Science.gov

Sample records for oxygen transport membranes

  1. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-07-01

    In the present quarter, oxygen transport perovskite ceramic membranes are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  2. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  3. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  4. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-12-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  5. Oxygen Transport Membranes

    SciTech Connect

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  6. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report

  7. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with

  8. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  9. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-05-01

    been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  10. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2016-11-15

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  11. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  12. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  13. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  14. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  15. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  16. Composite oxygen transport membrane

    DOEpatents

    Lu, Zigui; Plonczak, Pawel J.; Lane, Jonathan A.

    2016-11-08

    A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. Preferred materials are (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.7Fe.sub.0.3O.sub.3-.delta. for the porous fuel oxidation layer, (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer, and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.3Fe.sub.0.7O.sub.3-.delta. for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.

  17. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  18. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  19. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

  20. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2006-05-01

    In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

  1. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-02-01

    This is the fifth quarterly report on a new study to develop a ceramic membrane/metal joint. Results of wetting experiments on commercially available Nickel based brazing alloys on perovskite surfaces are described. Additionally, experimental and numerical investigations on the strength of concentric ceramic/metal joints are presented.

  2. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  3. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham

    2006-06-30

    A non-agglomerated and nanocrystalline-sized powder was successfully produced using ethylene glycol nitrate methods. The LSFT powder prepared using this method exhibits well dispersed and nano-sized particles about 100-200 nm. The density of LSFT sintered at 1300 C was about 90% of the theoretical density at which is 100 C less than that of the previous LSFT which was sintered at 1400 C. The sample sintered at 1400 C exhibited the evidence of a liquid phase at the grain boundaries and 2nd phase formation which probably caused low mechanical stability. The electrical conductivity and Seebeck coefficient were measured as a function of temperature. The LSFT-CGO specimens were cut from the as sintered bars and used for the evaluation of Mechanical Properties after polishing. The effect of strain rate on the flexural strength of the LSFT-CGO test specimens was studied. Three strain rates 6, 60 and 600 {micro}m/ min were chosen for this study. It is observed from the results that with increasing cross head speed the membrane takes higher loads to fail. A reduction in the strength of the membrane was observed at 1000 C in N{sub 2}. Two different routes were investigated to synthesis GDC using either formate or carbonate precursors. The precursor and CGO particle morphologies were examined by scanning electron microscopy. The thermal decomposition behaviors of Ce(Gd)(HCOO){sub 3} and Ce(Gd)(CO{sub 3})(OH) were determined by thermogravimetric analysis (TGA) at a rate of 3 C/min in air. The X-ray powder diffraction patterns of the precursor and CGO were collected and nitrogen adsorption isotherms were measured. Conductivity measurements were made by AC impedance spectroscopy on sintered disks in air using platinum electrodes.

  4. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals.

  5. Catalyst containing oxygen transport membrane

    DOEpatents

    Lane, Jonathan A.; Wilson, Jamie R.; Christie, Gervase Maxwell; Petigny, Nathalie; Sarantopoulos, Christos

    2017-02-07

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a microstructure exhibiting substantially uniform pore size distribution as a result of using PMMA pore forming materials or a bi-modal particle size distribution of the porous support layer materials. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  6. Catalyst containing oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  7. Ceramic oxygen transport membrane array reactor and reforming method

    DOEpatents

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  8. Ceramic oxygen transport membrane array reactor and reforming method

    SciTech Connect

    Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-09-27

    A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.

  9. A 22-year experience in global transport extracorporeal membrane oxygenation.

    PubMed

    Coppola, Christopher P; Tyree, Melissa; Larry, Karen; DiGeronimo, Robert

    2008-01-01

    Transport extracorporeal membrane oxygenation (ECMO) is currently available at 12 centers. We report a 22-year experience from the only facility providing global transport ECMO. Indications for transport ECMO include lack of ECMO services, inability to transport conventionally, inability to wean from cardiopulmonary bypass, extracorporeal cardiopulmonary resuscitation, and need to move a patient on ECMO for specialized services such as organ transplantation. Retrospective database review of children undergoing inhouse and transport ECMO from 1985 to 2007. Sixty-eight children underwent transport ECMO. Fifty-six were transported on ECMO into our facility. The remaining 12 were moved between 2 outside locations. Ground vehicles and fixed-wing aircraft were used. Distance transported was 8 to 7500 miles (13-12070 km), mean 1380 miles (2220 km). There were 116 inhouse ECMO runs. No child died during transport. Survival to discharge after transport ECMO was 65% (44/68) and, for inhouse ECMO, was 70% (81/116). Transport ECMO is feasible and effective, with survival rates comparable to inhouse ECMO. We have used transport ECMO to help children at non-ECMO centers with pulmonary failure who have not improved with inhaled nitric oxide and high-frequency ventilation. We have also transported a child after extracorporeal cardiopulmonary resuscitation, which may represent an emerging indication for transport ECMO. Transport ECMO often is the only option for children too unstable for conventional transport or those already on ECMO and requiring a specialized service at another facility, such as organ transplantation.

  10. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  11. System and method for temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M.

    2017-02-21

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  12. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOEpatents

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  13. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOEpatents

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  14. Membrane Transport of Singlet Oxygen Monitored by Dipole Potential Measurements

    PubMed Central

    Sokolov, Valerij S.; Pohl, Peter

    2009-01-01

    Abstract The efficiency of photodynamic reactions depends on 1), the penetration depth of the photosensitizer into the membrane and 2), the sidedness of the target. Molecules which are susceptible to singlet oxygen (1O2) experience less damage when separated from the photosensitizer by the membrane. Since 1O2 lifetime in the membrane environment is orders of magnitude longer than the time required for nonexcited oxygen (O2) to cross the membrane, this observation suggests that differences between the permeabilities or membrane partition of 1O2 and O2 exist. We investigated this hypothesis by releasing 1O2 at one side of a planar membrane while monitoring the kinetics of target damage at the opposite side of the same membrane. Damage to the target, represented by dipole-modifying molecules (phloretin or phlorizin), was indicated by changes in the interleaflet dipole potential difference Δϕb. A simple analytical model allowed estimation of the 1O2 interleaflet concentration difference from the rate at which Δϕb changed. It confirmed that the lower limit of 1O2 permeability is ∼2 cm/s; i.e., it roughly matches O2 permeability as predicted by Overton's rule. Consequently, the membrane cannot act as a barrier to 1O2 diffusion. Differences in the reaction rates at the cytoplasmic and extracellular membrane leaflets may be attributed only to 1O2 quenchers inside the membrane. PMID:18931253

  15. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    DOEpatents

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  16. Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes.

    PubMed

    Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman

    2017-01-01

    Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.

  17. Electric transport and oxygen permeation properties of lanthanum cobaltite membranes synthesized by different methods

    SciTech Connect

    Qi, X.; Lin, Y.S.; Swartz, S.L.

    2000-03-01

    Dense perovskite-structured membranes with desired composition of La{sub 0.8}Sr{sub 0.2}Co{sub 0.6}Fe{sub 0.4}O{sub 3{minus}{delta}} (LSCF) were prepared from powders produced by four different methods. LSCF powders prepared by citrate, solid-state, and spray-pyrolysis methods had compositions close to the desired stoichiometry with a slight difference in cobalt concentration, whereas coprecipitated powders had a large strontium deficiency. The membrane composition was a determining factor that affected the electronic conductivity and therefore oxygen permeability. The membrane with a large strontium deficiency had much lower electronic conductivity and oxygen permeability (ionic conductivity) than the other three membranes with compositions close to the desired stoichiometry. The electronic conductivity of membranes prepared from citrate, solid-state, and spray-pyrolysis methods increases with the cobalt concentration of the membrane. For the three membranes with similar composition, the activation energy of oxygen flux decreases with increasing grain size. Oxygen pressure dependency of oxygen vacancy concentration is also influenced by the membrane microstructure and composition. LSCF membranes with same composition and similar microstructure should have similar electric and oxygen transport properties.

  18. Is the mammalian cell plasma membrane a barrier to oxygen transport?

    PubMed Central

    1992-01-01

    Oxygen transport in the Chinese hamster ovary (CHO) plasma membrane has been studied by observing the collision of molecular oxygen with nitroxide radical spin labels placed in the lipid bilayer portion of the membrane at various distances from the membrane surface using the long-pulse saturation-recovery electron spin resonance (ESR) technique. The collision rate was estimated for 5-, 12-, and 16-doxylstearic acids from spin-lattice relaxation times (T1) measured in the presence and absence of molecular oxygen. Profiles of the local oxygen transport parameters across the membrane were obtained showing that the oxygen diffusion-concentration product is lower than in water for all locations at 37 degrees C. From oxygen transport parameter profiles, the membrane oxygen permeability coefficients were estimated according to the procedure developed earlier by Subczynski et al. (Subczynski, W. K., J. S. Hyde, and A. Kusumi. 1989. Proceedings of the National Academy of Sciences, USA. 86:4474-4478). At 37 degrees C, the oxygen permeability coefficient for the plasma membrane was found to be 42 cm/s, about two times lower than for a water layer of the same thickness as the membrane. The oxygen concentration difference across the CHO plasma membrane at physiological conditions is in the nanomolar range. It is concluded that oxygen permeation across the cell plasma membrane cannot be a rate-limiting step for cellular respiration. Correlations of the form PM = cKs between membrane permeabilities PM of small nonelectrolyte solutes of mol wt less than 50, including oxygen, and their partition coefficients K into hexadecane and olive oil are reported. Hexadecane: c = 26 cm/s, s = 0.95; olive oil: c = 23 cm/s, s = 1.56. These values of c and s differ from those reported in the literature for solutes of 50 less than mol wt less than 300 (Walter, A., and J. Gutknecht. 1986. Journal of Membrane Biology. 90:207-217). It is concluded that oxygen permeability through membranes can be

  19. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    NASA Astrophysics Data System (ADS)

    Yu, Anthony S.

    Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two

  20. Saturation-recovery electron paramagnetic resonance discrimination by oxygen transport (DOT) method for characterizing membrane domains.

    PubMed

    Subczynski, Witold K; Widomska, Justyna; Wisniewska, Anna; Kusumi, Akihiro

    2007-01-01

    The discrimination by oxygen transport (DOT) method is a dual-probe saturation-recovery electron paramagnetic resonance approach in which the observable parameter is the spin-lattice relaxation time (T1) of lipid spin labels, and the measured value is the bimolecular collision rate between molecular oxygen and the nitroxide moiety of spin labels. This method has proven to be extremely sensitive to changes in the local oxygen diffusion-concentration product (around the nitroxide moiety) because of the long T1 of lipid spin labels (1-10 micros) and also because molecular oxygen is a unique probe molecule. Molecular oxygen is paramagnetic, small, and has the appropriate level of hydrophobicity that allows it to partition into various supramolecular structures such as different membrane domains. When located in two different membrane domains, the spin label alone most often cannot differentiate between these domains, giving very similar (indistinguishable) conventional electron paramagnetic resonance spectra and similar T1 values. However, even small differences in lipid packing in these domains will affect oxygen partitioning and oxygen diffusion, which can be easily detected by observing the different T1s from spin labels in these two locations in the presence of molecular oxygen. The DOT method allows one not only to distinguish between the different domains, but also to obtain the value of the oxygen diffusion-concentration product in these domains, which is a useful physical characteristic of the organization of lipids in domains. Profiles of the oxygen diffusion-concentration product (the oxygen transport parameter) in coexisting domains can be obtained in situ without the need for the physical separation of the two domains. Furthermore, under optimal conditions, the exchange rate of spin-labeled molecules between the two domains could be measured.

  1. Interhospital Transport System for Critically Ill Patients: Mobile Extracorporeal Membrane Oxygenation without a Ventilator

    PubMed Central

    Yeo, Hye Ju; Cho, Woo Hyun; Park, Jong Myung; Kim, Dohyung

    2017-01-01

    Background Extracorporeal membrane oxygenation (ECMO) has been successfully used as a method for the interhospital transportation of critically ill patients. In South Korea, a well-established ECMO interhospital transport system is lacking due to limited resources. We developed a simplified ECMO transport system without mechanical ventilation for use by public emergency medical services. Methods Eighteen patients utilized our ECMO transport system from December 2011 to September 2015. We retrospectively analyzed the indications for ECMO, the patient status during transport, and the patient outcomes. Results All transport was conducted on the ground by ambulance. The distances covered ranged from 26 to 408 km (mean, 65.9±88.1 km) and the average transport time was 56.1±57.3 minutes (range, 30 to 280 minutes). All patients were transported without adverse events. After transport, 4 patients (22.2%) underwent lung transplantation because of interstitial lung disease. Eight patients who had severe acute respiratory distress syndrome showed recovery of heart and lung function after ECMO therapy. A total of 13 patients (70.6%) were successfully taken off ECMO, and 11 patients (61.1%) survived. Conclusion Our ECMO transport system without mechanical ventilation can be considered a safe and useful method for interhospital transport and could be a good alternative option for ECMO transport in Korean hospitals with limited resources. PMID:28180097

  2. Regulation of ion transport across lamprey (Lampetra fluviatilis) erythrocyte membrane by oxygen tension.

    PubMed

    Virkki, L V; Salama, A; Nikinmaa, M

    1998-06-01

    We have measured the effects of oxygen tension on the transport of Na+, K+ and Cl- across the erythrocyte membrane of the lamprey Lampetra fluviatilis. The transport of each ion was affected by the oxygen tension of the medium. Hypoxic conditions (PO2 2 kPa) caused an increase in the acidification-induced influx of Na+ via Na+/H+ exchange. The influx of K+ was only slightly affected by the oxygenation of the medium. In contrast, the basal K+ efflux, measured using the radioactive isotope 43K, was markedly reduced by decreasing the oxygen tension of the medium, whereas the K+ flux in hypotonic medium was not affected. Only minor effects of hypoxic conditions on the influx of Cl- were observed in either isotonic or hypotonic conditions (there was a tendency for the isotonic influx to increase) or on the efflux in isotonic conditions. However, deoxygenation caused a marked reduction in the Cl- efflux in hypotonic conditions. The results show that oxygen tension has a marked effect on the pH and volume regulatory transport pathways of lamprey erythrocytes. For K+ and Cl-, the regulation appears to be asymmetric, i.e. influx and efflux are affected differently.

  3. Regulation of ion transport across lamprey (Lampetra fluviatilis) erythrocyte membrane by oxygen tension

    PubMed

    Virkki; Salama; Nikinmaa

    1998-05-21

    We have measured the effects of oxygen tension on the transport of Na+, K+ and Cl- across the erythrocyte membrane of the lamprey Lampetra fluviatilis. The transport of each ion was affected by the oxygen tension of the medium. Hypoxic conditions (PO2 2 kPa) caused an increase in the acidification-induced influx of Na+ via Na+/H+ exchange. The influx of K+ was only slightly affected by the oxygenation of the medium. In contrast, the basal K+ efflux, measured using the radioactive isotope 43K, was markedly reduced by decreasing the oxygen tension of the medium, whereas the K+ flux in hypotonic medium was not affected. Only minor effects of hypoxic conditions on the influx of Cl- were observed in either isotonic or hypotonic conditions (there was a tendency for the isotonic influx to increase) or on the efflux in isotonic conditions. However, deoxygenation caused a marked reduction in the Cl- efflux in hypotonic conditions. The results show that oxygen tension has a marked effect on the pH and volume regulatory transport pathways of lamprey erythrocytes. For K+ and Cl-, the regulation appears to be asymmetric, i.e. influx and efflux are affected differently.

  4. Experimental dissection of oxygen transport resistance in the components of a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Oh, Hwanyeong; Lee, Yoo il; Lee, Guesang; Min, Kyoungdoug; Yi, Jung S.

    2017-03-01

    Oxygen transport resistance is a major obstacle for obtaining high performance in a polymer electrolyte membrane fuel cell (PEMFC). To distinguish the major components that inhibit oxygen transport, an experimental method is established to dissect the oxygen transport resistance of the components of the PEMFC, such as the substrate, micro-porous layer (MPL), catalyst layer, and ionomer film. The Knudsen numbers are calculated to determine the types of diffusion mechanisms at each layer by measuring the pore sizes with either mercury porosimetry or BET analysis. At the under-saturated condition where condensation is mostly absent, the molecular diffusion resistance is dissected by changing the type of inert gas, and ionomer film permeation is separated by varying the inlet gas humidity. Moreover, the presence of the MPL and the variability of the substrate thickness allow the oxygen transport resistance at each component of a PEMFC to be dissected. At a low relative humidity of 50% and lower, an ionomer film had the largest resistance, while the contribution of the MPL was largest for the other humidification conditions.

  5. Role of Membrane Lipids in the Regulation of Erythrocytic Oxygen-Transport Function in Cardiovascular Diseases

    PubMed Central

    Revin, Victor V.; Revina, Elvira S.; Martynova, Maria I.; Seikina, Angelina I.; Revina, Nadezhda V.; Imarova, Oksana G.; Solomadin, Ilia N.; Tychkov, Alexander Yu.; Zhelev, Nikolai

    2016-01-01

    The composition and condition of membrane lipids, the morphology of erythrocytes, and hemoglobin distribution were explored with the help of laser interference microscopy (LIM) and Raman spectroscopy. It is shown that patients with cardiovascular diseases (CVD) have significant changes in the composition of their phospholipids and the fatty acids of membrane lipids. Furthermore, the microviscosity of the membranes and morphology of the erythrocytes are altered causing disordered oxygen transport by hemoglobin. Basic therapy carried out with the use of antiaggregants, statins, antianginals, beta-blockers, and calcium antagonists does not help to recover the morphofunctional properties of erythrocytes. Based on the results the authors assume that, for the relief of the ischemic crisis and further therapeutic treatment, it is necessary to include, in addition to cardiovascular disease medicines, medication that increases the ability of erythrocytes' hemoglobin to transport oxygen to the tissues. We assume that the use of LIM and Raman spectroscopy is advisable for early diagnosis of changes in the structure and functional state of erythrocytes when cardiovascular diseases develop. PMID:27872848

  6. Development of a new interfacility extracorporeal membrane oxygenation transport program for pediatric lung transplantation evaluation

    PubMed Central

    Shepherd, Edward G.; Gee, Samantha W.

    2017-01-01

    Pediatric lung transplantation is a life-saving intervention for children with irreversible end-stage lung disease. Access to transplant can be limited by geographic isolation from a center or the presence of comorbidities affecting transplant eligibility. Extracorporeal membrane oxygenation (ECMO)-supported patients are an uncommon but historically high-risk cohort of patients considered for lung transplant. We report the development of a service at our center to provide transport services to our hospital for patients unable to wean from ECMO support at their local institution for the purpose of evaluation for lung transplantation by our program. We developed a process for pre-transport consultation by the lung transplant physician team, standardized hand-off tools and equipment lists, and procedures for transitioning patients to transport ECMO machinery. Four patients have been transported to date including fixed wing (FW) and helicopter transports. All patients were successfully transported with either none or minor complications. Transport of ECMO-supported patients is a feasible method to increase access of patients with irreversible lung injured patients to evaluation for lung transplant. PMID:28275613

  7. Remote cannulation and extracorporeal membrane oxygenation transport is safe in a newly established program

    PubMed Central

    Grenda, David S.; Moll, Vanessa; Kalin, Craig M.

    2017-01-01

    Extracorporeal membrane oxygenation (ECMO) has become an increasingly utilized modality for the support of patients with severe cardiac or pulmonary dysfunction. Unfortunately, the costs and expertise required to maintain a formal ECMO program preclude the vast majority of hospitals from employing such technology routinely. These barriers to implementation of an effective ECMO program highlight the importance of the safe transport of patients in need of extracorporeal support. While many centers with extensive expertise in the management of patients on extracorporeal support have demonstrated their ability to transport those same patients, the ability of new ECMO programs to provide such transportation remains poorly studied. We established an ECMO program at our institution and immediately provided equipment and personnel to transport patients in need of or receiving extracorporeal support to our institution. Overall, we found that 13 out of 28 patients transported to our institution on ECMO or for consideration of ECMO support during the first 15 months of the program survived to hospital discharge. During that period, four incidents associated with patient transport occurred but none were related to ECMO support or adversely affected patient outcome. These observations demonstrate that new ECMO programs can safely and reliably transport patients on or in need of extracorporeal support. PMID:28275616

  8. Development of a new interfacility extracorporeal membrane oxygenation transport program for pediatric lung transplantation evaluation.

    PubMed

    Frazier, W Joshua; Shepherd, Edward G; Gee, Samantha W

    2017-02-01

    Pediatric lung transplantation is a life-saving intervention for children with irreversible end-stage lung disease. Access to transplant can be limited by geographic isolation from a center or the presence of comorbidities affecting transplant eligibility. Extracorporeal membrane oxygenation (ECMO)-supported patients are an uncommon but historically high-risk cohort of patients considered for lung transplant. We report the development of a service at our center to provide transport services to our hospital for patients unable to wean from ECMO support at their local institution for the purpose of evaluation for lung transplantation by our program. We developed a process for pre-transport consultation by the lung transplant physician team, standardized hand-off tools and equipment lists, and procedures for transitioning patients to transport ECMO machinery. Four patients have been transported to date including fixed wing (FW) and helicopter transports. All patients were successfully transported with either none or minor complications. Transport of ECMO-supported patients is a feasible method to increase access of patients with irreversible lung injured patients to evaluation for lung transplant.

  9. Remote cannulation and extracorporeal membrane oxygenation transport is safe in a newly established program.

    PubMed

    Grenda, David S; Moll, Vanessa; Kalin, Craig M; Blum, James M

    2017-02-01

    Extracorporeal membrane oxygenation (ECMO) has become an increasingly utilized modality for the support of patients with severe cardiac or pulmonary dysfunction. Unfortunately, the costs and expertise required to maintain a formal ECMO program preclude the vast majority of hospitals from employing such technology routinely. These barriers to implementation of an effective ECMO program highlight the importance of the safe transport of patients in need of extracorporeal support. While many centers with extensive expertise in the management of patients on extracorporeal support have demonstrated their ability to transport those same patients, the ability of new ECMO programs to provide such transportation remains poorly studied. We established an ECMO program at our institution and immediately provided equipment and personnel to transport patients in need of or receiving extracorporeal support to our institution. Overall, we found that 13 out of 28 patients transported to our institution on ECMO or for consideration of ECMO support during the first 15 months of the program survived to hospital discharge. During that period, four incidents associated with patient transport occurred but none were related to ECMO support or adversely affected patient outcome. These observations demonstrate that new ECMO programs can safely and reliably transport patients on or in need of extracorporeal support.

  10. Oxygen transport membrane reactor based method and system for generating electric power

    DOEpatents

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  11. The liquid-ordered phase in sphingomyelincholesterol membranes as detected by the discrimination by oxygen transport (DOT) method.

    PubMed

    Wisniewska, Anna; Subczynski, Witold K

    2008-01-01

    Membranes made from binary mixtures of egg sphingomyelin (ESM) and cholesterol were investigated using conventional and saturation-recovery EPR observations of the 5-doxylstearic acid spin label (5-SASL). The effects of cholesterol on membrane order and the oxygen transport parameter (bimolecular collision rate of molecular oxygen with the nitroxide spin label) were monitored at the depth of the fifth carbon in fluid- and gel-phase ESM membranes. The saturation-recovery EPR discrimination by oxygen transport (DOT) method allowed the discrimination of the liquid-ordered (l(o)), liquid-disordered (l(d)), and solid-ordered (s(o)) phases because the bimolecular collision rates of the molecular oxygen with the nitroxide spin label differ in these phases. Additionally, oxygen collision rates (the oxygen transport parameter) were obtained in coexisting phases without the need for their separation, which provides information about the internal dynamics of each phase. The addition of cholesterol causes a dramatic decrease in the oxygen transport parameter around the nitroxide moiety of 5-SASL in the l(o) phase, which at 50 mol% cholesterol becomes approximately 5 times smaller than in the pure ESM membrane in the l(d) phase, and approximately 2 times smaller than in the pure ESM membrane in the s(o) phase. The overall change in the oxygen transport parameter is as large as approximately 20-fold. Conventional EPR spectra show that 5-SASL is maximally immobilized at the phase boundary between regions with coexisting l(d) and l(o) phases or s(o) and l(o) phases and the region with a single l(o) phase. The obtained results allowed for the construction of a phase diagram for the ESM-cholesterol membrane.

  12. Influence of temperature on oxygen permeation through ion transport membrane to feed a biomass gasifier

    NASA Astrophysics Data System (ADS)

    Antonini, T.; Foscolo, P. U.; Gallucci, K.; Stendardo, S.

    2015-11-01

    Oxygen-permeable perovskite membranes with mixed ionic-electronic conducting properties can play an important role in the high temperature separation of oxygen from air. A detailed design of a membrane test module is presented, useful to test mechanical resistance and structural stability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) capillary membrane in the reactor environment. Preliminary experimental results of membrane permeation tests highlight the positive effect of temperature on perovskite materials. This behaviour is also confirmed by a computational model of char combustion with oxygen permeated through the membrane module, when it is placed inside a gasifier reactor to provide the necessary input of heat to the gasification endothermic process. The results show that the temperature affects the oxygen permeation of the BSCF membrane remarkably.

  13. ZERO EMISSION POWER PLANTS USING SOLID OXIDE FUEL CELLS AND OXYGEN TRANSPORT MEMBRANES

    SciTech Connect

    G. Maxwell Christie; Troy M. Raybold

    2003-06-10

    Over 16,700 hours of operational experience was gained for the Oxygen Transport Membrane (OTM) elements of the proposed SOFC/OTM zero-emission power generation concept. It was repeatedly demonstrated that OTMs with no additional oxidation catalysts were able to completely oxidize the remaining depleted fuel in a simulated SOFC anode exhaust at an O{sub 2} flux that met initial targets. In such cases, neither residual CO nor H{sub 2} were detected to the limits of the gas chromatograph (<10 ppm). Dried OTM afterburner exhaust streams contained up to 99.5% CO{sub 2}. Oxygen flux through modified OTMs was double or even triple that of the standard OTMs used for the majority of testing purposes. Both the standard and modified membranes in laboratory-scale and demonstration-sized formats exhibited stable performance over extended periods (2300 to 3500 hours or 3 to 5 months). Reactor contaminants, were determined to negatively impact OTM performance stability. A method of preventing OTM performance degradation was developed and proven to be effective. Information concerning OTM and seal reliability over extended periods and through various chemical and thermal shocks and cycles was also obtained. These findings were used to develop several conceptual designs for pilot (10 kWe) and commercial-scale (250 kWe) SOFC/OTM zero emission power generation systems.

  14. On the effect of serum on the transport of reactive oxygen species across phospholipid membranes.

    PubMed

    Szili, Endre J; Hong, Sung-Ha; Short, Robert D

    2015-06-24

    The transport of plasma generated reactive oxygen species (ROS) across a simple phospholipid membrane mimic of a (real) cell was investigated. Experiments were performed in cell culture media (Dulbecco's modified Eagle's medium, DMEM), with and without 10% serum. A (broad spectrum) ROS reporter dye, 2,7-dichlorodihydrofluorescein (DCFH), was used to detect the generation of ROS by a helium (He) plasma jet in DMEM using free DCFH and with DCFH encapsulated inside phospholipid membrane vesicles dispersed in DMEM. The authors focus on the concentration and on the relative rates (arbitrary units) for oxidation of DCFH [or the appearance of the oxidized product 2,7-dichlorofluorescein (DCF)] both in solution and within vesicles. In the first 1 h following plasma exposure, the concentration of free DCF in DMEM was ~15× greater in the presence of serum (cf. to the serum-free DMEM control). The DCF in vesicles was ~2× greater in DMEM containing serum compared to the serum-free DMEM control. These data show that serum enhances plasma ROS generation in DMEM. As expected, the role of the phospholipid membrane was to reduce the rate of oxidation of the encapsulated DCFH (with and without serum). And the efficiency of ROS transport into vesicles was lower in DMEM containing serum (at 4% efficiency) when compared to serum-free DMEM (at 32% efficiency). After 1 h, the rate of DCFH oxidation was found to have significantly reduced. Based upon a synthesis of these data with results from the open literature, the authors speculate on how the components of biological fluid and cellular membranes might affect the kinetics of consumption of plasma generated ROS.

  15. Deposition of Lanthanum Strontium Cobalt Ferrite (LSCF) Using Suspension Plasma Spraying for Oxygen Transport Membrane Applications

    NASA Astrophysics Data System (ADS)

    Fan, E. S. C.; Kesler, O.

    2015-08-01

    Suspension plasma spray deposition was utilized to fabricate dense lanthanum strontium cobalt ferrite oxygen separation membranes (OSMs) on porous metal substrates for mechanical support. The as-sprayed membranes had negligible and/or reversible material decomposition. At the longer stand-off distance (80 mm), smooth and dense membranes could be manufactured using a plasma with power below approximately 81 kW. Moreover, a membrane of 55 μm was observed to have very low gas leakage rates desirable for OSM applications. This thickness could potentially be decreased further to improve oxygen diffusion by using metal substrates with finer surface pores.

  16. Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes

    SciTech Connect

    Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E.; Christie, G. Maxwell; Raybold, Troy M.

    2001-11-06

    Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can

  17. A potentiostatic study of oxygen transport through poly(2-ethoxyethyl methacrylate-co-2,3-dihydroxypropylmethacrylate) hydrogel membranes.

    PubMed

    Compañ, Vicente; Tiemblo, Pilar; García, F; García, J M; Guzmán, Julio; Riande, Evaristo

    2005-06-01

    The oxygen permeability and diffusion coefficients of hydrogel membranes prepared with copolymers of 2-ethoxyethyl methacrylate (EEMA)/2,3-dihydroxypropylmethacrylate (MAG) with mole fraction of the second monomer in the range between 0 and 0.75 are described. Values of the permeability and diffusion coefficients of oxygen are determined by using electrochemical procedures involving the measurement of the steady-state current in membranes prepared by radical polymerization of the monomers. The results obtained for the transport properties were analyzed taking into account the fractional free volumes, the cohesive energy densities and the glass transition temperatures of the hydrogels.

  18. Conducting Membranes: Unprecedented Perovskite Oxyfluoride Membranes with High-Efficiency Oxygen Ion Transport Paths for Low-Temperature Oxygen Permeation (Adv. Mater. 18/2016).

    PubMed

    Zhu, Jiawei; Liu, Gongping; Liu, Zhengkun; Chu, Zhenyu; Jin, Wanqin; Xu, Nanping

    2016-05-01

    Perovskite oxyfluoride (ABO3-δ Fγ ) membranes for low-temperature oxygen permeation are reported by W. Jin and co-workers. As described on page 3511, using mixed ionic and electronic conducting (MIEC) oxides, this new type of membrane outperforms current state-of-the-art MIEC membranes and satisfies commercial requirements at low temperatures (<923 K). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network.

    PubMed

    Luo, Xiaoyan; Holdcroft, Steven; Mani, Ana; Zhang, Yongming; Shi, Zhiqing

    2011-10-28

    The effect of ion exchange capacity (IEC) on the water sorption properties of high IEC, short side chain (SSC) PFSA ionomer membranes, and the relationships between water content, proton conductivity, proton mobility, water permeation, oxygen diffusion, and oxygen permeation are investigated. SSC PFSA ionomer membranes possessing 1.3, 1.4, and 1.5 mmol g(-1) IEC are compared to a series of long side chain (LSC) PFSA ionomer membranes ranging in IEC from 0.9 to 1.13 mmol g(-1). At 25 °C, fully-hydrated SSC ionomer membranes are characterized as possessing higher water contents (56-75 vol%), moderate λ values (15-18), high analytical acid concentrations (2-2.8 M), and moderate conductivity (88-115 mS/cm); but lower than anticipated effective proton mobility. Complementary measurements of water permeability, oxygen diffusion, and oxygen permeability also yield lower than expected values given their much higher water contents. Potential benefits afforded by reducing the side chain length of PFSA ionomer membranes, such as increased crystallinity, higher IEC, and high hydrated acid concentration are offset by a less-developed, frustrated hydrophilic percolation network, which provides a motivation for future improvements of transport properties for this class of material. This journal is © the Owner Societies 2011

  20. The effect of mechanical twisting on oxygen ionic transport in solid-state energy conversion membranes.

    PubMed

    Shi, Yanuo; Bork, Alexander Hansen; Schweiger, Sebastian; Rupp, Jennifer Lilia Marguerite

    2015-07-01

    Understanding 'electro-chemo-mechanics' in oxygen ion conducting membranes represents a foundational step towards new energy devices such as micro fuel cells and oxygen or fuel separation membranes. For ionic transport in macro crystalline electrolytes, doping is conventionally used to affect oxygen ionic association/migration energies. Recently, tuning ionic transport in films through lattice strain conveyed by substrates or heterostructures has generated much interest. However, reliable manipulation of strain states to twist the ionic conduction in real micro energy devices remains intractable. Here, we demonstrate that the oxygen ionic conductivity clearly correlates with the compressive strain energy acting on the near order of the electrolyte lattices by comparing thin-film ceria-based membrane devices against substrate-supported flat structures. It is possible to capitalize on this phenomenon with a smart choice of strain patterns achieved through microelectrode design. We highlight the importance of electro-chemo-mechanics in the electrolyte material for the next generation of solid-state energy conversion microdevices.

  1. Scaling laws for oxygen transport across the space-filling system of respiratory membranes in the human lung

    NASA Astrophysics Data System (ADS)

    Hou, Chen

    Space-filling fractal surfaces play a fundamental role in how organisms function at various levels and in how structure determines function at different levels. In this thesis, we develop a quantitative theory of oxygen transport to and across the surface of the highly branched, space-filling system of alveoli, the fundamental gas exchange unit (acinar airways), in the human lung. Oxygen transport in the acinar airways is by diffusion, and we treat the two steps---diffusion through the branched airways, and transfer across the alveolar membranes---as a stationary diffusion-reaction problem, taking into account that there may be steep concentration gradients between the entrance and remote alveoli (screening). We develop a renormalization treatment of this screening effect and derive an analytic formula for the oxygen current across the cumulative alveolar membrane surface, modeled as a fractal, space-filling surface. The formula predicts the current from a minimum of morphological data of the acinus and appropriate values of the transport parameters, through a number of power laws (scaling laws). We find that the lung at rest operates near the borderline between partial screening and no screening; that it switches to no screening under exercise; and that the computed currents agree with measured values within experimental uncertainties. From an analysis of the computed current as a function of membrane permeability, we find that the space-filling structure of the gas exchanger is simultaneously optimal with respect to five criteria. The exchanger (i) generates a maximum oxygen current at minimum permeability; (ii) 'wastes' a minimum of surface area; (iii) maintains a minimum residence time of oxygen in the acinar airways; (iv) has a maximum fault tolerance to loss of permeability; and (v) generates a maximum current increase when switching from rest to exercise.

  2. A proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane.

    PubMed

    Mould, R M; Robinson, C

    1991-07-05

    The 33- and 23-kDa proteins of the photosynthetic oxygen-evolving complex are synthesized in the cytosol as larger precursors and transported into the thylakoid lumen via stromal intermediate forms. We have investigated the energetics of protein transport across the thylakoid membrane using import assays that utilize either intact chloroplasts or isolated thylakoids. We have found that the light-driven import of the 23-kDa protein into isolated thylakoids is almost completely inhibited by electron transport inhibitors or by the ionophore nigericin but not by valinomycin. These compounds have similar effects in chloroplast import assays: precursors of both the 33- and 23-kDa proteins are imported and processed to intermediate forms in the stroma, but transport into the thylakoid lumen is blocked when electron transport is inhibited or nigericin is present. These results indicate that the transport of these proteins across the thylakoid membrane requires a protonmotive force and that the dominant component in this respect is the proton gradient and not the electrical potential.

  3. Artificial oxygen transport protein

    DOEpatents

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  4. Dual-Phase Oxygen Transport Membranes for Stable Operation in Environments Containing Carbon Dioxide and Sulfur Dioxide.

    PubMed

    Garcia-Fayos, Julio; Balaguer, María; Serra, José M

    2015-12-21

    Dual-phase membranes are appealing candidates for oxygen transport membranes owing to their unique combination of ambipolar electron-ion transport and endurance. However, O2 separation in industrial environments demands very high stability and effectiveness in the presence of CO2- and SO2-bearing process gases. Here, the composition of dual-phase membranes based on NiFe2O4-Ce(0.8) Tb(0.2)O(2-δ) (NFO-CTO) was optimized and the effective performance of catalytically-activated membranes was assessed in presence of CO2 and SO2. Further insight into the limiting mechanisms in the permeation was gained through electrical conductivity studies, permeation testing in several conditions and impedance spectroscopy analysis. The dual-phase membranes were prepared by one-pot sol-gel method and their permeability increases with increasing fluorite content. An O2 flux of 0.25 (ml min(-1)  cm(-2)) mm at 1000 °C was obtained for a thick self-standing membrane with 40:60 NFO/CTO composition. An in-depth study mimicking typical harsh conditions encountered in oxyfuel flue gases was performed on a 50:50 NFO/CTO membrane. CO2 content as well as SO2 presence in the sweep gas stream were evaluated in terms of O2 permeation. O2 fluxes of 0.13 and 0.09 mL min(-1)  cm(-2) at 850 °C were obtained for a 0.59 mm thick membrane under CO2 and 250 ppm SO2 in CO2 sweep conditions, respectively. Extended periods at work under CO2- and SO2-containing atmospheres revealed good permeation stability over time. Additionally, XRD, backscattered electrons detector (BSD)-SEM, and energy-dispersive X-ray spectroscopy (EDS) analysis of the spent membrane confirmed material stability upon prolonged exposure to SO2.

  5. Atomic transport of oxygen

    SciTech Connect

    Routbort, J.L.; Tomlins, G.W.

    1994-06-15

    Atomic transport of oxygen in nonstoichiometric oxides is an extremely important topic which overlaps science and technology. In many cases the diffusion of oxygen controls sintering, grain growth, and creep. High oxygen diffusivity is critical for efficient operation of many fuel cells. Additionally, oxygen diffusivities are an essential ingredient in any point defect model. Secondary Ion Mass Spectrometry (SIMS) is the most accurate modern technique to measure oxygen tracer diffusion. This paper briefly reviews the principles and applications of SIMS for the measurement of oxygen transport. Case studies are taken from recent work on ZnO and some high-temperature superconductors.

  6. Reversible Oxygenation of Oxygen Transport Proteins.

    ERIC Educational Resources Information Center

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  7. The Role of Oxygen Partial Pressure in Controlling the Phase Composition of La1- x Sr x Co y Fe1- y O3- δ Oxygen Transport Membranes Manufactured by Means of Plasma Spray-Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Marcano, D.; Mauer, G.; Sohn, Y. J.; Vaßen, R.; Garcia-Fayos, J.; Serra, J. M.

    2016-04-01

    La0.58Sr0.4Co0.2Fe0.8O3 - δ (LSCF) deposited on a metallic porous support by plasma spray-physical vapor deposition is a promising candidate for oxygen-permeation membranes. Ionic transport properties are regarded to depend on the fraction of perovskite phase present in the membrane. However, during processing, the LSCF powder decomposes into perovskite and secondary phases. In order to improve the ionic transport properties of the membranes, spraying was carried out at different oxygen partial pressures p(O2). It was found that coatings deposited at lower and higher oxygen partial pressures consist of 70% cubic/26% rhombohedral and 61% cubic/35% rhombohedral perovskite phases, respectively. During annealing, the formation of non-perovskite phases is driven by oxygen non-stoichiometry. The amount of oxygen added during spraying can be used to increase the perovskite phase fraction and suppress the formation of non-perovskite phases.

  8. Extracorporeal Membrane Oxygenation Circuitry

    PubMed Central

    Horton, Stephen B.; McMullan, D. Michael; Bartlett, Robert H

    2013-01-01

    The extracorporeal membrane oxygenation (ECMO) circuit is made of a number of components that have been customized to provide adequate tissue oxygen delivery in patients with severe cardiac and/or respiratory failure for a prolonged period of time (days to weeks). A standard ECMO circuit consists of a mechanical blood pump, gas exchange device, and a heat exchanger all connected together with circuit tubing. ECMO circuits can vary from simple to complex and may include a variety of blood flow and pressure monitors, continuous oxyhemoglobin saturation monitors, circuit access sites and a bridge connecting the venous access and arterial infusion limbs of the circuit. Significant technical advancements have been made in the equipment available for short and long term ECMO applications. Contemporary ECMO circuits have greater biocompatibility and allow for more prolonged cardiopulmonary support time, while minimizing the procedure-related complications of bleeding, thrombosis and other physiologic derangements that were so common with the early application of ECMO. Modern era ECMO circuitry and components are simpler, safer, more compact and can be used across a wide variety of patient sizes from neonates to adults. PMID:23735989

  9. A Highly Efficient Sandwich-Like Symmetrical Dual-Phase Oxygen-Transporting Membrane Reactor for Hydrogen Production by Water Splitting.

    PubMed

    Fang, Wei; Steinbach, Frank; Cao, Zhongwei; Zhu, Xuefeng; Feldhoff, Armin

    2016-07-18

    Water splitting coupled with partial oxidation of methane (POM) using an oxygen-transporting membrane (OTM) would be a potentially ideal way to produce high-purity hydrogen as well as syngas. Over the past decades, substantial efforts have been devoted to the development of supported membranes with appropriate configurations to achieve considerable performance improvements. Herein, we describe the design of a novel symmetrical membrane reactor with a sandwich-like structure, whereby a largescale production (>10 mL min(-1)  cm(-2) ) of hydrogen and syngas can be obtained simultaneously on opposite sides of the OTM. Furthermore, this special membrane reactor could regenerate the coke-deactivated catalyst in situ by water steam in a single unit. These results represent an important first step in the development of membrane separation technologies for the integration of multiple chemical processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Uphill transport membrane electrodes

    SciTech Connect

    Uto, M.; Yoshida, H.; Sugawara, M.; Umezawa, Y.

    1986-07-01

    A new membrane electrode was constructed in which carrier-mediated uphill transport of analytes is incorporated. The electrode can boost selectively virtual concentration of specific analytes by uphill transport against their concentration gradient across a built-in liquid membrane into its inner filling solution, whose volume is purposely made very small. Cd(II), UO/sub 2//sup 2 +/, and Cu(II) ion uphill transport membrane electrodes constructed here as illustrative examples utilize three different types of input energies, i.e., complexation, concentration gradient, and redox, respectively, for uphill transport of each analyte. Voltammetric detections were demonstrated for Cd(II) and UO/sub 2//sup 2 +/ ion uphill transport electrodes, and a potentiometric detection for a Cu(II) ion uphill transport membrane electrode is also described in terms of fundamental behaviors and a possible use for a new type of electrochemical sensor.

  11. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-05-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  12. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

    2001-07-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  13. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  14. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  15. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  16. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  17. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The third semi-annual period of the MTP project has been involved with performing experiments using the Membrane Transport Apparatus (MTA), development of analysis techniques for the experiment results, analytical modeling of the osmotic transport phenomena, and completion of a DC-9 microgravity flight to test candidate fluid cell geometries. Preparations were also made for the MTP Science Concept Review (SCR), held on 13 June 1997 at Lockheed Martin Astronautics in Denver. These activities are detailed in the report.

  18. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  19. Feed gas contaminant removal in ion transport membrane systems

    DOEpatents

    Underwood, Richard Paul [Allentown, PA; Makitka, III, Alexander; Carolan, Michael Francis [Allentown, PA

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  20. Clinical use of venovenous extracorporeal membrane oxygenation.

    PubMed

    Ng, G Wy; Yuen, H J; Sin, K C; Leung, A Kh; Au Yeung, K W; Lai, K Y

    2017-04-01

    Extracorporeal membrane oxygenation has been used clinically for more than 40 years. The technique provides respiratory and/or circulatory support via venovenous and veno-arterial configurations, respectively. We review the basic physiological principles of extracorporeal membrane oxygenation systems in venovenous extracorporeal membrane oxygenation. Clinical aspects including patient selection, equipment, setup, and specific patient management are outlined. Pros and cons of the use of extracorporeal membrane oxygenation in respiratory failure are discussed.

  1. Decoupling of the processes of molecular oxygen synthesis and electron transport in Ca2+-depleted PSII membranes.

    PubMed

    Semin, Boris K; Davletshina, Lira N; Ivanov, Il'ya I; Rubin, Andrei B; Seibert, Michael

    2008-01-01

    Extraction of Ca(2+) from the O(2)-evolving complex (OEC) of photosystem II (PSII) membranes with 2 M NaCl in the light (PSII(-Ca/NaCl)) results in 90% inhibition of the O(2)-evolution reaction. However, electron transfer from the donor to acceptor side of PSII, measured as the reduction of the exogenous acceptor 2,6-dichlorophenolindophenol (DCIP) under continuous light, is inhibited by only 30%. Thus, calcium extraction from the OEC inhibits the synthesis of molecular O(2) but not the oxidation of a substrate we term X, the source of electrons for DCIP reduction. The presence of electron transfer across PSII(-Ca/NaCl) membranes was demonstrated using fluorescence induction kinetics, a method that does not require an artificial acceptor. The calcium chelator, EGTA (5 mM), when added to PSII(-Ca/NaCl) membranes, does not affect the inhibition of O(2) evolution by NaCl but does inhibit DCIP reduction up to 92% (the reason why electron transport in Ca(2+)-depleted materials has not been noticed before). Another chelator, sodium citrate (citrate/low pH method of calcium extraction), also inhibits both O(2) evolution and DCIP reduction. The role of all buffer components (including bicarbonate and sucrose) as possible sources of electrons for PSII(-Ca/NaCl) membranes was investigated, but only the absence of chloride anions strongly inhibited the rate of DCIP reduction. Substitution of other anions for chloride indicates that Cl(-) serves its well-known role as an OEC cofactor, but it is not substrate X. Multiple turnover flash experiments have shown a period of four oscillations of the fluorescence yield (both the maximum level, F(max), and the fluorescence level measured 50 s after an actinic flash in the presence of DCMU) in native PSII membranes, reflecting the normal function of the OEC, but the absence of oscillations in PSII(-Ca/NaCl) samples. Thus, PSII(-Ca/NaCl) samples do not evolve O(2) but do transfer electrons from the donor to acceptor sides and exhibit a

  2. Decoupling of the Processes of Molecular Oxygen Synthesis and Electron Transport in Ca2+-Depleted PSII Membranes

    SciTech Connect

    Semin, B. K.; Davletshina, L. N.; Ivanov, I. I.; Rubin, A. B.; Seibert, M.

    2008-10-01

    Extraction of Ca{sup 2+} from the O{sub 2}-evolving complex (OEC) of photosystem II (PSII) membranes with 2 M NaCl in the light (PSII(-Ca/NaCl)) results in 90% inhibition of the O{sub 2}-evolution reaction. However, electron transfer from the donor to acceptor side of PSII, measured as the reduction of the exogenous acceptor 2,6-dichlorophenolindophenol (DCIP) under continuous light, is inhibited by only 30%. Thus, calcium extraction from the OEC inhibits the synthesis of molecular O{sub 2} but not the oxidation of a substrate we term X, the source of electrons for DCIP reduction. The presence of electron transfer across PSII(-Ca/NaCl) membranes was demonstrated using fluorescence induction kinetics, a method that does not require an artificial acceptor. The calcium chelator, EGTA (5 mM), when added to PSII(-Ca/NaCl) membranes, does not affect the inhibition of O{sub 2} evolution by NaCl but does inhibit DCIP reduction up to 92% (the reason why electron transport in Ca{sup 2+}-depleted materials has not been noticed before). Another chelator, sodium citrate (citrate/low pH method of calcium extraction), also inhibits both O{sub 2} evolution and DCIP reduction. The role of all buffer components (including bicarbonate and sucrose) as possible sources of electrons for PSII(-Ca/NaCl) membranes was investigated, but only the absence of chloride anions strongly inhibited the rate of DCIP reduction. Substitution of other anions for chloride indicates that Cl{sup -} serves its well-known role as an OEC cofactor, but it is not substrate X. Multiple turnover flash experiments have shown a period of four oscillations of the fluorescence yield (both the maximum level, F{sub max}, and the fluorescence level measured 50 s after an actinic flash in the presence of DCMU) in native PSII membranes, reflecting the normal function of the OEC, but the absence of oscillations in PSII(-Ca/NaCl) samples. Thus, PSII(-Ca/NaCl) samples do not evolve O{sub 2} but do transfer electrons from

  3. Clinical review: Extracorporeal membrane oxygenation

    PubMed Central

    2011-01-01

    The H1N1 flu pandemic led to a wider use of extracorporeal membrane oxygenation (ECMO), proving its power in hypoxemic emergencies. The results obtained during this pandemic, more than any randomized trial, led to the worldwide acceptance of the use of membrane lungs. Moreover, as centers that applied this technique as rescue therapy for refractory hypoxemia recognized its strength and limited technical challenges, the indications for ECMO have recently been extended. Indications for veno-venous ECMO currently include respiratory support as a bridge to lung transplantation, correction of lung hyperinflation during chronic obstructive pulmonary disease exacerbation and respiratory support in patients with the acute respiratory distress syndrome, possibly also without mechanical ventilation. The current enthusiasm for ECMO in its various aspects should not, however, obscure the consideration of the potential complications associated with this life-saving technique, primarily brain hemorrhage PMID:22188792

  4. First experience with the deltastream® DP3 in venovenous extracorporeal membrane oxygenation and air-supported inter-hospital transport

    PubMed Central

    Lunz, Dirk; Philipp, Alois; Judemann, Katrin; Amann, Matthias; Foltan, Maik; Schmid, Christof; Graf, Bernhard; Zausig, York A.

    2013-01-01

    OBJECTIVES Based on continuous technical innovations and recent research, extracorporeal membrane oxygenation (ECMO) has become a promising tool in the treatment of patients with acute (cardio)pulmonary failure. Nevertheless, any extracorporeal technique requires a high degree of experience and knowledge, so that a restriction to specialized centres seems to be reasonable. As a consequence of this demand, the need for inter-hospital transfer of patients with severely impaired (cardio)pulmonary function is rising. Unfortunately, most of the ECMO devices used in the clinical setting are not suitable for inter-hospital transport because of their size, weight or complexity. In this article, we describe our first experiences with the airborne transport of 6 patients on a new portable, miniaturized and lightweight extracorporeal circulation system, the Medos deltastream® DP3. METHODS Six patients suffering acute respiratory failure were taken on venovenous ECMO (DP3) out-of-centre and transferred to the University Medical Center Regensburg by helicopter. All cardiorespiratory-relevant parameters of the patients and the technical functioning of the device were continuously monitored and documented. RESULTS Implantation of the device and air-supported transport were performed without any technical complications. The patients were transported from a distance of 66–178 km, requiring a time of 40–120 min. With the help of the new deltastream® DP3 ECMO device, a prompt stabilization of the cardiopulmonary function could be achieved in all patients. One patient was under ongoing cardiopulmonary resuscitation by the time our ECMO team arrived at the peripheral hospital and died shortly after arrival in the central emergency ward. CONCLUSIONS Our experience shows that the deltastream® DP3 is an absolutely reliable and safe ECMO device that could gain growing importance in the field of airborne transportation of patients on ECMO due to its unsophisticated, miniaturized and

  5. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The activities during the fourth semi-annual period of the MTP project have involved the completion of the Science Concept Review (SCR) presentation and peer review, continuation of analyses for the mass transfer coefficients measured from MTA experiment data, and development of the second generation (MTP-II) instrument. The SCR panel members were generated several recommendations for the MTP project recommendations are : Table 1 Summary of Primary SCR Panel Recommendations (1) Continue and refine development of mass transfer coefficient analyses (2) Refine and upgrade analytical modeling associated with the MTP experiment. (3) Increase resolution of measurements in proximity of the membrane interface. (4) Shift emphasis to measurement of coupled transport effects (i.e., development of MTP phase II experiment concept).

  6. DEVELOPMENT OF REACTION-DRIVEN IONIC TRANSPORT MEMBRANES (ITMs) TECHNOLOGY: PHASE IV/BUDGET PERIOD 6 “Development of ITM Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems”

    SciTech Connect

    David, Studer

    2012-03-01

    Air Products and Chemicals, along with development participants and in association with the U.S. Department of Energy, has made substantial progress in developing a novel air separation technology. Unlike conventional cryogenic processes, this method uses high-temperature ceramic membranes to produce high-purity oxygen. The membranes selectively transport oxygen ions with high flux and infinite theoretical selectivity. Reaction-driven ceramic membranes are fabricated from non-porous, multi-component metallic oxides, operate at temperatures typically over 700°C, and have exceptionally high oxygen flux and selectivity. Oxygen from low-pressure air permeates as oxygen ions through the ceramic membrane and is consumed through chemical reactions, thus creating a chemical driving force that pulls oxygen ions across the membrane at high rates. The oxygen reacts with a hydrocarbon fuel in a partial oxidation process to produce a hydrogen and carbon monoxide mixture – synthesis gas. This project expands the partial-oxidation scope of ITM technology beyond natural gas feed and investigates the potential for ITM reaction-driven technology to be used in conjunction with gasification and pyrolysis technologies to provide more economical routes for producing hydrogen and synthesis gas. This report presents an overview of the ITM reaction-driven development effort, including ceramic materials development, fabrication and testing of small-scale ceramic modules, ceramic modeling, and the investigation of gasifier integration schemes

  7. Transport properties of oxygen

    NASA Technical Reports Server (NTRS)

    Roder, H. M.

    1983-01-01

    Tables of viscosity, thermal conductivity, and thermal diffusivity of oxygen as a function of temperature and pressure from the triple point to 320 K and at pressures to 100 MPa are presented. Auxiliary tables in engineering units are also given. Viscosity and thermal conductivity are calculated from published correlations. Density and specific heat at constant pressure, required to calculate thermal diffusivity, are obtained from an equation of state. The Prandtl number can be obtained quite easily from the values tabulated.

  8. Highly Durable Supportless Pt Hollow Spheres Designed for Enhanced Oxygen Transport in Cathode Catalyst Layers of Proton Exchange Membrane Fuel Cells.

    PubMed

    Dogan, Didem C; Cho, Seonghun; Hwang, Sun-Mi; Kim, Young-Min; Guim, Hwanuk; Yang, Tae-Hyun; Park, Seok-Hee; Park, Gu-Gon; Yim, Sung-Dae

    2016-10-10

    Supportless Pt catalysts have several advantages over conventional carbon-supported Pt catalysts in that they are not susceptible to carbon corrosion. However, the need for high Pt loadings in membrane electrode assemblies (MEAs) to achieve state-of-the-art fuel cell performance has limited their application in proton exchange membrane fuel cells. Herein, we report a new approach to the design of a supportless Pt catalyst in terms of catalyst layer architecture, which is crucial for fuel cell performance as it affects water management and oxygen transport in the catalyst layers. Large Pt hollow spheres (PtHSs) 100 nm in size were designed and prepared using a carbon template method. Despite their large size, the unique structure of the PtHSs, which are composed of a thin-layered shell of Pt nanoparticles (ca. 7 nm thick), exhibited a high surface area comparable to that of commercial Pt black (PtB). The PtHS structure also exhibited twice the durability of PtB after 2000 potential cycles (0-1.3 V, 50 mV/s). A MEA fabricated with PtHSs showed significant improvement in fuel cell performance compared to PtB-based MEAs at high current densities (>800 mA/cm(2)). This was mainly due to the 2.7 times lower mass transport resistance in the PtHS-based catalyst layers compared to that in PtB, owing to the formation of macropores between the PtHSs and high porosity (90%) in the PtHS catalyst layers. The present study demonstrates a successful example of catalyst design in terms of catalyst layer architecture, which may be applied to a real fuel cell system.

  9. Hair loss after extracorporeal membrane oxygenation.

    PubMed

    Pettignano, Robert; Heard, Micheal L; Labuz, Michele D; Wagoner, Scott F; Fortenberry, James

    2003-07-01

    To discuss the factors associated with hair loss reported after the completion of extracorporeal membrane oxygenation. Prospective survey and retrospective chart review. Tertiary care pediatric and adult extracorporeal membrane oxygenation program in a children's hospital. All patients aged > or =60 months who underwent extracorporeal membrane oxygenation for respiratory or cardiac failure. Telephone survey of all patients or patient families who met study entry criteria. Twelve extracorporeal membrane oxygenation patients met entry criteria. Nine were contacted and surveyed. Seven children and one adult reported hair loss. One child had no reported hair loss. One patient had a reported hair loss of <10%, three had 25% hair loss, two had 50% hair loss, and two had >50% hair loss. Initial hair loss occurred between 2 wks and 3 months after extracorporeal membrane oxygenation and lasted from 1 to 6 months. No patient sought medical treatment and all reported regrowth of their hair by 6 months after identifying the initial hair loss. Hair loss after critical illness is a well-documented phenomenon. Hair loss after extracorporeal membrane oxygenation has not been previously reported. The etiology of the hair loss is probably multifactorial and resolves spontaneously. Patients and families should be educated about hair loss as a potential side effect of extracorporeal membrane oxygenation during their post-extracorporeal membrane oxygenation and discharge teaching.

  10. [Newborn life threatening respiratory failure treatment with extracorporeal membrane oxygenation].

    PubMed

    Urbańska, Ewa; Grzybowski, Adam; Haponiuk, Ireneusz; Przybylski, Roman; Walas, Wojciech; Stempniewicz, Krzysztof; Szary, Tomasz; Włoczka, Grzegorz; Skalski, Janusz H; Zembala, Marian

    2006-01-01

    THE AIM of the study was to show first results of newborn life threatening respiratory failure treatment with extracorporeal membrane oxygenation (ECMO) in Poland. Nine newborns were treated with extracorporeal membrane oxygenation in Silesian Center for Heart Diseases. Newborns were born in 38 week of gestational age (36-41 weeks) with mean birth weight of 3490 g. Reasons for the referral were: meconium aspiration syndrome, infection, and pulmonary hypertension. Each newborn fulfilled an Extracorporeal Life Support Organization (ELSO) criteria for extracorporeal membrane oxygenation. seven out of nine of patients treated with extracorporeal membrane oxygenation survived. Full clinical stabilization was reached about 6th hour of treatment. Mean extracorporeal oxygenation time was 162 hours. For eight newborns veno-venous method was applied and for one newborn veno-arterial method. Roller pump was used in 7 cases and centrifugal pomp in one case. Five newborns had uneventful treatment. During extracorporeal membrane oxygenation therapy we have observed several complications: PDA, hemorrhagic complications, renal failure, arterial hypertension, septicemia, tubing rupture. extracorporeal oxygenation is an effective method of treatment for newborn life threatening respiratory failure. Obtained results do not differ much from Extracorporeal Life Support Organization register results. The most essential problem for extracorporeal membrane oxygenation therapy is correct qualification, early referral, safe transportation as well as the development of centers providing ECMO treatment.

  11. Dense ceramic membranes for partial oxygenation of methane

    SciTech Connect

    Balachandran, U.; Dusek, J.T.; Sweeney, S.M.; Mieville, R.L.; Maiya, P.S.; Kleefisch, M.S.; Pei, S.; Kobylinski, T.P.; Bose, A.C.

    1994-05-01

    The most significant cost associated with partial oxidation of methane to syngas is that of the oxygen plant. In this paper, the authors offer a technology that is based on dense ceramic membranes and that uses air as the oxidant for methane-conversion reactions, thus eliminating the need for the oxygen plant. Certain ceramic materials exhibit both electronic and ionic conductivities (of particular interest is oxygen-ion conductivity). These materials transport not only oxygen ions (functioning as selective oxygen separators) but also electrons back from the reactor side to the oxygen/reduction interface. No external electrodes are required and if the driving potential of transport is sufficient, the partial oxidation reactions should be spontaneous. Such a system will operate without an externally applied potential. Oxygen is transported across the ceramic material in the form of oxygen anions, not oxygen molecules. In principle, the dense ceramic materials can be shaped into a hollow-tube reactor, with air passed over the outside of the membrane and methane through the inside. The membrane is permeable to oxygen at high temperatures, but not to nitrogen or any other gas. Long tubes of La-Sr-Fe-Co-O (SFC) membrane were fabricated by plastic extrusion, and thermal stability of the tubes was studied as a function of oxygen partial pressure by high-temperature XRD. Mechanical properties were measured and found to be acceptable for a reactor material. Fracture of certain SFC tubes was the consequence of an oxygen gradient that introduced a volumetric lattice difference between the inner and outer walls. However, tubes made with a particular stoichiometry (SFC-2) provided methane conversion efficiencies of >99% in a reactor. Some of the reactor tubes have operated for up to {approx} 1,000 h.

  12. Silicon Micropore-Based Parallel Plate Membrane Oxygenator.

    PubMed

    Dharia, Ajay; Abada, Emily; Feinberg, Benjamin; Yeager, Torin; Moses, Willieford; Park, Jaehyun; Blaha, Charles; Wright, Nathan; Padilla, Benjamin; Roy, Shuvo

    2017-08-11

    Extracorporeal membrane oxygenation (ECMO) is a life support system that circulates the blood through an oxygenating system to temporarily (days to months) support heart or lung function during cardiopulmonary failure until organ recovery or replacement. Currently, the need for high levels of systemic anticoagulation and the risk for bleeding are main drawbacks of ECMO that can be addressed with a redesigned ECMO system. Our lab has developed an approach using microelectromechanical systems (MEMS) fabrication techniques to create novel gas exchange membranes consisting of a rigid silicon micropore membrane (SμM) support structure bonded to a thin film of gas-permeable polydimethylsiloxane (PDMS). This study details the fabrication process to create silicon membranes with highly uniform micropores that have a high level of pattern fidelity. The oxygen transport across these membranes was tested in a simple water-based bench-top set-up as well in a porcine in vivo model. It was determined that the mass transfer coefficient for the system using SµM-PDMS membranes was 3.03 ± 0.42 mL O2 min(-1) m(-2) cm Hg(-1) with pure water and 1.71 ± 1.03 mL O2 min(-1) m(-2) cm Hg(-1) with blood. An analytic model to predict gas transport was developed using data from the bench-top experiments and validated with in vivo testing. This was a proof of concept study showing adequate oxygen transport across a parallel plate SµM-PDMS membrane when used as a membrane oxygenator. This work establishes the tools and the equipoise to develop future generations of silicon micropore membrane oxygenators. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Nanoengineered membranes for controlled transport

    SciTech Connect

    Doktycz, Mitchel J; Simpson, Michael L; McKnight, Timothy E; Melechko, Anatoli V; Lowndes, Douglas H; Guillorn, Michael A; Merkulov, Vladimir I

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  14. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1996-01-01

    The development of the seal between the membrane and the Fluid Optical Cells (FOC) has been a high priority activity. This seal occurs at an interface in the instrument where three key functions must be realized: (1) physical membrane support, (2) fluid sealing, and (3) unobscured optical transmission.

  15. Performance of polymethyl pentene oxygenators for neonatal extracorporeal membrane oxygenation: a comparison with silicone membrane oxygenators.

    PubMed

    Khoshbin, Espeed; Westrope, Claire; Pooboni, Suneel; Machin, David; Killer, Hilliary; Peek, Giles J; Sosnowski, Andrzej W; Firmin, Richard K

    2005-05-01

    To review the performance of polymethyl pentene versus silicone oxygenators in terms of efficiency in priming and oxygenation, oxygenator resistance, requirements for coagulation proteins and consumption of blood products, for neonatal extracorporeal membrane oxygenation (ECMO) patients. Forty consecutive neonates were selected retrospectively pre- and post-introduction of the new polymethyl pentene (PMP) oxygenators. They formed two equal groups. After calculation of the sample size, data were collected from ELSO registry forms and patient records. Results were analysed using parametric and non-parametric tests. Neonatal PMP (N-PMP) oxygenators were smaller, faster and easier to prime. They were less efficient than silicone oxygenators, especially in carbon dioxide elimination, and, therefore, required higher sweeps. The preservation of coagulation proteins was significantly better, but there was no reduction in the consumption of blood products, despite having less than half the surface area and significantly lower blood path resistance. Small PMP oxygenators (Medos Hilite 800 LT) provide adequate gas exchange and offer technical advantages in terms of more efficient priming, reduced haemodynamic resistance and better control and preservation of coagulation proteins than silicone oxygenators.

  16. Composite oxygen ion transport element

    DOEpatents

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  17. An overview of extracorporeal membrane oxygenation therapy.

    PubMed

    Madonna, M B; Arensman, R M

    1997-01-01

    A brief overview of extracorporeal membrane oxygenation and its use in infants and children is presented. The history, selection, operative procedure, daily management and complications are discussed. The international results are shown.

  18. Safety of Propofol for Oxygenator Exchange in Extracorporeal Membrane Oxygenation.

    PubMed

    Hohlfelder, Benjamin; Szumita, Paul M; Lagambina, Susan; Weinhouse, Gerald; Degrado, Jeremy R

    The purpose of this analysis is to describe the safety of propofol administration in adult extracorporeal membrane oxygenation (ECMO) patients. We performed a prospective cohort analysis of patients using ECMO at Brigham and Women's Hospital between February 2013 and October 2015. Patients were included if they used ECMO for at least 48 hours. The major end-point of the analysis was the median oxygenator lifespan. Oxygenator exchanges were analyzed by the number of patients requiring an oxygenator exchange and the number of oxygenator exchanges per ECMO day. A priori analysis was performed by comparing the outcomes between patients who did and did not receive propofol during their ECMO course. During the study, 43 patients were included in the analysis. Sixteen patients used propofol during their ECMO course. There were 12 oxygenator exchanges during therapy. Oxygenator exchange occurred on 1.8% of ECMO days. The median oxygenator lifespan was 7 days. Patients who used propofol had a significantly longer oxygenator lifespan (p = 0.02). Among patients who received propofol, patients who required oxygenator exchange used a significantly lower median daily dose of propofol (p < 0.001). The use of propofol appears safe in ECMO with regards to oxygenator viability. Contrary to expected, oxygenator lifespan was significantly longer among patients who received propofol.

  19. Carrier facilitated transport through membranes

    SciTech Connect

    Kaper, H.G.; Leaf, G.K.; Matkowsky, B.J.

    1980-06-01

    Facilitated transport is a process whereby the diffusion of a solute across a membrane is chemically enhanced. In this report an analysis is given of a facilitated transport system involving a volatile species A which reacts with a nonvolatile carrier species B to form the nonvolatile product AB. The species A is transported across the membrane by ordinary diffusion, as well as by the diffusion of the product AB. It is assumed that the reaction rates are large, so the reactions are confined mostly to thin boundary layers near the surfaces of the membrane. The method of matched asymptotic expansions is used to derive the asymptotic solution of the nonlinear boundary value problem governing equilibrium. The effect of various parameters on the facilitation factor is analyzed in detail.

  20. Membranes, mechanics, and intracellular transport

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2012-10-01

    Cellular membranes are remarkable materials -- self-assembled, flexible, two-dimensional fluids. Understanding how proteins manipulate membrane curvature is crucial to understanding the transport of cargo in cells, yet the mechanical activities of trafficking proteins remain poorly understood. Using an optical-trap based assay involving dynamic deformation of biomimetic membranes, we have examined the behavior of Sar1, a key component of the COPII family of transport proteins. We find that Sar1 from yeast (S. cerevisiae) lowers membrane rigidity by up to 100% as a function of its concentration, thereby lowering the energetic cost of membrane deformation. Human Sar1 proteins can also lower the mechanical rigidity of the membranes to which they bind. However, unlike the yeast proteins, the rigidity is not a monotonically decreasing function of concentration but rather shows increased rigidity and decreased mobility at high concentrations that implies interactions between proteins. In addition to describing this study of membrane mechanics, I'll also discuss some topics relevant to a range of biophysical investigations, such as the insights provided by imaging methods and open questions in the dynamics of multicellular systems.

  1. Circuit oxygenator contributes to extracorporeal membrane oxygenation-induced hemolysis.

    PubMed

    Williams, Duane C; Turi, Jennifer L; Hornik, Christoph P; Bonadonna, Desiree K; Williford, Walter L; Walczak, Richard J; Watt, Kevin M; Cheifetz, Ira M

    2015-01-01

    Hemolysis can occur as a consequence of extracorporeal membrane oxygenation (ECMO) and is associated with increased mortality and morbidity. Shear stress generated by flow through the circuit and oxygenator is believed to cause ECMO-induced hemolysis. We hypothesize that either a smaller dimension oxygenator or an in-line hemofilter will increase ECMO-associated hemolysis. Circuits were configured with a Quadrox-D Adult oxygenator (surface area 1.8 m), Quadrox-iD Pediatric oxygenator (surface area 0.8 m), or Quadrox-D Adult oxygenator with an in-line hemofilter (N = 4) and ran for 6 hours. Samples were collected hourly from the ECMO circuit and a time-based hemolysis control. Plasma hemoglobin levels were assayed. Circuit-induced hemolysis at each time point was defined as the change in plasma hemoglobin standardized to the time-based hemolysis control. Plasma hemoglobin increased with the use of the smaller dimension pediatric oxygenator as compared with the adult oxygenator when controlling for ECMO run time (p = 0.02). Furthermore, there was a greater pressure gradient with the smaller dimension pediatric oxygenator (p < 0.05). Plasma hemoglobin did not change with the addition of the in-line hemofilter. The use of a smaller dimension pediatric oxygenator resulted in greater hemolysis and a higher pressure gradient. This may indicate that the increased shear forces augment ECMO-induced hemolysis.

  2. Carbon dioxide transport through membranes.

    PubMed

    Missner, Andreas; Kügler, Philipp; Saparov, Sapar M; Sommer, Klaus; Mathai, John C; Zeidel, Mark L; Pohl, Peter

    2008-09-12

    Several membrane channels, like aquaporin-1 (AQP1) and the RhAG protein of the rhesus complex, were hypothesized to be of physiological relevance for CO(2) transport. However, the underlying assumption that the lipid matrix imposes a significant barrier to CO(2) diffusion was never confirmed experimentally. Here we have monitored transmembrane CO(2) flux (J(CO2)) by imposing a CO(2) concentration gradient across planar lipid bilayers and detecting the resulting small pH shift in the immediate membrane vicinity. An analytical model, which accounts for the presence of both carbonic anhydrase and buffer molecules, was fitted to the experimental pH profiles using inverse problems techniques. At pH 7.4, the model revealed that J(CO2) was entirely rate-limited by near-membrane unstirred layers (USL), which act as diffusional barriers in series with the membrane. Membrane tightening by sphingomyelin and cholesterol did not alter J(CO2) confirming that membrane resistance was comparatively small. In contrast, a pH-induced shift of the CO(2) hydration-dehydration equilibrium resulted in a relative membrane contribution of about 15% to the total resistance (pH 9.6). Under these conditions, a membrane CO(2) permeability (3.2 +/- 1.6 cm/s) was estimated. It indicates that cellular CO(2) uptake (pH 7.4) is always USL-limited, because the USL size always exceeds 1 mum. Consequently, facilitation of CO(2) transport by AQP1, RhAG, or any other protein is highly unlikely. The conclusion was confirmed by the observation that CO(2) permeability of epithelial cell monolayers was always the same whether AQP1 was overexpressed in both the apical and basolateral membranes or not.

  3. Perfluorocarbon oxygen transport. A comparative study of four oxygenator designs.

    PubMed

    Ferguson, E R; Clymer, J J; Spruell, R D; Holman, W L

    1994-01-01

    Improvements made in current generation perfluorocarbon emulsions (PFCEs) warrant renewed interest in PFCEs as an oxygen (O2) carrying substance during cardiopulmonary bypass (CPB). Before embarking on in vivo studies of PFCEs during CPB, an in vitro study was designed to: 1) demonstrate increased O2 content attributable to PFCEs, and 2) compare O2 transfer to a PFCE crystalloid mixture by four oxygenator designs (one bubble oxygenator, two hollow fiber membrane oxygenators, and one silastic membrane oxygenator). A circuit was designed to circulate fluid between a deoxygenating device and a test oxygenator. In protocol I, either a crystalloid solution or a crystalloid PFCE mixture was circulated through bubble oxygenators at flows ranging from 0.5 to 3 l/min, and at temperatures of 4, 20, 30, or 40 degrees C. In protocol II, a crystalloid PFCE mixture was circulated at flows ranging from 0.5 to 6 l/min at temperatures of 4, 20, 30, or 40 degrees C. Four different oxygenator designs were compared using the in vitro test circuit. The comparison variables for protocols I and II were arterovenous oxygen (AVO2) difference and O2 transfer rate measured at each flow for each temperature. Protocol I showed that the AVO2 differences and O2 transfer rates were higher in the crystalloid PFCE mixture than in the crystalloid solution, although statistical comparison was precluded by the small sample size. In protocol II, the hollow fiber and silastic membrane oxygenators had higher (P < 0.05) AVO2 differences and oxygen transfer rates than the bubble oxygenators at all flows and temperatures tested. Future trials to evaluate PFCEs during cardiopulmonary bypass should use hollow fiber or silastic membrane oxygenators, rather than bubble oxygenators, to maximize transfer of O2 to the PFCE.

  4. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    SciTech Connect

    Timothy L. Ward

    2000-06-30

    Mixed-conducting membranes have the ability to conduct oxygen with perfect selectivity at elevated temperatures, which makes them an extremely attractive alternative for oxygen separation and membrane reactor applications. The ability to reliably fabricate these membranes in thin or thick films would enable solid-state divisional limitations to be minimized, thus providing higher oxygen flux. Based on that motivation, the overall objective for this project is to develop and demonstrate a strategy for the fabrication of supported Wick film ceramic mixed conducting membranes, and improve the understanding of the fundamental issues associated with reliable fabrication of these membranes. The project has focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} because of its superior permeability and stability in reducing atmospheres. The fabrication strategy employed involves the deposition of SrCo{sub 0.5}FeO{sub x} thick films onto porous supports of the same composition. In the second year of this project, we completed characterization of the sintering and phase behavior of the porous SrCo{sub 0.5}FeO{sub x} supports, leading to a standard support fabrication methodology. Using a doctor blade method, pastes made from aerosol-derived SrCo{sub 0.5}FeO{sub x} powder dispersed with polyethylene glycol were applied to the supports, and the sintering behavior of the thick film membranes was examined in air and nitrogen atmospheres. It has been demonstrated that the desired crystalline phase content can be produced in the membranes, and that the material in the membrane layer can be highly densified without densifying the underlying support. However, considerable cracking and opening of the film occurred when films densified to a high extent. The addition of MgO into the SrCo{sub 0.5}FeO{sub x} supports was shown to inhibit support sintering so that temperatures up to 1300 C, where significant liquid formation occurs, could be used for film sintering

  5. Novel Membranes and Processes for Oxygen Enrichment

    SciTech Connect

    Lin, Haiqing

    2011-11-15

    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions using a

  6. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOEpatents

    Roman, I.C.; Baker, R.W.

    1985-09-17

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O[sub 2]/N[sub 2] selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15 [times] 10[sup [minus]8] cm[sup 3]-cm/cm[sup 2]-sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible. 2 figs.

  7. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOEpatents

    Roman, Ian C.; Baker, Richard W.

    1985-01-01

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O.sub.2 /N.sub.2 selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15.times.10.sup.-8 cm.sup.3 -cm/cm.sup.2 -sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible.

  8. Ethanol reforming using Ba0.5Sr0.5Cu0.2Fe0.8O3-δ/Ag composites as oxygen transport membranes

    NASA Astrophysics Data System (ADS)

    Park, C. Y.; Lee, T. H.; Dorris, S. E.; Park, J.-H.; Balachandran, U.

    2012-09-01

    Cobalt-free oxygen transport membranes (OTMs), Ba0.5Sr0.5Cu0.2Fe0.8O3-δ (BSCF) and its composites, Ba0.5Sr0.5Cu0.2Fe0.8O3-δ/Ag (BSCF/Ag), were fabricated by conventional solid state synthesis, and their oxygen transport properties were evaluated. The metal (Ag) content in the composite was 10-40 vol.%. Based on oxygen-permeation results, BSCF/40 vol.% Ag with Rh catalyst was selected for testing its ability to supply high-purity oxygen (from air) for ethanol reforming. It was found that the composite played an important role in producing hydrogen from ethanol reforming at 600 °C. The composite with catalyst shifted ethanol conversion toward production of hydrogen and away from production of other products, i.e., using a catalyst increased the selectivity for hydrogen in the reformate. The crystal structure, thermal expansion, coke formation, and the microstructural behavior of the OTMs are discussed.

  9. Fabrication of catalyzed ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  10. Membrane transporters in drug development

    PubMed Central

    2011-01-01

    Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labeling. PMID:20190787

  11. Computation of the unsteady facilitated transport of oxygen in hemoglobin

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1990-01-01

    The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.

  12. Electrophysiological characterization of membrane transport proteins.

    PubMed

    Grewer, Christof; Gameiro, Armanda; Mager, Thomas; Fendler, Klaus

    2013-01-01

    Active transport in biological membranes has been traditionally studied using a variety of biochemical and biophysical techniques, including electrophysiology. This review focuses on aspects of electrophysiological methods that make them particularly suited for the investigation of transporter function. Two major approaches to electrical recording of transporter activity are discussed: (a) artificial planar lipid membranes, such as the black lipid membrane and solid supported membrane, which are useful for studies on bacterial transporters and transporters of intracellular compartments, and (b) patch clamp and voltage clamp techniques, which investigate transporters in native cellular membranes. The analytical power of these methods is highlighted by several examples of mechanistic studies of specific membrane proteins, including cytochrome c oxidase, NhaA Na(+)/H(+) exchanger, ClC-7 H(+)/Cl(-) exchanger, glutamate transporters, and neutral amino acid transporters. These examples reveal the wealth of mechanistic information that can be obtained when electrophysiological methods are used in combination with rapid perturbation approaches.

  13. Novel Molten Oxide Membrane for Ultrahigh Purity Oxygen Separation from Air.

    PubMed

    Belousov, Valery V; Kulbakin, Igor V; Fedorov, Sergey V; Klimashin, Anton A

    2016-08-31

    We present a novel solid/liquid Co3O4-36 wt % Bi2O3 composite that can be used as molten oxide membrane, MOM ( Belousov, V. V. Electrical and Mass Transport Processes in Molten Oxide Membranes. Ionics 22 , 2016 , 451 - 469 ), for ultrahigh purity oxygen separation from air. This membrane material consists of Co3O4 solid grains and intergranular liquid channels (mainly molten Bi2O3). The solid grains conduct electrons, and the intergranular liquid channels predominantly conduct oxygen ions. The liquid channels also provide the membrane material gas tightness and ductility. This last property allows us to deal successfully with the problem of thermal incompatibility. Oxygen and nitrogen permeation fluxes, oxygen ion transport number, and conductivity of the composite were measured by the gas flow, volumetric measurements of the faradaic efficiency, and four-probe dc techniques, accordingly. The membrane material showed the highest oxygen selectivity jO2/jN2 > 10(5) and sufficient oxygen permeability 2.5 × 10(-8) mol cm(-1) s(-1) at 850 °C. In the range of membrane thicknesses 1.5-3.3 mm, the oxygen permeation rate was controlled by chemical diffusion. The ease of the MOM fabrication, combined with superior oxygen selectivity and competitive oxygen permeability, shows the promise of the membrane material for ultrahigh purity oxygen separation from air.

  14. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    SciTech Connect

    Timothy L. Ward

    2002-07-01

    Mixed-conducting ceramics have the ability to conduct oxygen with perfect selectivity at elevated temperatures, making them extremely attractive as membrane materials for oxygen separation and membrane reactor applications. While the conductivity of these materials can be quite high at elevated temperatures (typically 800-1000 C), much higher oxygen fluxes, or, alternatively, equivalent fluxes at lower temperatures, could be provided by supported thin or thick film membrane layers. Based on that motivation, the objective of this project was to explore the use of ultrafine aerosol-derived powder of a mixed-conducting ceramic material for fabrication of supported thick-film dense membranes. The project focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} (SCFO) because of the desirable permeability and stability of that material, as reported in the literature. Appropriate conditions to produce the submicron SrCo{sub 0.5}FeO{sub x} powder using aerosol pyrolysis were determined. Porous supports of the same composition were produced by partial sintering of a commercially obtained powder that possessed significantly larger particle size than the aerosol-derived powder. The effects of sintering conditions (temperature, atmosphere) on the porosity and microstructure of the porous discs were studied, and a standard support fabrication procedure was adopted. Subsequently, a variety of paste and slurry formulations were explored utilizing the aerosol-derived SCFO powder. These formulations were applied to the porous SCFO support by a doctor blade or spin coating procedure. Sintering of the supported membrane layer was then conducted, and additional layers were deposited and sintered in some cases. The primary characterization methods were X-ray diffraction and scanning electron microscopy, and room-temperature nitrogen permeation was used to assess defect status of the membranes.We found that non-aqueous paste/slurry formulations incorporating

  15. Oxygen permeability of the lipid bilayer membrane made of calf lens lipids

    PubMed Central

    Widomska, Justyna; Raguz, Marija; Subczynski, Witold K.

    2007-01-01

    The oxygen permeability coefficient across the membrane made of the total lipid extract from the plasma membrane of calf lens was estimated from the profile of the oxygen transport parameter (local oxygen diffusion-concentration product) and compared with those estimated for membranes made of an equimolar 1-palmitoyl-2-oleoylphosphatidylcholine/cholesterol (POPC/Chol) mixture and of pure POPC. Profiles of the oxygen transport parameter were obtained by observing the collision of molecular oxygen with nitroxide radical spin labels placed at different depths in the membrane using the saturation-recovery EPR technique and were published by us earlier (J. Widomska, M. Raguz, J. Dillon, E. R. Gaillard, W. K. Subczynski, Biochim. Biophys. Acta. Epub 2007 March 20). At 35°C, the estimated oxygen permeability coefficients were 51.3, 49.7, and 157.4 cm/s for lens lipid, POPC/Chol, and POPC membranes, respectively (compared with 53.3 cm/s for a water layer with the same thickness as a membrane). Membrane permeability significantly decreases at lower temperatures. In the lens lipid membrane, resistance to the oxygen transport is located in and near the polar headgroup region of the membrane to the depth of the ninth carbon, which is approximately where the steroid-ring structure of cholesterol reaches into the membrane. In the central region of the membrane, oxygen transport is enhanced, significantly exceeding that in bulk water. It is concluded that the high level of cholesterol in lens lipids is responsible for these unique membrane properties. PMID:17662231

  16. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    SciTech Connect

    Timothy L. Ward

    2003-03-01

    This project addresses the need for reliable fabrication methods of supported thin/thick dense ceramic membranes for oxygen separation. Some ceramic materials that possess mixed conductivity (electronic and ionic) at high temperature have the potential to permeate oxygen with perfect selectivity, making them very attractive for oxygen separation and membrane reactor applications. In order to maximize permeation rates at the lowest possible temperatures, it is desirable to minimize diffusional limitations within the ceramic by reducing the thickness of the ceramic membrane, preferably to thicknesses of 10 {micro}m or thinner. It has proven to be very challenging to reliably fabricate dense, defect-free ceramic membrane layers of such thickness. In this project we are investigating the use of ultrafine SrCo{sub 0.5}FeO{sub x} (SCFO) powders produced by aerosol pyrolysis to fabricate such supported membranes. SrCo{sub 0.5}FeO{sub x} is a ceramic composition that has been shown to have desirable oxygen permeability, as well as good chemical stability in the reducing environments that are encountered in some important applications. Our approach is to use a doctor blade procedure to deposit pastes prepared from the aerosol-derived SCFO powders onto porous SCFO supports. We have previously shown that membrane layers deposited from the aerosol powders can be sintered to high density without densification of the underlying support. However, these membrane layers contained large-scale cracks and open areas, making them unacceptable for membrane purposes. In the past year, we have refined the paste formulations based on guidance from the ceramic tape casting literature. We have identified a multicomponent organic formulation utilizing castor oil as dispersant in a solvent of mineral spirits and isopropanol. Other additives were polyvinylbutyral as binder and dibutylphthalate as plasticizer. The nonaqueous formulation has superior wetting properties with the powder, and

  17. Extracorporeal membrane oxygenation for postcardiotomy cardiogenic shock.

    PubMed

    Muehrcke, D D; McCarthy, P M; Stewart, R W; Foster, R C; Ogella, D A; Borsh, J A; Cosgrove, D M

    1996-02-01

    Extracorporeal membrane oxygenation circuits have recently been introduced for extracorporeal life support (ECLS) in adult patients in cardiogenic shock and have been shown to provide excellent oxygenation and hemodynamic support. Heparin coating of the extracorporeal circuit provides a more biocompatible surface, which has been shown to minimize early surface-induced complement activation and platelet dysfunction and hence may improve patient survival. This report reviews our experience with extracorporeal membrane oxygenation to treat postcardiotomy cardiogenic shock using minimal to no systemic heparinization in 23 patients. During the 22-month period September 1992 through July 1994, 23 patients in cardiogenic shock were placed on venoarterial ECLS using a heparin-bonded circuit. These patients' charts were retrospectively reviewed. A logistic regression analysis of the variables collected was performed to identify clear-cut predictors of ability to be weaned from ECLS. Average patient age was 47.3 +/- 16.4 years (range, 5 to 72 years). There were 17 male patients. Average time on ECLS was 58.4 +/- 35.1 hours (range, 0.5 to 144 hours). Statistical analysis revealed that patients unable to be weaned from ECLS were more likely to have a critically dilated left ventricle on echocardiography and were female. Ten patients (43.5%) died while on ECLS. Four patients were transferred to an implantable left ventricular assist device, and 3 underwent successful transplantation. The 9 other patients were successfully weaned from ECLS, and 4 were discharged home from the hospital. Overall, 7 patients (30.4%) who were placed on ECLS were successfully discharged home. Extracorporeal life support using an extracorporeal membrane oxygenation system provides excellent cardiac support with similar hospital survival rates as centrifugal mechanical support. Extracorporeal life support has complications unique to itself, but with time, these are likely to be overcome. Women and

  18. Oxygen Mass Transport in Stented Coronary Arteries.

    PubMed

    Murphy, Eoin A; Dunne, Adrian S; Martin, David M; Boyle, Fergal J

    2016-02-01

    Oxygen deficiency, known as hypoxia, in arterial walls has been linked to increased intimal hyperplasia, which is the main adverse biological process causing in-stent restenosis. Stent implantation has significant effects on the oxygen transport into the arterial wall. Elucidating these effects is critical to optimizing future stent designs. In this study the most advanced oxygen transport model developed to date was assessed in two test cases and used to compare three coronary stent designs. Additionally, the predicted results from four simplified blood oxygen transport models are compared in the two test cases. The advanced model showed good agreement with experimental measurements within the mass-transfer boundary layer and at the luminal surface; however, more work is needed in predicting the oxygen transport within the arterial wall. Simplifying the oxygen transport model within the blood flow produces significant errors in predicting the oxygen transport in arteries. This study can be used as a guide for all future numerical studies in this area and the advanced model could provide a powerful tool in aiding design of stents and other cardiovascular devices.

  19. Solubility and diffusion of oxygen in phospholipid membranes.

    PubMed

    Möller, Matías N; Li, Qian; Chinnaraj, Mathivanan; Cheung, Herbert C; Lancaster, Jack R; Denicola, Ana

    2016-11-01

    The transport of oxygen and other nonelectrolytes across lipid membranes is known to depend on both diffusion and solubility in the bilayer, and to be affected by changes in the physical state and by the lipid composition, especially the content of cholesterol and unsaturated fatty acids. However, it is not known how these factors affect diffusion and solubility separately. Herein we measured the partition coefficient of oxygen in liposome membranes of dilauroyl-, dimiristoyl- and dipalmitoylphosphatidylcholine in buffer at different temperatures using the equilibrium-shift method with electrochemical detection. The apparent diffusion coefficient was measured following the fluorescence quenching of 1-pyrenedodecanoate inserted in the liposome bilayers under the same conditions. The partition coefficient varied with the temperature and the physical state of the membrane, from below 1 in the gel state to above 2.8 in the liquid-crystalline state in DMPC and DPPC membranes. The partition coefficient was directly proportional to the partial molar volume and was then associated to the increase in free-volume in the membrane as a function of temperature. The apparent diffusion coefficients were corrected by the partition coefficients and found to be nearly the same, with a null dependence on viscosity and physical state of the membrane, probably because the pyrene is disturbing the surrounding lipids and thus becoming insensitive to changes in membrane viscosity. Combining our results with those of others, it is apparent that both solubility and diffusion increase when increasing the temperature or when comparing a membrane in the gel to one in the fluid state.

  20. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks

    PubMed Central

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G. J.; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as “papilionoid legume-specific” were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This

  1. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks.

    PubMed

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G J; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as "papilionoid legume-specific" were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This

  2. A new oxygen transport agent.

    PubMed

    Standl, Thomas

    2005-04-01

    Modern highly purified and chemically modified hemoglobin-based oxygen carriers (HBOC) are free of significant side effects on kidneys and coagulation, and they do not possess ABO antigens, allowing transfusion without knowledge of the respective blood group. Even at room air oxygen concentrations HBOC can compensate for intravascular volume deficits in hemorrhagic shock, including restoration of colloid osmotic pressure and organ perfusion, and deliver oxygen to organs and tissues during nearly complete blood exchange. In animal experiments and clinical trials all HBOC showed a vasoconstrictive side-effect which is mainly caused by nitric oxide scavenging, and to a lesser extent by reactive vasoconstriction because of precapillary oxygen off-loading. The study by Bjorkholm in this issue of the journal (see page 505) investigates the application of a moderate dose of the newly designed HBOC, MP4, in volunteers. MP4 has a high molecular size and a very low p50 resulting in a high oxygen affinity thus avoiding significant (pre)capillary oxygen off-loading. No significant rises in blood pressure or major laboratory abnormalities were seen after MP4 infusion. This new HBOC may be applicable in patients as a red blood substitute where vasoconstriction must be avoided. In addition, poststenotic tissue oxygenation might be a further indication. However, the number of treated volunteers and the infused dose of MP4 were both are very small. Therefore, one cannot draw conclusions on the safety, tolerability and efficacy of MP4 in terms of red cell replacement when large amounts of oxygen carriers are needed.

  3. Cost-effective usage of membrane oxygenators in extracorporeal membrane oxygenation in infants.

    PubMed

    Özyüksel, A; Ersoy, C; Akçevin, A; Türkoğlu, H; Çiçek, A E; Kahraman, A; Kayhan, B; Cantürk, E

    2015-04-01

    Although the poly-methylpentene (PMP) oxygenators have significant advantages in ECMO implementation, their usage may be limited in some situations, which may be related to economic constraints. In this report, we aimed to emphasize our cost-effective usage of a membrane oxygenator at the ECMO setup. We implemented ECMO with eight Capiox® FX05 or Baby RX05 hollow-fiber membrane oxygenators in five neonatal patients. The average ECMO duration was 121 hours (ranging from 41 to 272 hours). Following the termination of the ECMO, the system was broken down into its components for macroscopic analysis. Neither gross blood clots nor plasma leakage were observed in any of the components. The integration of a centrifugal pump and a separate hollow-fiber oxygenator may provide a cost-effective ECMO implementation setup with no adverse effects which may be an encouraging alternative for the low cost usage of ECMO in neonates.

  4. Iontophoretic Transport Across a Multiple Membrane System

    PubMed Central

    MOLOKHIA, SARAH A.; ZHANG, YANHUI; HIGUCHI, WILLIAM I.; LI, S. KEVIN

    2008-01-01

    The objective of the present study was to investigate the iontophoretic transport behavior across multiple membranes of different barrier properties. Spectra/Por® (SP) and Ionac membranes were the synthetic membranes and sclera was the biomembrane in this model study. The barrier properties of SP membranes were determined individually in passive and iontophoresis transport experiments with tetraethylammonium ion (TEA), chloride ion (Cl), and mannitol as the model permeants. Passive and iontophoretic transport experiments were then conducted with an assembly of SP membranes. The contribution of electroosmosis to iontophoresis was assessed using the mannitol data. Model analysis was performed to study the contribution of diffusion and electromigration to electrotransport across the multiple membrane system. The effects of membrane barrier thickness upon ion-exchange membrane-enhanced iontophoresis were examined with Ionac, SP, and sclera. The present study shows that iontophoretic transport of TEA across the membrane system was related to the thicknesses and permeability coefficients of the membranes and the electromobilities of the permeant across the individual membranes in the assembly. Model analysis suggests significant contribution of diffusion within the membranes across the membrane system, and this mechanism is relatively independent of the current density applied across the system in iontophoresis dominant transport. PMID:17990310

  5. Use of extracorporeal membrane oxygenation in adults.

    PubMed

    Lafç, Gökhan; Budak, Ali Baran; Yener, Ali Ümit; Cicek, Omer Faruk

    2014-01-01

    Since the first successful application of the heart-lung machine in 1953 by John Gibbon [1], great efforts have been made to modify the bypass techniques and devices in order to allow prolonged extracorporeal circulation in the intensive care unit (ICU), commonly referred to as extracorporeal membrane oxygenation (ECMO). ECMO uses classic cardiopulmonary bypass technology to support circulation. It provides continuous, non-pulsatile cardiac output and extracorporeal oxygenation [2]. Veno-venous ECMO (VV ECMO) provides respiratory support, while veno-arterial ECMO (VA ECMO) provides cardio-respiratory support to patients with severe but potentially reversible cardiac or respiratory deterioration refractory to standard therapeutic modalities. ECMO is a temporary form of life support providing a prolonged biventricular circulatory and pulmonary support for patients experiencing both pulmonary and cardiac failure unresponsive to conventional therapy. Despite the advent of newer ventricular assist devices that are more suitable for long term support, ECMO is simple to establish, cost-effective to operate.

  6. Extracorporeal membrane oxygenation-hemostatic complications.

    PubMed

    Murphy, Deirdre A; Hockings, Lisen E; Andrews, Robert K; Aubron, Cecile; Gardiner, Elizabeth E; Pellegrino, Vincent A; Davis, Amanda K

    2015-04-01

    The use of extracorporeal membrane oxygenation (ECMO) support for cardiac and respiratory failure has increased in recent years. Improvements in ECMO oxygenator and pump technologies have aided this increase in utilization. Additionally, reports of successful outcomes in supporting patients with respiratory failure during the 2009 H1N1 pandemic and reports of ECMO during cardiopulmonary resuscitation have led to increased uptake of ECMO. Patients requiring ECMO are a heterogenous group of critically ill patients with cardiac and respiratory failure. Bleeding and thrombotic complications remain a leading cause of morbidity and mortality in patients on ECMO. In this review, we describe the mechanisms and management of hemostatic, thrombotic and hemolytic complications during ECMO support.

  7. Extra corporeal membrane oxygenation support: ethical dilemmas

    PubMed Central

    Makdisi, Tony

    2017-01-01

    The vast expansion of patients treated with of extra corporeal membrane oxygenation (ECMO) emerge novel ethical questions about the use of this new technology. In regard the indications, duration of support and timing of withdrawal of support, these questions sometimes create disagreement among surrogates, between health care team and surrogates, and even disagreement among health care team, these disagreements occurs because of the extreme emergency of support initiation, the ambiguity of the outcome as well as lack of clarity on the intended treatment direction, whether it is ineffective, bridge to recovery or bridge to lifetime mechanical support or transplant. In this article we discuss these questions through patients’ scenarios. PMID:28361077

  8. Extracorporeal Membrane Oxygenation in the NICU.

    PubMed

    Prine, Kelli Beckvermit; Goracke, Kimberly; Rubarth, Lori Baas

    2015-01-01

    Extracorporeal membrane oxygenation (ECMO) was developed for adults but has been used in neonates as a life-saving rescue therapy for infants with respiratory failure and/or cardiac collapse as a result of congenital diaphragmatic hernia, meconium aspiration syndrome, persistent pulmonary hypertension, or systemic sepsis. ECMO has been proven to increase the survival rate for these diseases. This article provides an overview of neonatal ECMO: the history and development of neonatal ECMO, patient selection criteria, clinical management, the ECMO circuit, weaning from ECMO, and possible complications of ECMO.

  9. [Reliability of electron-transport membranes and the role of oxygen anion-radicals in aging: stochastic modulation of the genetic program].

    PubMed

    Kol'tover, V K

    2010-01-01

    All biomolecular constructions and nanorecators are designed to perform preset functions. All of them operate with limited reliability, namely, for each and every device or bionanoreactor normal operation alternates with accidental malfunctions (failures). Timely preventive maintenance replacement (prophylaxis) of functional elements in cells and tissues, the so-called turnover, is the main line of assuring high system reliability of organism as a whole. There is a finite number of special groups of genes (reliability assuring structures, RAS) that perform supervisory functions over the preventive maintenance. In a hierarchic pluricellular organism, RAS are genetic regulatory networks of a special group of cells, like hypothalamic neurons in the suprachiasmatic nucleus of mammals. Of the primary importance is limited reliability of mitochondrial nanoreactors, since the random malfunctions of electron transport chains produce reactive anion-radicals of oxygen (superoxide radical, O2*(-)). With time, O2*(-) radicals initiate accumulation of irreparable damages in RAS. When these damages accumulate up to preset threshold level, a fatal decrease in reliability of RAS occurs. Thus, aging is the stochastic consequence of programmed deficiency in reliability of biomolecular constructions and nanoreactors including the genetically preset limit of the system reliability. This reliability approach provides the realistic explanation of the data on prolongation of life of experimental animals with antioxidants as well as the explanation of similar "hormetic" effects of ionizing radiation in low doses.

  10. Recirculation in venovenous extracorporeal membrane oxygenation.

    PubMed

    Xie, Ashleigh; Yan, Tristan D; Forrest, Paul

    2016-12-01

    Despite the increasing use of venovenous extracorporeal membrane oxygenation (ECMO) to treat severe respiratory failure, recirculation remains a common complication that may result in severe hypoxemia and end-organ damage. The present review, therefore, examines updated evidence for the causes, measurement, and management of recirculation. Six electronic databases were searched from their dates of inception to January 2016, and 38 relevant studies were selected for analysis. This review revealed that, currently, recirculation is typically calculated from measurement of blood oxygen saturations, although limited evidence suggests that oxygen content may provide a more accurate measure. Dilutional ultrasound may play an additional role in dynamic quantitative monitoring of recirculation, but further human studies are required to validate its clinical use. Although cannula configuration appears to be a key contributor to recirculation in addition to factors such as ECMO flow rate, there are insufficient comparative clinical studies to recommend an optimal cannulation technique for minimizing recirculation. Existing evidence suggests that the dual-lumen cannula may have a low recirculation fraction, but only if correctly positioned. This review underscores the need for more robust clinical and laboratory studies to effectively evaluate and address the persistent problem of recirculation.

  11. Fluid transport by active elastic membranes

    NASA Astrophysics Data System (ADS)

    Evans, Arthur A.; Lauga, Eric

    2011-09-01

    A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape and the resulting fluid motion result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.

  12. Extracorporeal Membrane Oxygenation and the Kidney

    PubMed Central

    Villa, Gianluca; Katz, Nevin; Ronco, Claudio

    2015-01-01

    Background Extracorporeal membrane oxygenation (ECMO) is an effective therapy for patients with reversible cardiac and/or respiratory failure. Acute kidney injury (AKI) often occurs in patients supported with ECMO; it frequently evolves into chronic kidney damage or end-stage renal disease and is associated with a reported 4-fold increase in mortality rate. Although AKI is generally due to the hemodynamic alterations associated with the baseline disease, ECMO itself may contribute to maintaining kidney dysfunction through several mechanisms. Summary AKI may be related to conditions derived from or associated with extracorporeal therapy, leading to a reduction in renal oxygen delivery and/or to inflammatory damage. In particular, during pathological conditions requiring ECMO, the biological defense mechanisms maintaining central perfusion by a reduction of perfusion to peripheral organs (such as the kidney) have been identified as pretreatment and patient-related risk factors for AKI. Hormonal pathways are also impaired in patients supported with ECMO, leading to failures in mechanisms of renal homeostasis and worsening fluid overload. Finally, inflammatory damage, due to the primary disease, heart and lung crosstalk with the kidney or associated with extracorporeal therapy itself, may further increase the susceptibility to AKI. Renal replacement therapy can be integrated into the main extracorporeal circuit during ECMO to provide for optimal fluid management and removal of inflammatory mediators. Key Messages AKI is frequently observed in patients supported with ECMO. The pathophysiology of the associated AKI is chiefly related to a reduction in renal oxygen delivery and/or to inflammatory damage. Risk factors for AKI are associated with a patient's underlying disease and ECMO-related conditions. PMID:27194996

  13. Modeling Oxygen Transport in the Human Placenta

    NASA Astrophysics Data System (ADS)

    Serov, Alexander; Filoche, Marcel; Salafia, Carolyn; Grebenkov, Denis

    Efficient functioning of the human placenta is crucial for the favorable pregnancy outcome. We construct a 3D model of oxygen transport in the placenta based on its histological cross-sections. The model accounts for both diffusion and convention of oxygen in the intervillous space and allows one to estimate oxygen uptake of a placentone. We demonstrate the existence of an optimal villi density maximizing the uptake and explain it as a trade-off between the incoming oxygen flow and the absorbing villous surface. Calculations performed for arbitrary shapes of fetal villi show that only two geometrical characteristics - villi density and the effective villi radius - are required to predict fetal oxygen uptake. Two combinations of physiological parameters that determine oxygen uptake are also identified: maximal oxygen inflow of a placentone and the Damköhler number. An automatic image analysis method is developed and applied to 22 healthy placental cross-sections demonstrating that villi density of a healthy human placenta lies within 10% of the optimal value, while overall geometry efficiency is rather low (around 30-40%). In a perspective, the model can constitute the base of a reliable tool of post partum oxygen exchange efficiency assessment in the human placenta. Also affiliated with Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA.

  14. Influence of Cholesterol on the Oxygen Permeability of Membranes: Insight from Atomistic Simulations.

    PubMed

    Dotson, Rachel J; Smith, Casey R; Bueche, Kristina; Angles, Gary; Pias, Sally C

    2017-06-06

    Cholesterol is widely known to alter the physical properties and permeability of membranes. Several prior works have implicated cell membrane cholesterol as a barrier to tissue oxygenation, yet a good deal remains to be explained with regard to the mechanism and magnitude of the effect. We use molecular dynamics simulations to provide atomic-resolution insight into the influence of cholesterol on oxygen diffusion across and within the membrane. Our simulations show strong overall agreement with published experimental data, reproducing the shapes of experimental oximetry curves with high accuracy. We calculate the upper-limit transmembrane oxygen permeability of a 1-palmitoyl,2-oleoylphosphatidylcholine phospholipid bilayer to be 52 ± 2 cm/s, close to the permeability of a water layer of the same thickness. With addition of cholesterol, the permeability decreases somewhat, reaching 40 ± 2 cm/s at the near-saturating level of 62.5 mol % cholesterol and 10 ± 2 cm/s in a 100% cholesterol mimic of the experimentally observed noncrystalline cholesterol bilayer domain. These reductions in permeability can only be biologically consequential in contexts where the diffusional path of oxygen is not water dominated. In our simulations, cholesterol reduces the overall solubility of oxygen within the membrane but enhances the oxygen transport parameter (solubility-diffusion product) near the membrane center. Given relatively low barriers to passing from membrane to membrane, our findings support hydrophobic channeling within membranes as a means of cellular and tissue-level oxygen transport. In such a membrane-dominated diffusional scheme, the influence of cholesterol on oxygen permeability is large enough to warrant further attention. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Liners for ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  16. Oxygen separation from air using zirconia solid electrolyte membranes

    NASA Technical Reports Server (NTRS)

    Suitor, J. W.; Marner, W. J.; Schroeder, J. E.; Losey, R. W.; Ferrall, J. F.

    1988-01-01

    Air separation using a zirconia solid electrolyte membrane is a possible alternative source of oxygen. The process of zirconia oxygen separation is reviewed, and an oxygen plant concept using such separation is described. Potential cell designs, stack designs, and testing procedures are examined. Fabrication of the materials used in a zirconia module as well as distribution plate design and fabrication are examined.

  17. Oxygen separation from air using zirconia solid electrolyte membranes

    NASA Technical Reports Server (NTRS)

    Suitor, J. W.; Marner, W. J.; Schroeder, J. E.; Losey, R. W.; Ferrall, J. F.

    1988-01-01

    Air separation using a zirconia solid electrolyte membrane is a possible alternative source of oxygen. The process of zirconia oxygen separation is reviewed, and an oxygen plant concept using such separation is described. Potential cell designs, stack designs, and testing procedures are examined. Fabrication of the materials used in a zirconia module as well as distribution plate design and fabrication are examined.

  18. Extracorporeal Membrane Oxygenation for Refractory Cardiac Arrest

    PubMed Central

    Conrad, Steven A; Rycus, Peter T

    2017-01-01

    Extracorporeal cardiopulmonary resuscitation (ECPR) is the use of rapid deployment venoarterial (VA) extracorporeal membrane oxygenation to support systemic circulation and vital organ perfusion in patients in refractory cardiac arrest not responding to conventional cardiopulmonary resuscitation (CPR). Although prospective controlled studies are lacking, observational studies suggest improved outcomes compared with conventional CPR when ECPR is instituted within 30–60 min following cardiac arrest. Adult and pediatric patients with witnessed in-hospital and out-of-hospital cardiac arrest and good quality CPR, failure of at least 15 min of conventional resuscitation, and a potentially reversible cause for arrest are candidates. Percutaneous cannulation where feasible is rapid and can be performed by nonsurgeons (emergency physicians, intensivists, cardiologists, and interventional radiologists). Modern extracorporeal systems are easy to prime and manage and are technically easy to manage with proper training and experience. ECPR can be deployed in the emergency department for out-of-hospital arrest or in various inpatient units for in-hospital arrest. ECPR should be considered for patients with refractory cardiac arrest in hospitals with an existing extracorporeal life support program, able to provide rapid deployment of support, and with resources to provide postresuscitation evaluation and management. PMID:28074817

  19. Extracorporeal membrane oxygenation for adult respiratory failure.

    PubMed

    Turner, David A; Cheifetz, Ira M

    2013-06-01

    Extracorporeal membrane oxygenation (ECMO) is a form of cardiopulmonary bypass that is a mainstay of therapy in neonatal and pediatric patients with life threatening respiratory and/or cardiac failure. Historically, the use of ECMO in adults has been limited, but recent reports and technological advances have increased utilization and interest in this technology in adult patients with severe respiratory failure. As ECMO is considered in this critically ill population, patient selection, indications, contraindications, comorbidities, and pre-ECMO support are all important considerations. Once the decision is made to cannulate a patient for ECMO, meticulous multi-organ-system management is required, with a priority being placed on lung rest and minimization of ventilator-induced lung injury. Close monitoring is also necessary for complications, some of which are related to ECMO and others secondary to the patient's underlying degree of illness. Despite the risks, reports demonstrate survival > 70% in some circumstances for patients requiring ECMO for refractory respiratory failure. As the utilization of ECMO in adult patients with respiratory failure continues to expand, ongoing discussion and investigation are needed to determine whether ECMO should remain a "rescue" therapy or if earlier ECMO may be beneficial as a lung-protective strategy.

  20. Extracorporeal membrane oxygenation for refractory cardiac arrest.

    PubMed

    Conrad, Steven A; Rycus, Peter T

    2017-01-01

    Extracorporeal cardiopulmonary resuscitation (ECPR) is the use of rapid deployment venoarterial (VA) extracorporeal membrane oxygenation to support systemic circulation and vital organ perfusion in patients in refractory cardiac arrest not responding to conventional cardiopulmonary resuscitation (CPR). Although prospective controlled studies are lacking, observational studies suggest improved outcomes compared with conventional CPR when ECPR is instituted within 30-60 min following cardiac arrest. Adult and pediatric patients with witnessed in-hospital and out-of-hospital cardiac arrest and good quality CPR, failure of at least 15 min of conventional resuscitation, and a potentially reversible cause for arrest are candidates. Percutaneous cannulation where feasible is rapid and can be performed by nonsurgeons (emergency physicians, intensivists, cardiologists, and interventional radiologists). Modern extracorporeal systems are easy to prime and manage and are technically easy to manage with proper training and experience. ECPR can be deployed in the emergency department for out-of-hospital arrest or in various inpatient units for in-hospital arrest. ECPR should be considered for patients with refractory cardiac arrest in hospitals with an existing extracorporeal life support program, able to provide rapid deployment of support, and with resources to provide postresuscitation evaluation and management.

  1. Significance of oxygen transport through aquaporins.

    PubMed

    Zwiazek, Janusz J; Xu, Hao; Tan, Xiangfeng; Navarro-Ródenas, Alfonso; Morte, Asunción

    2017-01-12

    Aquaporins are membrane integral proteins responsible for the transmembrane transport of water and other small neutral molecules. Despite their well-acknowledged importance in water transport, their significance in gas transport processes remains unclear. Growing evidence points to the involvement of plant aquaporins in CO2 delivery for photosynthesis. The role of these channel proteins in the transport of O2 and other gases may also be more important than previously envisioned. In this study, we examined O2 permeability of various human, plant, and fungal aquaporins by co-expressing heterologous aquaporin and myoglobin in yeast. Two of the most promising O2-transporters (Homo sapiens AQP1 and Nicotiana tabacum PIP1;3) were confirmed to facilitate O2 transport in the spectrophotometric assay using yeast protoplasts. The over-expression of NtPIP1;3 in yeasts significantly increased their O2 uptake rates in suspension culture. In N. tabacum roots subjected to hypoxic hydroponic conditions, the transcript levels of the O2-transporting aquaporin NtPIP1;3 significantly increased after the seven-day hypoxia treatment, which was accompanied by the increase of ATP levels in the apical root segments. Our results suggest that the functional significance of aquaporin-mediated O2 transport and the possibility of controlling the rate of transmembrane O2 transport should be further explored.

  2. Significance of oxygen transport through aquaporins

    PubMed Central

    Zwiazek, Janusz J.; Xu, Hao; Tan, Xiangfeng; Navarro-Ródenas, Alfonso; Morte, Asunción

    2017-01-01

    Aquaporins are membrane integral proteins responsible for the transmembrane transport of water and other small neutral molecules. Despite their well-acknowledged importance in water transport, their significance in gas transport processes remains unclear. Growing evidence points to the involvement of plant aquaporins in CO2 delivery for photosynthesis. The role of these channel proteins in the transport of O2 and other gases may also be more important than previously envisioned. In this study, we examined O2 permeability of various human, plant, and fungal aquaporins by co-expressing heterologous aquaporin and myoglobin in yeast. Two of the most promising O2-transporters (Homo sapiens AQP1 and Nicotiana tabacum PIP1;3) were confirmed to facilitate O2 transport in the spectrophotometric assay using yeast protoplasts. The over-expression of NtPIP1;3 in yeasts significantly increased their O2 uptake rates in suspension culture. In N. tabacum roots subjected to hypoxic hydroponic conditions, the transcript levels of the O2-transporting aquaporin NtPIP1;3 significantly increased after the seven-day hypoxia treatment, which was accompanied by the increase of ATP levels in the apical root segments. Our results suggest that the functional significance of aquaporin-mediated O2 transport and the possibility of controlling the rate of transmembrane O2 transport should be further explored. PMID:28079178

  3. Gas transport across hyperthin membranes.

    PubMed

    Wang, Minghui; Janout, Vaclav; Regen, Steven L

    2013-12-17

    The use of organic polymeric membranes to separate gaseous mixtures provides an attractive alternative to other methods such as selective adsorption and cryogenic distillation. The primary advantages of membrane-based separations are their relative energy efficiency and lower costs. Because the flux of a gas across a membrane is inversely proportional to the membrane's thickness, this method relies on fabricating membranes that are as thin as possible. However, as researchers have tried to produce "hyperthin" membranes (less than 100 nm), these membranes often form defects and lose their permeation selectivity. In this Account, we review some of the progress in our laboratories at Lehigh University to create hyperthin membranes with high permeation selectivities. We focus special attention on gaseous permeants that are relevant for the production of clean energy (H2 and CO2 formed from CH4) and the reduction of global warming (CO2 and N2, the major components of flue gas). Our studies make extensive use of Langmuir-Blodgett (LB) methods and porous surfactants derived from calix[6]arenes. We specially designed each surfactant to form cohesive monolayers and multilayers, and we introduced a "gluing" technique, where we cross-link porous surfactants containing quaternary ammonium groups ionically with polymeric counterions. Using ellipsometry, atomic force microscopy, X-ray photoelectron spectroscopy, monolayer isotherm, surface viscosity, and permeation measurements, we have characterized these hyperthin films. While molecular sieving appears to make a significant contribution to the permeation selectivity of some of these membranes, solution-diffusion pathways predominate. We also describe initial studies in which we formed hyperthin films from poly(ethylene glycol)-based polyelectrolytes using layer-by-layer deposition (LbL) methods. We have found remarkably high H2/CO2 and CO2/N2 permeation selectivities with these LB- and LbL-based hyperthin membranes. These

  4. VERTEX: manganese transport through oxygen minima

    NASA Astrophysics Data System (ADS)

    Martin, John H.; Knauer, George A.

    1984-01-01

    Manganese transport through a well-developed oxygen minimum was studied off central Mexico (18°N, 108°W) in October-November 1981 as part of the VERTEX (Vertical Transport and Exchange) research program. Refractory, leachable and dissolved Mn fractions associated with particulates caught in traps set at eight depths (120-1950 m) were analyzed. Particles entering the oxygen minimum had relatively large Mn loads; however, as the particulates sank further into the minimum, total Mn fluxes steadily decreased from 190 nmol m -2 day -1 at 120 m to 36 nmol m -2 day -1 at 400 m. Manganese fluxes then steadily increased in the remaining 800-1950 m, reaching rates of up to 230 nmol m -2 day -1 at 1950 m. Manganese concentrations were also measured in the water column. Dissolved Mn levels < 3.0 nmol kg -1 were consistently observed within the 150-600 m depth interval. In contrast, suspended particulate leachable Mn amounts were especially low at those depths, and never exceeded 0.04 nmol kg -1. The combined water column and particle trap data clearly indicate that Mn is released from particles as they sink through the oxygen minimum. Rate-of-change estimates based on trap flux data yield regeneration rates of up to 0.44 nmol kg -1 yr -1 in the upper oxygen minimum (120-200 m). However, only 30% of the dissolved Mn in the oxygen minimum appears to be from sinking particulate regeneration; the other 70% probably results from continental-slope-release-horizontal-transport processes. Dissolved Mn scavenges back onto particles as oxygen levels begin to increase with depth. Scavenging rates ranging from -0.03 to -0.09 nmol kg -1 yr -1 were observed at depths from 700 to 1950 m. These scavenging rates result in Mn residence times of 16-19 years, and scavenging rate constants on the order of 0.057 yr -1. Manganese removal via scavenging on sinking particles below the oxygen minimum is balanced by Mn released along continental boundaries and transported horizontally via advective

  5. Sulfate transport in Penicillium chrysogenum plasma membranes.

    PubMed Central

    Hillenga, D J; Versantvoort, H J; Driessen, A J; Konings, W N

    1996-01-01

    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded that the sulfate transport system catalyzes the symport of two protons with one sulfate anion. PMID:8682803

  6. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  7. A porous media theory for characterization of membrane blood oxygenation devices

    NASA Astrophysics Data System (ADS)

    Sano, Yoshihiko; Adachi, Jun; Nakayama, Akira

    2013-07-01

    A porous media theory has been proposed to characterize oxygen transport processes associated with membrane blood oxygenation devices. For the first time, a rigorous mathematical procedure based a volume averaging procedure has been presented to derive a complete set of the governing equations for the blood flow field and oxygen concentration field. As a first step towards a complete three-dimensional numerical analysis, one-dimensional steady case is considered to model typical membrane blood oxygenator scenarios, and to validate the derived equations. The relative magnitudes of oxygen transport terms are made clear, introducing a dimensionless parameter which measures the distance the oxygen gas travels to dissolve in the blood as compared with the blood dispersion length. This dimensionless number is found so large that the oxygen diffusion term can be neglected in most cases. A simple linear relationship between the blood flow rate and total oxygen transfer rate is found for oxygenators with sufficiently large membrane surface areas. Comparison of the one-dimensional analytic results and available experimental data reveals the soundness of the present analysis.

  8. Requirement for Coenzyme Q in Plasma Membrane Electron Transport

    NASA Astrophysics Data System (ADS)

    Sun, I. L.; Sun, E. E.; Crane, F. L.; Morre, D. J.; Lindgren, A.; Low, H.

    1992-12-01

    Coenzyme Q is required in the electron transport system of rat hepatocyte and human erythrocyte plasma membranes. Extraction of coenzyme Q from the membrane decreases NADH dehydrogenase and NADH:oxygen oxidoreductase activity. Addition of coenzyme Q to the extracted membrane restores the activity. Partial restoration of activity is also found with α-tocopherylquinone, but not with vitamin K_1. Analogs of coenzyme Q inhibit NADH dehydrogenase and oxidase activity and the inhibition is reversed by added coenzyme Q. Ferricyanide reduction by transmembrane electron transport from HeLa cells is inhibited by coenzyme Q analogs and restored with added coenzyme Q10. Reduction of external ferricyanide and diferric transferrin by HeLa cells is accompanied by proton release from the cells. Inhibition of the reduction by coenzyme Q analogs also inhibits the proton release, and coenzyme Q10 restores the proton release activity. Trans-plasma membrane electron transport stimulates growth of serum-deficient cells, and added coenzyme Q10 increases growth of HeLa (human adenocarcinoma) and BALB/3T3 (mouse fibroblast) cells. The evidence is consistent with a function for coenzyme Q in a trans-plasma membrane electron transport system which influences cell growth.

  9. Extracorporeal membrane oxygenation: a breakthrough for respiratory failure.

    PubMed

    Frenckner, B

    2015-12-01

    Extracorporeal membrane oxygenation (ECMO) is a method for providing long-term treatment of a patient in a modified heart-lung machine. Desaturated blood is drained from the patient, oxygenated and pumped back to a major vein or artery. ECMO supports heart and lung function and may be used in severe heart and/or lung failure when conventional intensive care fails. The Stockholm programme started in 1987 with treatment of neonates. In 1995, the first adult patient was accepted onto the programme. Interhospital transportation during ECMO was started in 1996, which enabled retrieval of extremely unstable patients during ECMO. Today, the programme has an annual volume of about 80 patients. It has been characterized by, amongst other things, minimal patient sedation. By 31 December 2014, over 900 patients had been treated, the vast majority for respiratory failure, and over 650 patients had been transported during ECMO. The median ECMO duration was 5.3, 5.7 and 7.1 days for neonatal, paediatric and adult patients, respectively. The survival to hospital discharge rate for respiratory ECMO was 81%, 70% and 63% in the different age groups, respectively, which is significantly higher than the overall international experience as reported to the Extracorporeal Life Support Organization (ELSO) Registry (74%, 57% and 57%, respectively). The survival rate was significantly higher in the Stockholm programme compared to ELSO for meconium aspiration syndrome, congenital diaphragmatic hernia in neonates and pneumocystis pneumonia in paediatric patients.

  10. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOEpatents

    Schwartz, Michael; White, James H.; Sammels, Anthony F.

    2000-01-01

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  11. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOEpatents

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2005-09-27

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  12. Modeling of Oxygen Transport Across Tumor Multicellular Layers

    PubMed Central

    Braun, Rod D.; Beatty, Alexis L.

    2007-01-01

    Purpose Tumor oxygen level plays a major role in the response of tumors to different treatments. The purpose of this study was to develop a method of determining oxygen transport properties in a recently developed 3-D model of tumor parenchyma, the multicellular layer (MCL). Methods OCM-1 human choroidal melanoma cells were grown as 3-D MCL on collagen-coated culture plate inserts. A recessed-cathode oxygen microelectrode was used to measure oxygen tension (PO2) profiles across 8 different MCL from the free surface to the insert membrane. The profiles were fitted to four different one-dimensional diffusion models: 1-, 2-, and 3-region models with uniform oxygen consumption (q) in each region and a modified 3-region model with a central region where q=0 and PO2=0. Results Depending upon the presence of a central region of anoxia, the PO2 profiles were fitted best by either the two-region model or the modified 3-region model. Consumption of tumor cells near the insert membrane was higher than that of cells close to the free surface (33.1 ± 13.6 x 10−4 vs. 11.8 ± 6.7 x 10−4 mm Hg/μm2, respectively). Conclusions The model is useful for determining oxygenation and consumption in MCL, especially for cell lines that cannot be grown as spheroids. In the future, this model will permit the study of parameters important in tumor oxygenation in vitro. PMID:17196225

  13. Mechanical ventilation during extracorporeal membrane oxygenation

    PubMed Central

    2014-01-01

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes. PMID:24447458

  14. Simulation training for extracorporeal membrane oxygenation

    PubMed Central

    Brum, Roberta; Rajani, Ronak; Gelandt, Elton; Morgan, Lisa; Raguseelan, Nira; Butt, Salman; Nelmes, David; Auzinger, Georg; Broughton, Simon

    2015-01-01

    Background: Extracorporeal membrane oxygenation (ECMO) is a complex treatment. Despite this, there are a lack of training programs designed to develop relevant clinical and nonclinical skills required for ECMO specialists. The aim of the current study was to describe the design, implementation and evaluation of a 1-day simulation course for delivering training in ECMO. Methods: A 1-day simulation course was developed with educational and intensive care experts. First, the delegates received a lecture on the principles of simulation training and the importance of human factors. This was, followed by a practical demonstration and discussion of the ECMO circuit, console components, circuit interactions effects and potential complications. There were then five ECMO simulation scenarios with debriefing that covered technical and nontechnical issues. The course culminated in a knowledge-based assessment. Course outcomes were assessed using purpose-designed questionnaires. Results: We held 3 courses with a total of 14 delegates (9 intensive care nurses, 3 adult intensive care consultants and 2 ECMO technicians). Following the course, 8 (57%) gained familiarity in troubleshooting an ECMO circuit, 6 (43%) increased their familiarity with the ECMO pump and circuit, 8 (57%) perceived an improvement in their communication skills and 7 (50%) perceived an improvement in their leadership skills. At the end of the course, 13 (93%) delegates agreed that they felt more confident in dealing with ECMO. Conclusions: Simulation-training courses may increase knowledge and confidence in dealing with ECMO emergencies. Further studies are indicated to determine whether simulation training improves clinical outcomes and translates to reduced complication rates in patients receiving ECMO. PMID:25849687

  15. Active rehabilitation in a pediatric extracorporeal membrane oxygenation patient.

    PubMed

    Zebuhr, Carleen; Sinha, Amit; Skillman, Heather; Buckvold, Shannon

    2014-05-01

    Decreased intensive care unit (ICU) mortality has led to an increase in ICU morbidity. ICU-induced immobilization plays a major role in this morbidity. Recently, ICU mobility has been shown to be safe and effective in adolescent and adult patients. We report the successful rehabilitation of an 8-year-old boy with severe acute respiratory distress syndrome on extracorporeal membrane oxygenation. A child who is critically ill may safely perform active rehabilitation while on venovenous extracorporeal membrane oxygenation. The gains achieved through active rehabilitation and optimal nutrition can facilitate recovery from severe acute respiratory distress syndrome in select pediatric patients on extracorporeal membrane oxygenation.

  16. Understanding transport in model water desalination membranes

    NASA Astrophysics Data System (ADS)

    Chan, Edwin

    Polyamide based thin film composites represent the the state-of-the-art nanofiltration and reverse osmosis membranes used in water desalination. The performance of these membranes is enabled by the ultrathin (~100 nm) crosslinked polyamide film in facilitating the selective transport of water over salt ions. While these materials have been refined over the last several decades, understanding the relationships between polyamide structure and membrane performance remains a challenge because of the complex and heterogeneous nature of the polyamide film. In this contribution, we present our approach to addressing this challenge by studying the transport properties of model polyamide membranes synthesized via molecular layer-by-layer (mLbL) assembly. First, we demonstrate that mLbL can successfully construct polyamide membranes with well-defined nanoscale thickness and roughness using a variety of monomer formulations. Next, we present measurement tools for characterizing the network structure and transport of these model polyamide membranes. Specifically, we used X-ray and neutron scattering techniques to characterize their structure as well as a recently-developed indentation based poromechanics approach to extrapolate their water diffusion coefficient. Finally, we illustrate how these measurements can provide insight into the original problem by linking the key polyamide network properties, i.e. water-polyamide interaction parameter and characteristic network mesh size, to the membrane performance.

  17. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Sang Moon; Kang, Yun Sik; Ahn, Chiyeong; Jang, Segeun; Kim, Minhyoung; Sung, Yung-Eun; Yoo, Sung Jong; Choi, Mansoo

    2016-06-01

    Here, we report a simple and effective strategy to enhance the performance of the polymer electrolyte membrane fuel cell by imprinting prism-patterned arrays onto the Nafion membrane, which provides three combined effects directly related to the device performance. First, a locally thinned membrane via imprinted micro prism-structures lead to reduced membrane resistance, which is confirmed by electrochemical impedance spectroscopy. Second, increments of the geometrical surface area of the prism-patterned Nafion membrane compared to a flat membrane result in the increase in the electrochemical active surface area. Third, the vertically asymmetric geometry of prism structures in the cathode catalyst layer lead to enhanced water transport, which is confirmed by oxygen gain calculation. To explain the enhanced water transport, we propose a simple theoretical model on removal of water droplets existing in the asymmetric catalyst layer. These three combined effects achieved via incorporating prism patterned arrays into the Nafion membrane effectively enhance the performance of the polymer electrolyte membrane fuel cell.

  18. Polyene antibiotic that inhibits membrane transport proteins.

    PubMed

    te Welscher, Yvonne Maria; van Leeuwen, Martin Richard; de Kruijff, Ben; Dijksterhuis, Jan; Breukink, Eefjan

    2012-07-10

    The limited therapeutic arsenal and the increase in reports of fungal resistance to multiple antifungal agents have made fungal infections a major therapeutic challenge. The polyene antibiotics are the only group of antifungal antibiotics that directly target the plasma membrane via a specific interaction with the main fungal sterol, ergosterol, often resulting in membrane permeabilization. In contrast to other polyene antibiotics that form pores in the membrane, the mode of action of natamycin has remained obscure but is not related to membrane permeabilization. Here, we demonstrate that natamycin inhibits growth of yeasts and fungi via the immediate inhibition of amino acid and glucose transport across the plasma membrane. This is attributable to ergosterol-specific and reversible inhibition of membrane transport proteins. It is proposed that ergosterol-dependent inhibition of membrane proteins is a general mode of action of all the polyene antibiotics, of which some have been shown additionally to permeabilize the plasma membrane. Our results imply that sterol-protein interactions are fundamentally important for protein function even for those proteins that are not known to reside in sterol-rich domains.

  19. Cardiopulmonary support and extracorporeal membrane oxygenation for cardiac assist.

    PubMed

    von Segesser, L K

    1999-08-01

    Use of cardiopulmonary bypass for emergency resuscitation is not new. In fact, John Gibbon proposed this concept for the treatment of severe pulmonary embolism in 1937. Significant progress has been made since, and two main concepts for cardiac assist based on cardiopulmonary bypass have emerged: cardiopulmonary support (CPS) and extracorporeal membrane oxygenation (ECMO). The objective of this review is to summarize the state of the art in these two technologies. Configuration of CPS is now fairly standard. A mobile cart with relatively large wheels allowing for easy transportation carries a centrifugal pump, a back-up battery with a charger, an oxygen cylinder, and a small heating system. Percutaneous cannulation, pump-driven venous return, rapid availability, and transportability are the main characteristics of a CPS system. Cardiocirculatory arrest is a major predictor of mortality despite the use of CPS. In contrast, CPS appears to be a powerful tool for patients in cardiogenic shock before cardiocirculatory arrest, requiring some type of therapeutic procedures, especially repair of anatomically correctable problems or bridging to other mechanical circulatory support systems such as ventricular assist devices. CPS is in general not suitable for long-term applications because of the small-bore cannulas, resulting in significant pressure gradients and eventually hemolysis. In contrast, ECMO can be designed for longer-term circulatory support. This requires large-bore cannulas and specifically designed oxygenators. The latter are either plasma leakage resistent (true membranes) or relatively thrombo-resistant (heparin coated). Both technologies require oxygenator changeovers although the main reason for this is different (clotting for the former, plasma leakage for the latter). Likewise, the tubing within a roller pump has to be displaced and centrifugal pump heads have to be replaced over time. ECMO is certainly the first choice for a circulatory support system

  20. Extracorporeal membrane oxygenation after living-related liver transplant.

    PubMed

    Gedik, Ender; Çelik, Muhammet Reha; Otan, Emrah; Dişli, Olcay Murat; Erdil, Nevzat; Bayındır, Yaşar; Kutlu, Ramazan; Yılmaz, Sezai

    2015-04-01

    Various types of extracorporeal membrane oxygenation methods have been used in liver transplant operations. The main indications are portopulmonary or hepatopulmonary syndromes and other cardiorespiratory failure syndromes that are refractory to conventional therapy. There is little literature available about extracorporeal membrane oxygenation, especially after liver transplant. We describe our experience with 2 patients who had living-related liver transplant. A 69-year-old woman had refractory aspergillosis pneumonia and underwent pumpless extracorporeal lung assist therapy 4 weeks after liver transplant. An 8-month-old boy with biliary atresia underwent urgent liver transplant; he received venoarterial extracorporeal membrane oxygenation therapy on postoperative day 1. Despite our unsuccessful experience with 2 patients, extracorporeal membrane oxygenation and pumpless extracorporeal lung assist therapy for liver transplant patients may improve prognosis in selected cases.

  1. Convection and hemoglobin-based oxygen carrier enhanced oxygen transport in a hepatic hollow fiber bioreactor.

    PubMed

    Sullivan, Jesse P; Harris, David R; Palmer, Andre F

    2008-01-01

    Hepatic hollow fiber bioreactors are a promising class of bioartificial liver assist device (BLAD). The development of this type of device is currently hindered by limited oxygen transport to cultured hepatocytes, due to low solubility of oxygen in aqueous media. In order to increase the oxygen spectrum to cultured hepatocytes housed within a hollow fiber bioreactor, several different engineering strategies were explored in this study. These included: supplementing the circulating media stream of the hollow fiber bioreactor with a hemoglobin-based oxygen carrier (bovine red blood cells) with defined oxygen binding and release kinetics and operating the bioreactor with media flow through the hollow fiber membrane into the extracapillary space (ECS). We hypothesize that these two strategies can be used to improve hepatocyte oxygenation and possibly attain an in vivo-like pO(2) spectrum, similar to that observed in vivo in the liver sinusoid. This work is significant, since provision of an in vivo-like pO(2) spectrum should create a fully functional BLAD that could potentially bridge thousands of liver failure patients towards native liver regeneration of damaged tissue or, if necessary, orthotopic liver transplantation.

  2. Actinide transport across cell membranes.

    PubMed

    Bulman, R A; Griffin, R J

    1980-01-01

    Protactinium uptake into the normal liver does not exceed 3%, but when the phospholipid levels in the liver are elevated by administration of thioacetamide this uptake increases to 31%. Phosphatidic acid, which is absent from the normal liver, has been shown to extract protactinium into organic solvents. However, phosphatidylserine, a component of normal liver cell membranes, does not extract protactinium. It might be conjectured that this is why so little protactinium is taken up by the normal liver. The hypothesis is advanced that phosphatidylserine, which is known to complex plutonium, americium and curium, may regulate the uptake of these elements by liver.

  3. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    PubMed

    Korenić, Andrej; Boltze, Johannes; Deten, Alexander; Peters, Myriam; Andjus, Pavle; Radenović, Lidija

    2014-01-01

    Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD) as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m)) in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD), OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m), visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m) during reperfusion, whereas GD caused a robust Δψ(m) negativation. In case no Δψ(m) negativation was observed after OGD, subsequent chemical oxygen deprivation (OD) induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m) hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen) and their hyperpolarizing effect on Δψ(m) during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

  4. Conical nanopore membranes. Preparation and transport properties.

    PubMed

    Li, Naichao; Yu, Shufang; Harrell, C Chad; Martin, Charles R

    2004-04-01

    We have been investigating applications of nanopore membranes in analytical chemistry-specifically in membrane-based bioseparations, in electroanalytical chemistry, and in the development of new approaches to biosensor design. Membranes that have conically shaped pores (as opposed to the more conventional cylindrical shape) may offer some advantages for these applications. We describe here a simple plasma-etch method that converts cylindrical nanopores in track-etched polymeric membranes into conically shaped pores. This method allows for control of the shape of the resulting conical nanopores. For example, the plasma-etched pores may be cylindrical through most of the membrane thickness blossoming into cones at one face of the membrane (trumpet-shaped), or they may be nearly perfect cones. The key advantage of the conical pore shape is a dramatic enhancement in the rate of transport through the membrane, relative to an analogous cylindrical pore membrane. We demonstrate this here by measuring the ionic resistances of the plasma-etched conical pore membranes.

  5. Polarity and membrane transport in osteoclasts.

    PubMed

    Baron, R

    1989-01-01

    The osteoclast is a highly polarized non-epithelial cell. The apical pole of the cell is determined by the cell's attachment to the extracellular matrix. This attachment forms the sealing zone, delimiting the subosteoclastic bone resorbing compartment. The apical membrane of the cell forms the ruffled-border, which contains some specific membrane proteins and a proton pump ATPase, which acidifies the apical compartment. Newly synthesized lysosomal enzymes are vectorially transported into this apical compartment bound to mannose-6-phosphate receptors. The basolateral membrane is highly enriched in sodium pumps with beta and alpha 1 subunits. Associated with the acidification process is the carbonic anhydrase found in the cytoplasm and membrane-associated and a bicarbonate-chloride exchanger in the membrane.2 These features put the osteoclast in the same functional category as the kidney tubule intercalated cell and the gastric oxyntic cell, both of epithelial origin, which secrete acid in a polarized fashion.

  6. Biomolecular Transport through Hemofiltration Membranes

    PubMed Central

    Datta, Subhra; Fissell, William H.; Roy, Shuvo

    2009-01-01

    A theoretical model for filtration of large solutes through a pore in the presence of transmembrane pressures, applied/induced electric fields, and dissimilar interactions at the pore entrance and exit is developed to characterize and predict the experimental performance of a hemofiltration membrane with nanometer scale pores designed for a proposed implantable Renal Assist Device (RAD). The model reveals that the sieving characteristics of the membrane can be improved by applying an external electric field, and ensuring a smaller ratio of the pore-feed and pore-permeate equilibrium partitioning coefficients when diffusion is present. The model is then customized to study the sieving characteristics for both charged and uncharged solutes in the slit-shaped nanopores of the hemofiltration device for the RAD. The effect of streaming potential or induced fields are found to be negligible under representative operating conditions. Experimental data on the sieving coefficient of bovine serum albumin, carbonic anhydrase and thyroglobulin are reported and compared with the theoretical predictions. Both steric and electrostatic partitioning are considered and the comparison suggests that in general electrostatic effects are present in the filtration of proteins though some data, particularly those recorded in a strongly hypertonic solution (10×PBS), show better agreement with the steric partitioning theory. PMID:19184436

  7. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers

    PubMed Central

    Koehler, Raymond C.; Fronticelli, Clara; Bucci, Enrico

    2008-01-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4–34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery. PMID:18230370

  8. Extracorporeal Membrane Oxygenation for Acute Decompensated Heart Failure.

    PubMed

    Dangers, Laurence; Bréchot, Nicholas; Schmidt, Matthieu; Lebreton, Guillaume; Hékimian, Guillaume; Nieszkowska, Ania; Besset, Sébastien; Trouillet, Jean-Louis; Chastre, Jean; Leprince, Pascal; Combes, Alain; Luyt, Charles-Edouard

    2017-08-01

    Long-term outcomes of patients treated with venoarterial-extracorporeal membrane oxygenation for acute decompensated heart failure (i.e., cardiogenic shock complicating chronic cardiomyopathy) have not yet been reported. This study was undertaken to describe their outcomes and determine mortality-associated factors. Retrospective analysis of data prospectively collected. Twenty-six-bed tertiary hospital ICU. One hundred five patients implanted with venoarterial-extracorporeal membrane oxygenation for acute decompensated heart failure. None. From March 2007 to January 2015, 105 patients were implanted with venoarterial-extracorporeal membrane oxygenation for acute decompensated heart failure in our ICU (67% of them had an intraaortic balloon pump to unload the left ventricle). Their 1-year survival rate was 42%; most of the survivors were transplanted either directly or after switching to central bilateral centrifugal pump, ventricular-assist device, or total artificial heart. Most deaths occurred early after multiple organ failure. Multivariable analyses retained (odds ratio [95% CI]) pre-extracorporeal membrane oxygenation Sequential Organ Failure Assessment score of more than 11 (3.3 [1.3-8.3]), idiopathic cardiomyopathy (0.4 [0.2-1]), cardiac disease duration greater than 2 years pre-extracorporeal membrane oxygenation (2.8 [1.2-6.9]), and pre-extracorporeal membrane oxygenation blood lactate greater than 4 mmol/L (2.6 [1.03-6.4]) as independent predictors of 1-year mortality. Only 17% of patients with pre-extracorporeal membrane oxygenation Sequential Organ Failure Assessment scores of 14 or more survived, whereas 52% of those with scores less than 7 and 60% of those with scores 7 or more and less than 11 were alive 1 year later. Among this selected cohort of 105 patients implanted with venoarterial-extracorporeal membrane oxygenation for acute decompensated heart failure, 1-year survival was 42%, but better for patients with pre-extracorporeal membrane

  9. Water and Solute Transport Governed by Tunable Pore Size Distributions in Nanoporous Graphene Membranes.

    PubMed

    Jang, Doojoon; Idrobo, Juan-Carlos; Laoui, Tahar; Karnik, Rohit

    2017-10-10

    Nanoporous graphene has the potential to advance membrane separations by offering high selectivity with minimal resistance to flow, but how mass transport depends on the structure of pores in this atomically thin membrane is poorly understood. Here, we investigate the relationship between tunable pore creation using ion bombardment and oxygen plasma etching, the resulting pore size distributions, and the consequent water and solute transport. Through tuning of the pore creation process, we demonstrate nanofiltration membranes that reject small molecules but offer high permeance to water or monovalent ions. Theoretical multiscale modeling of transport across the membranes reveals a disproportionate contribution of large pores to osmotic water flux and diffusive solute transport and captures the observed trends in transport measurements except for the smallest pores. This work provides insights into the effects of graphene pore size distribution and support layer on transport and presents a framework for designing atomically thin membranes.

  10. Scattering dynamics of oxygen molecules on Nafion membrane

    NASA Astrophysics Data System (ADS)

    Nakauchi, Masataka; Mabuchi, Takuya; Kinefuchi, Ikuya; Takeuchi, Hideki; Tokumasu, Takashi

    2016-11-01

    The scattering behaviors of oxygen molecules on a Nafion membrane, which is a typical polymer electrolyte membrane used in polymer electrolyte fuel cells, have been investigated using molecular dynamics simulations. We have evaluated the probability density functions of the translational energy and scattering angle of the scattered oxygen molecules for a wide range of incident conditions and water contents. It was found that the translational energy of oxygen molecules does not accommodate with the Nafion membrane during the collision, and oxygen molecules are reflected diffusely on the surface. Two types of collision behaviors, i.e., single and multiple collisions, were observed in the simulations. Increasing the normal component of the incident energy and the water content results in the longer residence time on the ionomer surface.

  11. Membrane oxygen dissolution at the Libby, Montana, Superfund Site

    SciTech Connect

    Gantzer, C.J.; Cosgriff, D.

    1995-12-31

    The creosote- and pentachlorophenol-contaminated aquifer at the Libby Superfund Site is being bioremediated using naturally occurring aerobic microorganisms. Water is injected into the aquifer downgradient from the major contaminant source area. Between January 1991 and May 1993, the injection water was amended with hydrogen peroxide at a delivered concentration of approximately 100 mg/L. Theoretically, this hydrogen peroxide decomposed in the aquifer to produce approximately 50 mg/L of biologically available dissolved oxygen. The use of hydrogen peroxide was successful in making portions of the aquifer aerobic, which reduced water-phase contaminant concentrations. In May 1993, the hydrogen peroxide system was replaced by an oxygen generation/dissolution system that reduced the operating costs for oxygenating the aquifer by about $35,000 annually. Oxygen is now generated on site by a pressure-swing absorption oxygen generator and is dissolved by four membrane oxygen dissolution devices. The membrane oxygen dissolution system has operated at the Libby Superfund site for more than 26 months with no loss in performance due to membrane fouling or membrane fatigue.

  12. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  13. Advanced Hydrogen Transport Membrane for Coal Gasification

    SciTech Connect

    Schwartz, Joseph; Porter, Jason; Patki, Neil; Kelley, Madison; Stanislowski, Josh; Tolbert, Scott; Way, J. Douglas; Makuch, David

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  14. A flexible transcutaneous oxygen sensor using polymer membranes.

    PubMed

    Kudo, Hiroyuki; Iguchi, Shigehito; Yamada, Takua; Kawase, Tatsuya; Saito, Hirokazu; Otsuka, Kimio; Mitsubayashi, Kohji

    2007-02-01

    A wearable and flexible oxygen sensor for transcutaneous blood gas monitoring was fabricated and tested. The sensor has a laminar film-like structure, which was fabricated by pouching KCl electrolyte solution by both non-permeable (metal weldable) sheet and gas-permeable membrane with Pt- and Ag/AgCl-electrodes patterned using microfabrication process. The electrolyte solution was fixed only by heat-sealing the edges of the weldable membranes without any chemical adhesives. The wearable oxygen sensor (thickness: 84 mum) was applied to the electrochemical measurement with a constant potential of -600 mV vs. Ag/AgCl, thus obtaining the calibration range to dissolved oxygen (DO) from 0.0 to 7.0 mg/l with a correlation coefficient of 0.998 and the quick response time (53.4 s to 90% of a steady-state current), which operate similarly to a commercially available oxygen electrode. The sensor was also utilized to transcutaneous oxygen monitoring for healthy human subject. The sensing region of the wearable oxygen sensor was attached onto the forearm-skin surface of the subject inhaling various concentrations of oxygen. As a result of physiological application, the output current was varied from -6.2 microA to -7.8 microA within 2 min when the concentration of inhaling oxygen was changed from atmospheric air to 60% oxygen. Thus, the transcutaneous oxygen was successfully monitored without any inconveniences such as skin inflammation, etc.

  15. Haemocompatibility of paediatric membrane oxygenators with heparin-coated surfaces.

    PubMed

    Wendel, H P; Scheule, A M; Eckstein, F S; Ziemer, G

    1999-01-01

    Extracorporeal circulation (ECC) in paediatric patients with heparin-coated oxygenation systems is rarely investigated. The objective of this study was to evaluate, preclinically, the haemocompatibility of paediatric membrane oxygenators with heparin-coated surfaces. We compared 16 paediatric membrane oxygenators (Minimax, Medtronic) in an in vitro heart-lung machine model with fresh human blood. Eight of these oxygenation systems had a covalent heparin coating (Carmeda bioactive surface). After 90 min simulated ECC, the heparin-coated systems showed significantly higher platelet count, lower platelet-factor 4 release, reduced contact activation (factor XIIa and kallikrein), and lower neutrophil elastase levels (p < 0.05), compared to the noncoated oxygenator group. More biocompatible materials for paediatric operations may ameliorate the various postperfusion syndromes arising from ECC procedures, particularly unspecific inflammation, hyperfibrinolysis and blood loss.

  16. Function and evolution of channels and transporters in photosynthetic membranes.

    PubMed

    Pfeil, Bernard E; Schoefs, Benoît; Spetea, Cornelia

    2014-03-01

    Chloroplasts from land plants and algae originated from an endosymbiotic event, most likely involving an ancestral photoautotrophic prokaryote related to cyanobacteria. Both chloroplasts and cyanobacteria have thylakoid membranes, harboring pigment-protein complexes that perform the light-dependent reactions of oxygenic photosynthesis. The composition, function and regulation of these complexes have thus far been the major topics in thylakoid membrane research. For many decades, we have also accumulated biochemical and electrophysiological evidence for the existence of solute transthylakoid transport activities that affect photosynthesis. However, research dedicated to molecular identification of the responsible proteins has only recently emerged with the explosion of genomic information. Here we review the current knowledge about channels and transporters from the thylakoid membrane of Arabidopsis thaliana and of the cyanobacterium Synechocystis sp. PCC 6803. No homologues of these proteins have been characterized in algae, although similar sequences could be recognized in many of the available sequenced genomes. Based on phylogenetic analyses, we hypothesize a host origin for most of the so far identified Arabidopsis thylakoid channels and transporters. Additionally, the shift from a non-thylakoid to a thylakoid location appears to have occurred at different times for different transport proteins. We propose that closer control of and provision for the thylakoid by products of the host genome has been an ongoing process, rather than a one-step event. Some of the proteins recruited to serve in the thylakoid may have been the result of the increased specialization of its pigment-protein composition and organization in green plants.

  17. Parental symptoms of posttraumatic stress after pediatric extracorporeal membrane oxygenation*.

    PubMed

    Lewis, Angela R; Wray, Jo; O'Callaghan, Maura; Wroe, Abigail L

    2014-02-01

    To investigate the prevalence of posttraumatic stress symptoms in parents of children who have been supported on extracorporeal membrane oxygenation and to explore associated factors. Descriptive cross-sectional study. A specialist pediatric tertiary center in the United Kingdom. Parents (n = 52) of children who had been supported with extracorporeal membrane oxygenation at least 6 months previously. None. Self-reported questionnaires were completed measuring posttraumatic stress symptom, family functioning, depression, anxiety, and demographic variables. Approximately 20% of parents experienced posttraumatic stress symptoms at levels suggestive of a diagnosis of posttraumatic stress disorder, irrespective of the time that had elapsed since extracorporeal membrane oxygenation. Although having a child who had ongoing illness before extracorporeal membrane oxygenation was associated with avoidance posttraumatic stress symptoms, results suggest that other previously identified risk factors, such as gender and family functioning, may not be risk factors for posttraumatic stress symptom in this population. A substantial number of parents in this population experience posttraumatic stress symptom. Psychological interventions may be targeted toward those whose child has had ongoing illness before extracorporeal membrane oxygenation.

  18. Mechanism of unassisted ion transport across membrane bilayers

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  19. Mechanism of unassisted ion transport across membrane bilayers

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  20. Oxygen mass transfer characteristics in a membrane-aerated biofilm reactor.

    PubMed

    Casey, E; Glennon, B; Hamer, G

    1999-01-20

    Immobilization of pollutant-degrading microorganisms on oxygen-permeable membranes provides a novel method of increasing the oxidation capacity of wastewater treatment bioreactors. Oxygen mass transfer characteristics during continuous-flow steady-state experiments were investigated for biofilms supported on tubular silicone membranes. An analysis of oxygen mass transport and reaction using an established mathematical model for dual-substrate limitation supported the experimental results reported. In thick biofilms, an active layer of biomass where both carbon substrate and oxygen are available was found to exist. The location of this active layer varies depending on the ratio of the carbon substrate loading rate to the intramembrane oxygen pressure. The thickness of a carbon-substrate-starved layer was found to greatly influence the mass transport of oxygen into the active biomass layer, which was located close to, but not in contact with, the biofilm-liquid interface. The experimental results demonstrated that oxygen uptake rates as high as 20 g m-2 d-1 bar-1 can be achieved, and the model predicts that, for an optimized biofilm thickness, oxygen uptake rates of more than 30 g m-2 d-1 bar-1 should be possible. This would allow membrane-aerated biofilm reactors to operate with much greater thicknesses of active biomass than can conventional biofilm reactors as well as offering the further advantage of close to 100% oxygen conversion efficiencies for the treatment of high-strength wastewaters. In the case of dual- substrate-limited biofilms, the potential to increase the oxygen flux does not necessarily increase the substrate (acetate) removal rate. Copyright 1999 John Wiley & Sons, Inc.

  1. Oxygen Transport: A Simple Model for Study and Examination.

    ERIC Educational Resources Information Center

    Gaar, Kermit A., Jr.

    1985-01-01

    Describes an oxygen transport model computer program (written in Applesoft BASIC) which uses such variables as amount of time lapse from beginning of the simulation, arterial blood oxygen concentration, alveolar oxygen pressure, and venous blood oxygen concentration and pressure. Includes information on obtaining the program and its documentation.…

  2. Transport Across Chloroplast Membranes: Optimizing Photosynthesis for Adverse Environmental Conditions.

    PubMed

    Pottosin, Igor; Shabala, Sergey

    2016-03-07

    Chloroplasts are central to solar light harvesting and photosynthesis. Optimal chloroplast functioning is vitally dependent on a very intensive traffic of metabolites and ions between the cytosol and stroma, and should be attuned for adverse environmental conditions. This is achieved by an orchestrated regulation of a variety of transport systems located at chloroplast membranes such as porines, solute channels, ion-specific cation and anion channels, and various primary and secondary active transport systems. In this review we describe the molecular nature and functional properties of the inner and outer envelope and thylakoid membrane channels and transporters. We then discuss how their orchestrated regulation affects thylakoid structure, electron transport and excitation energy transfer, proton-motive force partition, ion homeostasis, stromal pH regulation, and volume regulation. We link the activity of key cation and anion transport systems with stress-specific signaling processes in chloroplasts, and discuss how these signals interact with the signals generated in other organelles to optimize the cell performance, with a special emphasis on Ca(2+) and reactive oxygen species signaling. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  3. Use of inside-out chloroplast thylakoid membrane vesicles for studying electron transport and membrane structure

    SciTech Connect

    Atta-Asafo-Adjei, E.

    1987-01-01

    Inside-out and right-side-out thylakoid vesicles were isolated from spinach chloroplasts by aqueous-polymer two-phase partitioning following mechanical fragmentation of thylakoid membranes by Yeda press treatment. Externally added plastocyanin stimulated the whole-chain and PSI electron transport rates in the inside-out thylakoid vesicles by about 500 and 350%, respectively, compared to about 50% stimulation for both assays in the fraction enriched in right-side-out vesicles. The electron transport between PSII and PSI in inside-out thylakoid vesicles appears to be interrupted due to plastocyanin release from the thylakoids by the Yeda press treatment, but it was restored by externally added plastocyanin. Acetic anhydride chemical modification and uncoupler-induced proton release from dark-adapted membranes are probes for detecting the sequested proton domains in thylakoid membranes. Both assays were used to find out if inside-out membranes retain metastable, localized proton binding domains. Treatment of dark-maintained inside-out thylakoid membrane vesicles with ({sup 3}H)acetic anhydride showed no uncoupler-induced increase in acetylation of the 33, 24, and 18 kDa polypeptides of the oxygen-evolving-complex, indicating complete loss of the implicated proton domains in these polypeptides. The various steps in the inside-out preparation were studied to discern which steps(s) leads to the loss of the metastable domain proton pool.

  4. Phylogenetic profiles of all membrane transport proteins

    PubMed Central

    Weiner, January; Kooij, Taco W.A.

    2016-01-01

    In order to combat the on-going malaria epidemic, discovery of new drug targets remains vital. Proteins that are essential to survival and specific to malaria parasites are key candidates. To survive within host cells, the parasites need to acquire nutrients and dispose of waste products across multiple membranes. Additionally, like all eukaryotes, they must redistribute ions and organic molecules between their various internal membrane bound compartments. Membrane transport proteins mediate all of these processes and are considered important mediators of drug resistance as well as drug targets in their own right. Recently, using advanced experimental genetic approaches and streamlined life cycle profiling, we generated a large collection of Plasmodium berghei gene deletion mutants and assigned essential gene functions, highlighting potential targets for prophylactic, therapeutic, and transmission-blocking anti-malarial drugs. Here, we present a comprehensive orthology assignment of all Plasmodium falciparum putative membrane transport proteins and provide a detailed overview of the associated essential gene functions obtained through experimental genetics studies in human and murine model parasites. Furthermore, we discuss the phylogeny of selected potential drug targets identified in our functional screen. We extensively discuss the results in the context of the functional assignments obtained using gene targeting available to date. PMID:28357319

  5. Extracorporeal membrane oxygenation for extremely complicated scrub typhus.

    PubMed

    Oh, Won-Sup; Yie, Kilsoo

    2012-01-01

    Scrub typhus is a mite-borne disease caused by Orientia tsutsugamushi. Although early diagnosis and appropriate antibiotic therapy improve the prognosis for the majority of patients, life-threatening complications are not uncommon. Here, we present a case of successfully performed veno-veno type extracorporeal membrane oxygenation for scrub typhus-induced complications, including acute respiratory distress syndrome, sudden cardiac arrest, and multiorgan dysfunction. To our knowledge, this is the first case report of successful extracorporeal membrane oxygenation in complicated scrub typhus.

  6. Extracorporeal membrane oxygenator compatible with centrifugal blood pumps.

    PubMed

    Motomura, Tadashi; Maeda, Tomohiro; Kawahito, Shinji; Matsui, Takahiro; Ichikawa, Seiji; Ishitoya, Hiroshi; Kawamura, Masaki; Nishimura, Ikuya; Shinohara, Toshiyuki; Oestmann, Daniel; Glueck, Julia; Kawaguchi, Yoichiro; Sato, Koshiro; Nosé, Yukihiko

    2002-11-01

    Coil-type silicone membrane oxygenators can only be used with roller blood pumps due to the resistance from the high blood flow. Therefore, during extracorporeal membrane oxygenation (ECMO) treatment, the combination of a roller pump and an oxygenator with a high blood flow resistance will induce severe hemolysis, which is a serious problem. A silicone rubber, hollow fiber membrane oxygenator that has a low blood flow resistance was developed and evaluated with centrifugal pumps. During in vitro tests, sufficient gas transfer was demonstrated with a blood flow less than 3 L/min. Blood flow resistance was 18 mm Hg at 1 L/min blood flow. This oxygenator module was combined with the Gyro C1E3 (Kyocera, Japan), and veno-arterial ECMO was established on a Dexter strain calf. An ex vivo experiment was performed for 3 days with stable gas performance and low blood flow resistance. The combination of this oxygenator and centrifugal pump may be advantageous to enhance biocompatibility and have less blood trauma characteristics.

  7. Decontamination of an Extracorporeal Membrane Oxygenator Contaminated With Mycobacterium chimaera.

    PubMed

    Garvey, Mark I; Phillips, Natalie; Bradley, Craig W; Holden, Elisabeth

    2017-10-01

    Water samples taken from extracorporeal membrane oxygenator (ECMO) devices used at University Hospitals Birmingham yielded high total viable counts (TVCs) containing a variety of microorganisms, including M. chimaera. Disinfection resulted in the reduction of TVCs and eradication of Mycobacterium chimaera. Weekly disinfection and water sampling are required to manage the water quality in these devices. Infect Control Hosp Epidemiol 2017;38:1244-1246.

  8. Gaseous Microemboli and the Influence of Microporous Membrane Oxygenators

    PubMed Central

    Weitkemper, Heinz-H.; Oppermann, Bernd; Spilker, Andreas; Knobl, Hermann-J.; Körfer, Reiner

    2005-01-01

    Abstract: Gaseous microemboli (GME) are still an unsolved problem of extracorporeal circuits. They are associated with organ injury during cardiopulmonary bypass. Microbubbles of different sizes and number are generated in the blood as the result of different components of the extracorporeal circuit as well as surgical maneuvers. The aim of our study was to observe the behavior of microporous membrane oxygenators to GME in the daily use and in an in vitro model. For the detection of microbubbles, we used a two-channel ultrasonic bubble counter based on 2-MHz Doppler-System with special ultrasound probes. The amount and size of GME were monitored before and after membrane. In 28 scheduled cases with 3 different oxygenators and variability of surgical procedures, we observed the bubble activity in the extracorporeal circuit. In addition, we used an in-vitro model to study the ability of six different oxygenators by removing air in various tests. The oxygenators tested were manufactured with different membrane technologies. The results of our investigations showed varying membrane design lead to a partial removal of GME as well as a change in size and numbers of microbubbles. PMID:16350377

  9. Safety Standard for Oxygen and Oxygen Systems: Guidelines for Oxygen System Design, Materials Selection, Operations, Storage, and Transportation

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's standard for oxygen system design, materials selection, operation, and transportation is presented. Minimum guidelines applicable to NASA Headquarters and all NASA Field Installations are contained.

  10. Fibronectin coating of oxygenator membranes enhances endothelial cell attachment

    PubMed Central

    2013-01-01

    Background Extracorporeal membrane oxygenation (ECMO) can replace the lungs’ gas exchange capacity in refractory lung failure. However, its limited hemocompatibility, the activation of the coagulation and complement system as well as plasma leakage and protein deposition hamper mid- to long-term use and have constrained the development of an implantable lung assist device. In a tissue engineering approach, lining the blood contact surfaces of the ECMO device with endothelial cells might overcome these limitations. As a first step towards this aim, we hypothesized that coating the oxygenator’s gas exchange membrane with proteins might positively influence the attachment and proliferation of arterial endothelial cells. Methods Sheets of polypropylene (PP), polyoxymethylpentene (TPX) and polydimethylsiloxane (PDMS), typical material used for oxygenator gas exchange membranes, were coated with collagen, fibrinogen, gelatin or fibronectin. Tissue culture treated well plates served as controls. Endothelial cell attachment and proliferation were analyzed for a period of 4 days by microscopic examination and computer assisted cell counting. Results Endothelial cell seeding efficiency is within range of tissue culture treated controls for fibronectin treated surfaces only. Uncoated membranes as well as all other coatings lead to lower cell attachment. A confluent endothelial cell layer develops on fibronectin coated PDMS and the control surface only. Conclusions Fibronectin increases endothelial cells’ seeding efficiency on different oxygenator membrane material. PDMS coated with fibronectin shows sustained cell attachment for a period of four days in static culture conditions. PMID:23356939

  11. Extracorporeal Membrane Oxygenation Outcomes in Acute Respiratory Distress Treatment: Case Study in a Chinese Referral Center

    PubMed Central

    Huang, Lei; Li, Tong; Xu, Lei; Hu, Xiao-min; Duan, Da-wei; Li, Zhi-bo; Gao, Xin-jing; Li, Jun; Wu, Peng; Liu, Ying-Wu

    2017-01-01

    Background No definitive conclusions have been drawn from the available data about the utilization of extracorporeal membrane oxygenation (ECMO) to treat severe acute respiratory distress syndrome (ARDS). The aim of this study was to review our center’s experience with ECMO and determine predictors of outcome from our Chinese center. Material/Methods We retrospectively analyzed a total of 23 consecutive candidates who fulfilled the study entry criteria between January 2009 and December 2015. Detailed clinical data, ECMO flow, and respiratory parameters before and after the introduction of ECMO were compared among in-hospital survivors and nonsurvivors; factors associated with mortality were investigated. Results Hemodynamics and oxygenation parameters were significantly improved after ECMO initiation. Thirteen patients survived to hospital discharge. Univariate correlation analysis demonstrated that APACHE II score (r=−0.463, p=0.03), acute kidney injury (r=−0.574, p=0.005), membrane oxygenator replacement (r=−0.516, p=0.014) and total length of hospital stay (r=0.526, p=0.012) were significantly correlated with survival to hospital discharge, and that the evolution of the levels of urea nitrogen, platelet, and fibrinogen may help to determine patient prognosis. Sixteen patients referred for ECMO from an outside hospital were successfully transported to our institution by ambulance, including seven transported under ECMO support. The survival rate of the ECMO-transport group was comparable to the conventional transport or the non-transport group (both p=1.000). Conclusions ECMO is an effective alternative option for severe ARDS. APACHE II score on admission, onset of acute kidney injury, and membrane oxygenator replacement, and the evolution of levels of urea nitrogen, platelet, and fibrinogen during hospitalization may help to determine the in-hospital patient prognosis. By establishing a well-trained mobile ECMO team, a long-distance, inter

  12. Extracorporeal Membrane Oxygenation Outcomes in Acute Respiratory Distress Treatment: Case Study in a Chinese Referral Center.

    PubMed

    Huang, Lei; Li, Tong; Xu, Lei; Hu, Xiao-Min; Duan, Da-Wei; Li, Zhi-Bo; Gao, Xin-Jing; Li, Jun; Wu, Peng; Liu, Ying-Wu

    2017-02-10

    BACKGROUND No definitive conclusions have been drawn from the available data about the utilization of extracorporeal membrane oxygenation (ECMO) to treat severe acute respiratory distress syndrome (ARDS). The aim of this study was to review our center's experience with ECMO and determine predictors of outcome from our Chinese center. MATERIAL AND METHODS We retrospectively analyzed a total of 23 consecutive candidates who fulfilled the study entry criteria between January 2009 and December 2015. Detailed clinical data, ECMO flow, and respiratory parameters before and after the introduction of ECMO were compared among in-hospital survivors and nonsurvivors; factors associated with mortality were investigated. RESULTS Hemodynamics and oxygenation parameters were significantly improved after ECMO initiation. Thirteen patients survived to hospital discharge. Univariate correlation analysis demonstrated that APACHE II score (r=-0.463, p=0.03), acute kidney injury (r=-0.574, p=0.005), membrane oxygenator replacement (r=-0.516, p=0.014) and total length of hospital stay (r=0.526, p=0.012) were significantly correlated with survival to hospital discharge, and that the evolution of the levels of urea nitrogen, platelet, and fibrinogen may help to determine patient prognosis. Sixteen patients referred for ECMO from an outside hospital were successfully transported to our institution by ambulance, including seven transported under ECMO support. The survival rate of the ECMO-transport group was comparable to the conventional transport or the non-transport group (both p=1.000). CONCLUSIONS ECMO is an effective alternative option for severe ARDS. APACHE II score on admission, onset of acute kidney injury, and membrane oxygenator replacement, and the evolution of levels of urea nitrogen, platelet, and fibrinogen during hospitalization may help to determine the in-hospital patient prognosis. By establishing a well-trained mobile ECMO team, a long-distance, inter-hospital transport

  13. Hydrogen production from methane using oxygen-permeable ceramic membranes

    NASA Astrophysics Data System (ADS)

    Faraji, Sedigheh

    Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest in membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like hydrogen. However, hydrogen generation by this method has not yet been commercialized and suffers from low membrane stability, low membrane oxygen flux, high membrane fabrication costs, and high reaction temperature requirements. In this dissertation, hydrogen production from methane on two different types of ceramic membranes (dense SFC and BSCF) has been investigated. The focus of this research was on the effects of different parameters to improve hydrogen production in a membrane reactor. These parameters included operating temperature, type of catalyst, membrane material, membrane thickness, membrane preparation pH, and feed ratio. The role of the membrane in the conversion of methane and the interaction with a Pt/CeZrO2 catalyst has been studied. Pulse studies of reactants and products over physical mixtures of crushed membrane material and catalyst have clearly demonstrated that a synergy exists between the membrane and the catalyst under reaction conditions. The degree of catalyst/membrane interaction strongly impacts the conversion of methane and the catalyst performance. During thermogravimetric analysis, the onset temperature of oxygen release for BSCF was observed to be lower than that for SFC while the amount of oxygen release was significantly greater. Pulse injections of CO2 over crushed membranes at 800°C have shown more CO2 dissociation on the BSCF membrane than the SFC membrane, resulting in higher CO formation on the BSCF membrane. Similar to the CO2 pulses, when CO was injected on the samples at 800°C, CO2 production was higher on BSCF than SFC. It was found that hydrogen consumption on BSCF particles is 24 times higher than that on SFC particles. Furthermore, Raman spectroscopy and temperature programmed desorption studies of

  14. Extracorporeal membrane oxygenation in transcatheter aortic valve replacement.

    PubMed

    Dolmatova, Elena; Moazzami, Kasra; Cocke, Thomas P; Elmann, Elie; Vaidya, Pranay; Ng, Arthur F; Satya, Kumar; Narayan, Rajeev L

    2017-01-01

    Background Patients undergoing transcatheter aortic valve replacement can experience severe perioperative complications leading to hemodynamic instability and death. Venoarterial extracorporeal membrane oxygenation can be used to provide cardiorespiratory support during this time. Methods From 2012 to 2015, of 247 patients who underwent transcatheter aortic valve replacement, 6 (2.42%) required extracorporeal membrane oxygenation support. Their mean age was 82 ± 7.4 years, mean Society of Thoracic Surgeons score was 9.4 ± 6.6, and mean aortic gradient was 28.3 ± 12 mm Hg. Rescue extracorporeal membrane oxygenation was required for hemodynamic instability due to ventricular fibrillation ( n = 1), respiratory failure ( n = 1), left ventricular wall rupture ( n = 2), and aortic annulus rupture ( n = 1). In one patient, prophylactic extracorporeal membrane oxygenation was required due to advanced heart failure. Additional procedures included valve-in-valve implantation ( n = 1), conversion to an open procedure ( n = 3), and intraaortic balloon pump insertion ( n = 1). Results The median hospital stay was 20 days. There were 2 hospital deaths in patients whose hospital course was complicated by left ventricular wall rupture or aortic annulus rupture with resulting tamponade. Among the 4 survivors, one required continuous ventilator support following discharge, and 3 experienced no major complications during the first month after discharge. Conclusions Extracorporeal membrane oxygenation can be considered a viable option for high-risk patients undergoing transcatheter aortic valve replacement and those who develop cardiac complications following this procedure and require cardiorespiratory support.

  15. Case-Based Learning of Blood Oxygen Transport

    ERIC Educational Resources Information Center

    Cliff, William H.

    2006-01-01

    A case study about carbon monoxide poisoning was used help students gain a greater understanding of the physiology of oxygen transport by the blood. A review of student answers to the case questions showed that students can use the oxygen-hemoglobin dissociation curve to make meaningful determinations of oxygen uptake and delivery. However, the…

  16. Case-Based Learning of Blood Oxygen Transport

    ERIC Educational Resources Information Center

    Cliff, William H.

    2006-01-01

    A case study about carbon monoxide poisoning was used help students gain a greater understanding of the physiology of oxygen transport by the blood. A review of student answers to the case questions showed that students can use the oxygen-hemoglobin dissociation curve to make meaningful determinations of oxygen uptake and delivery. However, the…

  17. Molecular mechanisms for proton transport in membranes.

    PubMed Central

    Nagle, J F; Morowitz, H J

    1978-01-01

    Likely mechanisms for proton transport through biomembranes are explored. The fundamental structural element is assumed to be continuous chains of hydrogen bonds formed from the protein side groups, and a molecular example is presented. From studies in ice, such chains are predicted to have low impedance and can function as proton wires. In addition, conformational changes in the protein may be linked to the proton conduction. If this possibility is allowed, a simple proton pump can be described that can be reversed into a molecular motor driven by an electrochemical potential across the membrane. PMID:272644

  18. Membrane ion transport in non-excitable tissues.

    PubMed

    Nehrke, Keith

    2014-12-23

    The facilitated movement of ions across cell membranes can be characterized as occurring through active (ATP-dependent), secondary active (coupled), or passive transport processes. Each of these processes is mediated by a diverse group of membrane proteins. Over the past fifteen years, studies of membrane transport in C. elegans have benefited from the fact that worms are anatomically simple, easily and economically cultured, and genetically tractable. These experimental advantages have been instrumental in defining how membrane transport processes contribute to whole organism physiology. The focus of this review is to survey the recent advances in our understanding of membrane transport that have arisen from integrative physiological approaches in the nematode C. elegans.

  19. Hybrid membrane--PSA system for separating oxygen from air

    DOEpatents

    Staiger, Chad L [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM; Miller, A Keith [Albuquerque, NM; Cornelius, Christopher J [Blackburg, VA

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  20. Review of Membrane Oxygen Enrichment for Efficient Combustion

    NASA Astrophysics Data System (ADS)

    Ariono, Danu; Kusuma Wardani, Anita

    2017-07-01

    Oxygen enrichment from air is a simple way of increasing the efficiency of combustion process, as in oxy-combustion. Oxy-combustion has become one of the most attracting combustion technologies because of its potential to address both pollutant reduction and CO2 capture. In oxy-combustion, the fuel and recycled flue gas are combusted with oxygen enriched air (OEA). By using OEA, many benefits can be obtained, such as increasing available heat, improving ignition characteristics, flue gas reduction, increasing productivity, energy efficiency, turndown ratio, and flame stability. Membrane-based gas separation for OEA production becomes an attractive technology over the conventional technology due to the some advantages, including low capital cost, low energy consumption, compact size, and modularity. A single pass through membrane usually can enrich O2 concentration in the air up to 35% and a 50% concentration can be achieved with a double pass of membrane. The use of OEA in the combustion process eliminates the presence of nitrogen in the flue gas. Hence, the flue gas is mainly composed of CO2 and condensable water that can be easily separated. This paper gives an overview of oxy-combustion with membrane technology for oxygen enrichment process. Special attention is given to OEA production and the effect of OEA to the efficiency of combustion.

  1. Numerical study of oxygen transport in a carotid bifurcation

    NASA Astrophysics Data System (ADS)

    Tada, Shigeru

    2010-07-01

    This study investigates the oxygen mass transport in the region around the human carotid bifurcation, particularly addressing the effects of bifurcation geometry and pulsatile blood flow on the oxygen transport between the blood flow and artery wall tissue, coupled with the metabolic oxygen consumption and oxygen diffusion in the artery wall tissue. The temporal variations and spatial distributions of the oxygen tension are predicted quantitatively using a geometric model of the human carotid bifurcation and realistic blood flow waveforms. Results reveal that the flow separation at the outside wall of the sinus of the internal carotid artery (ICA) can markedly alter the flow pattern, oxygen tension and the oxygen wall flux. Results also clarify that the flow unsteadiness has a secondary effect on the oxygen tension inside the wall. The non-dimensional oxygen flux, the Sherwood number Sh, at the outside wall of the ICA sinus, takes markedly lower values of about 45 than at other sites because the rates of oxygen transport by the convective flow are reduced at the outside wall of the ICA sinus. The transverse distributions of the oxygen tension inside the artery wall show parabolic profiles having minima in the middle of the wall thickness, with the lowest value of 35 mmHg. These predicted distributions of the oxygen tension inside the wall closely resemble those obtained from experiments. The results demonstrate that hypoxic zones appear inside the artery walls at locations where atherosclerotic lesions are prone to develop.

  2. Osmotic water transport through carbon nanotube membranes

    PubMed Central

    Kalra, Amrit; Garde, Shekhar; Hummer, Gerhard

    2003-01-01

    We use molecular dynamics simulations to study osmotically driven transport of water molecules through hexagonally packed carbon nanotube membranes. Our simulation setup comprises two such semipermeable membranes separating compartments of pure water and salt solution. The osmotic force drives water flow from the pure-water to the salt-solution compartment. Monitoring the flow at molecular resolution reveals several distinct features of nanoscale flows. In particular, thermal fluctuations become significant at the nanoscopic length scales, and as a result, the flow is stochastic in nature. Further, the flow appears frictionless and is limited primarily by the barriers at the entry and exit of the nanotube pore. The observed flow rates are high (5.8 water molecules per nanosecond and nanotube), comparable to those through the transmembrane protein aquaporin-1, and are practically independent of the length of the nanotube, in contrast to predictions of macroscopic hydrodynamics. All of these distinct characteristics of nanoscopic water flow can be modeled quantitatively by a 1D continuous-time random walk. At long times, the pure-water compartment is drained, and the net flow of water is interrupted by the formation of structured solvation layers of water sandwiched between two nanotube membranes. Structural and thermodynamic aspects of confined water monolayers are studied. PMID:12878724

  3. Numerical modeling transport phenomena in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Suh, DongMyung

    To study the coupled phenomena occurring in proton exchange membrane fuel cells, a two-phase, one-dimensional, non-isothermal model is developed in the chapter 1. The model includes water phase change, proton transport in the membrane and electro-osmotic effect. The thinnest, but most complex layer in the membrane electrode assembly, catalyst layer, is considered an interfacial boundary between the gas diffusion layer and the membrane. Mass and heat transfer and electro-chemical reaction through the catalyst layer are formulated into equations, which are applied to boundary conditions for the gas diffusion layer and the membrane. Detail accounts of the boundary equations and the numerical solving procedure used in this work are given. The polarization curve is calculated at different oxygen pressures and compared with the experimental results. When the operating condition is changed along the polarization curve, the change of physicochemical variables in the membrane electrode assembly is studied. In particular, the over-potential diagram presents the usage of the electrochemical energy at each layer of the membrane electrode assembly. Humidity in supplying gases is one of the most important factors to consider for improving the performance of PEMFE. Both high and low humidity conditions can result in a deteriorating cell performance. The effect of humidity on the cell performance is studied in the chapter 2. First, a numerical model based on computational fluid dynamics is developed. Second, the cell performances are simulated, when the relative humidity is changed from 0% to 100% in the anode and the cathode channel. The simulation results show how humidity in the reactant gases affects the water content distribution in the membrane, the over-potential at the catalyst layers and eventually the cell performance. In particular, the rapid enhancement in the cell performance caused by self-hydrating membrane is captured by the simulation. Fully humidifying either H2

  4. Oxygen-transfer performance of a newly designed, very low-volume membrane oxygenator.

    PubMed

    Burn, Felice; Ciocan, Sorin; Carmona, Natalia Mendez; Berner, Marion; Sourdon, Joevin; Carrel, Thierry P; Tevaearai Stahel, Hendrik T; Longnus, Sarah L

    2015-09-01

    Oxygenation of blood and other physiological solutions are routinely required in fundamental research for both in vitro and in vivo experimentation. However, very few oxygenators with suitable priming volumes (<2-3 ml) are available for surgery in small animals. We have designed a new, miniaturized membrane oxygenator and investigated the oxygen-transfer performance using both buffer and blood perfusates. The mini-oxygenator was designed with a central perforated core-tube surrounded by parallel-oriented microporous polypropylene hollow fibres, placed inside a hollow shell with a lateral-luer outlet, and sealed at both extremities. With this design, perfusate is delivered via the core-tube to the centre of the mini-oxygenator, and exits via the luer port. A series of mini-oxygenators were constructed and tested in an in vitro perfusion circuit by monitoring oxygen transfer using modified Krebs-Henseleit buffer or whole porcine blood. Effects of perfusion pressure and temperature over flows of 5-60 ml × min(-1) were assessed. Twelve mini-oxygenators with a mean priming volume of 1.5 ± 0.3 ml were evaluated. With buffer, oxygen transfer reached a maximum of 14.8 ± 1.0 ml O2 × l(-1) (pO2: 450 ± 32 mmHg) at perfusate flow rates of 5 ml × min(-1) and decreased with an increase in perfusate flow to 7.8 ± 0.7 ml ml O2 × l(-1) (pO2: 219 ± 24 mmHg) at 60 ml × min(-1). Similarly, with blood perfusate, oxygen transfer also decreased as perfusate flow increased, ranging from 33 ± 5 ml O2 × l(-1) at 5 ml × min(-1) to 11 ± 2 ml O2 × l(-1) at 60 ml × min(-1). Furthermore, oxygen transfer capacity remained stable with blood perfusion over a period of at least 2 h. We have developed a new miniaturized membrane oxygenator with an ultra-low priming volume (<2 ml) and adequate oxygenation performance. This oxygenator may be of use in overcoming current limitations in equipment size for effective oxygenation in low-volume perfusion circuits, such as small animal

  5. Oxygen-Permeable, Hydrophobic Membranes of Silanized alpha-Al2O3

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Akse, James R.

    2006-01-01

    Membranes made of silanized alumina have been prepared and tested as prototypes of derivatized ceramic membranes that are both highly permeable to oxygen and hydrophobic. Improved oxygen-permeable, hydrophobic membranes would be attractive for use in several technological disciplines, including supporting high-temperature aqueousphase oxidation in industrial production of chemicals, oxygenation of aqueous streams for bioreactors, and oxygenation of blood during open-heart surgery and in cases of extreme pulmonary dysfunction. In comparison with organic polymeric oxygen-permeable membranes now commercially available, the derivatized ceramic membranes are more chemically robust, are capable of withstanding higher temperatures, and exhibit higher oxygen-diffusion coefficients.

  6. Comparative molecular biological analysis of membrane transport genes in organisms

    PubMed Central

    Nagata, Toshifumi; Iizumi, Shigemi; Satoh, Kouji

    2008-01-01

    Comparative analyses of membrane transport genes revealed many differences in the features of transport homeostasis in eight diverse organisms, ranging from bacteria to animals and plants. In bacteria, membrane-transport systems depend mainly on single genes encoding proteins involved in an ATP-dependent pump and secondary transport proteins that use H+ as a co-transport molecule. Animals are especially divergent in their channel genes, and plants have larger numbers of P-type ATPase and secondary active transporters than do other organisms. The secondary transporter genes have diverged evolutionarily in both animals and plants for different co-transporter molecules. Animals use Na+ ions for the formation of concentration gradients across plasma membranes, dependent on secondary active transporters and on membrane voltages that in turn are dependent on ion transport regulation systems. Plants use H+ ions pooled in vacuoles and the apoplast to transport various substances; these proton gradients are also dependent on secondary active transporters. We also compared the numbers of membrane transporter genes in Arabidopsis and rice. Although many transporter genes are similar in these plants, Arabidopsis has a more diverse array of genes for multi-efflux transport and for response to stress signals, and rice has more secondary transporter genes for carbohydrate and nutrient transport. Electronic supplementary material The online version of this article (doi:10.1007/s11103-007-9287-z) contains supplementary material, which is available to authorized users. PMID:18293089

  7. The Pathway for Oxygen: Tutorial Modelling on Oxygen Transport from Air to Mitochondrion: The Pathway for Oxygen.

    PubMed

    Bassingthwaighte, James B; Raymond, Gary M; Dash, Ranjan K; Beard, Daniel A; Nolan, Margaret

    2016-01-01

    The 'Pathway for Oxygen' is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions. While this system's basic elements are simple: ventilation, alveolar gas exchange with blood, circulation of the blood, perfusion of an organ, uptake by tissue, and consumption by chemical reaction, integration of these pieces quickly becomes complex. This complexity led us to construct a tutorial on the ideas and principles; these first PathwayO2 models are simple but quantitative and cover: (1) a 'one-alveolus lung' with airway resistance, lung volume compliance, (2) bidirectional transport of solute gasses like O2 and CO2, (3) gas exchange between alveolar air and lung capillary blood, (4) gas solubility in blood, and circulation of blood through the capillary syncytium and back to the lung, and (5) blood-tissue gas exchange in capillaries. These open-source models are at Physiome.org and provide background for the many respiratory models there.

  8. Facilitative plasma membrane transporters function during ER transit

    PubMed Central

    Takanaga, Hitomi; Frommer, Wolf B.

    2010-01-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na+-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.—Takanaga, H., Frommer, W. B. Facilitative plasma membrane transporters function during ER transit. PMID:20354141

  9. OXYGEN TRANSPORT IN THE MICROCIRCULATION AND ITS REGULATION

    PubMed Central

    Pittman, Roland N.

    2012-01-01

    Cells require energy to carry out their functions and they typically use oxidative phosphorylation to generate the needed ATP. Thus, cells have a continuous need for oxygen which they receive by diffusion from the blood through the interstitial fluid. The circulatory system pumps oxygen-rich blood through a network of increasingly minute vessels, the microcirculation. The structure of the microcirculation is such that all cells have at least one nearby capillary for diffusive exchange of oxygen and red blood cells release the oxygen bound to hemoglobin as they traverse capillaries. This review focuses first on the historical development of techniques to measure oxygen at various sites in the microcirculation, including the blood, interstitium and cells. Next, approaches are described as to how these techniques have been employed to make discoveries about different aspects of oxygen transport. Finally, ways in which oxygen might participate in the regulation of blood flow toward matching oxygen supply to oxygen demand is discussed. Overall, the transport of oxygen to the cells of the body is one of the most critical functions of the cardiovascular system and it is in the microcirculation where the final local determinants of oxygen supply, oxygen demand and their regulation are decided. PMID:23025284

  10. Extracorporeal membrane oxygenation in adults for severe acute respiratory failure.

    PubMed

    Rozé, H; Repusseau, B; Ouattara, A

    2014-01-01

    The purpose of this review is to examine the indications of extracorporeal membrane oxygenation (ECMO) for severe acute respiratory distress syndrome (ARDS). This technique of oxygenation has significantly increased worldwide with the H1N1 flu pandemic. The goal of ECMO is to maintain a safe level of oxygenation and controlled respiratory acidosis under protective ventilation. The enthusiasm for ECMO should not obscure the consideration for potential associated complications. Before widespread diffusion of ECMO, new trials should test the efficacy of early initiation or CO2 removal in addition to, or even as an alternative to mechanical ventilation for severe ARDS. Copyright © 2014 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  11. Urea transport through composite polyallylamine membranes

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Kubo, L. Y.; Spitze, L. A.; Wydeven, T.; Clark, J. A.

    1977-01-01

    Polyallylamine composite reverse osmosis membranes were prepared by plasma polymerization and deposition onto small-pored cellulose acetate/cellulose nitrate films. The polyallylamine coated the porous substrate with a thin uniform polymer film which exhibited water permeability and urea rejection, of interest because of the potential application of reverse osmosis to urine purification in closed environmental systems. The flux of C-14 labeled urea was studied under the influence of osmotic gradients provided by sodium chloride solutions. The urea flux was found to be enhanced by an osmotic pressure gradient in the same direction and diminished, but not prevented, by an opposing osmotic pressure gradient. Consideration is given to the mechanism of the urea transport, as well as to the influence of concentration polarization on the experimental results. The minimization of coupled flow in pores of a critical size range is apparently necessary to improve urea rejection.

  12. Urea transport through composite polyallylamine membranes

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Kubo, L. Y.; Spitze, L. A.; Wydeven, T.; Clark, J. A.

    1977-01-01

    Polyallylamine composite reverse osmosis membranes were prepared by plasma polymerization and deposition onto small-pored cellulose acetate/cellulose nitrate films. The polyallylamine coated the porous substrate with a thin uniform polymer film which exhibited water permeability and urea rejection, of interest because of the potential application of reverse osmosis to urine purification in closed environmental systems. The flux of C-14 labeled urea was studied under the influence of osmotic gradients provided by sodium chloride solutions. The urea flux was found to be enhanced by an osmotic pressure gradient in the same direction and diminished, but not prevented, by an opposing osmotic pressure gradient. Consideration is given to the mechanism of the urea transport, as well as to the influence of concentration polarization on the experimental results. The minimization of coupled flow in pores of a critical size range is apparently necessary to improve urea rejection.

  13. Extracorporeal membrane oxygenation as a bridge to pulmonary transplantation.

    PubMed

    Hoopes, Charles W; Kukreja, Jasleen; Golden, Jeffery; Davenport, Daniel L; Diaz-Guzman, Enrique; Zwischenberger, Joseph B

    2013-03-01

    Acute clinical deterioration preceding death is a common observation in patients with advanced interstitial lung disease and secondary pulmonary hypertension. Patients with pulmonary arterial hypertension refractory to medical therapy are also at risk of sudden cardiac death (cor pulmonale). The treatment of these patients remains complex, and the findings from retrospective studies have suggested that intubation and mechanical ventilation are inappropriate given the universally poor outcomes. Extracorporeal support technologies have received limited attention because of the presumed inability to either recover cardiopulmonary function in the patient with end-stage disease or the presumed inability to proceed to definitive therapy with transplantation. A retrospective review was performed of 31 patients from 2 institutions placed on extracorporeal membrane oxygenation as a bridge to lung transplantation compared with similar patients without extracorporeal membrane oxygenation at the same institutions and comparison groups queried from the United Network for Organ Sharing database. We have transplanted 31 patients with refractory lung disease from mechanical artificial lung support. Of the 31 patients, 19 were ambulatory at transplantation. Pulmonary fibrosis (42%), cystic fibrosis (20%), and pulmonary hypertension (16%) were the most common diagnostic codes and acute cor pulmonale (48%) and hypoxia (39%) were the most common indications for device deployment. The average duration of extracorporeal membrane oxygenation support was 13.7 days (range, 2-53 days), and the mean survival of all patients bridged to pulmonary transplantation was 26 months (range, 54 days to 95 months). The 1-, 3-, and 5-year survival was 93%, 80%, and 66%, respectively. The duration of in-house postoperative transplant care ranged from 12 to 86 days (mean, 31 days). Patients requiring an extracorporeal membrane oxygenation bridge had comparable survival to that of the high acuity patients

  14. Pressure dependence of the oxygen reduction reaction at the platinum microelectrode/nafion interface - Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.

  15. Effects of oxygen stress on membrane functions in Escherichia coli: role of HPI catalase

    SciTech Connect

    Farr, S.B.; Touati, D.; Kogoma, T.

    1988-04-01

    Different conditions of oxidative stress were used to study their effects on membrane transport in Escherichia coli K-12. The oxidizing conditions included H/sub 2/O/sub 2/, plumbagin (a redox cycling compound that generates superoxide radicals (O/sub 2/-)), and increased partial pressure of oxygen. Both superoxide radical-generating conditions and H/sub 2/O/sub 2/ treatments were found to cause a rapid decrease in proton motive force-dependent and -independent transport. H/sub 2/O/sub 2/-pretreated cells had the ability to rapidly recover both proton motive force-dependent and -independent transport. The induction required transcription and translation and was dependent on oxyR+ and katG+, providing evidence that these genes play crucial roles in the rapid recovery of transport. The effects of oxidatively induced loss of proton motive force on cell growth and macromolecular synthesis were also investigated.

  16. Capillary oxygen transport during severe hypoxia: role of hemoglobin oxygen affinity.

    PubMed

    Stein, J C; Ellsworth, M L

    1993-10-01

    The efficacy of an increased hemoglobin oxygen affinity [decreased oxygen half-saturation pressure of hemoglobin (P50)] on capillary oxygen transport was evaluated in the hamster retractor muscle under conditions of a severely limited oxygen supply resulting from the combined effects of a 40% reduction in systemic hematocrit and hypoxic ventilation (inspired oxygen fraction 0.1). Two groups of hamsters were utilized: one with a normal oxygen affinity (untreated; P50 = 26.1 +/- 2.4 Torr) and one with an increased oxygen affinity (treated; P50 = 15.7 +/- 1.4 Torr) induced by the chronic short-term administration of sodium cyanate. Using in vivo video microscopy and image analysis techniques, we determined oxygen saturation and associated hemodynamics at both ends of the capillary network. During hypoxic ventilation, the decrease in oxygen saturation across the network was 3.6% for untreated animals compared with 9.9% for treated animals. During hypoxia, estimated end-capillary PO2 was significantly higher in the untreated animals. These data indicate that, at the capillary level, a decreased P50 is advantageous for tissue oxygenation when oxygen supply is severely compromised, because normal oxygen losses in capillaries are maintained in treated but not in untreated animals. The data are consistent with the presence of a diffusion limitation for oxygen during severe hypoxia in animals with a normal hemoglobin oxygen affinity.

  17. Facilitative plasma membrane transporters function during ER transit.

    PubMed

    Takanaga, Hitomi; Frommer, Wolf B

    2010-08-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na(+)-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.

  18. First steps in membrane oxygenation and prolonged extracorporeal perfusion in Duesseldorf using the Bramson membrane lung.

    PubMed

    Schulte, Hagen D

    2003-05-01

    After a shortened history of conventional closed and open heart surgery, including hypothermia by surface cooling and extracorporeal circulation, the first application of a new membrane oxygenator developed by ML Bramson with an integrated temperature exchange system and a heart-lung machine (HLM) was reported in 1972. The aim was to have an efficient oxygenating and gas exchange artificial lung that allowed prolonged perfusions in patients with cardiogenic shock or acute respiratory insufficiency. After in vitro closed recirculation studies comparing different bubble, vertical screen, and the new membrane oxygenators, the Bramson HLM was used in dog experiments before starting clinical cardiac surgery with routine interventions (closure of an atrial septal defect). The first clinically prolonged support for more than three hours after a double valve replacement in a NYHA class IV patient failed. A partial venoarterial prolonged perfusion for 42 hours and 43 minutes in a 10-year-old girl after surgical correction of a partial av canal defect and postoperative development of consistent lung edema caused by myocardial failure after an ischemic time of 43 minutes was the first successful long-term perfusion case in Europe. These first experiences with the Bramson membrane lung formed the basis, in our group, for further investigations of different perfusion routes and cannulations in animal experiments. Also, scanning electron microscopy studies could be performed with experimentally and clinically used membranes. The development of disposable membrane lung devices, for instance, Lande-Edwards, Kolobow Scimed, and General Electric Peirce membrane lungs, ameliorated and improved the use of these devices considerably. Also, BRAMSON had developed a disposable membrane lung device that had proved to be very effective in animal experiments by 1972, but, unfortunately, this device did not become commercially available.

  19. Transport through liquid membranes containing omeprazole and lansoprazole.

    PubMed

    Nagappa, A N; Pandi, P V; Mishra, P K; Girish, Rahul K; Shanmukh, I

    2002-12-01

    Omeprazole and lansoprazole, the therapeutically important drugs belonging to proton pump inhibitor category are extensively used in the treatment of gastric ulcers. Transport through liquid membranes generated by these drugs in lecithin-cholesterol mixture in series with a supporting membrane has been studied. The data obtained show the formation of liquid membrane in series with the supporting membrane. Transport of cations, chloride and bicarbonate ions in the presence liquid membranes generated by omeprazole and lanzoprazole indicate the modification in the permeability of various permeants.

  20. Extracorporeal Membrane Oxygenation for Adult Community-Acquired Pneumonia: Outcomes and Predictors of Mortality.

    PubMed

    Ramanathan, Kollengode; Tan, Chuen Seng; Rycus, Peter; MacLaren, Graeme

    2017-05-01

    Extracorporeal membrane oxygenation is a rescue therapy used to support severe cardiorespiratory failure. Data on outcomes from severe community-acquired pneumonia in adults receiving rescue extracorporeal membrane oxygenation are mainly confined to single-center experiences or specific pathogens. We examined data from the Extracorporeal Life Support Organisation registry to identify risk factors for poor outcomes in adult patients with community-acquired pneumonia. Retrospective data analysis. Extracorporeal Life Support Organization Registry database. We collected deidentified data on adult patients (> 18 yr) receiving extracorporeal membrane oxygenation for community-acquired pneumonia between 2002 and 2012. Patients with incomplete data or brain death were excluded. The primary outcome measure was in-hospital mortality. Other measurements included demographic information, pre-extracorporeal membrane oxygenation mechanical ventilation and biochemical variables, inotrope requirements, extracorporeal membrane oxygenation mode, duration, and complications. Initial univariate analysis assessed potential associations between survival and various pre-extracorporeal membrane oxygenation and extracorporeal membrane oxygenation factors. Variables with p values of less than 0.1 were considered for logistic regression analysis to identify predictors of mortality. None. One thousand fifty-five patients, who satisfied inclusion criteria, were included in the final analysis. There was an increase in the number of patients cannulated per annum over the 10-year period studied. Univariate analysis identified pre-extracorporeal membrane oxygenation and extracorporeal membrane oxygenation variables associated with high mortality. Further multiple regression analysis identified certain pre-extracorporeal membrane oxygenation factors as predictors of mortality, including duration of mechanical ventilation prior to extracorporeal membrane oxygenation, lower arterial pressure, fungal

  1. Analytical Applications of Transport Through Bulk Liquid Membranes.

    PubMed

    Diaconu, Ioana; Ruse, Elena; Aboul-Enein, Hassan Y; Bunaciu, Andrei A

    2016-07-03

    This review discusses the results of research in the use of bulk liquid membranes in separation processes and preconcentration for analytical purposes. It includes some theoretical aspects, definitions, types of liquid membranes, and transport mechanism, as well as advantages of using liquid membranes in laboratory studies. These concepts are necessary to understand fundamental principles of liquid membrane transport. Due to the multiple advantages of liquid membranes several studies present analytical applications of the transport through liquid membranes in separation or preconcentration processes of metallic cations and some organic compounds, such as phenol and phenolic derivatives, organic acids, amino acids, carbohydrates, and drugs. This review presents coupled techniques such as separation through the liquid membrane coupled with flow injection analysis.

  2. Effect of Normobaric versus Hypobaric Oxygenation on Gaseous Microemboli Removal in a Diffusion Membrane Oxygenator: An In Vitro Comparison

    PubMed Central

    Schuldes, Matthew; Riley, Jeffrey B.; Francis, Stephen G.; Clingan, Sean

    2016-01-01

    Abstract: Gaseous microemboli (GME) are an abnormal physiological occurrence during cardiopulmonary bypass and extracorporeal membrane oxygenation (ECMO). Several studies have correlated negative sequelae with exposure to increased amounts of GME. Hypobaric oxygenation is effective at eliminating GME in hollow-fiber microporous membrane oxygenators. However, hollow-fiber diffusion membrane oxygenators, which are commonly used for ECMO, have yet to be validated. The purpose of this study was to determine if hypobaric oxygenation, compared against normobaric oxygenation, can reduce introduced GME when used on diffusion membrane oxygenators. Comparison of a sealed Quadrox-iD with hypobaric sweep gas (.67 atm) vs. an unmodified Quadrox-iD with normal atmospheric sweep gas (1 atm) in terms of GME transmission during continuous air introduction (50 mL/min) in a recirculating in vitro circuit, over a range of flow rates (3.5, 5 L/min) and crystalloid prime temperatures (37°C, 28°C, and 18°C). GME were measured using three EDAC Doppler probes positioned pre-oxygenator, post-oxygenator, and at the arterial cannula. Hypobaric oxygenation vs. normobaric oxygenation significantly reduced hollow-fiber diffusion membrane oxygenator GME transmission at all combination of pump flows and temperatures. There was further significant reduction in GME count between the oxygenator outlet and at the arterial cannula. Hypobaric oxygenation used on hollow-fiber diffusion membrane oxygenators can further reduce GME compared to normobaric oxygenation. This technique may be a safe approach to eliminate GME during ECMO. PMID:27729706

  3. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  4. Control of membrane thermal transport supporting superconducting detetctor development.

    SciTech Connect

    Yefremenko, V.; Wang, G.; Novosad, V.; Datesman, A. M.; Pearson, J. E.; Divan, R.; Chang, C. L.; Downes, T. P.; McMahon, J.; Bleem, L.; Crites, A. T.; Meyer, S. S.; Carlstrom, J. E.; Univ. of Chicago

    2009-06-01

    Because thermal transport determines the dynamic and static operation of bolometric detectors, control of the thermal conductance is critical for the implementation of detectors utilizing superconducting Transition Edge Sensors (TESs). For this reason, we have examined the use of partially perforated membranes for thermal management. This technique preserves the physical integrity of the membrane, and therefore maintains the mechanical robustness of the detector. This paper describes investigations of the thermal transport in trenched membranes.

  5. Mathematical Model of Oxygen Transport in Tuberculosis Granulomas

    PubMed Central

    Datta, Meenal; Via, Laura E.; Chen, Wei; Baish, James W.; Xu, Lei; Barry, Clifton E.; Jain, Rakesh K.

    2016-01-01

    Pulmonary granulomas—the hallmark of Mycobacterium tuberculosis (MTB) infection—are dense cellular lesions that often feature regions of hypoxia and necrosis, partially due to limited transport of oxygen. Low oxygen in granulomas can impair the host immune response, while MTB are able to adapt and persist in hypoxic environments. Here, we used a physiologically based mathematical model of oxygen diffusion and consumption to calculate oxygen profiles within the granuloma, assuming Michaelis–Menten kinetics. An approximate analytical solution—using a priori and newly estimated parameters from experimental data in a rabbit model of tuberculosis—was able to predict the size of hypoxic and necrotic regions in agreement with experimental results from the animal model. Such quantitative understanding of transport limitations can inform future tuberculosis therapeutic strategies that may include adjunct host-directed therapies that facilitate oxygen and drug delivery for more effective treatment. PMID:26253038

  6. Trouble shooting the extracorporeal membrane oxygenator circuit and patient.

    PubMed

    Faulkner, S C; Chipman, C W; Baker, L L

    1993-01-01

    Patients requiring extracorporeal membrane oxygenation (ECMO) often become totally dependent on the mechanical life support. The Extracorporeal Life Support Organization (ELSO) reports 2486 incidents of mechanical complications in 5905 ECMO supports. To help decrease the number of mechanical complications, an active quality assurance program was initiated at our institution. This resulted in identification of only 14 incidents of mechanical complications in 100 patients (neonate, pediatric, adult, and cardiac). Techniques for dealing with problems such as loss of roller pump occlusion, changing out of the membrane lung or heat exchanger without interrupting ECMO support, venous air lock, tamponade, emergency transfusion, and other situations were generated into written policies and procedures. We routinely review and practice problem solving techniques with specific emphasis on monitoring patient hemodynamics and appearance. We conclude that written policies and procedures, "water drills," and continuing education can be beneficial in early recognition, intervention, and/or prevention of ECMO mechanical complications.

  7. Oxygen Selective Membranes for Li-Air (O2) Batteries

    PubMed Central

    Crowther, Owen; Salomon, Mark

    2012-01-01

    Lithium-air (Li-air) batteries have a much higher theoretical energy density than conventional lithium batteries and other metal air batteries, so they are being developed for applications that require long life. Water vapor from air must be prevented from corroding the lithium (Li) metal negative electrode during discharge under ambient conditions, i.e., in humid air. One method of protecting the Li metal from corrosion is to use an oxygen selective membrane (OSM) that allows oxygen into the cell while stopping or slowing the ingress of water vapor. The desired properties and some potential materials for OSMs for Li-air batteries are discussed and the literature is reviewed. PMID:24958173

  8. Oxygen transfer in membrane bioreactors treating synthetic greywater.

    PubMed

    Henkel, Jochen; Lemac, Mladen; Wagner, Martin; Cornel, Peter

    2009-04-01

    Mass transfer coefficients (k(L)a) were studied in two pilot scale membrane bioreactors (MBR) with different setup configurations treating 200L/h of synthetic greywater with mixed liquor suspended solids' (MLSS) concentrations ranging from 4.7 to 19.5g/L. Besides the MLSS concentration, mixed liquor volatile suspended solids (MLVSS), total solids (TS), volatile solids (VS), chemical oxygen demand (COD) and anionic surfactants of the sludge were measured. Although the pilot plants differed essentially in their configurations and aeration systems, similar alpha-factors at the same MLSS concentration could be determined. A comparison of the results to the published values of other authors showed that not the MLSS concentration but rather the MLVSS concentration seems to be the decisive parameter which influences the oxygen transfer in activated sludge systems operating at a high sludge retention time (SRT).

  9. Nanostructured silicon membranes for control of molecular transport

    PubMed Central

    Srijanto, Bernadeta R.; Retterer, Scott T.; Fowlkes, Jason D.; Doktycz, Mitchel J.

    2010-01-01

    A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure and surface chemistry of the pores. Here, a combination of electron beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating. Functional characterization of the membranes was performed by using quantitative fluorescence microscopy to document the transport of molecular species across the membrane. PMID:24932436

  10. Beriberi Induced Cardiomyopathy Requiring Salvage Venoarterial Extracorporeal Membrane Oxygenation

    PubMed Central

    Patel, Samir; Kothari, Sorabh; Denk, Jennifer

    2016-01-01

    Beriberi refers to a constellation of symptoms caused primarily by thiamine (vitamin B1) deficiency. An acute and fulminant presentation of this rare condition has been described in the literature as “Shoshin” beriberi which is characterized by catastrophic cardiovascular collapse. Early recognition and treatment lead to dramatic improvements of symptoms. We present a case of thiamine deficiency-induced acute heart failure in a malnourished patient leading to cardiac arrest necessitating VA-ECMO (venoarterial extracorporeal membrane oxygenation) with improvement in heart function secondary to thiamine administration. PMID:28050289

  11. Extracorporeal Membrane Oxygenation Applications in Cardiac Critical Care.

    PubMed

    Raleigh, Lindsay; Ha, Rich; Hill, Charles

    2015-12-01

    The use of extracorporeal membrane oxygenation therapy (ECMO) in cardiac critical care has steadily increased over the past decade. Significant improvements in the technology associated with ECMO have propagated this recent resurgence and contributed to improved patient outcomes in the fields of cardiac and transplant (heart and lung) surgery. Specifically, ECMO is being increasingly utilized as a bridge to heart and lung transplantation, as well as to ventricular assist device placement. ECMO is also employed during the administration of cardiopulmonary resuscitation, known as extracorporeal life support. In this review, we examine the recent literature regarding the applications of ECMO and also describe emerging topics involving current ECMO management strategies.

  12. Nutritional implications for the patient undergoing extracorporeal membrane oxygenation.

    PubMed

    Farías, María Magdalena; Olivos, Cristina; Díaz, Rodrigo

    2015-06-01

    Extracorporeal membrane oxygenation (ECMO) for cardiovascular collapse or catastrophic respiratory failure in the critically ill patient imposes a multidisciplinary approach. Nutritional support is one of the issues that must be faced, as this population presents a state of increased metabolic activity, elevated catabolism of protein and rapid accumulating energy deficiency. Provision of adequate nutritional therapy is hard to achieve due to different factors. This article provides a brief overview of the current literature regarding nutritional support during ECMO in adult patients, as no current guidelines address this issue.

  13. Use of Extracorporeal Membrane Oxygenation in Refractory Cardiogenic Shock.

    PubMed

    Tariq, Sohaib; Gass, Alan

    2016-01-01

    Cardiogenic shock is a condition marked by low cardiac output and end-organ hypoperfusion frequently requiring hemodynamic support, and it carries a high mortality. Extracorporeal membrane oxygenation (ECMO) is an effective tool in providing mechanical circulatory support in patients with cardiogenic shock refractory to conventional medical therapies. ECMO can be an essential bridge to recovery, ventricular assist device implantation or transplant. A multidisciplinary team approach is needed in managing such patients and intensive monitoring is required to avoid complications from ECMO. Nevertheless, randomized clinic trials are warranted to prove a survival benefit.

  14. Use of distal perfusion in peripheral extracorporeal membrane oxygenation

    PubMed Central

    Makdisi, George; Makdisi, Tony

    2017-01-01

    Extra corporeal membrane oxygenation (ECMO) is a life-saving technique to manage refractory cardiopulmonary failure. Its usage and indication continue to increase. Femoral venoarterial ECMO (VA ECMO) is relatively less invasive and the cardiac support may be more rapidly instituted in in these extremely tenuous patients. Vascular injuries and limb ischemia unfortunately occur in these emergent access settings. Here we will discuss the optimal techniques of preventing this complication which might affect patient survival and impact the patient quality of life. PMID:28361068

  15. Elucidation of the Oxygen Surface Kinetics in a Coated Dual-Phase Membrane for Enhancing Oxygen Permeation Flux.

    PubMed

    Na, Beom Tak; Park, Jeong Hwan; Park, Jong Hyuk; Yu, Ji Haeng; Joo, Jong Hoon

    2017-06-14

    The dual-phase membrane has received much attention as the solution to the instability of the oxygen permeation membrane. It has been reported that the oxygen flux of the dual-phase membrane is greatly enhanced by the active coating layer. However, there has been little discussion about the enhancement mechanism by surface coating in the dual-phase membrane. This study investigates the oxygen flux of the Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC 80 vol %/LSM 20 vol %) composite membrane depending on the oxygen partial pressure (PO2) to elucidate the mechanism of enhanced oxygen flux by the surface modification in the fluorite-rich phase dual-phase membrane. The oxygen permeation resistances were obtained from the oxygen flux as a function of PO2 using the oxygen permeation model. The surface exchange coefficient (k) and the bulk diffusion coefficient (D) were calculated from these resistances. According to the calculated k and D values, we concluded that the active coating layer (La0.6Sr0.4CoO3-δ) significantly increased the k value of the membrane. Furthermore, the surface exchange reaction on the permeate side was more sluggish than that at the feed side under operating conditions (feed: 0.21 atm/permeate side: 4.7 × 10(-4) atm). Therefore, the enhancement of the oxygen surface exchange kinetics at the permeate side is more important in improving the oxygen permeation flux of the thin film-based fluorite-rich dual-phase membrane. These results provide new insight about the function of the surface coating to enhance the oxygen permeation flux of the dual-phase membrane.

  16. Analytical theory of oxygen transport in the human placenta.

    PubMed

    Serov, A S; Salafia, C M; Filoche, M; Grebenkov, D S

    2015-03-07

    We propose an analytical approach to solving the diffusion-convection equations governing oxygen transport in the human placenta. We show that only two geometrical characteristics of a placental cross-section, villi density and the effective villi radius, are needed to predict fetal oxygen uptake. We also identify two combinations of physiological parameters that determine oxygen uptake in a given placenta: (i) the maximal oxygen inflow of a placentone if there were no tissue blocking the flow and (ii) the ratio of transit time of maternal blood through the intervillous space to oxygen extraction time. We derive analytical formulas for fast and simple calculation of oxygen uptake and provide two diagrams of efficiency of oxygen transport in an arbitrary placental cross-section. We finally show that artificial perfusion experiments with no-hemoglobin blood tend to give a two-orders-of-magnitude underestimation of the in vivo oxygen uptake and that the optimal geometry for such setup alters significantly. The theory allows one to adjust the results of artificial placenta perfusion experiments to account for oxygen-hemoglobin dissociation. Combined with image analysis techniques, the presented model can give an easy-to-use tool for prediction of the human placenta efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M.; Elzatahry, Ahmed A.; Zheng, Gengfeng

    2015-08-01

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g-1, with excellent capacitance retention (>90%) at 10 A g-1 for over 10 000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm-2 at 1.65 V vs. the RHE.A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific

  18. Modulating molecular and nanoparticle transport in flexible polydimethylsiloxane membranes

    PubMed Central

    Jiao, Kexin; Graham, Chase L.; Wolff, Justin

    2012-01-01

    The ability to fabricate flexible filtration membranes that can selectively separate particles of different sizes is of considerable interest. In this article, we describe a facile, reproducible and simple one-step method to produce pores in polydimethylsiloxane (PDMS) membranes. We embedded micron-sized NaHCO3 particles in 50 micron thick PDMS films. After curing, the membranes were immersed in concentrated HCl acid. Pores were generated in the membrane by the evolution of CO2 gas from the reaction of NaHCO3 and HCl. High resolution Scanning Electron Microscope images clearly reveal the presence of openings on the surface and the cross-section of the membranes. Fluorescence and back-scattered electron imaging of porous PDMS membrane with embedded gold nanoparticles and comparison with non-porous PDMS membranes provided unambiguous evidence of pores in the membrane. Transport studies of molecular fluoresceinate ions, ions (sodium and chloride) and 240 nm polystyrene nanoparticles through these membranes demonstrate passable pores and existence of channels within the body of the membrane. Mechanically stretching the porous PDMS membrane and comparing the flow rates of fluoresceinate ions and the polystyrene beads through the stretched and unstretched membranes allowed a direct proof of the modulation of transport rate in the membranes. We show that stretching the membranes by 10% increases the flow rate of fluorescein molecules by 2.8 times and by a factor of approximately ~40% for the polystyrene nanoparticles. PMID:22942529

  19. Ionic transport in lipid bilayer membranes.

    PubMed Central

    Bordi, F; Cametti, C; Naglieri, A

    1998-01-01

    The current-voltage relationships of model bilayer membranes have been measured in various phospholipid systems, under the influence of both a gradient of potential and an ionic concentration, in order to describe the ion translocation through hydrated transient defects (water channels) across the bilayer formed because of lipid structure fluctuations and induced by temperature. The results have been analyzed in the light of a statistical rate theory for the transport process across a lipid bilayer, recently proposed by Skinner et al. (1993). In order to take into account the observed I-V curves and in particular the deviation from an ohmic behavior observed at high potential values, the original model has been modified, and a new version has been proposed by introducing an additional kinetic process. In this way, a very good agreement with the experimental values has been obtained for all of the systems we have investigated (dimyristoylphosphatidyl ethanolamine bilayers and mixed systems composed by dimyristoylphosphatidyl ethanolamine/dimyristoylphosphatidylcholine mixtures and dimyristoylphosphatidyl ethanolamine/phosphatidic acid dipalmitoyl mixtures). The rate constants governing the reactions at the bilayer interfaces have been evaluated for K+ and Cl- ions, as a function of temperature, from 5 to 35 degrees C and bulk ionic concentrations from 0.02 to 0.2 M. Finally, a comparison between the original model of Skinner and the modified version is presented, and the advantages of this new formulation are briefly discussed. PMID:9512032

  20. Development of Human Membrane Transporters: Drug Disposition and Pharmacogenetics.

    PubMed

    Mooij, Miriam G; Nies, Anne T; Knibbe, Catherijne A J; Schaeffeler, Elke; Tibboel, Dick; Schwab, Matthias; de Wildt, Saskia N

    2016-05-01

    Membrane transporters play an essential role in the transport of endogenous and exogenous compounds, and consequently they mediate the uptake, distribution, and excretion of many drugs. The clinical relevance of transporters in drug disposition and their effect in adults have been shown in drug-drug interaction and pharmacogenomic studies. Little is known, however, about the ontogeny of human membrane transporters and their roles in pediatric pharmacotherapy. As they are involved in the transport of endogenous substrates, growth and development may be important determinants of their expression and activity. This review presents an overview of our current knowledge on human membrane transporters in pediatric drug disposition and effect. Existing pharmacokinetic and pharmacogenetic data on membrane substrate drugs frequently used in children are presented and related, where possible, to existing ex vivo data, providing a basis for developmental patterns for individual human membrane transporters. As data for individual transporters are currently still scarce, there is a striking information gap regarding the role of human membrane transporters in drug therapy in children.

  1. Membranes for nanometer-scale mass fast transport

    DOEpatents

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  2. Ion transport controlled by nanoparticle-functionalized membranes.

    PubMed

    Barry, Edward; McBride, Sean P; Jaeger, Heinrich M; Lin, Xiao-Min

    2014-12-17

    From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane's electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.

  3. Low temperature thermal transport in partially perforated silicon nitride membranes.

    SciTech Connect

    Yefremenko, V.; Wang, G.; Novosad, V.; Datesman, A.; Pearson, J.; Divan, R.; Chang, C. L.; Downes, T. P.; Mcmahon, J. J.; Bleem, L. E.; Crites, A. T.; Meyer, S. S.; Carlstrom, J. E.; Univ. of Chicago

    2009-05-04

    The thermal transport in partially trenched silicon nitride membranes has been studied in the temperature range from 0.3 to 0.6 K, with the transition edge sensor (TES), the sole source of membrane heating. The test configuration consisted of Mo/Au TESs lithographically defined on silicon nitride membranes 1 {micro}m thick and 6 mm{sup 2} in size. Trenches with variable depth were incorporated between the TES and the silicon frame in order to manage the thermal transport. It was shown that sharp features in the membrane surface, such as trenches, significantly impede the modes of phonon transport. A nonlinear dependence of thermal resistance on trench depth was observed. Partial perforation of silicon nitride membranes to control thermal transport could be useful in fabricating mechanically robust detector devices.

  4. Structure and transport properties of ethylcellulose membranes with different types and granulation of magnetic powder

    NASA Astrophysics Data System (ADS)

    Krasowska, Monika; Strzelewicz, Anna; Rybak, Aleksandra; Dudek, Gabriela; Cieśla, Michał

    2016-06-01

    Structure and transport properties of ethylcellulose membranes with dispersed magnetic powder were investigated. The study mainly focused on diffusion, which is one of the transport mechanisms. The transport properties depend on many parameters like: polymeric matrix used, type of powder, its amount and granulation. The structure of the pattern formed by magnetic particles in the membrane matrix was studied. Description of the system was based on the phenomenological and molecular (random walk on a fractal lattice) approaches. Two parameters were calculated: the fractal dimension of random walk dw, and the fractal dimension of membrane structure df. The knowledge of both parameters made it possible to use the generalized equation of diffusion on the fractal structure obtained by Metzler et al. The research was carried out to determine the influence of magnetic powder granulation on the transport properties. The results showed that the random walk within the membranes of the smallest magnetic powder granulation was of the most subdiffusive character. Detailed investigation and quantitative description of gas transport through the membranes enables designing the membranes to be used in air oxygen enrichment.

  5. Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves

    NASA Astrophysics Data System (ADS)

    Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

    2010-03-01

    Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (p<0.001, ANOVA repeated measures design) and mean tissue fractions of 1.6% (cytochrome aa3) and 1.1% (hemo- and myoglobin). Cardiac arrest in two calves gave an oxygen saturation lower than 5%. In two calves (group B), a left ventricular assistive device (LVAD pump) was implanted. Oxygen saturation in group B animals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

  6. A new phosphorylcholine-coated polymethylpentene oxygenator for extracorporeal membrane oxygenation: a preliminary experience.

    PubMed

    Pieri, M; Turla, O G; Calabrò, M G; Ruggeri, L; Agracheva, N; Zangrillo, A; Pappalardo, F

    2013-03-01

    Phosphorylcholine coating has a major role in the improvement of biocompatibility, durability and antihrombogenicity of the circuit for extracorporeal membrane oxygenation (ECMO). Moreover, if heparin-induced thrombocytopenia ensues, removal of all the sources of heparin is challenging if the circuit is coated with heparin. We report our preliminary experience with the new EUROSETS A.L.ONE ECMO oxygenator (Eurosets, Medolla, MO, Italy), which is aimed at providing better biocompatibility thanks to its full coating with phosphorylcholine. We retrospectively collected data on the 16 patients supported with ECMO and with the EUROSETS A.L.ONE ECMO oxygenator at San Raffaele Hospital. Mean ECMO duration was 6 ± 4 days, and 37.5% of the patients died on ECMO. Four episodes of major bleeding and three episodes of minor bleeding were recorded. The oxygenator had an excellent performance in gas exchange and the median pressure drop was 57 (26-85) mmHg at full blood flow (2.5 L/m2/min). The EUROSETS A.L.ONE ECMO oxygenator was an excellent device in our preliminary experience. Further evaluation on a larger sample is encouraged.

  7. Effects of electrolytes on ion transport in Chitosan membranes

    NASA Astrophysics Data System (ADS)

    Rupiasih, N. N.

    2016-11-01

    Recently, charged polymer membranes are widely used for water purification applications involving control of water and ion transport, such as reverse osmosis and electrodialysis. In this study, we have explored the effects of electrolyte solutions on ion transport properties of chitosan synthetic membranes via concentration gradient driven transport. Also, the water uptake of those membranes, before (control) as well used membranes have studied. The membrane used was chitosan membrane 2%. The electrolyte solutions used were HCl, KCl, CaCl2, MgCl2 and AlCl3, with various concentrations of 0.1 mM, 1 mM, 10 mM, 100 mM and 1000 mM. Ion transport experiments were carried out in a cell membrane model which composed of two compartments and the potential difference of membrane was measured using Ag/AgCl calomel electrodes. Those measurements were conducted at ambient temperature 28.8 °C. The results showed that the current density (J) increased with increased in concentration gradient of solution. The current density was higher in electrolyte solution which has higher molar conductivity than those of a solution with a small molar conductivity. Meanwhile the current density was smaller in electrolyte solution which has larger Stokes radii than those of a solution with small Stokes radii. Except membrane which has been used in HCl solution, the water uptakes of the used membranes were greater than the control membrane. These results can develop and validate a common framework to interpret data of concentration gradient driven transport in chitosan synthetic membranes and to use it to design of membranes with improved performance.

  8. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  9. Venovenous Extracorporeal Membrane Oxygenation in Pediatric Respiratory Failure.

    PubMed

    Ham, P Benson; Hwang, Brice; Wise, Linda J; Walters, K Christian; Pipkin, Walter L; Howell, Charles G; Bhatia, Jatinder; Hatley, Robyn

    2016-09-01

    Conventional treatment of respiratory failure involves positive pressure ventilation that can worsen lung damage. Extracorporeal membrane oxygenation (ECMO) is typically used when conventional therapy fails. In this study, we evaluated the use of venovenous (VV)-ECMO for the treatment of severe pediatric respiratory failure at our institution. A retrospective analysis of pediatric patients (age 1-18) placed on ECMO in the last 15 years (1999-2014) by the pediatric surgery team for respiratory failure was performed. Five pediatric patients underwent ECMO (mean age 10 years; range, 2-16). All underwent VV-ECMO. Diagnoses were status asthmaticus (2), acute respiratory distress syndrome due to septic shock (1), aspergillus pneumonia (1), and respiratory failure due to parainfluenza (1). Two patients had severe barotrauma prior to ECMO initiation. Average oxygenation index (OI) prior to cannulation was 74 (range 23-122). No patients required conversion to VA-ECMO. The average ECMO run time was 4.4 days (range 2-6). The average number of days on the ventilator was 15 (range 4-27). There were no major complications due to the procedure. Survival to discharge was 100%. Average follow up is 4.4 years (range 1-15). A short run of VV-ECMO can be lifesaving for pediatric patients in respiratory failure. Survival is excellent despite severely elevated oxygen indices. VV-ECMO may be well tolerated and can be considered for severe pediatric respiratory failure.

  10. Membrane-aerated biofilm proton and oxygen flux during chemical toxin exposure.

    PubMed

    McLamore, E S; Zhang, W; Porterfield, D M; Banks, M K

    2010-09-15

    Bioreactors containing sessile bacteria (biofilms) grown on hollow fiber membranes have been used for treatment of many wastestreams. Real time operational control of bioreactor performance requires detailed knowledge of the relationship between bulk liquid water quality and physiological transport at the biofilm-liquid interface. Although large data sets exist describing membrane-aerated bioreactor effluent quality, very little real time data is available characterizing boundary layer transport under physiological conditions. A noninvasive, microsensor technique was used to quantify real time (≈1.5 s) changes in oxygen and proton flux for mature Nitrosomonas europaea and Pseudomonas aeruginosa biofilms in membrane-aerated bioreactors following exposure to environmental toxins. Stress response was characterized during exposure to toxins with known mode of action (chlorocarbonyl cyanide phenyl-hydrazone and potassium cyanide), and four environmental toxins (rotenone, 2,4-dinitrophenol, cadmium chloride, and pentachlorophenol). Exposure to sublethal concentrations of all environmental toxins caused significant increases in O(2) and/or H(+) flux (depending on the mode of action). These real time microscale signatures (i.e., fingerprints) of O(2) and H(+) flux can be coupled with bulk liquid analysis to improve our understanding of physiology in counter-diffusion biofilms found within membrane aerated bioreactors; leading to enhanced monitoring/modeling strategies for bioreactor control.

  11. Electrophoretic Transport of Biomolecules through Carbon Nanotube Membranes

    PubMed Central

    Sun, Xinghua; Su, Xin; Wu, Ji; Hinds, Bruce J.

    2013-01-01

    Electrophoretic transport of proteins across electrochemically oxidized multi-walled carbon nanotube (MWCNT) membranes has been investigated. Small charged protein, lysozyme, was successfully pumped across MWCNT membranes by electric field while rejecting larger bovine serum albumin (BSA). Transport of the lysozome was reduced by a factor of about 30 in comparison to bulk mobility and consistent with prediction for hindered transport. Mobilities between 0.33-1.4×10-9 m2/V-s were observed and are approximately 10 fold faster than comparable ordered nanoporous membranes and are consistent with continuum models. For mixtures of BSA and lysozyme, complete rejection of BSA is seen with electrophoretic separations PMID:21338104

  12. Modeling oxygen transport in surgical tissue transfer.

    PubMed

    Matzavinos, Anastasios; Kao, Chiu-Yen; Green, J Edward F; Sutradhar, Alok; Miller, Michael; Friedman, Avner

    2009-07-21

    Reconstructive microsurgery is a clinical technique used to transfer large amounts of a patient's tissue from one location used to another in order to restore physical deformities caused by trauma, tumors, or congenital abnormalities. The trend in this field is to transfer tissue using increasingly smaller blood vessels, which decreases problems associated with tissue harvest but increases the possibility that blood supply to the transferred tissue may not be adequate for healing. It would thus be helpful to surgeons to understand the relationship between the tissue volume and blood vessel diameter to ensure success in these operations. As a first step towards addressing this question, we present a simple mathematical model that might be used to predict successful tissue transfer based on blood vessel diameter, tissue volume, and oxygen delivery.

  13. Oxygen Transport in Melts Based on V2O5

    NASA Astrophysics Data System (ADS)

    Klimashin, Anton; Belousov, Valery

    2016-02-01

    An oxygen ion transport model was developed for oxide melts based on V2O5. Within the framework of this model, the values of the parabolic rate constant of catastrophic oxidation of V2O5-deposited copper and the oxygen flux through the slags based on molten V2O5 were calculated and compared with experimental data. The calculated and experimental values are of the same order of magnitude which shows an adequacy of the model.

  14. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes.

    PubMed

    Liu, Lu-Ning

    2016-03-01

    The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.

  15. Thermodynamics of Ionic Transport through Functionalized Membranes

    NASA Astrophysics Data System (ADS)

    Rathee, Vikramjit; Qu, Siyi; Dilenschneider, Theodore; Phillip, William A.; Whitmer, Jonathan K.

    Through microphase separation of block copolymers, highly porous solid membranes may be assembled. Further functionalization with amine and sulfonic acid groups has demonstrated promise in exquisitely controlling the flux of charged species, and in particular multivalent ions. Using coarse-grained molecular simulations, we explore the essential thermodynamics underlying salt rejection in charge-functionalized membranes, and develop a model capable of linking the performance of these membranes to their molecular character through free energy calculations.

  16. The effect of body cooling on oxygen transport during exercise.

    PubMed

    Pendergast, D R

    1988-10-01

    The capability to transport oxygen to muscle limits the ability to exercise. The purpose of this review is to consider the effects of body cooling on the oxygen transport and therefore exercise capacity. Body cooling results in an increase in resting metabolism that is proportional to the decrease in core temperature (Tc). Furthermore, the energy cost of exercise is increased (10-40%) by a 0.5-1.5 degrees C decrease in Tc. The capability to supply oxygen to meet the increased cost of activity is also reduced by 10-40% for a decrease in Tc of 0.5-1.5 degrees C. The reduced oxygen delivery is a result of a combination of decreased respiratory effectiveness, cardiac function, and muscle blood flow. Other than at rest, cardiac output in air or water with and without body cooling increases similarly with oxygen consumption (6 1/1 O2). Body cooling does result in a reduction of maximal heart rate and cardiac output. We postulate that the primary limitation to oxygen transport is a persistent vasoconstriction mediated by the sympathetic system, to increase body insulation, that blunts the local metabolically mediated exercise hyperemia.

  17. A dynamic model of oxygen transport from capillaries to tissue with moving red blood cells.

    PubMed

    Lücker, Adrien; Weber, Bruno; Jenny, Patrick

    2015-02-01

    Most oxygen required to support the energy needs of vertebrate tissues is delivered by diffusion from microvessels. The presence of red blood cells (RBCs) makes blood flow in the microcirculation highly heterogeneous. Additionally, flow regulation mechanisms dynamically respond to changes in tissue energy demand. These spatiotemporal variations directly affect the supply of oxygen to parenchymal cells. Due to various limiting assumptions, current models of oxygen transport cannot fully capture the consequences of complex hemodynamic effects on tissue oxygenation and are often not suitable for studying unsteady phenomena. With our new approach based on moving RBCs, the impact of blood flow heterogeneity on oxygen partial pressure (Po2) in the tissue can be quantified. Oxygen transport was simulated using parachute-shaped solid RBCs flowing through a capillary. With the use of a conical tissue domain with radii 19 and 13 μm, respectively, our computations indicate that Po2 at the RBC membrane exceeds Po2 between RBCs by 30 mmHg on average and that the mean plasma Po2 decreases by 9 mmHg over 50 μm. These results reproduce well recent intravascular Po2 measurements in the rodent brain. We also demonstrate that instantaneous variations of capillary hematocrit cause associated fluctuations of tissue Po2. Furthermore, our results suggest that homogeneous tissue oxygenation requires capillary networks to be denser on venular side than on arteriolar side. Our new model for oxygen transport will make it possible to quantify in detail the effects of blood flow heterogeneity on tissue oxygenation in realistic capillary networks. Copyright © 2015 the American Physiological Society.

  18. Light-induced modification of plant plasma membrane ion transport.

    PubMed

    Marten, I; Deeken, R; Hedrich, R; Roelfsema, M R G

    2010-09-01

    Light is not only the driving force for electron and ion transport in the thylakoid membrane, but also regulates ion transport in various other membranes of plant cells. Light-dependent changes in ion transport at the plasma membrane and associated membrane potential changes have been studied intensively over the last century. These studies, with various species and cell types, revealed that apart from regulation by chloroplasts, plasma membrane transport can be controlled by phytochromes, phototropins or channel rhodopsins. In this review, we compare light-dependent plasma membrane responses of unicellular algae (Eremosphaera and Chlamydomonas), with those of a multicellular alga (Chara), liverworts (Conocephalum), mosses (Physcomitrella) and several angiosperm cell types. Light-dependent plasma membrane responses of Eremosphaera and Chara are characterised by the dominant role of K(+) channels during membrane potential changes. In most other species, the Ca(2+)-dependent activation of plasma membrane anion channels represents a general light-triggered event. Cell type-specific responses are likely to have evolved by modification of this general response or through the development of additional light-dependent signalling pathways. Future research to elucidate these light-activated signalling chains is likely to benefit from the recent identification of S-type anion channel genes and proteins capable of regulating these channels.

  19. Method measuring oxygen tension and transport within subcutaneous devices

    PubMed Central

    Weidling, John; Sameni, Sara; Lakey, Jonathan R. T.; Botvinick, Elliot

    2014-01-01

    Abstract. Cellular therapies hold promise to replace the implantation of whole organs in the treatment of disease. For most cell types, in vivo viability depends on oxygen delivery to avoid the toxic effects of hypoxia. A promising approach is the in situ vascularization of implantable devices which can mediate hypoxia and improve both the lifetime and utility of implanted cells and tissues. Although mathematical models and bulk measurements of oxygenation in surrounding tissue have been used to estimate oxygenation within devices, such estimates are insufficient in determining if supplied oxygen is sufficient for the entire thickness of the implanted cells and tissues. We have developed a technique in which oxygen-sensitive microparticles (OSMs) are incorporated into the volume of subcutaneously implantable devices. Oxygen partial pressure within these devices can be measured directly in vivo by an optical probe placed on the skin surface. As validation, OSMs have been incorporated into alginate beads, commonly used as immunoisolation devices to encapsulate pancreatic islet cells. Alginate beads were implanted into the subcutaneous space of Sprague–Dawley rats. Oxygen transport through beads was characterized from dynamic OSM signals in response to changes in inhaled oxygen. Changes in oxygen dynamics over days demonstrate the utility of our technology. PMID:25162910

  20. Testing of heat exchangers in membrane oxygenators using air pressure.

    PubMed

    Hamilton, Carole; Stein, Jutta; Seidler, Rainer; Kind, Robert; Beck, Karin; Tosok, Jürgen; Upterfofel, Jörg

    2006-03-01

    All heat exchangers (HE) in membrane oxygenators are tested by the manufacturer for water leaks during the production phase. However, for safety reasons, it is highly recommended that HEs be tested again before clinical use. The most common method is to attach the heater-cooler to the HE and allow the water to recirculate for at least 10 min, during which time a water leak should be evident. To improve the detection of water leaks, a test was devised using a pressure manometer with an integrated bulb used to pressurize the HE with air. The cardiopulmonary bypass system is set up as per protocol. A pressure manometer adapted to a 1/2" tubing is connected to the water inlet side of the oxygenator. The water outlet side is blocked with a short piece of 1/2" deadend tubing. The HE is pressurized with 250 mmHg for at least 30 sec and observed for any drop. Over the last 2 years, only one oxygenator has been detected with a water leak in which the air-method leaktest was performed. This unit was sent back to the manufacturer who confirmed the failure. Even though the incidence of water leaks is very low, it does occur and it is, therefore, important that all HEs are tested before they are used clinically. This method of using a pressure manometer offers many advantages, as the HE can be tested outside of the operating room (OR), allowing earlier testing of the oxygenator, no water contact is necessary, and it is simple, easy and quick to perform.

  1. O2 and CO2 glow-discharge-assisted oxygen transport through Ag

    NASA Astrophysics Data System (ADS)

    Outlaw, R. A.

    1990-08-01

    The permeation of oxygen through Ag normally occurs by a sequence of steps which include the initial dissociative adsorption of molecular oxygen at the upstream surface, the dissolution of the atoms into the bulk, and the subsequent migration of the atoms between octahedral sites of the lattice until they arrive at the vacuum interface downstream. The dissociative adsorption step, however, proceeds slowly, as indicated by the low sticking coefficient of O2 on Ag(10-6-10-3). The application of a dc field in 0.5 Torr of O2 (E/n˜10-14 V cm2) on the upstream side of a Ag membrane generated gas phase atomic oxygen that substantially enhanced the transport. The transport flux was observed to increase from a value of 4.4×1013 cm-2 s-1 to a glow discharge value of 2.83×1014 cm-2 s-1 at a membrane temperature of 650 °C. This suggests that the dissociative adsorption step limits the supply of oxygen atoms to the upstream side of the membrane. When the upstream O2 was replaced by an equal pressure of CO2, only a small permeation signal was observed, but the application of the glow discharge substantially increased the transport flux from 3.25×1012 cm-2 s-1 to 1.74×1014 cm-2 s-1. This method of separating O2 from a CO2 environment may be a possible mechanism for providing a supply of oxygen for astronauts in a manned mission to Mars.

  2. Structural insights into the transport of small molecules across membranes

    PubMed Central

    Noinaj, Nicholas; Buchanan, Susan K.

    2014-01-01

    While hydrophobic small molecules often can freely permeate a lipid bilayer, ions and other polar molecules cannot and require transporters to mediate their transport. Recently, a number of important structures have been reported which have advanced our understanding of how membrane protein transporters function to transport small molecules. Structures of TbpA/B and HmuUV provided new insight into iron uptake by pathogenic bacteria while the structures of NarK, ASBT, and VcINDY revealed molecular details about the transport of nitrate, bile acids and dicarboxylates, respectively. The structure of the folate ECF transporter indicated that the S component likely undergoes a large conformational shift to mediate folate transport, while the cellulose synthase/transporter contains an elongated translocation pore for passage through the inner membrane. PMID:24681594

  3. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    SciTech Connect

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

  4. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction.

    PubMed

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Zheng, Gengfeng

    2015-09-14

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g(-1), with excellent capacitance retention (>90%) at 10 A g(-1) for over 10,000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm(-2) at 1.65 V vs. the RHE.

  5. Ion transport controlled by nanoparticle-functionalized membranes

    NASA Astrophysics Data System (ADS)

    Barry, Edward; McBride, Sean P.; Jaeger, Heinrich M.; Lin, Xiao-Min

    2014-12-01

    From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane’s electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.

  6. Mechanism Exploration of Ion Transport in Nanocomposite Cation Exchange Membranes.

    PubMed

    Tong, Xin; Zhang, Bopeng; Fan, Yilin; Chen, Yongsheng

    2017-04-19

    The origin of property enhancement of nanocomposite ion exchange membranes (IEMs) is far from being fully understood. By combining experimental work and computational modeling analysis, we could determine the influence of nanomaterials on the ion transport properties of nanocomposite cation exchange membranes (CEMs). We synthesized and characterized a series of nanocomposite CEMs by using SPPO as polymer materials and silica nanoparticles (NPs) (unsulfonated or sulfonated) as nanomaterials. We found that with the increase of NP loading, measured CEM permselectivity and swelling degree first increased and then decreased. We also found the ion exchange capacity (IEC) and ionic resistance of nanocomposite CEMs tend to be the same, regardless what type of NPs are incorporated into the membrane. Modeling analysis suggests that the change of membrane properties is related to the change in membrane microstructure. With the addition of silica NPs, membrane porosity (volume fraction of intergel phase) increases so that membranes can absorb more water. Also, volume fraction of sulfonated polymer segments increases, which can allow membranes to retain more counterions, causing membrane IEC to increase. By calculating the effective ion diffusion coefficients and membrane tortuosity factors of all the silica-NP-based CEMs synthesized in this study, along with nanocomposite CEMs from previous studies, we conclude that membrane ion transport efficiency tends to increase with the incorporation of nanomaterials. In addition, this paper presents a simulation model, which explains how the membrane property changes upon nanomaterial aggregation; the simulation results are in good agreement with the experimental data. Simulation results indicate that membrane properties are related to nanomaterial number concentration in the membrane matrices; thus, a plateau is reached for membrane ion diffusion coefficients due to the severe influence of aggregation on the increase of nanomaterial

  7. Advanced oxygen-separation membranes. Topical report, April 1989-September 1990

    SciTech Connect

    Wright, J.D.; Copeland, R.J.

    1990-09-01

    The value of oxygen in improving the economics of high-temperature, natural-gas-fired processes is calculated, and the size and characteristics of the markets where oxygen-enhanced combustion could improve natural gas utilization are analyzed. Next, the cost of existing oxygen-separation processes is surveyed. Together, these define an economic target which any new production technology must meet if it is to be accepted. The bulk of the report analyzes three membrane based processes for oxygen production: polymeric membranes, porous ceramic membranes, and oxygen ion conducting membranes. Polymeric membranes are a commercially available technology limited to the production of oxygen-enriched air (OEA). Porous ceramic membranes have higher fluxes, higher costs, and are also limited to the production of OEA. Solid electrolyte, oxygen ion conductors produce pure oxygen, are applicable at both the very small and very large scales, and can potentially be less expensive than current technologies. In order to achieve this, better oxygen ion conductors and/or thinner membranes are required and membrane costs must be reduced. Improved conductors and thinner membranes are a target for fundamental research, while reduced costs will come both from improved materials and the general growth of the high-performance ceramics industry.

  8. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    SciTech Connect

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  9. Surface modification of PTMSP membranes by plasma treatment: Asymmetry of transport in organic solvent nanofiltration.

    PubMed

    Volkov, A V; Tsarkov, S E; Gilman, A B; Khotimsky, V S; Roldughin, V I; Volkov, V V

    2015-08-01

    For the first time, the effect of asymmetry of the membrane transport was studied for organic solvents and solutes upon their nanofiltration through the plasma-modified membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP). Plasma treatment is shown to provide a marked hydrophilization of the hydrophobic PTMSP surface (the contact angle of water decreases from 88 down to 20°) and leads to the development of a negative charge of -5.2 nC/cm(2). The XPS measurements prove the formation of the oxygen-containing groups (Si-O and C-O) due to the surface modification. The AFM images show that the small-scale surface roughness of the plasma-treated PTMSP sample is reduced but the large-scale surface heterogeneities become more pronounced. The modified membranes retain their hydrophilic surface properties even after the nanofiltration tests and 30-day storage under ambient conditions. The results of the filtration tests show that when the membrane is oriented so that its modified layer contacts the feed solution, the membrane permeability for linear alcohols (methanol-propanol) and acetone decreases nearly two times. When the modified membrane surface faces the permeate, the membrane is seen to regain its transport characteristics: the flux becomes equal to that of the unmodified PTMSP. The well-pronounced effect of the transport asymmetry is observed for the solution of the neutral dye Solvent Blue 35 in methanol, ethanol, and acetone. For example, the initial membrane shows the negative retention for the Solvent Blue 35 dye (-16%) upon its filtration from the ethanol solution whereas, for the modified PTMSP membrane, the retention increases up to 17%. Various effects contributing to the asymmetry of the membrane transport characteristics are discussed.

  10. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    PubMed

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  11. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    SciTech Connect

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  12. Massive haemoptysis on veno-arterial extracorporeal membrane oxygenation.

    PubMed

    Harrison, Meredith; Cowan, Scott; Cavarocchi, Nicholas; Hirose, Hitoshi

    2012-09-01

    A 49-year old female presented with severe heart failure with end-organ dysfunction and was placed on veno-arterial extracorporeal membrane oxygenation (ECMO) as a bridge to a decision for end-organ recovery. While on ECMO, the patient developed massive haemoptysis after a Swan-Ganz catheter manipulation. The haemoptysis was not controllable by conventional methods including bronchoscopy with cold saline and epinephrine lavage, bronchial blocker or angiography. The endotracheal tube was clamped to provide tamponade and the patient relied on full ECMO support for 36 h. After the haemoptysis resolved, the endotracheal tube was unclamped. The patient developed adult respiratory distress syndrome and was ventilated using the ARDSnet protocol with continued support from ECMO. On post-ECMO day 20, the patient underwent a successful ECMO wean and a Heart Mate II left ventricular assist device placement.

  13. Overview of extracorporeal membrane oxygenation in cardiogenic shock.

    PubMed

    Allen, Dena; Leeper, Barbara

    2014-12-01

    In recent years, the use of extracorporeal membrane oxygenators (ECMO) has proliferated in cardiovascular intensive care units (ICUs) partially due to advances in technology with the development of smaller, more portable machines, and the increasing numbers of patients with end-stage heart failure and cardiogenic shock. The use of ECMO has been found to improve survival rates in this deadly situation. Due to higher volumes of patients requiring ECMO, additional qualified resources for providing ECMO services may be necessary. The purpose of this article was to review cardiogenic shock etiologies, the role of ECMO, and to discuss the transition process of implementing a nurse-run ECMO program. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. [Retrospective analysis of 100 patients managed by extracorporeal membrane oxygenation].

    PubMed

    Yuan, Yuan; Gao, Guo-dong; Long, Cun; Hei, Fei-long; Li, Jing-wen; Yu, Kun; Liu, Jin-ping; Feng, Zheng-yi; Zhao, Ju; Hu, Sheng-shou; Xu, Jian-ping; Chang, Qian; Liu, Ying-long; Wang, Xu; Liu, Ping

    2009-12-01

    To describe the experience with extracorporeal membrane oxygenation (ECMO) for cardiorespiratory support of 100 patients. Retrospective analysis of the medical files of 100 patients submitted to the implant of extracorporeal membrane oxygenation system for cardiorespiratory assistance of acute and refractory cardiogenic shock from December 2004 to September 2008. There were 67 males and 33 females, age ranged from 5 d to 76 years with a mean of (28+/-26) years, body mass ranged from 3.8 to 100.0 kg with a mean of (42+/-30) kg. The inter-surface of the ECMO equipment system was completely coated by heparin-coating technique. All patients were applied veno-artery ECMO and activated clotting time was maintained between 120 and 180 s and heparin usage dose was 5 to 20 Uxkg(-1)xh(-1). Mean blood flow was 40 to 220 mlxkg(-1)min(-1) during ECMO assistant period. The shortest ECMO time was 12 to 504 h with a mean of (119+/-80) h. Sixty-one patients (61.0%) weaned off successfully from ECMO, 55 of them (90.2%) were discharged and 6 died of post-operative complications. Thirty-nine patients could not weaned off from ECMO. Total survival discharge rate was 55.0%. Mean aortic pressure before ECMO in survived patients was significantly higher than that of dead patients (P=0.038). Lactic acid concentration of artery blood before ECMO in survived patients was significantly lower than that of dead patients (P=0.005). ECMO is an effective mechanical assistant therapy method for cardiac and pulmonary failure after cardiac surgery. Earlier usage of ECMO for heart lung failure patient and avoiding the main organs from un-recovery trauma are key success.

  15. Quantification of Postmembrane Gaseous Microembolization During Venoarterial Extracorporeal Membrane Oxygenation.

    PubMed

    Jiao, York; Gipson, Keith E; Bonde, Pramod; Mangi, Abeel; Hagberg, Robert; Rosinski, David J; Gross, Jeffrey B; Schonberger, Robert B

    2017-05-23

    Prolonged use of venoarterial extracorporeal membrane oxygenation (VA ECMO) may be complicated by end-organ dysfunction. Although gaseous microemboli (GME) are thought to damage end organs during cardiopulmonary bypass, patient exposures to GME have not been well characterized during VA ECMO. We therefore performed an observational study of GME in adult VA ECMO patients, with correlation to clinical events during routine patient care. After institutional review board (IRB) approval, we used two Doppler probes to detect GME noninvasively in extracorporeal membrane oxygenation (ECMO) circuits on four patients for 15 hours total while also recording patient care events. We then conducted in vitro trials to compare Doppler signals with gold-standard measurements using an Emboli Detection and Classification (EDAC) quantifier (Terumo Cardiovascular, Ann Arbor, MI) during simulated clinical interventions. Correlations between Doppler and EDAC data were used to estimate GME counts and volumes represented by clinical Doppler data. A total of 503 groups of Doppler peaks representing GME showers were observed, including 194 statistically larger showers during patient care activities containing 92% of total Doppler peaks. Intravenous injections accounted for an estimated 68% of GME and 88% of GME volume, whereas care involving movement accounted for an estimated 6% of GME and 3% of volume. Overall estimated embolic rates of 24,000 GME totaling 4 μl/hr rivals reported GME rates during cardiopulmonary bypass. Numerous GME are present in the postmembrane circuit during VA ECMO, raising concern for effects on microcirculation and organ dysfunction. Strategies to detect and minimize GME may be warranted to limit embolic exposures experienced by VA ECMO patients.

  16. Computational Model for Oxygen Transport and Consumption in Human Vitreous

    PubMed Central

    Filas, Benjamen A.; Shui, Ying-Bo; Beebe, David C.

    2013-01-01

    Purpose. Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. Methods. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. Results. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Conclusions. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts. PMID:24008409

  17. Role of plasma membrane transporters in muscle metabolism.

    PubMed Central

    Zorzano, A; Fandos, C; Palacín, M

    2000-01-01

    Muscle plays a major role in metabolism. Thus it is a major glucose-utilizing tissue in the absorptive state, and changes in muscle insulin-stimulated glucose uptake alter whole-body glucose disposal. In some conditions, muscle preferentially uses lipid substrates, such as fatty acids or ketone bodies. Furthermore, muscle is the main reservoir of amino acids and protein. The activity of many different plasma membrane transporters, such as glucose carriers and transporters of carnitine, creatine and amino acids, play a crucial role in muscle metabolism by catalysing the influx or the efflux of substrates across the cell surface. In some cases, the membrane transport process is subjected to intense regulatory control and may become a potential pharmacological target, as is the case with the glucose transporter GLUT4. The goal of this review is the molecular characterization of muscle membrane transporter proteins, as well as the analysis of their possible regulatory role. PMID:10903126

  18. Sources of Circuit Thrombosis in Pediatric Extracorporeal Membrane Oxygenation.

    PubMed

    Hastings, Susan M; Ku, David N; Wagoner, Scott; Maher, Kevin O; Deshpande, Shriprasad

    Extracorporeal membrane oxygenation (ECMO) for cardiopulmonary support of critically ill patients is used frequently in the pediatric population. ECMO is burdened by complications, including thrombosis and hemorrhage. Here we demonstrate the focused location of clots, their histologic composition, and the relationship of in situ thrombus to local hemodynamics in ECMO circuits. Pediatric ECMO circuits from Children's Healthcare of Atlanta, Emory University (Atlanta, GA) were obtained after removal from extracorporeal support over a 2.5 year period (n = 50). All clots and material deposited within the circuit were recorded. Location of clot was compared with local hemodynamics. Most clots were adherent to the junctions made by the tubing and connectors, as opposed to being randomly disturbed throughout the circuit tubing (p < 0.05). Loose, nonadherent clots were also found at the entry side of oxygenators. The clots colocated directly with zones of low shear rate. Histology revealed a fibrinous composition, consistent with coagulation potentiated by low shear. Centrifugal pump circuits (n = 16) had more clots than roller pump (n = 34) circuits (p < 0.05). In addition, all centrifugal pumps had clots that formed at the top of the pump shaft. The ECMO circuits from our single-center study demonstrate the concentrated location of fibrin clots at low shear zones created by tubing-connector junctions. Type of pump also influences the frequency of clot formation. Since the mechanism of the majority of ECMO circuit thrombosis is low shear and fibrin driven, optimization of hemodynamics and anticoagulation regimen may reduce clot formation and bleeding.

  19. Mechanical ventilation in patients subjected to extracorporeal membrane oxygenation (ECMO).

    PubMed

    López Sanchez, M

    2017-02-08

    Mechanical ventilation (MV) is a crucial element in the management of acute respiratory distress syndrome (ARDS), because there is high level evidence that a low tidal volume of 6ml/kg (protective ventilation) improves survival. In these patients with refractory respiratory insufficiency, venovenous extracorporeal membrane oxygenation (ECMO) can be used. This salvage technique improves oxygenation, promotes CO2 clearance, and facilitates protective and ultraprotective MV, potentially minimizing ventilation-induced lung injury. Although numerous trials have investigated different ventilation strategies in patients with ARDS, consensus is lacking on the optimal MV settings during venovenous ECMO. Although the concept of "lung rest" was introduced years ago, there are no evidence-based guidelines on its use in application to MV in patients supported by ECMO. How MV in ECMO patients can promote lung recovery and weaning from ventilation is not clear. The purpose of this review is to describe the ventilation strategies used during venovenous ECMO in clinical practice. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  20. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  1. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  2. Development of active-transport membrane devices

    SciTech Connect

    Laciak, D.V.

    1994-07-01

    This report introduces the concept of Air Products` AT membranes for the separation of NH{sub 3} and CO{sub 2} from process gas streams and presents results from the first year fabrication concept development studies.

  3. Ionic transport properties of template-synthesized gold nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    Ionic transport in nanotubes exhibits unique properties due to the strong interactions between ions and the nanotube surface. The main objective of my research is to explore and regulate the ionic transport in gold nanotube membranes. Chapter 1 overviews a versatile method of fabricating nanostructured materials, called the template synthesis. Important parameters of the template synthesis are introduced such as templates and deposition methods. The template synthesis method is used to prepare membranes used in this dissertation. Chapter 2 describes a method to increase the ionic conductivity in membranes containing gold nanotubes with small diameter (4 nm). The gold nanotube membrane is prepared by the electroless plating of gold in a commercially available polycarbonate membrane. Voltages are applied to the gold nanotube membrane and fixed charges are injected on the gold nanotube walls. We show that ionic conductivity of the gold nanotube membrane can be enhanced in aqueous potassium chloride (KCl) solution at negative applied voltages. When the most negative voltage (-0.8 V vs. Ag/AgCl) is applied to the membrane, the ionic conductivity of the solution inside the gold nanotube (94 mS.cm-1) is comparable to that of 1 M aqueous KCl, over two orders of magnitude higher than that of the 0.01 M KCl contacting the membrane. Chapter 3 explores another important transport property of the gold nanotube membrane -- ion permselectivity. When the permselective membrane separates two electrolyte solutions at different concentrations, a membrane potential is developed and measured by the potentiometric method. Surface charge density and the ion mobilities are estimated by fitting the experimental data with a pre-existing model. The surface charge density of the gold nanotube membrane in this research is estimated to be 2 muC/cm2. Chapter 4 describes voltage-controlled ionic transport in a gold/polypyrrole membrane doped with sodium dodecylbenzene sulfonate (DBS). Polypyrrole

  4. Modeling oxygen transport in a cylindrical bioartificial pancreas.

    PubMed

    Thrash, Marvin

    2010-01-01

    Encapsulated pancreatic islets in a cylindrical hollow fiber have been reported to reverse diabetes in test animals; however, for many of these animals, the effects have only been temporary. Oxygen deficiency within the fiber has been proposed as a cause of the observed loss of islet viability. A mathematical model of transport and reaction kinetics in a bioartificial pancreas (BAP) has been developed to calculate the oxygen concentration profiles in a cylindrical BAP. Simulation results indicate that hypoxic conditions will exist in large diameter fibers or fibers with islet concentrations >20,000 islets/ml. Moreover, our results show that a significant amount of oxygen is consumed in the tissue region surrounding the cylindrical BAP. Even if the islet survives in a low-oxygen environment, the insulin productivity will likely be reduced.

  5. Transport of heptafluorostearate across model membranes. Membrane transport of long-chain fatty acid anions I.

    PubMed

    Schmider, W; Fahr, A; Blum, H E; Kurz, G

    2000-05-01

    Heptafluorostearic acid, an isogeometric derivative of stearic acid, has a pK(a) value of about 0.5. To evaluate the suitability of heptafluorostearate as model compound for anions of long-chain fatty acids in membrane transport, monolayer and liposome studies were performed with lipid mixtures containing phospholipids;-cholesterol-heptafluorostearate or stearate (100:40:20 molar ratios). Transfer of heptafluorostearate and stearate from liposomes to bovine serum albumin (BSA) was followed by measuring the intrinsic fluorescence of BSA. The percentage of heptafluorostearate, equivalent to the amount placed in their outer monolayer, transferred from liposomes (120;-130 nm diameter) to BSA was 55.7 +/- 3.7% within 10 min at 25 degrees C and 55 +/- 2% within 5 min at 37 degrees C. Slow transfer of 22.7 +/- 2.5% of heptafluorostearate at 25 degrees C followed with a half-life of 2.3 +/- 0.4 h and of 20 +/- 4% at 37 degrees C with a half-life of 0.9 +/- 0.1 h until the final equilibrium distributions between BSA and liposomes were reached, 79 +/- 6% to 21 +/- 5% at 25 degrees C and 75 +/- 5% to 25 +/- 4% at 37 degrees C. The pseudounimolecular rate constants for flip-flop of heptafluorostearate equal k(FF,25) = 0.24 +/- 0.05 h(-) and k(FF,37) = 0.6 +/- 0.1 h(-), respectively. By comparison, transfer of stearate required only 3 min to reach equilibrium distribution. The difference between heptafluorostearate and stearate may be explained by a rapid flip-flop movement of the un-ionized fatty acids which exist in different concentrations in accordance with their pK(a) values. Half-life of flip-flop of heptafluorostearate makes it suitable to study mediated membrane transport of long-chain fatty acid anions.

  6. Hydroxide Solvation and Transport in Anion Exchange Membranes

    SciTech Connect

    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E.; Knight, Chris; Voth, Gregory A.

    2016-01-27

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.

  7. Hydroxide Solvation and Transport in Anion Exchange Membranes.

    PubMed

    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E; Knight, Chris; Voth, Gregory A

    2016-01-27

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.

  8. Phosphate transport in membrane vesicles from Escherichia coli.

    PubMed

    Konings, W N; Rosenberg, H

    1978-04-04

    Escherichia coli strain AN710 possesses only the PIT system for phosphate transport. Membrane vesicles from this strain, which contain phosphate internally, perform exchange and active transport of phosphate. The energy for active transport is supplied by the respiratory chain with ascorbate phenazine methosulphate as electron donor. To a lesser extent also the oxidation of D-lactate energizes phosphate transport; the oxidation of succinate is only marginally effective. Phosphate transport is driven by the proton-motive force and in particular by the pH gradient across the membrane. This view is supported by the observation that phosphate transport is stimulated by valinomycin, inhibited by nigericin and abolished by the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Neither inhibitor affects phosphate exchange. The phosphate analogue arsenate inhibits both the exchange reaction and active transport. Both processes are stimulated by K+ and Mg2+, the highest activities being observed with both ions present. Membrane vesicles have also been isolated from Escherichia coli K10, a strain which possesses only a functional PST phosphate transport system. These vesicles perform neither exchange nor active transport of phosphate, although active transport of amino acids is observed in the presence of ascorbate-phenazine methosulphate or D-lactate.

  9. Simulating and Modeling Transport Through Atomically Thin Membranes

    NASA Astrophysics Data System (ADS)

    Ostrowski, Joseph; Eaves, Joel

    2014-03-01

    The world is running out of clean portable water. The efficacy of water desalination technologies using porous materials is a balance between membrane selectivity and solute throughput. These properties are just starting to be understood on the nanoscale, but in the limit of atomically thin membranes it is unclear whether one can apply typical continuous time random walk models. Depending on the size of the pore and thickness of the membrane, mass transport can range from single stochastic passage events to continuous flow describable by the usual hydrodynamic equations. We present a study of mass transport through membranes of various pore geometries using reverse nonequilibrium simulations, and analyze transport rates using stochastic master equations.

  10. Phospholipid flippases: building asymmetric membranes and transport vesicles.

    PubMed

    Sebastian, Tessy T; Baldridge, Ryan D; Xu, Peng; Graham, Todd R

    2012-08-01

    Phospholipid flippases in the type IV P-type ATPase family (P4-ATPases) are essential components of the Golgi, plasma membrane and endosomal system that play critical roles in membrane biogenesis. These pumps flip phospholipid across the bilayer to create an asymmetric membrane structure with substrate phospholipids, such as phosphatidylserine and phosphatidylethanolamine, enriched within the cytosolic leaflet. The P4-ATPases also help form transport vesicles that bud from Golgi and endosomal membranes, thereby impacting the sorting and localization of many different proteins in the secretory and endocytic pathways. At the organismal level, P4-ATPase deficiencies are linked to liver disease, obesity, diabetes, hearing loss, neurological deficits, immune deficiency and reduced fertility. Here, we review the biochemical, cellular and physiological functions of P4-ATPases, with an emphasis on their roles in vesicle-mediated protein transport. This article is part of a Special Issue entitled Lipids and Vesicular Transport. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Water and Molecular Transport across Nanopores in Monolayer Graphene Membranes

    NASA Astrophysics Data System (ADS)

    Jang, Doojoon; O'Hern, Sean; Kidambi, Piran; Boutilier, Michael; Song, Yi; Idrobo, Juan-Carlos; Kong, Jing; Laoui, Tahar; Karnik, Rohit

    2015-11-01

    Graphene's atomic thickness and high tensile strength allow it to outstand as backbone material for next-generation high flux separation membrane. Molecular dynamics simulations predicted that a single-layer graphene membrane could exhibit high permeability and selectivity for water over ions/molecules, qualifying as novel water desalination membranes. However, experimental investigation of water and molecular transport across graphene nanopores had remained barely explored due to the presence of intrinsic defects and tears in graphene. We introduce two-step methods to seal leakage across centimeter scale single-layer graphene membranes create sub-nanometer pores using ion irradiation and oxidative etching. Pore creation parameters were varied to explore the effects of created pore structures on water and molecular transport driven by forward osmosis. The results demonstrate the potential of nanoporous graphene as a reliable platform for high flux nanofiltration membranes.

  12. Hijacking membrane transporters for arsenic phytoextraction

    PubMed Central

    LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.

    2012-01-01

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027

  13. Phosphate transport by rat intestinal basolateral-membrane vesicles.

    PubMed Central

    Ghishan, F K; Kikuchi, K; Arab, N

    1987-01-01

    The characteristics of phosphate transport across intestinal basolateral membranes of the rat were determined by using enriched preparations in which uphill Na+-dependent D-glucose transport could not be demonstrated, but ATP-dependent Ca2+ transport was present. Phosphate transport was saturable, Na+-dependent and exhibited Michaelis-Menten kinetics. Vmax. was 51.1 +/- 4.2 pmol/10 s per mg of protein and Km was 14 +/- 3.9 microM. The transport process was electroneutral. Tracer-exchange experiments and counter-transport studies confirmed the presence of a Na+-Pi carrier at the basolateral membrane. The presence of inside-positive membrane potential did not enhance phosphate uptake, indicating that the Na+ effect is secondary to the presence of the Na+-Pi carrier rather than an induction of positive membrane potential. The stoichiometry of this carrier at pH 7.4 was 2 Na+:1 phosphate, as shown by direct studies utilizing the static-head method. These studies are the first to determine the presence of a phosphate carrier at the basolateral membrane. PMID:3663094

  14. Membrane oxygenator heat exchanger failure detected by unique blood gas findings.

    PubMed

    Hawkins, Justin L

    2014-03-01

    Failure of components integrated into the cardiopulmonary bypass circuit, although rare, can bring about catastrophic results. One of these components is the heat exchanger of the membrane oxygenator. In this compartment, unsterile water from the heater cooler device is separated from the sterile blood by stainless steel, aluminum, or by polyurethane. These areas are glued or welded to keep the two compartments separate, maintaining sterility of the blood. Although quality control testing is performed by the manufacturer at the factory level, transport presents the real possibility for damage. Because of this, each manufacturer has included in the instructions for use a testing procedure for testing the integrity of the heat exchanger component. Water is circulated through the heat exchanger before priming and a visible check is made of the oxygenator bundle to check for leaks. If none are apparent, then priming of the oxygenator is performed. In this particular case, this procedure was not useful in detecting communication between the water and blood chambers of the oxygenator.

  15. Membrane Oxygenator Heat Exchanger Failure Detected by Unique Blood Gas Findings

    PubMed Central

    Hawkins, Justin L.

    2014-01-01

    Abstract: Failure of components integrated into the cardiopulmonary bypass circuit, although rare, can bring about catastrophic results. One of these components is the heat exchanger of the membrane oxygenator. In this compartment, unsterile water from the heater cooler device is separated from the sterile blood by stainless steel, aluminum, or by polyurethane. These areas are glued or welded to keep the two compartments separate, maintaining sterility of the blood. Although quality control testing is performed by the manufacturer at the factory level, transport presents the real possibility for damage. Because of this, each manufacturer has included in the instructions for use a testing procedure for testing the integrity of the heat exchanger component. Water is circulated through the heat exchanger before priming and a visible check is made of the oxygenator bundle to check for leaks. If none are apparent, then priming of the oxygenator is performed. In this particular case, this procedure was not useful in detecting communication between the water and blood chambers of the oxygenator. PMID:24779125

  16. Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3.

    PubMed

    Duan, Haichuan; Wang, Joanne

    2010-12-01

    The plasma membrane monoamine transporter (PMAT) and organic cation transporter 3 (OCT3) are the two most prominent low-affinity, high-capacity (i.e., uptake(2)) transporters for endogenous biogenic amines. Using the Flp-in system, we expressed human PMAT (hPMAT) and human OCT3 (hOCT3) at similar levels in human embryonic kidney 293 cells. Parallel and detailed kinetics analysis revealed distinct and seemingly complementary patterns for the two transporters in transporting monoamine neurotransmitters. hPMAT is highly selective toward serotonin (5-HT) and dopamine, with the rank order of transport efficiency (V(max)/K(m)) being: dopamine, 5-HT ≫ histamine, norepinephrine, epinephrine. The substrate preference of hPMAT toward these amines is substantially driven by large (up to 15-fold) distinctions in its apparent binding affinities (K(m)). In contrast, hOCT3 is less selective than hPMAT toward the monoamines, and the V(max)/K(m) rank order for hOCT3 is: histamine > norepinephrine, epinephrine > dopamine >5-HT. It is noteworthy that hOCT3 demonstrated comparable (≤2-fold difference) K(m) toward all amines, and distinctions in V(max) played an important role in determining its differential transport efficiency toward the monoamines. Real-time reverse transcription-polymerase chain reaction revealed that hPMAT is expressed at much higher levels than hOCT3 in most human brain areas, whereas hOCT3 is selectively and highly expressed in adrenal gland and skeletal muscle. Our results suggest that hOCT3 represents a major uptake(2) transporter for histamine, epinephrine, and norepinephrine. hPMAT, on the other hand, is a major uptake(2) transporter for 5-HT and dopamine and may play a more important role in transporting these two neurotransmitters in the central nervous system.

  17. Participation of oxygen, having diffused through a silver membrane catalyst, in heterogeneous oxidation processes

    SciTech Connect

    Gryaznov, V.M.; Gul'yanova, S.G.; Vedernikov, V.I.

    1986-08-01

    On the basis of an investigation of the characteristics of oxidation of hydrocarbons, alcohols and ammonia on a silver membrane catalyst, and also changes of its oxygen permeability proposals have been made in relation to participation of various forms of adsorbed oxygen in the limiting stage of its transfer through silver membranes in heterogeneous oxidation processes.

  18. Percutaneous extracorporeal membrane oxygenation for cardiogenic shock due to acute fulminant myocarditis.

    PubMed

    Fayssoil, Abdallah; Nardi, Olivier; Orlikowski, David; Combes, Alain; Chastre, Jean; Annane, Djillali

    2010-02-01

    Percutaneous extracorporeal membrane oxygenation is an invasive technique that provides emergent circulatory support for patients with cardiogenic shock. We report a favorable outcome of an acute fulminant myocarditis in a 25-year-old myasthenia patient with cardiogenic shock supported by percutaneous extracorporeal membrane oxygenation.

  19. Effective Potential Energies and Transport Properties for Nitrogen and Oxygen

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The results of recent theoretical studies for N--N2, O--O2, N2--N2 interactions are applied to the transport properties of nitrogen and oxygen gases. The theoretical results are used to select suitable oxygen interaction energies from previous work for determining the diffusion and viscosity coefficients at high temperatures. A universal formulation is applied to determine the collision integrals for O2--O2 interactions at high temperatures and to calculate certain ratios for determining higher-order collision integrals.

  20. Effective Potential Energies and Transport Properties for Nitrogen and Oxygen

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The results of recent theoretical studies for N--N2, O--O2, N2--N2 interactions are applied to the transport properties of nitrogen and oxygen gases. The theoretical results are used to select suitable oxygen interaction energies from previous work for determining the diffusion and viscosity coefficients at high temperatures. A universal formulation is applied to determine the collision integrals for O2--O2 interactions at high temperatures and to calculate certain ratios for determining higher-order collision integrals.

  1. Current topics in membranes and transport

    SciTech Connect

    Kleinzeller, A.

    1987-01-01

    This book contains 10 chapters. Some of the chapter titles are: Expression of the Oxytocin and Vasopressin Genes; Steroid Effects on Excitable Membranes: The Secretory Vesicle in Processing and Secretion of Neuropeptides: and Steroid Hormone Influences on Cyclic AMP-Generating Systems.

  2. Oxygen transport as a structure probe for heterogeneous polymeric systems

    NASA Astrophysics Data System (ADS)

    Hu, Yushan

    Although permeability of small molecules is often measured as an important performance property, deeper analysis of the transport characteristics provides insight into polymer structure, especially if used in combination with other characterization techniques. Transport of small gas molecules senses the permeable amorphous structure and probes the nature of free volume. This work focuses on oxygen transport, supplemented with other methods of physical analysis, as a probe for: (1) the nature of free volume and crystalline morphology in the crystallized glassy state, (2) the nature of free volume and hierarchical structure in liquid crystalline polymers, and (3) the role of dispersed polyamide phase geometry on oxygen barrier properties of poly(ethylene terephthalate) (PET)/polyamide blends. In the first part, the improvement in oxygen-barrier properties of glassy polyesters by crystallization was examined. Examples included poly(ethylene naphthalate) (PEN), and a copolymer based on PET in which 55 mol% terephthalate was replaced with 4,4'-bibenzoate. Explanation of the unexpectedly high solubility of crystallized PEN required a two-phase transport model consisting of an impermeable crystalline phase of constant density and a permeable amorphous phase of variable density. The resulting relationship between oxygen solubility and amorphous phase density was consistent with free volume concepts of gas sorption. In the second part, oxygen barrier properties of liquid crystalline (LC) polyesters based on poly(diethylene glycol 4,4'-bibenzoate) (PDEGBB) were studied. This study extended the 2-phase transport model for oxygen transport of non-LC crystalline polymers to a smectic LCP. It was possible to systematically vary the solid state structure of (PDEGBB) from LC glass to crystallized LC glass. The results were consistent with a liquid crystalline state intermediate between the permeable amorphous glass and the impermeable 3-dimensional crystal. In this interpretation

  3. Venovenous extracorporeal membrane oxygenation in adult respiratory failure

    PubMed Central

    Hsin, Chun-Hsien; Wu, Meng-Yu; Huang, Chung-Chi; Kao, Kuo-Chin; Lin, Pyng-Jing

    2016-01-01

    Abstract Despite a potentially effective therapy for adult respiratory failure, a general agreement on venovenous extracorporeal membrane oxygenation (VV-ECMO) has not been reached among institutions due to its invasiveness and high resource usage. To establish consensus on the timing of intervention, large ECMO organizations have published the respiratory extracorporeal membrane oxygenation survival prediction (RESP) score and the ECMOnet score, which allow users to predict hospital mortality for candidates with their pre-ECMO presentations. This study was aimed to test the predictive powers of these published scores in a medium-sized cohort enrolling adults treated with VV-ECMO for acute respiratory failure, and develop an institutional prediction model under the framework of the 3 scores if a superior predictive power could be achieved. This retrospective study included 107 adults who received VV-ECMO for severe acute respiratory failure (a PaO2/FiO2 ratio <70 mm Hg) in a tertiary referral center from 2007 to 2015. Essential demographic and clinical data were collected to calculate the RESP score, the ECMOnet score, and the sequential organ failure assessment (SOFA) score before VV-ECMO. The predictive power of hospital mortality of each score was presented as the area under receiver-operating characteristic curve (AUROC). The multivariate logistic regression was used to develop an institutional prediction model. The surviving to discharge rate was 55% (n = 59). All of the 3 published scores had a real but poor predictive power of hospital mortality in this study. The AUROCs of RESP score, ECMOnet score, and SOFA score were 0.662 (P = 0.004), 0.616 (P = 0.04), and 0.667 (P = 0.003), respectively. An institutional prediction model was established from these score parameters and presented as follows: hospital mortality (Y) = −3.173 + 0.208 × (pre-ECMO SOFA score) + 0.148 × (pre-ECMO mechanical ventilation day) + 1.021

  4. Convective oxygen transport and tissue oxygen consumption in Weddell seals during aerobic dives.

    PubMed

    Davis, R W; Kanatous, S B

    1999-05-01

    Unlike their terrestrial counterparts, marine mammals stop breathing and reduce their convective oxygen transport while performing activities (e.g. foraging, courtship, aggressive interactions, predator avoidance and migration) that require sustained power output during submergence. Since most voluntary dives are believed to remain aerobic, the goal of this study was to examine the potential importance of the dive response in optimizing the use of blood and muscle oxygen stores during dives involving different levels of muscular exertion. To accomplish this, we designed a numerical model based on Fick's principle that integrated cardiac output (Vb), regional blood flow, convective oxygen transport (Q(O2)), muscle oxymyoglobin desaturation and regional rates of oxygen consumption (VO2). The model quantified how the optimal matching or mismatching of QO2 to VO2 affected the aerobic dive limit (ADL). We chose an adult Weddell seal Leptonycotes weddellii on which to base our model because of available data on the diving physiology and metabolism of this species. The results show that the use of blood and muscle oxygen stores must be completed at the same time to maximize the ADL for each level of VO2. This is achieved by adjusting Vb (range 19-94 % of resting levels) and muscle QO2 according to the rate of muscle oxygen consumption (VMO2). At higher values of VMO2, Vb and muscle perfusion must increase to maintain an appropriate QO2/VO2 ratio so that available blood and muscle oxygen stores are depleted at the same time. Although the dive response does not sequester blood oxygen exclusively for brain and heart metabolism during aerobic dives, as it does during forced submersion, a reduction in Vb and muscle perfusion below resting levels is necessary to maximize the ADL over the range of diving VO2 (approximately 2-9 ml O2 min-1 kg-1). Despite the reduction in Vb, convective oxygen transport is adequate to maintain aerobic metabolism and normal function in the

  5. Gating effects in Halobacterium halobium membrane transport

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.; Silverman, M. P.

    1979-01-01

    The transport of Na(+) via an H(+)/Na(+) antiporter and of aspartate and serine via Na(+)/amino acid symport systems was studied in Halobacterium halobium cell envelope vesicles. Gradients for H(+) were produced by illuminating the bacteriorhodopsin-containing vesicles at different light intensities, and the rate and extent of Na(+) transport were followed as functions of the electrochemical potential difference for protons. The coupling of Na(+) and H(+) gradients suggested a translocation stoichiometry of 2H(+)/Na(+) for the antiporter. The rate of Na(+) transport increases steeply above a critical transmembrane electrochemical proton gradient, and since the electrical and the chemical potentials of H(+) at this threshold point vary with the experimental conditions, while the sum of these potentials is constant, it was concluded that the gating of the Na(+) transport is caused by the total electrochemical gradient.

  6. Gating effects in Halobacterium halobium membrane transport

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.; Silverman, M. P.

    1979-01-01

    The transport of Na(+) via an H(+)/Na(+) antiporter and of aspartate and serine via Na(+)/amino acid symport systems was studied in Halobacterium halobium cell envelope vesicles. Gradients for H(+) were produced by illuminating the bacteriorhodopsin-containing vesicles at different light intensities, and the rate and extent of Na(+) transport were followed as functions of the electrochemical potential difference for protons. The coupling of Na(+) and H(+) gradients suggested a translocation stoichiometry of 2H(+)/Na(+) for the antiporter. The rate of Na(+) transport increases steeply above a critical transmembrane electrochemical proton gradient, and since the electrical and the chemical potentials of H(+) at this threshold point vary with the experimental conditions, while the sum of these potentials is constant, it was concluded that the gating of the Na(+) transport is caused by the total electrochemical gradient.

  7. Massive Pulmonary Embolism: Extracorporeal Membrane Oxygenation and Surgical Pulmonary Embolectomy.

    PubMed

    Weinberg, Aaron; Tapson, Victor F; Ramzy, Danny

    2017-02-01

    Massive pulmonary embolism (PE) refers to large emboli that cause hemodynamic instability, right ventricular failure, and circulatory collapse. According to the 2016 ACCP Antithrombotic Guidelines, therapy for massive PE should include systemic thrombolytic therapy in conjunction with anticoagulation and supportive care. However, in patients with a contraindication to systemic thrombolytics or in those who fail the above interventions, extracorporeal membrane oxygenation (ECMO) and/or surgical embolectomy may be used to improve oxygenation, achieve hemodynamic stability, and successfully treat massive PE. Randomized controlled human trials evaluating ECMO in this context have not been done, and its role has not been well-defined. The European Society of Cardiology 2014 acute PE guidelines briefly mention that ECMO can be used for massive PE as a method for hemodynamic support and as an adjunct to surgical embolectomy. The 2016 CHEST Antithrombotic Therapy for venous thromboembolism Disease guidelines do not mention ECMO in the management of massive PE. However, multiple case reports and small series cited benefit with ECMO for massive PE. Further, ECMO may facilitate stabilization for surgical embolectomy. Unfortunately, ECMO requires full anticoagulation to maintain the functionality of the system; hence, significant bleeding complicates its use in 35% of patients. Contraindications to ECMO include high bleeding risk, recent surgery or hemorrhagic stroke, poor baseline functional status, advanced age, neurologic dysfunction, morbid obesity, unrecoverable condition, renal failure, and prolonged cardiopulmonary resuscitation without adequate perfusion of end organs. In this review, we discuss management of massive PE, with an emphasis on the potential role for ECMO and/or surgical embolectomy.

  8. Accumulation of Multipotent Progenitor Cells on Polymethylpentene Membranes During Extracorporeal Membrane Oxygenation.

    PubMed

    Lehle, Karla; Friedl, Lucas; Wilm, Julius; Philipp, Alois; Müller, Thomas; Lubnow, Matthias; Schmid, Christof

    2016-06-01

    Multipotent progenitor cells were mobilized during pediatric extracorporeal membrane oxygenation (ECMO). We hypothesize that these cells also adhered onto polymethylpentene (PMP) fibers within the membrane oxygenator (MO) during adult ECMO support. Mononuclear cells were removed from the surface of explanted PMP-MOs (n = 16). Endothelial-like outgrowth and mesenchymal-like cells were characterized by flow cytometric analysis using different surface markers. Spindle-shaped attaching cells were identified early, but without proliferative activity. After long-term cultivation palisading type or cobblestone-type outgrowth cells with high proliferative activity appeared and were characterized as (i) leukocytoid CD45+/CD31+ (CD133+/VEGFR-II+/CD90+/CD14+/CD146dim/CD105dim); (ii) endothelial-like CD45-/CD31+ (VEGF-RII+/CD146+/CD105+/CD133-/CD14-/CD90-); and (iii) mesenchymal-like cells CD45-/CD31- (CD105+/CD90+/CD133dim/VEGFR-II-/CD146-/CD14-). The distribution of the cell populations depended on the MO and cultivation time. Endothelial-like cells formed capillary-like structures and did uptake Dil-acetylated low-density lipoprotein. Endothelial- and mesenchymal-like cells adhered on the surface of PMP-MOs. Further research is needed to identify the clinical relevance of these cells.

  9. Natural polyphenols: Influence on membrane transporters

    PubMed Central

    Hussain, Saad Abdulrahman; Sulaiman, Amal Ajaweed; Alhaddad, Hasan; Alhadidi, Qasim

    2016-01-01

    Accumulated evidence has focused on the use of natural polyphenolic compounds as nutraceuticals since they showed a wide range of bioactivities and exhibited protection against variety of age-related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as anion transporting polypeptide-binding cassette transporters like multidrug resistance protein and p-glycoprotein. Some of the efflux transporters are, generally, linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. In addition, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology. PMID:27069731

  10. Chloroplast membrane transport: interplay of prokaryotic and eukaryotic traits.

    PubMed

    Vothknecht, Ute C; Soll, Jürgen

    2005-07-18

    Chloroplasts are specific plant organelles of prokaryotic origin. They are separated from the surrounding cell by a double membrane, which represents an effective barrier for the transport of metabolites and proteins. Specific transporters in the inner envelope membrane have been described, which facilitate the exchange of metabolites. In contrast, the outer envelope has been viewed for a long time as a molecular sieve that offers a mere size constriction to the passage of molecules. This view has been challenged lately, and a number of specific and regulated pore proteins of the outer envelope (OEPs) have been identified. These pores seem to have originated by adaptation of outer membrane proteins of the cyanobacterial ancestor of the chloroplast. In a similar fashion, the transport of proteins across the two envelope membranes is achieved by two hetero-oligomeric protein complexes called Toc (translocon in the outer envelope of chloroplasts) and Tic (translocon in the inner envelope of chloroplasts). The phylogenetic provenance of the translocon components is less clear, but at least the channel protein of the Toc translocon is of cyanobacterial origin. Characteristic of cyanobacteria and chloroplasts is furthermore a specialized internal membrane system, the thylakoids, on which the components of the photosynthetic machinery are located. Despite the importance of this membrane, very little is known about its phylogenetic origin or the manner of its synthesis. Vipp1 appears to be a ubiquitous component of thylakoid formation, while in chloroplasts of land plants, additionally a vesicle transport system of eukaryotic origin might be involved in this process.

  11. Strain effects on oxygen transport in tetragonal zirconium dioxide

    SciTech Connect

    Xian-Ming Bai; Yongfeng Zhang; Michael R. Tonks

    2013-11-01

    Temperature accelerated dynamics and molecular dynamics simulations are used to investigate the strain effects on oxygen interstitial and vacancy migration in tetragonal zirconium dioxide. At zero external strain, the anisotropic migration mechanisms of oxygen defects are characterized. At non-zero strains, both the crystal structure and defect migration barriers are modified by strain. Under compressive strains, the defect migration barrier increases with the increasing strain for both interstitials and vacancies. The crystal structure transforms from a tetragonal to a nearly cubic fluorite structure. Accordingly, the defect migration becomes nearly isotropic. Under dilative strains, the migration barrier first decreases then increases with increasing strain for both types of defects. The tetragonal phase transforms to a lower symmetry structure that is close to the orthorhombic phase. In turn, the defect migration becomes highly anisotropic. Under both compressive and dilative strains, interstitials respond to strain more strongly than vacancies. At small dilative strains, an oxygen interstitial has comparable diffusivity to a vacancy, suggesting that both types of defects can contribute to oxygen transport, if they are present. Although currently no previous result is available to validate oxygen interstitial diffusion behavior, the trend of strain effects on oxygen vacancy diffusion is in good agreement with available experimental and theoretical studies in the literature.

  12. Novel macrocyclic carriers for proton-coupled liquid membrane transport

    SciTech Connect

    Lamb, J.D.

    1991-06-10

    The objective of our research program is to elucidate the chemical principles which are responsible for the cation selectivity and permeability of liquid membranes containing macrocyclic carriers. Several new macrocyclic carriers were synthesized during the last three year period, including selenium-containing macrocycles, new crown-4 structures, and several new crown structures containing nitrogen based heterocycles as substituents in the principal macrocyclic ring. The cation binding properties of these macrocycles were investigated by potentiometric titration, calorimetric titration, solvent extraction, and NMR techniques. In addition, hydrophobic macrocycles were incorporated into dual hollow fiber membrane systems to investigate their membrane performance, especially in the proton-coupled transport mode. It was found that the dual hollow fiber system maintains the cation selectivity and permeability of supported liquid membranes, while enhancing membrane stability. The diffusion limited transport model was expanded to account for membrane solvent effects. Furthermore, Eu{sup 2+} transport was found to be similar to that of strontium and much higher than that of the lanthanides, in supported liquid membrane systems.

  13. Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers

    NASA Technical Reports Server (NTRS)

    Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.

    1989-01-01

    Hydrogen-oxygen SPE fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. The SPE cells have demonstrated a ten year life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton-exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluroride loss rates and average expected ultimate cell life. Several features were introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability were demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density. The SPE electrolyzers have demonstrated the same at 1000 ASF. Many future extraterrestrial applications for fuel cells require that they be self recharged. To translate the proven SPE cell life and stability into a highly reliable extraterrestrial electrical energy storage system, a simplification of supporting equipment is required. Static phase separation, static fluid transport and static thermal control will be most useful in producting required system reliability. Although some 200,000 SPE fuel cell hours were recorded in earth orbit with static fluid phase separation, no SPE electrolyzer has, as yet, operated in space.

  14. Ferrous Ion Transport across Chloroplast Inner Envelope Membranes1

    PubMed Central

    Shingles, Richard; North, Marisa; McCarty, Richard E.

    2002-01-01

    The initial rate of Fe2+ movement across the inner envelope membrane of pea (Pisum sativum) chloroplasts was directly measured by stopped-flow spectrofluorometry using membrane vesicles loaded with the Fe2+-sensitive fluorophore, Phen Green SK. The rate of Fe2+ transport was rapid, coming to equilibrium within 3s. The maximal rate and concentration dependence of Fe2+ transport in predominantly right-side-out vesicles were nearly equivalent to those measured in largely inside-out vesicles. Fe2+ transport was stimulated by an inwardly directed electrochemical proton gradient across right-side-out vesicles, an effect that was diminished by the addition of valinomycin in the presence of K+. Fe2+ transport was inhibited by Zn2+, in a competitive manner, as well as by Cu2+ and Mn2+. These results indicate that inward-directed Fe2+ transport across the chloroplast inner envelope occurs by a potential-stimulated uniport mechanism. PMID:11891257

  15. Membrane transport of several ions during peritoneal dialysis: mathematical modeling.

    PubMed

    Galach, Magda; Waniewski, Jacek

    2012-09-01

    Peritoneal dialysis utilizes a complex mass exchange device created by natural permselective membranes of the visceral and abdominal muscle tissues. In mathematical modeling of solute transport during peritoneal dialysis, each solute is typically considered as a neutral, independent particle. However, such mathematical models cannot predict transport parameters for small ions. Therefore, the impact of the electrostatic interactions between ions on the estimated transport parameters needs to be investigated. In this study, transport of sodium, chloride, and a third ion through a permselective membrane with characteristics of the peritoneal transport barrier was described using two models: a model with the Nernst-Planck (NP) equations for a set of interacting ions and a model with combined diffusive and convective transport of each ion separately (DC). Transport parameters for the NP model were calculated using the pore theory, while the parameters for the DC model were estimated by fitting the model to the predictions from the NP model. Solute concentration profiles in the membrane obtained by computer simulations based on these two models were similar, whereas the transport parameters (diffusive mass transport parameters and sieving coefficients) were generally different. The presence of the third ion could substantially modify the values of diffusive mass parameter for sodium and chloride ions estimated using the DC model compared with those predicted by NP. The extent of this modification depended on the molecular mass and concentration of the third ion, and the rate of volumetric flow. Closed formulas for the transport parameters of the DC model in terms of the NP model parameters, ion concentration profiles in the membrane, and volumetric flow across the membrane were derived. Their reliable approximations, which include only boundary ion concentrations instead of spatial intramembrane concentration profiles, were formulated. The precision of this approximation

  16. Hydrogen transport membranes for dehydrogenation reactions

    DOEpatents

    Balachandran,; Uthamalingam, [Hinsdale, IL

    2008-02-12

    A method of converting C.sub.2 and/or higher alkanes to olefins by contacting a feedstock containing C.sub.2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.

  17. Membrane Transporters: Structure, Function and Targets for Drug Design

    NASA Astrophysics Data System (ADS)

    Ravna, Aina W.; Sager, Georg; Dahl, Svein G.; Sylte, Ingebrigt

    Current therapeutic drugs act on four main types of molecular targets: enzymes, receptors, ion channels and transporters, among which a major part (60-70%) are membrane proteins. This review discusses the molecular structures and potential impact of membrane transporter proteins on new drug discovery. The three-dimensional (3D) molecular structure of a protein contains information about the active site and possible ligand binding, and about evolutionary relationships within the protein family. Transporters have a recognition site for a particular substrate, which may be used as a target for drugs inhibiting the transporter or acting as a false substrate. Three groups of transporters have particular interest as drug targets: the major facilitator superfamily, which includes almost 4000 different proteins transporting sugars, polyols, drugs, neurotransmitters, metabolites, amino acids, peptides, organic and inorganic anions and many other substrates; the ATP-binding cassette superfamily, which plays an important role in multidrug resistance in cancer chemotherapy; and the neurotransmitter:sodium symporter family, which includes the molecular targets for some of the most widely used psychotropic drugs. Recent technical advances have increased the number of known 3D structures of membrane transporters, and demonstrated that they form a divergent group of proteins with large conformational flexibility which facilitates transport of the substrate.

  18. MECHANISM OF GLUCOSE TRANSPORT ACROSS THE YEAST CELL MEMBRANE

    PubMed Central

    Cirillo, Vincent P.

    1962-01-01

    Cirillo, Vincent P. (Seton Hall College of Medicine and Dentistry, Jersey City, N.J.). Mechanism of glucose transport across the yeast cell membrane. J. Bacteriol. 84:485–491. 1962.—The kinetics of d-glucose and l-sorbose transport was studied in Saccharomyces cerevisiae inhibited with iodoacetic acid under nitrogen to prevent glucose metabolism. d-Glucose was found to compete with l-sorbose for a common membrane transport system with an apparent affinity greater than 25 times that of sorbose. A comparison of the net rate of glucose and sorbose transport at 50 and 500 mm external concentration showed that glucose transport is greater than that of sorbose from the lower concentration, but sorbose transport is greater than glucose at the higher concentration. This reversal of transport rate of two sugars with markedly different affinities is predicted by the membrane carrier theory. A further prediction of carrier theory was confirmed by the demonstration that the rate of glucose transport into fructose-loaded cells is greater than into unloaded cells. PMID:14021412

  19. Retrospective Analysis Comparing Hollow Fiber and Silicone Membrane Oxygenators for Neonates on ECMO

    PubMed Central

    Mejak, Brian; Giacomuzzi, Carmen; Heller, Eileen; You, Xiaomang; Ungerleider, Ross; Shen, Irving

    2007-01-01

    Abstract: There is little information showing the use of microporous polypropylene hollow fiber oxygenators during extracorporeal life support (ECLS). Recent surveys have shown increasing use of these hollow fibers amongst ECLS centers in the United States. We performed a retrospective analysis comparing the Terumo BabyRx hollow fiber oxygenator to the Medtronic 800 silicone membrane oxygenator on 14 neonatal patients on extracorporeal membrane oxygenation (ECMO). The aim of this study was to investigate the similarities and differences when comparing pressure drops, prime volumes, oxygenator endurance, and gas transfer capabilities between the two groups. PMID:17672186

  20. Structure and Water Transport in Nafion Nanocomposite Membranes

    NASA Astrophysics Data System (ADS)

    Davis, Eric; Page, Kirt

    2014-03-01

    Perfluorinated ionomers, specifically Nafion, are the most widely used ion exchange membranes for vanadium redox flow battery applications, where an understanding of the relationship between membrane structure and transport of water/ions is critical to battery performance. In this study, the structure of Nafion/SiO2 nanocomposite membranes, synthesized using sol-gel chemistry, as well as cast directly from Nafion/SiO2 nanoparticle dispersions, was measured using both small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS). Through contrast match studies of the SiO2 nanoparticles, direct information on the change in the structure of the Nafion membranes and the ion-transport channels within was obtained, where differences in membrane structure was observed between the solution-cast membranes and the membranes synthesized using sol-gel chemistry. Additionally, water sorption and diffusion in these Nafion/SiO2 nanocomposite membranes were measured using in situ time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy and dynamic vapor sorption (DVS).

  1. Nonsteady State Oxygen Transport in Engineered Tissue: Implications for Design

    PubMed Central

    Ehsan, Seema M.

    2013-01-01

    Engineered tissue constructs are limited in size, and thus clinical relevance, when diffusion is the primary mode of oxygen transport. Understanding the extent of oxygen diffusion and cellular consumption is necessary for the design of engineered tissues, particularly those intended for implantation into hypoxic wound sites. This study presents a combined experimental and computation model to predict design constraints for cellularized fibrin tissues subjected to a step change in the oxygen concentration to simulate transplantation. Nonsteady state analysis of oxygen diffusion and consumption was used to estimate the diffusion coefficient of oxygen (mean±SD, 1.7×10−9±8.4×10−11 m2/s) in fibrin hydrogels as well as the Michaelis-Menten parameters, Vmax (1.3×10−17±9.2×10−19 mol·cell−1·s−1), and Km (8.0×10−3±3.5×0−3 mol/m3), of normal human lung fibroblasts. Nondimensionalization of the governing diffusion-reaction equation enabled the creation of a single dimensionless parameter, the Thiele modulus (φ), which encompasses the combined effects of oxygen diffusion, consumption, and tissue dimensions. Tissue thickness is the design parameter with the most pronounced influence on the distribution of oxygen within the system. Additionally, tissues designed such that φ<1 achieve a near spatially uniform and adequate oxygen concentration following the step change. Understanding and optimizing the Thiele modulus will improve the design of engineered tissue implants. PMID:23350630

  2. Veno-venous extracorporeal membrane oxygenation: cannulation techniques

    PubMed Central

    Banfi, Carlo; Pozzi, Matteo; Siegenthaler, Nils; Brunner, Marie-Eve; Tassaux, Didier; Obadia, Jean-Francois; Bendjelid, Karim

    2016-01-01

    The development of extracorporeal membrane oxygenation (ECMO) technology allows a new approach for the intensive care management of acute cardiac and/or respiratory failure in adult patients who are not responsive to conventional treatment. Current ECMO therapies provide a variety of options for the multidisciplinary teams who are involved in the management of these critically ill patients. In this regard, veno-venous ECMO (VV-ECMO) can provide quite complete respiratory support, even if this highly complex technique presents substantial risks, such as bleeding, thromboembolic events and infection. While VV-ECMO circuits usually include the cannulation of two vessels (double cannulation) in its classic configuration, the use of a single cannula is now possible for VV-ECMO support. Recently, experienced centers have employed more advanced approaches by cannulating three vessels (triple cannulation) which follows veno-arterio-venous (VAV) or veno-arterio-pulmonary-arterial cannulation (VAPa). However, ‘triple’ cannulation expands the field of application but increases the complexity of ECMO systems. In the present review, the authors focus on the indications for VV-ECMO, patient assessment prior to cannulation, the role of ultrasound-guided vessel puncture, double lumen single bicaval cannulations, and finally triple cannulation in VV-ECMO. PMID:28149575

  3. Cannulation strategies for percutaneous extracorporeal membrane oxygenation in adults.

    PubMed

    Napp, L Christian; Kühn, Christian; Hoeper, Marius M; Vogel-Claussen, Jens; Haverich, Axel; Schäfer, Andreas; Bauersachs, Johann

    2016-04-01

    Extracorporeal membrane oxygenation (ECMO) has revolutionized treatment of severe isolated or combined failure of lung and heart. Due to remarkable technical development the frequency of use is growing fast, with increasing adoption by interventional cardiologists independent of cardiac surgery. Nevertheless, ECMO support harbors substantial risk such as bleeding, thromboembolic events and infection. Percutaneous ECMO circuits usually comprise cannulation of two large vessels ('dual' cannulation), either veno-venous for respiratory and veno-arterial for circulatory support. Recently experienced centers apply more advanced strategies by cannulation of three large vessels ('triple' cannulation), resulting in veno-veno-arterial or veno-arterio-venous cannulation. While the former intends to improve drainage and unloading, the latter represents a very potent method to provide circulatory and respiratory support at the same time. As such triple cannulation expands the field of application at the expense of increased complexity of ECMO systems. Here, we review percutaneous dual and triple cannulation strategies for different clinical scenarios of the critically ill. As there is no unifying terminology to date, we propose a nomenclature which uses "A" and all following letters for supplying cannulas and all letters before "A" for draining cannulas. This general and unequivocal code covers both dual and triple ECMO cannulation strategies (VV, VA, VVA, VAV). Notwithstanding the technical evolution, current knowledge of ECMO support is mainly based on observational experience and mostly retrospective studies. Prospective controlled trials are urgently needed to generate evidence on safety and efficacy of ECMO support in different clinical settings.

  4. Initial European clinical experience with pulsatile extracorporeal membrane oxygenation.

    PubMed

    Agati, Salvatore; Mignosa, Carmelo; Ciccarello, Giuseppe; Salvo, Dario; Undar, Akif

    2006-04-01

    Extracorporeal membrane oxygenation (ECMO) for post-cardiotomy heart failure in neonates and infants still carries high mortality and morbidity rates. In this study we present the first European clinical experience with the Medos DeltaStream DP1, a new pulsatile flow pump, in neonates and infants. The DP1 is an extracorporeal rotary blood pump. The pump features a diagonal flow impeller, and can be used for both continuous and pulsatile output. Special characteristics include its small priming volume of approximately 30 ml and a high pumping capacity. A temperature sensor and speed sensors are integrated into the pump. The pump has a delivery rate of up to 8 liters/min and a speed range of 100 to 10,000 rpm. Two patients being assisted with the pulsatile pump system were successfully weaned after 36 and 53 hours, respectively. Based on our limited experience with 2 patients, we believe that pulsatile DP1 device is a reasonable alternative to current conventional non-pulsatile systems.

  5. Twelve Hours In Vitro Biocompatibility Testing of Membrane Oxygenators.

    PubMed

    Bleilevens, Christian; Grottke, Oliver; Tillmann, Sabine; Honickel, Markus; Kopp, Rüedger; Arens, Jutta; Rossaint, Rolf

    2015-01-01

    In vitro test systems for extracorporeal membrane oxygenation (mock loop) represent an interesting alternative to complex and expensive in vivo test systems to analyze the pathomechanisms leading to insufficient biocompatibility. Data on mock loop systems are limited, and operation times are constricted to a maximum duration of 6 hr. This study aims at a 12 hr operation time and frequent monitoring of markers for insufficient biocompatibility in two experimental settings. Porcine blood circulated in a mock loop without any modifications, or the circuit was operated with a CO2-enhanced gas (5% CO2/21% O2/74% N2) in combination with a nutrient solution (phosphate-adenine-glucose-guanosine-saline-mannitol). Coagulation parameters changed over time without differences between the two groups. In the unmodified test setting, a pH increase was detected after 1 hr, followed by significantly increased levels of free hemoglobin as a marker for hemolysis and elevated numbers of activated platelets, which correlate with detected von Willebrand factor, microparticles, and interleukin-β. Proinflammatory cytokine levels were significantly increased after 12 hr. In contrast, these parameters remained constant in the modified test setting providing proof of a stable operating in vitro mock loop system with an extended/prolonged operation time.

  6. Extracorporeal membrane oxygenation in the management of diffuse alveolar hemorrhage.

    PubMed

    Abrams, Darryl; Agerstrand, Cara L; Biscotti, Mauer; Burkart, Kristin M; Bacchetta, Matthew; Brodie, Daniel

    2015-01-01

    Extracorporeal membrane oxygenation (ECMO) may be used to support patients with severe hypoxemic respiratory failure refractory to conventional mechanical ventilation. However, because systemic anticoagulation is generally required to maintain circuit patency, severe bleeding is often seen as a contraindication to ECMO. We describe our center's experience with four patients who received ECMO for refractory hypoxemic respiratory failure due to diffuse alveolar hemorrhage (DAH), a condition for which anticoagulation is typically contraindicated, and provide a review of the literature. The mean age was 35.8 ± 16.4 years. The mean pre-ECMO PaO2 to FIO2 ratio was 52.3 ± 9.4 mm Hg. All patients were treated with continuous infusions of heparin with a goal-activated partial thromboplastin time between 40 and 60 seconds (mean, 47.4 ± 11.6 seconds). All four subjects (100%) survived to decannulation, and three subjects (75%) survived to discharge. The results from this case series, along with previously published data, suggest that ECMO is a reasonable management option for patients with DAH-associated severe, refractory hypoxemic respiratory failure. This is especially true in the era of modern ECMO technology where lower levels of anticoagulation are able to maintain circuit patency while minimizing bleeding risk.

  7. Cannula Design and Recirculation During Venovenous Extracorporeal Membrane Oxygenation

    PubMed Central

    Palmér, Oscar; Palmér, Kenneth; Hultman, Jan

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) is used as a lifesaving rescue treatment in refractory respiratory or cardiac failure. During venovenous (VV) ECMO, the presence of recirculation is known, but quantification and actions to minimize recirculation after measurement are to date not routinely practiced. In the current study, we investigated the effect of draining cannula design on recirculation fraction (Rf) during VV ECMO; conventional mesh cannula was compared with a multistage cannula. The effect of adjusting cannula position was also studied. Recirculation was measured with ultrasound dilution technique at different ECMO flows and after cannula repositioning. All patients who were admitted to our unit between October 2014 and July 2015 catheterized by the atrio-femoral single lumen method were included. A total of 108 measurements were conducted in 14 patients. The multistage cannula showed significantly less recirculation (19.0 ± 12.2%) compared with the conventional design (38.0 ± 13.7). Pooled data in cases improved from adjustment showing reduced Rf by 7%. In conclusion, the choice of cannula matters, as does adjustment of the draining cannula position during atrio-femoral VV ECMO. By utilizing the ultrasound dilution technique to measure Rf before and after repositioning, effective ECMO flow can be improved for a more effective ECMO treatment. PMID:27660904

  8. The fundamentals of extra-corporeal membrane oxygenation.

    PubMed

    Aghili, N; Kang, S; Kapur, N K

    2015-02-01

    During the past 50 years, pharmacologic advancements for cardiovascular risk factors and device innovation for the management of coronary disease, including acute myocardial infarction have radically changed the landscape of heart disease. At present, nearly 25% of individuals develop chronic heart failure after an acute myocardial infarction. It is estimated that nearly 2.6% of the American population suffers from heart failure. In the modern era, miniaturized continuous flow ventricular assist devices are now demonstrating nearly 75% 2-year survival rates with improved patient functionality. As a result, elderly patients with cardiogenic shock for whom medical treatment held minimal promise, may now be viable candidates for advanced mechanical therapies. Given this option, there is a need for more approaches to salvage patients from cardiogenic shock with percutaneously delivered mechanical circulatory support (pMCS) systems. The use of pMCS is growing and now includes patients with acute and chronic heart failure as well as patients undergoing high risk interventional and electrophysiology procedures. Each of these devices has a unique hemodynamic effect and therefore an in-depth understanding of device characteristics is required for optimal patient management. Extracorporeal membrane oxygenation (ECMO) is one of the earliest types of pMCS systems primarily used for cardiorespiratory failure. ECMO can be used in different configurations, which makes it a versatile hemodynamic support device for different patient scenarios. In this paper, the authors review different configurations, indications, and hemodynamic profile of ECMO in respiratory and cardiac failure patients.

  9. Outcome predictors in cardiopulmonary resuscitation facilitated by extracorporeal membrane oxygenation.

    PubMed

    Jung, Christian; Janssen, Kyra; Kaluza, Mirko; Fuernau, Georg; Poerner, Tudor Constantin; Fritzenwanger, Michael; Pfeifer, Ruediger; Thiele, Holger; Figulla, Hans Reiner

    2016-03-01

    Cardiac arrest is the major cause of sudden death in developed countries. Extracorporeal cardiopulmonary resuscitation (ECPR) employs extracorporeal membrane oxygenation (ECMO) in patients without return of spontaneous circulation (ROSC) by conventional cardiopulmonary resuscitation (CPR). Aim of the current study was to assess short- and long-term outcome in patients treated with ECPR in our tertiary center and to identify predictors of outcome. We retrospectively collected data of all patients treated with ECPR at our institution from 2002 to 2013. Outcome was assessed according to patient records; good neurological outcome was defined as cerebral performance category 1 or 2. Quality of life data was collected using EQ-5 questionnaire. Uni- and multivariate analysis was applied to identify predictors of outcome. One-hundred and seventeen patients were included into the study. Weaning from ECMO was successful in 61 (52 %) patients. Thirty-day survival endpoint was achieved by 27 (23 %) patients. Good neurological outcome was present in 17 (15 %) patients. Multivariate analysis revealed baseline serum lactate as the strongest predictor of outcome, whereas age and out-of-hospital CPR did not predict outcome. The optimal lactate cut-off to discriminate outcome was determined at 4.6 mmol/l [HR 3.55 (2.29-5.49), p < 0.001, log-rank test]. ECPR represents a treatment option in patients without ROSC after conventional CPR rescuing 15 % of patients with good neurological outcome. Serum lactate may play a crucial role in patient selection for ECPR.

  10. Cerebral Microbleeds After Use of Extracorporeal Membrane Oxygenation in Children

    PubMed Central

    Liebeskind, David S.; Sanossian, Nerses; Sapo, Monica L.; Saver, Jeffrey L.

    2014-01-01

    Cerebral microbleeds (CMB) on gradient-recalled echo (GRE) magnetic resonance imaging (MRI) are rarely seen in children, yet have been described following vascular procedures in adults. Extracorporeal membrane oxygenation (ECMO) has been associated with vascular injury and neurological events in children, but there have been no reports to date of GRE MRI findings in children treated with ECMO. We reviewed MRI scans for all vascular neurology consultations in children treated with ECMO at an academic medical center over a 5-year period. In 6 of 12 cases, GRE was acquired as others were unstable or had contraindications to MRI. All 6 of 6 (100%) GRE cases (mean age 2.1 years, 7 female, 5 male) demonstrated CMB. CMB were multiple (>3 lesions), situated in cortical or lobar regions, with a striking predominance (5/6 cases) for the right carotid distribution. Other than CMB, no cases demonstrated intracranial hemorrhage. CMB may be noted on GRE MRI after ECMO and may reflect vascular damage from gaseous emboli. PMID:22606942

  11. Highlighting Indication of extracorporeal membrane oxygenation in endocrine emergencies.

    PubMed

    Chao, Anne; Wang, Chih-Hsien; You, Hao-Chun; Chou, Nai-Kwoun; Yu, Hsi-Yu; Chi, Nai-Hsin; Huang, Shu-Chien; Wu, I-Hui; Tseng, Li-Jung; Lin, Ming-Hsien; Chen, Yih-Sharng

    2015-08-24

    Extracorporeal membrane oxygenation (ECMO) has been repeatedly used to rescue patients with cardiopulmonary arrest. However, its clinical utility in endocrine emergencies remains unclear. Herein, we describe a case series of 12 patients presenting with refractory shock secondary to endocrine emergencies who were rescued by ECMO support. Patients were identified between 2005 and 2012 from our ECMO registry. The diagnostic distribution was as follows: pheochromocytoma crisis (n = 4), thyroid storm (n = 5), and diabetic ketoacidosis (n = 3). The initial presentation of pheochromocytoma crisis was indistinguishable from acute myocardial infarction (AMI) and frequently accompanied by paroxysmal hypertension and limb ischemia. Thyroid storm was characterized by hyperbilirubinemia and severe gastrointestinal bleeding, whereas neurological symptoms were common in diabetic ketoacidosis. The clinical outcomes of patients with endocrine emergencies were compared with those of 80 cases with AMI who received ECMO because of cardiogenic shock. The cardiac function and the general conditions showed a significantly faster recovery in patients with endocrine emergencies than in those with AMI. We conclude that ECMO support can be clinically useful in endocrine emergencies. The screening of endocrine diseases should be considered during the resuscitation of patients with refractory circulatory shock.

  12. Extracorporeal membrane oxygenation for the treatment of postcardiotomy shock.

    PubMed

    Whitman, Glenn J R

    2017-01-01

    Use of extracorporeal membrane oxygenation (ECMO), one of an increasing variety of mechanical circulatory support strategies, was first used close to 50 years ago. For decades, it was mostly applied to the pediatric population. However, during the past several years, its use has dramatically increased as therapy for pulmonary and cardiac failure in the adult. In particular, ECMO is being used more and more for postcardiotomy shock. Unfortunately, despite its increased application in this setting, improved outcomes have been hard to come by. Improved results must be grounded on an approach that honors the tenets of myocardial recovery, minimizing the work done by the heart during the recovery period. Left ventricular decompression should be a tenet of ECMO support in the setting of postcardiotomy shock, universally applied if we are to see any significant improvement in our results. Furthermore, the point is made that surgeons should play a leadership role in the immediate counseling of patients' families to assure realistic expectations on their part. To address the need for family support during this very difficult time, ECMO centers should design a programmatic approach to care for patients and their families so as to provide them with education, guidance, and emotional support.

  13. Pharmacotherapy during pediatric extracorporeal membrane oxygenation: a review.

    PubMed

    Himebauch, Adam S; Kilbaugh, Todd J; Zuppa, Athena F

    2016-10-01

    Pediatric critical illness and associated alterations in organ function can change drug pharmacokinetics (PK). Extracorporeal membrane oxygenation (ECMO), a life-saving therapy for severe cardiac and/or respiratory failure, causes additional PK alterations that affect drug disposition. The purposes of this review are to discuss the PK changes that occur during ECMO, the associated therapeutic implications, and to review PK literature relevant to pediatric ECMO. We discuss various classes of drugs commonly used for pediatric patients on ECMO, including sedatives, analgesics, antimicrobials and cardiovascular drugs. Finally, we discuss future areas of research and recommend strategies for future pediatric ECMO pharmacologic investigations. Clinicians caring for pediatric patients treated with ECMO must have an understanding of PK alterations that could lead to either therapeutic failures or increased drug toxicity during this life-saving therapy. Limited data currently exist for optimal drug dosing in pediatric populations who are treated with ECMO. While there are clear challenges to conducting and analyzing data associated with clinical pharmacokinetic-pharmacodynamic studies of children on ECMO, we present techniques to address these challenges. Improved understanding of the physiology and drug disposition during ECMO combined with PK-PD modeling will allow for more adaptable and individualized dosing schemes.

  14. Influence of LbL surface modification on oxygen cross-over in self-assembled thin composite membranes

    NASA Astrophysics Data System (ADS)

    Yılmaztürk, Serpil; Ercan, Nevra; Deligöz, Hüseyin

    2012-01-01

    The paper is concerned with the investigation of oxygen transport in layer-by-layer (LbL) self assembly of polystyrene sulfonic acid sodium salt (PSS) and polyallylamine hydrochloride (PAH) on Nafion membrane depending on the number of deposited bilayers, ion type within the multilayers and temperature. It is observed from SEM analysis that the polyelectrolyte layers growth on each side of Nafion membrane regularly. The oxygen permeability (PO2) of (PAH-PSS)20 is 691 cm3/(m2 day bar) at 25 °C while PO2 of pristine Nafion is 2329 cm3/(m2 day bar) at the same temperature. This significant reduction (70.3%) in gas permeability can be explained by the formation of LbL multilayers which both restrict the mobility of gas through the polymer matrix and adjust gas solubility properties in conjunction with ion-dipole interaction between the polar phase of Nafion and the secondary ammonium groups of PAH. (PAH/PSS)20-Na+ and (PAH/PSS)20-H+ exhibit 64.4% and 52.3% reduction in oxygen permittivity at 25 °C in comparison with the pristine Nafion®117, respectively, while the proton conductivities of these membranes are 106.9 and 136.9 mS/cm. Promisingly, it is found that the membrane selectivity values (Φ) of all multilayered membranes in both H+ and Na+ form are much higher than that of perfluorosulfonated ionomer. The thickness of deposited bilayers dominates the diffusion and solubility properties of oxygen through the composite membrane while the major effect of surface hydrophilicity is not observed on oxygen permeability.

  15. Effects of oxygen on exciton transport in zinc phthalocyanine layers

    NASA Astrophysics Data System (ADS)

    Kerp, H. R.; van Faassen, E. E.

    2000-12-01

    The effect of oxygen on the photovoltaic properties of organic solar cells consisting of zinc phthalocyanine and a perylene pigment has been investigated. Under solar illumination, it was possible to raise the short-circuit current by a factor of 1.5 when increasing the partial O 2 pressure threefold from atmospheric pressure in a surrounding gas atmosphere consisting of different oxygen:nitrogen ratios with a total pressure of 1 bar. On the other hand, the exciton diffusion length in ZnPc was observed to decrease at higher oxygen pressures, from which we conclude that the range of exciton transport in the ZnPc layer is limited by the presence of ionic impurities such as O 2-.

  16. Effect of oxygen partial pressure and chemical oxygen demand loading on the biofilm properties in membrane-aerated bioreactors.

    PubMed

    Zhu, I X; Alien, D G; Liss, S N

    2009-03-01

    Membrane-aerated biofilms with oxygen and nutrients diffusing from the opposite sides possess distinct properties, including the ability to couple aerobic and anaerobic processes. The objective of this study was to examine the effects of oxygen partial pressure and chemical oxygen demand (COD) loading on biofilm properties. Two laboratory-scale membrane-aerated bioreactors were operated for a total of 283 days, with one reactor operated at 42, 60, and 89 kPa (0.41, 0.59, and 0.88 atm) oxygen, and the other reactor at 25 kPa (0.25 atm) oxygen (air control). The biofilm detached at the oxygen partial pressures of 60 and 89 kPa (0.59 and 0.88 atm) at a COD loading of 11.3 kg COD/1000 m2/d, but was sustained at the oxygen partial pressures of 25 and 42 kPa (0.25 and 0.41 atm), with a porous structure at the membrane interface at the COD loading of 11.3 kg COD/1000 m2/d. Biofilm formation was improved at a higher COD loading. It is proposed that the loss of extracellular polymeric substances at the biofilm bottom is the cause for the biofilm detachment subjected to a higher oxygen partial pressure.

  17. Cerebral Oxygenation and Acceleration in Pediatric and Neonatal Interfacility Transport.

    PubMed

    Valente, Michael E; Sherif, Judy A; Azen, Colleen G; Pham, Phung K; Lowe, Calvin G

    2016-01-01

    The purpose of this study is to measure peak acceleration forces during interfacility transport; examine whether drops in cerebral oxygenation occurred; and test the associations between cerebral oxygenation, acceleration, and patient positioning. A cerebral oximeter (INVOS-5100C; Somanetics, Minneapolis, MN) monitored regional saturation of oxygen (rSO2 [cerebral oxygenation]) in pediatric and neonatal patients (N = 24) transported between facilities by ground ambulance, helicopter, or fixed wing aircraft. An accelerometer (GP1; SENSR, Georgetown, TX) bolted to the isolette or gurney recorded z-axis (aligned with the spine) accelerations. The z-axis peak accelerations (absolute values of g) by transport type were as follows: ground ambulance takeoff mean = 0.16 and landing mean = 0.08, helicopter takeoff mean = 0.16 and landing mean = 0.05, fixed wing aircraft takeoff mean = 0.14 and landing mean = 0.20. During takeoff, 2 of 7 patients in the head-to-front of vehicle position experienced rSO2 drop. During landing, 4 of 13 patients in the head-to-back of vehicle position experienced rSO2 drop. There were no significant associations of rSO2 drop during takeoff and landing with patient positioning or with z-axis peak acceleration. Acceleration forces of pediatric and neonatal interfacility transport are small and comparable in magnitude. The relationship between rSO2 drop and patient positioning was not significant in this pilot study. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  18. Mass Transport through Nanostructured Membranes: Towards a Predictive Tool

    PubMed Central

    Darvishmanesh, Siavash; Van der Bruggen, Bart

    2016-01-01

    This study proposes a new mechanism to understand the transport of solvents through nanostructured membranes from a fundamental point of view. The findings are used to develop readily applicable mathematical models to predict solvent fluxes and solute rejections through solvent resistant membranes used for nanofiltration. The new model was developed based on a pore-flow type of transport. New parameters found to be of fundamental importance were introduced to the equation, i.e., the affinity of the solute and the solvent for the membrane expressed as the hydrogen-bonding contribution of the solubility parameter for the solute, solvent and membrane. A graphical map was constructed to predict the solute rejection based on the hydrogen-bonding contribution of the solubility parameter. The model was evaluated with performance data from the literature. Both the solvent flux and the solute rejection calculated with the new approach were similar to values reported in the literature. PMID:27918434

  19. Phospholipid flippases: building asymmetric membranes and transport vesicles

    PubMed Central

    Sebastian, Tessy T.; Baldridge, Ryan D.; Xu, Peng; Graham, Todd R.

    2012-01-01

    Phospholipid flippases in the type IV P-type ATPase family (P4-ATPases) are essential components of the Golgi, plasma membrane and endosomal system that play critical roles in membrane biogenesis. These pumps flip phospholipid across the bilayer to create an asymmetric membrane structure with substrate phospholipids, such as phosphatidylserine and phosphatidylethanolamine, enriched within the cytosolic leaflet. The P4-ATPases also help form transport vesicles that bud from Golgi and endosomal membranes, thereby impacting the sorting and localization of many different proteins in the secretory and endocytic pathways. At the organismal level, P4-ATPase deficiencies are linked to liver disease, obesity, diabetes, hearing loss, neurological deficits, immune deficiency and reduced fertility. Here, we review the biochemical, cellular and physiological functions of P4-ATPases, with an emphasis on their roles in vesicle-mediated protein transport. PMID:22234261

  20. A validated CFD model to predict O₂ and CO₂ transfer within hollow fiber membrane oxygenators.

    PubMed

    Hormes, Marcus; Borchardt, Ralf; Mager, Ilona; Rode, Thomas Schmitz; Behr, Marek; Steinseifer, Ulrich

    2011-03-01

    Hollow fiber oxygenators provide gas exchange to and from the blood during heart surgery or lung recovery. Minimal fiber surface area and optimal gas exchange rate may be achieved by optimization of hollow fiber shape and orientation (1). In this study, a modified CFD model is developed and validated with a specially developed micro membrane oxygenator (MicroMox). The MicroMox was designed in such a way that fiber arrangement and bundle geometry are highly reproducible and potential flow channeling is avoided, which is important for the validation. Its small size (V(Fluid)=0.04 mL) allows the simulation of the entire bundle of 120 fibers. A non-Newtonian blood model was used as simulation fluid. Physical solubility and chemical bond of O₂ and CO₂ in blood was represented by the numerical model. Constant oxygen partial pressure at the pores of the fibers and a steady state flow field was used to calculate the mass transport. In order to resolve the entire MicroMox fiber bundle, the mass transport was simulated for symmetric geometry sections in flow direction. In vitro validation was achieved by measurements of the gas transfer rates of the MicroMox. All measurements were performed according to DIN EN 12022 (2) using porcine blood. The numerical simulation of the mass transfer showed good agreement with the experimental data for different mass flows and constant inlet partial pressures. Good agreement could be achieved for two different fiber configurations. Thus, it was possible to establish a validated model for the prediction of gas exchange in hollow fiber oxygenators.

  1. Transport analysis of hollow fiber gas separation membranes

    SciTech Connect

    Singh, V.; Rhinehart, R.R.; Narayan, R.S.; Tock, R.W.

    1995-12-01

    Membrane technology is extensively used for industrial gas separation. A steady-state model for gas permeation by hollow membrane fibers is developed for a multicomponent ideal gas system in countercurrent flow. Gas phase diffusion is shown to dominate transport in the substrate making local bore concentration, not diffusing species flux fraction, the appropriate measure of permeate activity for this experimental system. The model is able to predict the experimental trends in a O{sub 2}/N{sub 2}/polysulfone system.

  2. Membranes with functionalized carbon nanotube pores for selective transport

    DOEpatents

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  3. Membrane transporter proteins: a challenge for CNS drug development

    PubMed Central

    Girardin, François

    2006-01-01

    Drug transporters are membrane proteins present in various tissues such as the lymphocytes, intestine, liver, kidney, testis, placenta, and central nervous system. These transporters play a significant role in drug absorption and distribution to organic systems, particularly if the organs are protected by blood-organ barriers, such as the blood-brain barrier or the maternal-fetal barrier. In contrast to neurotransmitters and receptor-coupled transporters or other modes of interneuronal transmission, drug transporters are not directly involved in specific neuronal functions, but provide global protection to the central nervous system. The lack of capillary fenestration, the low pinocytic activity, and the tight junctions between brain capillary and choroid plexus endothelial cells represent further gatekeepers limiting the entrance of endogenous and exogenous compounds into the central nervous system. Drug transport is a result of the concerted action of efflux and influx pumps (transporters) located both in the basolateral and apical membranes of brain capillary and choroid plexus endothelial cells. By regulating efflux and influx of endogenous or exogenous substances, the blood-brain barrier and, to a lesser extent, the blood-cerebrospinal barrier in the ventricles, represents the main interface between the central nervous system and the blood, ie, the rest of the body. As drug distribution to organs is dependent on the affinity of a substrate for a specific transport system, membrane transporter proteins are increasingly recognized as a key determinant of drug disposition. Many drug transporters are members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter superfamily or the solute-linked carrier (SLC) class. The multidrug resistance protein MDR1 (ABCB1), also called P-glycoprotein, the multidrug resistance-associated proteins MRP1 (ABCC1) and MRP2 (ABCC2), and the breast cancer-resistance protein BCRP (ABCG2) are ATP-dependent efflux

  4. Calixarene-Mediated Liquid-Membrane Transport of Choline Conjugates.

    PubMed

    Adhikari, Birendra Babu; Fujii, Ayu; Schramm, Michael P

    2014-05-01

    A series of supramolecular calixarenes efficiently transport distinct molecular species through a liquid membrane when attached to a receptor-complementary choline handle. Calix-[6]arene hexacarboxylic acid was highly effective at transporting different target molecules against a pH gradient. Both carboxylic- and phosphonic-acid-functionalized calix[4]arenes effect transport without requiring a pH or ion gradient. NMR binding studies, two-phase solvent extraction, and three-phase transport experiments reveal the necessary and subtle parameters to effect the transport of molecules attached to a choline "handle". On the other hand, rescorin[4]arene cavitands, which have similar guest recognition profiles, did not transport guest molecules. These developments reveal new approaches towards attempting synthetic-receptor-mediated selective small-molecule transport in vesicular and cellular systems.

  5. The maltose ABC transporter: action of membrane lipids on the transporter stability, coupling and ATPase activity.

    PubMed

    Bao, Huan; Dalal, Kush; Wang, Victor; Rouiller, Isabelle; Duong, Franck

    2013-08-01

    The coupling between ATP hydrolysis and substrate transport remains a key question in the understanding of ABC-mediated transport. We show using the MalFGK2 complex reconstituted into nanodiscs, that membrane lipids participate directly to the coupling reaction by stabilizing the transporter in a low energy conformation. When surrounded by short acyl chain phospholipids, the transporter is unstable and hydrolyzes large amounts of ATP without inducing maltose. The presence of long acyl chain phospholipids stabilizes the conformational dynamics of the transporter, reduces its ATPase activity and restores dependence on maltose. Membrane lipids therefore play an essential allosteric function, they restrict the transporter ATPase activity to increase coupling to the substrate. In support to the notion, we show that increasing the conformational dynamics of MalFGK2 with mutations in MalF increases the transporter ATPase activity but decreases the maltose transport efficiency.

  6. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

    PubMed Central

    Zou, Wei; Yadav, Smita; DeVault, Laura; Jan, Yuh Nung; Sherwood, David R.

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. PMID:26394140

  7. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization.

    PubMed

    Zou, Wei; Yadav, Smita; DeVault, Laura; Nung Jan, Yuh; Sherwood, David R

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth.

  8. Does hindered transport theory apply to desalination membranes?

    PubMed

    Dražević, Emil; Košutić, Krešimir; Kolev, Vesselin; Freger, Viatcheslav

    2014-10-07

    As reverse osmosis (RO) and nanofiltration polyamide membranes become increasingly used for water purification, prediction of pollutant transport is required for membrane development and process engineering. Many popular models use hindered transport theory (HTT), which considers a spherical solute moving through an array of fluid-filled rigid cylindrical pores. Experiments and molecular dynamic simulations, however, reveal that polyamide membranes have a distinctly different structure of a "molecular sponge", a network of randomly connected voids widely distributed in size. In view of this disagreement, this study critically examined the validity of HTT by directly measuring diffusivities of several alcohols within a polyamide film of commercial RO membrane using attenuated total reflection-FTIR. It is found that measured diffusivities deviate from HTT predictions by as much as 2-3 orders of magnitude. This result indicates that HTT does not adequately describe solute transport in desalination membranes. As a more adequate alternative, the concept of random resistor networks is suggested, with resistances described by models of activated transport in "soft" polymers without a sharp size cutoff and with a proper address of solute partitioning.

  9. Transport in nanoporous carbon membranes: Experiments and analysis

    SciTech Connect

    Acharya, M.; Foley, H.C.

    2000-05-01

    Single-component permeances of six gases were measured on three different supported nanoporous carbon membranes prepared by spray coating and pyrolysis of poly(furfuryl alcohol) on porous stainless-steel disks. Global activation energies were regressed from data collected as a function of temperature. Permeances and global activation energies were correlated to molecular size, assuming that entropic affects dominated the transport. The permeance was best correlated to the minimum projected area of the molecule computed from first principles. The free-energy barriers to transport within the membranes were derived from the temperature dependence of the permeance data, after accounting for porosity differences between the membranes and differences in molecular adsorption. Using transition-state theory and an entropic model derived, the free energy, enthalpy, and entropic barriers to transport within the membrane were examined as a function of molecular size. Computed on the basis of size, the entropic component of this barrier did not account for the large differences in the transition-state free energies. However, when these entropic barrier values were used to compute the enthalpic portion of the barrier free energies, the minimum projected area of each molecule correlated strongly. Furthermore, these enthalpic components of the barriers were fitted nicely by the Everett-Powl mean field potential, using only the pore size as the adjustable parameter. These results shed light on the underlying mechanism by which shape-selective transport takes place in the NPC membranes and small molecules are separated.

  10. Stability properties of elementary dynamic models of membrane transport.

    PubMed

    Hernández, Julio A

    2003-01-01

    Living cells are characterized by their capacity to maintain a stable steady state. For instance, cells are able to conserve their volume, internal ionic composition and electrical potential difference across the plasma membrane within values compatible with the overall cell functions. The dynamics of these cellular variables is described by complex integrated models of membrane transport. Some clues for the understanding of the processes involved in global cellular homeostasis may be obtained by the study of the local stability properties of some partial cellular processes. As an example of this approach, I perform, in this study, the neighborhood stability analysis of some elementary integrated models of membrane transport. In essence, the models describe the rate of change of the intracellular concentration of a ligand subject to active and passive transport across the plasma membrane of an ideal cell. The ligand can be ionic or nonionic, and it can affect the cell volume or the plasma membrane potential. The fundamental finding of this study is that, within the physiological range, the steady states are asymptotically stable. This basic property is a necessary consequence of the general forms of the expressions employed to describe the active and passive fluxes of the transported ligand.

  11. Reclaimed wastewater quality enhancement by oxygen injection during transportation.

    PubMed

    Rodríguez-Gómez, L E; Alvarez, M; Rodríguez-Sevilla, J; Marrero, M C; Hernández, A

    2011-01-01

    In-sewer treatments have been studied in sewer systems, but few have been carried out on reclaimed wastewater systems. A study of oxygen injection has been performed in a completely filled gravity pipe, 0.6 m in diameter and 62 km long, in cast iron with concrete inside coating, which is part of the reclaimed wastewater reuse scheme of Tenerife (Spain). A high pressure oxygen injection system was installed at 16.0 km from pipe inlet and a constant dosage of 30 mg/L O(2) has been injected during six months, under three different operational modes (low COD, 63 mg/L; high COD, 91 mg/L; and partially nitrified water). Oxygen has been consumed in nitrification and organic matter reduction. Generally, nitrification is clearly favored instead of the organic matter oxidation. Nitrification occurs, in general, with nitrite accumulation due to the presence of free ammonia above 1 mg/L. Denitrification is in all cases incomplete due to a limitation of easily biodegradable organic matter content, inhibiting the appearance of anaerobic conditions and sulfide generation. A notable reduction of organic matter parameters is achieved (TSS below 10 mg/L), which is significantly higher than that observed under the ordinary transport conditions without oxygen. This leads to a final cost reduction, and the oxygen injection system helps water reuse managers to maintain a final good water quality in the case of a treatment plant malfunction.

  12. Continuous Modeling of Calcium Transport Through Biological Membranes

    NASA Astrophysics Data System (ADS)

    Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.

    2016-08-01

    In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).

  13. Computer Simulations of Ion Transport in Polymer Electrolyte Membranes.

    PubMed

    Mogurampelly, Santosh; Borodin, Oleg; Ganesan, Venkat

    2016-06-07

    Understanding the mechanisms and optimizing ion transport in polymer membranes have been the subject of active research for more than three decades. We present an overview of the progress and challenges involved with the modeling and simulation aspects of the ion transport properties of polymer membranes. We are concerned mainly with atomistic and coarser level simulation studies and discuss some salient work in the context of pure binary and single ion conducting polymer electrolytes, polymer nanocomposites, block copolymers, and ionic liquid-based hybrid electrolytes. We conclude with an outlook highlighting future directions.

  14. Electroosmosis in Membranes: Effects of Unstirred Layers and Transport Numbers

    PubMed Central

    Barry, P. H.; Hope, A. B.

    1969-01-01

    When a current is passed through a membrane system, differences in transport numbers between the membrane and the adjacent solutions will, in general, result in depletion and enhancement of concentrations at the membrane-solution interfaces. This will be balanced by diffusion back into the bulk solution, diffusion of solute back across the membrane itself, and osmosis resulting from these local concentration gradients. The two main results of such a phenomenon are (1) that there is a current-induced volume flow, which may be mistaken for electroosmosis, and (2) that there will generally develop transient changes in potential difference (PD) across membranes during and after the passage of current through them. PMID:5786317

  15. Features of ion transport in perfluorinated ion-exchange membranes

    SciTech Connect

    Timashev, S.F.

    1986-02-01

    The conditions for functioning for various systems and devices electrolyzers for ''chlorate'' electrolysis, current sources, etc.) with perfluorinated ion-exchange membranes and septums are determined to a considerable degree by the physicochemical properties of the perfluorinated materials. In this work, on the basis of concepts developed in streaming theory as to the topology of the ''infinite clusters'' (ICs), the author defines more precisely the form of the preexponential dependence of ion transport coefficients and draws conclusions on the character of heat evolution in a perfluorinated membrane when an electric current is passed through the membrane.

  16. Method of making a hydrogen transport membrane, and article

    DOEpatents

    Schwartz, Joseph M.; Corpus, Joseph M.; Lim, Hankwon

    2015-07-21

    The present invention relates to a method of manufacturing a hydrogen transport membrane and the composite article itself. More specifically, the invention relates to producing a membrane substrate, wherein the ceramic substrate is coated with a metal oxide slurry, thereby eliminating the need for an activation step prior to plating the ceramic membrane through an electroless plating process. The invention also relates to modifying the pore size and porosity of the substrate by oxidation or reduction of the particles deposited by the metal oxide slurry.

  17. Oxygen transport properties estimation by DSMC-CT simulations

    SciTech Connect

    Bruno, Domenico; Frezzotti, Aldo; Ghiroldi, Gian Pietro

    2014-12-09

    Coupling DSMC simulations with classical trajectories calculations is emerging as a powerful tool to improve predictive capabilities of computational rarefied gas dynamics. The considerable increase of computational effort outlined in the early application of the method (Koura,1997) can be compensated by running simulations on massively parallel computers. In particular, GPU acceleration has been found quite effective in reducing computing time (Ferrigni,2012; Norman et al.,2013) of DSMC-CT simulations. The aim of the present work is to study rarefied Oxygen flows by modeling binary collisions through an accurate potential energy surface, obtained by molecular beams scattering (Aquilanti, et al.,1999). The accuracy of the method is assessed by calculating molecular Oxygen shear viscosity and heat conductivity following three different DSMC-CT simulation methods. In the first one, transport properties are obtained from DSMC-CT simulations of spontaneous fluctuation of an equilibrium state (Bruno et al, Phys. Fluids, 23, 093104, 2011). In the second method, the collision trajectory calculation is incorporated in a Monte Carlo integration procedure to evaluate the Taxman’s expressions for the transport properties of polyatomic gases (Taxman,1959). In the third, non-equilibrium zero and one-dimensional rarefied gas dynamic simulations are adopted and the transport properties are computed from the non-equilibrium fluxes of momentum and energy. The three methods provide close values of the transport properties, their estimated statistical error not exceeding 3%. The experimental values are slightly underestimated, the percentage deviation being, again, few percent.

  18. Capacitance-Voltage Measurement of Transporting Function at Cell Membrane

    NASA Astrophysics Data System (ADS)

    Sakata, Toshiya; Miyahara, Yuji

    In this paper, we report the detection of transporting function at cell membrane using capacitance-voltage (CV) measurement. The detection principle of our devices is based on the field-effect of electrostatic interaction between charged species at cell membrane in solution and surface electrons in silicon crystal through the gate insulator of Si3N4/SiO2 thin double-layer. We designed an oocyte-based field-effect capacitor, on which a Xenopus laevis oocyte was fixed. The transporter of human organic anion transporting peptide C (hOATP-C) was expressed at oocyte membrane by induction of cRNA. The electrical phenomena such as ion or molecular charge flux at the interface between cell membrane and gate surface could be detected as the change of flat band voltage in CV characteristics. The flat band voltage shift decreased with incubation time after introduction of substrate into the oocyte-based field-effect capacitor. The electrical signal is due to the change of charge flux from the oocyte at the gate surface inspired by transporter-substrate binding. The platform based on the oocyte-based field-effect capacitor is suitable for a simple and non-invasive detection system in order to analyze function of transporters related to drug efficacy.

  19. Regulation & Development of Membrane Transport Processes.

    DTIC Science & Technology

    1985-05-15

    conducted studies on the regulation of a variety of trans- port processes as a function of cell cycle, growth phase, malignant transfor- mation, hormone ...fertilization of ideas. The contributions dealt with regulatory processes evoked by two kinds of stim- uli: (1) external stimuli, such as hormones or...Mineralocorticoid Regulation of Sodium and Potassium Transport by the Cortical Collecting Duct 89 Bruce M. Koeppen and Gerhard H. Giebisch 6. Hormonal Regulation of

  20. Modeling of oxygen transport and cell killing in type-II photodynamic therapy.

    PubMed

    Gkigkitzis, Ioannis; Feng, Yuanming; Yang, Chunmei; Lu, Jun Q; Hu, Xin-Hua

    2012-01-01

    Photodynamic therapy (PDT) provides an effective option for treatment of tumors and other diseases in superficial tissues and attracts attention for in vitro study with cells. In this study, we present a significantly improved model of in vitro cell killing through Type-II PDT for simulation of the molecular interactions and cell killing in time domain in the presence of oxygen transport within a spherical cell. The self-consistency of the approach is examined by determination of conditions for obtaining positive definitive solutions of molecular concentrations. Decay constants of photosensitizers and unoxidized receptors are extracted as the key indices of molecular kinetics with different oxygen diffusion constants and permeability at the cell membrane. By coupling the molecular kinetics to cell killing, we develop a modeling method of PDT cytotoxicity caused by singlet oxygen and obtain the cell survival ratio as a function of light fluence or initial photosensitizer concentration with different photon density or irradiance of incident light and other parameters of oxygen transport. The results show that the present model of Type-II PDT yields a powerful tool to quantitate various events underlying PDT at the molecular and cellular levels and to interpret experimental results of in vitro cell studies. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  1. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    SciTech Connect

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA were more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.

  2. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; ...

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA weremore » more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.« less

  3. Evidence for Bidirectional Endocannabinoid Transport across Cell Membranes*

    PubMed Central

    Chicca, Andrea; Marazzi, Janine; Nicolussi, Simon; Gertsch, Jürg

    2012-01-01

    Despite extensive research on the trafficking of anandamide (AEA) across cell membranes, little is known about the membrane transport of other endocannabinoids, such as 2-arachidonoylglycerol (2-AG). Previous studies have provided data both in favor and against a cell membrane carrier-mediated transport of endocannabinoids, using different methodological approaches. Because AEA and 2-AG undergo rapid and almost complete intracellular hydrolysis, we employed a combination of radioligand assays and absolute quantification of cellular and extracellular endocannabinoid levels. In human U937 leukemia cells, 100 nm AEA and 1 μm 2-AG were taken up through a fast and saturable process, reaching a plateau after 5 min. Employing differential pharmacological blockage of endocannabinoid uptake, breakdown, and interaction with intracellular binding proteins, we show that eicosanoid endocannabinoids harboring an arachidonoyl chain compete for a common membrane target that regulates their transport, whereas other N-acylethanolamines did not interfere with AEA and 2-AG uptake. By combining fatty acid amide hydrolase or monoacyl glycerol lipase inhibitors with hydrolase-inactive concentrations of the AEA transport inhibitors UCM707 (1 μm) and OMDM-2 (5 μm), a functional synergism on cellular AEA and 2-AG uptake was observed. Intriguingly, structurally unrelated AEA uptake inhibitors also blocked the cellular release of AEA and 2-AG. We show, for the first time, that UCM707 and OMDM-2 inhibit the bidirectional movement of AEA and 2-AG across cell membranes. Our findings suggest that a putative endocannabinoid cell membrane transporter controls the cellular AEA and 2-AG trafficking and metabolism. PMID:22879589

  4. Membrane Transport in Isolated Vesicles from Sugarbeet Taproot 1

    PubMed Central

    Briskin, Donald P.; Thornley, W. Robert; Wyse, Roger E.

    1985-01-01

    Sealed membrane vesicles were isolated from homogenates of sugarbeet (Beta vulgaris L.) taproot by a combination of differential centrifugation, extraction with KI, and dextran gradient centrifugation. Relative to the KI-extracted microsomes, the content of plasma membranes, mitochondrial membranes, and Golgi membranes was much reduced in the final vesicle fraction. A component of ATPase activity that was inhibited by nitrate co-enriched with the capacity of the vesicles to form a steady state pH gradient during the purification procedure. This suggests that the nitrate-sensitive ATPase may be involved in driving H+-transport, and this is consistent with the observation that H+-transport, in the final vesicle fraction was inhibited by nitrate. Proton transport in the sugarbeet vesicles was substrate specific for ATP, insensitive to sodium vanadate and oligomycin but was inhibited by diethylstilbestrol and N,N′-dicyclohexylcarbodiimide. The formation of a pH gradient in the vesicles was enhanced by halide ions in the sequence I− > Br− > Cl− while F− was inhibitory. These stimulatory effects occur from both a direct stimulation of the ATPase by anions and a reduction in the vesicle membrane potential. In the presence of Cl−, alkali cations reduce the pH gradient relative to that observed with bis-tris-propane, possibly by H+/alkali cation exchange. Based upon the properties of the H+-transporting vesicles, it is proposed that they are most likely derived from the tonoplast so that this vesicle preparation would represent a convenient system for studying the mechanism of transport at this membrane boundary. PMID:16664342

  5. Logistics and safety of extracorporeal membrane oxygenation in medical retrieval.

    PubMed

    Burns, Brian J; Habig, Karel; Reid, Cliff; Kernick, Paul; Wilkinson, Chris; Tall, Gary; Coombes, Sarah; Manning, Ron

    2011-01-01

    This article reviews the logistics and safety of extracorporeal membrane oxygenation (ECMO) medical retrieval in New South Wales, Australia. We describe the logistics involved in ECMO road and rotary-wing retrieval by a multidisciplinary team during the H1N1 influenza epidemic in winter 2009 (i.e., June 1 to August 31, 2009). Basic patient demographics and key retrieval time lines were analyzed. There were 17 patients retrieved on ECMO, with their ages ranging from 22 to 55 years. The median weight was 110 kg. Four critical events were recorded during retrieval, with no adverse outcomes. The retrieval distance varied from 20.8 to 430 km. There were delays in times from retrieval booking to both retrieval tasking and retrieval team departure in 88% of retrievals. The most common reasons cited were "patient not ready" 23.5% (4/17); "vehicle not available," 23.5% (4/17); and "complex retrieval," 41.2% (7/17). The median time (hours:minutes) from booking with the medical retrieval unit (MRU) to tasking was 4:35 (interquartile range [IQR] 3:27-6:15). The median time lag from tasking to departure was 1:00 (IQR 00:10-2:20). The median stabilization time was 1:30 (IQR 1:20-1:55). The median retrieval duration was 7:35 (IQR 5:50-10:15). The process of development of ECMO retrieval was enabled by the preexistence of a high-volume experienced medical retrieval service. Although ECMO retrieval is not a new concept, we describe an entire process for ECMO retrieval that we believe will benefit other retrieval service providers. The increased workload of ECMO retrieval during the swine flu pandemic has led to refinement in the system and process for the future.

  6. [Percutaneous catheterization for extracorporeal membrane oxygenation: a retrospective case series].

    PubMed

    Li, X Y; He, H Y; Tang, X; Wang, R; Zhang, C Y; Wang, S Q; Sun, B; Tong, Z H

    2017-09-12

    Objective: To review the experience of percutaneous catheterization for extracorporeal membrane oxygenation (ECMO) by respiratory intensivists at a single institution. Methods: A retrospective review of 87 patients undergoing percutaneous catheterization for ECMO in Department of Respiratory and Critical Care Medicine of Beijing Chaoyang Hospital from November 2009 to January 2017. Subject demographics, type of support, cannulation configuration, types of cannulas, use of imaging modalities, and complications were recorded and summarized. Results: The 87 patients consisted of 61 males and 26 females. The average age was (47±16)years (range 15-82 years ). Fifty-six patients were given ECMO therapy because of acute respiratory distress syndrome(ARDS), and 16 were treated as a bridge for lung transplantation and 15 for other causes. Eighty-one cases were given VV-ECMO support, and 6 cases were given VA-ECMO support. The most commonly used cannulas were 15-17 F arterial cannulas and 21-23 F venous cannulas. Preinsertion ultrasound was performed in 62 patients (71%) . Bedside chest radiography was used to help adjust the position of the end of the cannula in 11 patients (13%). Percutaneous catheterization was successful in 85 cases (97%) , while it failed in 2 female patients due to thick subcutaneous fat layer, and open surgical approach was used. Percutaneous femoral artery collateral circulation was established by ourselves in 5 cases. One patient with femoral artery catheterization without collateral circulation had gangrene of limbs. The complications included 9 cases of catheter site hemorrhage, 4 catheter-related bloodstream infection and 1 pulmonary embolism during ECMO weaning. Conclusion: Percutaneous catheterization for ECMO can be performed with a high rate of success and a low rate of complications.

  7. Calcium homeostasis disorder during and after neonatal extracorporeal membrane oxygenation

    PubMed Central

    Rambaud, Jerome; Guellec, Isabelle; Guilbert, Julia; Léger, Pierre-Louis; Renolleau, Sylvain

    2015-01-01

    Background and Aims: Extracorporeal membrane oxygenation (ECMO) is used during pediatric resuscitation in case of refractory hypoxemia or septic shock under maximum therapy. Previous studies describe calcium homeostasis dysregulation. The aim of this study was to confirmed of calcium homeostasis dysregulation in neonates under ECMO and supposed news explanation. Subjects and Methods: From November 2012 to July 2013, we performed a prospective single center observational study. Eleven neonatal patients were included. Blood was obtained before and during ECMO (day 7, 14 and 21) for parathyroid hormone (PTH), protein adjusted serum calcium, ionized calcium, magnesium, and calcitriol levels. All surviving patients underwent a consultation up to 6 months after ECMO weaning. Results: During ECMO PTH was inadequately high with normal serum calcium on day 7 (PTH: 73.54 ± 40 ng/l; calcemia: 2.33 ± 0.21 mmol/l), day 14 (PTH: 57.63 ± 29.57 ng/l; calcemia: 2.44 ± 0.43 mmol/l) and day 21 (PTH: 54.93 ± 8.43 ng/l; calcemia: 2.13 ± 0.09 mmol/l). The absence of correlation between serum calcium and PTH levels seem to confirm the dysregulation of PTH - serum calcium metabolism during ECMO. Six months after ECMO weaning, we noticed hypercalcemia with normal PTH. Conclusions: We confirmed the existence of severe disturbances of calcium homeostasis in neonates on ECMO and supposed the possible damage of calcium regulation. We did not succeed in finding clear explanations of these disturbances. PMID:26430336

  8. Fate of the reconstructed carotid artery after extracorporeal membrane oxygenation.

    PubMed

    Levy, M S; Share, J C; Fauza, D O; Wilson, J M

    1995-07-01

    Reconstruction of the right common carotid artery has been shown to be feasible in neonates after extracorporeal membrane oxygenation (ECMO). However, the long-term outcome after carotid artery reconstruction (CAR) remains unknown. The purpose of this study was to evaluate the natural progression of the anastomotic site after CAR. Between February 1990 and June 1993, 201 patients received ECMO. All veno-arterial (VA) ECMO patients (n = 172) were considered candidates for reconstruction unless a significant neurological event (ie, intracranial hemorrhage, stroke) had occurred; the duration of ECMO exceeded 10 days, making carotid mobilization difficult; or the patient's prognosis was deemed poor. Reconstruction was performed by excising the arteriotomy site, followed by primary end-to-end anastomosis. Reconstruction was abandoned and the artery ligated if an intimal flap, arterial thrombosis, or excessive tension was encountered. After reconstruction all patients had early carotid ultrasonography and either head computed tomography (CT) or magnetic resonance imaging (MRI). Subsequent ultrasound examinations were performed at approximately 6-month intervals. Diameter index (DI) (a measure of anastomotic narrowing) was calculated using ultrasound by dividing the anastomotic diameter by the diameter of the carotid artery 5 mm proximal to the anastomosis. Forty-three of 172 VA ECMO patients (25%) had successful reconstruction. Long-term follow-up data were available on 27 patients. These 27 patients had 39 ultrasound examinations, with an average follow-up time of 7.3 months (range, 4 days to 29 months). All carotid arteries were patent. Linear regression analysis showed significant improvement in the DI with time (P = .0001, r2 = .382).(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Examining Noncardiac Surgical Procedures in Patients on Extracorporeal Membrane Oxygenation.

    PubMed

    Taghavi, Sharven; Jayarajan, Senthil N; Mangi, Abeel A; Hollenbach, Kathryn; Dauer, Elizabeth; Sjoholm, Lars O; Pathak, Abhijit; Santora, Thomas A; Goldberg, Amy J; Rappold, Joseph F

    2015-01-01

    As extracorporeal membrane oxygenation (ECMO) is increasingly used for patients with cardiac and/or pulmonary failure, the need for noncardiac surgical procedures (NCSPs) in these patients will continue to increase. This study examined the NCSP required in patients supported with ECMO and determined which variables affect outcomes. The National Inpatient Sample Database was examined for patients supported with ECMO from 2007 to 2010. There were 563 patients requiring ECMO during the study period. Of these, 269 (47.8%) required 380 NCSPs. There were 149 (39.2%) general surgical procedures, with abdominal exploration/bowel resection (18.2%) being most common. Vascular (29.5%) and thoracic procedures (23.4%) were also common. Patients requiring NCSP had longer median length of stay (15.5 vs. 9.2 days, p = 0.001), more wound infections (7.4% vs. 3.7%, p = 0.02), and more bleeding complications (27.9% vs. 17.3%, p = 0.01). The incidences of other complications and inpatient mortality (54.3% vs. 58.2%, p = 0.54) were similar. On logistic regression, the requirement of NCSPs was not associated with mortality (odds ratio [OR]: 0.91, 95% confidence interval [CI]: 0.68-1.23, p = 0.17). However, requirement of blood transfusion was associated with mortality (OR: 1.70, 95% CI: 1.06-2.74, p = 0.03). Although NCSPs in patients supported with ECMO does not increase mortality, it results in increased morbidity and longer hospital stay.

  10. Does Membrane Thickness Affect the Transport of Selective Ions Mediated by Ionophores in Synthetic Membranes?

    PubMed

    Lomora, Mihai; Dinu, Ionel Adrian; Itel, Fabian; Rigo, Serena; Spulber, Mariana; Palivan, Cornelia G

    2015-08-31

    Biomimetic polymer nanocompartments (polymersomes) with preserved architecture and ion-selective membrane permeability represent cutting-edge mimics of cellular compartmentalization. Here it is studied whether the membrane thickness affects the functionality of ionophores in respect to the transport of Ca(2+) ions in synthetic membranes of polymersomes, which are up to 2.6 times thicker than lipid membranes (5 nm). Selective permeability toward calcium ions is achieved by proper insertion of ionomycin, and demonstrated by using specific fluorescence markers encapsulated in their inner cavities. Preservation of polymersome architecture is shown by a combination of light scattering, transmission electron microscopy, and fluorescence spectroscopy. By using a combination of stopped-flow and fluorescence spectroscopy, it is shown that ionomycin can function and transport calcium ions across polymer membranes with thicknesses in the range 10.7-13.4 nm (7.1-8.9 times larger than the size of the ionophore). Thicker membranes induce a decrease in transport, but do not block it due to the intrinsic flexibility of these synthetic membranes. The design of ion selective biomimetic nanocompartments represents a new path toward the development of cellular ion nanosensors and nano-reactors, in which calcium sensitive biomacromolecules can be triggered for specific biological functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Extended friction elucidates the breakdown of fast water transport in graphene oxide membranes

    NASA Astrophysics Data System (ADS)

    Montessori, A.; Amadei, C. A.; Falcucci, G.; Sega, M.; Vecitis, C. D.; Succi, S.

    2016-12-01

    The understanding of water transport in graphene oxide (GO) membranes stands out as a major theoretical problem in graphene research. Notwithstanding the intense efforts devoted to the subject in the recent years, a consolidated picture of water transport in GO membranes is yet to emerge. By performing mesoscale simulations of water transport in ultrathin GO membranes, we show that even small amounts of oxygen functionalities can lead to a dramatic drop of the GO permeability, in line with experimental findings. The coexistence of bulk viscous dissipation and spatially extended molecular friction results in a major decrease of both slip and bulk flow, thereby suppressing the fast water transport regime observed in pristine graphene nanochannels. Inspection of the flow structure reveals an inverted curvature in the near-wall region, which connects smoothly with a parabolic profile in the bulk region. Such inverted curvature is a distinctive signature of the coexistence between single-particle zero-temperature (noiseless) Langevin friction and collective hydrodynamics. The present mesoscopic model with spatially extended friction may offer a computationally efficient tool for future simulations of water transport in nanomaterials.

  12. Electrochemical control of ion transport through a mesoporous carbon membrane

    SciTech Connect

    Surwade, Sumedh P; Chai, Songhai; Choi, Jai-Pil; Wang, Xiqing; Lee, Jeseung; Vlassiouk, Ivan V; Mahurin, Shannon Mark; Dai, Sheng

    2014-01-01

    The transport of fluids through nanometer scale channels typically on the order of 1 -100 nm often exhibit unique properties compared to the bulk fluid. These phenomena occur because the channel dimensions and molecular size become comparable to the range of several important forces including electrostatic and van der Waals forces. Small changes in properties such as the electric double layer or surface charge can significantly affect molecular transport through the channels. Based on these emerging properties, a variety of nanofluidic devices such as nanofluidic transistors, nanofluidic diodes or lab-on-a-chip devices have been developed3-7 with a diverse range of applications including water purification, biomolecular sensing, DNA separation, and rectified ion transport. Nanofluidic devices are typically fabricated using expensive lithography techniques or sacrificial templates. Here we report a carbon-based, three-dimensional nanofluidic transport membrane that enables gated, or on/off, control of the transport of organic molecular species and metal ions using an applied electrical potential. In the absence of an applied potential, both cationic and anionic molecules freely diffuse across the membrane via a concentration gradient. However, when an electrochemical potential is applied, the transport of ions through the membrane is inhibited.

  13. Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis.

    PubMed

    Kell, Douglas B; Swainston, Neil; Pir, Pınar; Oliver, Stephen G

    2015-04-01

    Because they mainly do not involve chemical changes, membrane transporters have been a Cinderella subject in the biotechnology of small molecule production, but this is a serious oversight. Influx transporters contribute significantly to the flux towards product, and efflux transporters ensure the accumulation of product in the much greater extracellular space of fermentors. Programmes for improving biotechnological processes might therefore give greater consideration to transporters than may have been commonplace. Strategies for identifying important transporters include expression profiling, genome-wide knockout studies, stress-based selection, and the use of inhibitors. In addition, modern methods of directed evolution and synthetic biology, especially those effecting changes in energy coupling, offer huge opportunities for increasing the flux towards extracellular product formation by transporter engineering. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Enhanced Adhesion of Campylobacter jejuni to Abiotic Surfaces Is Mediated by Membrane Proteins in Oxygen-Enriched Conditions

    PubMed Central

    Sulaeman, Sheiam; Hernould, Mathieu; Schaumann, Annick; Coquet, Laurent; Bolla, Jean-Michel; Dé, Emmanuelle; Tresse, Odile

    2012-01-01

    Campylobacter jejuni is responsible for the major foodborne bacterial enteritis in humans. In contradiction with its fastidious growth requirements, this microaerobic pathogen can survive in aerobic food environments, suggesting that it must employ a variety of protection mechanisms to resist oxidative stress. For the first time, C. jejuni 81–176 inner and outer membrane subproteomes were analyzed separately using two-dimensional protein electrophoresis (2-DE) of oxygen-acclimated cells and microaerobically grown cells. LC-MS/MS analyses successfully identified 42 and 25 spots which exhibited a significantly altered abundance in the IMP-enriched fraction and in the OMP-enriched fraction, respectively, in response to oxidative conditions. These spots corresponded to 38 membrane proteins that could be grouped into different functional classes: (i) transporters, (ii) chaperones, (iii) fatty acid metabolism, (iv) adhesion/virulence and (v) other metabolisms. Some of these proteins were up-regulated at the transcriptional level in oxygen-acclimated cells as confirmed by qRT-PCR. Downstream analyses revealed that adhesion of C. jejuni to inert surfaces and swarming motility were enhanced in oxygen-acclimated cells or paraquat-stressed cells, which could be explained by the higher abundance of membrane proteins involved in adhesion and biofilm formation. The virulence factor CadF, over-expressed in the outer membrane of oxygen-acclimated cells, contributes to the complex process of C. jejuni adhesion to inert surfaces as revealed by a reduction in the capability of C. jejuni 81–176 ΔCadF cells compared to the isogenic strain. Taken together, these data demonstrate that oxygen-enriched conditions promote the over-expression of membrane proteins involved in both the biofilm initiation and virulence of C. jejuni. PMID:23029510

  15. Host-microbe interactions via membrane transport systems.

    PubMed

    Konishi, Hiroaki; Fujiya, Mikihiro; Kohgo, Yutaka

    2015-04-01

    Living organisms take in essential molecules and get rid of wastes effectively through the selective transport of materials. Especially in the digestive tract, advanced transport systems are indispensable for the absorption of nutrients and elimination of waste products. These transport pathways control physiological functions by modulating the ionic environment inside and outside the cells. Moreover, recent studies have shown the importance of the expression of trafficking-related molecules and the population of gut microbiota. We found that the molecules secreted from microorganisms are imported into the cells via transporters or endocytosis and that they activate cell survival pathways of intestinal epithelial cells. These findings indicate that the interactions between the gut microbiota and host cells are mediated, at least partly, by the membrane transport systems. In addition, it is well known that the breakdown of transport systems induces various diseases. This review highlights the significance of the transport systems as the pathogenic molecules and therapeutic targets in gastrointestinal disorders. For example, abnormal expression of the genes encoding membrane transport-related molecules is frequently involved in digestive diseases, such as colorectal cancer and inflammatory bowel disease. We herein review the significance of these molecules as pathogenic and therapeutic targets for digestive diseases.

  16. Facilitated transport of small molecules and ions for energy-efficient membranes.

    PubMed

    Li, Yifan; Wang, Shaofei; He, Guangwei; Wu, Hong; Pan, Fusheng; Jiang, Zhongyi

    2015-01-07

    In nature, the biological membrane can selectively transport essential small molecules/ions through facilitated diffusion via carrier proteins. Intrigued by this phenomenon and principle, membrane researchers have successfully employed synthetic carriers and carrier-mediated reversible reactions to enhance the separation performance of synthetic membranes. However, the existing facilitated transport membranes as well as the relevant facilitated transport theories have scarcely been comprehensively reviewed in the literature. This tutorial review primarily covers the two aspects of facilitated transport theories: carrier-mediated transport mechanisms and facilitated transport chemistries, including the design and fabrication of facilitated transport membranes. The applications of facilitated transport membranes in energy-intensive membrane processes (gas separation, pervaporation, and proton exchange membrane fuel cells) have also been discussed. Hopefully, this review will provide guidelines for the future research and development of facilitated transport membranes with high energy efficiency.

  17. The transport along membrane nanotubes driven by the spontaneous curvature of membrane components.

    PubMed

    Kabaso, Doron; Bobrovska, Nataliya; Góźdź, Wojciech; Gongadze, Ekaterina; Kralj-Iglič, Veronika; Zorec, Robert; Iglič, Aleš

    2012-10-01

    Intercellular membrane nanotubes (ICNs) serve as a very specific transport system between neighboring cells. The underlying mechanisms responsible for the transport of membrane components and vesicular dilations along the ICNs are not clearly understood. The present study investigated the spatial distribution of anisotropic membrane components of tubular shapes and isotropic membrane components of spherical shapes. Experimental results revealed the preferential distribution of CTB (cholera toxin B)-GM1 complexes mainly on the spherical cell membrane, and cholesterol-sphingomyelin at the membrane leading edge and ICNs. In agreement with previous studies, we here propose that the spatial distribution of CTB-GM1 complexes and cholesterol-sphingomyelin rafts were due to their isotropic and anisotropic shapes, respectively. To elucidate the relationship between a membrane component shape and its spatial distribution, a two-component computational model was constructed. The minimization of the membrane bending (free) energy revealed the enrichment of the anisotropic component along the ICN and the isotropic component in the parent cell membrane, which was due to the curvature mismatch between the ICN curvature and the spontaneous curvature of the isotropic component. The equations of motion, derived from the differentiation of the membrane free energy, revealed a curvature-dependent flux of the isotropic component and a curvature-dependent force exerted on a vesicular dilation along the ICN. Finally, the effects of possible changes in the orientational ordering of the anisotropic component attendant to the transport of the vesicular dilation were discussed with connection to the propagation of electrical and chemical signals. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Molecular level water and solute transport in reverse osmosis membranes

    NASA Astrophysics Data System (ADS)

    Lueptow, Richard M.; Shen, Meng; Keten, Sinan

    2015-11-01

    The water permeability and rejection characteristics of six solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polymeric reverse osmosis (RO) membrane using non-equilibrium molecular dynamics simulations. Results indicate that water flux increases with an increasing fraction of percolated free volume in the membrane polymer structure. Solute molecules display Brownian motion and hop from pore to pore as they pass through the membrane. The solute rejection depends on both the size of the solute molecule and the chemical interaction of the solute with water and the membrane. When the open spaces in the polymeric structure are such that solutes have to shed at least one water molecule from their solvation shell to pass through the membrane molecular structure, the water-solute pair interaction energy governs solute rejection. Organic solutes more easily shed water molecules than ions to more readily pass through the membrane. Hydrogen-bonding sites for molecules like urea also lead to a higher rejection. These findings underline the importance of the solute's solvation shell and solute-water-membrane chemistry in solute transport and rejection in RO membranes. Funded by the Institute for Sustainability and Energy at Northwestern with computing resources from XSEDE (NSF grant ACI-1053575).

  19. Transmembrane transport of peptidoglycan precursors across model and bacterial membranes.

    PubMed

    van Dam, Vincent; Sijbrandi, Robert; Kol, Matthijs; Swiezewska, Ewa; de Kruijff, Ben; Breukink, Eefjan

    2007-05-01

    Translocation of the peptidoglycan precursor Lipid II across the cytoplasmic membrane is a key step in bacterial cell wall synthesis, but hardly understood. Using NBD-labelled Lipid II, we showed by fluorescence and TLC assays that Lipid II transport does not occur spontaneously and is not induced by the presence of single spanning helical transmembrane peptides that facilitate transbilayer movement of membrane phospholipids. MurG catalysed synthesis of Lipid II from Lipid I in lipid vesicles also did not result in membrane translocation of Lipid II. These findings demonstrate that a specialized protein machinery is needed for transmembrane movement of Lipid II. In line with this, we could demonstrate Lipid II translocation in isolated Escherichia coli inner membrane vesicles and this transport could be uncoupled from the synthesis of Lipid II at low temperatures. The transport process appeared to be independent from an energy source (ATP or proton motive force). Additionally, our studies indicate that translocation of Lipid II is coupled to transglycosylation activity on the periplasmic side of the inner membrane.

  20. Theory for reactive solute transport through clay membrane barriers

    NASA Astrophysics Data System (ADS)

    Malusis, Michael A.; Shackelford, Charles D.

    2002-12-01

    The theoretical development for one-dimensional, coupled migration of solutes with different ionic mobilities through clay soils that behave as ion-restrictive membranes, referred to as clay membrane barriers (CMBs), is presented. The transport formulation is based on principles of irreversible thermodynamics and accounts explicitly for coupling effects of hyperfiltration (ultrafiltration) and chemico-osmotic counter-advection associated with clay membrane behavior in the absence of electrical current. Since, by definition, no solute can enter a "perfect" or "ideal" membrane, the concept of an implicit coupling effect, such that the effective salt-diffusion coefficient, Ds* approaches zero as the chemico-osmotic efficiency coefficient, ω approaches unity is introduced. The theoretical development also illustrates that, even in the absence of membrane behavior, traditional advective-dispersive transport theory based on a constant value of Ds* for the solutes may not be appropriate for simulating transient transport in reactive (ion exchanging) systems. This potential limitation is illustrated through simulations for solute mass flux involving the migration of a binary salt solution (KCl) through a clay barrier with exchange sites saturated with a single exchangeable cation (e.g., Na +) that enters the pore solution upon ion exchange with the salt cation (K +).

  1. Prognostic value of cerebral tissue oxygen saturation during neonatal extracorporeal membrane oxygenation

    PubMed Central

    Clair, Marie-Philippine; Rambaud, Jérôme; Flahault, Adrien; Guedj, Romain; Guilbert, Julia; Guellec, Isabelle; Durandy, Amélie; Demoulin, Maryne; Jean, Sandrine; Mitanchez, Delphine; Chalard, François; Sileo, Chiara; Carbajal, Ricardo; Renolleau, Sylvain

    2017-01-01

    Objectives Extracorporeal membrane oxygenation support is indicated in severe and refractory respiratory or circulatory failures. Neurological complications are typically represented by acute ischemic or hemorrhagic lesions, which induce higher morbidity and mortality. The primary goal of this study was to assess the prognostic value of cerebral tissue oxygen saturation (StcO2) on mortality in neonates and young infants treated with ECMO. A secondary objective was to evaluate the association between StcO2 and the occurrence of cerebral lesions. Study design This was a prospective study in infants < 3 months of age admitted to a pediatric intensive care unit and requiring ECMO support. Measurements The assessment of cerebral perfusion was made by continuous StcO2 monitoring using near-infrared spectroscopy (NIRS) sensors placed on the two temporo-parietal regions. Neurological lesions were identified by MRI or transfontanellar echography. Results Thirty-four infants <3 months of age were included in the study over a period of 18 months. The ECMO duration was 10±7 days. The survival rate was 50% (17/34 patients), and the proportion of brain injuries was 20% (7/34 patients). The mean StcO2 during ECMO in the non-survivors was reduced in both hemispheres (p = 0.0008 right, p = 0.03 left) compared to the survivors. StcO2 was also reduced in deceased or brain-injured patients compared to the survivors without brain injury (p = 0.002). Conclusion StcO2 appears to be a strong prognostic factor of survival and of the presence of cerebral lesions in young infants during ECMO. PMID:28278259

  2. Using membrane transporters to improve crops for sustainable food production

    USDA-ARS?s Scientific Manuscript database

    With the global population predicted to grow by at least 25% by 2050, the need for sustainable production of nutritious foods is critical for human and environmental well-being. Recent advances show that specialized plant membrane transporters can be utilized to enhance yields of staple crops, incre...

  3. Pyrithione and 8-hydroxyquinolines transport lead across erythrocyte membranes.

    PubMed

    Lind, Stuart E; Park, Jong Sung; Drexler, John W

    2009-09-01

    Acute and chronic lead poisoning remains a significant health problem. Although chelating agents can bind to plasma lead, they cannot cross cell membranes where the total body lead burden resides, and are thus inefficient at reducing the total body lead burden. Recently, calcium and sodium ionophores have been shown to transport lead across cell membranes providing a novel method for reducing total body lead stores. We recently found that clioquinol, an 8-hydroxyquinoline derivative, can act as a zinc ionophore. We postulated that zinc ionophores might also be able to transport lead across biological membranes. To study this, we loaded lead in vitro into human erythrocytes and then studied the ability of zinc ionophores to transport lead into the extracellular space, where it was trapped with a lead chelator. Using inductively coupled plasma mass spectrometry (ICP-MS), we found that several 8-hydroxyquinoline derivatives, as well as the zinc and sodium salts of pyrithione (N-hydroxypyridine-2-thione), reduced erythrocyte lead content. The water-soluble compound, sodium pyrithione, was able to reduce lead in citrated whole blood, without partitioning into the erythrocytes. These results indicate that two classes of zinc ionophores can transport lead across a biological membrane, and they confirm that these ionophores are not cation-specific. Lead ionophores may prove useful in mobilizing lead into the extracellular space, thereby improving the efficacy of chelation therapy, in vivo or ex vivo.

  4. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  5. Effects of gemfibrozil on the oxygen transport properties of erythrocytes.

    PubMed Central

    Scatena, R; Nocca, G; Messana, I; De Sole, P; Baroni, S; Zuppi, C; Castagnola, M; Giardina, B

    1995-01-01

    1. In the present study we have investigated the effects of the relatively low plasma concentrations of gemfibrozil (GFZ) found in clinical practice on the oxygen dissociation curve (ODC) of erythrocytes. 2. ODCs were measured at 30 degrees C and 37 degrees C and at pH 7.4: a) both on HbA solution and erythrocytes incubated in vitro with gemfibrozil and clofibric acid; b) on erythrocytes from healthy volunteers treated with a single oral dose of gemfibrozil. 3. These experiments showed a significant drug-induced shift of the ODC towards lower O2 affinity values without any significant modification of metabolic parameters of erythrocytes such as intracellular pH and intraerythrocytic levels of ATP and DPG. 4. In our experimental conditions gemfibrozil appears to lower both in vitro and in vivo, the partial pressure of oxygen required to give 50% of the haemes saturated with oxygen (P50) of erythrocytes from the control value of 24 +/- 0.5 mm Hg to 29 +/- 0.5 mm Hg (mean +/- s.d.; P < 0.02 by ANOVA). 5. These data clearly indicate that therapeutic doses of gemfibrozil may influence the oxygen transport properties of red cells. This effect could have relevant pharmacological and toxicological implications. PMID:7756095

  6. Feed gas contaminant control in ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Minford, Eric; Waldron, William Emil

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  7. Multicomponent Transport through Realistic Zeolite Membranes: Characterization & Transport in Nanoporous Networks

    SciTech Connect

    William C. Conner

    2007-08-02

    These research studies focused on the characterization and transport for porous solids which comprise both microporosity and mesoporosity. Such materials represent membranes made from zeolites as well as for many new nanoporous solids. Several analytical sorption techniques were developed and evaluated by which these multi-dimensional porous solids could be quantitatively characterized. Notably an approach by which intact membranes could be studied was developed and applied to plate-like and tubular supported zeolitic membranes. Transport processes were studied experimentally and theoretically based on the characterization studies.

  8. Mechanistic equations for membrane transport of multicomponent solutions.

    PubMed

    Suchanek, G

    2006-03-01

    In the present article, mechanistic equations for membrane transport of N + 1-component solutions have been derived. The major specific investigation result is the introduction - for ternary solutions - of two diffusion coefficients omega(d1) and omega(d2) for solutes, as well as two cross coefficients omega(d12) and omega(d21) for these solutes. The latter parameters may be treated as coefficients of interdiffusion. The expansion of the description of substance transport to include the N + 1-component solutions does not formulate any additional physical phenomena other than those which are formulated by the transport equations for three-component solutions.

  9. Study of the oxygen transport through Ag (110), Ag (poly), and Ag 2.0 Zr

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Wu, D.; Davidson, M. R.; Hoflund, Gar B.

    1992-01-01

    The transport of oxygen through high-purity membranes of Ag (110), Ag (poly), Ag (nano), and Ag 2.0 Zr has been studied by an ultrahigh vacuum permeation method over the temperature range of 400-800 C. The data show that there are substantial deviations from ordinary diffusion-controlled transport. A surface limitation has been confirmed by glow-discharge studies where the upstream O2 supply has been partially converted to atoms, which, for the same temperature and pressure, gave rise to over an order of magnitude increase in transport flux. Further, the addition of 2.0 wt percent Zr to the Ag has provided increased dissociative adsorption rates, which, in turn, increased the transport flux by a factor of 2. It was also observed that below a temperature of 630 C, the diffusivity exhibits an increase in activation energy of over 4 kcal/mol, which has been attributed to trapping of the atomic oxygen and/or kinetic barriers at the surface and subsurface of the vacuum interface. Above 630 C, the activation barrier decreases to the accepted value of about 11 kcal/mol for Ag (poly), consistent with zero concentration at the vacuum interface.

  10. Nanocapillary Membrane Devices: A Study in Electrokinetic Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod

    There is considerable interest in developing micro-total analysis systems, also known as lab-on-a-chip devices, for applications in chemical and biological analysis. These devices often employ electrokinetic transport phenomena to move, mix, concentrate and separate dissolved species. The details of these phenomena in micro- and nanometer scale geometries are not fully understood; consequently, the basic principles of device operation are often unclear. For example, nanocapillary membranes (NCM) and other nanometer-sized passages can exhibit charge-selectivity and rectification effects similar to those observed in biological membranes. This dissertation addresses several issues related to ion transport in these membranes. Leading-order 1D steady-state models for diffusion-layer modulated transport through non-ideal membranes are used to study ionic rectification in geometrically asymmetric devices. These models provide qualitative explanations of the operation of a variety of fluidic rectifiers and experimentally observed hysteresis effects. By taking the first steps in the full boundary-layer analysis of the model, it is shown that non-ideal membranes do not maintain local electro-neutrality under passage of electric current. This is in contrast to the usual assumption of membrane local electro-neutrality, but is compatible with the existence of the non-equilibrium macroscopic space charge known to appear in the flanking electrolyte and the requirement of overall charge conservation. Lastly, the problem of electrokinetic instability due to non-equilibrium electro-osmotic slip is considered for the case of an electrolyte-membrane interface inside a 2D channel.

  11. Human membrane transporter database: a Web-accessible relational database for drug transport studies and pharmacogenomics.

    PubMed

    Yan, Q; Sadée, W

    2000-01-01

    The human genome contains numerous genes that encode membrane transporters and related proteins. For drug discovery, development, and targeting, one needs to know which transporters play a role in drug disposition and effects. Moreover, genetic polymorphisms in human membrane transporters may contribute to interindividual differences in the response to drugs. Pharmacogenetics, and, on a genome-wide basis, pharmacogenomics, address the effect of genetic variants on an individual's response to drugs and xenobiotics. However, our knowledge of the relevant transporters is limited at present. To facilitate the study of drug transporters on a broad scale, including the use of microarray technology, we have constructed a human membrane transporter database (HMTD). Even though it is still largely incomplete, the database contains information on more than 250 human membrane transporters, such as sequence, gene family, structure, function, substrate, tissue distribution, and genetic disorders associated with transporter polymorphisms. Readers are invited to submit additional data. Implemented as a relational database, HMTD supports complex biological queries. Accessible through a Web browser user interface via Common Gateway Interface (CGI) and Java Database Connection (JDBC), HMTD also provides useful links and references, allowing interactive searching and downloading of data. Taking advantage of the features of an electronic journal, this paper serves as an interactive tutorial for using the database, which we expect to develop into a research tool.

  12. Structure and Function of Thyroid Hormone Plasma Membrane Transporters

    PubMed Central

    Schweizer, Ulrich; Johannes, Jörg; Bayer, Dorothea; Braun, Doreen

    2014-01-01

    Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model. PMID:25538896

  13. Structure and function of thyroid hormone plasma membrane transporters.

    PubMed

    Schweizer, Ulrich; Johannes, Jörg; Bayer, Dorothea; Braun, Doreen

    2014-09-01

    Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model.

  14. Pressure pyrolysed non-precious oxygen reduction catalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Nallathambi, Vijayadurga

    2011-12-01

    and increased the porosity, particularly micro and mesopores of the catalysts that led to increased active site density and reduced oxygen transport hindrances respectively. Collaborative efforts with the University of New Mexico facilitated XPS characterization of MNC catalysts. XPS analyses indicated that pyridinic nitrogen sites, present in the edge plane of the catalysts and pyridinic nitrogen coordinated to transition metals correlated to oxygen reduction activity. Further insight into the role of transition metal and the structure of active site was gained through EXAFS measurements, carried out in collaboration with Northeastern University. Electrochemical studies performed in the presence of poisoning anions such as cyanide in alkaline environment indicated a 25% decrease in oxygen reduction activity, suggesting that the metal is part of the active sites and participates in oxygen reduction. In-situ EXAFS analysis of the catalysts indicated the active reaction site for oxygen reduction to be Fe metal coordinated to 4 nitrogen atoms. These low cost MNC catalysts find direct application in Proton Exchange Membrane Fuel cells for transportation applications, where there is a huge drive to improve the economy of the fuel cell by reducing the costs associated with state-of the art platinum-based catalysts.

  15. Reverse Engineering of Oxygen Transport in the Lung: Adaptation to Changing Demands and Resources through Space-Filling Networks

    PubMed Central

    Hou, Chen; Gheorghiu, Stefan; Huxley, Virginia H.; Pfeifer, Peter

    2010-01-01

    The space-filling fractal network in the human lung creates a remarkable distribution system for gas exchange. Landmark studies have illuminated how the fractal network guarantees minimum energy dissipation, slows air down with minimum hardware, maximizes the gas- exchange surface area, and creates respiratory flexibility between rest and exercise. In this paper, we investigate how the fractal architecture affects oxygen transport and exchange under varying physiological conditions, with respect to performance metrics not previously studied. We present a renormalization treatment of the diffusion-reaction equation which describes how oxygen concentrations drop in the airways as oxygen crosses the alveolar membrane system. The treatment predicts oxygen currents across the lung at different levels of exercise which agree with measured values within a few percent. The results exhibit wide-ranging adaptation to changing process parameters, including maximum oxygen uptake rate at minimum alveolar membrane permeability, the ability to rapidly switch from a low oxygen uptake rate at rest to high rates at exercise, and the ability to maintain a constant oxygen uptake rate in the event of a change in permeability or surface area. We show that alternative, less than space-filling architectures perform sub-optimally and that optimal performance of the space-filling architecture results from a competition between underexploration and overexploration of the surface by oxygen molecules. PMID:20865052

  16. Resuscitation of prolonged cardiac arrest from massive pulmonary embolism by extracorporeal membrane oxygenation.

    PubMed

    Kim, Yun Seok; Choi, Wookjin; Hwang, Jaecheol

    2017-01-10

    Extracorporeal cardiopulmonary resuscitation can be used as a rescue strategy in cases of prolonged cardiac arrest caused by massive pulmonary embolism. We present a case of a male patient who was in prolonged cardiac arrest following massive pulmonary embolism. Veno-arterial extracorporeal membrane oxygenation was initiated approximately 93 min after prolonged cardiopulmonary resuscitation. After resuscitation, bedside echocardiography and a chest computed tomography angiogram revealed a massive pulmonary embolism during extracorporeal membrane oxygenation support. The patient received transcatheter mechanical thrombectomy without haemodynamic instability in extracorporeal membrane oxygenation support. He was also treated with therapeutic hypothermia to improve neurological outcome. Renal replacement therapy for acute kidney injury was continued for 36 days. The patient was discharged at 60 days after admission with no serious complications. This case demonstrates that veno-arterial extracorporeal membrane oxygenation and therapeutic hypothermia are an effective treatment strategy for prolonged cardiac arrest caused by massive pulmonary embolism.

  17. Barriers to superfast water transport in carbon nanotube membranes.

    PubMed

    Walther, Jens H; Ritos, Konstantinos; Cruz-Chu, Eduardo R; Megaridis, Constantine M; Koumoutsakos, Petros

    2013-05-08

    Carbon nanotube (CNT) membranes hold the promise of extraordinary fast water transport for applications such as energy efficient filtration and molecular level drug delivery. However, experiments and computations have reported flow rate enhancements over continuum hydrodynamics that contradict each other by orders of magnitude. We perform large scale molecular dynamics simulations emulating for the first time the micrometer thick CNTs membranes used in experiments. We find transport enhancement rates that are length dependent due to entrance and exit losses but asymptote to 2 orders of magnitude over the continuum predictions. These rates are far below those reported experimentally. The results suggest that the reported superfast water transport rates cannot be attributed to interactions of water with pristine CNTs alone.

  18. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension.

    PubMed

    Niederman, Robert A

    2013-10-01

    for membrane development studies in Rba. sphaeroides, the lowering of oxygen tension in chemoheterotropically growing cells results in a gratuitous formation of the ICM by an extensive membrane biogenesis process. These membrane alterations in response to lowered illumination and oxygen levels in purple bacteria are under the control of a number of interrelated two-component regulatory circuits reviewed here, which act at the transcriptional level to regulate the formation of both the pigment and apoprotein components of the LH, RC, and respiratory complexes. We have performed a proteomic examination of the ICM development process in which membrane proteins have been identified that are temporally expressed both during adaptation to low light intensity and ICM formation at low aeration and are spatially localized in both growing and mature ICM regions. For these proteomic analyses, membrane growth initiation sites and mature ICM vesicles were isolated as respective upper-pigmented band (UPB) and chromatophore fractions and subjected to clear native electrophoresis for isolation of bands containing the LH2 and RC-LH1 core complexes. In chromatophores, increasing levels of LH2 polypeptides relative to those of the RC-LH1 complex were observed as ICM membrane development proceeded during light-intensity downshifts, along with a large array of other associated proteins including high spectral counts for the F1FO-ATP synthase subunits and the cytochrome bc1 complex, as well as RSP6124, a protein of unknown function, that was correlated with increasing LH2 spectral counts. In contrast, the UPB was enriched in cytoplasmic membrane (CM) markers, including electron transfer and transport proteins, as well as general membrane protein assembly factors confirming the origin of the UPB from both peripheral respiratory membrane and sites of active CM invagination that give rise to the ICM. The changes in ICM vesicles were correlated to AFM mapping results (Adams and Hunter, Biochim

  19. Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane

    PubMed Central

    Richardson, Ben D.; Saha, Kaustuv; Krout, Danielle; Cabrera, Elizabeth; Felts, Bruce; Henry, L. Keith; Swant, Jarod; Zou, Mu-Fa; Newman, Amy Hauck; Khoshbouei, Habibeh

    2016-01-01

    The dopaminergic system is essential for cognitive processes, including reward, attention and motor control. In addition to DA release and availability of synaptic DA receptors, timing and magnitude of DA neurotransmission depend on extracellular DA-level regulation by the dopamine transporter (DAT), the membrane expression and trafficking of which are highly dynamic. Data presented here from real-time TIRF (TIRFM) and confocal microscopy coupled with surface biotinylation and electrophysiology suggest that changes in the membrane potential alone, a universal yet dynamic cellular property, rapidly alter trafficking of DAT to and from the surface membrane. Broadly, these findings suggest that cell-surface DAT levels are sensitive to membrane potential changes, which can rapidly drive DAT internalization from and insertion into the cell membrane, thus having an impact on the capacity for DAT to regulate extracellular DA levels. PMID:26804245

  20. Facilitated transport membrane hybrid systems for olefin purification

    SciTech Connect

    Davis, J.C.; Valus, R.J.; Eshraghi, R.; Velikoff, A.E.

    1993-01-01

    A new membrane system has been developed by BP for refinery and chemical plant olefin purification and recovery. This facilitated transport system, coupled with distillation, offers lower capital and operating costs than conventional distillation alone. Initial results on lab scale hollow fiber devices indicate membrane flux ranging from 8.75 {times} 10{sup {minus}6} to 8 {times} 10{sup {minus}5} m{sup 3}/m{sup 2}/sec (2.5 to 23 scfd/ft{sub 2}) and selectivities from 150 to 300. Pilot plant experiments on propylene/propane and ethylene purge gas recovery over three to six months duration show membrane stability and product purity of 98.5% or greater using refinery grade propylene feed. Hybrid system optimization data for membranes and distillation indicate that using a side draw from the distillation tower provides advantages in terms of membrane area, purity of feed to the membrane, and low per-pass recovery coupled with high overall propylene recovery. Membrane performance data under various conditions are also presented. In addition to performance data, economic evaluation and energy savings are discussed.

  1. Extracorporeal membrane oxygenation support in post-traumatic cardiopulmonary failure

    PubMed Central

    Lin, Chun-Yu; Tsai, Feng-Chun; Lee, Hsiu-An; Tseng, Yuan-His

    2017-01-01

    Abstract Patients with multiple traumas associated with cardiopulmonary failure have a high mortality rate; however, such patients can be temporarily stabilized using extracorporeal membrane oxygenation (ECMO), providing a bridge to rescue therapy. Using a retrospective study design, we aimed to clarify the prognostic factors of post-traumatic ECMO support. From March 2006 to July 2016, 43 adult patients (mean age, 37.3 ± 15.2 years; 7 females [16.3%]) underwent ECMO because of post-traumatic cardiopulmonary failure. Pre-ECMO demographics, peri-ECMO events, and post-ECMO recoveries were compared between survivors and nonsurvivors. The most common traumatic insult was traffic collision (n = 30, 69.8%), and involved injury areas included the chest (n = 33, 76.7%), head (n = 14, 32.6%), abdomen (n = 21, 48.8%), and fractures (n = 21, 48.8%). Fifteen patients (34.9%) underwent cardiopulmonary resuscitation and 22 (51.2%) received rescue interventions before ECMO deployment. The mean time interval between trauma and ECMO was 90.6 ± 130.1 hours, and the mode of support was venovenous in 26 patients (60.5%). A total of 26 patients (60.5%) were weaned off of ECMO and 22 (51.6%) survived to discharge, with an overall mean support time of 162.9 ± 182.7 hours. A multivariate regression analysis identified 2 significant predictors for in-hospital mortality: an injury severity score (ISS) >30 (odds ratio [OR], 9.48; 95% confidence interval [CI], 1.04–18.47; P = 0.042), and the requirement of renal replacement therapy (RRT) during ECMO (OR, 8.64; 95% CI, 1.73–26.09; P = 0.020). These two factors were also significant for the 1-year survival (ISS >30: 12.5%; ISS ≤30, 48.1%, P = 0.001) (RRT required, 15.0%; RRT not required, 52.2%, P = 0.006). Using ECMO in selected traumatized patients with cardiopulmonary failure can be a salvage therapy. Prompt intervention before shock-impaired systemic organ perfusion and acute

  2. Changes in thyroid hormone concentrations during neonatal extracorporeal membrane oxygenation.

    PubMed

    Leeuwen, L; van Heijst, A F J; van Rosmalen, J; de Rijke, Y B; Beurskens, L W J E; Tibboel, D; van den Akker, E L T; IJsselstijn, H

    2017-08-01

    Thyroid hormone concentrations can be disturbed during critical illness. Our aim was to determine changes in thyroid hormone concentrations during neonatal extracorporeal membrane oxygenation (ECMO). We included 21 ECMO-treated neonates. Age-specific s.d. scores (SDS) of free and total thyroxine (FT4; TT4), reverse and total triiodothyronine (rT3; TT3), thyroid-stimulating hormone (TSH) and thyroxine-binding globulin (TBG) were determined at six fixed time-points. Data were analyzed using general linear models. At baseline, mean SDS FT4 (-0.78, 95% CI: -1.37 to -0.19), TT4 (-1.97, 95% CI: -2.76 to -1.18), TT3 (-0.88, 95% CI: -1.13 to -0.63), TSH (-2.14, 95% CI: -2.93 to -1.35) and TBG (-3.52, 95% CI: -4.55 to -2.50) were low with high mean SDS rT3 (0.53, 95% CI: 0.28 to 0.78). One hour after start ECMO, TT4, TSH and TBG had further declined; 12 h after start ECMO TT3 had declined (all P<0.05). After this decline, mean SDS TSH increased to the baseline level 12 h after start ECMO (-2.50, 95% CI: -3.22 to -1.79), and was higher than baseline 48 h after start ECMO (-0.56, 95% CI: -1.29 to 0.17). This TSH increase was followed by increases in TT4 and TT3. FT4 remained constant within the normal range during ECMO. Thyroid hormone concentrations before ECMO were suggestive of non-thyroidal illness syndrome (NTIS). During ECMO, increases in TSH, TT4 and TT3 after an initial decline possibly reflect spontaneous restoration of the hypothalamic-pituitary-thyroid axis. FT4 remained constant within the normal range. This suggests that thyroxine therapy is not required during ECMO.

  3. Hemolysis-Associated Nitric Oxide Dysregulation during Extracorporeal Membrane Oxygenation

    PubMed Central

    Sulkowski, Jason P.; Cooper, Jennifer N.; Pearson, Erik G.; Connelly, James T.; Rintoul, Natalie; Kilbaugh, Todd J.; Deans, Katherine J.; Minneci, Peter C.

    2014-01-01

    Abstract: Acute intravascular hemolysis during extracorporeal membrane oxygenation (ECMO) leads to increased levels of cell-free hemoglobin (FHb). Our aim was to investigate whether FHb levels are associated with nitric oxide (NO) consumption and clinical outcomes. A prospective observational study was performed involving pediatric patients on ECMO. Blood samples were collected before, during, and after the ECMO run, and plasma was evaluated for FHb, oxyhemoglobin, and NO consumption. Clinical data were collected including baseline patient characteristics, indications for ECMO, circuit changes, and mortality. Correlations between laboratory measures and associations between laboratory measures and clinical observations were evaluated. Twenty-three patients (11 male, 17 neonates) were enrolled with a median weight of 3.1 kg (interquartile range, 2.8–14.0 kg) and median ECMO run of 12 days (interquartile range, 5–19 day). There was a significant increase in FHb over time on ECMO (p = .007), and significant correlations were present between NO consumption and both FHb (r = .41, p = .01) and oxyhemoglobin levels (r = .98, p < .0001). Patients on ECMO for sepsis (n = 6) had lower average levels of oxyhemoglobin (mean [standard deviation {SD}] 14.5 [4.4] versus 19.0 [5.0] μM, p = .07) and NO consumption (mean [SD] 15.8 [4.1] versus 19.8 [3.7] μM, p = .04) during ECMO than patients with other indications. In the 3 days leading up to a circuit change, there were increases in mean total cell-free hemoglobin levels (24%/day, p = .08), oxyhemoglobin (37%/day, p = .005), and NO consumption (40%/day, p = .006) (n = 5). There were no significant associations identified between peak or average plasma measures of hemolysis and type of ECMO (venovenous versus venoarterial) or mortality. For children on ECMO, we observed a strong correlation between increased levels of plasma FHb and elevations in oxyhemoglobin and NO consumption; however, these changes were not associated

  4. Oxygen transport and consumption during experimental cardiopulmonary bypass using oxyfluor.

    PubMed

    Briceño, J C; Rincón, I E; Vélez, J F; Castro, I; Arcos, M I; Velásquez, C E

    1999-01-01

    To evaluate a perfluorocarbon based oxygen carrier (Oxyfluor), a porcine model of cardiopulmonary bypass (CPB) was implemented. Swine (30 kg) were subjected to 2 h of normothermic CPB using Oxyfluor (OF group, n = 8) or Ringer's lactate (RL group, n = 13) as the prime. Mean arterial pressure (MAP) was kept at 50 mm Hg, flow rate at 80 ml x min(-1) x kg(-1), and PaCO2 at 35 mm Hg. Hemodynamic, hematologic, fluid balance, and blood gasimetry variables were measured. Total body oxygen delivery (DO2), consumption (VO2), and the fractional contribution to delivery (FCD) and to consumption (FCC) of the red blood cells (RBC), PFC, and plasma phases were calculated. Mixed venous PO2 (PvO2) was significantly higher at 30 min and 1 h on CPB in the OF group than in the RL group. FCCRBC was significantly lower at 30 min, 1 h, and 90 min on CPB in the OF group than in the RL group. PvjO2, Ca-vO2, Ca-vj O2, and VO2 were slightly higher in the OF group than in the RL group. Tissue fluid accumulation was not alleviated with Oxyfluor, and tissue and brain acidosis were significantly increased in the OF group. This study presented evidence that Oxyfluor improved tissue oxygenation and total body oxygen consumption during experimental CPB. In addition, Oxyfluor reduced FCCRBC, increasing oxygen transport reserve of the RBC phase, which can be useful to reduce hypoxic events during CPB. Further research should be conducted to optimize PFC-OCs for use in CPB and to reduce secondary effects.

  5. A folded protein can be transported across the chloroplast envelope and thylakoid membranes.

    PubMed Central

    Clark, S A; Theg, S M

    1997-01-01

    Many thylakoid lumenal proteins are nuclear encoded, cytosolically synthesized, and reach their functional location after posttranslational targeting across two chloroplast envelope membranes and the thylakoid membrane via proteinaceous transport systems. To study whether these transmembrane transport machineries can translocate folded structures, we overexpressed the 17-kDa subunit of the oxygen-evolving complex of photosystem II (prOE17) that had been modified to contain a unique C-terminal cysteine. This allowed us to chemically link a terminal 6.5-kDa bovine pancreatic trypsin inhibitor (BPTI) moiety to prOE17 to create the chimeric protein prOE17-BPTI. Redox reagents and an irreversible sulfhydryl-specific cross-linker, bis-maleimidohexane, were used to manipulate the structure of BPTI. Import of prOE17-BPTI into isolated chloroplasts and thylakoids demonstrates that the small tightly folded BPTI domain is carried across both the chloroplast envelopes and the delta pH-dependent transmembrane transporter of the thylakoid membrane when linked to the correctly targeted OE17 precursor. Transport proceeded even when the BPTI moiety was internally cross-linked into a protease-resistant form. These data indicate that unfolding is not a ubiquitous requirement for protein translocation and that at least some domains of targeted proteins can maintain a nonlinear structure during their translocation into and within chloroplasts. Images PMID:9168475

  6. Experience and needs of family members of patients treated with extracorporeal membrane oxygenation.

    PubMed

    Tramm, Ralph; Ilic, Dragan; Murphy, Kerry; Sheldrake, Jayne; Pellegrino, Vincent; Hodgson, Carol

    2017-06-01

    To explore the experiences of family members of patients treated with extracorporeal membrane oxygenation. Sudden onset of an unexpected and severe illness is associated with an increased stress experience of family members. Only one study to date has explored the experience of family members of patients who are at high risk of dying and treated with extracorporeal membrane oxygenation. A qualitative descriptive research design was used. A total of 10 family members of patients treated with extracorporeal membrane oxygenation were recruited through a convenient sampling approach. Data were collected using open-ended semi-structured interviews. A six-step process was applied to analyse the data thematically. Four criteria were employed to evaluate methodological rigour. Family members of extracorporeal membrane oxygenation patients experienced psychological distress and strain during and after admission. Five main themes (Going Downhill, Intensive Care Unit Stress and Stressors, Carousel of Roles, Today and Advice) were identified. These themes were explored from the four roles of the Carousel of Roles theme (decision-maker, carer, manager and recorder) that participants experienced. Nurses and other staff involved in the care of extracorporeal membrane oxygenation patients must pay attention to individual needs of the family and activate all available support systems to help them cope with stress and strain. An information and recommendation guide for families and staff caring for extracorporeal membrane oxygenation patients was developed and needs to be applied cautiously to the individual clinical setting. © 2016 John Wiley & Sons Ltd.

  7. Impact of oxygen on the coexistence of nitrification, denitrification, and sulfate reduction in oxygen-based membrane aerated biofilm.

    PubMed

    Liu, Hong; Tan, Shuying; Sheng, Zhiya; Yu, Tong; Liu, Yang

    2015-03-01

    Membrane aerated biofilms (MABs) are subject to "counter diffusion" of oxygen and substrates. In a membrane aerated biofilm reactor, gases (e.g., oxygen) diffuse through the membrane into the MAB, and liquid substrates pass from the bulk liquid into the MAB. This behavior can result in a unique biofilm structure in terms of microbial composition, distribution, and community activity in the MAB. Previous studies have shown simultaneous aerobic oxidation, nitrification, and denitrification within a single MAB. Using molecular techniques, we investigated the growth of sulfate-reducing bacteria (SRB) in the oxygen-based MAB attached to a flat sheet membrane. Denaturing gradient gel electrophoresis of the amplified 16S rRNA gene fragments and functional gene fragments specific for ammonia-oxidizing bacteria (amoA), denitrifying bacteria (nirK), and SRB (dsrB) demonstrated the coexistence of nitrifiers, denitrifiers, and SRB communities within a single MAB. The functional diversities of SRB and denitrifiers decreased with an increase in the oxygen concentration in the bulk water of the reactor.

  8. Transposome mutagenesis of an integral membrane transporter in Corynebacterium matruchotii.

    PubMed

    Wang, Cindy; Hayes, Barry; Vestling, Martha M; Takayama, Kuni

    2006-02-17

    A transposon-5 insertion library of Corynebacterium matruchotii ATCC14266 was generated and screened for mutants with altered corynomycolic acid content. One of these designated 319 mutants showed an interruption of a gene encoding an integral membrane protein. MALDI mass spectra of trehalose monocorynomycolate (TMCM), trehalose dicorynomycolate, and methyl corynomycolates derived from cell wall arabinogalactan-corynomycolate showed that these lipids from the mutant contained a lower amount of short-chain (C24 to C34) and much greater amount of long-chain (primarily C(36:2)) corynomycolic acids than the wild type. An analysis of mRNA demonstrated that the integral membrane protein and ATP-binding cassette transporter are transcriptionally coupled. These results suggested that the proteins/enzymes encoded by the membrane transporter gene locus preferably move short-chain corynomycolic acids from the cytoplasm across the membrane bilayer to the periplasmic space where the synthesis of TMCM is thought to occur. This is the first evidence linking corynomycolic acid to a transporter gene locus.

  9. Transport Mechanisms of Carnosine in SKPT Cells: Contribution of Apical and Basolateral Membrane Transporters

    PubMed Central

    Jappar, Dilara; Hu, Yongjun; Keep, Richard F.; Smith, David E.

    2010-01-01

    Purpose The aim of this study was to investigate the transport properties of carnosine in kidney using SKPT cell cultures as a model of proximal tubular transport, and to isolate the functional activities of renal apical and basolateral transporters in this process. Methods The membrane transport kinetics of 10 µM [3H]carnosine was studied in SKPT cells as a function of time, pH, potential inhibitors and substrate concentration. A cellular compartment model was constructed in which the influx, efflux and transepithelial clearances of carnosine were determined. Peptide transporter expression was probed by RT-PCR. Results Carnosine uptake was 15-fold greater from the apical than basolateral surface of SKPT cells. However, the apical-to-basolateral transepithelial transport of carnosine was severely rate-limited by its cellular efflux across the basolateral membrane. The high-affinity, proton-dependence, concentration-dependence and inhibitor specificity of carnosine supports the contention that PEPT2 is responsible for its apical uptake. In contrast, the basolateral transporter is saturable, inhibited by PEPT2 substrates but non-concentrative, thereby, suggesting a facilitative carrier. Conclusions Carnosine is expected to have a substantial cellular accumulation in kidney but minimal tubular reabsorption in blood because of its high influx clearance across apical membranes by PEPT2 and very low efflux clearance across basolateral membranes. PMID:18820998

  10. Influence of water and membrane microstructure on the transport properties of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Siu, Ana Rosa

    Proton transport in proton exchange membranes (PEMs) depends on interaction between water and acid groups covalently bound to the polymer. Although the presence of water is important in maintaining the PEM's functions, a thorough understanding of this topic is still lacking. The objective of this work is to provide a better understanding of how the nature water, confined to ionic domains of the polymer, influences the membrane's ability to transport protons, methanol and water. Understanding this topic will facilitate development of new materials with favorable transport properties for fuel cells use. Five classes of polymer membranes were used in this work: polyacrylonitrile-graft-poly(styrenesulfonic) acid (PAN-g-macPSSA); poly(vinylidene difluoride) irradiation-graft-poly(styrenesulfonic) acid (PVDF-g-PSSA); poly(ethylenetetrafluoroethylene) irradiation-graft-poly(styrenesulfonic) acid (ETFE-gPSSA); PVDF-g-PSSA with hydroxyethylmethacrylate (HEMA); and perfluorosulfonic acid membrane (Nafion). The nature of water within the polymers (freezable versus non-freezable states) was measured by systematically freezing samples, and observing the temperature at which water freezes and the amount of heat released in the process. Freezing water-swollen membranes resulted in a 4-fold decrease in the proton conductivity of the PEM. Activation energies of proton transport before and after freezing were ˜ 0.15 eV and 0.5 eV, consistent with proton transport through liquid water and bound water, respectively. Reducing the content of water in membrane samples decreased the amount of freezable and non-freezable water. Calorimetric measurements of membranes in various degrees of hydration showed that water molecules became non-freezable when lambda, (water molecules per sulfonic acid group) was less than ˜14. Proton conduction through membranes containing only non-freezable water was demonstrated to be feasible. Diffusion experiments showed that the permeability of methanol

  11. Millimeter microwave effect on ion transport across lipid bilayer membranes.

    PubMed

    Alekseev, S I; Ziskin, M C

    1995-01-01

    The effects of millimeter microwaves in the frequency range of 54-76 GHz on capacitance and conductance of lipid bilayer membranes (BLM) were studied. Some of the membranes were modified by gramicidin A and amphotericin B or by tetraphenylboron anions (TPhB-). The millimeter microwaves were pulse-modulated (PW) at repetition rates ranging from 1 to 100 pps, PW at 1000 pps, or unmodulated continuous waves (CW). The maximum output power at the waveguide outlet was 20 mW. It was found that CW irradiation decreased the unmodified BLM capacitance by 1.2% +/- 0.5%. At the same time, membrane current induced by TPhB- transport increased by 5% +/- 1%. The changes in conductance of ionic channels formed by gramicidin A and amphotericin B were small (0.6% +/- 0.4%). No "resonance-like" effects of mm-wave irradiation on membrane capacitance, ionic channel currents, or TPhB- transport were detected. All changes in membrane capacitance and currents were independent of the modulation employed and were equivalent to heating by approximately 1.1 degrees C.

  12. Membrane transporters in self resistance of Cercospora nicotianae to the photoactivated toxin cercosporin.

    PubMed

    Beseli, Aydin; Amnuaykanjanasin, Alongkorn; Herrero, Sonia; Thomas, Elizabeth; Daub, Margaret E

    2015-11-01

    The goal of this work is to characterize membrane transporter genes in Cercospora fungi required for autoresistance to the photoactivated, active-oxygen-generating toxin cercosporin they produce for infection of host plants. Previous studies implicated a role for diverse membrane transporters in cercosporin resistance. In this study, transporters identified in a subtractive cDNA library between a Cercospora nicotianae wild type and a cercosporin-sensitive mutant were characterized, including two ABC transporters (CnATR2, CnATR3), an MFS transporter (CnMFS2), a uracil transporter, and a zinc transport protein. Phylogenetic analysis showed that only CnATR3 clustered with transporters previously characterized to be involved in cercosporin resistance. Quantitative RT-PCR analysis of gene expression under conditions of cercosporin toxicity, however, showed that only CnATR2 was upregulated, thus this gene was selected for further characterization. Transformation and expression of CnATR2 in the cercosporin-sensitive fungus Neurospora crassa significantly increased cercosporin resistance. Targeted gene disruption of CnATR2 in the wild type C. nicotianae, however, did not decrease resistance. Expression analysis of other transporters in the cnatr2 mutant under conditions of cercosporin toxicity showed significant upregulation of the cercosporin facilitator protein gene (CFP), encoding an MFS transporter previously characterized as playing an important role in cercosporin autoresistance in Cercospora species. We conclude that cercosporin autoresistance in Cercospora is mediated by multiple genes, and that the fungus compensates for mutations by up-regulation of other resistance genes. CnATR2 may be a useful gene, alone or in addition to other known resistance genes, for engineering Cercospora resistance in crop plants.

  13. Cholesterol transport through lysosome-peroxisome membrane contacts.

    PubMed

    Chu, Bei-Bei; Liao, Ya-Cheng; Qi, Wei; Xie, Chang; Du, Ximing; Wang, Jiang; Yang, Hongyuan; Miao, Hong-Hua; Li, Bo-Liang; Song, Bao-Liang

    2015-04-09

    Cholesterol is dynamically transported among organelles, which is essential for multiple cellular functions. However, the mechanism underlying intracellular cholesterol transport has remained largely unknown. We established an amphotericin B-based assay enabling a genome-wide shRNA screen for delayed LDL-cholesterol transport and identified 341 hits with particular enrichment of peroxisome genes, suggesting a previously unappreciated pathway for cholesterol transport. We show dynamic membrane contacts between peroxisome and lysosome, which are mediated by lysosomal Synaptotagmin VII binding to the lipid PI(4,5)P2 on peroxisomal membrane. LDL-cholesterol enhances such contacts, and cholesterol is transported from lysosome to peroxisome. Disruption of critical peroxisome genes leads to cholesterol accumulation in lysosome. Together, these findings reveal an unexpected role of peroxisome in intracellular cholesterol transport. We further demonstrate massive cholesterol accumulation in human patient cells and mouse model of peroxisomal disorders, suggesting a contribution of abnormal cholesterol accumulation to these diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.

    PubMed

    Guan, Yulong; Palanzo, David; Kunselman, Allen; Undar, Akif

    2009-11-01

    An increasing amount of evidence points to cerebral embolization during cardiopulmonary bypass (CPB) as the principal etiologic factor of neurologic complications. In this study, the capability of capturing and classification of gaseous emboli and pressure drop of three different membrane oxygenators (Sorin Apex, Terumo Capiox SX25, Maquet QUADROX) were measured in a simulated adult model of CPB using a novel ultrasound detection and classification quantifier system. The circuit was primed with 1000 mL heparinized human packed red blood cells and 1000 mL lactated Ringer's solution (total volume 2000 mL, corrected hematocrit 26-28%). After the injection of 5 mL air into the venous line, an Emboli Detection and Classification Quantifier was used to simultaneously record microemboli counts at post-pump, post-oxygenator, and post-arterial filter sites. Trials were conducted at normothermic (35 degrees C) and hypothermic (25 degrees C) conditions. Pre-oxygenator and post-oxygenator pressure were recorded in real time and pressure drop was calculated. Maquet QUADROX membrane oxygenator has the lowest pressure drops compared to the other two oxygenators (P < 0.001). The comparison among the three oxygenators indicated better capability of capturing gaseous emboli with the Maquet QUADROX and Terumo Capiox SX25 membrane oxygenator and more emboli may pass through the Sorin Apex membrane oxygenator. Microemboli counts uniformly increased with hypothermic perfusion (25 degrees C). Different types of oxygenators and reservoirs have different capability of capturing gaseous emboli and transmembrane pressure drop. Based on this investigation, Maquet QUADROX membrane oxygenator has the lowest pressure drop and better capability for capturing gaseous microemboli.

  15. TonB-dependent outer membrane transport: going for Baroque?

    PubMed

    Wiener, Michael C

    2005-08-01

    The import of essential organometallic micronutrients (such as iron-siderophores and vitamin B(12)) across the outer membrane of Gram-negative bacteria proceeds via TonB-dependent outer membrane transporters (TBDTs). The TBDT couples to the TonB protein, which is part of a multiprotein complex in the plasma (inner) membrane. Five crystal structures of TBDTs illustrate clearly the architecture of the protein in energy-independent substrate-free and substrate-bound states. In each of the TBDT structures, an N-terminal hatch (or plug or cork) domain occludes the lumen of a 22-stranded beta barrel. The manner by which substrate passes through the transporter (the "hatch-barrel problem") is currently unknown. Solution NMR and X-ray crystallographic structures of various TonB domains indicate a striking structural plasticity of this protein. Thermodynamic, biochemical and bacteriological studies of TonB and TBDTs indicate further that existing structures do not yet capture critical energy-dependent and in vivo conformations of the transport cycle. The reconciliation of structural and non-structural experimental data, and the unambiguous experimental elucidation of a detailed molecular mechanism of transport are current challenges for this field.

  16. Calcium transport by rat duodenal villus and crypt basolateral membranes

    SciTech Connect

    Walters, J.R.F.; Weiser, M.M.

    1987-02-01

    Rat duodenal cells were isolated sequentially to give fractions enriched for villus and crypt cells. From each of these fractions, basolateral-enriched membrane vesicles were prepared and ATP-dependent calcium uptake was studied. Calcium uptake was sensitive to temperature, was inhibited by vanadate and by A23187, and was lower in vitamin D-deficient animals. In normal animals, (UVCa)-transport was approximately twofold greater in villus-tip than in crypt cell-fraction basolateral membranes though the affinity of the uptake for calcium was similar (K/sub m/ = 0.3 M). In vitamin D-deficient animals, the crypt-to-villus gradient was reduced, and in all fractions, calcium transport was similar to or lower than that in the crypts of normal animals. Six hours after vitamin D-deficient animals were repleted with 1,25-dihydroxycholecalciferol, a significant increase in calcium transport by everted gut sacs was present; however, basolateral calcium transport was significantly increased in only the mid-villus fractions, and no change was seen in the villus-tip fractions. Thus vitamin D appears necessary for the development of increased basolateral membrane calcium pump activity in duodenal villus cells, but not all cells in vitamin D-deficient rats are able to respond to 1,25-dihydroxycholecalciferol.

  17. Mechanism of electrodialytic ion transport through solvent extraction membranes

    SciTech Connect

    Moskvin, L.N.; Shmatko, A.G.; Krasnoperov, V.M.

    1987-02-01

    The authors construct a mathematical model for electrodialysis and solvent extraction via an ion-selective ion exchange membrane and accounts for the electrochemical, ion exchange, and diffusional behavior of the processes including their dependence on component concentration and current and voltage. The model is tested against experimental data for the electrodialytic transport of anionic platinum complexes of chlorides from hydrochloric acid solution through tributylphosphate membranes. The platinum concentration in the aqueous solution was determined by gamma spectroscopy obtained via platinum 191 as a radiotracer.

  18. A micropatterned cell array with an integrated oxygen-sensitive fluorescent membrane.

    PubMed

    Montagne, Kevin; Komori, Kikuo; Yang, Fei; Tatsuma, Tetsu; Fujii, Teruo; Sakai, Yasuyuki

    2009-11-01

    We propose a simple method for producing micropatterned cell spots by photocatalytic lithography on a Pt porphyrin-based oxygen-sensitive polystyrene membrane that enables real-time imaging of oxygen consumption of patterned cell spots with sub-millimetre resolution.

  19. Oxygen transport is not compromised at high temperature in pythons.

    PubMed

    Fobian, Dannie; Overgaard, Johannes; Wang, Tobias

    2014-11-15

    To evaluate whether the 'oxygen and capacity limited thermal tolerance' model (OCLTT) applies to an air-breathing ectothermic vertebrate, we measured oxygen uptake (V̇(O₂)), cardiac performance and arterial blood gases during a progressive rise of temperature from 30 to 40°C in the snake Python regius. V̇(O₂) of fasting snakes increased exponentially with temperature whereas V̇(O₂) of digesting snakes at high temperatures plateaued at a level 3- to 4-fold above fasting. The high and sustained aerobic metabolism over the entire temperature range was supported by pronounced tachycardia at all temperatures, and both fasting and digesting snakes maintained a normal acid-base balance without any indication of anaerobic metabolism. All snakes also maintained high arterial PO2, even at temperatures close to the upper lethal temperature. Thus, there is no evidence of a reduced capacity for oxygen transport at high temperatures in either fasting or digesting snakes, suggesting that the upper thermal tolerance of this species is limited by other factors.

  20. A mathematical model to predict CO2 removal in hollow fiber membrane oxygenators.

    PubMed

    Svitek, R G; Federspiel, W J

    2008-06-01

    A mathematical model has been developed to predict CO(2) removal in hollow fiber membrane oxygenators. The model is analogous to one developed previously for predicting O(2) transfer. A mass transfer correlation was determined in water for O(2) and CO(2) exchange and collapsed onto one universal curve. The correlation was used to predict CO(2) removal in blood by incorporating a 'facilitated diffusivity' to account for the transport of CO(2) present as bicarbonate. The diffusion of bicarbonate greatly increased the ability of the oxygenator to remove CO(2) in blood compared to water. A fiber bundle module was fabricated to test the model predictions. The fiber bundle had a length of 13 cm and a bundle thickness of 0.2 cm. The module was tested in bovine blood at flowrates of 0.75, 1.5, and 2.2 L/min and CO(2) removal rate predictions were within 9% of experimental measurements at all flowrates. The O(2) transfer rate predictions were within 10% of experimental measurements. A second module was manufactured with a bundle of length 4 cm and thickness of 1 cm. The CO(2) removal predictions were within the standard deviation of the experimental measurements.

  1. Extracorporeal membrane oxygenation for diffuse alveolar hemorrhage and severe hypoxemic respiratory failure from silicone embolism.

    PubMed

    Mongero, L B; Brodie, D; Cunningham, J; Ventetuolo, C; Kim, H; Sylvan, E; Bacchetta, M D

    2010-07-01

    Liquid silicone is an inert material that may be used for cosmetic procedures by physicians as well as illegally by non-medical personnel. The use of silicone may result in severe complications, disfigurement, and even death. In addition, the indications for extracorporeal membrane oxygenation (ECMO) support have been increasing as a salvage therapy for a variety of life-threatening conditions. The patient is a 27-year-old woman with no significant medical conditions who developed silicone emboli, and subsequent diffuse alveolar hemorrhage after being injected with silicone in her gluteal region without medical supervision. She became profoundly hypoxemic and suffered a brief asystolic cardiac arrest in this setting. The patient was placed on veno-venous ECMO support for 14 days. Medical care during ECMO was complicated by pulmonary hemorrhage, hemothorax, pneumothorax, and blood clot, resulting in oxygenator change-out. A modified adult ECMO circuit (Jostra QuadroxD, Maquet Cardiopulmonary, Rastatt, Germany) was used to transport the patient from a nearby community affiliate hospital and then reconfigured for the medical intensive care unit on a standard HL-20 heart-lung console. Although the use of ECMO for severe hypoxemic respiratory failure has been widely reported, to our knowledge, this is the first reported successful use of ECMO for silicone embolism syndrome associated with diffuse alveolar hemorrhage and severe hypoxemic respiratory failure.

  2. Effects of spatial variation in membrane diffusibility and solubility on the lateral transport of membrane components.

    PubMed Central

    Eisinger, J; Halperin, B I

    1986-01-01

    There exist many examples of membrane components (e.g. receptors) accumulating in special domains of cell membranes. We analyze how certain variations in lateral diffusibility and solubility of the membrane would increase the efficiency of transport to these regions. A theorem is derived to show that the mean-time-of capture, tc, for particles diffusing to a trap from an annular region surrounding it, is intermediate to the tc values that correspond to the minimum and maximum diffusion coefficients that obtain in this region. An analytical solution for tc as a function of the gradient of diffusivity surrounding a trap is derived for circular geometry. Since local diffusion coefficients can be increased dramatically by reducing the concentration of intra-membrane particles and/or allowing them to form aggregates, such mechanisms could greatly enhance the diffusion-limited transport of particular membrane components to a trap (e.g. coated pit). If the trap is surrounded by an annular region in which the probe particles' partition function is increased, say, by the local segregation of certain phospholipids, tc is shown to vary inversely with the logarithm of the relative partition function. We provide some conjectural examples to illustrate the magnitude of the effects which heterogeneities in diffusibility and solubility may have in biological membranes. PMID:3756302

  3. Sedation Management in Children Supported on Extracorporeal Membrane Oxygenation for Acute Respiratory Failure.

    PubMed

    Schneider, James B; Sweberg, Todd; Asaro, Lisa A; Kirby, Aileen; Wypij, David; Thiagarajan, Ravi R; Curley, Martha A Q

    2017-10-01

    To describe sedation management in children supported on extracorporeal membrane oxygenation for acute respiratory failure. Secondary analysis of prospectively collected data from a multicenter randomized trial of sedation (Randomized Evaluation of Sedation Titration for Respiratory Failure). Twenty-one U.S. PICUs. One thousand two hundred fifty-five children, 2 weeks to 17 years old, with moderate/severe pediatric acute respiratory distress syndrome. Sedation managed per usual care or Randomized Evaluation of Sedation Titration for Respiratory Failure protocol. Sixty-one Randomized Evaluation of Sedation Titration for Respiratory Failure patients (5%) with moderate/severe pediatric acute respiratory distress syndrome were supported on extracorporeal membrane oxygenation, including 29 managed per Randomized Evaluation of Sedation Titration for Respiratory Failure protocol. Most extracorporeal membrane oxygenation patients received neuromuscular blockade (46%) or were heavily sedated with State Behavioral Scale scores -3/-2 (34%) by extracorporeal membrane oxygenation day 3. Median opioid and benzodiazepine doses on the day of cannulation, 0.15 mg/kg/hr (3.7 mg/kg/d) and 0.11 mg/kg/hr (2.8 mg/kg/d), increased by 36% and 58%, respectively, by extracorporeal membrane oxygenation day 3. In the 41 patients successfully decannulated prior to study discharge, patients were receiving 0.40 mg/kg/hr opioids (9.7 mg/kg/d) and 0.39 mg/kg/hr benzodiazepines (9.4 mg/kg/d) at decannulation, an increase from cannulation of 108% and 192%, respectively (both p < 0.001). Extracorporeal membrane oxygenation patients experienced more clinically significant iatrogenic withdrawal than moderate/severe pediatric acute respiratory distress syndrome patients managed without extracorporeal membrane oxygenation support (p < 0.001). Compared to extracorporeal membrane oxygenation patients managed per Randomized Evaluation of Sedation Titration for Respiratory Failure protocol

  4. Use of venoarterial extracorporeal membrane oxygenation in fulminant chagasic myocarditis as a bridge to heart transplant

    PubMed Central

    Durães, André Rodrigues; Figueira, Fernando Augusto Marinho dos Santos; Lafayette, André Rabelo; Martins, Juliana de Castro Solano; Juliano Cavalcante de, Sá

    2015-01-01

    A 17-year-old Brazilian male presented with progressive dyspnea for 15 days, worsening in the last 24 hours, and was admitted in respiratory failure and cardiogenic shock, with multiple organ dysfunctions. Echocardiography showed a left ventricle ejection fraction of 11%, severe diffuse hypokinesia, and a systolic pulmonary artery pressure of 50mmHg, resulting in the need for hemodynamic support with dobutamine (20mcg/kg/min) and noradrenaline (1.7mcg/kg/min). After 48 hours with no clinical or hemodynamic improvement, an extracorporeal membrane oxygenation was implanted. The patient presented with hemodynamic, systemic perfusion and renal and liver function improvements; however, his cardiac function did not recover after 72 hours, and he was transfer to another hospital. Air transport was conducted from Salvador to Recife in Brazil. A heart transplant was performed with rapid recovery of both liver and kidney functions, as well as good graft function. Histopathology of the explanted heart showed chronic active myocarditis and amastigotes of Trypanosoma cruzi. The estimated global prevalence of T. cruzi infections declined from 18 million in 1991, when the first regional control initiative began, to 5.7 million in 2010. Myocarditis is an inflammatory disease due to infectious or non-infectious conditions. Clinical manifestation is variable, ranging from subclinical presentation to refractory heart failure and cardiogenic shock. Several reports suggest that the use of extracorporeal membrane oxygenation in patients presenting with severe refractory myocarditis is a potential bridging therapy to heart transplant when there is no spontaneous recovery of ventricular function. In a 6-month follow-up outpatient consult, the patient presented well and was asymptomatic. PMID:26761479

  5. Use of venoarterial extracorporeal membrane oxygenation in fulminant chagasic myocarditis as a bridge to heart transplant.

    PubMed

    Durães, André Rodrigues; Figueira, Fernando Augusto Marinho dos Santos; Lafayette, André Rabelo; Martins, Juliana de Castro Solano; de Sá, Juliano Cavalcante

    2015-01-01

    A 17-year-old Brazilian male presented with progressive dyspnea for 15 days, worsening in the last 24 hours, and was admitted in respiratory failure and cardiogenic shock, with multiple organ dysfunctions. Echocardiography showed a left ventricle ejection fraction of 11%, severe diffuse hypokinesia, and a systolic pulmonary artery pressure of 50mmHg, resulting in the need for hemodynamic support with dobutamine (20mcg/kg/min) and noradrenaline (1.7mcg/kg/min). After 48 hours with no clinical or hemodynamic improvement, an extracorporeal membrane oxygenation was implanted. The patient presented with hemodynamic, systemic perfusion and renal and liver function improvements; however, his cardiac function did not recover after 72 hours, and he was transfer to another hospital. Air transport was conducted from Salvador to Recife in Brazil. A heart transplant was performed with rapid recovery of both liver and kidney functions, as well as good graft function. Histopathology of the explanted heart showed chronic active myocarditis and amastigotes of Trypanosoma cruzi. The estimated global prevalence of T. cruzi infections declined from 18 million in 1991, when the first regional control initiative began, to 5.7 million in 2010. Myocarditis is an inflammatory disease due to infectious or non-infectious conditions. Clinical manifestation is variable, ranging from subclinical presentation to refractory heart failure and cardiogenic shock. Several reports suggest that the use of extracorporeal membrane oxygenation in patients presenting with severe refractory myocarditis is a potential bridging therapy to heart transplant when there is no spontaneous recovery of ventricular function. In a 6-month follow-up outpatient consult, the patient presented well and was asymptomatic.

  6. Hemolytic and thrombocytopathic characteristics of extracorporeal membrane oxygenation systems at simulated flow rate for neonates*

    PubMed Central

    Meyer, Andrew D.; Wiles, Andrew A.; Rivera, Oswaldo; Wong, Edward C.; Freishtat, Robert J.; Rais-Bahrami, Khoydar; Dalton, Heidi J.

    2012-01-01

    Objective A state-of-the-art centrifugal pump combined with hollow-fiber oxygenator for extracorporeal membrane oxygenation has potential advantages such as smaller priming volumes and decreased potential to cause tubing rupture as compared with the traditional roller head/silicone membrane systems. Adoption of these state-of-the-art systems has been slow in neonates as a result of past evidence of severe hemolysis that may lead to renal failure and increased mortality. Extracorporeal systems have also been linked to platelet dysfunction, a contributing factor toward intracranial hemorrhage, a leading cause of infant morbidity. Little data exist comparing the centrifugal systems with the roller systems in terms of hemolysis and platelet aggregation at low flow rates commonly used in neonatal extracorporeal membrane oxygenation. Design Prospective, comparative laboratory study. Setting University research laboratory. Subjects Centrifugal pump, roller pump, hollow-fiber oxygenator, and silicone membrane oxygenator. Interventions Comparative study using two pumps, the centrifugal Jostra Rotaflow (Maquet, Wayne, NJ) and the roller-head (Jostra, Maquet, Wayne, NJ), and two oxygenators, polymethly-pentene Quadrox-D (Maquet) and silicone membrane (Medtronic, Minneapolis, MN). Five test runs of four circuit combinations were examined for hemolysis and platelet aggregation during 6 hrs of continuous use in a simulated in vitro extracorporeal membrane oxygenation circuit circulating whole swine blood at 300 mL/min. Measurements and Main Results Hemolysis was assessed by spectrophometric measurement of plasma-free hemoglobin. Platelet aggregation was evaluated using monoclonal CD61 antibody fluorescent flow cytometry profiles. All of the extracorporeal membrane oxygenation systems created plasma-free hemoglobin at a similar rate compared with static blood control. There was no difference in the mean normalized index of hemolysis of the centrifugal/hollow-fiber oxygenator

  7. Alteration of red cell deformability during extracorporeal bypass: membrane v bubble oxygenator.

    PubMed

    Hakoshima, A; Goto, H; Abe, K; Benson, K T; Moran, J F; Arakawa, K

    1989-04-01

    Red cell deformability is essential for normal microcirculation, since the red cell is greater in diameter than the caliber of small capillaries. Red cell filtration rate (RFR) was measured using a 5 microns nucleopore polycarbonate filter as an index of red cell deformability before, during, and after two hours of extracorporeal circulation for coronary artery bypass surgery, with a bubble oxygenator (eight patients) or a hollow fiber membrane oxygenator (14 patients). RFR decreased steadily and significantly during bypass in the bubble oxygenator group. After the start of bypass, RFR was significantly higher at all measurement intervals in the membrane oxygenator group as compared with the bubble oxygenator group. It can be postulated that significantly impaired red cell deformability caused by the bubble oxygenator is attributed to mechanical damage secondary to a huge blood-gas interface, and possibly to neutrophil-mediated oxygen free radical formation due to complement activation. Results indicate that the hollow fiber membrane oxygenator is superior to the bubble oxygenator in maintaining red cell deformability.

  8. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    PubMed

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  9. Ballistic electron transport in structured suspended semiconductor membranes

    SciTech Connect

    Pogosov, A. G.; Budantsev, M. V.; Zhdanov, E. Yu.; Pokhabov, D. A.

    2013-12-04

    We study ballistic electron transport in freely suspended AlAs/GaAs microstructures containing a high mobility two-dimensional electron gas with square lattice of antidots. We found that the magnetoresistance of the samples demonstrates commensurability oscillations both for the case of non-suspended and suspended devices. The temperature dependence of the commensurability oscillations is similar for both cases. However, the critical dc current, that suppresses these oscillations, in suspended samples is three times lower than in non-suspended ones. The observed phenomenon can be explained by peculiarities of the heat transport in membranes.

  10. Membrane transporters and drought resistance – a complex issue

    PubMed Central

    Jarzyniak, Karolina M.; Jasiński, Michał

    2014-01-01

    Land plants have evolved complex adaptation strategies to survive changes in water status in the environment. Understanding the molecular nature of such adaptive changes allows the development of rapid innovations to improve crop performance. Plant membrane transport systems play a significant role when adjusting to water scarcity. Here we put proteins participating in transmembrane allocations of various molecules in the context of stomatal, cuticular, and root responses, representing a part of the drought resistance strategy. Their role in the transport of signaling molecules, ions or osmolytes is summarized and the challenge of the forthcoming research, resulting from the recent discoveries, is highlighted. PMID:25538721

  11. Isothermal titration calorimetry of ion-coupled membrane transporters.

    PubMed

    Boudker, Olga; Oh, SeCheol

    2015-04-01

    Binding of ligands, ranging from proteins to ions, to membrane proteins is associated with absorption or release of heat that can be detected by isothermal titration calorimetry (ITC). Such measurements not only provide binding affinities but also afford direct access to thermodynamic parameters of binding--enthalpy, entropy and heat capacity. These parameters can be interpreted in a structural context, allow discrimination between different binding mechanisms and guide drug design. In this review, we introduce advantages and limitations of ITC as a methodology to study molecular interactions of membrane proteins. We further describe case studies where ITC was used to analyze thermodynamic linkage between ions and substrates in ion-coupled transporters. Similar type of linkage analysis will likely be applicable to a wide range of transporters, channels, and receptors.

  12. OCTN3 is a mammalian peroxisomal membrane carnitine transporter

    SciTech Connect

    Lamhonwah, Anne-Marie; Ackerley, Cameron A.; Tilups, Aina; Edwards, Vernon D.; Wanders, Ronald J.; Tein, Ingrid . E-mail: ingrid.tein@sickkids.ca

    2005-12-30

    Carnitine is a zwitterion essential for the {beta}-oxidation of fatty acids. The role of the carnitine system is to maintain homeostasis in the acyl-CoA pools of the cell, keeping the acyl-CoA/CoA pool constant even under conditions of very high acyl-CoA turnover, thereby providing cells with a critical source of free CoA. Carnitine derivatives can be moved across intracellular barriers providing a shuttle mechanism between mitochondria, peroxisomes, and microsomes. We now demonstrate expression and colocalization of mOctn3, the intermediate-affinity carnitine transporter (K {sub m} 20 {mu}M), and catalase in murine liver peroxisomes by TEM using immunogold labelled anti-mOctn3 and anti-catalase antibodies. We further demonstrate expression of hOCTN3 in control human cultured skin fibroblasts both by Western blotting and immunostaining analysis using our specific anti-mOctn3 antibody. In contrast with two peroxisomal biogenesis disorders, we show reduced expression of hOCTN3 in human PEX 1 deficient Zellweger fibroblasts in which the uptake of peroxisomal matrix enzymes is impaired but the biosynthesis of peroxisomal membrane proteins is normal, versus a complete absence of hOCTN3 in human PEX 19 deficient Zellweger fibroblasts in which both the uptake of peroxisomal matrix enzymes as well as peroxisomal membranes are deficient. This supports the localization of hOCTN3 to the peroxisomal membrane. Given the impermeability of the peroxisomal membrane and the key role of carnitine in the transport of different chain-shortened products out of peroxisomes, there appears to be a critical need for the intermediate-affinity carnitine/organic cation transporter, OCTN3, on peroxisomal membranes now shown to be expressed in both human and murine peroxisomes. This Octn3 localization is in keeping with the essential role of carnitine in peroxisomal lipid metabolism.

  13. Synthesis of silicalite-poly(furfuryl alcohol) composite membranes for oxygen enrichment from air

    NASA Astrophysics Data System (ADS)

    He, Li; Li, Dan; Wang, Kun; Suresh, Akkihebbal K.; Bellare, Jayesh; Sridhar, Tam; Wang, Huanting

    2011-12-01

    Silicalite-poly(furfuryl alcohol) [PFA] composite membranes were prepared by solution casting of silicalite-furfuryl alcohol [FA] suspension on a porous polysulfone substrate and subsequent in situ polymerization of FA. X-ray diffraction, nitrogen sorption, thermogravimetric analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to characterize silicalite nanocrystals and silicalite-PFA composite membranes. The silicalite-PFA composite membrane with 20 wt.% silicalite loading exhibits good oxygen/nitrogen selectivity (4.15) and high oxygen permeability (1,132.6 Barrers) at 50°C. Silicalite-PFA composite membranes are promising for the production of oxygen-enriched air for various applications.

  14. Synthesis of silicalite-poly(furfuryl alcohol) composite membranes for oxygen enrichment from air.

    PubMed

    He, Li; Li, Dan; Wang, Kun; Suresh, Akkihebbal K; Bellare, Jayesh; Sridhar, Tam; Wang, Huanting

    2011-12-30

    Silicalite-poly(furfuryl alcohol) [PFA] composite membranes were prepared by solution casting of silicalite-furfuryl alcohol [FA] suspension on a porous polysulfone substrate and subsequent in situ polymerization of FA. X-ray diffraction, nitrogen sorption, thermogravimetric analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to characterize silicalite nanocrystals and silicalite-PFA composite membranes. The silicalite-PFA composite membrane with 20 wt.% silicalite loading exhibits good oxygen/nitrogen selectivity (4.15) and high oxygen permeability (1,132.6 Barrers) at 50°C. Silicalite-PFA composite membranes are promising for the production of oxygen-enriched air for various applications.

  15. Synthesis of silicalite-poly(furfuryl alcohol) composite membranes for oxygen enrichment from air

    PubMed Central

    2011-01-01

    Silicalite-poly(furfuryl alcohol) [PFA] composite membranes were prepared by solution casting of silicalite-furfuryl alcohol [FA] suspension on a porous polysulfone substrate and subsequent in situ polymerization of FA. X-ray diffraction, nitrogen sorption, thermogravimetric analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to characterize silicalite nanocrystals and silicalite-PFA composite membranes. The silicalite-PFA composite membrane with 20 wt.% silicalite loading exhibits good oxygen/nitrogen selectivity (4.15) and high oxygen permeability (1,132.6 Barrers) at 50°C. Silicalite-PFA composite membranes are promising for the production of oxygen-enriched air for various applications. PMID:22209012

  16. Current status of ceramic-based membranes for oxygen separation from air.

    PubMed

    Hashim, Salwa Meredith; Mohamed, Abdul Rahman; Bhatia, Subhash

    2010-10-15

    There has been tremendous progress in membrane technology for gas separation, in particular oxygen separation from air in the last 20 years. It provides an alternative route to the existing conventional separation processes such as cryogenic distillation and pressure swing adsorption as well as cheaper production of oxygen with high purity. This review presents the recent advances of ceramic membranes for the separation of oxygen from air at high temperature. It covers the issues and problems with respect to the selectivity and separation performance. The paper also presents different approaches applied to overcome these challenges. The future directions of ceramic-based membranes for oxygen separation from air are also presented. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Using membrane transporters to improve crops for sustainable food production.

    PubMed

    Schroeder, Julian I; Delhaize, Emmanuel; Frommer, Wolf B; Guerinot, Mary Lou; Harrison, Maria J; Herrera-Estrella, Luis; Horie, Tomoaki; Kochian, Leon V; Munns, Rana; Nishizawa, Naoko K; Tsay, Yi-Fang; Sanders, Dale

    2013-05-02

    With the global population predicted to grow by at least 25 per cent by 2050, the need for sustainable production of nutritious foods is critical for human and environmental health. Recent advances show that specialized plant membrane transporters can be used to enhance yields of staple crops, increase nutrient content and increase resistance to key stresses, including salinity, pathogens and aluminium toxicity, which in turn could expand available arable land.

  18. Using membrane transporters to improve crops for sustainable food production

    PubMed Central

    Schroeder, Julian I.; Delhaize, Emmanuel; Frommer, Wolf B.; Guerinot, Mary Lou; Harrison, Maria J.; Herrera-Estrella, Luis; Horie, Tomoaki; Kochian, Leon V.; Munns, Rana; Nishizawa, Naoko K.; Tsay, Yi-Fang; Sanders, Dale

    2013-01-01

    With the global population predicted to grow by at least 25 per cent by 2050, the need for sustainable production of nutritious foods is critical for human and environmental health. Recent advances show that specialized plant membrane transporters can be used to enhance yields of staple crops, increase nutrient content and increase resistance to key stresses, including salinity, pathogens and aluminium toxicity, which in turn could expand available arable land. PMID:23636397

  19. Plasma membrane microdomains regulate turnover of transport proteins in yeast

    PubMed Central

    Grossmann, Guido; Malinsky, Jan; Stahlschmidt, Wiebke; Loibl, Martin; Weig-Meckl, Ina; Frommer, Wolf B.; Opekarová, Miroslava; Tanner, Widmar

    2008-01-01

    In this study, we investigate whether the stable segregation of proteins and lipids within the yeast plasma membrane serves a particular biological function. We show that 21 proteins cluster within or associate with the ergosterol-rich membrane compartment of Can1 (MCC). However, proteins of the endocytic machinery are excluded from MCC. In a screen, we identified 28 genes affecting MCC appearance and found that genes involved in lipid biosynthesis and vesicle transport are significantly overrepresented. Deletion of Pil1, a component of eisosomes, or of Nce102, an integral membrane protein of MCC, results in the dissipation of all MCC markers. These deletion mutants also show accelerated endocytosis of MCC-resident permeases Can1 and Fur4. Our data suggest that release from MCC makes these proteins accessible to the endocytic machinery. Addition of arginine to wild-type cells leads to a similar redistribution and increased turnover of Can1. Thus, MCC represents a protective area within the plasma membrane to control turnover of transport proteins. PMID:19064668

  20. Role of intracellular membranes in transcellular calcium transport

    SciTech Connect

    Coleman, J.R.; Young, L.B.; Wade, P.C.

    1981-01-01

    Models can be tested through the use of various agents that affect different portions of the overall mechanism. The calcium ionophore A23187 can be used to increase the rate of calcium entry through the brush border, effectively removing diffusion through the brush border as a rate-limiting step. It would be expected that treatment with A23187 would thus increase the overall rate of calcium transcellular transport. In contrast, chlorpromazine has been shown to inhibit in vitro calcium uptake by Golgi membranes. Consequently if the model is correct, treatment with A23187 and chlorpromazine would tend to raise the cytoplasmic calcium concentration, since the Golgi membrane uptake mechanism would be inhibited, and calcium would accumulate in mitochondria with little or no increase in transcellular transport. Finally, Golgi membranes have been shown to release calcium in response to ATP. Sodium azide inhibits ATP generation and calcium uptake by mitochondria. Thus, treatment with A23187 and soidum azide should cause accumulation of calcium in the Golgi membranes, if the proposed model is correct. The purpose of this investigation was to use coordinated electron probe x-ray microanalysis and transmission electron microscopy to test the response of the intestinal absorptive cells to the agents mentioned.

  1. Active transport of calcium in Neurospora plasma membrane vesicles.

    PubMed Central

    Stroobant, P; Scarborough, G A

    1979-01-01

    Functionally inverted plasma membrane vesicles isolated from the eukaryotic microorganism Neurospora crassa catalyze Mg2+/ATP-dependent Ca2+ uptake. Inhibitors induced efflux studies and isotope-exchange experiments indicate that the Ca2+ is accumulated inside the vesicles against a concentration gradient of about 40-fold, and that the majority of the transported Ca2+ is present essentially in free solution. Comparisons of Mg2+/ATP-driven 45Ca2+ uptake and [14C]SCN-uptake with respect to the Mg2+/ATP concentration dependence, the effects of inhibitors, and the nucleotide and divalent cation specificities indicate that the energy for Ca2+ accumulation is derived from ATP hydrolysis catalyzed by the electrogenic plasma membrane ATPase. Energized Ca2+ uptake is stimulated by the permeant anion SCN- to a degree that varies reciprocally with the ability of this anion to dissipate the membrane potential, and is inhibited by K+ in the presence of nigericin. All of these data point to the conclusion that the active transport of Ca2+ across the Neurospora plasma membrane takes place via a Ca2+/H+ antiporter, which functions to pump Ca2+ out of the intact cell. PMID:40223

  2. 78 FR 1765 - Requirements for Chemical Oxygen Generators Installed on Transport Category Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Federal Aviation Administration 14 CFR Part 25 RIN 2120-AK14 Requirements for Chemical Oxygen Generators... requirements for chemical oxygen generators installed on transport category airplanes so the generators are... Committee COG--Chemical Oxygen Generator LOARC--Lavatory Oxygen Aviation Rulemaking Committee SaO 2 --Blood...

  3. Fabrication of SrCo{sub 0.5}FeO{sub x} oxygen separation membranes on porous supports

    SciTech Connect

    Man Fai Ng; Riechert, T.L.; Schwartz, R.W.; Collins, J.P.

    1996-09-01

    SrCo{sub 0.5}FeO{sub x} (SCF) is an attractive material for oxygen separation membranes and for use in catalytic membrane reactors. While tubes of this material have been prepared by extrusion, further improvements in oxygen transport performance may be gained by preparing thinner membranes on porous supports. In this paper, we will discuss the deposition of thick films by spray deposition and centrifugal casting, and thin films by pyrolysis of chemical precursors. For the chemically derived thin films, porous MgO supports were used as membrane supports. Three types of precursor solutions were employed for dipcoating: a Pechini type solution, a nitrate-based solution, and a citrate-based solution. To prevent the infiltration of the precursor into the support, the support was backfilled with a material that decomposed at higher temperatures than the precursors. Cracking due to the volume changes during drying and pyrolysis of the precursors is discussed. Thick films were prepared by spray coating and centrifugal casting. Spray deposition of thick film membranes was accomplished by air brushing SCF from a water-based suspension onto the surface of a porous MgO support. Films on the interior surface of the supports were prepared by centrifugal casting using a xylene/butanol-based SCF suspension. Unlike extruded tubes, thick films undergo constrained sintering due to the presence of the support, which greatly reduces the densification rate. For membranes prepared by both approaches, we will discuss the effects of heating schedules on membrane microstructure, densification behavior, and cracking.

  4. Selective Lysosomal Transporter Degradation by Organelle Membrane Fusion.

    PubMed

    McNally, Erin Kate; Karim, Mahmoud Abdul; Brett, Christopher Leonard

    2017-01-23

    Lysosomes rely on their resident transporter proteins to return products of catabolism to the cell for reuse and for cellular signaling, metal storage, and maintaining the lumenal environment. Despite their importance, little is known about the lifetime of these transporters or how they are regulated. Using Saccharomyces cerevisiae as a model, we discovered a new pathway intrinsic to homotypic lysosome membrane fusion that is responsible for their degradation. Transporter proteins are selectively sorted by the docking machinery into an area between apposing lysosome membranes, which is internalized and degraded by lumenal hydrolases upon organelle fusion. These proteins have diverse lifetimes that are regulated in response to protein misfolding, changing substrate levels, or TOR activation. Analogous to endocytosis for controlling surface protein levels, the "intralumenal fragment pathway" is critical for lysosome membrane remodeling required for organelle function in the context of cellular protein quality control, ion homeostasis, and metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Membrane Transport in Isolated Vesicles from Sugarbeet Taproot

    PubMed Central

    Giannini, John L.; Miller, Gene W.; Briskin, Donald P.

    1987-01-01

    The effects of fluoride on the tonoplast type ATPase and transport activities associated with sealed membrane vesicles isolated from sugarbeet (Beta vulgaris L.) storage tissue were examined. This anion had two distinct effects upon the proton-pumping vesicles. When ATP hydrolysis was measured in the presence of gramicidin D, significant inhibition (approximately 50%) only occurred when the fluoride concentration approached 50 millimolar. In contrast, the same degree of inhibition of proton transport occurred when the fluoride concentration was about 24 millimolar. Effects on proton pumping at this concentration of fluoride could be attributed to an inhibition of chloride movement which serves to dissipate the vesicle membrane potential. Valinomycin could partially restore ATPase activity in sealed vesicles which were inhibited by fluoride and this restoration occurred with a reduction in the membrane potential. Fluoride demonstrated a competitive interaction with chloride-stimulation of proton transport and inhibited the uptake of radioactive chloride into sealed vesicles. When the vesicles were allowed to develop a pH gradient in the absence of KCl, and KCl was subsequently added, fluoride reduced enhancement of the existing pH gradient by KCl. The results are consistent with a chloride carrier that is inhibited by fluoride. PMID:16665312

  6. Sum frequency generation studies of membrane transport phenomena

    SciTech Connect

    Dyer, R.B.; Shreve, A.P.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this work is to study the transport of protons and ions across biological membranes, one of the most fundamental processes in living organisms, critical for energy transduction in respiration and photosynthesis and for a wide variety of cellular signal transduction events. Membrane protein structure and function, in particular proton and ion pumping are poorly understood. The authors have developed sum frequency generation (SFG) spectroscopy for the study of membrane phenomena, a nonlinear spectroscopic technique that is uniquely sensitive to interfaces and with demonstrated structural specificity. They have used SFG and conventional vibrational spectroscopic approaches to study proton transport processes in cytochrome c oxidase. A key finding has been the identification of vibrational modes associated with proton labile groups, including a glutamic acid near the redox active binuclear center and structural waters. These groups are sensitive to the ligation and redox states of the metal centers and hence are ideal candidates for coupling redox energy to proton transport processes.

  7. Membrane alternatives in worlds without oxygen: Creation of an azotosome.

    PubMed

    Stevenson, James; Lunine, Jonathan; Clancy, Paulette

    2015-02-01

    The lipid bilayer membrane, which is the foundation of life on Earth, is not viable outside of biology based on liquid water. This fact has caused astronomers who seek conditions suitable for life to search for exoplanets within the "habitable zone," the narrow band in which liquid water can exist. However, can cell membranes be created and function at temperatures far below those at which water is a liquid? We take a step toward answering this question by proposing a new type of membrane, composed of small organic nitrogen compounds, that is capable of forming and functioning in liquid methane at cryogenic temperatures. Using molecular simulations, we demonstrate that these membranes in cryogenic solvent have an elasticity equal to that of lipid bilayers in water at room temperature. As a proof of concept, we also demonstrate that stable cryogenic membranes could arise from compounds observed in the atmosphere of Saturn's moon, Titan, known for the existence of seas of liquid methane on its surface.

  8. Membrane alternatives in worlds without oxygen: Creation of an azotosome

    PubMed Central

    Stevenson, James; Lunine, Jonathan; Clancy, Paulette

    2015-01-01

    The lipid bilayer membrane, which is the foundation of life on Earth, is not viable outside of biology based on liquid water. This fact has caused astronomers who seek conditions suitable for life to search for exoplanets within the “habitable zone,” the narrow band in which liquid water can exist. However, can cell membranes be created and function at temperatures far below those at which water is a liquid? We take a step toward answering this question by proposing a new type of membrane, composed of small organic nitrogen compounds, that is capable of forming and functioning in liquid methane at cryogenic temperatures. Using molecular simulations, we demonstrate that these membranes in cryogenic solvent have an elasticity equal to that of lipid bilayers in water at room temperature. As a proof of concept, we also demonstrate that stable cryogenic membranes could arise from compounds observed in the atmosphere of Saturn’s moon, Titan, known for the existence of seas of liquid methane on its surface. PMID:26601130

  9. Determinants of oxygen and carbon dioxide transfer during extracorporeal membrane oxygenation in an experimental model of multiple organ dysfunction syndrome.

    PubMed

    Park, Marcelo; Costa, Eduardo Leite Vieira; Maciel, Alexandre Toledo; Silva, Débora Prudêncio E; Friedrich, Natalia; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Schettino, Guilherme; Azevedo, Luciano Cesar Pontes

    2013-01-01

    Extracorporeal membrane oxygenation (ECMO) has gained renewed interest in the treatment of respiratory failure since the advent of the modern polymethylpentene membranes. Limited information exists, however, on the performance of these membranes in terms of gas transfers during multiple organ failure (MOF). We investigated determinants of oxygen and carbon dioxide transfer as well as biochemical alterations after the circulation of blood through the circuit in a pig model under ECMO support before and after induction of MOF. A predefined sequence of blood and sweep flows was tested before and after the induction of MOF with fecal peritonitis and saline lavage lung injury. In the multivariate analysis, oxygen transfer had a positive association with blood flow (slope = 66, P<0.001) and a negative association with pre-membrane PaCO(2) (slope = -0.96, P = 0.001) and SatO(2) (slope = -1.7, P<0.001). Carbon dioxide transfer had a positive association with blood flow (slope = 17, P<0.001), gas flow (slope = 33, P<0.001), pre-membrane PaCO(2) (slope = 1.2, P<0.001) and a negative association with the hemoglobin (slope = -3.478, P = 0.042). We found an increase in pH in the baseline from 7.50[7.46,7.54] to 7.60[7.55,7.65] (P<0.001), and during the MOF from 7.19[6.92,7.32] to 7.41[7.13,7.5] (P<0.001). Likewise, the PCO(2) fell in the baseline from 35 [32,39] to 25 [22,27] mmHg (P<0.001), and during the MOF from 59 [47,91] to 34 [28,45] mmHg (P<0.001). In conclusion, both oxygen and carbon dioxide transfers were significantly determined by blood flow. Oxygen transfer was modulated by the pre-membrane SatO(2) and CO(2), while carbon dioxide transfer was affected by the gas flow, pre-membrane CO(2) and hemoglobin.

  10. Temperature effect on transport performance by inorganic nanofiltration membranes

    SciTech Connect

    Tsuru, Toshinori; Izumi, Shuhei; Yoshioka, Tomohisa; Asaeda, Masashi

    2000-03-01

    The effect of temperature on nanofiltration performance was examined using three inorganic membranes with a molecular-weight cutoff of approximately 200, 600, and 2,000, respectively. The inorganic porous membranes were prepared from silica-zirconia colloidal sols and used in nanofiltration experiments for neutral solutes over a temperature range of 20 to 60 C. The rejection of solutes decreased with an increase in temperature for the membranes, while the permeate volume flux increased. Three transport coefficients--reflection coefficient, solute permeability, and water permeability--were obtained using the Spiegler-Kedem equation, which accounts for the contribution of convection and diffusion to solute flux. As a result, the reflection coefficient corresponding to the fraction of solutes reflected by the membrane in convective flow was almost constant, irrespective of experimental temperature. The dependency was larger for larger solutes and membranes with smaller pore diameters. Therefore, the hindered diffusion of solutes through micropores was indicative of an activated process. Moreover, pure water permeability, after correction for the temperature effect on viscosity, also increased with experimental temperature.

  11. The effects of oxygen on the evolution of microbial membranes

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.

    1991-01-01

    One prokaryote, Methylococcus capsulatus, synthesizes both hopanoids and sterols and, thus, provides a unique opportunity to study the evolution of membrane function. When M. capsulatus was grown at different temperatures, lipid analysis of the whole cells showed that both sterol and unsaturated fatty acid levels decreased at higher growth temperatures; sterol concentrations were 0.116 micro mole/micro mole phospholipid at 30 C and 0.025 micro mole/mirco mole phospholipid at 45 C, while the saturated to unsaturated fatty acid ratio increased from 0.397 to 1.475. Hopane polyol levels were constant over this range; however, methylation of the A-ring decreased markedly in cells grown at 30 C. These results imply that sterol and hopane molecules are required for enhancement of some specific membrane function, potentially by modulating membrane fluidity.

  12. Novel probes for visualizing reactive oxygen species in lipid membranes

    NASA Astrophysics Data System (ADS)

    Krumova, Katerina; Cosa, Gonzalo

    2010-04-01

    This work describes the rationale behind the preparation of fluorescent probes for imaging lipid peroxyl radicals within membranes of living cells (fluorescent lipophilic antioxidants). The new probes are based on BODIPY dyes tethered to phenol moieties. We discuss the spectroscopic properties of these novel probes, specifically the BODIPY-α-tocopherol analogue B-TOH, and present a molecular level explanation, based on photoinduced electron transfer, that accounts for the significant emission enhancement that the probe BTOH experiences upon reaction with peroxyl free radicals. In addition to the spectroscopy results in homogeneous media, we also describe studies performed in model lipid membranes which show that the sensitivity of BTOH towards lipid peroxyl radicals is somewhat reduced when the probe is membrane embedded. Solutions to increase the sensitivity of the free radical probes are discussed based on the redox potential of BODIPY dyes.

  13. Plasma membrane-localized transporter for aluminum in rice

    PubMed Central

    Xia, Jixing; Yamaji, Naoki; Kasai, Tomonari; Ma, Jian Feng

    2010-01-01

    Aluminum (Al) is the most abundant metal in the Earth's crust, but its trivalent ionic form is highly toxic to all organisms at low concentrations. How Al enters cells has not been elucidated in any organisms. Herein, we report a transporter, Nrat1 (Nramp aluminum transporter 1), specific for trivalent Al ion in rice. Nrat1 belongs to the Nramp (natural resistance-associated macrophage protein) family, but shares a low similarity with other Nramp members. When expressed in yeast, Nrat1 transports trivalent Al ion, but not other divalent ions, such as manganese, iron, and cadmium, or the Al–citrate complex. Nrat1 is localized at the plasma membranes of all cells of root tips except epidermal cells. Knockout of Nrat1 resulted in decreased Al uptake, increased Al binding to cell wall, and enhanced Al sensitivity, but did not affect the tolerance to other metals. Expression of Nrat1 is up-regulated by Al in the roots and regulated by a C2H2 zinc finger transcription factor (ART1). We therefore concluded that Nrat1 is a plasma membrane-localized transporter for trivalent Al, which is required for a prior step of final Al detoxification through sequestration of Al into vacuoles. PMID:20937890

  14. Plasma membrane-localized transporter for aluminum in rice.

    PubMed

    Xia, Jixing; Yamaji, Naoki; Kasai, Tomonari; Ma, Jian Feng

    2010-10-26

    Aluminum (Al) is the most abundant metal in the Earth's crust, but its trivalent ionic form is highly toxic to all organisms at low concentrations. How Al enters cells has not been elucidated in any organisms. Herein, we report a transporter, Nrat1 (Nramp aluminum transporter 1), specific for trivalent Al ion in rice. Nrat1 belongs to the Nramp (natural resistance-associated macrophage protein) family, but shares a low similarity with other Nramp members. When expressed in yeast, Nrat1 transports trivalent Al ion, but not other divalent ions, such as manganese, iron, and cadmium, or the Al-citrate complex. Nrat1 is localized at the plasma membranes of all cells of root tips except epidermal cells. Knockout of Nrat1 resulted in decreased Al uptake, increased Al binding to cell wall, and enhanced Al sensitivity, but did not affect the tolerance to other metals. Expression of Nrat1 is up-regulated by Al in the roots and regulated by a C2H2 zinc finger transcription factor (ART1). We therefore concluded that Nrat1 is a plasma membrane-localized transporter for trivalent Al, which is required for a prior step of final Al detoxification through sequestration of Al into vacuoles.

  15. YTPdb: a wiki database of yeast membrane transporters.

    PubMed

    Brohée, Sylvain; Barriot, Roland; Moreau, Yves; André, Bruno

    2010-10-01

    Membrane transporters constitute one of the largest functional categories of proteins in all organisms. In the yeast Saccharomyces cerevisiae, this represents about 300 proteins ( approximately 5% of the proteome). We here present the Yeast Transport Protein database (YTPdb), a user-friendly collaborative resource dedicated to the precise classification and annotation of yeast transporters. YTPdb exploits an evolution of the MediaWiki web engine used for popular collaborative databases like Wikipedia, allowing every registered user to edit the data in a user-friendly manner. Proteins in YTPdb are classified on the basis of functional criteria such as subcellular location or their substrate compounds. These classifications are hierarchical, allowing queries to be performed at various levels, from highly specific (e.g. ammonium as a substrate or the vacuole as a location) to broader (e.g. cation as a substrate or inner membranes as location). Other resources accessible for each transporter via YTPdb include post-translational modifications, K(m) values, a permanently updated bibliography, and a hierarchical classification into families. The YTPdb concept can be extrapolated to other organisms and could even be applied for other functional categories of proteins. YTPdb is accessible at http://homes.esat.kuleuven.be/ytpdb/.

  16. Multicomponent transport in membranes for redox flow batteries

    NASA Astrophysics Data System (ADS)

    Monroe, Charles

    2015-03-01

    Redox flow batteries (RFBs) incorporate separator membranes, which ideally prevent mixing of electrochemically active species while permitting crossover of inactive supporting ions. Understanding crossover and membrane selectivity may require multicomponent transport models that account for solute/solute interactions within the membrane, as well as solute/membrane interactions. Application of the Onsager-Stefan-Maxwell formalism allows one to account for all the dissipative phenomena that may accompany component fluxes through RFB membranes. The magnitudes of dissipative interactions (diffusional drag forces) are quantified by matching experimentally established concentration transients with theory. Such transients can be measured non-invasively using DC conductometry, but the accuracy of this method requires precise characterization of the bulk RFB electrolytes. Aqueous solutions containing both vanadyl sulfate (VOSO4) and sulfuric acid (H2SO4) are relevant to RFB technology. One of the first precise characterizations of aqueous vanadyl sulfate has been implemented and will be reported. To assess the viability of a separator for vanadium RFB applications with cell-level simulations, it is critical to understand the tendencies of various classes of membranes to absorb (uptake) active species, and to know the relative rates of active-species and supporting-electrolyte diffusion. It is also of practical interest to investigate the simultaneous diffusion of active species and supports, because interactions between solutes may ultimately affect the charge efficiency and power efficiency of the RFB system as a whole. A novel implementation of Barnes's classical model of dialysis-cell diffusion [Physics 5:1 (1934) 4-8] is developed to measure the binary diffusion coefficients and sorption equilibria for single solutes (VOSO4 or H2SO4) in porous membranes and cation-exchange membranes. With the binary diffusion and uptake measurement in hand, a computer simulation that

  17. A wet-primed extracorporeal membrane oxygenation circuit with hollow-fiber membrane oxygenator maintains adequate function for use during cardiopulmonary resuscitation after 2 weeks on standby.

    PubMed

    Karimova, Ann; Robertson, Alex; Cross, Nigel; Smith, Liz; O'callaghan, Maura; Tuleu, Catherine; Long, Paul; Beeton, Allison; Han, Jihong; Ridout, Deborah; Goldman, Allan; Brown, Kate

    2005-07-01

    To assess the durability of wet-preprimed extracorporeal membrane oxygenation (ECMO) circuits for potential use in resuscitation after a 2-wk period of storage. Experimental laboratory study. Tertiary care pediatric cardiac intensive care unit. None. 14 ECMO circuits (polyvinyl chloride and super-Tygon tubing with hollow-fiber oxygenator, Medos Hilite 800LT) were primed with crystalloid under sterile conditions and stored for 0 (control, n = 4), 7 (n = 5) and 14 (n = 5) days and maintained at 8 degrees C on pump at 10 rpm and gas flow at 0.2 L/min. Daily samples were inspected for plasticizers by means of high-performance liquid chromatography and for microorganisms by culture and polymerase chain reaction techniques. After storage, the oxygenators were primed with red blood cells (hemoglobin, 12 g/dL) and tested in vitro with a deoxygenator according to Association for Advancement of Medical Instrumentation standards. Oxygen and CO(2) transfer rates were calculated by standard formulae at maximum blood flow (800 mL/min) and maximum sweep gas flow (1.6 L/min). Oxygen transfer was linearly related to venous oxygen saturation, increasing by 11 mL/min for each 10% decrease in venous oxygen saturation. Estimated oxygen transfer at venous oxygen saturation of 60% was 45.8 mL/min (95% confidence interval [CI], 43.5-48.1) for controls, 51.0 mL/min (95% CI, 48.9-53.2) for 7-day oxygenators, and 49.0 mL/min (95% CI, 47.8-50.1) for 14-day oxygenators. CO(2) transfer declined to 29.2 mL/min at 14 days of storage, a mean fall of 11.5 mL/min (95% CI, 4.2-18.7) in comparison with 7-day storage. All circuits were free from microbes/microbial DNA. Plasticizer levels fell below the lower limit of detection (0.003 microg/mL) at 7 and 14 days. A wet-preprimed ECMO circuit with hollow-fiber membrane oxygenator can be stored for up to 2 wks with adequately preserved function if prepared appropriately. These data may improve safe access to rapid-response ECMO support.

  18. Hemoglobin-based oxygen carrier and convection enhanced oxygen transport in a hollow fiber bioreactor.

    PubMed

    Chen, Guo; Palmer, Andre F

    2009-04-15

    A mathematical model was developed to study O(2) transport in a convection enhanced hepatic hollow fiber (HF) bioreactor, with hemoglobin-based O(2) carriers (HBOCs) present in the flowing cell culture media stream of the HF lumen. In this study, four HBOCs were evaluated: PEG-conjugated human hemoglobin (MP4), human hemoglobin (hHb), bovine hemoglobin (BvHb) and polymerized bovine hemoglobin (PolyBvHb). In addition, two types of convective flow in the HF extra capillary space (ECS) were considered in this study. Starling flow naturally occurs when both of the ECS ports are closed. If one of the ECS ports is open, forced convective flow through the ECS will occur due to the imposed pressure difference between the lumen and ECS. This type of flow is referred to as cross-flow in this work, since some of the fluid entering the HF lumen will pass across the HF membrane and exit via the open ECS port. In this work, we can predict the dissolved O(2) concentration profile as well as the O(2) transport flux in an individual HF of the bioreactor by solving the coupled momentum and mass transport equations. Our results show that supplementation of the cell culture media with HBOCs can dramatically enhance O(2) transport to the ECS (containing hepatocytes) and lead to the formation of an in vivo-like O(2) spectrum for the optimal culture of hepatocytes. However, both Starling flow and cross-flow have a very limited effect on O(2) transport in the ECS. Taken together, this work represents a novel predictive tool that can be used to design or analyze HF bioreactors that expose cultured cells to defined overall concentrations and gradients of O(2).

  19. Oxygen transport pathways in Ruddlesden–Popper structured oxides revealed via in situ neutron diffraction

    DOE PAGES

    Tomkiewicz, Alex C.; Tamimi, Mazin; Huq, Ashfia; ...

    2015-09-21

    Ruddlesden-Popper structured oxides, general form An+1BnO3n+1, consist of n-layers of the perovskite structure stacked in between rock-salt layers, and have potential application in solid oxide electrochemical cells and ion transport membrane reactors. Three materials with constant Co/Fe ratio, LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2), and LaSr3Co1.5Fe1.5O10-δ (n = 3) were synthesized and studied via in situ neutron powder diffraction between 765 K and 1070 K at a pO2 of 10-1 atm. Then, the structures were fit to a tetragonal I4/mmm space group, and were found to have increased total oxygen vacancy concentration in the order La0.3Sr2.7CoFeO7-δ > LaSr3Co1.5Fe1.5O10-δmore » > LaSrCo0.5Fe0.5O4-δ, following the trend predicted for charge compensation upon increasing Sr2+/La3+ ratio. The oxygen vacancies within the material were almost exclusively located within the perovskite layers for all of the crystal structures with only minimal vacancy formation in the rock-salt layer. Finally, analysis of the concentration of these vacancies at each distinct crystallographic site and the anisotropic atomic displacement parameters for the oxygen sites reveals potential preferred oxygen transport pathways through the perovskite layers.« less

  20. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients.

    PubMed

    Qiu, Feng; Guan, Yulong; Su, Xiaowei; Kunselman, Allen; Undar, Akif

    2010-11-01

    A series of studies performed at our center demonstrates that gaseous microemboli (GME) remain a challenge in cardiac surgical procedures. Evaluation of novel oxygenators must address hemodynamic parameters and microemboli capture capability. The objective of this study is to compare two neonatal membrane oxygenators, the Quadrox-i (MAQUET Cardiopulmonary AG, Hirrlingen, Germany) and the Capiox RX05 (Terumo Corporation, Tokyo, Japan), with respect to GME capture and hemodynamic energy delivery. The experimental circuit included a Maquet HL-20 heart-lung machine, a Heater-Cooler Unit HCU 30 (MAQUET Cardiopulmonary AG), a membrane oxygenator (Quadrox-i Neonatal or Capiox RX05), and ¼-inch tubing from the COBE Heart/Lung Perfusion Pack (COBE Cardiovascular, Inc., Arvada, CO, USA). A Capiox cardiotomy reservoir CX*CR10NX (Terumo Corporation) acted as a pseudopatient. The circuit was primed with human packed red blood cells and lactated Ringer's solution and de-aired according to clinical priming procedure. Heparin (5000IU) was added into the circuit. The total volume was 400mL and hematocrit was 30%. Pump flow rate was maintained at 500 or 1000mL/min under both pulsatile and nonpulsatile modes. All trials were conducted under 100mm Hg of circuit pressure at normothermia (35°C). In each trial, bolus air (0.5mL) was injected into the circuit at the prepump site over 5s. Total emboli counts and total emboli volume were significantly reduced by the Quadrox-i Neonatal membrane oxygenator compared to the Capiox RX05 membrane oxygenator. Classification and quantification of GME detected at the postoxygenator site at two different flow rates indicated that the Quadrox-i Neonatal captures the majority of microemboli larger than 40µm in diameter. The Quadrox-i Neonatal membrane oxygenator had a higher transmembrane pressure drop at 500mL/min, whereas it had a lower pressure drop at 1000mL/min compared to the Capiox Baby RX05 oxygenator. Additionally, the Quadrox-i Neonatal

  1. Flexible oligocholate foldamers as membrane transporters and their guest-dependent transport mechanism.

    PubMed

    Zhang, Shiyong; Zhao, Yan

    2012-01-14

    Dimeric, trimeric, and tetrameric oligocholates with flexible 4-aminobutyroyl spacers caused the efflux of hydrophilic molecules such as carboxyfluorescein (CF) and glucose from POPC/POPG liposomes. Transport was greatly suppressed across higher-melting DPPC membranes. Lipid-mixing assays and dynamic light scattering (DLS) indicated that the liposomes were intact during the transport. Kinetic analysis supported the involvement of monomeric species in the rate-limiting step of CF transport, consistent with a carrier-based mechanism. Glucose transport, on the other hand, displayed a highly unusual zero-order dependence on the oligocholate concentration at low loading of the transporter. Different selectivity was observed in the oligocholate transporters depending on the guest involved.

  2. Micro-scale Modeling of Flow and Oxygen Transfer in Hollow Fiber Membrane Bundle

    PubMed Central

    Taskin, M. Ertan; Fraser, Katharine H.; Zhang, Tao; Griffith, Bartley P.; Wu, Zhongjun J.

    2010-01-01

    The aim of this work was to develop a modeling approach to solve the flow and oxygen transfer when the blood passes through the hollow-fiber membrane bundle. For this purpose, a “two-region” modeling approach was developed regarding the hollow fiber and blood regions. The oxygen transfer in these regions was defined with separate diffusion processes. Two dimensional single and multi-fiber geometries were created and flow solutions were obtained for a non-Newtonian fluid. The convection-diffusion-reaction equation was solved to produce the oxygen partial pressure distributions. As a benefit of coupling the interstitial flow field into the oxygen transfer through the hollow-fiber membrane bundle, the membrane resistance was taken into consideration. Thus, varying oxygen partial pressures were observed on the outer fiber surface, which is contrary to the common simplifying assumptions of negligible membrane resistance and uniform oxygen content on the fiber surface (Traditional approach). It was illustrated that, the current approach can be utilized to predict the mass transfer efficiencies without overestimating as compared to the predictions obtained with the traditional approach. Utilization of the current approach was found to be beneficial for the geometries with lower packing density which allows significant PO2 variations on the fiber surfaces. For the geometries with dense packings, the above simplifying assumptions could be applicable. The model predictions were validated with the experimental measurements taken from a benchmark device. PMID:20802783

  3. The plasma membrane transport systems and adaptation to salinity.

    PubMed

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance.

  4. Oxygen transport variables in the identification and treatment of tissue hypoxia.

    PubMed

    Epstein, C D; Henning, R J

    1993-01-01

    Critically ill patients have greater than normal oxygen demands because of enhanced energy requirements placed on them by the stress of acute illness, blood and fluid loss, surgery, wound healing, and hospitalization. Early recognition of major alterations in oxygen transport variables, oxygen delivery, oxygen consumption, and the oxygen extraction ratio, by the critical care team assists in the prevention and treatment of tissue hypoxia in seriously ill and injured patients. Supranormal levels of oxygen delivery are required to meet these increased oxygen demands, to prevent tissue hypoxia, and to correct tissue oxygen debt. The critical care team should promptly determine the patient's oxygen transport variables on admission to the intensive care unit to provide a starting point for patient resuscitation. When deviations from supranormal values of oxygen transport variables in these patients are identified, specific interventions that improve oxygen delivery to peripheral tissues should be implemented and evaluated for their effectiveness in normalizing the oxygen extraction ratio. When serial measurements of oxygen delivery, oxygen consumption, and the oxygen extraction ratio follow each therapeutic intervention that is directed at increasing oxygen delivery, the survival rate of critically ill patients is significantly improved.

  5. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

    PubMed

    Belousov, Valery V

    2017-02-21

    High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on

  6. Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy.

    PubMed

    Ren, Hao; Liu, Jiaqi; Li, Yuqin; Wang, Haoran; Ge, Sizhan; Yuan, Ahu; Hu, Yiqiao; Wu, Jinhui

    2017-09-01

    In recent years, indocyanine green (ICG) encapsulated in different kinds of nano-carriers have been developed to overcome its short lifetime in vivo and non-selectivity in cancer cells. However, these nanoparticles are still easily recognized and captured by the reticuloendothelial system (RES) and the low singlet oxygen quantum (0.08) of ICG inevitably leads to a limited efficacy of phototherapy. To overcome these limitations, a novel oxygen self-enriched biomimetic red blood cell (RBC) was developed by cloaking albumin nanoparticles which contained ICG and perfluorocarbon (PFC) with RBC membranes. Due to the high oxygen capacity of PFC, the oxygen self-enriched nanoparticles can enhance photodynamic therapy (PDT) by generating more singlet oxygen ((1)O2). After successfully coated RBC membranes onto nanoparticles, the novel oxygen self-enriched biomimetic RBCs remained the characteristics of photothermal therapy (PTT) and enhanced PDT in vitro. Importantly, it can effectively reduce immune clearance in macrophage cells (RAW264.7) and significantly prolong blood circulation time, achieving high accumulation in tumor. In addition, the tumor growth was effectively inhibited after intravenous injection to tumor-bearing mice. Altogether, this oxygen self-enriched RBCs with long circulation time and high oxygen capacity as natural RBCs provide a new strategy to design biomimetic nano-system for clinical cancer phototherapy treatment. Near-infrared (NIR) dyes encapsulated in nanocarriers have been achieved great interest in cancer phototherapy treatment. However, the low singlet oxygen ((1)O2) quantum of NIR dyes and short circulation time of nanoparticles lead to unsatisfactory efficacy