Both mechanisms are favored in low pO(2) environments where BPG is most needed to maximize oxygen off-loading, indicating that the auto-regulatory link between NO and Hb may have inadvertently linked Hb and BPG synthesis in an unfavorable manner. However, for reasons discussed, NO-mediated suppression of BPG may be advantageous in some circumstances; namely, for individuals living at high altitudes and those with the blood disorder sickle cell anemia. This hypothesis is thus relevant to respiratory health under both normative conditions as well as under hypoxic stress. The potential relevance of the hypothesis to comparative animal physiology and evolutionary biology is also briefly described. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lunar surface base propulsion system study, volume 1
NASA Technical Reports Server (NTRS)
1987-01-01
The efficiency, capability, and evolution of a lunar base will be largely dependent on the transportation system that supports it. Beyond Space Station in low Earth orbit (LEO), a Lunar-derived propellant supply could provide the most important resource for the transportation infrastructure. The key to an efficient Lunar base propulsion system is the degree of Lunar self-sufficiency (from Earth supply) and reasonable propulsion system performance. Lunar surface propellant production requirements must be accounted in the measurement of efficiency of the entire space transportation system. Of all chemical propellant/propulsion systems considered, hydrogen/oxygen (H/O) OTVs appear most desirable, while both H/O and aluminum/oxygen propulsion systems may be considered for the lander. Aluminized-hydrogen/oxygen and Silane/oxygen propulsion systems are also promising candidates. Lunar propellant availability and processing techniques, chemical propulsion/vehicle design characteristics, and the associated performance of the total transportation infrastructure are reviewed, conceptual propulsion system designs and vehicle/basing concepts, and technology requirements are assessed in context of a Lunar Base mission scenario.
The obtaining and properties of asymmetric ion transport membrane for separating of oxygen from air
NASA Astrophysics Data System (ADS)
Solovieva, A. A.; Kulbakin, I. V.
2018-04-01
The bilayer oxygen-permeable membrane, consisting of a thin-film dense composite based on Co3O4 - 36 wt. % Bi2O3, and of a porous ceramic substrate of Co2SiO4, was synthesized and characterized. The way for obtaining of porous ceramic based on cobalt silicate was found, while the microstructure and the mechanical properties of porous ceramic were studied. Layered casting with post-pressing was used to cover the surface of porous support of Co2SiO4 by the Co3O4 - 36 wt. % Bi2O3 - based film. Transport properties of the asymmetric membrane have been studied, the kinetic features of oxygen transport have been established, and the characteristic thickness of the membrane has been estimated. The methods to prevent the high-temperature creep of ion transport membranes based on solid/molten oxides, which are the promising ones for obtaining of pure oxygen from air, are proposed and discussed.
NASA Astrophysics Data System (ADS)
Trinchero, Paolo; Puigdomenech, Ignasi; Molinero, Jorge; Ebrahimi, Hedieh; Gylling, Björn; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido
2017-05-01
We present an enhanced continuum-based approach for the modelling of groundwater flow coupled with reactive transport in crystalline fractured rocks. In the proposed formulation, flow, transport and geochemical parameters are represented onto a numerical grid using Discrete Fracture Network (DFN) derived parameters. The geochemical reactions are further constrained by field observations of mineral distribution. To illustrate how the approach can be used to include physical and geochemical complexities into reactive transport calculations, we have analysed the potential ingress of oxygenated glacial-meltwater in a heterogeneous fractured rock using the Forsmark site (Sweden) as an example. The results of high-performance reactive transport calculations show that, after a quick oxygen penetration, steady state conditions are attained where abiotic reactions (i.e. the dissolution of chlorite and the homogeneous oxidation of aqueous iron(II) ions) counterbalance advective oxygen fluxes. The results show that most of the chlorite becomes depleted in the highly conductive deformation zones where higher mineral surface areas are available for reactions.
Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang
2017-12-07
Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.
Retinal oxygen distribution and the role of neuroglobin.
Roberts, Paul A; Gaffney, Eamonn A; Luthert, Philip J; Foss, Alexander J E; Byrne, Helen M
2016-07-01
The retina is the tissue layer at the back of the eye that is responsible for light detection. Whilst equipped with a rich supply of oxygen, it has one of the highest oxygen demands of any tissue in the body and, as such, supply and demand are finely balanced. It has been suggested that the protein neuroglobin (Ngb), which is found in high concentrations within the retina, may help to maintain an adequate supply of oxygen via the processes of transport and storage. We construct mathematical models, formulated as systems of reaction-diffusion equations in one-dimension, to test this hypothesis. Numerical simulations show that Ngb may play an important role in oxygen transport, but not in storage. Our models predict that the retina is most susceptible to hypoxia in the regions of the photoreceptor inner segment and inner plexiform layers, where Ngb has the potential to prevent hypoxia and increase oxygen uptake by 30-40 %. Analysis of a simplified model confirms the utility of Ngb in transport and shows that its oxygen affinity ([Formula: see text] value) is near optimal for this process. Lastly, asymptotic analysis enables us to identify conditions under which the piecewise linear and quadratic approximations to the retinal oxygen profile, used in the literature, are valid.
Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes
NASA Technical Reports Server (NTRS)
Chin, D. T.; Hsueh, K. L.; Chang, H. H.
1983-01-01
Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. A theoretical expression for the rotating ring-disk electrode technique; the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; oxygen reduction mechanism in trifluoromethanesulfonic acid (TFMSA), considered as an alternate electrolyte for the acid fuel cells; and transport properties of the phosphoric acid electrolyte at high concentrations and temperatures are covered.
Stoichiometry for binding and transport by the twin arginine translocation system.
Celedon, Jose M; Cline, Kenneth
2012-05-14
Twin arginine translocation (Tat) systems transport large folded proteins across sealed membranes. Tat systems accomplish this feat with three membrane components organized in two complexes. In thylakoid membranes, cpTatC and Hcf106 comprise a large receptor complex containing an estimated eight cpTatC-Hcf106 pairs. Protein transport occurs when Tha4 joins the receptor complex as an oligomer of uncertain size that is thought to form the protein-conducting structure. Here, binding analyses with intact membranes or purified complexes indicate that each receptor complex could bind eight precursor proteins. Kinetic analysis of translocation showed that each precursor-bound site was independently functional for transport, and, with sufficient Tha4, all sites were concurrently active for transport. Tha4 titration determined that ∼26 Tha4 protomers were required for transport of each OE17 (oxygen-evolving complex subunit of 17 kD) precursor protein. Our results suggest that, when fully saturated with precursor proteins and Tha4, the Tat translocase is an ∼2.2-megadalton complex that can individually transport eight precursor proteins or cooperatively transport multimeric precursors.
Transport generated by mayfly nymphs to breathe
NASA Astrophysics Data System (ADS)
Chabreyrie, Rodolphe; Abdelaziz, Khaled; Balaras, Elias; Kiger, Kenneth
2014-11-01
In order to maintain their metabolism, many species of mayfly nymphs utilize an oscillating array of wing-shaped gills to augment extraction of dissolved oxygen from the surrounding water. As a nymph develops, the kinematics of these gills have been observed to abruptly change from a rowing-like to a flapping-like motion. To better understand the role of this abrupt kinematic change, we study the transport of dissolved oxygen, viewed as a passive scalar surrounding the gills, for an in-silico mayfly nymph. In particular, through a Lagrangian and stochastic dynamical systems approach, we simulate the advection and diffusion of this passive scalar, and reveal the key structures of the transport generated by the gills for both flapping and rowing kinematics. In this talk, we show how the switch from rowing to flapping enables the generation of a better transport skeleton (i.e. breading of Lagrangian Coherent Structures) and how such a transport skeleton influences the oxygen uptake.
Unsteady Oxygen Transfer in Space-Filling Models of the Pulmonary Acinus
NASA Astrophysics Data System (ADS)
Hofemeier, Philipp; Shachar-Berman, Lihi; Filoche, Marcel; Sznitman, Josue
2014-11-01
Diffusional screening in the pulmonary acinus is a well-known physical phenomenon that results from the depletion of fresh oxygen in proximal acinar generations diffusing through the alveolar wall membranes and effectively creating a gradient in the oxygen partial pressure along the acinar airways. Until present, most studies have focused on steady-state oxygen diffusion in generic sub-acinar structures and discarded convective oxygen transport due to low Peclet numbers in this region. Such studies, however, fall typically short in capturing the complex morphology of acinar airways as well as the oscillatory nature of convecive acinar breathing. Here, we revisit this problem and solve the convective-diffusive transport equations in breathing 3D acinar structures, underlining the significance of convective flows in proximal acinar generations as well as recirculating alveolar flow patterns. In particular, to assess diffusional screening, we monitor time-dependent efficiencies of the acinus under cyclic breathing motion. Our study emphasizes the necessity of capturing both a dynamically breathing and anatomically-realistic model of the sub-acinus to characterize unsteady oxygen transport across the acinar walls.
Schenkel, Laila C; Singh, Ratnesh K; Michel, Vera; Zeisel, Steven H; da Costa, Kerry-Ann; Johnson, Amy R; Mudd, Harvey S; Bakovic, Marica
2015-05-01
Fibroblasts from a patient with postural orthostatic tachycardia syndrome (POTS), who presented with low plasma choline and betaine, were studied to determine the metabolic characteristics of the choline deficiency. Choline is required for the synthesis of the phospholipid phosphatidylcholine (PC) and for betaine, an important osmoregulator. Here, choline transport, lipid homeostasis, and mitochondria function were analyzed in skin fibroblasts from POTS and compared with control cells. The choline transporter-like protein 1/solute carrier 44A1 (CTL1/SLC44A1) and mRNA expression were 2-3 times lower in POTS fibroblasts, and choline uptake was reduced 60% (P < 0.05). Disturbances of membrane homeostasis were observed by reduced ratios between PC:phosphatidylethanolamine and sphingomyelin:cholesterol, as well as by modified phospholipid fatty acid composition. Choline deficiency also impaired mitochondria function, which was observed by a reduction in oxygen consumption, mitochondrial potential, and glycolytic activity. When POTS cells were treated with choline, transporter was up-regulated, and uptake of choline increased, offering an option for patient treatment. The characteristics of the POTS fibroblasts described here represent a first model of choline and CTL1/SLC44A1 deficiency, in which choline transport, membrane homeostasis, and mitochondrial function are impaired. © FASEB.
Evolution and physiology of neural oxygen sensing
Costa, Kauê M.; Accorsi-Mendonça, Daniela; Moraes, Davi J. A.; Machado, Benedito H.
2014-01-01
Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correlated with evolutionary changes in animal physiology, especially cardiorespiratory function. Oxygen transportation systems are, in our view, ultimately controlled by the brain related mechanisms, which senses changes in O2 availability and regulates autonomic and respiratory responses that ensure the survival of the organism in the face of hypoxic challenges. In vertebrates, the major sensorial system for oxygen sensing and responding to hypoxia is the peripheral chemoreflex neuronal pathways, which includes the oxygen chemosensitive glomus cells and several brainstem regions involved in the autonomic regulation of the cardiovascular system and respiratory control. In this review we discuss the concept that regulating O2 homeostasis was one of the primordial roles of the nervous system. We also review the physiology of the peripheral chemoreflex, focusing on the integrative repercussions of chemoreflex activation and the evolutionary importance of this system, which is essential for the survival of complex organisms such as vertebrates. The contribution of hypoxia and peripheral chemoreflex for the development of diseases associated to the cardiovascular and respiratory systems is also discussed in an evolutionary context. PMID:25161625
Innovative oxide materials for electrochemical energy conversion and oxygen separation
NASA Astrophysics Data System (ADS)
Belousov, V. V.
2017-10-01
Ion-conducting solid metal oxides are widely used in high-temperature electrochemical devices for energy conversion and oxygen separation. However, liquid metal oxides possessing unique electrochemical properties still remain of limited use. The review demonstrates the potential for practical applications of molten oxides. The transport properties of molten oxide materials are discussed. The emphasis is placed on the chemical diffusion of oxygen in the molten oxide membrane materials for electrochemical energy conversion and oxygen separation. The thermodynamics of these materials is considered. The dynamic polymer chain model developed to describe the oxygen ion transport in molten oxides is discussed. Prospects for further research into molten oxide materials are outlined. The bibliography includes 145 references.
Belousov, Valery V
2017-02-21
High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on oxygen ion transport in potential MOM materials and MOFC electrolytes. In addition, we consider the rapid oxygen transport in a molten oxide scale formed on a metal surface during catastrophic oxidation and show that the same transport could be used beneficially in MOMs and MOFCs. A polymer model explaining the oxygen transport in molten oxides is also considered. Understanding the oxygen transport mechanisms in oxide melts is important for the development of new generation energy materials, which will contribute to more efficient operation of electrochemical devices at intermediate temperatures. Here we highlight the progress made in developing this understanding. We also show the latest advances made in search of alternative molten oxide materials having high mixed ion electronic and ionic conductivities for use in MOMs and MOFCs, respectively. Prospects for further research are presented.
Paralysis and heart failure precede ion balance disruption in heat-stressed European green crabs.
Jørgensen, Lisa B; Overgaard, Johannes; MacMillan, Heath A
2017-08-01
Acute exposure of ectotherms to critically high temperatures causes injury and death, and this mortality has been associated with a number of physiological perturbations including impaired oxygen transport, loss of ion and water homeostasis, and neuronal failure. It is difficult to discern which of these factors, if any, is the proximate cause of heat injury because, for example, loss of ion homeostasis can impair neuromuscular function (including cardiac function), and conversely impaired oxygen transport reduces ATP supply and can thus reduce ion transport capacity. In this study we investigated if heat stress causes a loss of ion homeostasis in marine crabs and examined if such loss is related to heart failure. We held crabs (Carcinus maenas) at temperatures just below their critical thermal maximum and measured extracellular (hemolymph) and intracellular (muscle) ion concentrations over time. Analysis of Arrhenius plots for heart rates during heating ramps revealed a breakpoint temperature below which heart rate increased with temperature, and above which heart rate declined until complete cardiac failure. As hypothesised, heat stress reduced the Nernst equilibrium potentials of both K + and Na + , likely causing a depolarization of the membrane potential. To examine whether this loss of ion balance was likely to cause disruption of neuromuscular function, we exposed crabs to the same temperatures, but this time measured ion concentrations at the individual-specific times of complete paralysis (from which the crabs never recovered), and at the time of cardiac failure. Loss of ion balance was observed only after both paralysis and complete heart failure had occurred; indicating that the loss of neuromuscular function is not caused by a loss of ion homeostasis. Instead we suggest that the observed loss of ion balance may be linked to tissue damage related to heat death. Copyright © 2016 Elsevier Ltd. All rights reserved.
Euser, Bryan Jeffry; Zhu, Huayang; Berger, John; ...
2017-01-01
Ceramic oxygen-transport membranes, such as the doped perovskite La 0.6Sr 0.4Co 0.8Fe 0.2O 3-δ(LSCF6482) considered in the present paper, are effective in applications such as air separation. The present paper considers a planar configuration that is composed of a thin (order tens of microns) ion-transport membrane, a relatively thick (order millimeter) porous-ceramic support structure, and millimeter-scale oxygen-collection flow channels. The lattice-scale strain associated with charged defects (oxygen vacancies and small polarons) within ion-transport membranes causes macroscopic stress that could distort or damage the assembly. The modeling approach is based on an extended twodimensional Nernst–Planck–Poisson (NPP) formulation that is developed andmore » applied to evaluate the effects of chemically induced stress within a planar oxygen-separation assembly. The computational model predicts two-dimensional distributions of steady-state defect concentrations, electrostatic potentials, and stress. Parameter studies consider the effects of support-membrane dimensions, materials mechanical properties, and operating conditions. Although the stress is found to have a negligible influence on the defect transport, the defect transport is found to significantly affect the stress distributions. Such results can play important roles in the design and development of planar ion-transport membranes and their support structures.« less
49 CFR 172.530 - OXYGEN placard.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false OXYGEN placard. 172.530 Section 172.530... SECURITY PLANS Placarding § 172.530 OXYGEN placard. (a) Except for size and color, the OXYGEN placard must... background color on the OXYGEN placard must be yellow. The symbol, text, class number and inner border must...
49 CFR 172.530 - OXYGEN placard.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false OXYGEN placard. 172.530 Section 172.530... SECURITY PLANS Placarding § 172.530 OXYGEN placard. (a) Except for size and color, the OXYGEN placard must... background color on the OXYGEN placard must be yellow. The symbol, text, class number and inner border must...
49 CFR 172.530 - OXYGEN placard.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false OXYGEN placard. 172.530 Section 172.530... SECURITY PLANS Placarding § 172.530 OXYGEN placard. (a) Except for size and color, the OXYGEN placard must... background color on the OXYGEN placard must be yellow. The symbol, text, class number and inner border must...
49 CFR 172.530 - OXYGEN placard.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false OXYGEN placard. 172.530 Section 172.530... SECURITY PLANS Placarding § 172.530 OXYGEN placard. (a) Except for size and color, the OXYGEN placard must... background color on the OXYGEN placard must be yellow. The symbol, text, class number and inner border must...
49 CFR 172.530 - OXYGEN placard.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false OXYGEN placard. 172.530 Section 172.530... SECURITY PLANS Placarding § 172.530 OXYGEN placard. (a) Except for size and color, the OXYGEN placard must... background color on the OXYGEN placard must be yellow. The symbol, text, class number and inner border must...
Santillán, Moisés
2003-07-21
A simple model of an oxygen exchanging network is presented and studied. This network's task is to transfer a given oxygen rate from a source to an oxygen consuming system. It consists of a pipeline, that interconnects the oxygen consuming system and the reservoir and of a fluid, the active oxygen transporting element, moving through the pipeline. The network optimal design (total pipeline surface) and dynamics (volumetric flow of the oxygen transporting fluid), which minimize the energy rate expended in moving the fluid, are calculated in terms of the oxygen exchange rate, the pipeline length, and the pipeline cross-section. After the oxygen exchanging network is optimized, the energy converting system is shown to satisfy a 3/4-like allometric scaling law, based upon the assumption that its performance regime is scale invariant as well as on some feasible geometric scaling assumptions. Finally, the possible implications of this result on the allometric scaling properties observed elsewhere in living beings are discussed.
N(+)-N and O(+)-O interaction energies, dipole transition moments, and transport cross sections
NASA Technical Reports Server (NTRS)
Partridge, H.; Stallcop, J. R.
1986-01-01
Complete sets of ion-atom interaction energies have been computed for nitrogen and oxygen with accurate large scale structure calculations. The computed energies agree well with the accurate potential curves available from spectroscopic measurement. The state functions from the nitrogen calculations have been applied to determine the transition moment for all allowed dipole transitions. These results can be combined to compute a detailed radiation spectrum such as that required to define the highly nonequilibrium environment of aeroassisted orbital transfer vehicle (AOTV). The long-range interaction energies have been used to determine the ion-atom resonance charge exchange cross sections that are important for transport processes such as diffusion. A calculation to determine reliable transport properties for energies that include the AOTV temperature range from these computed properties is described.
Broad Phylogenetic Occurrence of the Oxygen-Binding Hemerythrins in Bilaterians
Schrago, Carlos G.; Halanych, Kenneth M.
2017-01-01
Abstract Animal tissues need to be properly oxygenated for carrying out catabolic respiration and, as such, natural selection has presumably favored special molecules that can reversibly bind and transport oxygen. Hemoglobins, hemocyanins, and hemerythrins (Hrs) fulfill this role, with Hrs being the least studied. Knowledge of oxygen-binding proteins is crucial for understanding animal physiology. Hr genes are present in the three domains of life, Archaea, Bacteria, and Eukaryota; however, within Animalia, Hrs has been reported only in marine species in six phyla (Annelida, Brachiopoda, Priapulida, Bryozoa, Cnidaria, and Arthropoda). Given this observed Hr distribution, whether all metazoan Hrs share a common origin is circumspect. We investigated Hr diversity and evolution in metazoans, by employing in silico approaches to survey for Hrs from of 120 metazoan transcriptomes and genomes. We found 58 candidate Hr genes actively transcribed in 36 species distributed in 11 animal phyla, with new records in Echinodermata, Hemichordata, Mollusca, Nemertea, Phoronida, and Platyhelminthes. Moreover, we found that “Hrs” reported from Cnidaria and Arthropoda were not consistent with that of other metazoan Hrs. Contrary to previous suggestions that Hr genes were absent in deuterostomes, we find Hr genes present in deuterostomes and were likely present in early bilaterians, but not in nonbilaterian animal lineages. As expected, the Hr gene tree did not mirror metazoan phylogeny, suggesting that Hrs evolutionary history was complex and besides the oxygen carrying capacity, the drivers of Hr evolution may also consist of secondary functional specializations of the proteins, like immunological functions. PMID:29016798
Thermal Transport in Graphene Oxide – From Ballistic Extreme to Amorphous Limit
Mu, Xin; Wu, Xufei; Zhang, Teng; Go, David B.; Luo, Tengfei
2014-01-01
Graphene oxide is being used in energy, optical, electronic and sensor devices due to its unique properties. However, unlike its counterpart – graphene – the thermal transport properties of graphene oxide remain unknown. In this work, we use large-scale molecular dynamics simulations with reactive potentials to systematically study the role of oxygen adatoms on the thermal transport in graphene oxide. For pristine graphene, highly ballistic thermal transport is observed. As the oxygen coverage increases, the thermal conductivity is significantly reduced. An oxygen coverage of 5% can reduce the graphene thermal conductivity by ~90% and a coverage of 20% lower it to ~8.8 W/mK. This value is even lower than the calculated amorphous limit (~11.6 W/mK for graphene), which is usually regarded as the minimal possible thermal conductivity of a solid. Analyses show that the large reduction in thermal conductivity is due to the significantly enhanced phonon scattering induced by the oxygen defects which introduce dramatic structural deformations. These results provide important insight to the thermal transport physics in graphene oxide and offer valuable information for the design of graphene oxide-based materials and devices. PMID:24468660
Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta.
Liu, Xiao; Fan, Yubo; Deng, Xiaoyan; Zhan, Fan
2011-04-07
To investigate the effects of both non-Newtonian behavior and the pulsation of blood flow on the distributions of luminal surface LDL concentration and oxygen flux along the wall of the human aorta, we numerically compared a non-Newtonian model with the Newtonian one under both steady flow and in vivo pulsatile flow conditions using a human aorta model constructed from MRI images. The results showed that under steady flow conditions, although the shear thinning non-Newtonian nature of blood could elevate wall shear stress (WSS) in most regions of the aorta, especially areas with low WSS, it had little effect on luminal surface LDL concentration (c(w)) in most regions of the aorta. Nevertheless, it could significantly enhance c(w) in areas with high luminal surface LDL concentration through the shear dependent diffusivity of LDLs. For oxygen transport, the shear thinning non-Newtonian nature of blood could slightly reduce oxygen flux in most regions of the aorta, but this effect became much more apparent in areas with already low oxygen flux. The pulsation of blood flow could significantly reduce c(w) and enhance oxygen flux in these disturbed places. In most other regions of the aorta, the oxygen flux was also significantly higher than that for the steady flow simulation. In conclusion, the shear shining non-Newtonian nature of blood has little effect on LDL and oxygen transport in most regions of the aorta, but in the atherogenic-prone areas where luminal surface LDL concentration is high and oxygen flux is low, its effect is apparent. Similar is for the effect of pulsatile flow on the transport of LDLs. But, the pulsation of blood flow can apparently affect oxygen flux in the aorta, especially in areas with low oxygen flux. Copyright © 2011 Elsevier Ltd. All rights reserved.
Oral N-acetylcysteine and exercise tolerance in mild chronic obstructive pulmonary disease.
Hirai, Daniel M; Jones, Joshua H; Zelt, Joel T; da Silva, Marianne L; Bentley, Robert F; Edgett, Brittany A; Gurd, Brendon J; Tschakovsky, Michael E; O'Donnell, Denis E; Neder, J Alberto
2017-05-01
Heightened oxidative stress is implicated in the progressive impairment of skeletal muscle vascular and mitochondrial function in chronic obstructive pulmonary disease (COPD). Whether accumulation of reactive oxygen species contributes to exercise intolerance in the early stages of COPD is unknown. The purpose of the present study was to determine the effects of oral antioxidant treatment with N -acetylcysteine (NAC) on respiratory, cardiovascular, and locomotor muscle function and exercise tolerance in patients with mild COPD. Thirteen patients [forced expiratory volume in 1 s (FEV 1 )-to-forced vital capacity ratio < lower limit of normal (LLN) and FEV 1 ≥ LLN) were enrolled in a double-blind, randomized crossover study to receive NAC (1,800 mg/day) or placebo for 4 days. Severe-intensity constant-load exercise tests were performed with noninvasive measurements of central hemodynamics (stroke volume, heart rate, and cardiac output via impedance cardiography), arterial blood pressure, pulmonary ventilation and gas exchange, quadriceps muscle oxygenation (near-infrared spectroscopy), and estimated capillary blood flow. Nine patients completed the study with no major adverse clinical effects. Although NAC elevated plasma glutathione by ~27% compared with placebo ( P < 0.05), there were no differences in exercise tolerance (placebo: 325 ± 47 s, NAC: 336 ± 51 s), central hemodynamics, arterial blood pressure, pulmonary ventilation or gas exchange, locomotor muscle oxygenation, or capillary blood flow from rest to exercise between conditions ( P > 0.05 for all). In conclusion, modulation of plasma redox status with oral NAC treatment was not translated into beneficial effects on central or peripheral components of the oxygen transport pathway, thereby failing to improve exercise tolerance in nonhypoxemic patients with mild COPD. NEW & NOTEWORTHY Acute antioxidant treatment with N -acetylcysteine (NAC) elevated plasma glutathione but did not modulate central or peripheral components of the O 2 transport pathway, thereby failing to improve exercise tolerance in patients with mild chronic obstructive pulmonary disease (COPD). Copyright © 2017 the American Physiological Society.
Ortega, M Sofia; Wohlgemuth, Stephanie; Tribulo, Paula; Siqueira, Luiz G B; Cole, John B; Hansen, Peter J
2017-03-01
A single missense mutation at position 159 of coenzyme Q9 (COQ9) (G→A; rs109301586) has been associated with genetic variation in fertility in Holstein cattle, with the A allele associated with higher fertility. COQ9 is involved in the synthesis of coenzyme COQ10, a component of the electron transport system of the mitochondria. Here we tested whether reproductive phenotype is associated with the mutation and evaluated functional consequences for cellular oxygen metabolism, body weight changes, and ovarian function. The mutation in COQ9 modifies predicted tertiary protein structure and affected mitochondrial respiration of peripheral blood mononuclear cells. The A allele was associated with low resting oxygen consumption and high electron transport system capacity. Phenotypic measurements for fertility were evaluated for up to five lactations in a population of 2273 Holstein cows. There were additive effects of the mutation (P < 0.05) in favor of the A allele for pregnancy rate, interval from calving to conception, and services per conception. There was no association of genotype with milk production or body weight changes postpartum. The mutation in COQ9 affected ovarian function; the A allele was associated with increased mitochondrial DNA copy number in oocytes, and there were overdominance effects for COQ9 expression in oocytes, follicle number, and antimullerian hormone concentrations. Overall, results show how a gene involved in mitochondrial function is associated with overall fertility, possibly in part by affecting oocyte quality. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Temperature effects on aerobic scope and cardiac performance of European perch (Perca fluviatilis).
Jensen, Denise Lyager; Overgaard, Johannes; Wang, Tobias; Gesser, Hans; Malte, Hans
2017-08-01
Several recent studies have highlighted how impaired cardiac performance at high temperatures and in hypoxia may compromise the capacity for oxygen transport. Thus, at high temperatures impaired cardiac capacity is proposed to reduce oxygen transport to a degree that lowers aerobic scope and compromises thermal tolerance (the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis). To investigate this hypothesis, we measured aerobic and cardiac performance of a eurythermal freshwater teleost, the European perch (Perca fluviatilis). Rates of oxygen consumption were measured during rest and activity at temperatures between 5°C and 27°C, and we evaluated cardiac function by in vivo measurements of heart rate and in vitro studies to determine contractility of myocardial strips. Aerobic scope increased progressively from 5°C to 21°C, after which it levelled off. Heart rate showed a similar response. We found little difference between resting and active heart rate at high temperature suggesting that increased cardiac scope during activity is primarily related to changes in stroke volume. To examine the effects of temperature on cardiac capacity, we measured isometric force development in electrically paced myocardial preparations during different combinations of temperature, pacing frequency, oxygenation and adrenergic stimulation. The force-frequency product increased markedly upon adrenergic stimulation at 21 and 27°C (with higher effects at 21°C) and the cardiac preparations were highly sensitive to hypoxia. These findings suggest that at (critically) high temperatures, cardiac output may diminish due to a decreased effect of adrenergic stimulation and that this effect may be further exacerbated if the heart becomes hypoxic. Hence cardiac limitations may contribute to the inability to increase aerobic scope at high temperatures in the European perch (Perca fluviatilis). Copyright © 2017 Elsevier Ltd. All rights reserved.
Maintenance of Mitochondrial Oxygen Homeostasis by Cosubstrate Compensation
Kueh, Hao Yuan; Niethammer, Philipp; Mitchison, Timothy J.
2013-01-01
Mitochondria maintain a constant rate of aerobic respiration over a wide range of oxygen levels. However, the control strategies underlying oxygen homeostasis are still unclear. Using mathematical modeling, we found that the mitochondrial electron transport chain (ETC) responds to oxygen level changes by undergoing compensatory changes in reduced electron carrier levels. This emergent behavior, which we named cosubstrate compensation (CSC), enables the ETC to maintain homeostasis over a wide of oxygen levels. When performing CSC, our ETC models recapitulated a classic scaling relationship discovered by Chance [Chance B (1965) J. Gen. Physiol. 49:163-165] relating the extent of oxygen homeostasis to the kinetics of mitochondrial electron transport. Analysis of an in silico mitochondrial respiratory system further showed evidence that CSC constitutes the dominant control strategy for mitochondrial oxygen homeostasis during active respiration. Our findings indicate that CSC constitutes a robust control strategy for homeostasis and adaptation in cellular biochemical networks. PMID:23528093
Clark, Timothy Darren; Hinch, S G; Taylor, B D; Frappell, P B; Farrell, A P
2009-07-01
Upon reaching sexual maturity, several species of male salmonids possess a relative ventricular mass (rM(V)) that may be up to 90% larger than females. This can increase maximum cardiac stroke volume and power output, which may be beneficial to increasing the oxygen transport capacity of male salmonids during the spawning period. It may be further hypothesized, therefore, that other variables within the circulatory oxygen transport cascade, such as blood oxygen-carrying capacity and heart rate, are similarly enhanced in reproductively mature male salmonids. To test this idea, the present study measured a range of circulatory oxygen transport variables in wild male and female sockeye salmon (Oncorhynchus nerka) during their spawning period, following a 150 km migration from the ocean. The rM(V) of male fish was 13% greater than females. Conversely, the haemoglobin concentration ([Hb]) of female fish was 19% higher than males, indicative of a greater blood oxygen-carrying capacity (138 vs. 116 ml O2 l(-1), respectively). Surgically implanted physiological data loggers revealed a similar range in heart rate for both sexes on the spawning ground (20-80 beats min(-1) at 10 degrees C), with a tendency for male fish to spend a greater percentage of time (64%) than females (49%) at heart rates above 50 beats min(-1). Male fish on average consumed significantly more oxygen than females during a 13-h respirometry period. However, routine oxygen consumption rates (.)MO2 ranged between 1.5 and 8.5 mg min(-1) kg(-1) for both sexes, which implies that males did not inherently possess markedly higher routine aerobic energy demands, and suggests that the higher [Hb] of female fish may compensate for the smaller rM(V). These findings reject the hypothesis that all aspects of the circulatory oxygen transport cascade are inherently superior in male sockeye salmon. Instead, it is suggested that any differences in (.)MO2 between sexually mature male and female sockeye salmon can likely be attributed to activity levels.
Costa, Rafael M; Filgueira, Fernando P; Tostes, Rita C; Carvalho, Maria Helena C; Akamine, Eliana H; Lobato, Nubia S
2016-09-01
The perivascular adipose tissue (PVAT) releases a variety of factors that affect vascular function. PVAT in the thoracic aorta shares characteristics with the brown adipose tissue, including a large amount of mitochondria. PVAT-derived factors influence both endothelial and smooth muscle function via several signaling mechanisms including the release/generation of reactive nitrogen and oxygen species. Considering the importance of reactive oxygen species (ROS) on vascular function and that mitochondria are an important source of ROS, we hypothesized that mitochondria-derived ROS in the PVAT modulates vascular reactivity. Vascular reactivity to norephinephrine (NE) was evaluated in thoracic aortic rings, with or without endothelium and/or PVAT, from male Wistar rats. Mitochondrial uncoupling, as well as hydrogen peroxide (H2O2) removal, increased the contraction in vessels surrounded by PVAT. PVAT stimulated with NE exhibited increased protein expression, determined by Western blot analysis, of manganese superoxide dismutase (Mn-SOD) and decreased protein expression of catalase. Ultimately, NE increased superoxide anion (O2(-)) generation in PVAT via increases in intracellular calcium. These results clearly demonstrate that mitochondrial electron transport chain (mETC) in PVAT contributes to modulation of aortic muscle contraction by generating higher amounts of O2(-) that is, in turn, dismutated to hydrogen peroxide, which then acts as a pivotal signaling molecule regulating vascular smooth muscle contraction. Copyright © 2015 Elsevier Inc. All rights reserved.
Liquid and gaseous oxygen safety review
NASA Technical Reports Server (NTRS)
Lapin, A.
1973-01-01
Materials used in oxygen systems and allowable oxygen environments are specified for each material. Design criteria, cleaning procedures and quality control methods are covered. Guidelines for protection against hazards involved with production, transportation, storage and use of oxygen are presented. Study also lists extensive references.
NASA Technical Reports Server (NTRS)
Koelle, H. H.
1992-01-01
It is well known that propellants produced at the points of destination such as the Moon or Mars will help the economy of space transportation, particularly if round trips with a crew are involved. The construction and operation of a lunar base shortly after the turn of the century is one of the space programs under serious consideration at the present time. Space transportation is one of the major cost drivers. With present technology, if expendable launchers were employed, the specific transportation costs of one-way cargo flights would be approximately 10,000 dollars/kg (1985) at life-cycle cumulative 100,000 ton payload to the lunar surface. A fully reusable space transportation system using lunar oxygen and Earth-produced liquid hydrogen (LH2) would reduce the specific transportation costs by one order of magnitude to less than 1000 dollars/kg at the same payload volume. Another case of primary interest is the delivery of construction material and consumables from the lunar surface to the assembly site of space solar power plants in geostationary orbit (GEO). If such a system were technically and economically feasible, a cumulative payload of about 1 million tons or more would be required. At this level a space freighter system could deliver this material from Earth for about 300 dollars/kg (1985) to GEO. A lunar space transportation system using lunar oxygen and a fuel mixture of 50 percent Al and 50 percent LH2 (that has to come from Earth) could reduce the specific transportation costs to less than half, approximately 150 dollars/kg. If only lunar oxygen were available, these costs would come down to 200 dollars/kg. This analysis indicates a sizable reduction of the transportation burden on this type of mission. It should not be overlooked, however, that there are several uncertainties in such calculations. It is quite difficult at this point to calculate the cost of lunar-produced O and/or Al. This will be a function of production rate and life-cycle length. In quoting any cost of this nature, it is very important to state the cumulative transportation volume, since this is a very sensitive parameter. Nevertheless, cost models must be developed now to understand fully the interdependencies of a large number of parameters and to provide the best possible data for planning purposes. Without such data, mission modes and vehicle designs or sizes cannot be selected intelligently.
Raimondi, Manuela T; Giordano, Carmen; Pietrabissa, Riccardo
2015-12-18
The possibility of developing engineered tissue in vitro and maintaining the cell viability and functionality is primarily related to the possibility of controlling key culture parameters such as oxygen concentration and cell-specific oxygen consumption. We measured these parameters in a three-dimensional (3D) cellularized construct maintained under interstitially perfused culture in a miniaturized bioreactor. MG63 osteosarcoma cells were seeded at high density on a 3D polystyrene scaffold. The 3D scaffolds were sensorized with sensor foils made of a polymer, which fluoresce with intensity proportional to the local oxygen tension. Images of the sensor foil in contact with the cellularized construct were acquired with a video camera every four hours for six culture days and were elaborated with analytical imaging software to obtain oxygen concentration maps. The data collected indicate a globally decreasing oxygen concentration profile, with a total drop of 28% after six days of culture and an average drop of 10.5% between the inlet and outlet of the perfused construct. Moreover, by importing the measured oxygen concentration data and the cell counts in a model of mass transport, we calculated the cell-specific oxygen consumption over the whole culture period. The consumption increased with oxygen availability and ranged from 0.1 to 0.7 µmol/h/106 cells. The sensors used here allowed a non-invasive, contamination-free and non-destructive oxygen measurement over the whole culture period. This study is the basis for optimization of the culture parameters involved in oxygen supply, in order to guarantee maintenance of cell viability in our system.
A porous media theory for characterization of membrane blood oxygenation devices
NASA Astrophysics Data System (ADS)
Sano, Yoshihiko; Adachi, Jun; Nakayama, Akira
2013-07-01
A porous media theory has been proposed to characterize oxygen transport processes associated with membrane blood oxygenation devices. For the first time, a rigorous mathematical procedure based a volume averaging procedure has been presented to derive a complete set of the governing equations for the blood flow field and oxygen concentration field. As a first step towards a complete three-dimensional numerical analysis, one-dimensional steady case is considered to model typical membrane blood oxygenator scenarios, and to validate the derived equations. The relative magnitudes of oxygen transport terms are made clear, introducing a dimensionless parameter which measures the distance the oxygen gas travels to dissolve in the blood as compared with the blood dispersion length. This dimensionless number is found so large that the oxygen diffusion term can be neglected in most cases. A simple linear relationship between the blood flow rate and total oxygen transfer rate is found for oxygenators with sufficiently large membrane surface areas. Comparison of the one-dimensional analytic results and available experimental data reveals the soundness of the present analysis.
Development of sensors for monitoring oxygen and free radicals in plant physiology
NASA Astrophysics Data System (ADS)
Chaturvedi, Prachee
Oxygen plays a critical role in the physiology of photosynthetic organisms, including bioenergetics, metabolism, development, and stress response. Oxygen levels affect photosynthesis, respiration, and alternative oxidase pathways. Likewise, the metabolic rate of spatially distinct plant cells (and therefore oxygen flux) is known to be affected by biotic stress (e.g., herbivory) and environmental stress (e.g., salt/nutrient stress). During aerobic metabolism, cells produce reactive oxygen species (ROS) as a by product. Plants also produce ROS during adaptation to stress (e.g., abscisic acid (ABA) mediated stress responses). If stress conditions are prolonged, ROS levels surpass the capacity of detoxifying mechanisms within the cell, resulting in oxidative damage. While stress response pathways such as ABA-mediated mechanisms have been well characterized (e.g., water stress, inhibited shoot growth, synthesis of storage proteins in seeds), the connection between ROS production, oxygen metabolism and stress response remains unknown. In part, this is because details of oxygen transport at the interface of cell(s) and the surrounding microenvironment remains nebulous. The overall goal of this research was to develop oxygen and Free radical sensors for studying stress signaling in plants. Recent developments in nanomaterials and data acquisition systems were integrated to develop real-time, non-invasive oxygen and Free radical sensors. The availability of these sensors for plant physiologists is an exciting opportunity to probe the functional realm of cells and tissues in ways that were not previously possible.
NASA Astrophysics Data System (ADS)
Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, M. N.; Alshareef, H. N.
2012-01-01
The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258-133 S cm-1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8-3.2 me), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.
Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling
NASA Astrophysics Data System (ADS)
Chhabra, Mahendra
The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A new parameter "Oxygen Deficiency Factor" (ODF) is defined to quantify oxygen deficiency in local regions of the cornea. We use this concept to determine the minimum required contact-lens oxygen transmissibility, Dk/L = 150 Barrer/cm, to avoid hypoxia-induced corneal physiologic complications.
Xie, Fengxian; Choy, Wallace C H; Wang, Chuandao; Li, Xinchen; Zhang, Shaoqing; Hou, Jianhui
2013-04-11
A simple one-step method is reported to synthesize low-temperature solution-processed transition metal oxides (TMOs) of molybdenum oxide and vanadium oxide with oxygen vacancies for a good hole-transport layer (HTL). The oxygen vacancy plays an essential role for TMOs when they are employed as HTLs: TMO films with excess oxygen are highly undesirable for their application in organic electronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Computation of the unsteady facilitated transport of oxygen in hemoglobin
NASA Technical Reports Server (NTRS)
Davis, Sanford
1990-01-01
The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.
Hemoglobin crystals immersed in liquid oxygen reveal diffusion channels.
Terrell, James Ross; Gumpper, Ryan H; Luo, Ming
2018-01-08
Human hemoglobin (HbA) transports molecular oxygen (O 2 ) from the lung to tissues where the partial pressure of O 2 is lower. O 2 binds to HbA at the heme cofactor and is stabilized by a distal histidine (HisE7). HisE7 has been observed to occupy opened and closed conformations, and is postulated to act as a gate controlling the binding/release of O 2 . However, it has been suggested that HbA also contains intraprotein oxygen channels for entrances/exits far from the heme. In this study, we developed a novel method of crystal immersion in liquid oxygen prior to X-ray data collection. In the crystals immersed in liquid oxygen, the heme center was oxidized to generate aquomethemoglobin. Increases of structural flexibility were also observed in regions that are synonymous with previously postulated oxygen channels. These regions also correspond to medically relevant mutations which affect O 2 affinity. The way HbA utilizes these O 2 channels could have a profound impact on understanding the relationship of HbA O 2 transport within these disease conditions. Finally, the liquid oxygen immersion technique can be utilized as a new tool to crystallographically examine proteins and protein complexes which utilize O 2 for enzyme catalysis or transport. Copyright © 2017 Elsevier Inc. All rights reserved.
Shi, Xiarong; Burkart, Alison; Nicoloro, Sarah M; Czech, Michael P; Straubhaar, Juerg; Corvera, Silvia
2008-11-07
Adipocyte function is crucial for the control of whole body energy homeostasis. Pathway analysis of differentiating 3T3-L1 adipocytes reveals that major metabolic pathways induced during differentiation involve mitochondrial function. However, it is not clear why differentiated white adipocytes require enhanced respiratory chain activity relative to pre-adipocytes. To address this question, we used small interference RNA to interfere with the induction of the transcription factor Tfam, which is highly induced between days 2 and 4 of differentiation and is crucial for replication of mitochondrial DNA. Interference with Tfam resulted in cells with decreased respiratory chain capacity, reflected by decreased basal oxygen consumption, and decreased mitochondrial ATP synthesis, but no difference in many other adipocyte functions or expression levels of adipose-specific genes. However, insulin-stimulated GLUT4 translocation to the cell surface and subsequent glucose transport are impaired in Tfam knockdown cells. Paradoxically, insulin-stimulated Akt phosphorylation is significantly enhanced in these cells. These studies reveal independent links between mitochondrial function, insulin signaling, and glucose transport, in which impaired respiratory chain activity enhances insulin signaling to Akt phosphorylation, but impairs GLUT4 translocation. These results indicate that mitochondrial respiratory chain dysfunction in adipocytes can cause impaired insulin responsiveness of GLUT4 translocation by a mechanism downstream of the Akt protein kinase.
77 FR 11385 - Security Considerations for Lavatory Oxygen Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... Considerations for Lavatory Oxygen Systems AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Interim... considerations for lavatory oxygen systems (77 FR 12550). The interim final rule addresses a security... oxygen systems installed inside the lavatories of most transport category airplanes. As a result, the FAA...
Oxygen and Carbon Dioxide Fluxes from Barley Shoots Depend on Nitrate Assimilation 1
Bloom, Arnold J.; Caldwell, Richard M.; Finazzo, John; Warner, Robert L.; Weissbart, Joseph
1989-01-01
A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport. PMID:16667024
Direct Measurement of Equilibrium Constants for High-Affinity Hemoglobins
Kundu, Suman; Premer, Scott A.; Hoy, Julie A.; Trent, James T.; Hargrove, Mark S.
2003-01-01
The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (KD ≪ 1 μM) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and ∼100 μM−1 respectively, indicate that they are not capable of facilitating oxygen transport. PMID:12770899
Experimental and theoretical study of iron and mild steel combustion in oxygen flows
NASA Astrophysics Data System (ADS)
El-Rabii, Hazem; Kazakov, Kirill A.; Muller, Maryse
2017-03-01
The effects of oxygen flow speed and pressure on the iron and mild steel combustion are investigated experimentally and theoretically. The studied specimens are vertical cylindrical rods subjected to an axial oxygen flow and ignited at the upper end by laser irradiation. Three main stages of the combustion process have been identified experimentally: (1) induction period, during which the rod is heated until an intensive metal oxidation begins at its upper end; (2) static combustion, during which a laminar liquid "cap'' slowly grows on the upper rod end, and, after the liquid cap detachment from the sample; (3) dynamic combustion, which is characterized by a rapid metal consumption and turbulent liquid motions. An analytical description of these stages is given. In particular, a model of the dynamic combustion is constructed based on the turbulent oxygen transport through the liquid metal-oxide flow. This model yields a simple expression for the fraction of metal burned in the process and allows one to calculate the normal propagation speed of the solid metal-liquid interface as a function of the oxygen flow speed and pressure. A comparison of the theory with the experimental results is made, and its potential application is mentioned.
Evaluating the Efficacy of GLUT Inhibitors Using a Seahorse Extracellular Flux Analyzer.
Wei, Changyong; Heitmeier, Monique; Hruz, Paul W; Shanmugam, Mala
2018-01-01
Glucose is metabolized through anaerobic glycolysis and aerobic oxidative phosphorylation (OXPHOS). Perturbing glucose uptake and its subsequent metabolism can alter both glycolytic and OXPHOS pathways and consequently lactate and/or oxygen consumption. Production and secretion of lactate, as a consequence of glycolysis, leads to acidification of the extracellular medium. Molecular oxygen is the final electron acceptor in the electron transport chain, facilitating oxidative phosphorylation of ADP to ATP. The alterations in extracellular acidification and/or oxygen consumption can thus be used as indirect readouts of glucose metabolism and assessing the impact of inhibiting glucose transport through specific glucose transporters (GLUTs). The Seahorse bioenergetics analyzer can measure both the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). The proposed methodology affords a robust, high-throughput method to screen for GLUT inhibition in cells engineered to express specific GLUTs, providing live cell read-outs upon GLUT inhibition.
Bonaventura, Celia; Godette, Gerald; Stevens, Robert; Brenowitz, Michael; Henkens, Robert
2005-12-09
Expression of alpha and beta chains and their post-translational assembly into alpha(2)beta(2) tetramers is fundamental to the formation and function of most vertebrate hemoglobins. There is a strong evolutionary bias that favors expression of equal amounts of the two types of chains, because cooperativity, pH sensitivity, and anionic control of function occurs only for the alpha(2)beta(2) tetramers. Remarkably, an over-production of alpha chains, as in the pathological condition known as beta thalassemia in humans, is adaptive rather than pathological in the bluefish hemoglobin system. The thalassemia of the bluefish is a novel means of providing for oxygen uptake and delivery when low pH conditions incapacitate the highly pH-sensitive Root effect hemoglobins of the fish. Although fish often have pH-insensitive along with highly pH-sensitive hemoglobins, having pH-insensitive alpha chain monomers in circulation is an unusual structural variation. The role of bluefish alpha chains in oxygen transport is enabled by their remarkably lower oxygen affinity relative to human alpha chains. This is the first reported case of a thalassemic condition that is maintained in a species as an adaptive advantage.
Segregation and trapping of oxygen vacancies near the SrTiO 3Σ3 (112) [110] tilt grain boundary
Liu, Bin; Cooper, Valentino R.; Zhang, Yanwen; ...
2015-03-21
In nanocrystalline materials, structural discontinuities at grain boundaries (GBs) and the segregation of point defects to these GBs play a key role in defining the structural stability of a material, as well as its macroscopic electrical/mechanical properties. In this study, the segregation of oxygen vacancies near the Σ3 (1 1 2) [¯110] tilt GB in SrTiO 3 is explored using density functional theory. We find that oxygen vacancies segregate toward the GB, preferring to reside within the next nearest-neighbor layer. This oxygen vacancy segregation is found to be crucial for stabilizing this tilt GB. Furthermore, we find that the migrationmore » barriers of oxygen vacancies diffusing toward the first nearest-neighbor layer of the GB are low, while those away from this layer are very high. Furthermore, the segregation and trapping of the oxygen vacancies in the first nearest-neighbor layer of GBs are attributed to the large local distortions, which can now accommodate the preferred sixfold coordination of Ti. These results suggest that the electronic, transport, and capacitive properties of SrTiO 3 can be engineered through the control of GB structure and grain size or layer thickness.« less
NASA Astrophysics Data System (ADS)
Barnes, Teresa M.; Hand, Steve; Leaf, Jackie; Wolden, Colin A.
2004-09-01
Zinc oxide thin films were produced by high vacuum plasma-assisted chemical vapor deposition (HVP-CVD) from dimethylzinc (DMZn) and atomic oxygen. HVP-CVD is differentiated from conventional remote plasma-enhanced CVD in that the operating pressures of the inductively coupled plasma (ICP) source and the deposition chamber are decoupled. Both DMZn and atomic oxygen effuse into the deposition chamber under near collisionless conditions. The deposition rate was measured as a function of DMZn and atomic oxygen flux on glass and silicon substrates. Optical emission spectroscopy and quadrupole mass spectrometry (QMS) were used to provide real time analysis of the ICP source and the deposition chamber. The deposition rate was found to be first order in DMZn pressure and zero order in atomic oxygen density. All films demonstrated excellent transparency and were preferentially orientated along the c-axis. The deposition chemistry occurs exclusively through surface-mediated reactions, since the collisionless transport environment eliminates gas-phase chemistry. QMS analysis revealed that DMZn was almost completely consumed, and desorption of unreacted methyl radicals was greatly accelerated in the presence of atomic oxygen. Negligible zinc was detected in the gas phase, suggesting that Zn was efficiently consumed on the substrate and walls of the reactor.
Oxygen Saturation during Transport to the Recovery Room in Patients over Age Sixty.
anesthesia recovery room (PARR), has not been studied specifically in patients over 60 years of age . This study identifies alterations in oxygen saturation...during post-anesthesia transport in this age group. Specifically, this investigation quantifies the incidence of a decrease in SaO2 to 90% (defined in
Trinchero, Paolo; Puigdomenech, Ignasi; Molinero, Jorge; Ebrahimi, Hedieh; Gylling, Björn; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido
2017-05-01
We present an enhanced continuum-based approach for the modelling of groundwater flow coupled with reactive transport in crystalline fractured rocks. In the proposed formulation, flow, transport and geochemical parameters are represented onto a numerical grid using Discrete Fracture Network (DFN) derived parameters. The geochemical reactions are further constrained by field observations of mineral distribution. To illustrate how the approach can be used to include physical and geochemical complexities into reactive transport calculations, we have analysed the potential ingress of oxygenated glacial-meltwater in a heterogeneous fractured rock using the Forsmark site (Sweden) as an example. The results of high-performance reactive transport calculations show that, after a quick oxygen penetration, steady state conditions are attained where abiotic reactions (i.e. the dissolution of chlorite and the homogeneous oxidation of aqueous iron(II) ions) counterbalance advective oxygen fluxes. The results show that most of the chlorite becomes depleted in the highly conductive deformation zones where higher mineral surface areas are available for reactions. Copyright © 2017 Elsevier B.V. All rights reserved.
Human mitochondrial pyruvate carrier 2 as an autonomous membrane transporter.
Nagampalli, Raghavendra Sashi Krishna; Quesñay, José Edwin Neciosup; Adamoski, Douglas; Islam, Zeyaul; Birch, James; Sebinelli, Heitor Gobbi; Girard, Richard Marcel Bruno Moreira; Ascenção, Carolline Fernanda Rodrigues; Fala, Angela Maria; Pauletti, Bianca Alves; Consonni, Sílvio Roberto; de Oliveira, Juliana Ferreira; Silva, Amanda Cristina Teixeira; Franchini, Kleber Gomes; Leme, Adriana Franco Paes; Silber, Ariel Mariano; Ciancaglini, Pietro; Moraes, Isabel; Dias, Sandra Martha Gomes; Ambrosio, Andre Luis Berteli
2018-02-22
The active transport of glycolytic pyruvate across the inner mitochondrial membrane is thought to involve two mitochondrial pyruvate carrier subunits, MPC1 and MPC2, assembled as a 150 kDa heterotypic oligomer. Here, the recombinant production of human MPC through a co-expression strategy is first described; however, substantial complex formation was not observed, and predominantly individual subunits were purified. In contrast to MPC1, which co-purifies with a host chaperone, we demonstrated that MPC2 homo-oligomers promote efficient pyruvate transport into proteoliposomes. The derived functional requirements and kinetic features of MPC2 resemble those previously demonstrated for MPC in the literature. Distinctly, chemical inhibition of transport is observed only for a thiazolidinedione derivative. The autonomous transport role for MPC2 is validated in cells when the ectopic expression of human MPC2 in yeast lacking endogenous MPC stimulated growth and increased oxygen consumption. Multiple oligomeric species of MPC2 across mitochondrial isolates, purified protein and artificial lipid bilayers suggest functional high-order complexes. Significant changes in the secondary structure content of MPC2, as probed by synchrotron radiation circular dichroism, further supports the interaction between the protein and ligands. Our results provide the initial framework for the independent role of MPC2 in homeostasis and diseases related to dysregulated pyruvate metabolism.
Lutman, D; Petros, A J
2006-01-01
When undertaking patient retrieval, it is important to take adequate supplies of oxygen to ensure patient safety. Oxygen can be delivered via a flowmeter into a facemask or used to drive pneumatic ventilators. Given the lack of space in the back of an ambulance or helicopter, the numbers of cylinders that can be taken is limited, hence the number needed to complete the journey must be carefully calculated prior to embarking. We have produced nomograms to predict how many oxygen cylinders will be consumed during a given journey when using either a flowmeter or a commonly used transport ventilator. PMID:16921085
Lutman, D; Petros, A J
2006-09-01
When undertaking patient retrieval, it is important to take adequate supplies of oxygen to ensure patient safety. Oxygen can be delivered via a flowmeter into a facemask or used to drive pneumatic ventilators. Given the lack of space in the back of an ambulance or helicopter, the numbers of cylinders that can be taken is limited, hence the number needed to complete the journey must be carefully calculated prior to embarking. We have produced nomograms to predict how many oxygen cylinders will be consumed during a given journey when using either a flowmeter or a commonly used transport ventilator.
Zinchuk, V V; Glutkin, S V
2010-07-01
Effect of erythropoietin (EPO) preparation (epocrine) on the blood oxygen transport in rats exposed to cold (120 min in a water-cooled box at 19 degrees C) and then rewarmed (next 120 min at a mean heating rate of 0.06 degrees C/min) has been studied. The administration of EPO reduced the body temperature fall at the end of cold exposure and enhanced its rise during the rewarming stage. The effect of EPO in tested rats is associated with a decrease in the hemoglobin affinity to oxygen, which increases the oxygen supply of tissues and improves the organism adaptability to cold.
Fry, Brendan C.; Layton, Anita T.
2014-01-01
We have developed a highly detailed mathematical model of oxygen transport in a cross section of the upper inner medulla of the rat kidney. The model is used to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies, in which descending vasa recta are found to lie distant from clusters of collecting ducts. Specifically, we formulated a two-dimensional oxygen transport model, in which the positions and physical dimensions of renal tubules and vessels are based on an image obtained by immunochemical techniques (Pannabecker and Dantzler, Am J Physiol Renal Physiol, 2006). The model represents oxygen diffusion through interstitium and other renal structures, oxygen consumption by the Na+/K+-ATPase activities of the collecting ducts, and basal metabolic consumption. Model simulations yield marked variations in interstitial PO2, which can be attributed, in large part, to the heterogeneities in the position and physical dimensions of the collecting ducts. Further, results of a sensitivity study suggest that medullary oxygenation is highly sensitive to medullary blood flow, and that, at high active consumption rates, localized patches of tissue may be vulnerable to hypoxic injury. PMID:25260928
Hydrogen partitioning and transport in titanium aluminides
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Lee, Weon S.
1993-01-01
This report gives the final summary of the research work perfomed from March 1, 1990 to August 28, 1993. Brief descriptions of the research findings are given on the surface variation of Ti-14Al-21Nb as a function of temperature under ultrahigh vacuum conditions; titanium aluminides: surface composition effects as a function of temperature; Auger electron intensity variation in oxygen-charged silver; and segregation of sulfur on a titanium surface studied by Auger electron spectroscopy. Each description details one or more of the attached corresponding figures. Published journal documents are provided as appendices to give further detail.
The harmful effects of ethanol on ion transport and cellular respiration.
Blachley, J D; Johnson, J H; Knochel, J P
1985-01-01
The deleterious effects of ethanol on a variety of tissues may result largely from altered ion permeabilities and transport. Clinically relevant ethanol concentrations in blood increase the sodium permeability of the plasma membrane and depress active sodium transport by suppressing Na, K-ATPase activity. As a result, intracellular sodium concentration increases. The total tissue content of calcium increases. Important transport mechanisms deranged by ethanol probably include those regulating calcium-sodium and hydrogen-sodium exchange at the plasma membrane and calcium uptake by the sarcoplasmic reticulum. A modest decline in magnesium content of muscle occurs after chronic exposure to ethanol. This also has been associated with accumulation of calcium. After days to weeks of sustained ethanol intake, sodium pump activity, active sodium transport and tissue oxygen consumption increase. The cell membrane potential, initially lowered by alcohol, increases to supraphysiological levels. This is likely an electrogenic effect of increased sodium transport in response to a sodium leak. Eventually the earlier derangements in tissue composition, including retention of sodium, chloride, and calcium, and reductions in magnesium, potassium, and phosphate, slowly undergo correction. This biphasic response of injury and adaptation appears to depend upon adequate nutrition and the absence of other factors that can adversely affect cell function. That the Na, K-ATPase activity and oxygen consumption remain elevated suggests an ongoing sodium leak of the sarcolemmal membrane. Chronic ethanol-induced cell necrosis may be related to the increased intracellular calcium that accompanies the increase in sodium permeability. Conceivably, critically elevated concentrations of calcium in the cytoplasm may activate autolytic enzymes that in turn may be responsible for structural damage to the cell.
[Hemoglobin, from microorganisms to man: a single structural motif, multiple functions].
Wajcman, Henri; Kiger, Laurent
2002-12-01
Haemoglobins from unicellular organisms, plants or animals, share a common structure, which results from the folding, around the heme group, of a polypeptide chain made from 6-8 helices. Nowadays, deciphering the genome of several species allows one to draw the evolutionary tree of this protein going back to 1800 millions of years, at a time when oxygen began to accumulate in the atmosphere. This permits to follow the evolution of the ancestral gene and of its product. It is likely that, only in complex multicellular species, transport and storage of oxygen became the main physiological function of this molecule. In addition, in unicellular organisms and small invertebrates, it is likely that the main function of this protein was to protect the organism from the toxic effect of O2, CO and NO*. The very high oxygen affinity of these molecules, leading them to act rather as a scavenger as an oxygen carrier, supports this hypothesis. Haemoglobins from microorganisms, which may probably be the closest vestiges to the ancestral molecules, are divided into three families. The first one is made from flavohaemoglobins, a group of chimerical proteins carrying a globin domain and an oxido-reduction FAD-dependant domain. The second corresponds to truncated haemoglobins, which are hexacoordinated with very high oxygen-affinity molecules, 20-40 residues shorter than classical haemoglobins. The third group is made from bacterial haemoglobins such as that of Vitreoscilla. Some specific structural arrangements in the region surrounding the heme are cause of their high oxygen affinity. In plants, two types of haemoglobins are present (non-symbiotic and symbiotic), that arose from duplication of an ancestral vegetal gene. Non-symbiotic haemoglobins, which are probably the oldest, are scarcely distributed within tissues having high energetic consumption. Conversely, symbiotic haemoglobins (also named leghaemoglobins) are present at a high concentration (mM) mostly in the rhizomes of legumes, where they are involved in nitrogen metabolism. In some species, haemoglobin was proposed to be an oxygen sensor bringing to the organism information to adjust metabolism or biosynthesis to the oxygen requirement. Elsewhere haemoglobin may act as final electron acceptors in oxido-reduction pathways. Evolution of haemoglobin in invertebrates followed a large variety of scenarios. Some surprising functions as sulphide acquisition in invertebrates living near hydrothermal vents, or a role in the phototrophism of worm need to be mentioned. In invertebrates, the size of haemoglobin varies from monomers to giant molecules associating up to 144 subunits, while in vertebrates it is always a tetramer. In some species, several haemoglobins, with completely different structure and function, may coexist. This demonstrates how hazardous may be to extrapolate the function of a protein from only structural data.
14 CFR 25.1450 - Chemical oxygen generators.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Chemical oxygen generators. 25.1450 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a...
14 CFR 25.1450 - Chemical oxygen generators.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Chemical oxygen generators. 25.1450 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a...
In vivo oxygen transport in the normal rabbit femoral arterial wall.
Crawford, D W; Back, L H; Cole, M A
1980-01-01
In vivo measurements of tissue oxygen tension were made at 10-micrometer intervals through functioning in situ rabbit femoral arterial walls, using inhalation anesthesia and recessed microcathodes with approximately 4-micrometer external diameters. External environment was controlled with a superfusion well at 30 torr PO2, 35 torr PCO2. Blood pressure, gas tension levels, and blood pH were held within the normal range. Radial PO2 measurements closely fit a mathematical model for unidimensional diffusion into a thick-walled artery with uniform oxygen consumption, and the distances traversed fit measured dimensions of quick-frozen in vivo sections. Using standard values of diffusion and solubility coefficients, mean calculated medial oxygen consumption was 99 nl0/ml-s. Mural oxygen consumption appeared to be related linearly to mean tangential wall stress. Differences in experimental design and technique were compared with previous in vivo and in vitro measurements of wall oxygenation, and largely account for the varying results obtained. Control of environment external to the artery, and maintenance of normally flowing blood in the lumen in vivo appeared critical to an understanding of mural oxygenation in life. If the conditions of this experiment prevailed in arteries with thicker avascular layers, PO2 could have been 20 torr at approximately 156 micrometer and 10 torr at 168 micrometer from blood (average values). Images PMID:7410554
Mechanisms of oxygen permeation through plastic films and barrier coatings
NASA Astrophysics Data System (ADS)
Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Mitschker, Felix; Awakowicz, Peter; Dahlmann, Rainer; Hopmann, Christian
2017-10-01
Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (<3 µm) in the barrier coating. The defects were visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities.
Lenkin, Andrey I; Zaharov, Viktor I; Lenkin, Pavel I; Smetkin, Alexey A; Bjertnaes, Lars J; Kirov, Mikhail Y
2013-05-01
In cardiac surgery, the choice of temperature regimen during cardiopulmonary bypass (CPB) remains a subject of debate. Hypothermia reduces tissue metabolic demands, but may impair the autoregulation of cerebral blood flow and contribute to neurological morbidity. The aim of this study was to evaluate the effect of two different temperature regimens during CPB on the systemic oxygen transport and the cerebral oxygenation during surgical correction of acquired heart diseases. In a prospective study, we randomized 40 adult patients with combined valvular disorders requiring surgical correction of two or more valves into two groups: (i) a normothermic (NMTH) group (n = 20), in which the body core temperature was maintained at 36.6°C during CPB and (ii) a hypothermic (HPTH) group (n = 20), in which the body was cooled to a core temperature of 32°C maintained throughout the period of CPB. The systemic oxygen transport and the cerebral oxygen saturation (SctO2) were assessed by means of a PiCCO2 haemodynamic monitor and a cerebral oximeter, respectively. All the patients received standard perioperative monitoring. We assessed haemodynamic and oxygen transport parameters, the duration of mechanical ventilation and the length of the ICU and the hospital stays. During CPB, central venous oxygen saturation was significantly higher in the HPTH group but SctO2 was increased in the NMTH group (P < 0.05). Cardiac index, systemic oxygen delivery and consumption increased postoperatively in both groups. However, oxygen delivery and consumption were significantly higher in the NMTH group (P < 0.05). The duration of respiratory support and the length of ICU and hospital stays did not differ between the groups. During combined valve surgery, normothermic CPB provides lower central venous oxygen saturation, but increases cerebral tissue oxygenation when compared with the hypothermic regimen.
Oxygen transport as a structure probe for heterogeneous polymeric systems
NASA Astrophysics Data System (ADS)
Hu, Yushan
Although permeability of small molecules is often measured as an important performance property, deeper analysis of the transport characteristics provides insight into polymer structure, especially if used in combination with other characterization techniques. Transport of small gas molecules senses the permeable amorphous structure and probes the nature of free volume. This work focuses on oxygen transport, supplemented with other methods of physical analysis, as a probe for: (1) the nature of free volume and crystalline morphology in the crystallized glassy state, (2) the nature of free volume and hierarchical structure in liquid crystalline polymers, and (3) the role of dispersed polyamide phase geometry on oxygen barrier properties of poly(ethylene terephthalate) (PET)/polyamide blends. In the first part, the improvement in oxygen-barrier properties of glassy polyesters by crystallization was examined. Examples included poly(ethylene naphthalate) (PEN), and a copolymer based on PET in which 55 mol% terephthalate was replaced with 4,4'-bibenzoate. Explanation of the unexpectedly high solubility of crystallized PEN required a two-phase transport model consisting of an impermeable crystalline phase of constant density and a permeable amorphous phase of variable density. The resulting relationship between oxygen solubility and amorphous phase density was consistent with free volume concepts of gas sorption. In the second part, oxygen barrier properties of liquid crystalline (LC) polyesters based on poly(diethylene glycol 4,4'-bibenzoate) (PDEGBB) were studied. This study extended the 2-phase transport model for oxygen transport of non-LC crystalline polymers to a smectic LCP. It was possible to systematically vary the solid state structure of (PDEGBB) from LC glass to crystallized LC glass. The results were consistent with a liquid crystalline state intermediate between the permeable amorphous glass and the impermeable 3-dimensional crystal. In this interpretation, LC order naturally led to inherently low gas solubility. In the third part, improvement of gas-barrier properties of poly(ethylene terephthalate) (PET) by blending with an aromatic polyamide, either poly(m-xylylene adipamide) (MXD6) or a copolyamide based on MXD6 in which 12 mol% adipamide was replaced with isophthalamide (MXD6-12I), was studied. Aromatic polyamides provided higher barrier than aliphatic polyamides, and unlike aliphatic polyamides, the aromatic polyamides retained high barrier under conditions of high humidity, making them more suitable for beverage packaging applications. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Kõuts, Mariliis; Raudsepp, Urmas; Maljutenko, Ilja
2017-04-01
In coastal areas, especially estuaries, spatial distribution and seasonal cycling of chemical and biological variables is largely determined by local biogeochemical processes and water transport of different properties. In tidal estuaries, however, biogeochemical processes are affected by tides as frequent water exchange alters nutrient and oxygen concentrations. In wide and deep non-tidal estuary-type marginal seas spatial distribution and seasonal cycling are determined by the mixture of water transport and local biogeochemistry. The Baltic Sea is a stratified water basin where halocline divides the water column into two parts: upper layer, which is horizontally uniform in terms of distribution of chemical and biological parameters, and has clear seasonal cycle; and bottom part, where nutrient and oxygen dynamics is more complex. There water transport and sediment-water interface fluxes play a major role. Our prime focus is the Gulf of Finland in the Baltic Sea. It is a wide, non-tidal and stratified sub-basin known for its high nutrient concentrations and severe oxygen deficiency in summer. We modelled the Baltic Sea (including Gulf of Finland) using ERGOM, a biogeochemical model coupled with circulation model GETM. Seasonal cycling and water circulation were observed with a 40-year simulation from 1966 to 2006. Our results show that in shallow areas above halocline the seasonal cycle of phytoplankton, nutrients and oxygen concentrations is uniform in space. Water circulation does not create inhomogeneous distribution pattern of biogeochemical parameters and their seasonal cycle. The circulation in the Gulf of Finland is strongly modulated by the seasonality of estuarine transport. Below the halocline saline low-oxygen and nutrient-rich water is transported from the open Baltic Proper to the Gulf of Finland in spring and early summer. This results in the highest nutrient concentrations and the poorest oxygen conditions by the end of August. In the shallow area nutrients have high concentrations in March-April before the spring bloom of diatoms starts. Low oxygen and nutrient concentrations are observed at the end of August. There is a qualitative difference of nutrient dynamics between shallow and deep layers but quantification of the role of transport and local biogeochemical processes is still challenging.
Influence of In-Well Convection on Well Sampling
Vroblesky, Don A.; Casey, Clifton C.; Lowery, Mark A.
2006-01-01
Convective transport of dissolved oxygen (DO) from shallow to deeper parts of wells was observed as the shallow water in wells in South Carolina became cooler than the deeper water in the wells due to seasonal changes. Wells having a relatively small depth to water were more susceptible to thermally induced convection than wells where the depth to water was greater because the shallower water levels were more influenced by air temperature. The potential for convective transport of DO to maintain oxygenated conditions in a well was diminished as ground-water exchange through the well screen increased and as oxygen demand increased. Convective flow did not transport oxygen to the screened interval when the screened interval was deeper than the range of the convective cell. The convective movement of water in wells has potential implications for passive, or no-purge, and low-flow sampling approaches. Transport of DO to the screened interval can adversely affect the ability of passive samplers to produce accurate concentrations of oxygen-sensitive solutes, such as iron. Other potential consequences include mixing the screened-interval water with casing water and potentially allowing volatilization loss at the water surface. A field test of diffusion samplers in a convecting well during the winter, however, showed good agreement of chlorinated solvent concentrations with pumped samples, indicating that there was no negative impact of the convection on the utility of the samplers to collect volatile organic compound concentrations in that well. In the cases of low-flow sampling, convective circulation can cause the pumped sample to be a mixture of casing water and aquifer water. This can substantially increase the equilibration time of oxygen as an indicator parameter and can give false indications of the redox state. Data from this investigation show that simple in-well devices can effectively mitigate convective transport of oxygen. The devices can range from inflatable packers to simple baffle systems.
Macquarrie, K T B; Mayer, K U; Jin, B; Spiessl, S M
2010-03-01
Redox evolution in sparsely fractured crystalline rocks is a key, and largely unresolved, issue when assessing the geochemical suitability of deep geological repositories for nuclear waste. Redox zonation created by the influx of oxygenated waters has previously been simulated using reactive transport models that have incorporated a variety of processes, resulting in predictions for the depth of oxygen penetration that may vary greatly. An assessment and direct comparison of the various underlying conceptual models are therefore needed. In this work a reactive transport model that considers multiple processes in an integrated manner is used to investigate the ingress of oxygen for both single fracture and fracture zone scenarios. It is shown that the depth of dissolved oxygen migration is greatly influenced by the a priori assumptions that are made in the conceptual models. For example, the ability of oxygen to access and react with minerals in the rock matrix may be of paramount importance for single fracture conceptual models. For fracture zone systems, the abundance and reactivity of minerals within the fractures and thin matrix slabs between the fractures appear to provide key controls on O(2) attenuation. The findings point to the need for improved understanding of the coupling between the key transport-reaction feedbacks to determine which conceptual models are most suitable and to provide guidance for which parameters should be targeted in field and laboratory investigations. Copyright 2009 Elsevier B.V. All rights reserved.
Thermophysical properties and oxygen transport in (Th x,Pu 1-x)O 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.
Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Th x,Pu 1–x)O 2 (0 ≤ x ≤ 1) between 300–3500 K. Specifically, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Th x,Pu 1–x)O 2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and themore » increase in oxygen diffusivity. The increase in oxygen diffusivity for (Th x,Pu 1–x)O 2 is explained in terms of lower oxygen defect formation enthalpies for (Th x,Pu 1–x)O 2 than PuO 2 and ThO 2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.« less
Thermophysical properties and oxygen transport in (Th x,Pu 1-x)O 2
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; ...
2016-10-31
Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Th x,Pu 1–x)O 2 (0 ≤ x ≤ 1) between 300–3500 K. Specifically, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Th x,Pu 1–x)O 2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and themore » increase in oxygen diffusivity. The increase in oxygen diffusivity for (Th x,Pu 1–x)O 2 is explained in terms of lower oxygen defect formation enthalpies for (Th x,Pu 1–x)O 2 than PuO 2 and ThO 2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.« less
Gaseous oxygen uptake in porous media at different moisture contents and airflow velocities.
Sharma, Prabhakar; Poulsen, Tjalfe G; Kalluri, Prasad N V
2009-06-01
The presence and distribution of water in the pore space is a critical factor for flow and transport of gases through unsaturated porous media. The water content also affects the biological activity necessary for treatment of polluted gas streams in biofilters. In this research, microbial activity and quantity of inactive volume in a porous medium as a function of moisture content and gas flow rate were investigated. Yard waste compost was used as a test medium, and oxygen uptake rate measurements were used to quantify microbial activity and effective active compost volume using batch and column flow-through systems. Compost water contents were varied from air-dry to field capacity and gas flows ranged from 0.2 to 2 L x min(-1). The results showed that overall microbial activity and the relative fraction of active compost medium volume increased with airflow velocity for all levels of water content up to a certain flow rate above which the oxygen uptake rate assumed a constant value independent of gas flow. The actual value of the maximum oxygen uptake rate was controlled by the water content. The oxygen uptake rate also increased with increasing water content and reached a maximum between 42 and 48% volumetric water content, above which it decreased, again likely because of formation of inactive zones in the compost medium. Overall, maximum possible oxygen uptake rate as a function of gas flow rate across all water contents and gas flows could be approximated by a linear expression. The relative fraction of active volume also increased with gas flow rate and reached approximately 80% for the highest gas flows used.
Hepar uterinum: a history of ideas on fetal nutrition.
Obladen, Michael
2017-10-26
The means of fetal nutrition has been debated for over two millennia, with the controversy of oral versus parenteral nutrition already in the Corpus Hippocraticum. In 1587 Aranzio rejected connections between maternal and fetal blood vessels, and coined the term "hepar uterinum" for the placenta. From the 16th to the 18th century, a fervent debate focused on the type and extent of connection between maternal and fetal vessels, which was finally settled by Hunter's injection experiment in 1774. But up to the middle of the 19th century, an important nutritive function was attributed to amniotic fluid. When with the discovery of oxygen the placenta's respiratory function became understood, its nutritional function fell from grace. Most scientists realized reluctantly that the organ had numerous functions. As late as in the 19th century, the advent of microscopy allowed cell theory to develop, and analytical chemistry furthered the understanding of the transport of nutrients across the placenta. The identification of the syncytiotrophoblast made passive diffusion unlikely. Radioisotopes, molecular biology and the fluid mosaic model of the cell membrane revealed active transport mechanisms for nearly all macronutrients.
Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta
The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less
Aydin, Halit; Korte, Carsten; Janek, Jürgen
2013-06-01
The oxygen tracer diffusion coefficient describing transport along nano-/microscaled YSZ/Sc 2 O 3 multilayers as a function of the thick-ness of the ion-conducting YSZ layers has been measured by isotope exchange depth profiling (IEDP), using secondary ion mass spec-trometry (SIMS). The multilayer samples were prepared by pulsed laser deposition (PLD) on (0001) Al 2 O 3 single crystalline substrates. The values for the oxygen tracer diffusion coefficient were analyzed as a combination of contributions from bulk and interface contributions and compared with results from YSZ/Y 2 O 3 -multilayers with similar microstructure. Using the Nernst-Einstein equation as the relation between diffusivity and electrical conductivity we find very good agreement between conductivity and diffusion data, and we exclude substantial electronic conductivity in the multilayers. The effect of hetero-interface transport can be well explained by a simple interface strain model. As the multilayer samples consist of columnar film crystallites with a defined inter-face structure and texture, we also discuss the influence of this particular microstructure on the interfacial strain.
Yang, W. C.; Xie, Y. T.; Zhu, W. K.; ...
2017-08-10
While pyrochlore iridate thin films are theoretically predicted to possess a variety of emergent topological properties, experimental verification of these predictions can be obstructed by the challenge in thin film growth. We report on the pulsed laser deposition and characterization of thin films of a representative pyrochlore compound Bi 2Ir 2O 7. Moreover, the films were epitaxially grown on yttria-stabilized zirconia substrates and have lattice constants that are a few percent larger than that of the bulk single crystals. The film composition shows a strong dependence on the oxygen partial pressure. Density-functional-theory calculations indicate the existence of BiIr antisite defects,more » qualitatively consistent with the high Bi: Ir ratio found in the films. Both Ir and Bi have oxidation states that are lower than their nominal values, suggesting the existence of oxygen deficiency. The iridate thin films show a variety of intriguing transport characteristics, including multiple charge carriers, logarithmic dependence of resistance on temperature, antilocalization corrections to conductance due to spin-orbit interactions, and linear positive magnetoresistance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, W. C.; Xie, Y. T.; Zhu, W. K.
While pyrochlore iridate thin films are theoretically predicted to possess a variety of emergent topological properties, experimental verification of these predictions can be obstructed by the challenge in thin film growth. We report on the pulsed laser deposition and characterization of thin films of a representative pyrochlore compound Bi 2Ir 2O 7. Moreover, the films were epitaxially grown on yttria-stabilized zirconia substrates and have lattice constants that are a few percent larger than that of the bulk single crystals. The film composition shows a strong dependence on the oxygen partial pressure. Density-functional-theory calculations indicate the existence of BiIr antisite defects,more » qualitatively consistent with the high Bi: Ir ratio found in the films. Both Ir and Bi have oxidation states that are lower than their nominal values, suggesting the existence of oxygen deficiency. The iridate thin films show a variety of intriguing transport characteristics, including multiple charge carriers, logarithmic dependence of resistance on temperature, antilocalization corrections to conductance due to spin-orbit interactions, and linear positive magnetoresistance.« less
Numerical modeling of the fetal blood flow in the placental circulatory system
NASA Astrophysics Data System (ADS)
Shannon, Alexander; Gallucci, Sergio; Mirbod, Parisa
2015-11-01
The placenta is a unique organ of exchange between the growing fetus and the mother. It incorporates almost all functions of the adult body, acting as the fetal lung, digestive and immune systems, to mention a few. The exchange of oxygen and nutrients takes place at the surface of the villous tree. Using an idealized geometry of the fetal villous trees in the mouse placenta, in this study we performed 3D computational analysis of the unsteady fetal blood flow, gas, and nutrient transport over the chorionic plate. The fetal blood was treated as an incompressible Newtonian fluid, and the oxygen and nutrient were treated as a passive scalar dissolved in blood plasma. The flow was laminar, and a commercial CFD code (COMSOL Multiphysics) has been used for the simulation. COMSOL has been selected because it is multi-physics FEM software that allows for the seamless coupling of different physics represented by partial differential equations. The results clearly illustrate that the specific branching pattern and the in-plane curvature of the fetal villous trees affect the delivery of blood, gas and nutrient transport to the whole placenta.
Begović, Lidija; Mlinarić, Selma; Antunović Dunić, Jasenka; Katanić, Zorana; Lončarić, Zdenko; Lepeduš, Hrvoje; Cesar, Vera
2016-06-01
The effect of two concentrations of cobalt (Co(2+)) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72h after the start of the exposure. Higher concentration of cobalt (1mM) induced growth inhibition while lower concentration (0.01mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co(2+) especially at the higher concentration where decreased electron transport beyond primary quinone acceptor QA(-) and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co(2+) concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films
Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta; ...
2017-04-17
The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less
Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.
Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing
2018-01-01
The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ion transport membrane module and vessel system
Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson
2007-02-20
An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
Gutsche, Jacob T; Miano, Todd A; Vernick, William; Raiten, Jesse; Bermudez, Christian; Vallabjoysula, Prashant; Milewski, Karianna; Szeto, Wilson; Fall, Meghan Lane; Williams, Matthew L; Patel, Prakash; Mikkelsen, Mark E; Chiu, Cornel; Ramakrishna, Harish; Canon, Jeremy; Augoustides, John G
2018-06-01
To understand if mobile extracorporeal membrane oxygenation reduces patient mortality during and after transport of patients requiring extracorporeal membrane oxygenation for acute respiratory distress syndrome. Retrospective chart review. University affiliated tertiary care hospitals. Seventy-seven patients. Introduction of a mobile extracorporeal membrane oxygenation (ECMO) program designed to facilitate the implementation of ECMO at outside hospitals in patients too unstable for transport for ECMO. The 28-day in-hospital mortality was significantly lower in the post-mobile group (12/51 [23.5%] v 12/24 [50%], adjusted risk difference: 28.6%, [95% CI 4.7-52.5, p = 0.011]). These findings suggest that patients with severe acute respiratory failure who require transport to a referral center for extracorporeal life support may benefit from the availability of a mobile extracorporeal life support team. Copyright © 2017 Elsevier Inc. All rights reserved.
Ion transport membrane module and vessel system
Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT
2012-02-14
An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
Ion transport membrane module and vessel system
Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT
2008-02-26
An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
77 FR 11418 - Airworthiness Directives; Various Transport Category Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... oxygen generators in the lavatories until the generator oxygen supply is expended, or removing the oxygen generator(s); and, for each chemical oxygen generator, after the generator is expended (or removed... Floor, Room W12-140, 1200 New Jersey Avenue SE., Washington, DC 20590. Hand Delivery: Deliver to Mail...
77 FR 38000 - Airworthiness Directives; Various Transport Category Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-26
... generators in the lavatories until the generator oxygen supply is expended, or removing the oxygen generator(s); and, for each chemical oxygen generator, after the generator is expended (or removed), removing... AD was prompted by reports that the current design of the oxygen generators presents a hazard that...
NASA Technical Reports Server (NTRS)
Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.
Schiffer, Tomas A; Gustafsson, Håkan; Palm, Fredrik
2018-05-30
The kidneys receive approximately 25% of cardiac output, which is a prerequisite in order to maintain sufficient glomerular filtration rate. However, both intrarenal regional renal blood flow and tissue oxygen levels are heterogeneous with decreasing levels in the inner part of the medulla. These differences in combination with the heterogeneous metabolic activity of the different nephron segment located in the different parts of the kidney may constitute a functional problem when challenged. The proximal tubule and the medullary thick ascending limb of Henle are considered to have the highest metabolic rate, which is relating to the high mitochondria content needed to sustain sufficient ATP production from oxidative phosphorylation in order to support high electrolyte transport activity in these nephron segments. Interestingly, the cells located in kidney medulla functions at the verge of hypoxia and the mitochondria may have adapted to the surrounding environment. However, little is known about intrarenal differences in mitochondria function. We therefore investigated functional differences between mitochondria isolated from kidney cortex and medulla of healthy normoglycemic rats were estimated using high-resolution respirometry. The results demonstrate that medullary mitochondria had a higher degree of coupling, are more efficient and have higher oxygen affinity, which would make them more suitable to function in an environment with limited oxygen supply. Furthermore, these results support the hypothesis that mitochondria of medullary cells have adapted to the normal hypoxic in vivo situation as a strategy of sustaining ATP production in a suboptimal environment.
Paracellular transport as a strategy for energy conservation by multicellular organisms?
Yu, Alan S L
2017-04-03
Paracellular transport of solutes and water accompanies transcellular transport across epithelial barriers and together they serve to maintain internal body composition. However, whether paracellular transport is necessary and why it evolved is unknown. In this commentary I discuss our recent studies to address this question in the proximal tubule of the kidney. Paracellular reabsorption of sodium occurs in the proximal tubule and is mediated by claudin-2. However, deletion of claudin-2 in mice does not affect whole kidney sodium excretion because it can be completely compensated by downtream transcellular transport mechanisms. This occurs at the expense of increased oxygen consumption, tissue hypoxia and increased susceptibility to ischemic injury. It is concluded that paracellular transport acts as an energy saving mechanism to increase transport without consuming additional oxygen. It is speculated that this might be why paracellular transport evolved in leaky epithelia with high transport needs.
Paracellular transport as a strategy for energy conservation by multicellular organisms?
Yu, Alan S. L.
2017-01-01
ABSTRACT Paracellular transport of solutes and water accompanies transcellular transport across epithelial barriers and together they serve to maintain internal body composition. However, whether paracellular transport is necessary and why it evolved is unknown. In this commentary I discuss our recent studies to address this question in the proximal tubule of the kidney. Paracellular reabsorption of sodium occurs in the proximal tubule and is mediated by claudin-2. However, deletion of claudin-2 in mice does not affect whole kidney sodium excretion because it can be completely compensated by downtream transcellular transport mechanisms. This occurs at the expense of increased oxygen consumption, tissue hypoxia and increased susceptibility to ischemic injury. It is concluded that paracellular transport acts as an energy saving mechanism to increase transport without consuming additional oxygen. It is speculated that this might be why paracellular transport evolved in leaky epithelia with high transport needs. PMID:28452575
Extended friction elucidates the breakdown of fast water transport in graphene oxide membranes
NASA Astrophysics Data System (ADS)
Montessori, A.; Amadei, C. A.; Falcucci, G.; Sega, M.; Vecitis, C. D.; Succi, S.
2016-12-01
The understanding of water transport in graphene oxide (GO) membranes stands out as a major theoretical problem in graphene research. Notwithstanding the intense efforts devoted to the subject in the recent years, a consolidated picture of water transport in GO membranes is yet to emerge. By performing mesoscale simulations of water transport in ultrathin GO membranes, we show that even small amounts of oxygen functionalities can lead to a dramatic drop of the GO permeability, in line with experimental findings. The coexistence of bulk viscous dissipation and spatially extended molecular friction results in a major decrease of both slip and bulk flow, thereby suppressing the fast water transport regime observed in pristine graphene nanochannels. Inspection of the flow structure reveals an inverted curvature in the near-wall region, which connects smoothly with a parabolic profile in the bulk region. Such inverted curvature is a distinctive signature of the coexistence between single-particle zero-temperature (noiseless) Langevin friction and collective hydrodynamics. The present mesoscopic model with spatially extended friction may offer a computationally efficient tool for future simulations of water transport in nanomaterials.
Vertical Variability of Anoxia Along the Northern Omani Shelf.
NASA Astrophysics Data System (ADS)
Queste, B. Y.; Piontkovski, S.; Heywood, K. J.
2016-02-01
Three autonomous underwater gliders were deployed along a 80 km transect extending from Muscat out into the Gulf during both monsoons and the intermonsoon season as part of a project funded by ONR Global and the UK NERC. The gliders surveyed the top 1000m across the continental shelf, the steep continental slope, and the Sea of Oman while measuring temperature, salinity, oxygen, chlorophyll a fluorescence, optical backscatter, photosyntheticall active radiation and providing estimates of depth-averaged currents and up/downwelling. The data show the depth of the surface oxycline varying by 50m across the transect as a function of mixed layer depth. Below, we observed high variability, on the order of days, in the oxygen profile with the boundary of the suboxic zone (< 6 µmol.kg-1) varying by up to 250m. This upper boundary was determined by the volume of the Persian Gulf Water (PGW) outflow which travels along the shelf edge. Below 400m, oxygen concentrations reached levels below 1 µmol.kg-1. The physical drivers of PGW transport therefore double, or reduce by half, the available habitat for macrofauna. The across-shelf transect allowed estimation of along-slope transport and variability of the PGW, identified by its higher salinity, temperature, optical backscatter and oxygen content. The structure and volume of the outflow was highly variable. During peak outflow, the core extended beyond the glider transect. During periods of minimal flow, it was constrained to 10km beyond the shelf break. PGW was also present in mesoscale eddies beyond the shelf break.
Phenotypic plasticity in blood–oxygen transport in highland and lowland deer mice
Tufts, Danielle M.; Revsbech, Inge G.; Cheviron, Zachary A.; Weber, Roy E.; Fago, Angela; Storz, Jay F.
2013-01-01
SUMMARY In vertebrates living at high altitude, arterial hypoxemia may be ameliorated by reversible changes in the oxygen-carrying capacity of the blood (regulated by erythropoiesis) and/or changes in blood–oxygen affinity (regulated by allosteric effectors of hemoglobin function). These hematological traits often differ between taxa that are native to different elevational zones, but it is often unknown whether the observed physiological differences reflect fixed, genetically based differences or environmentally induced acclimatization responses (phenotypic plasticity). Here, we report measurements of hematological traits related to blood–O2 transport in populations of deer mice (Peromyscus maniculatus) that are native to high- and low-altitude environments. We conducted a common-garden breeding experiment to assess whether altitude-related physiological differences were attributable to developmental plasticity and/or physiological plasticity during adulthood. Under conditions prevailing in their native habitats, high-altitude deer mice from the Rocky Mountains exhibited a number of pronounced hematological differences relative to low-altitude conspecifics from the Great Plains: higher hemoglobin concentrations, higher hematocrits, higher erythrocytic concentrations of 2,3-diphosphoglycerate (an allosteric regulator of hemoglobin–oxygen affinity), lower mean corpuscular hemoglobin concentrations and smaller red blood cells. However, these differences disappeared after 6 weeks of acclimation to normoxia at low altitude. The measured traits were also indistinguishable between the F1 progeny of highland and lowland mice, indicating that there were no persistent differences in phenotype that could be attributed to developmental plasticity. These results indicate that the naturally occurring hematological differences between highland and lowland mice are environmentally induced and are largely attributable to physiological plasticity during adulthood. PMID:23239893
Effect of blood viscosity on oxygen transport in residual stenosed artery following angioplasty.
Kwon, Ohwon; Krishnamoorthy, Mahesh; Cho, Young I; Sankovic, John M; Banerjee, Rupak K
2008-02-01
The effect of blood viscosity on oxygen transport in a stenosed coronary artery during the postangioplasty scenario is studied. In addition to incorporating varying blood viscosity using different hematocrit (Hct) concentrations, oxygen consumption by the avascular wall and its supply from vasa vasorum, nonlinear oxygen binding capacity of the hemoglobin, and basal to hyperemic flow rate changes are included in the calculation of oxygen transport in both the lumen and the avascular wall. The results of this study show that oxygen transport in the postangioplasty residual stenosed artery is affected by non-Newtonian shear-thinning property of the blood viscosity having variable Hct concentration. As Hct increases from 25% to 65%, the diminished recirculation zone for the increased Hct causes the commencement of pO(2) decrease to shift radially outward by approximately 20% from the center of the artery for the basal flow, but by approximately 10% for the hyperemic flow at the end of the diverging section. Oxygen concentration increases from a minimum value at the core of the recirculation zone to over 90 mm Hg before the lumen-wall interface at the diverging section for the hyperemic flow, which is attributed to increased shear rate and thinner lumen boundary layer for the hyperemic flow, and below 90 mm Hg for the basal flow. As Hct increases from 25% to 65%, the average of pO(2,min) beyond the diverging section drops by approximately 25% for the basal flow, whereas it increases by approximately 15% for the hyperemic flow. Thus, current results with the moderate stenosed artery indicate that reducing Hct might be favorable in terms of increasing O(2) flux and pO(2,min), in the medial region of the wall for the basal flow, while higher Hct is advantageous for the hyperemic flow beyond the diverging section. The results of this study not only provide significant details of oxygen transport under varying pathophysiologic blood conditions such as unusually high blood viscosity and flow rate, but might also be extended to offer implications for drug therapy related to blood-thinning medication and for blood transfusion and hemorrhage.
Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae
2016-01-12
Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.
Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes
Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae
2014-01-28
Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.
Code of Federal Regulations, 2014 CFR
2014-07-01
... producers and importers of denatured fuel ethanol and other oxygenates designated for use in transportation... requirements for producers and importers of denatured fuel ethanol and other oxygenates designated for use in transportation fuel. Beginning January 1, 2017, producers and importers of denatured fuel ethanol (DFE) or other...
Synthesis gas method and apparatus
Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie; Kosowski, Lawrence W; Robinson, Charles
2015-11-06
A method and apparatus for producing a synthesis gas product having one or more oxygen transport membrane elements thermally coupled to one or more catalytic reactors such that heat generated from the oxygen transport membrane element supplies endothermic heating requirements for steam methane reforming reactions occurring within the catalytic reactor through radiation and convention heat transfer. A hydrogen containing stream containing no more than 20 percent methane is combusted within the oxygen transport membrane element to produce the heat and a heated combustion product stream. The heated combustion product stream is combined with a reactant stream to form a combined stream that is subjected to the reforming within the catalytic reactor. The apparatus may include modules in which tubular membrane elements surround a central reactor tube.
Synthesis gas method and apparatus
Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles
2013-01-08
A method and apparatus for producing a synthesis gas product having one or more oxygen transport membrane elements thermally coupled to one or more catalytic reactors such that heat generated from the oxygen transport membrane element supplies endothermic heating requirements for steam methane reforming reactions occurring within the catalytic reactor through radiation and convention heat transfer. A hydrogen containing stream containing no more than 20 percent methane is combusted within the oxygen transport membrane element to produce the heat and a heated combustion product stream. The heated combustion product stream is combined with a reactant stream to form a combined stream that is subjected to the reforming within the catalytic reactor. The apparatus may include modules in which tubular membrane elements surround a central reactor tube.
Origin of traps and charge transport mechanism in hafnia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islamov, D. R., E-mail: damir@isp.nsc.ru; Gritsenko, V. A., E-mail: grits@isp.nsc.ru; Novosibirsk State University, Novosibirsk 630090
2014-12-01
In this study, we demonstrated experimentally and theoretically that oxygen vacancies are responsible for the charge transport in HfO{sub 2}. Basing on the model of phonon-assisted tunneling between traps, and assuming that the electron traps are oxygen vacancies, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. The thermal trap energy of 1.25 eV in HfO{sub 2} was determined based on the charge transport experiments.
Gonçalves, Renata L. S.; Machado, Ana Carolina L.; Paiva-Silva, Gabriela O.; Sorgine, Marcos H. F.; Momoli, Marisa M.; Oliveira, Jose Henrique M.; Vannier-Santos, Marcos A.; Galina, Antonio; Oliveira, Pedro L.; Oliveira, Marcus F.
2009-01-01
Background Hematophagy poses a challenge to blood-feeding organisms since products of blood digestion can exert cellular deleterious effects. Mitochondria perform multiple roles in cell biology acting as the site of aerobic energy-transducing pathways, and also an important source of reactive oxygen species (ROS), modulating redox metabolism. Therefore, regulation of mitochondrial function should be relevant for hematophagous arthropods. Here, we investigated the effects of blood-feeding on flight muscle (FM) mitochondria from the mosquito Aedes aegypti, a vector of dengue and yellow fever. Methodology/Principal Findings Blood-feeding caused a reversible reduction in mitochondrial oxygen consumption, an event that was parallel to blood digestion. These changes were most intense at 24 h after blood meal (ABM), the peak of blood digestion, when oxygen consumption was inhibited by 68%. Cytochromes c and a+a 3 levels and cytochrome c oxidase activity of the electron transport chain were all reduced at 24 h ABM. Ultrastructural and molecular analyses of FM revealed that mitochondria fuse upon blood meal, a condition related to reduced ROS generation. Consistently, BF induced a reversible decrease in mitochondrial H2O2 formation during blood digestion, reaching their lowest values at 24 h ABM where a reduction of 51% was observed. Conclusion Blood-feeding triggers functional and structural changes in hematophagous insect mitochondria, which may represent an important adaptation to blood feeding. PMID:19924237
Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes
NASA Technical Reports Server (NTRS)
Chin, D. T.; Hsueh, K. L.; Chang, H. H.
1984-01-01
Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. The areas covered were: (1) development of a theoretical expression for the rotating ring disk electrode technique; (2) determination of the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; (3) determination of oxygen reduction mechanism in trifluoreomethanesulfonic acid (TFMSA) which was considered as an alternate electrolyte for the acid fuel cells; and (4) the measurement of transport properties of the phosphoric acid electrolyte at high concentrations and temperatures.
High performance cermet electrodes
Isenberg, Arnold O.; Zymboly, Gregory E.
1986-01-01
Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.
Carra, Graciela E; Matus, Daniel; Ibáñez, Jorge E; Saraví, Fernando D
2015-01-01
Aerobic metabolism is necessary for ion transport in many transporting epithelia, including the human colonic epithelium. We assessed the effects of the epithelial sodium channel blocker, amiloride, on oxygen consumption and short-circuit current of the human sigmoid epithelium to determine whether these effects were influenced by the age of the subject. Segments of the sigmoid colon were obtained from the safety margin of resections performed in patients of 62-77 years of age. Isolated mucosa preparations were obtained and mounted in airtight Ussing chambers, fit for simultaneous measurement of short-circuit current and oxygen concentration, before and after blocking epithelial sodium channels with amiloride (0.1 mmol/L). Regression analyses were performed to assess the associations between short-circuit current, oxygen consumption, and age of the subject as well as to define the relationship between the decreases in short-circuit current and oxygen consumption after blockade. Epithelial sodium channel blockade caused an 80% reduction in short-circuit current and a 26% reduction in oxygen consumption. Regression analysis indicated that both changes were significantly related (r = 0.884;P = 0.0007). Oxygen consumption decreased by 1 m mol/h/cm2 for each 25 m A/cm2 decrease in short-circuit current. Neither short-circuit current nor oxygen consumption had any significant relationship with the age of the subjects. The decrease in epithelial oxygen consumption caused by amiloride is proportional to the decrease in short-circuit current and independent of the age of the subject.
Broad Phylogenetic Occurrence of the Oxygen-Binding Hemerythrins in Bilaterians.
Costa-Paiva, Elisa M; Schrago, Carlos G; Halanych, Kenneth M
2017-10-01
Animal tissues need to be properly oxygenated for carrying out catabolic respiration and, as such, natural selection has presumably favored special molecules that can reversibly bind and transport oxygen. Hemoglobins, hemocyanins, and hemerythrins (Hrs) fulfill this role, with Hrs being the least studied. Knowledge of oxygen-binding proteins is crucial for understanding animal physiology. Hr genes are present in the three domains of life, Archaea, Bacteria, and Eukaryota; however, within Animalia, Hrs has been reported only in marine species in six phyla (Annelida, Brachiopoda, Priapulida, Bryozoa, Cnidaria, and Arthropoda). Given this observed Hr distribution, whether all metazoan Hrs share a common origin is circumspect. We investigated Hr diversity and evolution in metazoans, by employing in silico approaches to survey for Hrs from of 120 metazoan transcriptomes and genomes. We found 58 candidate Hr genes actively transcribed in 36 species distributed in 11 animal phyla, with new records in Echinodermata, Hemichordata, Mollusca, Nemertea, Phoronida, and Platyhelminthes. Moreover, we found that "Hrs" reported from Cnidaria and Arthropoda were not consistent with that of other metazoan Hrs. Contrary to previous suggestions that Hr genes were absent in deuterostomes, we find Hr genes present in deuterostomes and were likely present in early bilaterians, but not in nonbilaterian animal lineages. As expected, the Hr gene tree did not mirror metazoan phylogeny, suggesting that Hrs evolutionary history was complex and besides the oxygen carrying capacity, the drivers of Hr evolution may also consist of secondary functional specializations of the proteins, like immunological functions. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Running energetics in the pronghorn antelope.
Lindstedt, S L; Hokanson, J F; Wells, D J; Swain, S D; Hoppeler, H; Navarro, V
1991-10-24
The pronghorn antelope (Antilocapra americana) has an alleged top speed of 100 km h-1, second only to the cheetah (Acionyx jubatus) among land vertebrates, a possible response to predation in the exposed habitat of the North American prairie. Unlike cheetahs, however, pronghorn antelope are distance runners rather than sprinters, and can run 11 km in 10 min, an average speed of 65 km h-1. We measured maximum oxygen uptake in pronghorn antelope to distinguish between two potential explanations for this ability: either they have evolved a uniquely high muscular efficiency (low cost of transport) or they can supply oxygen to the muscles at unusually high levels. Because the cost of transport (energy per unit distance covered per unit body mass) varies as a predictable function of body mass among terrestrial vertebrates, we can calculate the predicted cost to maintain speeds of 65 and 100 km h-1 in an average 32-kg animal. The resulting range of predicted values, 3.2-5.1 ml O2 kg-1 s-1, far surpasses the predicted maximum aerobic capacity of a 32-kg mammal (1.5 ml O2 kg-1 s-1). We conclude that their performance is achieved by an extraordinary capacity to consume and process enough oxygen to support a predicted running speed greater than 20 ms-1 (70 km h-1), attained without unique respiratory-system structures.
Laohavisit, Anuphon; Shang, Zhonglin; Rubio, Lourdes; Cuin, Tracey A; Véry, Anne-Aliénor; Wang, Aihua; Mortimer, Jennifer C; Macpherson, Neil; Coxon, Katy M; Battey, Nicholas H; Brownlee, Colin; Park, Ohkmae K; Sentenac, Hervé; Shabala, Sergey; Webb, Alex A R; Davies, Julia M
2012-04-01
Plant cell growth and stress signaling require Ca²⁺ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH•. In root cells, extracellular OH• activates a plasma membrane Ca²⁺-permeable conductance that permits Ca²⁺ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca²⁺-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH•-activated Ca²⁺- and K⁺-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca²⁺ in response to OH•. An OH•-activated Ca²⁺ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca²⁺-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca²⁺ in plants.
Oxygen delivery does not limit thermal tolerance in a tropical eurythermal crustacean.
Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Wang, Tobias; Bayley, Mark
2014-03-01
In aquatic environments, rising water temperatures reduce water oxygen content while increasing oxygen demand, leading several authors to propose cardiorespiratory oxygen transport capacity as the main determinant of aquatic animal fitness. It has also been argued that tropical species, compared with temperate species, live very close to their upper thermal limit and hence are vulnerable to even small elevations in temperature. Little, however, is known about physiological responses to high temperatures in tropical species. Here we report that the tropical giant freshwater shrimp (Macrobrachium rosenbergii) maintains normal growth when challenged by a temperature rise of 6°C above the present day average (from 27°C to 33°C). Further, by measuring heart rate, gill ventilation rate, resting and maximum oxygen uptake, and hemolymph lactate, we show that oxygen transport capacity is maintained up to the critical maximum temperature around 41°C. In M. rosenbergii heart rate and gill ventilation rate increases exponentially until immediately below critical temperatures and at 38°C animals still retained more than 76% of aerobic scope measured at 30°C, and there was no indication of anaerobic metabolism at the high temperatures. Our study shows that the oxygen transport capacity is maintained at high temperatures, and that other mechanisms, such as protein dysfunction, are responsible for the loss of ecological performance at elevated temperatures.
Tsoukias, Nikolaos M; Goldman, Daniel; Vadapalli, Arjun; Pittman, Roland N; Popel, Aleksander S
2007-10-21
A detailed computational model is developed to simulate oxygen transport from a three-dimensional (3D) microvascular network to the surrounding tissue in the presence of hemoglobin-based oxygen carriers. The model accounts for nonlinear O(2) consumption, myoglobin-facilitated diffusion and nonlinear oxyhemoglobin dissociation in the RBCs and plasma. It also includes a detailed description of intravascular resistance to O(2) transport and is capable of incorporating realistic 3D microvascular network geometries. Simulations in this study were performed using a computer-generated microvascular architecture that mimics morphometric parameters for the hamster cheek pouch retractor muscle. Theoretical results are presented next to corresponding experimental data. Phosphorescence quenching microscopy provided PO(2) measurements at the arteriolar and venular ends of capillaries in the hamster retractor muscle before and after isovolemic hemodilution with three different hemodilutents: a non-oxygen-carrying plasma expander and two hemoglobin solutions with different oxygen affinities. Sample results in a microvascular network show an enhancement of diffusive shunting between arterioles, venules and capillaries and a decrease in hemoglobin's effectiveness for tissue oxygenation when its affinity for O(2) is decreased. Model simulations suggest that microvascular network anatomy can affect the optimal hemoglobin affinity for reducing tissue hypoxia. O(2) transport simulations in realistic representations of microvascular networks should provide a theoretical framework for choosing optimal parameter values in the development of hemoglobin-based blood substitutes.
NASA Astrophysics Data System (ADS)
Li, J.; Wang, J.; Kuang, H.; Zhao, Y. Y.; Qiao, K. M.; Liu, Y.; Hu, F. X.; Sun, J. R.; Shen, B. G.
2018-05-01
Modulating the oxygen defect concentration has been accepted as an effective method to obtain high catalytic activity in perovskite cobaltites. However, controllably modifying the oxygen vacancy is still a challenge in this type of materials, which strongly obstructs their application. Here, we report a successful oxygen vacancies modulation in the La0.7Sr0.3CoO3 (LSCO) film by using combined current effect and temperature cycling. The temperature dependent transport properties of the LSCO/LAO film were investigated. The results revealed that the resistance of the film keeps increasing under the repeated measurements. It was found that the accumulation of the oxygen vacancy by current effect transforms the Co4+ ion into Co3+ ion, which results in the enhancement of the resistance and thus the transport switching behavior. Moreover, the resistance in the cooling process was found to be much higher than that in previous cooling and heating processes, which indicates that the oxygen escapes more quickly in the high temperature region. On the other hand, our analysis indicates that the CoO6 distortion may contribute to the switching of transport behaviors in the low temperature region. Our work provides an effective and controllable way to modulate oxygen defect in the perovskite-type oxides.
Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia
Carreau, Aude; Hafny-Rahbi, Bouchra El; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine
2011-01-01
Abstract Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO2), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique ‘tissue normoxia’ or ‘physioxia’ status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO2, i.e. ‘hypoxia’. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO2 values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O2 whereas current in vitro experimentations are usually performed in 19.95% O2, an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. PMID:21251211
Carreau, Aude; El Hafny-Rahbi, Bouchra; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine
2011-06-01
Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO(2)), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique 'tissue normoxia' or 'physioxia' status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO(2), i.e. 'hypoxia'. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO(2) values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O(2) whereas current in vitro experimentations are usually performed in 19.95% O(2), an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Edwards, Jessica C.; Johnson, Mark S.; Taylor, Barry L.
2007-01-01
SUMMARY Aerotaxis (oxygen-seeking) behavior in Escherichia coli is a response to changes in the electron transport system and not oxygen per se. Because changes in proton motive force (PMF) are coupled to respiratory electron transport, it is difficult to differentiate between PMF, electron transport or redox, all primary candidates for the signal sensed by the aerotaxis receptors, Aer and Tsr. We constructed electron transport mutants that produced different respiratory H+/e- stoichiometries. These strains expressed binary combinations of one NADH dehydrogenase and one quinol oxidase. We then introduced either an aer or tsr mutation into each mutant to create two sets of electron transport mutants. In vivo H+/e- ratios for strains grown in glycerol medium ranged from 1.46 ± 0.18 to 3.04 ± 0.47, but rates of respiration and growth were similar. The PMF jump in response to oxygen was proportional to the H+/e- ratio in each set of mutants (r2 = 0.986 to 0.996). The length of Tsr-mediated aerotaxis responses increased with the PMF jump (r2 = 0.988), but Aer-mediated responses did not correlate with either PMF changes (r2 = 0.297) or the rate of electron transport (r2 = 0.066). Aer-mediated responses were linked to NADH dehydrogenase I, although there was no absolute requirement. The data indicate that Tsr responds to changes in PMF, but strong Aer responses to oxygen are associated with redox changes in NADH dehydrogenase I PMID:16995896
Langlois, Neil E I
2010-03-01
Carbon monoxide is a component of motor vehicle exhaust fumes, provided a functional catalytic converter is not present. This gas binds avidly to the hemoglobin molecule in red blood cells preventing its oxygen transport function, effectively poisoning the body by starving it of oxygen. In binding to hemoglobin, carbon monoxide forms carboxyhemoglobin, which has a characteristic bright pink color. It has been remarked that the fingernails of victims of carbon monoxide tend to exhibit pink color, otherwise fingernails of deceased bodies tend towards a dark red to blue color. This study sought to objectively determine by using digital image analysis if a color difference occurred between the fingernails of a group of cadavers with carbon monoxide poisoning compared to a group of controls. The fingernails of the carbon monoxide group did tend to be more red than the controls, but due to overlap between the two groups assessment of the fingernails cannot be recommended as a rapid screening test.
Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.
2018-04-24
A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.
Oxygen tension limits nitric oxide synthesis by activated macrophages.
McCormick, C C; Li, W P; Calero, M
2000-01-01
Previous studies have established that constitutive calcium-dependent ('low-output') nitric oxide synthase (NOS) is regulated by oxygen tension. We have investigated the role of oxygen tension in the synthesis of NO by the 'high-output' calcium-independent NOS in activated macrophages. Hypoxia increased macrophage NOS gene expression in the presence of one additional activator, such as lipopolysaccharide or interferon-gamma, but not in the presence of both. Hypoxia markedly reduced the synthesis of NO by activated macrophages (as measured by accumulation of nitrite and citrulline), such that, at 1% oxygen tension, NO accumulation was reduced by 80-90%. The apparent K(m) for oxygen calculated from cells exposed to a range of oxygen tensions was found to be 10.8%, or 137 microM, O(2) This value is considerably higher than the oxygen tension in tissues, and is virtually identical to that reported recently for purified recombinant macrophage NOS. The decrease in NO synthesis did not appear to be due to diminished arginine or cofactor availability, since arginine transport and NO synthesis during recovery in normoxia were normal. Analysis of NO synthesis during hypoxia as a function of extracellular arginine indicated that an altered V(max), but not K(m)(Arg), accounted for the observed decrease in NO synthesis. We conclude that oxygen tension regulates the synthesis of NO in macrophages by a mechanism similar to that described previously for the calcium-dependent low-output NOS. Our data suggest that oxygen tension may be an important physiological regulator of macrophage NO synthesis in vivo. PMID:10970783
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
... Airworthiness Directives; AVOX Systems and B/E Aerospace Oxygen Cylinder Assemblies, as Installed on Various... directive (AD), which applies to certain AVOX Systems and B/E Aerospace oxygen cylinder assemblies, as installed on various transport airplanes. That AD currently requires removing certain oxygen cylinder...
14 CFR 121.1500 - SFAR No. 111-Lavatory Oxygen Systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false SFAR No. 111-Lavatory Oxygen Systems. 121... § 121.1500 SFAR No. 111—Lavatory Oxygen Systems. (a) Applicability. This SFAR applies to the following persons: (1) All operators of transport category airplanes that are equipped with any chemical oxygen...
14 CFR 121.1500 - SFAR No. 111-Lavatory Oxygen Systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false SFAR No. 111-Lavatory Oxygen Systems. 121... § 121.1500 SFAR No. 111—Lavatory Oxygen Systems. (a) Applicability. This SFAR applies to the following persons: (1) All operators of transport category airplanes that are equipped with any chemical oxygen...
Continuum-based DFN-consistent simulations of oxygen ingress in fractured crystalline rocks
NASA Astrophysics Data System (ADS)
Trinchero, P.; Puigdomenech, I.; Molinero, J.; Ebrahimi, H.; Gylling, B.; Svensson, U.; Bosbach, D.; Deissmann, G.
2016-12-01
The potential transient infiltration of oxygenated glacial meltwater into initially anoxic and reducing fractured crystalline rocks during glaciation events is an issue of concern for some of the prospected deep geological repositories for spent nuclear fuel. Here, this problem is assessed using reactive transport calculations. First, a novel parameterisation procedure is presented, where flow, transport and geochemical parameters (i.e. hydraulic conductivity, effective/kinetic porosity, and mineral specific surface and abundance) are defined on a finite volume numerical grid based on the (spatially varying) properties of an underlying Discrete Fracture Network (DFN). Second, using this approach, a realistic reactive transport model of Forsmark, i.e. the selected site for the proposed Swedish spent nuclear fuel repository, is implemented. The model consists of more than 70 million geochemical transport degrees of freedom and simulates the ingress of oxygen-rich water from the recharge area of the domain and its depletion due to reactions with the Fe(II) mineral chlorite. Third, the calculations are solved in the supercomputer JUQUEEN of the Jülich Supercomputing Centre. The results of the simulations show that oxygen infiltrates relatively quickly along fractures and deformation zones until a steady state profile is reached, where geochemical reactions counterbalance advective transport processes. Interestingly, most of the iron-bearing minerals are consumed in the highly conductive zones, where larger mineral surfaces are available for reactions. An analysis based on mineral mass balance shows that the considered rock medium has enough capacity to buffer oxygen infiltration for a long period of time (i.e. some thousand years).
Ramsden, David B; Ho, Philip W-L; Ho, Jessica W-M; Liu, Hui-Fang; So, Danny H-F; Tse, Ho-Man; Chan, Koon-Ho; Ho, Shu-Leong
2012-07-01
Uncoupling proteins (UCPs) belong to a large family of mitochondrial solute carriers 25 (SLC25s) localized at the inner mitochondrial membrane. UCPs transport protons directly from the intermembrane space to the matrix. Of five structural homologues (UCP1 to 5), UCP4 and 5 are principally expressed in the central nervous system (CNS). Neurons derived their energy in the form of ATP that is generated through oxidative phosphorylation carried out by five multiprotein complexes (Complexes I-V) embedded in the inner mitochondrial membrane. In oxidative phosphorylation, the flow of electrons generated by the oxidation of substrates through the electron transport chain to molecular oxygen at Complex IV leads to the transport of protons from the matrix to the intermembrane space by Complex I, III, and IV. This movement of protons to the intermembrane space generates a proton gradient (mitochondrial membrane potential; MMP) across the inner membrane. Complex V (ATP synthase) uses this MMP to drive the conversion of ADP to ATP. Some electrons escape to oxygen-forming harmful reactive oxygen species (ROS). Proton leakage back to the matrix which bypasses Complex V resulting in a major reduction in ROS formation while having a minimal effect on MMP and hence, ATP synthesis; a process termed "mild uncoupling." UCPs act to promote this proton leakage as means to prevent excessive build up of MMP and ROS formation. In this review, we discuss the structure and function of mitochondrial UCPs 4 and 5 and factors influencing their expression. Hypotheses concerning the evolution of the two proteins are examined. The protective mechanisms of the two proteins against neurotoxins and their possible role in regulating intracellular calcium movement, particularly with regard to the pathogenesis of Parkinson's disease are discussed.
Effect of oxygenated perfluorocarbon on isolated islets during transportation.
Terai, Sachio; Tsujimura, Toshiaki; Li, Shiri; Hori, Yuichi; Toyama, Hirochika; Shinzeki, Makoto; Matsumoto, Ippei; Kuroda, Yoshikazu; Ku, Yonson
2010-08-01
Previous studies demonstrated the efficacy of the two-layer method (TLM) using oxygenated perfluorochemicals (PFC) for pancreas preservation. The current study investigated the effect of oxygenated PFC on isolated islets during transportation. Purified rat islets were stored in an airtight conical tube for 24h in RPMI culture medium at 22 degrees C or University of Wisconsin solution (UW) at 4 degrees C, either with or without oxygenated PFC. After storage, the islets were assessed for in vitro viability by static incubation (SI), FDA/PI staining, and energy status (ATP, energy charge, and ADP/ATP ratio) and for in vivo viability by a transplantation study. UW at 4 degrees C and RPMI medium at 22 degrees C maintained islet quality almost equally in both in vitro and in vivo assessments. The ATP levels and energy status in the groups with PFC were significantly lower than those without PFC. The groups with PFC showed a significantly higher ADP/ATP ratio than those without PFC. In the transplantation study, blood glucose levels and AUC in the UW+PFC group were significantly higher than those in UW group. UW at 4 degrees C and RPMI medium at 22 degrees C maintained islet quality equally under the conditions for islet transportation. The addition of oxygenated PFC, while advantageous for pancreas preservation, is not useful for islet transportation. Copyright 2010 Elsevier Inc. All rights reserved.
Pilot study of oxygen transport rate of banked red blood cells.
Buchwald, H; Menchaca, H J; Michalek, V N; Rudser, K D; Rohde, T D; O'Dea, T; Connett, J E; Gorlin, J
2009-01-01
Dynamic oximetry provides a new way to assess the effect of blood storage on the oxygen transport rate (OTR). In dynamic oximetry, the rate at which oxyhemoglobin becomes deoxyhemoglobin is measured optically, thereby, indirectly measuring the rate at which oxygen leaves the red blood cell (RBC) making it available for transfer to tissues. Extending the physiologic diffusion time in an in vitro apparatus, consisting of a diffusion system and gas exchanger capable of controlling the surface area and the time of exposure for oxygenation and deoxygenation, makes OTR measurement feasible. Eight normal blood donor units, collected in adenine, dextrose, sorbitol, sodium chloride and mannitol , were stored for 8 weeks under standard conditions and serially sampled for OTR. We report that the OTR at the time of blood bank donation appears to be singular for each donor, that the interdonor differences are maintained over time, and that the individual OTR increased 1.72-fold (95% CI 1.51, 1.95) over 8 weeks, adjusting for sex, age and plasma cholesterol level. Oxygen transport rate increases during storage; blood units with similar haemoglobin content may have significant differences in OTR. Studies examining blood parameters at the time of donation and blood storage on patient outcomes should consider measuring OTR, as it may contribute to differences in observed efficacy of tissue oxygenation.
Hypoxic Response of Tumor Tissues in a Microfluidic Environment
NASA Astrophysics Data System (ADS)
Morshed, Adnan; Dutta, Prashanta
2017-11-01
Inside a tumor tissue, cells growing further away from the blood vessel often suffer from low oxygen levels known as hypoxia. Cancer cells have shown prolonged survival in hostile hypoxic conditions by sharply changing the cellular metabolism. In this work, different stages of growth of the tumor tissue and the oxygen transport across the tissue are investigated. The tissue was modeled as a contiguous block of cells inside a microfluidic environment with nutrient transport through advection and diffusion. While oxygen uptake inside the tissue is through diffusion, ascorbate transport from the extracellular medium is addressed by a concentration dependent uptake model. By varying the experimentally observed oxygen consumption rate, different types of cancer cells and their normoxic and hypoxic stages were studied. Even when the oxygen supply in the channel is maintained at normoxic levels, our results show the onset of hypoxia within minutes inside the cellblock. Interestingly, modeled cell blocks with and without a structured basal layer showed less than 5% variation in hypoxic response in chronic hypoxia. Results also indicate that the balance of cell survival and growth are affected by the flow rate of nutrients and the oxygen consumption rate. This work was supported in part by the National Science Foundation under Grant No. DMS 1317671.
Kozuleva, Marina A; Ivanov, Boris N
2010-07-01
The contribution to reduction of oxygen by ferredoxin (Fd) to the overall reduction of oxygen in isolated pea thylakoids was studied in the presence of Fd versus Fd + NADP(+). The overall rate of electron transport was measured using a determination of Photosystem II quantum yield from chlorophyll fluorescence parameters, and the rate of oxidation of Fd was measured from the light-induced redox changes of Fd. At low light intensity, increasing Fd concentration from 5 to 30 microM in the absence of NADP(+) increased the proportion of oxygen reduction by Fd from 25-35 to 40-60% in different experiments. This proportion decreased with increasing light intensity. When NADP(+) was added in the presence of 15 microM Fd, which was optimal for the NADP(+) reduction rate, the participation of Fd in the reduction of oxygen was low, no more than 10%, and it also decreased with increasing light intensity. At high light intensity, the overall oxygen reduction rates in the presence of Fd + NADP(+) and in the presence of Fd alone were comparable. The significance of reduction of dioxygen either by water-soluble Fd or by the membrane-bound carriers of the photosynthetic electron transport chain for redox signaling under different light intensities is discussed.
Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance.
Poole, David C; Hirai, Daniel M; Copp, Steven W; Musch, Timothy I
2012-03-01
The defining characteristic of chronic heart failure (CHF) is an exercise intolerance that is inextricably linked to structural and functional aberrations in the O(2) transport pathway. CHF reduces muscle O(2) supply while simultaneously increasing O(2) demands. CHF severity varies from moderate to severe and is assessed commonly in terms of the maximum O(2) uptake, which relates closely to patient morbidity and mortality in CHF and forms the basis for Weber and colleagues' (167) classifications of heart failure, speed of the O(2) uptake kinetics following exercise onset and during recovery, and the capacity to perform submaximal exercise. As the heart fails, cardiovascular regulation shifts from controlling cardiac output as a means for supplying the oxidative energetic needs of exercising skeletal muscle and other organs to preventing catastrophic swings in blood pressure. This shift is mediated by a complex array of events that include altered reflex and humoral control of the circulation, required to prevent the skeletal muscle "sleeping giant" from outstripping the pathologically limited cardiac output and secondarily impacts lung (and respiratory muscle), vascular, and locomotory muscle function. Recently, interest has also focused on the dysregulation of inflammatory mediators including tumor necrosis factor-α and interleukin-1β as well as reactive oxygen species as mediators of systemic and muscle dysfunction. This brief review focuses on skeletal muscle to address the mechanistic bases for the reduced maximum O(2) uptake, slowed O(2) uptake kinetics, and exercise intolerance in CHF. Experimental evidence in humans and animal models of CHF unveils the microvascular cause(s) and consequences of the O(2) supply (decreased)/O(2) demand (increased) imbalance emblematic of CHF. Therapeutic strategies to improve muscle microvascular and oxidative function (e.g., exercise training and anti-inflammatory, antioxidant strategies, in particular) and hence patient exercise tolerance and quality of life are presented within their appropriate context of the O(2) transport pathway.
Bleackley, Mark R; Young, Barry P; Loewen, Christopher J R; MacGillivray, Ross T A
2011-02-01
Biological systems have developed with a strong dependence on transition metals for accomplishing a number of biochemical reactions. Iron, copper, manganese and zinc are essential for virtually all forms of life with their unique chemistries contributing to a variety of physiological processes including oxygen transport, generation of cellular energy and protein structure and function. Properties of these metals (and to a lesser extent nickel and cobalt) that make them so essential to life also make them extremely cytotoxic in many cases through the formation of damaging oxygen radicals via Fenton chemistry. While life has evolved to exploit the chemistries of transition metals to drive physiological reactions, systems have concomitantly evolved to protect against the damaging effects of these same metals. Saccharomyces cerevisiae is a valuable tool for studying metal homeostasis with many of the genes identified thus far having homologs in higher eukaryotes including humans. Using high density arrays, we have screened a haploid S. cerevisiae deletion set containing 4786 non-essential gene deletions for strains sensitive to each of Fe, Cu, Mn, Ni, Zn and Co and then integrated the six screens using cluster analysis to identify pathways that are unique to individual metals and others with function shared between metals. Genes with no previous implication in metal homeostasis were found to contribute to sensitivity to each metal. Significant overlap was observed between the strains that were sensitive to Mn, Ni, Zn and Co with many of these strains lacking genes for the high affinity Fe transport pathway and genes involved in vacuolar transport and acidification. The results from six genome-wide metal tolerance screens show that there is some commonality between the cellular defenses against the toxicity of Mn, Ni, Zn and Co with Fe and Cu requiring different systems. Additionally, potential new factors been identified that function in tolerance to each of the six metals.
Epstein, Tamir; Xu, Liping; Gillies, Robert J; Gatenby, Robert A
2014-01-01
Cancer cells, and a variety of normal cells, exhibit aerobic glycolysis, high rates of glucose fermentation in the presence of normal oxygen concentrations, also known as the Warburg effect. This metabolism is considered abnormal because it violates the standard model of cellular energy production that assumes glucose metabolism is predominantly governed by oxygen concentrations and, therefore, fermentative glycolysis is an emergency back-up for periods of hypoxia. Though several hypotheses have been proposed for the origin of aerobic glycolysis, its biological basis in cancer and normal cells is still not well understood. We examined changes in glucose metabolism following perturbations in membrane activity in different normal and tumor cell lines and found that inhibition or activation of pumps on the cell membrane led to reduction or increase in glycolysis, respectively, while oxidative phosphorylation remained unchanged. Computational simulations demonstrated that these findings are consistent with a new model of normal physiological cellular metabolism in which efficient mitochondrial oxidative phosphorylation supplies chronic energy demand primarily for macromolecule synthesis and glycolysis is necessary to supply rapid energy demands primarily to support membrane pumps. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. The predictions were confirmed experimentally. Our results show that glycolytic metabolism serves a critical physiological function under normoxic conditions by responding to rapid energetic demand, mainly from membrane transport activities, even in the presence of oxygen. This supports a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Cells use efficient but slow-responding aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism, which is inefficient but can rapidly increase adenosine triphosphate (ATP) production, to meet short-timescale energy demands, mainly from membrane transport activities. In this model, the origin of the Warburg effect in cancer cells and aerobic glycolysis in general represents a normal physiological function due to enhanced energy demand for membrane transporters activity required for cell division, growth, and migration.
Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.
2012-01-01
The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531
O2 and CO2 glow-discharge-assisted oxygen transport through Ag
NASA Astrophysics Data System (ADS)
Outlaw, R. A.
1990-08-01
The permeation of oxygen through Ag normally occurs by a sequence of steps which include the initial dissociative adsorption of molecular oxygen at the upstream surface, the dissolution of the atoms into the bulk, and the subsequent migration of the atoms between octahedral sites of the lattice until they arrive at the vacuum interface downstream. The dissociative adsorption step, however, proceeds slowly, as indicated by the low sticking coefficient of O2 on Ag(10-6-10-3). The application of a dc field in 0.5 Torr of O2 (E/n˜10-14 V cm2) on the upstream side of a Ag membrane generated gas phase atomic oxygen that substantially enhanced the transport. The transport flux was observed to increase from a value of 4.4×1013 cm-2 s-1 to a glow discharge value of 2.83×1014 cm-2 s-1 at a membrane temperature of 650 °C. This suggests that the dissociative adsorption step limits the supply of oxygen atoms to the upstream side of the membrane. When the upstream O2 was replaced by an equal pressure of CO2, only a small permeation signal was observed, but the application of the glow discharge substantially increased the transport flux from 3.25×1012 cm-2 s-1 to 1.74×1014 cm-2 s-1. This method of separating O2 from a CO2 environment may be a possible mechanism for providing a supply of oxygen for astronauts in a manned mission to Mars.
Influence of dissolved oxygen convection on well sampling
Vroblesky, D.A.; Casey, C.C.; Lowery, M.A.
2007-01-01
Convective transport of dissolved oxygen (D.O.) from shallow to deeper parts of wells was observed as the shallow water in wells in South Carolina became cooler than the deeper water in the wells due to seasonal changes. Wells having a relatively small depth to water were more susceptible to thermally induced convection than wells where the depth to water was greater because the shallower water levels were more influenced by air temperature. The potential for convective transport of D.O. to maintain oxygenated conditions in a well screened in an anaerobic aquifer was diminished as ground water exchange through the well screen increased and as oxygen demand increased. Transport of D.O. to the screened interval can adversely affect the ability of passive samplers to produce accurate concentrations of oxygen-sensitive solutes such as iron, other redox indicators, and microbiological data. A comparison of passive sampling to low-flow sampling in a well undergoing convection, however, showed general agreement of volatile organic compound concentrations. During low-flow sampling, the pumped water may be a mixture of convecting water from within the well casing and aquifer water moving inward through the screen. This mixing of water during low-flow sampling can substantially increase equilibration times, can cause false stabilization of indicator parameters, can give false indications of the redox state, and can provide microbiological data that are not representative of the aquifer conditions. Data from this investigation show that simple in-well devices can effectively mitigate convective transport of oxygen. The devices can range from inflatable packers to simple, inexpensive baffle systems. ?? 2007 National Ground Water Association.
Large-eddy simulation of oxygen transport and depletion in waterbodies
NASA Astrophysics Data System (ADS)
Scalo, Carlo; Piomelli, Ugo; Boegman, Leon
2010-11-01
Dissolved oxygen (DO) in water plays an important role in lake and marine ecosystems. Agricultural runoff may spur excessive plant growth on the water surface; when the plants die they sink to the bottom of the water bodies and decompose, consuming oxygen. Significant environmental (and economic) damage may result from the loss of aquatic life caused by the oxygen depletion. The study of DO transport and depletion dynamics in water bodies has, therefore, become increasingly important. We study this phenomenon by large-eddy simulations performed at laboratory scale. The equations governing the transport of momentum and of a scalar (the DO) in the fluid are coupled to a biochemical model for DO depletion in the permeable sediment bed [Higashino et al., Water Res. (38) 1, 2004)], and to an equation for the fluid transpiration in the porous medium. The simulations are in good agreement with previous calculations and experiments. We show that the results are sensitive to the biochemical and fluid dynamical properties of the sediment, which are very difficult to determine experimentally.
Sensitivity of Ca2+ transport of mitochondria to reactive oxygen species.
Yang, Z W; Yang, F Y
1997-12-01
The relationship between Ca2+ transport and energy transduction of myocardial mitochondria in the presence of reactive oxygen species was investigated. Following treatment with oxygen free radicals [superoxide(O2.-) or hydroxyl radical (.OH)], lipid free radicals in myocardial mitochondrial membrane could be detected by using the method of EPR spin trap. Simultaneously there were obvious alterations in the free Ca2+ ([Ca2+]m) in the mitochondrial matrix; the physical state of membrane lipid; the efficiency of oxidative phosphorylation (ADP/O); the value of the respiratory control ratio (RCR); and the membrane potential of the inner membrane of myocardial mitochondria. If the concentrations of reactive oxygen species were reduced by about 30%, the alterations in the physical state of the membrane lipid and energy transduction of myocardial mitochondria were not observed, but the changes in Ca2+ homeostasis remained. We conclude that Ca2+ transport by myocardial mitochondria is more sensitive to agents such as O2.- or OH, etc. than are oxidation phosphorylation and the respiratory chain.
A phylogenomic profile of hemerythrins, the nonheme diiron binding respiratory proteins
2008-01-01
Background Hemerythrins, are the non-heme, diiron binding respiratory proteins of brachiopods, priapulids and sipunculans; they are also found in annelids and bacteria, where their functions have not been fully elucidated. Results A search for putative Hrs in the genomes of 43 archaea, 444 bacteria and 135 eukaryotes, revealed their presence in 3 archaea, 118 bacteria, several fungi, one apicomplexan, a heterolobosan, a cnidarian and several annelids. About a fourth of the Hr sequences were identified as N- or C-terminal domains of chimeric, chemotactic gene regulators. The function of the remaining single domain bacterial Hrs remains to be determined. In addition to oxygen transport, the possible functions in annelids have been proposed to include cadmium-binding, antibacterial action and immunoprotection. A Bayesian phylogenetic tree revealed a split into two clades, one encompassing archaea, bacteria and fungi, and the other comprising the remaining eukaryotes. The annelid and sipunculan Hrs share the same intron-exon structure, different from that of the cnidarian Hr. Conclusion The phylogenomic profile of Hrs demonstrated a limited occurrence in bacteria and archaea and a marked absence in the vast majority of multicellular organisms. Among the metazoa, Hrs have survived in a cnidarian and in a few protostome groups; hence, it appears that in metazoans the Hr gene was lost in deuterostome ancestor(s) after the radiata/bilateria split. Signal peptide sequences in several Hirudinea Hrs suggest for the first time, the possibility of extracellular localization. Since the α-helical bundle is likely to have been among the earliest protein folds, Hrs represent an ancient family of iron-binding proteins, whose primary function in bacteria may have been that of an oxygen sensor, enabling aerophilic or aerophobic responses. Although Hrs evolved to function as O2 transporters in brachiopods, priapulids and sipunculans, their function in annelids remains to be elucidated. Overall Hrs exhibit a considerable lack of evolutionary success in metazoans. PMID:18764950
Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis
Bu, Lingzheng; Guo, Shaojun; Zhang, Xu; ...
2016-06-29
Despite intense research in past decades, the lack of high-performance catalysts for fuel cell reactions remains a challenge in realizing fuel cell technologies for transportation applications. Here we report a facile strategy for synthesizing hierarchical platinum-cobalt nanowires with high-index, platinum-rich facets and ordered intermetallic structure. These structural features enable unprecedented performance for the oxygen reduction and alcohol oxidation reactions. The specific/mass activities of the platinum-cobalt nanowires for oxygen reduction reaction are 39.6/33.7 times higher than commercial Pt/C catalyst, respectively. Density functional theory simulations reveal that the active threefold hollow sites on the platinum-rich high-index facets provide an additional factor inmore » enhancing oxygen reduction reaction activities. The nanowires are stable in the electrochemical conditions and also thermally stable. Furthermore, this work may represent a key step towards scalable production of high performance platinum-based nanowires for applications in catalysis and energy conversion.« less
Hydrogen-induced morphotropic phase transformation of single-crystalline vanadium dioxide nanobeams.
Hong, Woong-Ki; Park, Jong Bae; Yoon, Jongwon; Kim, Bong-Joong; Sohn, Jung Inn; Lee, Young Boo; Bae, Tae-Sung; Chang, Sung-Jin; Huh, Yun Suk; Son, Byoungchul; Stach, Eric A; Lee, Takhee; Welland, Mark E
2013-04-10
We report a morphotropic phase transformation in vanadium dioxide (VO2) nanobeams annealed in a high-pressure hydrogen gas, which leads to the stabilization of metallic phases. Structural analyses show that the annealed VO2 nanobeams are hexagonal-close-packed structures with roughened surfaces at room temperature, unlike as-grown VO2 nanobeams with the monoclinic structure and with clean surfaces. Quantitative chemical examination reveals that the hydrogen significantly reduces oxygen in the nanobeams with characteristic nonlinear reduction kinetics which depend on the annealing time. Surprisingly, the work function and the electrical resistance of the reduced nanobeams follow a similar trend to the compositional variation due mainly to the oxygen-deficiency-related defects formed at the roughened surfaces. The electronic transport characteristics indicate that the reduced nanobeams are metallic over a large range of temperatures (room temperature to 383 K). Our results demonstrate the interplay between oxygen deficiency and structural/electronic phase transitions, with implications for engineering electronic properties in vanadium oxide systems.
Oxidation Mechanism of Copper Selenide
NASA Astrophysics Data System (ADS)
Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri
2014-09-01
The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.
Dutta, Arghya; Wong, Raymond A; Park, Woonghyeon; Yamanaka, Keisuke; Ohta, Toshiaki; Jung, Yousung; Byon, Hye Ryung
2018-02-14
The major challenge facing lithium-oxygen batteries is the insulating and bulk lithium peroxide discharge product, which causes sluggish decomposition and increasing overpotential during recharge. Here, we demonstrate an improved round-trip efficiency of ~80% by means of a mesoporous carbon electrode, which directs the growth of one-dimensional and amorphous lithium peroxide. Morphologically, the one-dimensional nanostructures with small volume and high surface show improved charge transport and promote delithiation (lithium ion dissolution) during recharge and thus plays a critical role in the facile decomposition of lithium peroxide. Thermodynamically, density functional calculations reveal that disordered geometric arrangements of the surface atoms in the amorphous structure lead to weaker binding of the key reaction intermediate lithium superoxide, yielding smaller oxygen reduction and evolution overpotentials compared to the crystalline surface. This study suggests a strategy to enhance the decomposition rate of lithium peroxide by exploiting the size and shape of one-dimensional nanostructured lithium peroxide.
Composite oxygen ion transport element
Chen, Jack C [Getzville, NY; Besecker, Charles J [Batavia, IL; Chen, Hancun [Williamsville, NY; Robinson, Earil T [Mentor, OH
2007-06-12
A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.
Nieves-Morión, Mercedes; Lechno-Yossef, Sigal; López-Igual, Rocío; Frías, José E; Mariscal, Vicente; Nürnberg, Dennis J; Mullineaux, Conrad W; Wolk, C Peter; Flores, Enrique
2017-04-01
When deprived of combined nitrogen, some filamentous cyanobacteria contain two cell types: vegetative cells that fix CO 2 through oxygenic photosynthesis and heterocysts that are specialized in N 2 fixation. In the diazotrophic filament, the vegetative cells provide the heterocysts with reduced carbon (mainly in the form of sucrose) and heterocysts provide the vegetative cells with combined nitrogen. Septal junctions traverse peptidoglycan through structures known as nanopores and appear to mediate intercellular molecular transfer that can be traced with fluorescent markers, including the sucrose analog esculin (a coumarin glucoside) that is incorporated into the cells. Uptake of esculin by the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was inhibited by the α-glucosides sucrose and maltose. Analysis of Anabaena mutants identified components of three glucoside transporters that move esculin into the cells: GlsC (Alr4781) and GlsP (All0261) are an ATP-binding subunit and a permease subunit of two different ABC transporters, respectively, and HepP (All1711) is a major facilitator superfamily (MFS) protein that was shown previously to be involved in formation of the heterocyst envelope. Transfer of fluorescent markers (especially calcein) between vegetative cells of Anabaena was impaired by mutation of glucoside transporter genes. GlsP and HepP interact in bacterial two-hybrid assays with the septal junction-related protein SepJ, and GlsC was found to be necessary for the formation of a normal number of septal peptidoglycan nanopores and for normal subcellular localization of SepJ. Therefore, beyond their possible role in nutrient uptake in Anabaena , glucoside transporters influence the structure and function of septal junctions. IMPORTANCE Heterocyst-forming cyanobacteria have the ability to perform oxygenic photosynthesis and to assimilate atmospheric CO 2 and N 2 These organisms grow as filaments that fix these gases specifically in vegetative cells and heterocysts, respectively. For the filaments to grow, these types of cells exchange nutrients, including sucrose, which serves as a source of reducing power and of carbon skeletons for the heterocysts. Movement of sucrose between cells in the filament takes place through septal junctions and has been traced with a fluorescent sucrose analog, esculin, that can be taken up by the cells. Here, we identified α-glucoside transporters of Anabaena that mediate uptake of esculin and, notably, influence septal structure and the function of septal junctions. Copyright © 2017 American Society for Microbiology.
Nieves-Morión, Mercedes; Lechno-Yossef, Sigal; López-Igual, Rocío; Frías, José E.; Mariscal, Vicente; Nürnberg, Dennis J.; Mullineaux, Conrad W.; Wolk, C. Peter
2017-01-01
ABSTRACT When deprived of combined nitrogen, some filamentous cyanobacteria contain two cell types: vegetative cells that fix CO2 through oxygenic photosynthesis and heterocysts that are specialized in N2 fixation. In the diazotrophic filament, the vegetative cells provide the heterocysts with reduced carbon (mainly in the form of sucrose) and heterocysts provide the vegetative cells with combined nitrogen. Septal junctions traverse peptidoglycan through structures known as nanopores and appear to mediate intercellular molecular transfer that can be traced with fluorescent markers, including the sucrose analog esculin (a coumarin glucoside) that is incorporated into the cells. Uptake of esculin by the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was inhibited by the α-glucosides sucrose and maltose. Analysis of Anabaena mutants identified components of three glucoside transporters that move esculin into the cells: GlsC (Alr4781) and GlsP (All0261) are an ATP-binding subunit and a permease subunit of two different ABC transporters, respectively, and HepP (All1711) is a major facilitator superfamily (MFS) protein that was shown previously to be involved in formation of the heterocyst envelope. Transfer of fluorescent markers (especially calcein) between vegetative cells of Anabaena was impaired by mutation of glucoside transporter genes. GlsP and HepP interact in bacterial two-hybrid assays with the septal junction-related protein SepJ, and GlsC was found to be necessary for the formation of a normal number of septal peptidoglycan nanopores and for normal subcellular localization of SepJ. Therefore, beyond their possible role in nutrient uptake in Anabaena, glucoside transporters influence the structure and function of septal junctions. IMPORTANCE Heterocyst-forming cyanobacteria have the ability to perform oxygenic photosynthesis and to assimilate atmospheric CO2 and N2. These organisms grow as filaments that fix these gases specifically in vegetative cells and heterocysts, respectively. For the filaments to grow, these types of cells exchange nutrients, including sucrose, which serves as a source of reducing power and of carbon skeletons for the heterocysts. Movement of sucrose between cells in the filament takes place through septal junctions and has been traced with a fluorescent sucrose analog, esculin, that can be taken up by the cells. Here, we identified α-glucoside transporters of Anabaena that mediate uptake of esculin and, notably, influence septal structure and the function of septal junctions. PMID:28096449
Shipley, Rebecca J; Waters, Sarah L
2012-12-01
A model for fluid and mass transport in a single module of a tissue engineering hollow fibre bioreactor (HFB) is developed. Cells are seeded in alginate throughout the extra-capillary space (ECS), and fluid is pumped through a central lumen to feed the cells and remove waste products. Fluid transport is described using Navier-Stokes or Darcy equations as appropriate; this is overlaid with models of mass transport in the form of advection-diffusion-reaction equations that describe the distribution and uptake/production of nutrients/waste products. The small aspect ratio of a module is exploited and the option of opening an ECS port is explored. By proceeding analytically, operating equations are determined that enable a tissue engineer to prescribe the geometry and operation of the HFB by ensuring the nutrient and waste product concentrations are consistent with a functional cell population. Finally, results for chondrocyte and cardiomyocyte cell populations are presented, typifying two extremes of oxygen uptake rates.
NASA Astrophysics Data System (ADS)
George, Michael G.
Characterization of gas diffusion layers (GDLs) for polymer electrolyte membrane (PEM) fuel cells informs modeling studies and the manufacturers of next generation fuel cell materials. Identifying the physical properties related to the primary functions of the modern GDL (thermal, electrical, and mass transport) is necessary for understanding the impact of GDL design choices. X-ray micro-computed tomographic reconstructions of GDLs were studied to isolate GDL surface morphologies. Surface roughness was measured for a wide variety of samples and a sensitivity study highlighted the scale-dependence of surface roughness measurements. Furthermore, a spatially resolved distribution map of polytetrafluoroethylene (PTFE) in the microporous layer (MPL), critical for water management and mass transport, was identified and the existence of PTFE agglomerations was highlighted. Finally, the impact of accelerated degradation on GDL wettability and water transport increases in liquid water accumulation and oxygen mass transport resistance were quantified as a result of accelerated GDL degradation.
Wrobeln, Anna; Laudien, Julia; Groß-Heitfeld, Christoph; Linders, Jürgen; Mayer, Christian; Wilde, Benjamin; Knoll, Tanja; Naglav, Dominik; Kirsch, Michael; Ferenz, Katja B
2017-06-01
Until today, artificial oxygen carriers have not been reached satisfactory quality for routine clinical treatments. To bridge this gap, we designed albumin-derived perfluorocarbon-based nanoparticles as novel artificial oxygen carriers and evaluated their physico-chemical and pharmacological performance. Our albumin-derived perfluorocarbon-based nanoparticles (capsules), composed of an albumin shell and a perfluorodecalin core, were synthesized using ultrasonics. Their subsequent analysis by physico-chemical methods such as scanning electron-, laser scanning- and dark field microscopy as well as dynamic light scattering revealed spherically-shaped, nano-sized particles, that were colloidally stable when dispersed in 5% human serum albumin solution. Furthermore, they provided a remarkable maximum oxygen capacity, determined with a respirometer, reflecting a higher oxygen transport capacity than the competitor Perftoran®. Intravenous administration to healthy rats was well tolerated. Undesirable effects on either mean arterial blood pressure, hepatic microcirculation (determined by in vivo microscopy) or any deposit of capsules in organs, except the spleen, were not observed. Some minor, dose-dependent effects on tissue damage (release of cellular enzymes, alterations of spleen's micro-architecture) were detected. As our promising albumin-derived perfluorocarbon-based nanoparticles fulfilled decisive physico-chemical demands of an artificial oxygen carrier while lacking severe side-effects after in vivo administration they should be advanced to functionally focused in vivo testing conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Biological Oxygen Demand in Soils and Litters
NASA Astrophysics Data System (ADS)
Smagin, A. V.; Smagina, M. V.; Sadovnikova, N. B.
2018-03-01
Biological oxygen demand (BOD) in mineral and organic horizons of soddy-podzolic soils in the forest-park belt of Moscow as an indicator of their microbial respiration and potential biodestruction function has been studied. The BOD of soil samples has been estimated with a portable electrochemical analyzer after incubation in closed flasks under optimum hydrothermal conditions. A universal gradation scale of this parameter from very low (<2 g O2/(m3 h)) to extremely high (>140 g O2/(m3 h)) has been proposed for mineral and organic horizons of soil. A physically substantiated model has been developed for the vertical distribution of BOD in the soil, which combines the diffusion transport of oxygen from the atmosphere and its biogenic uptake in the soil by the first-order reaction. An analytical solution of the model in the stationary state has been obtained; from it, the soil oxygen diffusivity and the kinetic constants of O2 uptake have been estimated, and the profile-integrated total BOD value has been calculated (0.4-1.8 g O2/(m2 h)), which is theoretically identical to the potential oxygen flux from the soil surface due to soil respiration. All model parameters reflect the recreation load on the soil cover by the decrease in their values against the control.
Pulsed near-infrared photoacoustic spectroscopy of blood
NASA Astrophysics Data System (ADS)
Laufer, Jan G.; Elwell, Clare E.; Delpy, Dave T.; Beard, Paul C.
2004-07-01
The aim of this study was to use pulsed near infrared photoacoustic spectroscopy to determine the oxygen saturation (SO2) of a saline suspension of red blood cells in vitro. The photoacoustic measurements were made in a cuvette which formed part of a larger circuit through which the red blood cell suspension was circulated. Oxygen saturation of the red blood cell suspension was altered between 2-3% to 100% in step increments using a membrane oxygenator and at each increment an independent measurement of oxygen saturation was made using a co-oximeter. An optical parametric oscillator laser system provided nanosecond excitation pulses at a number of wavelengths in the near-infrared spectrum (740-1040nm) which were incident on the cuvette. The resulting acoustic signals were detected using a broadband (15MHz) Fabry-Perot polymer film transducer. The optical transport coefficient and amplitude were determined from the acoustic signals as a function of wavelength. These data were then used to calculate the relative concentrations of oxy- and deoxyhaemoglobin, using their known specific absorption coefficients and an empirically determined wavelength dependence of optical scattering over the wavelength range investigated. From this, the oxygen saturation of the suspension was derived with an accuracy of +/-5% compared to the co-oximeter SO2 measurements.
Streicher, Jeffrey W; Cox, Christian L; Birchard, Geoffrey F
2012-04-01
Although well documented in vertebrates, correlated changes between metabolic rate and cardiovascular function of insects have rarely been described. Using the very large cockroach species Gromphadorhina portentosa, we examined oxygen consumption and heart rate across a range of body sizes and temperatures. Metabolic rate scaled positively and heart rate negatively with body size, but neither scaled linearly. The response of these two variables to temperature was similar. This correlated response to endogenous (body mass) and exogenous (temperature) variables is likely explained by a mutual dependence on similar metabolic substrate use and/or coupled regulatory pathways. The intraspecific scaling for oxygen consumption rate showed an apparent plateauing at body masses greater than about 3 g. An examination of cuticle mass across all instars revealed isometric scaling with no evidence of an ontogenetic shift towards proportionally larger cuticles. Published oxygen consumption rates of other Blattodea species were also examined and, as in our intraspecific examination of G. portentosa, the scaling relationship was found to be non-linear with a decreasing slope at larger body masses. The decreasing slope at very large body masses in both intraspecific and interspecific comparisons may have important implications for future investigations of the relationship between oxygen transport and maximum body size in insects.
Dehne, Nathalie; Brüne, Bernhard
2014-01-10
Cells sense and respond to a shortage of oxygen by activating the hypoxia-inducible transcription factors HIF-1 and HIF-2 and evoking adaptive responses. Mitochondria are at the center of a hypoxia sensing and responding relay system. Under normoxia, reactive oxygen species (ROS) and nitric oxide (NO) are HIF activators. As their individual flux rates determine their diffusion-controlled interaction, predictions how these radicals affect HIF appear context-dependent. Considering that the oxygen requirement for NO formation limits its role in activating HIF to conditions of ambient oxygen tension. Given the central role of mitochondrial complex IV as a NO target, especially under hypoxia, allows inhibition of mitochondrial respiration by NO to spare oxygen thus, raising the threshold for HIF activation. HIF targets seem to configure a feedback-signaling circuit aimed at gradually adjusting mitochondrial function. In hypoxic cancer cells, mitochondria redirect Krebs cycle intermediates to preserve their biosynthetic ability. Persistent HIF activation lowers the entry of electron-delivering compounds into mitochondria to reduce Krebs cycle fueling and β-oxidation, attenuates the expression of electron transport chain components, limits mitochondria biosynthesis, and provokes their removal by autophagy. Mitochondria can be placed central in a hypoxia sensing-hypoxia responding circuit. We need to determine to which extent and how mitochondria contribute to sense hypoxia, explore whether modulating their oxygen-consuming capacity redirects hypoxic responses in in vivo relevant disease conditions, and elucidate how the multiple HIF targets in mitochondria shape conditions of acute versus chronic hypoxia.
Oxidative stress, redox stress or redox success?
Gutteridge, John M C; Halliwell, Barry
2018-05-09
The first life forms evolved in a highly reducing environment. This reduced state is still carried by cells today, which makes the concept of "reductive stress" somewhat redundant. When oxygen became abundant on the Earth, due to the evolution of photosynthesis, life forms had to adapt or become extinct. Living organisms did adapt, proliferated and an explosion of new life forms resulted, using reactive oxygen species (ROS) to drive their evolution. Adaptation to oxygen and its reduction intermediates necessitated the simultaneous evolution of select antioxidant defences, carefully regulated to allow ROS to perform their major roles. Clearly this "oxidative stress" did not cause a major problem to the evolution of complex life forms. Why not? Iron and oxygen share a close relationship in aerobic evolution. Iron is used in proteins to transport oxygen, promote electron transfers, and catalyse chemical reactions. In all of these functions, iron is carefully sequestered within proteins and restricted from reacting with ROS, this sequestration being one of our major antioxidant defences. Iron was abundant to life forms before the appearance of oxygen. However, oxygen caused its oxidative precipitation from solution and thereby decreased its bioavailability and thus the risk of iron-dependent oxidative damage. Micro-organisms had to adapt and develop strategies involving siderophores to acquire iron from the environment and eventually their host. This battle for iron between bacteria and animal hosts continues today, and is a much greater daily threat to our survival than "oxidative stress" and "redox stress". Copyright © 2018. Published by Elsevier Inc.
Weng, Xiao-Yan; Zheng, Chen-Juan; Xu, Hong-Xia; Sun, Jian-Yi
2007-12-01
The mechanisms of photoprotection of photosynthesis and dissipation of excitation energy in rice leaves in response to potassium (K) deficiency were investigated. Net photosynthetic rate and the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase decreased under K deficiency. Compared with the control, non-photochemical quenching of Chl fluorescence increased in K-deficient plant, whereas the efficiency of excitation transfer (F'(v)/F'(m)) and the photochemical quenching coefficient (q(P)) decreased. Thus, thermal dissipation of excitation energy increased as more excess electrons were accumulated in the photosynthetic chain. The electron transport rate through PSII (J(f)) was more sensitive to O2 concentration, and the fraction of electron transport rate required to sustain CO2 assimilation and photorespiration (J(g)/J(f)) was significantly decreased under K deficiency compared with the control. Furthermore, the alternative electron transport (J(a)/J(f)) was increased, indicating that a considerable amount of electrons had been transported to O2 during the water-water cycle in the K-deficient leaves. Although the fraction of electron transport to photorespiration (J(o)/J(f)) was also increased in the K-deficient leaves, it was less sensitive than that of the water-water cycle. With the generation of reactive oxygen species level, the activities of superoxide dismutase and ascorbate peroxidase, two of the key enzymes involved in scavenging of active oxygen species in the water-water cycle, also increased in K-deficient rice. Therefore, it is likely that a series of photoprotective mechanisms were initiated in rice plants in response to K deficiency and the water-water cycle might be critical for protecting photosynthetic apparatus under K deficiency in rice.
Is the cholesterol bilayer domain a barrier to oxygen transport into the eye lens?
Plesnar, Elzbieta; Szczelina, Robert; Subczynski, Witold K; Pasenkiewicz-Gierula, Marta
2018-02-01
In the eye lens, the oxygen partial pressure is very low and the cholesterol (Chol) content in cell membranes is very high. Disturbance of these quantities results in cataract development. In human lens membranes, both bulk phospholipid-Chol domains and the pure Chol bilayer domains (CBDs) were experimentally detected. It is hypothesized that the CBD constitutes a significant barrier to oxygen transport into the lens. Transmembrane profiles of the oxygen diffusion-concentration product, obtained with electron paramagnetic resonance spin-labeling methods, allow evaluation of the oxygen permeability (P M ) of phospholipid membranes but not the CBD. Molecular dynamics simulation can independently provide components of the product across any bilayer domain, thus allowing evaluation of the P M across the CBD. Therefore, to test the hypothesis, MD simulation was used. Three bilayers containing palmitoyl-oleoyl-phosphorylcholine (POPC) and Chol were built. The pure Chol bilayer modeled the CBD, the 1:1 POPC-Chol bilayer modeled the bulk membrane in which the CBD is embedded, and the POPC bilayer was a reference. To each model, 200 oxygen molecules were added. After equilibration, the oxygen concentration and diffusion profiles were calculated for each model and multiplied by each other. From the respective product profiles, the P M of each bilayer was calculated. Favorable comparison with experimental data available only for the POPC and POPC-Chol bilayers validated these bilayer models and allowed the conclusion that oxygen permeation across the CBD is ~10 smaller than across the bulk membrane, supporting the hypothesis that the CBD is a barrier to oxygen transport into the eye lens. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanisms of Cardiopulmonary Adaptation to Microgravity. Part 2
NASA Technical Reports Server (NTRS)
1997-01-01
Session TP1 contains short reports concerning: (1) Autonomic Regulation of Circulation and Mechanical Function of Heart at Different Stages of 14th Month Space Flight; (2) Cardiovascular Oxygen Transport in Exercising Humans in Microgravity; (3) Venous Hemodynamic Changes Assessed by Air Plethysmography During a 16-Day Space Flight; (4) Respiratory Mechanics After 180 Days Space Mission (EUROMIR'95); (5) Assessment of the Sympathetic and the Parasympathetic Nervous Activity During Parabolic Flight by Pupillary Light Reflex; and(6) Vascular Response to Different Gravity.
The Effect of Disinfection on Viability and Function of Baboon Red Blood Cells and Platelets
1997-07-11
blood cells was evaluated by their ability to transport oxygen as assessed by measurement of 2,3 diphosphoglycerate (DPG)14 and red blood cell p50,15...Blood collected from the bleeding time site (referred to as "shed blood") had a significantly reduced thromboxane A2 level . The ability of the...preserved or treated platelets to increase the shed blood thromboxane A2 level and reduce the 8; extended bleeding time is the measure of their
Mitochondrial morphology transitions and functions: implications for retrograde signaling?
Picard, Martin; Shirihai, Orian S.; Gentil, Benoit J.
2013-01-01
In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment. PMID:23364527
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinlong; Wang, Yonggang; Li, Shuai
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-stat battery. In this work, the sodium ionic transport pathways of the parent compound Na 3OBr, as well as the modified layered antiperovskite Na 4OI 2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na 3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions ho within and among oxygen octahedra, and Br - ions are not involved in the tetragonal Namore » 4OI 2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. In conclusion, the transport of sodium ions along the c axis is assisted by I - ions.« less
Zhu, Jinlong; Wang, Yonggang; Li, Shuai; ...
2016-06-02
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-stat battery. In this work, the sodium ionic transport pathways of the parent compound Na 3OBr, as well as the modified layered antiperovskite Na 4OI 2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na 3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions ho within and among oxygen octahedra, and Br - ions are not involved in the tetragonal Namore » 4OI 2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. In conclusion, the transport of sodium ions along the c axis is assisted by I - ions.« less
BLOOD SUBSTITUTES: EVOLUTION FROM NON-CARRYING TO OXYGEN AND GAS CARRYING FLUIDS
Cabrales, Pedro; Intaglietta, Marcos
2013-01-01
The development of oxygen (O2) carrying blood substitutes has evolved from the goal of replicating blood O2 transports properties to that of preserving microvascular and organ function, reducing the inherent or potential toxicity of the material used to carry O2, and treating pathologies initiated by anemia and hypoxia. Furthermore, the emphasis has shifted from blood replacement fluid to “O2 therapeutics” that restore tissue oxygenation to specific tissues regions. This review covers the different alternatives, potential and limitations of hemoglobin based O2 carriers (HBOCs) and perfluorocarbon based O2 carriers (PFCOCs), with emphasis on the physiological conditions disturbed in the situation that they will be used. It describes how concepts learned from plasma expanders without O2 carrying capacity can be applied to maintain O2 delivery and summarizes the microvascular responses due to HBOCs and PFCOCs. This review also presents alternative applications of HBOCs and PFCOCs namely: 1) How HBOC O2 affinity can be engineered to target O2 delivery to hypoxic tissues; and 2) How the high gas solubility of PFCOCs provides new opportunities for carrying, dissolving and delivering gases with biological activity. It is concluded that current blood substitutes development has amplified their applications horizon by devising therapeutic functions for oxygen carriers requiring limited O2 delivery capacity restoration. Conversely, full, blood-like O2 carrying capacity re-establishment awaits control of O2 carrier toxicity. PMID:23820271
Mixed ionic and electronic conducting membranes for hydrogen generation and separation
NASA Astrophysics Data System (ADS)
Cui, Hengdong
Dense mixed ionic and electronic conducting (MIEC) membranes are receiving increasing attention due to their potential for application as gas separation membranes to separate oxygen from air. The objective of this work is to study a novel, chemically-assisted separation process that utilizes oxygen-ion and electron-conducting MIECs for generating and separating hydrogen from steam. This research aims at exploring new routes and materials for high-purity hydrogen production for use in fuel cells and hydrogen-based internal combustion (IC) engines. In this approach, hydrocarbon fuel such as methane is fed to one side of the membrane, while steam is fed to the other side. The MIEC membrane separation process involves steam dissociation and oxidation of the fuel. The oxygen ions formed as a result of steam dissociation are transported across the membrane in a coupled transport process with electrons being transported in the opposite direction. Upon reaching the fuel side of the membrane, the oxygen ions oxidize the hydrocarbon. This process results in hydrogen production on the steam side of the membrane. The oxygen partial pressure gradient across the membrane is the driving force for this process. In this work, a novel, dual-phase composite MIEC membrane system comprising of rare-earth doped ceria with high oxygen ion conductivity and donor-doped strontium titanate with high electronic conductivity were investigated. The chemical diffusion coefficient and surface exchange coefficient have been measured using the electrical conductivity relaxation (ECR) technique. These two parameters control the rate of oxygen permeation across the membrane. The permeation data have been fit with a kinetic model that incorporates oxygen surface exchange on two sides of the membrane and bulk transport of oxygen through the membrane. This material has higher bulk diffusion coefficient and surface exchange reaction rate compared to other known MIEC conductors under the process conditions of interest. Over 10 mumol·cm-2·s-1 (micromoles per square cm per second) of area specific hydrogen flux has been achieved employing a membrane of this material with thickness of 0.2 mm. This flux is several orders of magnitude higher than the hydrogen generation rates reported using other MIEC materials under similar operating conditions.
Hoffmann, Federico G.; Opazo, Juan C.; Storz, Jay F.
2010-01-01
Natural selection often promotes evolutionary innovation by coopting preexisting genes for new functions, and this process may be greatly facilitated by gene duplication. Here we report an example of cooptive convergence where paralogous members of the globin gene superfamily independently evolved a specialized O2 transport function in the two deepest branches of the vertebrate family tree. Specifically, phylogenetic evidence demonstrates that erythroid-specific O2 transport hemoglobins evolved independently from different ancestral precursor proteins in jawed vertebrates (gnathostomes) and jawless fish (cyclostomes, represented by lamprey and hagfish). A comprehensive phylogenetic analysis of the vertebrate globin gene superfamily revealed that the erythroid hemoglobins of cyclostomes are orthologous to the cytoglobin protein of gnathostome vertebrates, a hexacoordinate globin that has no O2 transport function and that is predominantly expressed in fibroblasts and related cell types. The phylogeny reconstruction also revealed that vertebrate-specific globins are grouped into four main clades: (i) cyclostome hemoglobin + cytoglobin, (ii) myoglobin + globin E, (iii) globin Y, and (iv) the α- and β-chain hemoglobins of gnathostomes. In the hemoglobins of gnathostomes and cyclostomes, multisubunit quaternary structures provide the basis for cooperative O2 binding and allosteric regulation by coupling the effects of ligand binding at individual subunits with interactions between subunits. However, differences in numerous structural details belie their independent origins. This example of convergent evolution of protein function provides an impressive demonstration of the ability of natural selection to cobble together complex design solutions by tinkering with different variations of the same basic protein scaffold. PMID:20660759
Exploring a microbial ecosystem approach to modeling deep ocean biogeochemical cycles
NASA Astrophysics Data System (ADS)
Zakem, E.; Follows, M. J.
2014-12-01
Though microbial respiration of organic matter in the deep ocean governs ocean and atmosphere biogeochemistry, it is not represented mechanistically in current global biogeochemical models. We seek approaches that are feasible for a global resolution, yet still reflect the enormous biodiversity of the deep microbial community and its associated metabolic pathways. We present a modeling framework grounded in thermodynamics and redox reaction stoichiometry that represents diverse microbial metabolisms explicitly. We describe a bacterial/archaeal functional type with two parameters: a growth efficiency representing the chemistry underlying a bacterial metabolism, and a rate limitation given by the rate of uptake of each of the necessary substrates for that metabolism. We then apply this approach to answer questions about microbial ecology. As a start, we resolve two dominant heterotrophic respiratory pathways- reduction of oxygen and nitrate- and associated microbial functional types. We combine these into an ecological model and a two-dimensional ocean circulation model to explore the organization, biogeochemistry, and ecology of oxygen minimum zones. Intensified upwelling and lateral transport conspire to produce an oxygen minimum at mid-depth, populated by anaerobic denitrifiers. This modeling approach should ultimately allow for the emergence of bacterial biogeography from competition of metabolisms and for the incorporation of microbial feedbacks to the climate system.
NASA Technical Reports Server (NTRS)
Wasser, B.; Donahue, T. M.
1979-01-01
Analysis of the OGO 6 OI green line nightglow photometer experiment has been carried out for eight cases when the alignment of the spacecraft was such that local emission rates could be determined below the altitude of maximum emission and down to about 80 km. The results obtained show that the vertical gradient of the emission rate between 95 and 80 km alternates between regions of very rapid variation and very slow variation spaced on a scale of 5-10 deg of latitude. Maps showing isoemissivity contours and isodensity contours for atomic oxygen concentration in vertical meridional planes are presented. The densities are computed under three assumptions concerning excitation mechanisms. Comparisons of the vertical variations of oxygen density with the results of a time dependent theory suggest the regions of strong downward transport alternate in latitude with regions of weak transport near 90 km. In the first case, conversion of O to O3 at night appears to be overwhelmed by downward transport of O.
NASA Astrophysics Data System (ADS)
Fazeli, Mohammadreza; Hinebaugh, James; Fishman, Zachary; Tötzke, Christian; Lehnert, Werner; Manke, Ingo; Bazylak, Aimy
2016-12-01
Understanding how compression affects the distribution of liquid water and gaseous oxygen in the polymer electrolyte membrane fuel cell gas diffusion layer (GDL) is vital for informing the design of improved porous materials for effective water management strategies. Pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures. The oxygen transport resistance was predicted for each sample under dry and partially saturated conditions. A favorable GDL compression value for a preferred liquid water distribution and oxygen diffusion was found for Toray TGP-H-090 (10%), yet an optimum compression value was not recognized for SGL Sigracet 25BC. SGL Sigracet 25BC exhibited lower transport resistance values compared to Toray TGP-H-090, and this is attributed to the additional diffusion pathways provided by the microporous layer (MPL), an effect that is particularly significant under partially saturated conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Air Products and Chemicals
2008-09-30
An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology tomore » prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.« less
Wagner, P D; Simonson, T S; Wei, G; Wagner, H E; Wuren, T; Qin, G; Yan, M; Ge, R L
2015-11-01
What is the topic of this review? Recent developments link relatively lower hemoglobin concentration in Tibetans at high altitude to exercise capacity and components of oxygen transport. What advances does it highlight? Haemoglobin concentration (ranging from 15.2 to 22.9 g dl(-1) ) in Tibetan males was negatively associated with peak oxygen (O2 ) uptake per kilogram, cardiac output and muscle O2 diffusion conductance. Most variance in the peak O2 uptake per kilogram of Tibetan males was attributed to cardiac output, muscle diffusional conductance and arterial partial pressure of CO2 . The mechanisms underlying these differences in oxygen transport in Tibetans require additional analyses. Despite residence at >4000 m above sea level, many Tibetan highlanders, unlike Andean counterparts and lowlanders at altitude, exhibit haemoglobin concentration ([Hb]) within the typical sea-level range. Genetic adaptations in Tibetans are associated with this relatively low [Hb], yet the functional relevance of the lower [Hb] remains unknown. To address this, we examined each major step of the oxygen transport cascade [ventilation (VE), cardiac output (QT) and diffusional conductance in lung (DL) and muscle (DM)] in Tibetan males at maximal exercise on a cycle ergometer. Ranging from 15.2 to 22.9 g dl(-1) , [Hb] was negatively associated with peak O2 uptake per kilogram (r = -0.45, P < 0.05) and both cardiac output (QT/kg: r = -0.54, P < 0.02) and muscle O2 diffusion conductance (DM/kg: r = -0.44, P < 0.05) but not ventilation, arterial partial pressure of O2 or pulmonary diffusing capacity. Most variance in peak O2 uptake per kilogram was attributed to QT, DM and arterial partial pressure of CO2 (r(2) = 0.90). In summary, lack of polycythaemia in Tibetans is associated with increased exercise capacity, which is explained by elevated cardiac, muscle and, to a small extent, ventilatory responses rather than pulmonary gas exchange. Whether lower [Hb] is the cause or result of these changes in O2 transport or is causally unrelated will require additional study. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
40 CFR 80.1660 - Prohibited acts.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., supply, offer for supply, store or transport gasoline, oxygenate, or ethanol denaturant that does not...) Causing violating gasoline, oxygenate, or ethanol denaturant to be in the distribution system. Cause gasoline, oxygenate, or ethanol denaturant to be in the distribution system which does not comply with an...
NASA Astrophysics Data System (ADS)
Das, Tridip
Understanding of the vacancy formation, interaction, increasing its concentration and diffusion, and controlling its chemical strain will advance the design of mixed ionic and electronic conductor (MIEC) materials via element doping and strain engineering. This is especially central to improve the performance of the solid oxide fuel cell (SOFC), an energy conversion device for sustainable future. The oxygen vacancy concentration grows exponentially with the temperature at dilute vacancy concentration but not at higher concentration, or even decreases due to oxygen vacancy interaction and vacancy ordered phase change. This limits the ionic conductivity. Using density functional theory (DFT), we provided fundamental understanding on how oxygen vacancy interaction originates in one of the typical MIEC, La1-xSrxFeO3-delta (LSF). The vacancy interaction is determined by the interplay of the charge state of multi-valence ion (Fe), aliovalent doping (La/Sr ratio), the crystal structure, and the oxygen vacancy concentration and/or nonstoichiometry (delta). It was found excess electrons left due to the formation of a neutral oxygen vacancy get distributed to Fe directly connected to the vacancy or to the second nearest neighboring Fe, based on crystal field splitting of Fe 3d orbital in different Fe-O polyhedral coordination. The progressively larger polaron size and anisotropic shape changes with increasing Sr-content resulted in increasing oxygen vacancy interactions, as indicated by an increase in the oxygen vacancy formation energy above a critical delta threshold. This was consistent with experimental results showing that Sr-rich LSF and highly oxygen deficient compositions are prone to oxygen-vacancy-ordering-induced phase transformations, while Sr-poor and oxygen-rich LSF compositions are not. Since oxygen vacancy induced phase transformations, cause a decrease in the mobile oxygen vacancy site fraction (X), both delta and X were predicted as a function of temperature and oxygen partial pressure, for multiple LSF compositions and phases using a combined thermodynamics and DFT approach. A detailed oxygen vacancy migration barrier calculation gave the oxygen ionic diffusivity and conductivity. Oxygen vacancy also causes chemical strain, which was treated as a scalar in the literature. However, in many materials, it should be a tensor, which is anisotropic. We illustrate this effect on CeO2, in which it explained a puzzling experiment, which shows significant amplification of measured strain on applied bias in non-stoichiometric Gd doped ceria. The presence of highly localized 4f valence orbital in Ce causes charge disproportionation on the formation of neutral oxygen vacancy, producing anisotropic chemical strain in ceria with cubic symmetry. Understanding of delta and X and anisotropic chemical strain in the lattice has led to the design of better MIEC via element doping and strain engineering of the lattice.
NASA Astrophysics Data System (ADS)
Lee, Jennifer; Kozikowski, Raymond; Wankhede, Mamta; Sorg, Brian S.
2011-02-01
Abnormal microvascular function and angiogenesis are key components of various diseases that can contribute to the perpetuation of the disease. Several skin diseases and ophthalmic pathologies are characterized by hypervascularity, and in cancer the microvasculature of tumors is structurally and functionally abnormal. Thus, the microvasculature can be an important target for treatment of diseases characterized by abnormal microvasculature. Motivated largely by cancer research, significant effort has been devoted to research on drugs that target the microvasculature. Several vascular targeting drugs for cancer therapy are in clinical trials and approved for clinical use, and several off-label uses of these drugs have been reported for non-cancer diseases. The ability to image and measure parameters related to microvessel function preclinically in laboratory animals can be useful for development and comparison of vascular targeting drugs. For example, blood supply time measurements give information related to microvessel morphology and can be measured with first-pass fluorescence imaging. Hemoglobin saturation measurements give an indication of microvessel oxygen transport and can be measured with spectral imaging. While each measurement individually gives some information regarding microvessel function, the measurements together may yield even more information since theoretically microvessel morphology can influence microvessel oxygenation, especially in metabolically active tissue like tumors. However, these measurements have not yet been combined. In this study, we report the combination of blood supply time imaging and hemoglobin saturation imaging of microvessel networks in tumors using widefield fluorescence and spectral imaging, respectively. The correlation between the measurements in a mouse mammary tumor is analyzed.
Qi, Xuejun; Song, Wenwu; Shi, Jianwei
2017-01-01
Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.
Song, Wenwu; Shi, Jianwei
2017-01-01
Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite’s chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface. PMID:28301544
Durães, André Rodrigues; Figueira, Fernando Augusto Marinho dos Santos; Lafayette, André Rabelo; Martins, Juliana de Castro Solano; Juliano Cavalcante de, Sá
2015-01-01
A 17-year-old Brazilian male presented with progressive dyspnea for 15 days, worsening in the last 24 hours, and was admitted in respiratory failure and cardiogenic shock, with multiple organ dysfunctions. Echocardiography showed a left ventricle ejection fraction of 11%, severe diffuse hypokinesia, and a systolic pulmonary artery pressure of 50mmHg, resulting in the need for hemodynamic support with dobutamine (20mcg/kg/min) and noradrenaline (1.7mcg/kg/min). After 48 hours with no clinical or hemodynamic improvement, an extracorporeal membrane oxygenation was implanted. The patient presented with hemodynamic, systemic perfusion and renal and liver function improvements; however, his cardiac function did not recover after 72 hours, and he was transfer to another hospital. Air transport was conducted from Salvador to Recife in Brazil. A heart transplant was performed with rapid recovery of both liver and kidney functions, as well as good graft function. Histopathology of the explanted heart showed chronic active myocarditis and amastigotes of Trypanosoma cruzi. The estimated global prevalence of T. cruzi infections declined from 18 million in 1991, when the first regional control initiative began, to 5.7 million in 2010. Myocarditis is an inflammatory disease due to infectious or non-infectious conditions. Clinical manifestation is variable, ranging from subclinical presentation to refractory heart failure and cardiogenic shock. Several reports suggest that the use of extracorporeal membrane oxygenation in patients presenting with severe refractory myocarditis is a potential bridging therapy to heart transplant when there is no spontaneous recovery of ventricular function. In a 6-month follow-up outpatient consult, the patient presented well and was asymptomatic. PMID:26761479
Asgari, Hanie; Soltani, M; Sefidgar, Mostafa
2018-07-01
Hypoxia as one of the principal properties of tumor cells is a reaction to the deprivation of oxygen. The location of tumor cells could be identified by assessment of oxygen and nutrient level in human body. Positron emission tomography (PET) is a well-known non-invasive method that is able to measure hypoxia based on the FMISO (Fluoromisonidazole) tracer dynamic. This paper aims to study the PET tracer concentration through convection-diffusion-reaction equations in a real human capillary-like network. A non-uniform oxygen pressure along the capillary path and convection mechanism for FMISO transport are taken into account to accurately model the characteristics of the tracer. To this end, a multi-scale model consists of laminar blood flow through the capillary network, interstitial pressure, oxygen pressure, FMISO diffusion and FMISO convection transport in the extravascular region is developed. The present model considers both normal and tumor tissue regions in computational domain. The accuracy of numerical model is verified with the experimental results available in the literature. The convection and diffusion types of transport mechanism are employed in order to calculate the concentration of FMISO in the normal and tumor sub-domain. The influences of intravascular oxygen pressure, FMISO transport mechanisms, capillary density and different types of tissue on the FMISO concentration have been investigated. According to result (Table 4) the convection mechanism of FMISO molecules transportation is negligible, but it causes more accuracy of the proposed model. The approach of present study can be employed in order to investigate the effects of various parameters, such as tumor shape, on the dynamic behavior of different PET tracers, such as FDG, can be extended to different case study problems, such as drug delivery. Copyright © 2018 Elsevier Inc. All rights reserved.
Payne, G.A.
1994-01-01
The Minnesota River, 10 major tributaries, and 21 springs were sampled to determine the sources and transport of sediment, nutrients, and oxygen- demanding substances. The study was part of a four-year assessment of non-point source pollution in the Minnesota River Basin. Runoff from tributary watersheds was identified as the primary source of suspended sediment and nutrients in the Minnesota River mainstem. Suspended-sediment, phosphorus, and nitrate concentrations were elevated in all major tributaries during runoff, but tributaries in the south-central and eastern part of the basin produce the highest annual loading to the mainstem because of higher annual precipitation and runoff in that part of the basin. Particle-size analyses showed that most of the suspended sediment in transport consisted of silt- and clay-size material. Phosphorus enrichment was indicated throughout the mainstem by total phosphorus concentrations that ranged from 0.04 to 0.48 mg/L with a median value of 0.22 mg/L, and an interquartile range of 0.15 to 0.29 mg/L. Nitrate concentrations periodically exceeded drinking water standards in tributaries draining the south-central and eastern part of the basin. Oxygen demand was most elevated during periods of summer low flow. Correlations between levels of biochemical oxygen demand and levels of algal productivity suggest that algal biomass comprises much of the oxygen-demanding material in the mainstem. Transport of sediment, nutrients, and organic carbon within the mainstem was found to be conservative, with nearly all tributary inputs being transported downstream. Uptake and utilization of nitrate and orthophosphorus was indicated during low flow, but at normal and high flow, inputs of these constituents greatly exceeded biological utilization.
Hennek, Jonathan W; Smith, Jeremy; Yan, Aiming; Kim, Myung-Gil; Zhao, Wei; Dravid, Vinayak P; Facchetti, Antonio; Marks, Tobin J
2013-07-24
In oxide semiconductors, such as those based on indium zinc oxide (IXZO), a strong oxygen binding metal ion ("oxygen getter"), X, functions to control O vacancies and enhance lattice formation, hence tune carrier concentration and transport properties. Here we systematically study, in the IXZO series, the role of X = Ga(3+) versus the progression X = Sc(3+) → Y(3+) → La(3+), having similar chemical characteristics but increasing ionic radii. IXZO films are prepared from solution over broad composition ranges for the first time via low-temperature combustion synthesis. The films are characterized via thermal analysis of the precursor solutions, grazing incidence angle X-ray diffraction (GIAXRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging. Excellent thin-film transistor (TFT) performance is achieved for all X, with optimal compositions after 300 °C processing exhibiting electron mobilities of 5.4, 2.6, 2.4, and 1.8 cm(2) V(-1) s(-1) for Ga(3+), Sc(3+), Y(3+), and La(3+), respectively, and with I(on)/I(off) = 10(7)-10(8). Analysis of the IXZO TFT positive bias stress response shows X = Ga(3+) to be superior with mobilities (μ) retaining >95% of the prestress values and threshold voltage shifts (ΔV(T)) of <1.6 V, versus <85% μ retention and ΔV(T) ≈ 20 V for the other trivalent ions. Detailed microstructural analysis indicates that Ga(3+) most effectively promotes oxide lattice formation. We conclude that the metal oxide lattice formation enthalpy (ΔH(L)) and metal ionic radius are the best predictors of IXZO oxygen getter efficacy.
Interface-engineered oxygen octahedral coupling in manganite heterostructures
NASA Astrophysics Data System (ADS)
Huijben, M.; Koster, G.; Liao, Z. L.; Rijnders, G.
2017-12-01
Control of the oxygen octahedral coupling (OOC) provides a large degree of freedom to manipulate physical phenomena in complex oxide heterostructures. Recently, local tuning of the tilt angle has been found to control the magnetic anisotropy in ultrathin films of manganites and ruthenates, while symmetry control can manipulate the metal insulator transition in nickelate thin films. The required connectivity of the octahedra across the heterostructure interface enforces a geometric constraint to the 3-dimensional octahedral network in epitaxial films. Such geometric constraint will either change the tilt angle to retain the connectivity of the corner shared oxygen octahedral network or guide the formation of a specific symmetry throughout the epitaxial film. Here, we will discuss the control of OOC in manganite heterostructures by interface-engineering. OOC driven magnetic and transport anisotropies have been realized in LSMO/NGO heterostructures. Competition between the interfacial OOC and the strain further away from the interface leads to a thickness driven sharp transition of the anisotropic properties. Furthermore, octahedral relaxation leading to a change of p-d hybridization driven by interfacial OOC appears to be the strongest factor in thickness related variations of magnetic and transport properties in epitaxial LSMO films on NGO substrates. The results unequivocally link the atomic structure near the interfaces to the macroscopic properties. The strong correlation between a controllable oxygen network and the functionalities will have significant impact on both fundamental research and technological application of correlated perovskite heterostructures. By controlling the interfacial OOC, it is possible to pattern in 3 dimensions the magnetization to achieve non-collinear magnetization in both in-plane and out of plane directions, thus making the heterostructures promising for application in orthogonal spin transfer devices, spin oscillators, and low field sensors.
Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.
Fry, Brendan C; Edwards, Aurélie; Layton, Anita T
2015-05-01
The goal of this study was to investigate the reciprocal interactions among oxygen (O2), nitric oxide (NO), and superoxide (O2 (-)) and their effects on medullary oxygenation and urinary output. To accomplish that goal, we developed a detailed mathematical model of solute transport in the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and O2 (-) concentration in the OM and upper IM. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. The model further predicts that due to the nonlinear interactions among O2, NO, and O2 (-), the effects of NO and O2 (-) on sodium transport, osmolality, and medullary oxygenation cannot be gleaned by considering each solute's effect in isolation. An additional simulation suggests that a sufficiently large reduction in tubular transport efficiency may be the key contributing factor, more so than oxidative stress alone, to hypertension-induced medullary hypoxia. Moreover, model predictions suggest that urine Po2 could serve as a biomarker for medullary hypoxia and a predictor of the risk for hospital-acquired acute kidney injury. Copyright © 2015 the American Physiological Society.
Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration
Edwards, Aurélie; Layton, Anita T.
2015-01-01
The goal of this study was to investigate the reciprocal interactions among oxygen (O2), nitric oxide (NO), and superoxide (O2−) and their effects on medullary oxygenation and urinary output. To accomplish that goal, we developed a detailed mathematical model of solute transport in the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and O2− concentration in the OM and upper IM. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. The model further predicts that due to the nonlinear interactions among O2, NO, and O2−, the effects of NO and O2− on sodium transport, osmolality, and medullary oxygenation cannot be gleaned by considering each solute's effect in isolation. An additional simulation suggests that a sufficiently large reduction in tubular transport efficiency may be the key contributing factor, more so than oxidative stress alone, to hypertension-induced medullary hypoxia. Moreover, model predictions suggest that urine Po2 could serve as a biomarker for medullary hypoxia and a predictor of the risk for hospital-acquired acute kidney injury. PMID:25651567
Curran, L S; Zhuang, J; Droma, T; Moore, L G
1998-01-01
Few environments challenge human populations more than high altitude, since the accompanying low oxygen pressures (hypoxia) are pervasive and impervious to cultural modification. Work capacity is an important factor in a population's ability to thrive in such an environment. The performance of work or exercise is a measure of the integrated functioning of the O2 transport system, with maximal O2 uptake (.VO2max) a convenient index of that function. Hypoxia limits the ability to transport oxygen: maximal O2 uptake decreases with ascent to high altitude, and years of high altitude residence do not restore sea level .VO2max values. Since Tibetans live and work at some of the highest altitudes in the world, their ability to exercise at very high altitude (>4,000 m) may define the limits of human adaptation to hypoxia. We transported 20 Tibetan lifelong residents of > or =4,400 m down to 3,658 m in order to compare them with 16 previously studied Tibetan residents of Lhasa (3,658 m). The two groups of Tibetans were matched for age, weight, and height. All studies were performed in Lhasa within 3 days of the 4,400 m Tibetans' arrival. Standard test protocol and criteria were used for attaining .VO2max on a Monark bicycle ergometer, while measuring oxygen uptake (.VO2, ml/kg - min STPD), heart rate (bpm), minute ventilation (VE, 1/min BTPS), and arterial oxygen saturation (SaO2, %). The 4,400 m compared with 3,658 m residents had, at maximal effort, similar .VO2 (48.5 +/- 1.2 vs. 51.2 +/- 1.4 ml/kg - min, P = NS), higher workload attained (211 +/- 6 vs. 177 +/- 7 watts, P < 0.01), lower heart rate(176 +/- 2 vs. 191 +/- 2 bpm, P < 0.01), lower ventilation (127 +/- 5 vs. 149 +/- 5 l/min BTPS, P < 0.01), and similar SaO2(81.9 +/- 1.0 vs. 83.7 +/- 1.2%, P = NS). Furthermore, over the range of submaximal workloads, 4,400 m compared with 3,658 m Tibetans had lower .VO2 (P < 0.01), lower heart rates (P < 0.01), and lower ventilation (P < 0.01) and SaO2 (P < 0.05). We conclude that Tibetans living at 4,400 m compared with those residing at 3,658 m achieve greater work performance for a given .VO2 at submaximal and maximal workloads with less cardiorespiratory effort.
Pulsatile blood flow and oxygen transport past a circular cylinder.
Zierenberg, Jennifer R; Fujioka, Hideki; Hirschl, Ronald B; Bartlett, Robert H; Grotberg, James B
2007-04-01
The fundamental study of blood flow past a circular cylinder filled with an oxygen source is investigated as a building block for an artificial lung. The Casson constitutive equation is used to describe the shear-thinning and yield stress properties of blood. The presence of hemoglobin is also considered. Far from the cylinder, a pulsatile blood flow in the x direction is prescribed, represented by a time periodic (sinusoidal) component superimposed on a steady velocity. The dimensionless parameters of interest for the characterization of the flow and transport are the steady Reynolds number (Re), Womersley parameter (alpha), pulsation amplitude (A), and the Schmidt number (Sc). The Hill equation is used to describe the saturation curve of hemoglobin with oxygen. Two different feed-gas mixtures were considered: pure O(2) and air. The flow and concentration fields were computed for Re=5, 10, and 40, 0< or =A< or =0.75, alpha=0.25, 0.4, and Schmidt number, Sc=1000. The Casson fluid properties result in reduced recirculations (when present) downstream of the cylinder as compared to a Newtonian fluid. These vortices oscillate in size and strength as A and alpha are varied. Hemoglobin enhances mass transport and is especially important for an air feed which is dominated by oxyhemoglobin dispersion near the cylinder. For a pure O(2) feed, oxygen transport in the plasma dominates near the cylinder. Maximum oxygen transport is achieved by operating near steady flow (small A) for both feed-gas mixtures. The time averaged Sherwood number, Sh, is found to be largely influenced by the steady Reynolds number, increasing as Re increases and decreasing with A. Little change is observed with varying alpha for the ranges investigated. The effect of pulsatility on Sh is greater at larger Re. Increasing Re aids transport, but yields a higher cylinder drag force and shear stresses on the cylinder surface which are potentially undesirable.
Ogino, Hirokazu; Nishimura, Naoki; Yamano, Yasuhiko; Ishikawa, Genta; Tomishima, Yutaka; Jinta, Torahiko; Takahashi, Osamu; Chohnabayashi, Naohiko
2016-01-01
High-flow oxygen is often administered to patients during emergency transport and can sometimes cause respiratory acidosis with disturbed consciousness, thereby necessitating mechanical ventilation. Although oxygen titration in chronic obstructive pulmonary disease patients during emergency transport reduces mortality rates, the clinical risk factors for respiratory acidosis in emergency settings are not fully understood. Therefore, we analyzed the clinical backgrounds of patients who developed respiratory acidosis during pre-hospital transport. This was a retrospective study of patients who arrived at our hospital by emergency transport in 2010 who received high-flow oxygen while in transit. Respiratory acidosis was defined by the following arterial blood gas readings: pH, ≤7.35; PaCO 2 , ≥45 mmHg; and HCO 3 - , ≥24 mmol/L. The risk factors were identified using multivariable logistic regression analysis. In 765 study patients, 66 patients showed respiratory acidosis. The following risk factors for respiratory acidosis were identified: age, ≥65 years (odds ratio [OR] 1.4; 95% confidence interval [CI], 0.7-2.8); transportation time, ≥10 min (OR 2.0; 95% CI, 1.1-3.7); three digits on the Japan Coma Scale (OR 3.1; 95% CI, 1.7-5.8); percutaneous oxygen saturation, ≤90% (OR 1.6; 95% CI, 0.8-3.0); tuberculosis (OR 4.5; 95% CI, 1.4-15.1); asthma (OR 1.8; 95% CI, 0.6-5.3); pneumonia (OR 1.5; 95% CI, 0.7-3.1); and lung cancer (OR 3.9; 95% CI, 1.5-10.1). These underlying diseases as risk factors included both comorbid diseases and past medical conditions. The factors identified may contribute to the development of respiratory acidosis. Further studies on preventing respiratory acidosis will improve the quality of emergency medical care.
Ogino, Hirokazu; Yamano, Yasuhiko; Ishikawa, Genta; Tomishima, Yutaka; Jinta, Torahiko; Takahashi, Osamu; Chohnabayashi, Naohiko
2015-01-01
Aim High‐flow oxygen is often administered to patients during emergency transport and can sometimes cause respiratory acidosis with disturbed consciousness, thereby necessitating mechanical ventilation. Although oxygen titration in chronic obstructive pulmonary disease patients during emergency transport reduces mortality rates, the clinical risk factors for respiratory acidosis in emergency settings are not fully understood. Therefore, we analyzed the clinical backgrounds of patients who developed respiratory acidosis during pre‐hospital transport. Methods This was a retrospective study of patients who arrived at our hospital by emergency transport in 2010 who received high‐flow oxygen while in transit. Respiratory acidosis was defined by the following arterial blood gas readings: pH, ≤7.35; PaCO 2, ≥45 mmHg; and HCO 3 −, ≥24 mmol/L. The risk factors were identified using multivariable logistic regression analysis. Results In 765 study patients, 66 patients showed respiratory acidosis. The following risk factors for respiratory acidosis were identified: age, ≥65 years (odds ratio [OR] 1.4; 95% confidence interval [CI], 0.7–2.8); transportation time, ≥10 min (OR 2.0; 95% CI, 1.1–3.7); three digits on the Japan Coma Scale (OR 3.1; 95% CI, 1.7–5.8); percutaneous oxygen saturation, ≤90% (OR 1.6; 95% CI, 0.8–3.0); tuberculosis (OR 4.5; 95% CI, 1.4–15.1); asthma (OR 1.8; 95% CI, 0.6–5.3); pneumonia (OR 1.5; 95% CI, 0.7–3.1); and lung cancer (OR 3.9; 95% CI, 1.5–10.1). These underlying diseases as risk factors included both comorbid diseases and past medical conditions. Conclusions The factors identified may contribute to the development of respiratory acidosis. Further studies on preventing respiratory acidosis will improve the quality of emergency medical care. PMID:29123744
Air breathing lithium power cells
Farmer, Joseph C.
2014-07-15
A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.
Detterich, Jon; Alexy, Tamas; Rabai, Miklos; Wenby, Rosalinda; Dongelyan, Ani; Coates, Thomas; Wood, John; Meiselman, Herbert
2013-02-01
Simple chronic transfusion therapy (CTT) is a mainstay for stroke prophylaxis in sickle cell anemia, but its effects on hemodynamics are poorly characterized. Transfusion improves oxygen-carrying capacity, reducing demands for high cardiac output. While transfusion decreases factors associated with vasoocclusion, including percent hemoglobin (Hb)S, reticulocyte count, and circulating cell-free Hb, it increases blood viscosity, which reduces microvascular flow. The hematocrit-to-viscosity ratio (HVR) is an index of red blood cell oxygen transport effectiveness that varies with shear stress and balances the benefits of improved oxygen capacity to viscosity-mediated impairment of microvascular flow. We hypothesized that transfusion would improve HVR at high shear despite increased blood viscosity, but would decrease HVR at low shear. To test this hypothesis, we examined oxygenated and deoxygenated blood samples from 15 sickle cell patients on CTT immediately before transfusion and again 12 to 120 hours after transfusion. Comparable changes in Hb, hematocrit (Hct), reticulocyte count, and HbS with transfusion were observed in all subjects. Viscosity, Hct, and high-shear HVR increased with transfusion while low-shear HVR decreased significantly. Decreased low-shear HVR suggests impaired oxygen transport to low-flow regions and may explain why some complications of sickle cell anemia are ameliorated by CTT and others may be made worse. © 2012 American Association of Blood Banks.
Zhao, Yuanyuan; Liu, Yang; Xu, Qianfeng; Barahman, Mark; Bartusik, Dorota; Greer, Alexander; Lyons, Alan M
2014-11-13
We describe physical-organic studies of singlet oxygen generation and transport into an aqueous solution supported on superhydrophobic surfaces on which silicon-phthalocyanine (Pc) particles are immobilized. Singlet oxygen ((1)O2) was trapped by a water-soluble anthracene compound and monitored in situ using a UV-vis spectrometer. When oxygen flows through the porous superhydrophobic surface, singlet oxygen generated in the plastron (i.e., the gas layer beneath the liquid) is transported into the solution within gas bubbles, thereby increasing the liquid-gas surface area over which singlet oxygen can be trapped. Higher photooxidation rates were achieved in flowing oxygen, as compared to when the gas in the plastron was static. Superhydrophobic surfaces were also synthesized so that the Pc particles were located in contact with, or isolated from, the aqueous solution to evaluate the relative effectiveness of singlet oxygen generated in solution and the gas phase, respectively; singlet oxygen generated on particles wetted by the solution was trapped more efficiently than singlet oxygen generated in the plastron, even in the presence of flowing oxygen gas. A mechanism is proposed that explains how Pc particle wetting, plastron gas composition and flow rate as well as gas saturation of the aqueous solution affect singlet oxygen trapping efficiency. These stable superhydrophobic surfaces, which can physically isolate the photosensitizer particles from the solution may be of practical importance for delivering singlet oxygen for water purification and medical devices.
Wan, Hao; Mao, Ya; Liu, Zixuan; Bai, Qingyou; Peng, Zhe; Bao, Jingjing; Wu, Gang; Liu, Yang; Wang, Deyu; Xie, Jingying
2017-04-10
As the first step during discharge, the mass transfer of oxygen should play a crucial role in Li-air batteries to tailor the growth of discharge products, however, not enough attention has been paid to this issue. Herein, we introduce an oxygen-enriching cosolvent, 1,2-(1,1,2,2-tetrafluoroethoxy) ethane (FE1), into the electrolyte, and investigate its influence on the discharge performance. The incorporation of this novel cosolvent consistently enhances the oxygen solubility of the electrolyte, and improves the oxygen diffusivity following a volcano-shape trend peaking at 50 % FE1. It is interesting that the discharge capacities obtained with the investigated electrolytes share the similar volcano trends as the oxygen transport under 50 mA g carbon -1 and higher current densities. The improved oxygen diffusion could benefit the volumetric utilization of the air cathode, especially at the separator side, probably owing to the fast oxygen transport to moderate its concentration gradient. Our results demonstrate the importance of oxygen provision, which easily becomes the capacity-determining factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microbial Fuel Cell Performance with a Pressurized Cathode Chamber
USDA-ARS?s Scientific Manuscript database
Microbial fuel cell (MFC) power densities are often constrained by the oxygen reduction reaction rate on the cathode electrode. One important factor for this is the normally low solubility of oxygen in the aqueous cathode solution creating mass transport limitations, which hinder oxygen reduction a...
Spin-Label Oximetry at Q- and W-Band
Subczynski, W.K.; Mainali, L.; Camenisch, T.G.; Froncisz, W.; Hyde, J.S.
2011-01-01
Spin-lattice relaxation times (T1s) of both small water-soluble spin labels in the aqueous phase as well as lipid-type spin labels in membranes increase when the microwave frequency increases from 2 to 35 GHz (Hyde et al., J. Phys. Chem. B 108 [2004] 9524–9529). The T1 measured at W-band (94 GHz) for the water-soluble spin labels CTPO and TEMPONE (Froncisz et al., J. Magn. Reson. 193 [2008] 297–304) is, however, shorter than when measured at Q-band (35 GHz). In this paper, the decreasing trends at W-band have been confirmed for commonly used lipid-type spin labels in model membranes. It is concluded that the longest values of T1 will generally be found at Q-band, noting that long values are advantageous for measurement of bimolecular collisions with oxygen. The contribution of dissolved molecular oxygen to the relaxation rate was found to be independent of microwave frequency up to 94 GHz for lipid-type spin labels in membranes. This contribution is expressed in terms of the oxygen transport parameter W = T1−1(Air) − T1−1(N2), which is a function of both concentration and translational diffusion of oxygen in the local environment of a spin label. The new capabilities in measurement of the oxygen transport parameter using saturation-recovery (SR) EPR at Q- and W-band have been demonstrated in saturated (DMPC) and unsaturated (POPC) lipid bilayer membranes with the use of stearic acid (n-SASL) and phosphatidylcholine (n-PC) spin labels, and compared with results obtained earlier at X-band. SR EPR spin-label oximetry at Q- and W-band has the potential to be a powerful tool for studying samples of small volume, ~30 nL. These benefits, together with other factors such as a higher resonator efficiency parameter and a new technique for canceling free induction decay signals, are discussed. PMID:21277814
Schenkel, Laila C.; Singh, Ratnesh K.; Michel, Vera; Zeisel, Steven H.; da Costa, Kerry-Ann; Johnson, Amy R.; Mudd, Harvey S.; Bakovic, Marica
2015-01-01
Fibroblasts from a patient with postural orthostatic tachycardia syndrome (POTS), who presented with low plasma choline and betaine, were studied to determine the metabolic characteristics of the choline deficiency. Choline is required for the synthesis of the phospholipid phosphatidylcholine (PC) and for betaine, an important osmoregulator. Here, choline transport, lipid homeostasis, and mitochondria function were analyzed in skin fibroblasts from POTS and compared with control cells. The choline transporter-like protein 1/solute carrier 44A1 (CTL1/SLC44A1) and mRNA expression were 2–3 times lower in POTS fibroblasts, and choline uptake was reduced 60% (P < 0.05). Disturbances of membrane homeostasis were observed by reduced ratios between PC:phosphatidylethanolamine and sphingomyelin:cholesterol, as well as by modified phospholipid fatty acid composition. Choline deficiency also impaired mitochondria function, which was observed by a reduction in oxygen consumption, mitochondrial potential, and glycolytic activity. When POTS cells were treated with choline, transporter was up-regulated, and uptake of choline increased, offering an option for patient treatment. The characteristics of the POTS fibroblasts described here represent a first model of choline and CTL1/SLC44A1 deficiency, in which choline transport, membrane homeostasis, and mitochondrial function are impaired.—Schenkel, L. C., Singh, R. K., Michel, V., Zeisel, S. H., da Costa, K.-A., Johnson, A. R., Mudd, H. S., Bakovic, M. Mechanism of choline deficiency and membrane alteration in postural orthostatic tachycardia syndrome primary skin fibroblasts. PMID:25466896
Wang, D; Zhao, Y; Zhang, Y; Zhang, T; Shang, X; Wang, J; Liu, Y; Kong, Q; Sun, B; Mu, L; Liu, X; Wang, G; Li, H
2013-05-01
Glutamate is the major mediator of excitotoxic neuronal death following cerebral ischemia. Under severe ischemic conditions, glutamate transporters can functionally reverse to release glutamate, thereby inducing further neuronal injury. Hypothermia has been shown to protect neurons from brain ischemia. However, the mechanism(s) involved remain unclear. Therefore, the aim of this study was to investigate the mechanism(s) mediating glutamate release during brain ischemia-reperfusion injury under hypothermic conditions. Neuron/astrocyte co-cultures were exposed to oxygen-glucose deprivation (OGD) at various temperatures for 2h, and cell viability was assayed 12h after reoxygenation. PI and MAP-2 staining demonstrated that hypothermia significantly decreased neuronal injury. Furthermore, [(3)H]-glutamate uptake assays showed that hypothermia protected rat primary cortical cultures against OGD reoxygenation-induced injury. Protein levels of the astrocytic glutamate transporter, GLT-1, which is primarily responsible for the clearance of extracellular glutamate, were also found to be reduced in a temperature-dependent manner. In contrast, expression of GLT-1 in astrocyte-enriched cultures was found to significantly increase following the addition of neuron-conditioned medium maintained at 37 °C, and to a lesser extent with neuron-conditioned medium at 33 °C. In conclusion, the neuroprotective effects of hypothermia against brain ischemia-reperfusion injury involve down-regulation of astrocytic GLT-1, which mediates the reverse transport of glutamate. Moreover, this process may be regulated by molecules secreted by stressed neurons. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Oxygen Transport and Root Respiration of Maize Seedlings
Saglio, Pierre H.; Raymond, Philippe; Pradet, Alain
1983-01-01
Oxygen uptake and ATP/ADP ratio were simultaneously monitored during incubation of excised maize (Zea mays L. INRA 508) root tips under varying O2 partial pressure. Both variables were independent of O2 tension until a critical O2 pressure was reached. Below this pressure, ATP/ADP ratio and respiratory rate declined. However, in tissues having a high glycolytic capacity, the correlation between the ATP/ADP ratio and the respiratory rate breaks down as O2 tension decreases, due to the increasing contribution of fermentative processes. In presence of 2 millimolar NaF, the ATP/ADP ratio varied solely as a function of the O2 tension, without interference by fermentative activity, and a close correlation links the ATP/ADP ratio and the respiratory rate of excised maize root tips over the whole range of O2 tensions tested. Using this correlation, a method is proposed for the quantitative determination of the relative cellular respiratory rate permitted by O2 transport from the aerial part of young maize seedlings along the seminal root placed in an anoxic environment. Data are presented which demonstrate the preeminent part played by the cortical air spaces in O2 transport. Their contribution to respiration was high in the first few centimeters nearest the seed and decreased rapidly as the distance from the aerated source increased. It is concluded that O2 transport might contribute to the survival or to adaptive responses of root tissues in flooded soils but that the ventilation of the apical growing zone was inadequate to sustain the growth. PMID:16663116
Chen, Guo
2010-01-01
Hepatic hollow fiber (HF) bioreactors constitute one type of extracorporeal bioartificial liver assist device (BLAD). Ideally, cultured hepatocytes in a BLAD should closely mimic the in vivo oxygenation environment of the liver sinusoid to yield a device with optimal performance. However, most BLADs, including hepatic HF bioreactors, suffer from O2 limited transport toward cultured hepatocytes, which reduces their performance. We hypothesize that supplementation of hemoglobin-based O2 carriers into the circulating cell culture medium of hepatic HF bioreactors is a feasible and effective strategy to improve bioreactor oxygenation and performance. We examined the effect of bovine hemoglobin (BvHb) supplementation (15 g/L) in the circulating cell culture medium of hepatic HF bioreactors on hepatocyte proliferation, metabolism, and varied liver functions, including biosynthesis, detoxification, and biotransformation. It was observed that BvHb supplementation supported the maintenance of a higher cell mass in the extracapillary space, improved hepatocyte metabolic efficiency (i.e., hepatocytes consumed much less glucose), improved hepatocyte capacity for drug metabolism, and conserved both albumin synthesis and ammonia detoxification functions compared to controls (no BvHb supplementation) under the same experimental conditions. PMID:20528678
Vasilopoulou, Maria; Douvas, Antonios M; Georgiadou, Dimitra G; Palilis, Leonidas C; Kennou, Stella; Sygellou, Labrini; Soultati, Anastasia; Kostis, Ioannis; Papadimitropoulos, Giorgos; Davazoglou, Dimitris; Argitis, Panagiotis
2012-10-03
Molybdenum oxide is used as a low-resistance anode interfacial layer in applications such as organic light emitting diodes and organic photovoltaics. However, little is known about the correlation between its stoichiometry and electronic properties, such as work function and occupied gap states. In addition, despite the fact that the knowledge of the exact oxide stoichiometry is of paramount importance, few studies have appeared in the literature discussing how this stoichiometry can be controlled to permit the desirable modification of the oxide's electronic structure. This work aims to investigate the beneficial role of hydrogenation (the incorporation of hydrogen within the oxide lattice) versus oxygen vacancy formation in tuning the electronic structure of molybdenum oxides while maintaining their high work function. A large improvement in the operational characteristics of both polymer light emitting devices and bulk heterojunction solar cells incorporating hydrogenated Mo oxides as hole injection/extraction layers was achieved as a result of favorable energy level alignment at the metal oxide/organic interface and enhanced charge transport through the formation of a large density of gap states near the Fermi level.
Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury
Tao, Ge; Kahr, Peter C.; Morikawa, Yuka; Zhang, Min; Rahmani, Mahdis; Heallen, Todd R.; Li, Lele; Sun, Zhao; Olson, Eric N.; Amendt, Brad A.; Martin, James F.
2016-01-01
Summary Myocardial infarction results in compromised myocardial function with heart failure due to insufficient cardiomyocyte self-renewal1. Unlike lower vertebrates, mammalian hearts only have a transient neonatal renewal capacity2. Reactivating primitive reparative ability in the mature heart requires knowledge of the mechanisms promoting early heart repair. By testing an established Hippo-deficient heart regeneration model for renewal promoting factors, we found that Pitx2 expression was induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal hearts failed to repair after apex resection while Pitx2-gain-of-function in adult cardiomyocytes conferred reparative ability after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo effector, Yap. Furthermore, Nrf2, a regulator of antioxidant response3, directly regulated Pitx2 expression and subcellular localization. Pitx2 mutant myocardium had elevated reactive oxygen species levels while antioxidant supplementation suppressed the Pitx2-loss-of-function phenotype. These findings reveal a genetic pathway, activated by tissue damage that is essential for cardiac repair. PMID:27251288
Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury.
Tao, Ge; Kahr, Peter C; Morikawa, Yuka; Zhang, Min; Rahmani, Mahdis; Heallen, Todd R; Li, Lele; Sun, Zhao; Olson, Eric N; Amendt, Brad A; Martin, James F
2016-06-02
Myocardial infarction results in compromised myocardial function and heart failure owing to insufficient cardiomyocyte self-renewal. Unlike many vertebrates, mammalian hearts have only a transient neonatal renewal capacity. Reactivating primitive reparative ability in the mature mammalian heart requires knowledge of the mechanisms that promote early heart repair. By testing an established Hippo-deficient heart regeneration mouse model for factors that promote renewal, here we show that the expression of Pitx2 is induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal mouse hearts failed to repair after apex resection, whereas adult mouse cardiomyocytes with Pitx2 gain-of-function efficiently regenerated after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo pathway effector Yap. Furthermore, Nrf2, a regulator of the antioxidant response, directly regulated the expression and subcellular localization of Pitx2. Pitx2 mutant myocardium had increased levels of reactive oxygen species, while antioxidant supplementation suppressed the Pitx2 loss-of-function phenotype. These findings reveal a genetic pathway activated by tissue damage that is essential for cardiac repair.
Crossley, Janna; Elsey, Ruth M.; Dzialowski, Edward M.; Shiels, Holly A.; Crossley, Dane A.
2016-01-01
The effect of hypoxia on cellular metabolism is well documented in adult vertebrates, but information is entirely lacking for embryonic organisms. The effect of hypoxia on embryonic physiology is particularly interesting, as metabolic responses during development may have life-long consequences, due to developmental plasticity. To this end, we investigated the effects of chronic developmental hypoxia on cardiac mitochondrial function in embryonic and juvenile American alligators (Alligator mississippiensis). Alligator eggs were incubated in 21% or 10% oxygen from 20 to 90% of embryonic development. Embryos were either harvested at 90% development or allowed to hatch and then reared in 21% oxygen for 3 yr. Ventricular mitochondria were isolated from embryonic/juvenile alligator hearts. Mitochondrial respiration and enzymatic activities of electron transport chain complexes were measured with a microrespirometer and spectrophotometer, respectively. Developmental hypoxia induced growth restriction and increased relative heart mass, and this phenotype persisted into juvenile life. Embryonic mitochondrial function was not affected by developmental hypoxia, but at the juvenile life stage, animals from hypoxic incubations had lower levels of Leak respiration and higher respiratory control ratios, which is indicative of enhanced mitochondrial efficiency. Our results suggest developmental hypoxia can have life-long consequences for alligator morphology and metabolic function. Further investigations are necessary to reveal the adaptive significance of the enhanced mitochondrial efficiency in the hypoxic phenotype. PMID:27707718
Hyperthermal atomic oxygen generator
NASA Technical Reports Server (NTRS)
Khandelwal, Govind S.; Wu, Dongchuan
1990-01-01
Characterization of the transport properties of oxygen through silver was continued. Specifically, experiments measuring the transport through Ag(111), Ag(110), Ag(100) single crystals and through Ag0.05 Zr alloy were completed. In addition, experiments using glow discharge excitation of oxygen to assist in the transport were completed. It was found that the permeability through the different orientations of single crystal Ag was the same, but significant differences existed in the diffusivity. The experimental ratio of diffusivities, however, was in reasonable agreement with theoretical estimates. Since the solubilities of orientations must be the same, this suggests some problems with the assumption K = DS. The glow discharge experiments show that there is a substantial increase in transport (factor of six) when the upstream pressure is dissociated to some fraction of atoms (which have a much higher sticking coefficient). These results indicate that there is a significant surface limitation because of dissociative adsorption of the molecules. Experiments with the Ag0.05 Zr alloy and its high-grain boundary and defect density show a permeability of greater than a factor of two over ordinary polycrystalline Ag, but it is unclear as to whether this is because of enhanced transport through these defects or whether the Zr and defects on the surface increased the sticking coefficient and therefore the transport.
Measuring the viscosity of whole bovine lens using a fiber optic oxygen sensing system
Thao, Mai T.; Perez, Daniel; Dillon, James
2014-01-01
Purpose To obtain a better understanding of oxygen and nutrient transport within the lens, the viscosity of whole lenses was investigated using a fiber optic oxygen sensor (optode). The diffusion coefficient of oxygen was calculated using the Stokes-Einstein equation at the slip boundary condition. Methods The optode was used to measure the oxygen decay signal in samples consisting of different glycerol/water solutions with known viscosities. The oxygen decay signal was fitted to a double exponential decay rate equation, and the lifetimes (tau) were calculated. It was determined that the tau-viscosity relationship is linear, which served as the standard curve. The same procedure was applied to fresh bovine lenses, and the unknown viscosity of the bovine lens was calculated from the tau-viscosity relationship. Results The average viscosity in a whole bovine lens was determined to be 5.74±0.88 cP by our method. Using the Stokes-Einstein equation at the slip boundary condition, the diffusion coefficient for oxygen was calculated to be 8.2 × 10−6 cm2/s. Conclusions These data indicate a higher resistance to flow for oxygen and nutrients in the lens than what is currently assumed in the literature. Overall, this study allows a better understanding of oxygen transport within the lens. PMID:24505211
All About Oxygen in the Ocean: Cheap, Quick and Easy Experiments for Pupils Grades 5 to 10
NASA Astrophysics Data System (ADS)
Soria-Dengg, S.
2015-12-01
The collaborative research project (SFB 754) at GEOMAR Helmholtz-Centre for Ocean Research Kiel, Germany addresses among others the decreasing concentrations of oxygen in the oceans. The school outreach component of the SFB 754 a project funded by the German Science Foundation aims to spread the science behind ocean de-oxygenation in secondary schools in Germany. To realise this goal, a series of hands-on experiments have been developed on different topics like gas solubility in water, gas transport in the ocean, oxygen production by phytoplankton, oxygen consumption by bacteria and experiments on nutrient uptake by phytoplankton. The experiments developed are simple, using low cost and reusable materials thus ensuring affordability in schools. For the hands-on session the following experiments will be presented: (1) The effects of temperature, oxygen partial pressure, nature of solute and nature of solvent on the solubility of oxygen in water will be demonstrated using Luer-Lock syringes, (2) Oxygen transport from the ocean surface to the deep will be shown in an experiment using a modification of the "blue-bottle" experiment, and (3) Simulation of ocean circulation employing a 2-dimensional tank. Applications and experiment ideas using immobilised phytoplankton and other procedures suitable for schools for measuring oxygen consumption by bacteria will be introduced in a poster presentation.
Aydin, Halit; Korte, Carsten; Janek, Jürgen
2013-01-01
The oxygen tracer diffusion coefficient describing transport along nano-/microscaled YSZ/Sc2O3 multilayers as a function of the thickness of the ion-conducting YSZ layers has been measured by isotope exchange depth profiling (IEDP), using secondary ion mass spectrometry (SIMS). The multilayer samples were prepared by pulsed laser deposition (PLD) on (0001) Al2O3 single crystalline substrates. The values for the oxygen tracer diffusion coefficient were analyzed as a combination of contributions from bulk and interface contributions and compared with results from YSZ/Y2O3-multilayers with similar microstructure. Using the Nernst–Einstein equation as the relation between diffusivity and electrical conductivity we find very good agreement between conductivity and diffusion data, and we exclude substantial electronic conductivity in the multilayers. The effect of hetero-interface transport can be well explained by a simple interface strain model. As the multilayer samples consist of columnar film crystallites with a defined interface structure and texture, we also discuss the influence of this particular microstructure on the interfacial strain. PMID:27877580
Khetan, Abhishek; Krishnamurthy, Dilip; Viswanathan, Venkatasubramanian
2018-03-20
One route toward sustainable land and aerial transportation is based on electrified vehicles. To enable electrification in transportation, there is a need for high-energy-density batteries, and this has led to an enormous interest in lithium-oxygen batteries. Several critical challenges remain with respect to realizing a practical lithium-oxygen battery. In this article, we present a detailed overview of theoretical efforts to formulate design principles for identifying stable electrolytes and electrodes with the desired functionality and stability. We discuss design principles relating to electrolytes and the additional stability challenges that arise at the cathode-electrolyte interface. Based on a thermodynamic analysis, we discuss two important requirements for the cathode: the ability to nucleate the desired discharge product, Li[Formula: see text]O[Formula: see text], and the ability to selectively activate only this discharge product while suppressing lithium oxide, the undesired secondary discharge product. We propose preliminary guidelines for determining the chemical stability of the electrode and illustrate the challenge associated with electrode selection using the examples of carbon cathodes and transition metals. We believe that a synergistic design framework for identifying electrolyte-electrode formulations is needed to realize a practical Li-O[Formula: see text] battery.
Marchetti, Alfredo A; Knize, Mark G; Chiarappa-Zucca, Marina L; Pletcher, Ronald J; Layton, David W
2003-08-01
The addition of oxygen-bearing compounds to diesel fuel considerably reduces particulate emissions. TGME and DBM have been identified as possible diesel additives based on their physicochemical characteristics and performance in engine tests. Although these compounds will reduce particulate emissions, their potential environmental impacts are unknown. As a means of characterizing their persistence in environmental media such as soil and groundwater, we conducted a series of biodegradation tests of DBM and TGME. Benzene and methyl tertiary butyl ether (MTBE) were also tested as reference compounds. Primary degradation of DBM fully occurred within 3 days, while TGME presented a lag phase of approximately 8 days and was not completely degraded by day 28. Benzene primary degradation occurred completely by day 3 and MTBE did not degrade at all. The total mineralized fractions of DBM and TGME achieved constant values as a function of time of approximately 65% and approximately 40%, respectively. Transport predictions show that, released to the environment, DBM and TGME would concentrate mostly in soils and waters with minimal impact to air. From an environmental standpoint, these results combined with the transport predictions indicate that DBM is a better choice than TGME as a diesel additive.
Electrical Transport and Magnetoresistance Properties of Tensile-Strained CaMnO3 Thin Films
NASA Astrophysics Data System (ADS)
Ullery, Dustin; Lawson, Bridget; Zimmerman, William; Neubauer, Samuel; Chaudhry, Adeel; Hart, Cacie; Yong, Grace; Smolyaninova, Vera; Kolagani, Rajeswari
We will present our studies of the electrical transport and magnetoresistance properties of tensile strained CaMnO3 thin films. We observe that the resistivity decreases significantly as the film thickness decreases which is opposite to what is observed in thin films of hole doped manganites. The decrease in resistivity is more pronounced in the films on (100) SrTiO3, with resistivity of the thinnest films being about 3 orders of magnitude lower than that of bulk CaMnO3. Structural changes accompanying resistivity changes cannot be fully explained as due to tensile strain, and indicate the presence of oxygen vacancies. These results also suggest a coupling between tensile strain and oxygen deficiency, consistent with predictions from models based on density functional theory calculations. We observe a change in resistance under the application of moderate magnetic field. Experiments are underway to understand the origin of the magnetoresistance and its possible relation to the tensile strain effects. We acknowledge support from: Towson Office of University Undergraduate Research, Fisher Endowment Grant and Undergraduate Research Grants from the Fisher College of Science and Mathematics, and Seed Funding Grant from the School of Emerging technologies.
McCarthy, M R; Vandegriff, K D; Winslow, R M
2001-08-30
We compared rates of oxygen transport in an in vitro capillary system using red blood cells (RBCs) and cell-free hemoglobins. The axial PO(2) drop down the capillary was calculated using finite-element analysis. RBCs, unmodified hemoglobin (HbA(0)), cross-linked hemoglobin (alpha alpha-Hb) and hemoglobin conjugated to polyethylene-glycol (PEG-Hb) were evaluated. According to their fractional saturation curves, PEG-Hb showed the least desaturation down the capillary, which most closely matched the RBCs; HbA(0) and alpha alpha-Hb showed much greater desaturation. A lumped diffusion parameter, K*, was calculated based on the Fick diffusion equation with a term for facilitated diffusion. The overall rates of oxygen transfer are consistent with hemoglobin diffusion rates according to the Stokes-Einstein Law and with previously measured blood pressure responses in rats. This study provides a conceptual framework for the design of a 'blood substitute' based on mimicking O(2) transport by RBCs to prevent autoregulatory changes in blood flow and pressure.
Dynamics of a Finite Liquid Oxygen (LOX) Column in a Pulsed Magnetic Field
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Immer, Christopher; Lane, John; Simpson, James; Steinrock, T. (Technical Monitor)
2002-01-01
It is well known that liquid oxygen has a sufficient paramagnetic susceptibility that a strong magnetic field gradient can lift it in the earth's gravitational field. The movement of liquid oxygen is vital to the space program since it one of the primary oxidizers used for propulsion. Transport of liquid oxygen (LOX) via direct interaction of the magnetic fields (B field) with the fluid is a current topic of research and development at Kennedy Space Center, FL. This method of transporting (i.e. pumping) LOX may have particular advantages on Mars and other reduced gravitational environments, namely safety and reliability. This paper will address transport of a magnetic fluid, LOX, via phased-pulsed electromagnets acting on the edge of the column of fluid. The authors have developed a physical model from first-principles for the motion of a magnetic fluid in a particular U-tube geometry subjected to a pulsed magnetic field from an arbitrary solenoidal electromagnet. Experimental data that have been collected from the analogous geometry correlate well to that of the ab-initio calculations.
Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.
Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf
2013-07-02
The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.
Tang, Yuanliang; He, Ying
2018-05-01
Type 2 diabetes mellitus (DM2) is frequently accompanied by microcirculation complications, including structural and functional alterations, which may have serious effects on substance exchanges between blood and interstitial tissue and the health of organs. In this paper, we aim to study the influence of microcirculation alterations in DM2 patients on fluid and oxygen exchanges through a model analysis. A fluid flow and oxygen transport model were developed by considering the interplay between blood in capillary network and interstitial tissue. The two regions were separately represented by 1D network model and 3D volume model, and the immersed boundary method (IBM) was adopted to solve fluid and mass transfer between these two regions. By using the model, the steady flow field and the distributions of oxygen in capillary network and surrounding tissue were firstly simulated. In the interstitial volume, fluid pressure and oxygen tension decreased with the increase of distance from the network; in the network, oxygen tension in blood plasma dropped from 100 mm Hg at the entrance to about 40 mm Hg at the exit. We further tested several structural and functional disorders related to diabetic pathological conditions. Simulated results show that the impaired connectivity of the network could result in poor robustness in maintaining blood flow and perfused surface; under high fluid permeability conditions of capillary walls, the pressure gradient was much larger around the capillary bed, and this alteration led to a saturation level of the interstitial pressure when lymphatic flow drainage can't work effectively; the variations in network connectivity and permeability of capillary wall also had unfavorable influence on oxygen distributions in interstitial tissue. In addition, when the oxygen releasing capacity of hemoglobin was confined by glycosylated hemoglobin (HbA1) in the case of diabetes, the plasma could not be complemented with adequate oxygen and thus the hypoxic tissue range will be extended. This study illustrates that when microcirculation disturbances, including the structure of capillary network, the wall osmosis property and the capacity of blood binding oxygen occur in DM2, some negative impacts are raised on microvascular hemodynamics and metabolism circumstance of interstitial tissue. Copyright © 2018 Elsevier Inc. All rights reserved.
Compañ, Vicente; Tiemblo, Pilar; García, F; García, J M; Guzmán, Julio; Riande, Evaristo
2005-06-01
The oxygen permeability and diffusion coefficients of hydrogel membranes prepared with copolymers of 2-ethoxyethyl methacrylate (EEMA)/2,3-dihydroxypropylmethacrylate (MAG) with mole fraction of the second monomer in the range between 0 and 0.75 are described. Values of the permeability and diffusion coefficients of oxygen are determined by using electrochemical procedures involving the measurement of the steady-state current in membranes prepared by radical polymerization of the monomers. The results obtained for the transport properties were analyzed taking into account the fractional free volumes, the cohesive energy densities and the glass transition temperatures of the hydrogels.
Feaster, Toby D.; Conrads, Paul
2000-01-01
In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate and validate the Branched Lagrangian Transport Model. The data include dye-tracer concentrations collected at six locations, stream-reaeration data collected at four locations, and water-quality and water-temperature data collected at nine locations. Hydraulic data for the Branched Lagrangian Transport Model were simulated by using the U.S. Geological Survey BRANCH one-dimensional, unsteady-flow model. Data that were used to calibrate and validate the BRANCH model included time-series of water-level and streamflow data at three locations. The domain of the hydraulic model and the transport model was a 57.3- and 43.5-mile reach of the river, respectively. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to changes in the boundary concentration inputs of water temperature and dissolved oxygen followed by sensitivity to the change in streamflow. A 35-percent increase in streamflow resulted in a negative normalized sensitivity index, indicating a decrease in dissolved-oxygen concentrations. The simulated dissolved-oxygen concentrations showed no significant sensitivity to changes in model input rate kinetics. To demonstrate the utility of the Branched Lagrangian Transport Model of the Wateree River, the model was used to simulate several hydrologic and water-quality scenarios to evaluate the effects on simulated dissolved-oxygen concentrations. The first scenario compared the 24-hour mean dissolved-oxygen concentrations for August 13, 1997, as simulated during the model validation, with simulations using two different streamflow patterns. The mean streamflow for August 13, 1997, was 2,000 cubic feet per second. Simulations were run using mean streamflows of 1,000 and 1,400 cubic feet per second while keeping the water-quality boundary conditions the same as were used during the validation simulations. When compared t
Di Pietro, Riccardo; Fazzi, Daniele; Kehoe, Tom B; Sirringhaus, Henning
2012-09-12
We present an optical spectroscopy study on the role of oxygen and water in electron trapping and storage/bias-stress degradation of n-type polymer field-effect transistors based on one of the most widely studied electron transporting conjugated polymers, poly{[N,N9-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,59-(2,29-bisthiophene)} (P(NDI2OD-T2)). We combine results obtained from charge accumulation spectroscopy, which allow optical quantification of the concentration of mobile and trapped charges in the polymer film, with electrical characterization of P(NDI2OD-T2) organic field-effect transistors to study the mechanism for storage and bias-stress degradation upon exposure to dry air/oxygen and humid nitrogen/water environments, thus separating the effect of the two molecules and determining the nature of their interaction with the polymer. We find that the stability upon oxygen exposure is limited by an interaction between the neutral polymer and molecular oxygen leading to a reduction in electron mobility in the bulk of the semiconductor. We use density functional theory quantum chemical calculations to ascribe the drop in mobility to the formation of a shallow, localized, oxygen-induced trap level, 0.34 eV below the delocalized lowest unoccupied molecular orbital of P(NDI2OD-T2). In contrast, the stability of the polymer anion against water is limited by two competing reactions, one involving the electrochemical oxidation of the polymer anion by water without degradation of the polymer and the other involving a radical anion-catalyzed chemical reaction of the polymer with water, in which the electron can be recycled and lead to further degradation reactions, such that a significant portion of the film is degraded after prolonged bias stressing. Using Raman spectroscopy, we have been able to ascribe this to a chemical interaction of water with the naphthalene diimide unit of the polymer. The degradation mechanisms identified here should be considered to explain electron trapping in other rylene diimides and possibly in other classes of conjugated polymers as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimosegawa, E.; Miura, S.; Murakami, M.
1994-05-01
On the basis of previous validation of kinetic two-compartment model and the determination of normal values of three parameters (k{sub 1}:influx rate constant, k{sub 2}:outflux rate constant, Vd:distribution volume), PET measurements of in vivo amino acid transport from blood to brain using L-(2-18F)-fluorophenylalanine ({sup 18}F-Phe) were undergone in the patients with cerebral infarction. The purposes of this study are to evaluate the alteration of amino acid transport in subacute and chronic stage of cerebral infarction and to compare with cerebral blood flow (CBF) and oxygen metabolism. Dynamic {sup 18}F-Phe PET studies for 50 minutes were performed in 7 patients withmore » cerebral infarction. The input function was obtained by 27 points of arterial sampling. In all patients, measurements of CBF, cerebral blood volume (CBV), cerebral metabolic rate of oxygen (CMRO{sub 2}), and oxygen extraction fraction (OEF) were made on the same day of {sup 18}F-Phe PET measurement. Each patient was studied twice, within 2 weeks of the onset and 3 months later. Weighted integration technique with table look-up method was applied for the reconstruction of parametric images of {sup 18}F-Phe and ROI analysis of k{sub 1}, k{sub 2}, and Vd. In subacute stage, significant reduction of k{sub 2} value in infarct area was observed when compared to that in periinfarct area (p<0.05) and in normal cortices (p<0.001). k{sub 1} value in this stage showed only slightly decrease in infarct area, therefore, Vd value in infarct area increased significantly compared to normal cortices (p<0.001). In chronic stage, both k{sub 1} and k{sub 2} values in infarct area were significantly lower than that in normal cortices (p<0.001), and corresponding Vd value reduced to normal level. Correlativity between kinetic parameters of {sup 18}F-Phe and CBF or oxygen metabolism was not observed both in subacute and chronic stage of infarction.« less
Defect-Engineered Heat Transport in Graphene: A Route to High Efficient Thermal Rectification
Zhao, Weiwei; Wang, Yanlei; Wu, Zhangting; Wang, Wenhui; Bi, Kedong; Liang, Zheng; Yang, Juekuan; Chen, Yunfei; Xu, Zhiping; Ni, Zhenhua
2015-01-01
Low-dimensional materials such as graphene provide an ideal platform to probe the correlation between thermal transport and lattice defects, which could be engineered at the molecular level. In this work, we perform molecular dynamics simulations and non-contact optothermal Raman measurements to study this correlation. We find that oxygen plasma treatment could reduce the thermal conductivity of graphene significantly even at extremely low defect concentration (∼83% reduction for ∼0.1% defects), which could be attributed mainly to the creation of carbonyl pair defects. Other types of defects such as hydroxyl, epoxy groups and nano-holes demonstrate much weaker effects on the reduction where the sp2 nature of graphene is better preserved. With the capability of selectively functionalizing graphene, we propose an asymmetric junction between graphene and defective graphene with a high thermal rectification ratio of ∼46%, as demonstrated by our molecular dynamics simulation results. Our findings provide fundamental insights into the physics of thermal transport in defective graphene, and two-dimensional materials in general, which could help on the future design of functional applications such as optothermal and electrothermal devices. PMID:26132747
Structure and reactivity of hexacoordinate hemoglobins
Kakar, Smita; Hoffman, Federico G.; Storz, Jay F.; Fabian, Marian; Hargrove, Mark S.
2015-01-01
The heme prosthetic group in hemoglobins is most often attached to the globin through coordination of either one or two histidine side chains. Those proteins with one histidine coordinating the heme iron are called “pentacoordinate” hemoglobins, a group represented by red blood cell hemoglobin and most other oxygen transporters. Those with two histidines are called “hexacoordinate hemoglobins”, which have broad representation among eukaryotes. Coordination of the second histidine in hexacoordinate Hbs is reversible, allowing for binding of exogenous ligands like oxygen, carbon monoxide, and nitric oxide. Research over the past several years has produced a fairly detailed picture of the structure and biochemistry of hexacoordinate hemoglobins from several species including neuroglobin and cytoglobin in animals, and the nonsymbiotic hemoglobins in plants. However, a clear understanding of the physiological functions of these proteins remains an elusive goal. PMID:20933319
Screening the molecular targets of ovarian cancer based on bioinformatics analysis.
Du, Lei; Qian, Xiaolei; Dai, Chenyang; Wang, Lihua; Huang, Ding; Wang, Shuying; Shen, Xiaowei
2015-01-01
Ovarian cancer (OC) is the most lethal gynecologic malignancy. This study aims to explore the molecular mechanisms of OC and identify potential molecular targets for OC treatment. Microarray gene expression data (GSE14407) including 12 normal ovarian surface epithelia samples and 12 OC epithelia samples were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) between 2 kinds of ovarian tissue were identified by using limma package in R language (|log2 fold change| gt;1 and false discovery rate [FDR] lt;0.05). Protein-protein interactions (PPIs) and known OC-related genes were screened from COXPRESdb and GenBank database, respectively. Furthermore, PPI network of top 10 upregulated DEGs and top 10 downregulated DEGs was constructed and visualized through Cytoscape software. Finally, for the genes involved in PPI network, functional enrichment analysis was performed by using DAVID (FDR lt;0.05). In total, 1136 DEGs were identified, including 544 downregulated and 592 upregulated DEGs. Then, PPI network was constructed, and DEGs CDKN2A, MUC1, OGN, ZIC1, SOX17, and TFAP2A interacted with known OC-related genes CDK4, EGFR/JUN, SRC, CLI1, CTNNB1, and TP53, respectively. Moreover, functions about oxygen transport and embryonic development were enriched by the genes involved in the network of downregulated DEGs. We propose that 4 DEGs (OGN, ZIC1, SOX17, and TFAP2A) and 2 functions (oxygen transport and embryonic development) might play a role in the development of OC. These 4 DEGs and known OC-related genes might serve as therapeutic targets for OC. Further studies are required to validate these predictions.
Ahmadian, Mehdi; Dabidi Roshan, Valiollah; Ashourpore, Eadeh
2017-07-04
Taurine is an amino acid found abundantly in the heart in very high concentrations. It is assumed that taurine contributes to several physiological functions of mammalian cells, such as osmoregulation, anti-inflammation, membrane stabilization, ion transport modulation, and regulation of oxidative stress and mitochondrial protein synthesis. The objective of the current study was to evaluate the effectiveness of taurine supplementation on functional capacity, myocardial oxygen consumption, and electrical activity in patients with heart failure. In a double-blind and randomly designed study, 16 patients with heart failure were assigned to two groups: taurine (TG, n = 8) and placebo (PG, n = 8). TG received 500-mg taurine supplementation three times per day for two weeks. Significant decrease in the values of Q-T segments (p < 0.01) and significant increase in the values of P-R segments (p < 0.01) were detected following exercise post-supplementation in TG rather than in PG. Significantly higher values of taurine concentration, T wave, Q-T segment, physical capacities, and lower values of cardiovascular capacities were detected post-supplementation in TG as compared with PG (all p values <0.01). Taurine significantly enhanced the physical function and significantly reduced the cardiovascular function parameters following exercise. Our results also suggest that the short-term taurine supplementation is an effective strategy for improving some selected hemodynamic parameters in heart failure patients. Together, these findings support the view that taurine improves cardiac function and functional capacity in patients with heart failure. This idea warrants further study.
Skin oxygen tension is improved by immersion in oxygen-enriched water.
Reading, S A; Yeomans, M; Levesque, C
2013-12-01
The perceived health and physiologic functioning of skin depends on adequate oxygen availability. Economical and easily used therapeutic approaches to increase skin oxygenation could improve the subjective appearance of the skin as well as support the management of some cutaneous conditions related to chronic hypoxic ischaemia (e.g. ulcerative wounds). We have tested the hypothesis that the O2 partial pressure of skin (PskO2 ) increases during immersion in water enriched with high levels of dissolved oxygen. A commercially available device was used to produce water containing 45 to 65 mg L(-1) of dissolved O2 . Young adults (YA; n = 7), older adults (OA; n = 13) and older adults with diabetes (OAD; n = 11) completed different experiments that required them to immerse their feet in tap water (<2 mg L(-1) of O2 ; control) or O2 -enriched water (O2 -H2 O; experimental) for 30 min. Transcutaneous oximetry was used to measure PskO2 for 20 min pre- and post-immersion. Pre-immersion mean (standard deviation) PskO2 on the plantar surface of the big toe was 75 (10), 67 (10) and 65 (10) mmHg in YA, OA and OAD, respectively. Post-immersion PskO2 was 244 (25), 193 (28) and 205 (28) mmHg for the same groups. We also show that post-immersion PskO2 varies by location and with advancing age. Water is an effective vehicle for transporting dissolved O2 across the skin surface and could be used as a basis for development of economical therapeutic approaches that improve skin oxygen tension to support skin health and function. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Turning up the heat in the lungs. A key mechanism to preserve their function.
Sartori, Claudio; Scherrer, Urs
2003-01-01
Life threatening events cause important alterations in the structure of proteins creating the urgent need of repair to preserve function and ensure survival of the cell. In eukariotic cells, an intrinsic mechanism allows them to defend against external stress. Heat shock proteins are a group of highly preserved molecular chaperones, playing a crucial role in maintaining proper protein assembly, transport and function. Stress-induced upregulation of heat shock proteins provides a unique defense system to ensure survival and function of the cell in many organ systems during conditions such as high temperature, ischemia, hypoxia, inflammation, and exposure to endotoxin or reactive oxygen species. Induction of this cellular defense mechanism prior to imposing one of these noxious insults, allows the cell/organ to withstand a subsequent insult that would otherwise be lethal, a phenomenon referred to as "thermo-tolerance" or "preconditioning". In the lung, stress-induced heat shock protein synthesis, in addition to its cyto-protective and anti-inflammatory effect, helps to preserve vectorial ion transport and alveolar fluid clearance. In this review, we describe the function of heat shock proteins in the lung, with particular emphasis on their role in the pathophysiology of experimental pulmonary edema, and their potential beneficial effects in the prevention and/or treatment of this life-threatening disease in humans.
Milrinone, dobutamine or epinephrine use in asphyxiated newborn pigs resuscitated with 100% oxygen.
Joynt, Chloë; Bigam, David L; Charrois, Gregory; Jewell, Laurence D; Korbutt, Gregory; Cheung, Po-Yin
2010-06-01
After resuscitation, asphyxiated neonates often develop poor cardiac function with hypotension, pulmonary hypertension and multiorgan ischemia. In a swine model of neonatal hypoxia-reoxygenation, effects of epinephrine, dobutamine and milrinone on systemic, pulmonary and regional hemodynamics and oxygen transport were compared. Controlled, block-randomized study. University research laboratory. Mixed breed piglets (1-3 days, 1.5-2.3 kg). In acutely instrumented piglets, normocapnic alveolar hypoxia (10-15% oxygen) was induced for 2 h followed by reoxygenation with 100% oxygen (1 h) then 21% oxygen (3 h). At 2 h of reoxygenation, after volume loading (Ringer's lactate 10 ml/kg), either saline (placebo), epinephrine (0.5 microg/kg/min), dobutamine (20 microg/kg/min) or milrinone (0.75 microg/kg/min) were infused for 2 h in a blinded, block-randomized fashion (n = 6/group). All medications similarly improved cardiac output, stroke volume and systemic oxygen delivery (vs. placebo-controls, p < 0.05). Epinephrine and dobutamine significantly increased, while milrinone maintained, mean arterial pressure over pretreatment values while placebo-treated piglets developed hypotension and shock. The mean arterial to pulmonary arterial pressures ratio was not different among groups. All medications significantly increased carotid and intestinal, but not renal, arterial blood flows and oxygen delivery, whereas milrinone caused lower renal vascular resistance than epinephrine and dobutamine-treated groups. Plasma troponin I, plasma and myocardial lactate levels, and histologic ischemic features were not different among groups. In newborn piglets with hypoxia-reoxygenation, epinephrine, dobutamine and milrinone are effective inotropes to improve cardiac output, carotid and intestinal perfusion, without aggravating pulmonary hypertension. Milrinone may also improve renal perfusion.
NASA Astrophysics Data System (ADS)
Nechipurenko, N.; Vasilevskaya, L.; Musienko, J.; Maslova, G.
2007-07-01
It has been studied the intravenous laser irradiation of blood (ILIB) influence with helium-neon laser (HNL) of 630 nm wavelength on some of lipid peroxidation (LPO) and antioxidant system (AOS) findings, aside-base status (ABS) and blood oxygen transport (BOT), state of dermal microhaemodynamics (MGD) in the intact rabbits and after modeling of local ischemia of brain (LIB). Depending on conditions of organism functioning (norm or brain ischaemia) ILIB has resulted in stimulating or normalizing effects on the whole metabolic and microhaemocirculation processes which had been studied during our investigation. It is discussed the mechanisms of pathogenetic directivity of ILIB influence in cerebral ischaemia
Lu, Chao; Zhang, Dawei; Whiteman, Matthew; Armstrong, Jeffrey S
2008-03-01
MitoQ has been developed as a mitochondrial targeted antioxidant for diseases associated with oxidative stress. Here we show that MitoQ blocks the generation of reactive oxygen species (ROS) and mitochondrial protein thiol oxidation, and preserves mitochondrial function and ultrastructure after glutathione (GSH) depletion. Furthermore, the antioxidant effect of MitoQ is conserved in cells lacking mitochondrial DNA, indicating that its antioxidant properties do not depend on a functional electron transport chain (ETC). Our results elucidate the antioxidant mechanism of MitoQ and suggest that it may be a useful therapeutic for disorders associated with a dysfunctional ETC and increased ROS production.
Grillitsch, Sandra; Medgyesy, Nikolaus; Schwerte, Thorsten; Pelster, Bernd
2005-01-01
Several studies suggest that during early larval development of lower vertebrates convective blood flow is not essential to supply oxygen to the tissues, but information about the oxygenation status of larvae during the time of cutaneous respiration is still missing. If convective oxygen transport contributes to the oxygen supply to tissues, venous blood in the central circulatory system should be partly deoxygenated, and hyperoxia should increase the oxygen saturation of the hemoglobin. To analyze the changes in hemoglobin oxygen saturation induced by hyperoxic incubation, zebrafish larvae were incubated in a tiny chamber between polytetrafluoroethylene membranes (Teflon), so that the oxygen supply could be rapidly modified. Hemoglobin oxygen saturation was measured in vivo by combining video imaging techniques with a spectrophotometrical analysis of hemoglobin light absorption at specific wavelengths for maximal absorption of oxygenated and deoxygenated blood (413 nm and 431 nm, respectively) under normoxic conditions and after a 10 min period of hyperoxia (P(O(2))=100 kPa), assuming that at a P(O(2)) of 100 kPa the hemoglobin is fully saturated. The results demonstrated that red blood cell oxygenation of zebrafish larvae at 4 days post fertilization (d.p.f.), 5 d.p.f. and 12 d.p.f. could be increased by hyperoxia. The data suggest that at the time of yolk sac degradation (i.e. 4 d.p.f. and 5 d.p.f.), when the total surface area of the animal is reduced, bulk diffusion of oxygen may not be sufficient to prevent a partial deoxygenation of the hemoglobin. The decrease in hemoglobin oxygenation observed at 12 d.p.f. confirms earlier studies indicating that at 12-14 d.p.f., convective oxygen transport becomes necessary to ensure oxygen supply to the growing tissues.
Functional inhibition of UQCRB suppresses angiogenesis in zebrafish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Yoon Sun; Jung, Hye Jin; Seok, Seung Hyeok
2013-04-19
Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levelsmore » in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.« less
Analysis of On-Board Oxygen and Nitrogen Generation Systems for Surface Vessels.
1983-06-01
and Pressure Vessel Code SAE AIR 822 Oxygen for General Aviation Aircraft SAE AIR 825 Oxygen for Aircrafts SAE AIR 1059 Transportation and Maintenance...OF THE TITLE MIL-T-27730 Threaded Components MIL-P-27401 A 40 Micron Filter For Nitrogen MIL-V-33650 Internal Straight Threads ASME Code VIII Boiler
14 CFR 21.700 - SFAR No. 111-Lavatory Oxygen Systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false SFAR No. 111-Lavatory Oxygen Systems. 21.700 Section 21.700 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... No. 111—Lavatory Oxygen Systems. The requirements of § 121.1500 of this chapter also apply to this...
14 CFR 21.700 - SFAR No. 111-Lavatory Oxygen Systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false SFAR No. 111-Lavatory Oxygen Systems. 21.700 Section 21.700 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... No. 111—Lavatory Oxygen Systems. The requirements of § 121.1500 of this chapter also apply to this...
14 CFR 21.700 - SFAR No. 111-Lavatory Oxygen Systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false SFAR No. 111-Lavatory Oxygen Systems. 21.700 Section 21.700 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... No. 111—Lavatory Oxygen Systems. The requirements of § 121.1500 of this chapter also apply to this...
NASA Astrophysics Data System (ADS)
Epting, William K.; Litster, Shawn
2016-02-01
Although polymer electrolyte fuel cells (PEFCs) offer promise as efficient, low emission power sources, the large amount of platinum catalyst used for the cathode's oxygen reduction (ORR) results in high costs. One approach to using less Pt is to increase the oxygen concentration at the catalyst by reducing the oxygen transport resistances. An important resistance is that of the diffusion media (DM). The DM are highly heterogeneous porous carbon fiber substrates with a graded composition of additives across their thickness. In this work we use an oxygen microsensor with a micro-positioning system to measure the oxygen concentration and presence of liquid water in the pores at discrete points across the thickness of a commercial carbon felt DM in operating PEFCs. Under conditions with no liquid water, the DM accounts for 60% of the oxygen depletion, with 60-70% of that depletion being due to the thin microporous layer (MPL) on the catalyst layer (CL) side. Using concentration gradient data, we quantify the non-uniform local transport resistance across the DM and relate it to high resolution 3D X-ray computed tomography of the same DM.
NASA Astrophysics Data System (ADS)
Balaish, Moran; Ein-Eli, Yair
2018-03-01
Adding immiscible perfluorocarbons (PFCs), possessing superior oxygen solubility and diffusivity, to a free-standing (metal-free and binder-free) CNTs air-electrode tissues with a meso-pore structure, fully maximized the advantages of PFCs as oxygenated-species' channels-providers. The discharge behavior of hybrid PFCs-CNT Li-O2 systems demonstrated a drastic increase in cell capacity at high current density (0.2 mA cm-2), where oxygen transport limitations are best illustrated. The results of this research revealed several key factors affecting PFCs-Li-O2 systems. The incorporation of PFCs with higher superoxide solubility and oxygen diffusivity, but more importantly higher PFCs/electrolyte miscibility, in a meso-pore air-electrode enabled better exploitation of PFCs potential. Consequently, the utilization of the air-electrode' surface area was enhanced via the formation of artificial three phase reaction zones with additional oxygen transportation routes, leading to uniform and intimate Li2O2 deposit at areas further away from the oxygen reservoir. Associated mechanisms are discussed along with insights into an improved Li-O2 battery system.
Chemical Looping Autothermal Reforming at a 120 kW Pilot Rig
NASA Astrophysics Data System (ADS)
Bofhàr-Nordenkampf, Johannes; Pröll, Tobias; Kolbitsch, Philipp; Hofbauer, Hermann
Chemical looping with selective oxygen transport allows two step combustion or autothermal reforming without mixing of fuel and air. The reactor system consists of two reactors, an air reactor and a fuel reactor with a suitable oxygen carrier that transports the necessary oxygen for operation. In the present study, a highly active nickel based oxygen carrier is tested in a novel dual circulating fluidized bed (DCFB) system at a scale of 120 kW fuel power. The mean particle size of the oxygen carrier is 120 μm and the pilot rig is fueled with natural gas. For the investigated oxygen carrier high CH4 conversion is achieved. Air/fuel ratio is varied at three different fuel reactor temperatures. For chemical looping reforming one can observe synthesis gas composition close to thermodynamic equilibrium. In spite of the fact that no additional steam has been added to the fuel besides the one present through steam fluidization of the loop seals, coke formation does not occur at global stoichiometric air/fuel ratios above 0.46.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yueh -Lin; Wang, Xiao Renshaw; Lee, Ho Nyung
2015-12-17
Through alignment of theoretical modeling with experimental measurements of oxygen surface-exchange kinetics on (001)-oriented La 2–xSr xMO 4+δ (M = Co, Ni, Cu) thin films, we demonstrate here the capability of the theoretical bulk O 2p-band centers to correlate with oxygen surface-exchange kinetics of the Ruddlesden–Popper oxide (RP 214) (001)-oriented thin films. In addition, we demonstrate that the bulk O 2p-band centers can also correlate with the experimental activation energies for bulk oxygen transport and oxygen surface exchange of both the RP 214 and the perovskite polycrystalline materials reported in the literature, indicating the effectiveness of the bulk O 2p-bandmore » centers in describing the associated energetics and kinetics. Here, we propose that the opposite slopes of the bulk O 2p-band center correlations between the RP 214 and the perovskite materials are due to the intrinsic mechanistic differences of their oxygen surface-exchange kinetics bulk anionic transport.« less
Modelling the effects of cerebral microvasculature morphology on oxygen transport.
Park, Chang Sub; Payne, Stephen J
2016-01-01
The cerebral microvasculature plays a vital role in adequately supplying blood to the brain. Determining the health of the cerebral microvasculature is important during pathological conditions, such as stroke and dementia. Recent studies have shown the complex relationship between cerebral metabolic rate and transit time distribution, the transit times of all the possible pathways available dependent on network topology. In this paper, we extend a recently developed technique to solve for residue function, the amount of tracer left in the vasculature at any time, and transit time distribution in an existing model of the cerebral microvasculature to calculate cerebral metabolism. We present the mathematical theory needed to solve for oxygen concentration followed by results of the simulations. It is found that oxygen extraction fraction, the fraction of oxygen removed from the blood in the capillary network by the tissue, and cerebral metabolic rate are dependent on both mean and heterogeneity of the transit time distribution. For changes in cerebral blood flow, a positive correlation can be observed between mean transit time and oxygen extraction fraction, and a negative correlation between mean transit time and metabolic rate of oxygen. A negative correlation can also be observed between transit time heterogeneity and the metabolic rate of oxygen for a constant cerebral blood flow. A sensitivity analysis on the mean and heterogeneity of the transit time distribution was able to quantify their respective contributions to oxygen extraction fraction and metabolic rate of oxygen. Mean transit time has a greater contribution than the heterogeneity for oxygen extraction fraction. This is found to be opposite for metabolic rate of oxygen. These results provide information on the role of the cerebral microvasculature and its effects on flow and metabolism. They thus open up the possibility of obtaining additional valuable clinical information for diagnosing and treating cerebrovascular diseases. Copyright © 2015. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Donahue, T. M.; Wasser, B.
1977-01-01
Analysis of OGO-6 OI green line photometer results was carried out for 8 cases when the alignment of the spacecraft was such that local emission rates could be determined below the altitude of maximum emission and down to about 80 km. Results show a variation on a scale of 6 deg to 8 deg in latitude between regions where the emission rate increases rapidly between 90 and 95 km and regions where it increases slowly from 80 km to 95 km. Latitude-altitude maps of iso-emissivity contours and iso-density contours for oxygen concentration are presented. The latter are computed under 3 assumptions concerning excitation mechanisms. Comparisons of the spatial variations of oxygen density with the results of a time dependent theory suggest the regions of strong downward transport alternate on a scale of about 1000 km with regions of weak transport near 90 km. In the first case conversion of O to O3 at night appears to be overwhelmed by downward transport of O.
Charache, S; Jacobson, R; Brimhall, B; Murphy, E A; Hathaway, P; Winslow, R; Jones, R; Rath, C; Simkovich, J
1978-02-01
Blood from a woman with unexplained erythrocytosis had increased oxygen affinity, but no abnormality could be detected by electrophoresis or chromatography of her hemolysate. Separation of the tryptic peptides of her beta chains disclosed two half-sized peaks in the regions of beta T-11. The faster of these was abnormal, with the structure beta 101 Glu replaced by Asp. The new hemoglobin was called "Potomac." Three of the proband's four surviving siblings and both of her children were carriers. Differences in the ratio of carrier: normal children born to male of female carriers of 23 other high-affinity hemoglobins were not significant. The high proportion of carriers in this kindred was probably due to chance alone, and not because high maternal oxygen affinity interfered with oxygen transport to fetuses with normal hemoglobin.
NASA Astrophysics Data System (ADS)
Frenger, Ivy; Bianchi, Daniele; Stührenberg, Carolin; Oschlies, Andreas; Dunne, John; Deutsch, Curtis; Galbraith, Eric; Schütte, Florian
2018-02-01
Subsurface eddies are known features of ocean circulation, but the sparsity of observations prevents an assessment of their importance for biogeochemistry. Here we use a global eddying (0.1°) ocean-biogeochemical model to carry out a census of subsurface coherent eddies originating from eastern boundary upwelling systems (EBUS) and quantify their biogeochemical effects as they propagate westward into the subtropical gyres. While most eddies exist for a few months, moving over distances of hundreds of kilometers, a small fraction (<5%) of long-lived eddies propagates over distances greater than 1,000 km, carrying the oxygen-poor and nutrient-rich signature of EBUS into the gyre interiors. In the Pacific, transport by subsurface coherent eddies accounts for roughly 10% of the offshore transport of oxygen and nutrients in pycnocline waters. This "leakage" of subsurface waters can be a significant fraction of the transport by nutrient-rich poleward undercurrents and may contribute to the well-known reduction of productivity by eddies in EBUS. Furthermore, at the density layer of their cores, eddies decrease climatological oxygen locally by close to 10%, thereby expanding oxygen minimum zones. Finally, eddies represent low-oxygen extreme events in otherwise oxygenated waters, increasing the area of hypoxic waters by several percent and producing dramatic short-term changes that may play an important ecological role. Capturing these nonlocal effects in global climate models, which typically include noneddying oceans, would require dedicated parameterizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinlong; Wang, Yonggang; Li, Shuai
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-state battery. In this work, the sodium ionic transport pathways of the parent compound Na3OBr, as well as the modified layered antiperovskite Na4OI2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions hop within and among oxygen octahedra, and Br- ions are not involved. In the tetragonal Na4OI2 antiperovskite, Na ions, which connectmore » octahedra in the ab plane, have the lowest activation energy barrier. The transport of sodium ions along the c axis is assisted by I- ions.« less
Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M
2017-01-01
Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems.
Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; de Visser, Pieter H. B.; Marcelis, Leo F. M.
2017-01-01
Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15–17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems. PMID:28443129
Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces
Acik, Muge; Park, In Kee; Koritala, Rachel E.; ...
2017-12-21
Here, graphene oxide or its reduced derivative (GO/RGO) replace metal oxides in perovskite photovoltaics to achieve energy band alignment for minimization of the energy barriers at the film interfaces allowing efficient charge transport, and eliminate stability issues. However, the power conversion efficiencies fall in a wide range (~0.6–18%). Therefore, the perovskite growth and nucleation on GO/RGO require fundamental understanding to improve device function for controlled fabrication, which remain a major challenge. We analyze the surface morphology and crystallization of the lead halide perovskites (MAPbX 3) at 20–300 °C on GO using X-ray diffraction and photoelectron spectroscopy. To determine defect mechanismsmore » and their composition, we perform in situ transmission infrared and micro Raman spectroscopy, and the cross-sectional scanning microscopy that captures interfacial imperfections with the oxygen defects. We demonstrate the oxygen-induced defects at the MAPbX 3/GO interfaces that initiate at room temperature, and occur through the nucleophilic substitution reactions. Unexpectedly, structural defects nucleate in GO forming chemically reduced GO, and modify the surface morphology that yield a poor perovskite growth. Our theoretical studies also reveal that energetically favorable, exothermic reactions between the halides of the perovskite precursors and the oxygen groups of GO generate acidic reaction by-products ( i.e. HX), that confirm the formation of oxygen-induced defects.« less
NASA Astrophysics Data System (ADS)
Walter, Jeff; Yu, Guichuan; Yu, Biqiong; Grutter, Alexander; Kirby, Brian; Borchers, Julie; Zhang, Zhan; Zhou, Hua; Birol, Turan; Greven, Martin; Leighton, Chris
2017-12-01
Ionic-liquid/gel-based transistors have emerged as a potentially ideal means to accumulate high charge-carrier densities at the surfaces of materials such as oxides, enabling control over electronic phase transitions. Substantial gaps remain in the understanding of gating mechanisms, however, particularly with respect to charge carrier vs oxygen defect creation, one contributing factor being the dearth of experimental probes beyond electronic transport. Here we demonstrate the use of synchrotron hard x-ray diffraction and polarized neutron reflectometry as in operando probes of ion-gel transistors based on ferromagnetic L a0.5S r0.5Co O3 -δ . An asymmetric gate-bias response is confirmed to derive from electrostatic hole accumulation at negative gate bias vs oxygen vacancy formation at positive bias. The latter is detected via a large gate-induced lattice expansion (up to 1%), complementary bulk measurements and density functional calculations enabling quantification of the bias-dependent oxygen vacancy density. Remarkably, the gate-induced oxygen vacancies proliferate through the entire thickness of 30-40-unit-cell-thick films, quantitatively accounting for changes in the magnetization depth profile. These results directly elucidate the issue of electrostatic vs redox-based response in electrolyte-gated oxides, also demonstrating powerful approaches to their in operando investigation.
Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acik, Muge; Park, In Kee; Koritala, Rachel E.
Here, graphene oxide or its reduced derivative (GO/RGO) replace metal oxides in perovskite photovoltaics to achieve energy band alignment for minimization of the energy barriers at the film interfaces allowing efficient charge transport, and eliminate stability issues. However, the power conversion efficiencies fall in a wide range (~0.6–18%). Therefore, the perovskite growth and nucleation on GO/RGO require fundamental understanding to improve device function for controlled fabrication, which remain a major challenge. We analyze the surface morphology and crystallization of the lead halide perovskites (MAPbX 3) at 20–300 °C on GO using X-ray diffraction and photoelectron spectroscopy. To determine defect mechanismsmore » and their composition, we perform in situ transmission infrared and micro Raman spectroscopy, and the cross-sectional scanning microscopy that captures interfacial imperfections with the oxygen defects. We demonstrate the oxygen-induced defects at the MAPbX 3/GO interfaces that initiate at room temperature, and occur through the nucleophilic substitution reactions. Unexpectedly, structural defects nucleate in GO forming chemically reduced GO, and modify the surface morphology that yield a poor perovskite growth. Our theoretical studies also reveal that energetically favorable, exothermic reactions between the halides of the perovskite precursors and the oxygen groups of GO generate acidic reaction by-products ( i.e. HX), that confirm the formation of oxygen-induced defects.« less
Ge, Chen; Jin, Kui-Juan; Zhang, Qing-Hua; Du, Jian-Yu; Gu, Lin; Guo, Hai-Zhong; Yang, Jing-Ting; Gu, Jun-Xing; He, Meng; Xing, Jie; Wang, Can; Lu, Hui-Bin; Yang, Guo-Zhen
2016-12-21
The defect chemistry of perovskite oxides involves the cause to most of their abundant functional properties, including interface magnetism, charge transport, ionic exchange, and catalytic activity. The possibility to achieve dynamic control over oxygen anion vacancies offers a unique opportunity for the development of appealing switchable devices, which at present are commonly based on ferroelectric materials. Herein, we report the discovery of a switchable photovoltaic effect, that the sign of the open voltage and the short circuit current can be reversed by inverting the polarity of the applied field, upon electrically tailoring the distribution of oxygen vacancies in perovskite oxide films. This phenomenon is demonstrated in lateral photovoltaic devices based on both ferroelectric BiFeO 3 and paraelectric SrTiO 3 films, under a reversed applied field whose magnitude is much smaller than the coercivity value of BiFeO 3 . The migration of oxygen vacancies was directly observed by employing an advanced annular bright-field scanning transmission electron microscopy technique with in situ biasing equipment. We conclude that the band bending induced by the motion of oxygen vacancies is the driving force for the reversible switching between two photovoltaic states. The present work can provide an active path for the design of novel switchable photovoltaic devices with a wide range of transition metal oxides in terms of the ionic degrees of freedom.
Bai, Wei; Li, Ping; Ning, Ya-Lei; Peng, Yan; Xiong, Ren-Ping; Yang, Nan; Chen, Xing; Zhou, Yuan-Guo
2018-04-15
Excitatory amino acid transporters (EAATs) on cerebral vascular endothelial cells play an important role in maintaining glutamate homeostasis in the brain. The dysfunction of endothelial EAATs is an important reason for the dramatically elevated brain glutamate levels after brain injury, such as traumatic brain injury (TBI). The adenosine A 2A receptor (A 2A R) plays an important role in regulating the brain glutamate level after brain injury; however, researchers have not clearly determined whether this role was related to its ability to regulate endothelial EAATs. Activation of A 2A R in vitro not only decreased the PKA- and glutamate level-dependent strengthening of the interaction between NKA-α1 and the FXYD1 subunit and the subsequent decrease in the activity of Na + /K + -ATPases (NKAs) but also enhanced its interaction with EAATs and ultimately aggravated the reverse transport function of endothelial EAATs under oxygen-glucose deprivation (OGD) conditions. Conversely, inhibition of A 2A R restored the normal transport of EAAT. Moreover, A 2A R inhibition increased NKA activity and decreased its interaction with EAATs in isolated brain capillaries after TBI, further confirming its role in endothelial EAATs in vivo. Based on our results, A 2A R played an important role in regulating endothelial EAAT function, and strategies that restore the normal transport of endothelial EAATs through the inhibition of A 2A R might serve as an effective treatment for brain injury. Copyright © 2018 Elsevier Inc. All rights reserved.
Yazdani Foshtomi, Maryam; Leliaert, Frederik; Derycke, Sofie; Willems, Anne; Vincx, Magda
2018-01-01
The presence of large densities of the piston-pumping polychaete Lanice conchilega can have important consequences for the functioning of marine sediments. It is considered both an allogenic and an autogenic ecosystem engineer, affecting spatial and temporal biogeochemical gradients (oxygen concentrations, oxygen penetration depth and nutrient concentrations) and physical properties (grain size) of marine sediments, which could affect functional properties of sediment-inhabiting microbial communities. Here we investigated whether density-dependent effects of L. conchilega affected horizontal (m-scale) and vertical (cm-scale) patterns in the distribution, diversity and composition of the typical nosZ gene in the active denitrifying organisms. This gene plays a major role in N2O reduction in coastal ecosystems as the last step completing the denitrification pathway. We showed that both vertical and horizontal composition and richness of nosZ gene were indeed significantly affected when large densities of the bio-irrigator were present. This could be directly related to allogenic ecosystem engineering effects on the environment, reflected in increased oxygen penetration depth and oxygen concentrations in the upper cm of the sediment in high densities of L. conchilega. A higher diversity (Shannon diversity and inverse Simpson) of nosZ observed in patches with high L. conchilega densities (3,185–3,440 ind. m-2) at deeper sediment layers could suggest a downward transport of NO3− to deeper layers resulting from bio-irrigation as well. Hence, our results show the effect of L. conchilega bio-irrigation activity on denitrifying organisms in L. conchilega reefs. PMID:29408934
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1985-01-01
A mathematical model of the erythropoiesis on total red blood cell mass is presented. The loss of red cell mass has been a consistent finding during space flight. Computer simulation of this phenomenon required a model that could account for oxygen transport, red cell production, and red cell destruction. The elements incorporated into the feedback regulation loop of the model are based on the accepted concept that erythrocyte production is governed by the balance between oxygen supply and demand in the body. The mechanisms and pathways of the control circuit include oxygenation of hemoglobin and oxygenation of tissues by blood transport and diffusional processes. Other features of the model include a variable oxygen-hemoglobin affinity, and time delays which represent time for erythropoietin (erythrocyte-stimulating hormone) distribution in plasma, and time for maturation of the erythrocytes in bone marrow.
NASA Astrophysics Data System (ADS)
Munn, Lance
2009-11-01
``Normalization'' of tumor blood vessels has shown promise to improve the efficacy of chemotherapeutics. In theory, anti-angiogenic drugs targeting endothelial VEGF signaling can improve vessel network structure and function, enhancing the transport of subsequent cytotoxic drugs to cancer cells. In practice, the effects are unpredictable, with varying levels of success. The predominant effects of anti-VEGF therapies are decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters and pruning of the immature vessel network. It is thought that each of these can influence perfusion of the vessel network, inducing flow in regions that were previously sluggish or stagnant. Unfortunately, when anti-VEGF therapies affect vessel structure and function, the changes are dynamic and overlapping in time, and it has been difficult to identify a consistent and predictable normalization ``window'' during which perfusion and subsequent drug delivery is optimal. This is largely due to the non-linearity in the system, and the inability to distinguish the effects of decreased vessel leakiness from those due to network structural changes in clinical trials or animal studies. We have developed a mathematical model to calculate blood flow in complex tumor networks imaged by two-photon microscopy. The model incorporates the necessary and sufficient components for addressing the problem of normalization of tumor vasculature: i) lattice-Boltzmann calculations of the full flow field within the vasculature and within the tissue, ii) diffusion and convection of soluble species such as oxygen or drugs within vessels and the tissue domain, iii) distinct and spatially-resolved vessel hydraulic conductivities and permeabilities for each species, iv) erythrocyte particles advecting in the flow and delivering oxygen with real oxygen release kinetics, v) shear stress-mediated vascular remodeling. This model, guided by multi-parameter intravital imaging of tumor vessel structure and function, provides a tool for identifying the structural and functional determinants of tumor vessel normalization.
Low-Dimensional Oxygen Vacancy Ordering and Diffusion in SrCrO 3$-$δ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, Phuong-Vu; Du, Yingge; Sushko, Peter V.
2017-04-06
We investigate the formation mechanisms of vacancy-ordered phase and collective mass transport in epitaxial SrCrO 3$-$δ films using ab initio simulations within the density functional theory formalism. We show that as concentration of oxygen vacancies (V O’s) increases, they form one-dimensional (1D) chains that feature Cr-centered tetrahedra. Aggregation of these 1D V O-chains results in the formation of (111)-oriented oxygen-deficient planes (V O-planes) and an extended vacancy-ordered phase observed in recent experiments. We discuss atomic scale mechanisms enabling the quasi-2D V O aggregates to expand along and translate across (111) planes. The corresponding lowest activation energy pathways necessarily involve rotationmore » of Cr-centered tetrahedra, which emerges as a universal feature of fast ionic conduction in complex oxides. These findings explain reversible oxidation and reduction in SrCrO 3$-$δ at low-temperatures and provide insights into transient behavior necessary to harness ionic conductive oxides for high performance and low-temperature electrochemical reactors.« less
Trap-state-dominated suppression of electron conduction in carbon nanotube thin-film transistors.
Qian, Qingkai; Li, Guanhong; Jin, Yuanhao; Liu, Junku; Zou, Yuan; Jiang, Kaili; Fan, Shoushan; Li, Qunqing
2014-09-23
The often observed p-type conduction of single carbon nanotube field-effect transistors is usually attributed to the Schottky barriers at the metal contacts induced by the work function differences or by the doping effect of the oxygen adsorption when carbon nanotubes are exposed to air, which cause the asymmetry between electron and hole injections. However, for carbon nanotube thin-film transistors, our contrast experiments between oxygen doping and electrostatic doping demonstrate that the doping-generated transport barriers do not introduce any observable suppression of electron conduction, which is further evidenced by the perfect linear behavior of transfer characteristics with the channel length scaling. On the basis of the above observation, we conclude that the environmental adsorbates work by more than simply shifting the Fermi level of the CNTs; more importantly, these adsorbates cause a poor gate modulation efficiency of electron conduction due to the relatively large trap state density near the conduction band edge of the carbon nanotubes, for which we further propose quantitatively that the adsorbed oxygen-water redox couple is responsible.
Oxygen vacancy and hole conduction in amorphous TiO2.
Pham, Hieu H; Wang, Lin-Wang
2015-01-07
The amorphous titanium dioxide (a-TiO2) has drawn attention recently due to the finding that it holds promise for coating conventional photoelectrodes for corrosion protection while still allowing the holes to transport to the surface. The mechanism of hole conductivity at a level much higher than the edge of the valence band is still a mystery. In this work, an amorphous TiO2 model is obtained from molecular dynamics employing the "melt-and-quench" technique. The electronic properties, polaronic states and the hole conduction mechanism in amorphous structure were investigated by means of density functional theory with Hubbard's energy correction (DFT + U) and compared to those in crystalline (rutile) TiO2. The formation energy of the oxygen vacancy was found to reduce significantly (by a few eV) upon amorphization. Our theoretical study suggested that the oxygen vacancies and their defect states provide hopping channels, which are comparable to experimental observations and could be responsible for hole conduction in the "leaky" TiO2 recently discovered for the photochemical water-splitting applications.