Science.gov

Sample records for oxygen utilization rate

  1. The Rate of Oxygen Utilization by Cells

    PubMed Central

    Wagner, Brett A.; Venkataraman, Sujatha; Buettner, Garry R.

    2011-01-01

    The discovery of oxygen is considered by some to be the most important scientific discovery of all time – from both physical-chemical/astrophysics and biology/evolution viewpoints. One of the major developments during evolution is the ability to capture dioxygen in the environment and deliver it to each cell in the multicellular, complex mammalian body -- on demand, i.e. just-in-time. Humans use oxygen to extract approximately 2550 Calories (10.4 MJ) from food to meet daily energy requirements. This combustion requires about 22 moles of dioxygen per day, or 2.5 × 10-4 mol s-1. This is an average rate of oxygen utilization of 2.5 × 10-18 mol cell-1 s-1, i.e. 2.5 amol cell-1 s-1. Cells have a wide range of oxygen utilization, depending on cell type, function, and biological status. Measured rates of oxygen utilization by mammalian cells in culture range from <1 to >350 amol cell-1 s-1. There is a loose positive linear correlation of the rate of oxygen consumption (OCR) by mammalian cells in culture with cell volume and cell protein. The use of oxygen by cells and tissues is an essential aspect of the basic redox biology of cells and tissues. This type of quantitative information is fundamental to investigations in quantitative redox biology, especially redox systems biology. PMID:21664270

  2. Oxygen utilization rate (OUR) underestimates ocean respiration: A model study

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Kähler, P.

    2016-08-01

    We use a simple 1-D model representing an isolated density surface in the ocean and 3-D global ocean biogeochemical models to evaluate the concept of computing the subsurface oceanic oxygen utilization rate (OUR) from the changes of apparent oxygen utilization (AOU) and water age. The distribution of AOU in the ocean is not only the imprint of respiration in the ocean's interior but is strongly influenced by transport processes and eventually loss at the ocean surface. Since AOU and water age are subject to advection and diffusive mixing, it is only when they are affected both in the same way that OUR represents the correct rate of oxygen consumption. This is the case only when advection prevails or with uniform respiration rates, when the proportions of AOU and age are not changed by transport. In experiments with the 1-D tube model, OUR underestimates respiration when maximum respiration rates occur near the outcrops of isopycnals and overestimates when maxima occur far from the outcrops. Given the distribution of respiration in the ocean, i.e., elevated rates near high-latitude outcrops of isopycnals and low rates below the oligotrophic gyres, underestimates are the rule. Integrating these effects globally in three coupled ocean biogeochemical and circulation models, we find that AOU-over-age based calculations underestimate true model respiration by a factor of 3. Most of this difference is observed in the upper 1000 m of the ocean with the discrepancies increasing toward the surface where OUR underestimates respiration by as much as factor of 4.

  3. Tritium-helium dating in the sargasso sea: a measurement of oxygen utilization rates.

    PubMed

    Jenkins, W J

    1977-04-15

    The newly developed technique of "tritium-helium dating" has been used to investigate in situ rates of oceanic oxygen utilization. As an example, an apparent oxygen utilization rate of 0.20 +/- 0.02 milliliter per liter of water per year has been obtained for the Subtropical Mode water (18 degrees C water) in the Sargasso Sea.

  4. Factors controlling oxygen utilization.

    PubMed

    Biaglow, John; Dewhirst, Mark; Leeper, Dennis; Burd, Randy; Tuttle, Steve

    2005-01-01

    We demonstrate, theoretically, that oxygen diffusion distance is related to the metabolic rate of tumors (QO2) as well as the oxygen tension. The difference in QO2 rate between tumors can vary by as much as 80-fold. Inhibition of oxygen utilization by glucose or chemical inhibitors can improve the diffusion distance. Combining respiratory inhibitors with increased availability of oxygen will further improve the oxygen diffusion distance for all tumors. A simple means for inhibiting oxygen consumption is the use of glucose (the Crabtree effect). The inhibition of tumor oxygen utilization by glucose occurs in R323OAc mammary carcinoma and 9L glioma cells. However, stimulation of oxygen consumption is observed with glucose in the Q7 hepatoma cell line. MIBG, a known inhibitor of oxygen utilization, blocks oxygen consumption in 9L, but is weakly inhibitory with the Q7. Q7 tumor cells demonstrate an anomalous behavior of glucose and MIBG on oxygen consumption. Our results clearly demonstrate the necessity for comparing effects of different agents on different tumor cells. Generalizations cannot be made with respect to the choice of inhibitor for in vivo use. Our work shows that oxygen consumption also can be inhibited with malonate and chlorosuccinate. These substrates may be effective in vivo, where glucose is low and glutamine is the major substrate. Our results indicate that information about individual tumor substrate-linked metabolic controls may be necessary before attempting to inhibit oxygen utilization in vivo for therapeutic benefit.

  5. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements.

    PubMed

    Nelson, J A

    2016-01-01

    Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included.

  6. Thermocline ventilation and oxygen utilization rates in the subtropical North Pacific based on CFC distributions during WOCE

    NASA Astrophysics Data System (ADS)

    Sonnerup, Rolf E.; Quay, Paul D.; Bullister, John L.

    1999-05-01

    Thermocline ventilation rates for the subtropical North Pacific are determined using a 1-dimensional (meridional) along-isopycnal advective-diffusive model tuned to chlorofluorocarbon (CFC) concentrations measured along 152°W in 1991 during WOCE P16. Mean southward advection rates in the subtropics range from 1.03 to 0.56 cm s -1 between σθ=25.5 and 26.6. Model-derived ventilation times for the subtropical gyre increase from about 10 to 27 years for that isopycnal range. Oxygen utilization rates (OURs) determined using the advective-diffusive model decrease with depth from 6.6 to 3.2 μmol kg -1 yr -1 between σθ=25.5 and 26.6. Extrapolation of the OUR versus depth trend to the base of the euphotic zone with the 1/ Z power function of Martin et al. (1987) and integration from 500 to 100 m depth implies a carbon export rate from the overlying euphotic zone of 2.2±0.5 moles C m -2 yr -1 at 30°N, 152°W. Analysis of the WOCE radiocarbon and salinity distributions indicates that zonal and cross-isopycnal transport terms would have to be considered in modeling these tracers in the subtropical North Pacific.

  7. Transit time distributions and oxygen utilization rates in the Northeast Pacific Ocean from chlorofluorocarbons and sulfur hexafluoride

    NASA Astrophysics Data System (ADS)

    Sonnerup, Rolf E.; Mecking, Sabine; Bullister, John L.

    2013-02-01

    Depth profiles of dissolved chlorofluorocarbon-11 (CFC-11) and sulfur hexafluoride (SF6) were measured during a September 2008 cruise in the Northeast Pacific Ocean. For each water sample, the two tracers were used in concert to estimate likely mean ages and widths of parameterized 1-D transit time distributions (TTDs). In shallow waters (<250 m), the TTDs' mean ages were relatively loosely constrained due to the slow decrease of atmospheric CFC-11 since 1994. In the main thermocline (25.0-26.6 σθ, ∼300-550 m), the CFC-11/SF6 tracer pair constrained TTDs' mean ages to within±10%. Deeper than 26.8 σθ (∼600 m), SF6 levels in 2008 were too low for the CFC-11/SF6 tracer pair to constrain the TTDs' mean ages. Within the main thermocline of the subtropical North Pacific Ocean (20°-37°N along 152°W), the TTDs' mean ages were used to estimate Oxygen Utilization Rates (OURs) of ∼11 μmol kg-1 yr-1 on 25.0-25.5 σθ (∼160 m), attenuating to very low rates (0.12 μmol kg-1 yr-1) by 26.8-27.0 σθ (∼600 m). Depth integration of the in-situ OURs implied an average carbon remineralization rate of 1.7±0.3 mol C m-2 yr-1 in this region and depth range, somewhat lower than other independent estimates. Along the 152°W section, depth integrating the apparent OURs implied carbon remineralization rates of 2.5-3.5 mol C m-2 yr-1 from 20°N to 30°N, 3.5-4.0 mol C m-2 yr-1 from 30°N to 40°N, and 2-2.7 mol C m-2 yr-1 north of 45°N.

  8. National Utility Rate Database: Preprint

    SciTech Connect

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  9. High pressure oxygen utilization by NASA

    NASA Technical Reports Server (NTRS)

    Belles, F. E.

    1973-01-01

    Although NASA is not one of the country's major oxygen consumers, it uses oxygen under severe conditions including very high flow rates and pressure. Materials for such applications must be carefully selected for compatibility, because susceptibility to ignition increases as operating pressure is raised. Much work is needed, however to define the selection criteria. Some of the work in this area that is being performed under sponsorship of NASA's Aerospace Safety Research and Data Institute (ASRDI) is described.

  10. Early Oxygen-Utilization and Brain Activity in Preterm Infants

    PubMed Central

    de Vries, Linda S.; Groenendaal, Floris; Toet, Mona C.; Lemmers, Petra M. A.; Vosse van de, Renè E.; van Bel, Frank; Benders, Manon J. N. L.

    2015-01-01

    The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS) and cerebral activity using amplitude-integrated EEG (aEEG) could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and quantitative aEEG/EEG parameters has not yet been investigated. Our aim was to study the association between oxygen utilization during the first 6 h after birth and simultaneously continuously monitored brain activity measured by aEEG/EEG. Forty-four hemodynamically stable babies with a GA < 28 weeks, with good quality NIRS and aEEG/EEG data available and who did not receive morphine were included in the study. aEEG and NIRS monitoring started at NICU admission. The relation between regional cerebral oxygen saturation (rScO2) and cerebral fractional tissue oxygen extraction (cFTOE), and quantitative measurements of brain activity such as number of spontaneous activity transients (SAT) per minute (SAT rate), the interval in seconds (i.e. time) between SATs (ISI) and the minimum amplitude of the EEG in μV (min aEEG) were evaluated. rScO2 was negatively associated with SAT rate (β=-3.45 [CI=-5.76- -1.15], p=0.004) and positively associated with ISI (β=1.45 [CI=0.44-2.45], p=0.006). cFTOE was positively associated with SAT rate (β=0.034 [CI=0.009-0.059], p=0.008) and negatively associated with ISI (β=-0.015 [CI=-0.026- -0.004], p=0.007). Oxygen delivery and utilization, as indicated by rScO2 and cFTOE, are directly related to functional brain activity, expressed by SAT rate and ISI during the first hours after birth, showing an increase in oxygen extraction in preterm infants with increased early electro-cerebral activity. NIRS monitored oxygenation may be a useful biomarker of brain vulnerability in high-risk infants. PMID:25965343

  11. Reduced oxygen utilization in septic shock: disorder or adaptation?

    PubMed

    Steiner, Alexandre A

    2015-01-01

    A fall in oxygen utilization during septic or endotoxic shock is thought to reflect circulatory hypoxia or mitochondrial dysfunction, but these pathology-oriented hypotheses do not explain all clinical observations. Here we discuss an alternative hypothesis of how oxygen utilization could fall as the result of a physiological thermometabolic adaptation.

  12. Ammonia producing engine utilizing oxygen separation

    DOEpatents

    Easley, Jr., William Lanier; Coleman, Gerald Nelson; Robel, Wade James

    2008-12-16

    A power system is provided having a power source, a first power source section with a first intake passage and a first exhaust passage, a second power source section with a second intake passage and a second exhaust passage, and an oxygen separator. The second intake passage may be fluidly isolated from the first intake passage.

  13. Measuring Oxygen Consumption Rate in Caenorhabditis elegans

    PubMed Central

    Palikaras, Konstantinos; Tavernarakis, Nektarios

    2017-01-01

    The rate of oxygen consumption is a vital marker indicating cellular function during lifetime under normal or metabolically challenged conditions. It is used broadly to study mitochondrial function (Artal-Sanz and Tavernarakis, 2009; Palikaras et al., 2015; Ryu et al., 2016) or investigate factors mediating the switch from oxidative phosphorylation to aerobic glycolysis (Chen et al., 2015; Vander Heiden et al., 2009). In this protocol, we describe a method for the determination of oxygen consumption rates in the nematode Caenorhabditis elegans. PMID:28239622

  14. Photobioreactor design: Mixing, carbon utilization, and oxygen accumulation.

    PubMed

    Weissman, J C; Goebel, R P; Benemann, J R

    1988-03-01

    Photobioreactor design and operation are discussed in terms of mixing, carbon utilization, and the accumulation of photosynthetically produced oxygen. The open raceway pond is the primary type of reactor considered; however small diameter (1-5 cm) horizontal glass tubular reactors are compared to ponds in several respects. These are representative of the diversity in photobioreactor design: low capital cost, open systems and high capital cost, closed systems. Two 100-m(2) raceways were operated to provide input data and to validate analytical results. With a planktonic Chlorella sp., no significant difference in productivity was noted between one pond mixed at 30 cm/s and another mixed from 1 to 30 cm/s. Thus, power consumption or CO(2) outgassing limits maximal mixing velocities. Mixing power inputs measured in 100-m(2) ponds agreed fairly well with those calculated by the use of Manning's equation. A typically configured tubular reactor flowing full (1 cm diameter, 30 cm/s) consumes 10 times as much energy as a typical pond (20 cm deep flowing at 20 cm/s). Tubular reactors that flow only partially full would be limited by large hydraulic head losses to very short sections (as little as 2 m length at 30 cm/s flow) or very low flow velocities. Open ponds have greater CO(2) storage capacity than tubular reactors because of their greater culture volume per square meter (100-300 L/m(2) vs. 8-40 L/m(2) for 1-5-cm tubes). However, after recarbonation, open ponds tend to desorb CO(2) to the atmosphere. Thus ponds must be operated at higher pH and lower alkalinity than would be possible with tubular reactors if cost of carbon is a constraint. The mass transfer coefficient, K(L), for CO(2) release through the surface of a 100-m(2) pond was determined to be 0.10 m/h. Oxygen buildup would be a serious problem with any enclosed reactor, especially small-diameter tubes. At maximal rates of photosynthesis, a 1-cm tubular reactor would accumulate 8-10 mg O(2)/L/min. This may

  15. Evaluation of oxygen utilization as an indicator of municipal solid-waste compost stability

    SciTech Connect

    Zimmerman, R.A.

    1991-01-01

    This research evaluated oxygen utilization parameters as indicators of MSW compost stability. Parameters evaluated were the oxygen utilization rate (OUR), specific oxygen uptake rate (SOUR), five-day biochemical oxygen demand, and chemical oxygen demand. In addition, other suggested indicators of stability were investigated including percent volatile solids, volatile solids reduction, nitrogen content, carbon: nitrogen ratio, and reheating potential (RP). OUR is a measure of the rate of oxygen utilization by the microorganisms in the decomposition of organic matter in compost. OUR was observed to be sensitive to the degree of stabilization and decreased with increasing compost age and stability. OUR values near zero indicate that the compost microorganisms are in a state of endogenous respiration, which is characteristic of a stable compost. Therefore, OUR is an excellent indicator of stability. A number of disadvantages are associated with OUR for practical application. Therefore, other parameters were evaluated as indicators of stability based on their statistical correlation to OUR. RP exhibited the strongest correlation to OUR. In combination, RP and SOUR were the two parameters which exhibited the strongest correlation to OUR. OUR, RP, and SOUR are all measures of microbial activity which reflect the degree of organic decomposition, and therefore, stability. Based on the results of this research; OUR, RP, and SOUR are useful parameters in assessing compost stability.

  16. Fuel Cells Utilizing Oxygen From Air at Low Pressures

    NASA Technical Reports Server (NTRS)

    Cisar, Alan; Boyer, Chris; Greenwald, Charles

    2006-01-01

    A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.

  17. Oxygen utilization and downward carbon flux in an oxygen-depleted eddy in the eastern tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Fiedler, Björn; Grundle, Damian S.; Schütte, Florian; Karstensen, Johannes; Löscher, Carolin R.; Hauss, Helena; Wagner, Hannes; Loginova, Alexandra; Kiko, Rainer; Silva, Péricles; Tanhua, Toste; Körtzinger, Arne

    2016-10-01

    The occurrence of mesoscale eddies that develop suboxic environments at shallow depth (about 40-100 m) has recently been reported for the eastern tropical North Atlantic (ETNA). Their hydrographic structure suggests that the water mass inside the eddy is well isolated from ambient waters supporting the development of severe near-surface oxygen deficits. So far, hydrographic and biogeochemical characterization of these eddies was limited to a few autonomous surveys, with the use of moorings, underwater gliders and profiling floats. In this study we present results from the first dedicated biogeochemical survey of one of these eddies conducted in March 2014 near the Cape Verde Ocean Observatory (CVOO). During the survey the eddy core showed oxygen concentrations as low as 5 µmol kg-1 with a pH of around 7.6 at approximately 100 m depth. Correspondingly, the aragonite saturation level dropped to 1 at the same depth, thereby creating unfavorable conditions for calcifying organisms. To our knowledge, such enhanced acidity within near-surface waters has never been reported before for the open Atlantic Ocean. Vertical distributions of particulate organic matter and dissolved organic matter (POM and DOM), generally showed elevated concentrations in the surface mixed layer (0-70 m), with DOM also accumulating beneath the oxygen minimum. With the use of reference data from the upwelling region where these eddies are formed, the oxygen utilization rate was calculated by determining oxygen consumption through the remineralization of organic matter. Inside the core, we found these rates were almost 1 order of magnitude higher (apparent oxygen utilization rate (aOUR); 0.26 µmol kg-1 day-1) than typical values for the open North Atlantic. Computed downward fluxes for particulate organic carbon (POC), were around 0.19 to 0.23 g C m-2 day-1 at 100 m depth, clearly exceeding fluxes typical for an oligotrophic open-ocean setting. The observations support the view that the oxygen

  18. Inner retinal metabolic rate of oxygen by oxygen tension and blood flow imaging in rat.

    PubMed

    Wanek, Justin; Teng, Pang-Yu; Albers, John; Blair, Norman P; Shahidi, Mahnaz

    2011-09-01

    The metabolic function of inner retinal cells relies on the availability of nutrients and oxygen that are supplied by the retinal circulation. Assessment of retinal tissue vitality and function requires knowledge of both the rate of oxygen delivery and consumption. The purpose of the current study is to report a novel technique for assessment of the inner retinal metabolic rate of oxygen (MO(2)) by combined measurements of retinal blood flow and vascular oxygen tension (PO(2)) in rat. The application of this technology has the potential to broaden knowledge of retinal oxygen dynamics and advance understanding of disease pathophysiology.

  19. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology

    PubMed Central

    Oliveira, Matheus P.; Correa Soares, Juliana B. R.; Oliveira, Marcus F.

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  20. Utilization of a BGO detector as an active oxygen target

    NASA Astrophysics Data System (ADS)

    Loveman, R.; Gozani, T.; Bendahan, J.; Krivicich, J.; Elias, E.; Altschuler, E.

    1994-12-01

    The (n, n'γx) cross section for the 6.13 MeV state in oxygen has recently become of general interest because of the possibility of using this process to assay oxygen as a part of non-intrusive inspections. Localized densities of carbon, oxygen, and nitrogen are particularly useful in determining the presence of explosives and/or drugs in containers of all sizes, from suitcases to cargo containers. The presence of oxygen in BGO (Bi 4Ge 3O 12) scintillator makes this detector suitable for use as an active target for the measurement of the energy dependence of the excitation, of the first (6.049 MeV O +) and second (6.130 MeV 3 -) excited states in 16O by fast neutron interactions. An active target functions as both a target and an active device such as a detector. The de-excitations of the 6.049 and 6.130 states take place by nuclear pair production and γ-ray emission respectively. There is a large probability of absorbing all of the de-excitation energy in the scintillator in either of these cases. Since the energies deposited in the scintillator by these transitions are very close, the de-excitations are indistinguishable. However, since the cross section for the excitation of the 6.13 MeV state is believed to be larger than that of the 6.049 MeV, the major measured features of the energy variations are those related to the second state. The validity of the technique was initially tested using (MCNP) calculations. The calculations established that the detected neutron count rate in the crystal was proportional to the cross-sections used as input for the calculations, and that the constant of proportionality did not vary with neutron energy. Subsequently, measurements were made with a BGO detector as an active oxygen target. The results clearly show a strong energy dependence including several resonances.

  1. Quantifying consumption rates of dissolved oxygen along bed forms

    NASA Astrophysics Data System (ADS)

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai

    2016-04-01

    Streambed interfaces represent hotspots for nutrient transformations because they host different microbial species, and the evaluation of these reaction rates is important to assess the fate of nutrients in riverine environments. In this work we analyze a series of flume experiments on oxygen demand in dune-shaped hyporheic sediments under losing and gaining flow conditions. We employ a new modeling code to quantify oxygen consumption rates from observed vertical profiles of oxygen concentration. The code accounts for transport by molecular diffusion and water advection, and automatically determines the reaction rates that provide the best fit between observed and modeled concentration values. The results show that reaction rates are not uniformly distributed across the streambed, in agreement with the expected behavior predicted by hyporheic exchange theory. Oxygen consumption was found to be highly influenced by the presence of gaining or losing flow conditions, which controlled the delivery of labile DOC to streambed microorganisms.

  2. Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates (Final Report, 2009)

    EPA Science Inventory

    EPA announced the availability of the final report, Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates. This report provides a revised approach for calculating an individual's ventilation rate directly from their oxygen c...

  3. Plant respirometer enables high resolution of oxygen consumption rates

    NASA Technical Reports Server (NTRS)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  4. Oxygen and life on earth: an anesthesiologist's views on oxygen evolution, discovery, sensing, and utilization.

    PubMed

    Lindahl, Sten G E

    2008-07-01

    The advent of oxygenic photosynthesis and the accumulation of oxygen in our atmosphere opened up new possibilities for the development of life on Earth. The availability of oxygen, the most capable electron acceptor on our planet, allowed the development of highly efficient energy production from oxidative phosphorylation, which shaped the evolutionary development of aerobic life forms from the first multicellular organisms to the vertebrates.

  5. Contaminant Removal from Oxygen Production Systems for In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Anthony, Stephen M.; Santiago-Maldonado, Edgardo; Captain, James G.; Pawate, Ashtamurthy S.; Kenis, Paul J. A.

    2012-01-01

    The In Situ Resource Utilization (ISRU) project has been developing technologies to produce oxygen from lunar regolith to provide consumables to a lunar outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloic and hydrofluoric acids are byproducts of the reduction processes, as halide minerals are also reduced at oxide reduction conditions. Because of the stringent water quality requirements for electrolysis, there is a need for a contaminant removal process. The Contaminant Removal from Oxygen Production Systems (CROPS) team has been developing a separation process to remove these contaminants in the gas and liquid phase that eliminates the need for consumables. CROPS has been using Nafion, a highly water selective polymeric proton exchange membrane, to recover pure water from the contaminated solution. Membrane thickness, product stream flow rate, and acid solution temperature and concentration were varied with the goal of maximizing water permeation and acid rejection. The results show that water permeation increases with increasing solution temperature and product stream flow rate, while acid rejection increases with decreasing solution temperature and concentration. Thinner membranes allowed for higher water flux and acid rejection than thicker ones. These results were used in the development of the hardware built for the most recent Mars ISRU demonstration project.

  6. Oxygen production/consumption rates in the upper layer of the northwestern subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Tsubono, K.; Suga, T.; Sukigara, C.; Kobayashi, T.; Hosoda, S.

    2010-12-01

    The cycling of nutrients in the subtropical gyre is crucial in sustaining primary production and the biological pump. Recently it has been proposed that subtropical mode water (STMW) and its subduction processes play a major role in sustaining nutrient distribution in the permanent pycnocline in the subtropical gyres and also facilitating nutrient supply to the euphotic zone. It is not easy, however, to describe temporal evolution of nutrients themselves associated with those processes over a few months to a year or so. As an alternative approach, we examine temporal evolution of dissolved oxygen, which increases or decreases associated with the nutrient utilization by primary production or its production by remineralization. We analyze time-series data of dissolved oxygen obtained by profiling floats drifting over several months to a year in the upper layer of the northwestern subtropical North Pacific. The purpose of this study is to document the temporal variation of dissolved oxygen in STMW and its adjacent layers, to estimate oxygen production/consumption rates at each vertical level, and to discuss their implication in nutrient cycle. The dissolved oxygen in the subsurface layer centered at 50-70 m continuously increased over a few months after the formation of the seasonal pycnocline, resulting in a distinctive shallow oxygen maximum (SOM). Since the SOM is insulated from the atmosphere, the net increase in its oxygen concentration must be attributable to biological oxygen production. On the other hand, a continuous decrease in dissolved oxygen over several months is observed in the layer below 100 m probably due to biological consumption. The estimation of the oxygen production/consumption rates is done by applying the least square method for the time series of dissolved oxygen either at each depth or each isopycnal surface. The Net Community Production (NCP) is estimated for the depth range of 0-100m, where the remarkable oxygen increase occurs. The

  7. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  8. Utilization of Renewable Oxygenates as Gasoline Blending Components

    SciTech Connect

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  9. Utilization of oxygen difluoride for syntheses of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Toy, M. S. (Inventor)

    1976-01-01

    The reaction oxygen difluoride, OF2, with ethylenically unsaturated fluorocarbon compounds is examined. Depending upon the fluorocarbon material and reaction conditions, OF2 can chain extend fluoropolyenes, convert functional perfluorovinyl groups to acyl fluoride and/or epoxide groups, and act as a monomer for an addition type copolymerization with diolefins.

  10. Rate of oxygen isotope exchange between selenate and water.

    PubMed

    Kaneko, Masanori; Poulson, Simon R

    2012-04-17

    The rate of oxygen isotope exchange between selenate and water was investigated at conditions of 10 to 80 °C and pH -0.6 to 4.4. Oxygen isotope exchange proceeds as a first-order reaction, and the exchange rate is strongly affected by reaction temperature and pH, with increased rates of isotope exchange at higher temperature and lower pH. Selenate speciation (HSeO(4)(-) vs SeO(4)(2-)) also has a significant effect on the rate of isotope exchange. The half-life for isotope exchange at example natural conditions (25 °C and pH 7) is estimated to be significantly in excess of 10(6) years. The very slow rate of oxygen isotope exchange between selenate and water under most environmental conditions demonstrates that selenate-δ(18)O signatures produced by biogeochemical processes will be preserved and hence that it will be possible to use the value of selenate-δ(18)O to investigate the biogeochemical behavior of selenate, in an analogous fashion to the use of sulfate-δ(18)O to study the biogeochemical behavior of sulfate.

  11. Oxygen-isotope exchange rates for three isostructural polyoxometalate ions.

    PubMed

    Villa, Eric M; Ohlin, C André; Casey, William H

    2010-04-14

    We compare oxygen-isotope exchange rates for all structural oxygens in three polyoxoniobate ions that differ by systematic metal substitutions of Ti(IV) --> Nb(V). The [H(x)Nb(10)O(28)]((6-x)-), [H(x)TiNb(9)O(28)]((7-x)-), and [H(x)Ti(2)Nb(8)O(28)]((8-x)-) ions are all isostructural yet have different Brønsted properties. Rates for sites within a particular molecule in the series differ by at least approximately 10(4), but the relative reactivities of the oxygen sites rank in nearly the same relative order for all ions in the series. Within a single ion, most structural oxygens exhibit rates of isotopic exchange that vary similarly with pH, indicating that each structure responds as a whole to changes in pH. Across the series of molecules, however, the pH dependencies for isotope exchanges and dissociation are distinctly different, reflecting different contributions from proton- or base-enhanced pathways. The proton-enhanced pathway for isotope exchange dominates at most pH conditions for the [H(x)Ti(2)Nb(8)O(28)]((8-x)-) ion, but the base-enhanced pathways are increasingly important for the [H(x)TiNb(9)O(28)]((7-x)-) and [H(x)Nb(10)O(28)]((6-x)-) structures at higher pH. The local effect of Ti(IV) substitution could be assessed by comparing rates for structurally similar oxygens on each side of the [H(x)TiNb(9)O(28)]((7-x)-) ion and is surprisingly small. Interestingly, these nanometer-size structures seem to manifest the same general averaged amphoteric chemistry that is familiar for other reactions affecting oxides in water, including interface dissolution by proton- and hydroxyl-enhanced pathways.

  12. Metabolically Derived human ventilation rates: A revised approach based upon oxygen consumption rates (Final Report) 2009

    EPA Science Inventory

    The purpose of this report is to provide a revised approach for calculating an individual's ventilation rate directly from their oxygen consumption rate. This revised approach will be used to update the ventilation rate information in the Exposure Factors Handbook, which serve as...

  13. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones I: Oxygen consumption rates and critical oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Trueblood, Lloyd A.; Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active, epipelagic squid known to undertake diel vertical migrations across a large temperature and oxygen gradient in the Eastern Pacific. Hypoxia is known to cause metabolic suppression in D. gigas. However, the precise oxygen level at which metabolic suppression sets in is unknown. Here we describe a novel ship-board swim tunnel respirometer that was used to measure metabolic rates and critical oxygen partial pressures (Pcrit) for adult squids (2-7kg). Metabolic rate measurements were validated by comparison to the activity of the Krebs cycle enzyme, citrate synthase, in mantle muscle tissue (2-17kg). We recorded a mean routine metabolic rate of 5.91μmolg-1h-1 at 10°C and 12.62μmolg-1h-1 at 20°C. A temperature coefficient, Q10, of 2.1 was calculated. D. gigas had Pcrits of 1.6 and 3.8kPa at 10 and 20°C, respectively. Oxygen consumption rate (MO2) varied with body mass (M) according to MO2=11.57M-0.12±0.03 at 10°C. Citrate synthase activity varied with body mass according to Y=9.32M-0.19±0.02.

  14. Oxygen consumption of cycle ergometry is nonlinearly related to work rate and pedal rate.

    PubMed

    Londeree, B R; Moffitt-Gerstenberger, J; Padfield, J A; Lottmann, D

    1997-06-01

    The purpose of the study was to develop an equation to predict the oxygen cost of cycle ergometry. Forty subjects performed an incremental cycle ergometer test on three occasions at 50, 70, or 90 rpm in a counterbalanced order. Work rate was incremented every 5 or 6 min when steady rate values were achieved. To ensure accurate work rates, ergometer resistance was calibrated and flywheel revolutions were electronically measured. Oxygen consumption was measured with a computer interfaced system which provided results every minute. Oxygen consumption (mL.min-1) was the dependent variable, and independent variables were work rate (WR in kgm.min-1), pedal rate (rpm), weight (Kg), and gender (males, 0; females, 1). The following nonlinear equation was selected; VO2 = 0.42.WR1.2 + 0.00061.rpm3 + 6.35.Wt + 0.1136.RPM50.WR-0.10144.RPM90-WR-52-Gender, R2 = 0.9961, Sy.x = 106 mL.min-1, where RPM50: 50 rpm = 1, and RPM90: 90 rpm = 1, else = 0. It was concluded that the oxygen cost of cycle ergometry is nonlinearly related to work rate and pedal rate, linearly related to weight, and that females use less oxygen for a particular work rate.

  15. Oxygen Respiration rates of benthic foraminifera measured under laboratory conditions using oxygen microelectrodes

    NASA Astrophysics Data System (ADS)

    Geslin, Emmanuelle; Risgaard-Petersen, N.; Langlet, D.; Metzger, E.; Jorissen, F.

    2010-05-01

    Oxygen respiration rates of benthic foraminifera are not well documented because of the difficulties to measure them. However, the determination of the respiration rates of benthic foraminifera is important in order: 1) to compare the metabolic rates of different species, of various size, and with different microhabitats in the sediment; 2) to estimate the contribution of benthic foraminifera in the aerobic mineralization of organic matter. Benthic foraminifera from 4 different natural environments were used: three species from the intertidal rocky shore of Yeu island, two species from the muddy Bay of Aiguillon, two species from the Bay of Biscay and eleven species from the Rhône prodelta (France). Living foraminifera were placed in a small tube, in which oxygen gradients were determined using oxygen microelectrodes. Respiration rates were calculated on the basis of the oxygen fluxes measured in the vivinity of the foraminiferal specimens. Foraminiferal biovolumes were estimated on the basis of the overall shape of the various species (for example, Ammonia is assimilated to a half sphere) and the width of the shell walls. The results show a wide range of respiration rates according to the species (around 90 to 5300 pmol. cell-1.day-1) and a clear correlation with the biovolume of the foraminifera. No clear relationship between respiration rates and microhabitat is observed. A comparison with previously published data shows that our estimations are generally lower for the small size species. For example, the respiration rate estimations published recently by Nomaki et al. (Journal of Foraminiferal Research, 37, 281-286, 2007) show a range of 900 to 10 000 pmol. cell-1.day-1. The total contribution of benthic foraminifera in the aerobic mineralization of organic matter is estimated for the studied areas. The first results suggest a minor role of benthic foraminifera in this process, which strongly contrasts with their strong contribution to anaerobic mineralisation

  16. Oxygen Consumption Rates of Bacteria under Nutrient-Limited Conditions

    PubMed Central

    Riedel, Timothy E.; Nealson, Kenneth H.; Finkel, Steven E.

    2013-01-01

    Many environments on Earth experience nutrient limitation and as a result have nongrowing or very slowly growing bacterial populations. To better understand bacterial respiration under environmentally relevant conditions, the effect of nutrient limitation on respiration rates of heterotrophic bacteria was measured. The oxygen consumption and population density of batch cultures of Escherichia coli K-12, Shewanella oneidensis MR-1, and Marinobacter aquaeolei VT8 were tracked for up to 200 days. The oxygen consumption per CFU (QO2) declined by more than 2 orders of magnitude for all three strains as they transitioned from nutrient-abundant log-phase growth to the nutrient-limited early stationary phase. The large reduction in QO2 from growth to stationary phase suggests that nutrient availability is an important factor in considering environmental respiration rates. Following the death phase, during the long-term stationary phase (LTSP), QO2 values of the surviving population increased with time and more cells were respiring than formed colonies. Within the respiring population, a subpopulation of highly respiring cells increased in abundance with time. Apparently, as cells enter LTSP, there is a viable but not culturable population whose bulk community and per cell respiration rates are dynamic. This result has a bearing on how minimal energy requirements are met, especially in nutrient-limited environments. The minimal QO2 rates support the extension of Kleiber's law to the mass of a bacterium (100-fg range). PMID:23770901

  17. A new method for measuring the oxygen diffusion constant and oxygen consumption rate of arteriolar walls.

    PubMed

    Sasaki, Nobuhiko; Horinouchi, Hirohisa; Ushiyama, Akira; Minamitani, Haruyuki

    2012-01-01

    Oxygen transport is believed to primarily occur via capillaries and depends on the oxygen tension gradient between the vessels and tissues. As blood flows along branching arterioles, the O(2) saturation drops, indicating either consumption or diffusion. The blood flow rate, the O(2) concentration gradient, and Krogh's O(2) diffusion constant (K) of the vessel wall are parameters affecting O(2)delivery. We devised a method for evaluating K of arteriolar wall in vivo using phosphorescence quenching microscopy to measure the partial pressure of oxygen in two areas almost simultaneously. The K value of arteriolar wall (inner diameter, 63.5 ± 11.9 μm; wall thickness, 18.0 ± 1.2 μm) was found to be 6.0 ± 1.2 × 10(-11) (cm(2)/s)(ml O(2)·cm(-3) tissue·mmHg(-1)). The arteriolar wall O(2) consumption rate (M) was 1.5 ± 0.1 (ml O(2)·100 cm(-3) tissue·min(-1)), as calculated using Krogh's diffusion equation. These results suggest that the arteriolar wall consumes a considerable proportion of the O(2) that diffuses through it.

  18. Recent advances in the evaluation of the oxygen transfer rate in oak barrels.

    PubMed

    del Alamo-Sanza, María; Nevares, Ignacio

    2014-09-03

    The entry of atmospheric oxygen into wine barrels is a desirable characteristic of the wine aging process. The oxygen transfer rate regulates changes in wine affecting aging rates because some barrels may undergo a greater wine oxygenation. This study measured the transfer rate and oxygen distribution within a barrel. The analysis confirmed the presence of a dissolved oxygen concentration gradient in the liquid, with greater concentrations near the bung. The study of the transfer rate of oxygen over time, in 12 barrels of different types, showed that wetting wood reduces oxygen diffusion and the oxygen transfer rate (OTR). These results are the first to determine the kinetics of oxygen entry into wine barrels and can be used to quantify the annual rate of oxygen entry into wine barrels.

  19. Oxygen consumption rates and oxygen concentration in molt-4 cells and their mtDNA depleted (rho0) mutants.

    PubMed

    Shen, Jiangang; Khan, Nadeem; Lewis, Lionel D; Armand, Ray; Grinberg, Oleg; Demidenko, Eugene; Swartz, Harold

    2003-02-01

    Respiratory deficient cell lines are being increasingly used to elucidate the role of mitochondria and to understand the pathophysiology of mitochondrial genetic disease. We have investigated the oxygen consumption rates and oxygen concentration in wild-type (WT) and mitochondrial DNA (mtDNA) depleted (rho(0)) Molt-4 cells. Wild-type Molt-4 cells have moderate oxygen consumption rates, which were significantly reduced in the rho(0) cells. PCMB (p-chloromercurobenzoate) inhibited the oxygen consumption rates in both WT and rho(0) cells, whereas potassium cyanide decreased the oxygen consumption rates only in WT Molt-4 cells. Menadione sodium bisulfite (MSB) increased the oxygen consumption rates in both cell lines, whereas CCCP (carbonyl cyanide m-chlorophenylhydrazone) stimulated the oxygen consumption rates only in WT Molt-4 cells. Superoxide radical adducts were observed in both WT and rho(0) cells when stimulated with MSB. The formation of this adduct was inhibited by PCMB but not by potassium cyanide. These results suggest that the reactive oxygen species (ROS) induced by MSB were at least in part produced via a mitochondrial independent pathway. An oxygen gradient between the extra- and intracellular compartments was observed in WT Molt-4 cells, which further increased when cells were stimulated by CCCP and MSB. The results are consistent with our earlier findings suggesting that such oxygen gradients may be a general phenomenon found in most or all cell systems under appropriate conditions.

  20. Programmable rate modem utilizing digital signal processing techniques

    NASA Technical Reports Server (NTRS)

    Naveh, Arad

    1992-01-01

    The need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK) modulation is discussed. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. The design trade-offs in each portion of the modulator and demodulator subsystem are outlined.

  1. Oxygen uptake in maximal effort constant rate and interval running.

    PubMed

    Pratt, Daniel; O'Brien, Brendan J; Clark, Bradley

    2013-01-01

    This study investigated differences in average VO2 of maximal effort interval running to maximal effort constant rate running at lactate threshold matched for time. The average VO2 and distance covered of 10 recreational male runners (VO2max: 4158 ± 390 mL · min(-1)) were compared between a maximal effort constant-rate run at lactate threshold (CRLT), a maximal effort interval run (INT) consisting of 2 min at VO2max speed with 2 minutes at 50% of VO2 repeated 5 times, and a run at the average speed sustained during the interval run (CR submax). Data are presented as mean and 95% confidence intervals. The average VO2 for INT, 3451 (3269-3633) mL · min(-1), 83% VO2max, was not significantly different to CRLT, 3464 (3285-3643) mL · min(-1), 84% VO2max, but both were significantly higher than CR sub-max, 3464 (3285-3643) mL · min(-1), 76% VO2max. The distance covered was significantly greater in CLRT, 4431 (4202-3731) metres, compared to INT and CR sub-max, 4070 (3831-4309) metres. The novel finding was that a 20-minute maximal effort constant rate run uses similar amounts of oxygen as a 20-minute maximal effort interval run despite the greater distance covered in the maximal effort constant-rate run.

  2. Automatable Measurement of Gas Exchange Rate in Streams: Oxygen-Carbon Method

    NASA Astrophysics Data System (ADS)

    Pennington, R.; Haggerty, R.; Argerich, A.; Wondzell, S. M.

    2015-12-01

    Gas exchange rates between streams and the atmosphere are critically important to measurement of in-stream ecologic processes, as well as fate and transport of hazardous pollutants such as mercury and PCBs. Methods to estimate gas exchange rates include empirical relations to hydraulics, and direct injection of a tracer gas such as propane or SF6. Empirical relations are inconsistent and inaccurate, particularly for lower order, high-roughness streams. Gas injections are labor-intensive, and measured gas exchange rates are difficult to extrapolate in time since they change with discharge and stream geometry. We propose a novel method for calculation of gas exchange rates utilizing O2, pCO2, pH, and temperature data. Measurements, which can be automated using data loggers and probes, are made on the upstream and downstream end of the study reach. Gas exchange rates are then calculated from a solution to the transport equations for oxygen and dissolved inorganic carbon. Field tests in steep, low order, high roughness streams of the HJ Andrews Experimental Forest indicate the method to be viable along stream reaches with high downstream gas concentration gradients and high rates of gas transfer velocity. Automated and continuous collection of oxygen and carbonate chemistry data is increasingly common, thus the method may be used to estimate gas exchange rates through time, and is well suited for interactivity with databases.

  3. The Relationship between Heart Rate Reserve and Oxygen Uptake Reserve in Children and Adolescents

    ERIC Educational Resources Information Center

    Hui, Stanley Sai-chuen; Chan, Janus Wan-sze

    2006-01-01

    The purpose of the present study was to examine the relationship between oxygen uptake (VO[subscript 2]) and heart rate (HR) responses during rest and exercise in Chinese children and youth and to evaluate the relationships between maximal heart rate (%HRmax), heart rate reserve (%HRR), peak oxygen uptake (%VO[subscript 2]peak), and oxygen uptake…

  4. Oxygen impacts on dipolarization fronts and reconnection rate

    NASA Astrophysics Data System (ADS)

    Liang, Haoming; Ashour-Abdalla, Maha; Lapenta, Giovanni; Walker, Raymond J.

    2016-02-01

    Spacecraft observations near a magnetotail X line show that oxygen (O+) ions are minor species during nonstorm substorms, but they can become major species during some of the storm time substorms. Dipolarization fronts (DFs), which are characterized by a sharp increase northward magnetic field in the magnetotail, are commonly observed during magnetospheric substorms. In this study, we investigated the O+ effects on DFs and the reconnection rate during magnetotail reconnection. We used a 2.5-D implicit particle-in-cell simulation in a 2-D Harris current sheet in the presence of H+ and O+ ions. Simulation runs with equal number densities of O+ and H+ (O+ run) and with pure H+ ion species (H+ run) were performed. Comparing the two different runs, we found that both the reconnection rate and the DF speed in the O+ run were much less than those in the H+ run. By studying the force balance and plasma composition at the DF, we found that the outflow magnetic flux and DF propagation were encumbered by the current sheet O+ inertia, which reduced the DF speed and delayed the reconnection rate in the O+ run. We also found an ambipolar electric field in the O+ run due to the different inflow and outflow speeds of O+ and electrons in the O+ diffusion region. As a result, this ambipolar electric field induced O+ drag on the convective magnetic field in the O+ diffusion region. The small reconnection rate determined in the O+ run can be attributed to the current sheet inertia and the O+ drag on the convective magnetic flux.

  5. On-line monitoring of oxygen as a method to qualify the oxygen consumption rate of wines.

    PubMed

    Nevares, Ignacio; Martínez-Martínez, Víctor; Martínez-Gil, Ana; Martín, Roberto; Laurie, V Felipe; Del Álamo-Sanza, María

    2017-08-15

    Measuring the oxygen content during winemaking and bottle storage has become increasingly popular due to its impact on the sensory quality and longevity of wines. Nevertheless, only a few attempts to describe the kinetics of oxygen consumption based on the chemical composition of wines have been published. Therefore, this study proposes firstly a new fitting approach describing oxygen consuming kinetics and secondly the use of an Artificial Neural Network approach to describe and compare the oxygen avidity of wines according to their basic chemical composition (i.e. the content of ethanol, titratable acidity, total sulfur dioxide, total phenolics, iron and copper). The results showed no significant differences in the oxygen consumption rate between white and red wines, and allowed the sorting of the wines studied according to their oxygen consumption rate.

  6. Simultaneous measurements of umbilical uptake, fetal utilization rate, and fetal turnover rate of glucose.

    PubMed

    Hay, W W; Sparks, J W; Quissell, B J; Battaglia, F C; Meschia, G

    1981-06-01

    Fetal umbilical glucose uptake was compared with simultaneous measurements of glucose turnover and utilization rates in 12 pregnant sheep, at a mean of 137 days gestational age (range, 118-146 days). Umbilical glucose uptake was calculated by application of the Fick principle. Fetal glucose turnover rate was measured by a primed-constant infusion of [14C]- and [3H]glucose (glucose turnover rate = tracer infusion rate divided by fetal glucose sp act). The calculation of fetal glucose utilization rate required substraction of the loss of tracer to the placenta from the tracer infusion rate, thus defining the net tracer entry into the fetus for direct comparison with the net umbilical glucose uptake. In fed, normoglycemic sheep, these measurements demonstrated statistical equivalence of umbilical glucose uptake rate (4.77 mg.min-1.kg-1 +/- 0.34 SE) and glucose utilization rate ([14C]glucose, 5.58 mg.min-1.kg-1 +/- 0.54 SE; and [3H]glucose, 7.19 mg.min-1.kg-1 +/- 1.24 SE) when tested by two-way analysis of variance (P greater than 0.1). In three fasted, hypoglycemic sheep, the umbilical glucose uptake rate fell to 1.43 mg.min-1.kg-1 +/- 0.56 SE, which was considerably lower than the simultaneous glucose utilization rate ([14C]glucose, 4.78 mg.min-1.kg-1 +/- 0.48 SE; and [3H]glucose, 6.81 mg.min-1.kg-1 +/- 2.19 SE). Thus, in the normoglycemic, late-gestation fetal lamb, there appears to be little glucogenesis, whereas glucogenesis may become significant during fasting-induced fetal hypoglycemia.

  7. Eucalanoid copepod metabolic rates in the oxygen minimum zone of the eastern tropical north Pacific: Effects of oxygen and temperature

    NASA Astrophysics Data System (ADS)

    Cass, Christine J.; Daly, Kendra L.

    2014-12-01

    The eastern tropical north Pacific Ocean (ETNP) contains one of the world's most severe oxygen minimum zones (OMZs), where oxygen concentrations are less than 2 μmol kg-1. OMZs cause habitat compression, whereby species intolerant of low oxygen are restricted to near-surface oxygenated waters. Copepods belonging to the family Eucalanidae are dominant zooplankters in this region and inhabit a variety of vertical habitats within the OMZ. The purpose of this study was to compare the metabolic responses of three species of eucalanoid copepods, Eucalanus inermis, Rhincalanus rostrifrons, and Subeucalanus subtenuis, to changes in temperature and environmental oxygen concentrations. Oxygen consumption and urea, ammonium, and phosphate excretion rates were measured via end-point experiments at three temperatures (10, 17, and 23 °C) and two oxygen concentrations (100% and 15% air saturation). S. subtenuis, which occurred primarily in the upper 50 m of the water column at our study site, inhabiting well-oxygenated to upper oxycline conditions, had the highest metabolic rates per unit weight, while E. inermis, which was found throughout the water column to about 600 m depth in low oxygen waters, typically had the lowest metabolic rates. Rates for R. rostrifrons (found primarily between 200 and 300 m depth) were intermediate between the other two species and more variable. Metabolic ratios suggested that R. rostrifrons relied more heavily on lipids to fuel metabolism than the other two species. S. subtenuis was the only species that demonstrated a decrease in oxygen consumption rates (at intermediate 17 °C temperature treatment) when environmental oxygen concentrations were lowered. The percentage of total measured nitrogen excreted as urea (% urea-N), as well as overall urea excretion rates, responded in a complex manner to changes in temperature and oxygen concentration. R. rostrifrons and E. inermis excreted a significantly higher % of urea-N in low oxygen treatments at

  8. Oxygen utilization of the human left ventricle - An indirect method for its evaluation and clinical considerations

    NASA Technical Reports Server (NTRS)

    Ghista, D. N.; Sandler, H.

    1974-01-01

    An analytical method is presented for determining the oxygen consumption rate of the intact heart working (as opposed to empty but beating) human left ventricle. Use is made of experimental recordings obtained for the chamber pressure and the associated dimensions of the LV. LV dimensions are determined by cineangiocardiography, and the chamber pressure is obtained by means of fluid-filled catheters during retrograde or transeptal catheterization. An analytical method incorporating these data is then employed for the evaluation of the LV coronary oxygen consumption in five subjects. Oxygen consumption for these subjects was also obtained by the conventional clinical method in order to evaluate the reliability of the proposed method.

  9. Oxygen Flow Rate Requirements of Critically Injured Patients

    DTIC Science & Technology

    2015-04-08

    Military Med. 2013; 178(10):1121-1125. 4. Cabello JB, Burls A, Emparanza JI, Bayliss S, Quinn T. Oxygen therapy for acute myocardial infarction ...Simmonds M, Weatherall M, Beasley R. Routine use of oxygen in the treatment of myocardial infarction : systematic review. Heart. 2009; 95(3):198-202

  10. Noninvasive in vivo imaging of oxygen metabolic rate in the retina.

    PubMed

    Liu, Wenzhong; Zhang, Hao F

    2014-01-01

    Precise and noninvasive measurement of retinal oxygen metabolic rate is important for retinal pathological investigations as well as retinal disease detection, which has not been achieved until recently. Here, we quantified retinal oxygen metabolic rate in rats by combining photoacoustic ophthalmoscopy with spectral domain-optical coherence tomography. We employed multi-wavelength photoacoustic ophthalmoscopy for oxygen saturation measurement and applied dual-ring scanning Doppler spectral domain-optical coherence tomography to image retinal blood flow. With retinal oxygen saturation and blood flow being measured, we determined the retinal oxygen metabolic rate in a typical rat to be 373.41 ± 88.04 ng/minute.

  11. Programmable rate modem utilizing digital signal processing techniques

    NASA Technical Reports Server (NTRS)

    Bunya, George K.; Wallace, Robert L.

    1989-01-01

    The engineering development study to follow was written to address the need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulation. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. Here design tradeoffs in each portion of the modulator and demodulator subsystem are outlined, and viable circuit approaches which are easily repeatable, have low implementation losses and have low production costs are identified. The research involved for this study was divided into nine technical papers, each addressing a significant region of concern in a variable rate modem design. Trivial portions and basic support logic designs surrounding the nine major modem blocks were omitted. In brief, the nine topic areas were: (1) Transmit Data Filtering; (2) Transmit Clock Generation; (3) Carrier Synthesizer; (4) Receive AGC; (5) Receive Data Filtering; (6) RF Oscillator Phase Noise; (7) Receive Carrier Selectivity; (8) Carrier Recovery; and (9) Timing Recovery.

  12. [Features of oxygen utilization by the body of patients with arterial hypertension in the days of magnetic storms depending on the psychosomatic status and treatment options].

    PubMed

    Usenko, G A; Usenko, A G; Vasendin, D V

    2015-01-01

    During magnetic storms the observed increase in γ-background environment and the reduction of the rate of oxygen utilization by the tissues, but the increase in the number of angina attacks per day to magnetic storms the choleric, in the days of magnetic storms in sanguine, for 3-4 days at a phlegmatic, and 4-5 days in the melancholic especially in groups high anxiety phlegmatic and melancholic. Last-risk group severe arterial hypertension and ischemic heart disease. Antihypertensive therapy based on the blockade of the features of the psychosomatic status, significantly reduced the number of attacks and brought the values of the utilization of oxygen and coefficient of oxygen utilization bu the tissues of all the days to those in healthy individual relevant anxiety and temperament.

  13. Seasonal Oxygen Dynamics in a Thermokarst Bog in Interior Alaska: Implications for Rates of Methane Oxidation

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Moorberg, C.; Wong, A.; Waldrop, M. P.; Turetsky, M. R.

    2015-12-01

    Methane is a potent greenhouse gas, and wetlands represent the largest natural source of methane to the atmosphere. However, much of the methane generated in anoxic wetlands never gets emitted to the atmosphere; up to >90% of generated methane can get oxidized to carbon dioxide. Thus, oxidation is an important methane sink and changes in the rate of methane oxidation can affect wetland methane emissions. Most methane is aerobically oxidized at oxic-anoxic interfaces where rates of oxidation strongly depend on methane and oxygen concentrations. In wetlands, oxygen is often the limiting substrate. To improve understanding of belowground oxygen dynamics and its impact on methane oxidation, we deployed two planar optical oxygen sensors in a thermokarst bog in interior Alaska. Previous work at this site indicated that, similar to other sites, rates of methane oxidation decrease over the growing season. We used the sensors to track spatial and temporal patterns of oxygen concentrations over the growing season. We coupled these in-situ oxygen measurements with periodic oxygen injection experiments performed against the sensor to quantify belowground rates of oxygen consumption. We found that over the season, the thickness of the oxygenated water layer at the peatland surface decreased. Previous research has indicated that in sphagnum-dominated peatlands, like the one studied here, rates of methane oxidation are highest at or slightly below the water table. It is in these saturated but oxygenated locations that both methane and oxygen are available. Thus, a seasonal reduction in the thickness of the oxygenated water layer could restrict methane oxidation. The decrease in thickness of the oxygenated layer coincided with an increase in the rate of oxygen consumption during our oxygen injection experiments. The increase in oxygen consumption was not explained by temperature; we infer it was due to an increase in substrate availability for oxygen consuming reactions and

  14. A New Approach for Measuring Single-Cell Oxygen Consumption Rates

    PubMed Central

    Molter, Timothy W.; McQuaide, Sarah C.; Holl, Mark R.; Meldrum, Deirdre R.; Dragavon, Joseph M.; Anderson, Judith B.; Young, A. Cody; Burgess, Lloyd W.; Lidstrom, Mary E.

    2010-01-01

    A novel system that has enabled the measurement of single-cell oxygen consumption rates is presented. The experimental apparatus includes a temperature controlled environmental chamber, an array of microwells etched in glass, and a lid actuator used to seal cells in the microwells. Each microwell contains an oxygen sensitive platinum phosphor sensor used to monitor the cellular metabolic rates. Custom automation software controls the digital image data collection for oxygen sensor measurements, which are analyzed using an image-processing program to yield the oxygen concentration within each microwell versus time. Two proof-of-concept experiments produced oxygen consumption rate measurements for A549 human epithelial lung cancer cells of 5.39 and 5.27 fmol/min/cell, closely matching published oxygen consumption rates for bulk A549 populations. PMID:21057593

  15. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    PubMed

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  16. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden–Popper phases?

    DOE PAGES

    Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; ...

    2015-03-02

    There is a possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides; it is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of threemore » Ruddlesden-Popper phases, general form An-1A2'BnO3n+1, An-1A2'BnX3n+1; LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2) and LaSr3Co1.5Fe1.5O10-δ (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. Furthermore this is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. This paper conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.« less

  17. Effect of oxygen on the per‐cell extracellular electron transfer rate of Shewanella oneidensis MR‐1 explored in bioelectrochemical systems

    PubMed Central

    Lu, Mengqian; Chan, Shirley; Babanova, Sofia

    2016-01-01

    ABSTRACT Extracellular electron transfer (EET) is a mechanism that enables microbes to respire solid‐phase electron acceptors. These EET reactions most often occur in the absence of oxygen, since oxygen can act as a competitive electron acceptor for many facultative microbes. However, for Shewanella oneidensis MR‐1, oxygen may increase biomass development, which could result in an overall increase in EET activity. Here, we studied the effect of oxygen on S. oneidensis MR‐1 EET rates using bioelectrochemical systems (BESs). We utilized optically accessible BESs to monitor real‐time biomass growth, and studied the per‐cell EET rate as a function of oxygen and riboflavin concentrations in BESs of different design and operational conditions. Our results show that oxygen exposure promotes biomass development on the electrode, but significantly impairs per‐cell EET rates even though current production does not always decrease with oxygen exposure. Additionally, our results indicated that oxygen can affect the role of riboflavin in EET. Under anaerobic conditions, both current density and per‐cell EET rate increase with the riboflavin concentration. However, as the dissolved oxygen (DO) value increased to 0.42 mg/L, riboflavin showed very limited enhancement on per‐cell EET rate and current generation. Since it is known that oxygen can promote flavins secretion in S. oneidensis, the role of riboflavin may change under anaerobic and aerobic conditions. Biotechnol. Bioeng. 2017;114: 96–105. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:27399911

  18. The clinical utility of kinetic glomerular filtration rate

    PubMed Central

    Doyle, Arthur

    2017-01-01

    Abstract Background: In acutely unwell patients with rapidly changing renal function, estimating glomerular filtration rate (GFR) and predicting adverse renal outcomes are challenging and often inaccurate. Kinetic GFR (kGFR) is an estimate of immediate biomarker clearance derived from two discreet measurements that may better represent acute function. Our objective is to assess the clinical utility of kGFR as a predictive tool and examine the association of kGFR to adverse renal outcomes compared with measurements to traditional estimates. Methods: We compared the association of kGFR and Modification of Diet in Renal Disease (MDRD) with acute kidney injury (AKI), renal replacement therapy (RRT), cardiovascular morbidity, 30-day mortality and new chronic kidney disease development. A total of 107 acute admissions to a medical high dependency and intensive care unit were assessed retrospectively. Creatinine measurements and outcomes were recorded and kGFR was calculated at the earliest possible time point. This was then compared with simultaneous MDRD estimated GFR. Results: Mean age was 60 years old, AKI occurred in 25% of patients, acute cardiovascular events occurred in 13%, RRT was initiated in 15% and 30-day mortality was 30%. kGFR predicted the AKI more accurately than MDRD [area under the receiver operating characteristic curve (AUC) = 0.86 versus AUC = 0.64]. kGFR predicted the need for RRT more accurately than MDRD (AUC = 0.901 versus AUC = 0.79). Neither kGFR nor admission MDRD was associated with 30-day mortality or cardiovascular morbidity. Conclusions: Measuring kGFR in the acute setting could help clinicians better predict adverse renal outcomes.

  19. Effect of compost temperature on oxygen uptake rate, specific growth rate and enzymatic activity of microorganisms in dairy cattle manure.

    PubMed

    Miyatake, Fumihito; Iwabuchi, Kazunori

    2006-05-01

    Investigations were carried out to find out the relationship between temperature and microbial activity in dairy cattle manure composting using oxygen uptake rate, specific growth rate and enzymatic activities during autothermal and isothermal composting experiments. In autothermal composting, oxygen uptake rate and specific growth rate were found to be most intensive in order of 43 degrees C, 60 degrees C and 54 degrees C. Isothermal composting at 54 degrees C resulted highest levels of enzymatic activity and promoted the volatile solids reduction. Based on the maximum enzymatic activity, specific growth rate appeared to be more closely linked with microbial activity in compost than with oxygen uptake rate. The enhancement of specific growth rate, enzymatic activity and volatile solids reduction were induced at 54 degrees C in cattle manure composting.

  20. Determining oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus using an improved respirometer chamber

    NASA Astrophysics Data System (ADS)

    Geng, Longwu; Jiang, Haifeng; Tong, Guangxiang; Xu, Wei

    2017-03-01

    Knowledge of oxygen consumption rates and asphyxiation points in fish is important to determine appropriate stocking and water quality management in aquaculture. The oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus were detected under laboratory conditions using an improved respirometer chamber. The results revealed that more accurate estimates can be obtained by adjusting the volume of the respirometer chamber, which may avoid system errors caused by either repeatedly adjusting fish density or selecting different equipment specifications. The oxygen consumption rate and asphyxiation point of C. mongolicus increased with increasing water temperature and decreasing fish size. Changes in the C. mongolicus oxygen consumption rate were divided into three stages at water temperatures of 11-33°C: (1) a low temperature oxygen consumption rate stage when water temperature was 11-19°C, (2) the optimum temperature oxygen consumption rate stage when water temperature was 19-23°C, and (3) a high temperature oxygen consumption rate stage when water temperature was > 27°C. The temperature quotients (Q10) obtained suggested that C. mongolicus preferred a temperature range of 19-23°C. At 19°C, C. mongolicus exhibited higher oxygen consumption rates during the day when the maximum values were observed at 10:00 and 14:00 than at night when the minimum occurred at 02:00.

  1. Determining oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus using an improved respirometer chamber

    NASA Astrophysics Data System (ADS)

    Geng, Longwu; Jiang, Haifeng; Tong, Guangxiang; Xu, Wei

    2016-05-01

    Knowledge of oxygen consumption rates and asphyxiation points in fish is important to determine appropriate stocking and water quality management in aquaculture. The oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus were detected under laboratory conditions using an improved respirometer chamber. The results revealed that more accurate estimates can be obtained by adjusting the volume of the respirometer chamber, which may avoid system errors caused by either repeatedly adjusting fish density or selecting different equipment specifications. The oxygen consumption rate and asphyxiation point of C. mongolicus increased with increasing water temperature and decreasing fish size. Changes in the C. mongolicus oxygen consumption rate were divided into three stages at water temperatures of 11-33°C: (1) a low temperature oxygen consumption rate stage when water temperature was 11-19°C, (2) the optimum temperature oxygen consumption rate stage when water temperature was 19-23°C, and (3) a high temperature oxygen consumption rate stage when water temperature was > 27°C. The temperature quotients (Q10) obtained suggested that C. mongolicus preferred a temperature range of 19-23°C. At 19°C, C. mongolicus exhibited higher oxygen consumption rates during the day when the maximum values were observed at 10:00 and 14:00 than at night when the minimum occurred at 02:00.

  2. 32 CFR 643.38 - Policy-Utility rates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accordance with AR 420-41. (b) Payments for utilities or services furnished will be deposited to the... officer having immediate jurisdiction over the property in accordance with AR 37-19 and AR 37-27....

  3. Temperature Compensation of Oxygen Sensing Films Utilizing a Dynamic Dual Lifetime Calculation Technique

    PubMed Central

    Collier, Bradley B.; McShane, Michael J.

    2014-01-01

    With advances to chemical sensing, methods for compensation of errors introduced by interfering analytes are needed. In this work, a dual lifetime calculation technique was developed to enable simultaneous monitoring of two luminescence decays. Utilizing a windowed time-domain luminescence approach, the response of two luminophores is separated temporally. The ability of the dual dynamic rapid lifetime determination (DDRLD) approach to determine the response of two luminophores simultaneously was investigated through mathematical modeling and experimental testing. Modeling results indicated that lifetime predictions will be most accurate when the ratio of the lifetimes from each luminophore is at least three and the ratio of intensities is near unity. In vitro experiments were performed using a porphyrin that is sensitive to both oxygen and temperature, combined with a temperature-sensitive inorganic phosphor used for compensation of the porphyrin response. In static experiments, the dual measurements were found to be highly accurate when compared to single-luminophore measurements—statistically equivalent for the long lifetime emission and an average difference of 2% for the short lifetimes. Real-time testing with dynamic windowing was successful in demonstrating dual lifetime measurements and temperature compensation of the oxygen sensitive dye. When comparing the actual oxygen and temperature values with predictions made using a dual calibration approach, an overall difference of less than 1% was obtained. Thus, this method enables rapid, accurate extraction of multiple lifetimes without requiring computationally intense curve fitting, providing a significant advancement toward multi-analyte sensing and imaging techniques. PMID:26566384

  4. Rate, characteristics, and factors associated with high emergency department utilization

    PubMed Central

    2014-01-01

    Background Patients with high emergency department (ED) utilization account for a disproportionate number of ED visits. The existing research on high ED utilization has raised doubts about the homogeneity of the frequent ED user. Attention to differences among the subgroups of frequent visitors (FV) and highly frequent visitors (HFV) is necessary in order to plan more effective interventions. In the Netherlands, the incidence of high ED utilization is unknown. The purpose of this study was to investigate if the well-documented international high ED utilization also exists in the Netherlands and if so, to characterize these patients. Therefore, we assessed the proportion of FV and HFV; compared age, sex, and visit outcomes between patients with high ED utilization and patients with single ED visits; and explored the factors associated with high ED utilization. Methods A 1-year retrospective descriptive correlational study was performed in two Dutch EDs, using thresholds of 7 to 17 visits for frequent ED use, and greater than or equal to 18 visits for highly frequent ED use. Results FV and HFV (together accounting for 0.5% of total ED patients) attended the ED 2,338 times (3.3% of the total number of ED visits). FV and HFV were equally likely to be male or female, were less likely to be self-referred, and they suffered from urgent complaints more often compared to patients with single visits. FV were significantly older than patients with single visits and more often admitted than patients with single visits. Several chief complaints were indicative for frequent and highly frequent ED use, such as shortness of breath and a psychiatric disorder. Conclusions Based on this study, high ED utilization in the Netherlands seems to be less a problem than outlined in international literature. No major differences were found between FV and HFV, they presented with the same, often serious, problems. Our study supports the notion that most patients with high ED utilization visit

  5. High rate PLD of diamond-like-carbon utilizing high repetition rate visible lasers

    SciTech Connect

    McLean, W. II; Fehring, E.J.; Dragon, E.P.; Warner, B.E.

    1994-09-15

    Pulsed Laser Deposition (PLD) has been shown to be an effective method for producing a wide variety of thin films of high-value-added materials. The high average powers and high pulse repetition frequencies of lasers under development at LLNL make it possible to scale-up PLD processes that have been demonstrated in small systems in a number of university, government, and private laboratories to industrially meaningful, economically feasible technologies. A copper vapor laser system at LLNL has been utilized to demonstrate high rate PLD of high quality diamond-like-carbon (DLC) from graphite targets. The deposition rates for PLD obtained with a 100 W laser were {approx} 2000 {mu}m{center_dot}cm{sup 2}/h, or roughly 100 times larger than those reported by chemical vapor deposition (CVD) or physical vapor deposition (PVD) methods. Good adhesion of thin (up to 2 pm) films has been achieved on a small number of substrates that include SiO{sub 2} and single crystal Si. Present results indicate that the best quality DLC films can be produced at optimum rates at power levels and wavelengths compatible with fiber optic delivery systems. If this is also true of other desirable coating systems, this PLD technology could become an extremely attractive industrial tool for high value added coatings.

  6. Trade-secret protection in utility rate cases

    SciTech Connect

    Massella, I.M.

    1982-07-08

    A closed hearing of the Ohio Public Utility Commission put a statute protecting private trade secrets in conflict with protecting the public's right to know. A first step in resolving the controversy over constitutional protections against a forced disclosure of proprietary secrets and the legal problems of balancing public and private interests is identifying those trade secrets that are protectible business information, developing a protective order, and enforcing that order. (DCK)

  7. Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates (External Review Draft)

    EPA Science Inventory

    EPA has released a draft report entitled, Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates, for independent external peer review and public comment. NCEA published the Exposure Factors Handbook in 1997. This comprehens...

  8. Attrition Rate of Oxygen Carriers in Chemical Looping Combustion Systems

    NASA Astrophysics Data System (ADS)

    Feilen, Harry Martin

    This project developed an evaluation methodology for determining, accurately and rapidly, the attrition resistance of oxygen carrier materials used in chemical looping technologies. Existing test protocols, to evaluate attrition resistance of granular materials, are conducted under non-reactive and ambient temperature conditions. They do not accurately reflect the actual behavior under the unique process conditions of chemical looping, including high temperatures and cyclic operation between oxidizing and reducing atmospheres. This project developed a test method and equipment that represented a significant improvement over existing protocols. Experimental results obtained from this project have shown that hematite exhibits different modes of attrition, including both due to mechanical stresses and due to structural changes in the particles due to chemical reaction at high temperature. The test methodology has also proven effective in providing reactivity changes of the material with continued use, a property, which in addition to attrition, determines material life. Consumption/replacement cost due to attrition or loss of reactivity is a critical factor in the economic application of the chemical looping technology. This test method will allow rapid evaluation of a wide range of materials that are best suited for this technology. The most important anticipated public benefit of this project is the acceleration of the development of chemical looping technology for lowering greenhouse gas emissions from fossil fuel combustion.

  9. Fish oil reduces heart rate and oxygen consumption during exercise.

    PubMed

    Peoples, Gregory E; McLennan, Peter L; Howe, Peter R C; Groeller, Herbert

    2008-12-01

    Dietary omega-3 polyunsaturated fatty acids (PUFAs) are readily incorporated into heart and skeletal muscle membranes where, in the heart, animal studies show they reduce O2 consumption. To test the hypothesis that omega-3 PUFAs alter O2 efficiency in humans, the effects of fish oil (FO) supplementation on O2 consumption during exercise were evaluated. Sixteen well-trained men (cyclists), randomly assigned to receive 8 x 1 g capsules per day of olive oil (control) or FO for 8 weeks in a double-blind, parallel design, completed the study (control: n = 7, age 27.1 +/- 2.7 years; FO: n = 9, age 23.2 +/- 1.2 years). Subjects used an electronically braked cycle ergometer to complete peak O2 consumption tests (VO 2peak) and sustained submaximal exercise tests at 55% of peak workload (from the VO 2peak test) before and after supplementation. Whole-body O2 consumption and indirect measurements of myocardial O2 consumption [heart rate and rate pressure product (RPP)] were assessed. FO supplementation increased omega-3 PUFA content of erythrocyte cell membranes. There were no differences in VO 2peak (mL kg(-1) min(-1)) (control: pre 66.8 +/- 2.4, post 67.2 +/- 2.3; FO: pre 68.3 +/- 1.4, post 67.2 +/- 1.2) or peak workload after supplementation. The FO supplementation lowered heart rate (including peak heart rate) during incremental workloads to exhaustion (P < 0.05). In addition, the FO supplementation lowered steady-state submaximal exercise heart rate, whole-body O2 consumption, and RPP (P < 0.01). Time to voluntary fatigue was not altered by FO supplementation. This study indicates that FOs may act within the healthy heart and skeletal muscle to reduce both whole-body and myocardial O2 demand during exercise, without a decrement in performance.

  10. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil

    NASA Astrophysics Data System (ADS)

    Sierra, Carlos A.; Malghani, Saadatullah; Loescher, Henry W.

    2017-02-01

    Determining environmental controls on soil organic matter decomposition is of importance for developing models that predict the effects of environmental change on global soil carbon stocks. There is uncertainty about the environmental controls on decomposition rates at temperature and moisture extremes, particularly at high water content levels and high temperatures. It is uncertain whether observed declines in decomposition rates at high temperatures are due to declines in the heat capacity of extracellular enzymes as predicted by thermodynamic theory, or due to simultaneous declines in soil moisture. It is also uncertain whether oxygen limits decomposition rates at high water contents. Here we present the results of a full factorial experiment using organic soils from a boreal forest incubated at high temperatures (25 and 35 °C), a wide range of water-filled pore space (WFPS; 15, 30, 60, 90 %), and contrasting oxygen concentrations (1 and 20 %). We found support for the hypothesis that decomposition rates are high at high temperatures, provided that enough moisture and oxygen are available for decomposition. Furthermore, we found that decomposition rates are mostly limited by oxygen concentrations at high moisture levels; even at 90 % WFPS, decomposition proceeded at high rates in the presence of oxygen. Our results suggest an important degree of interaction among temperature, moisture, and oxygen in determining decomposition rates at the soil core scale.

  11. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    PubMed Central

    Gurley, Katelyn; Shang, Yu

    2012-01-01

    Abstract. This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V˙O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V˙O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (rV˙O2). The rBF and rV˙O2 signals were calibrated with absolute baseline BF and V˙O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology. PMID:22894482

  12. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    NASA Astrophysics Data System (ADS)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  13. A numerical investigation of oxygen concentration dependence on biodegradation rate laws in vapor intrusion.

    PubMed

    Yao, Yijun; Shen, Rui; Pennel, Kelly G; Suuberg, Eric M

    2013-12-01

    In subsurface vapor intrusion, aerobic biodegradation has been considered as a major environmental factor that determines the soil gas concentration attenuation factors for contaminants such as petroleum hydrocarbons. The site investigation has shown that oxygen can play an important role in this biodegradation rate, and this paper explores the influence of oxygen concentration on biodegradation reactions included in vapor intrusion (VI) models. Two different three dimensional (3-D) numerical models of vapor intrusion were explored for their sensitivity to the form of the biodegradation rate law. A second order biodegradation rate law, explicitly including oxygen concentration dependence, was introduced into one model. The results indicate that the aerobic/anoxic interface depth is determined by the ratio of contaminant source vapor to atmospheric oxygen concentration, and that the contaminant concentration profile in the aerobic zone was significantly influenced by the choice of rate law.

  14. A numerical investigation of oxygen concentration dependence on biodegradation rate laws in vapor intrusion

    PubMed Central

    Yao, Yijun; Shen, Rui; Pennel, Kelly G.; Suuberg, Eric M.

    2013-01-01

    In subsurface vapor intrusion, aerobic biodegradation has been considered as a major environmental factor that determines the soil gas concentration attenuation factors for contaminants such as petroleum hydrocarbons. The site investigation showed that oxygen could play an important role in this biodegradation rate, and this paper explores the influence of oxygen concentration in biodegradation reactions included in vapor intrusion (VI) models. Two different three dimensional (3-D) numerical models of vapor intrusion were explored for their sensitivity to the form of the biodegradation rate law. A second order biodegradation rate law, explicitly including oxygen concentration dependence, was introduced into one model. The results indicate that the aerobic/anoxic interface depth is determined by the ratio of contaminant source vapor to atmospheric oxygen concentration, and that the contaminant concentration profile in the aerobic zone was significantly influenced by the choice of rate law. PMID:24197079

  15. Oxygen Ion Heat Rate within Alfvenic Turbulence in the Cusp

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Singh, Nagendra; Chandler, Michael O.

    2009-01-01

    The role that the cleft/cusp has in ionosphere-magnetosphere coupling makes it a dynamic and important region. It is directly exposed to the solar wind, making it possible for the entry of electromagnetic energy and precipitating electrons and ions from dayside reconnection and other dayside events. It is also a significant source of ionospheric plasma, contributing largely to the mass loading of the magnetosphere with large fluxes of outflowing ions. Crossing the cusp/cleft near 5100 km, the Polar instruments observe the common correlation of downward Poynting flux, ion energization, soft electron precipitation, broadband extremely low-frequency (BB-ELF) emissions, and density depletions. The dominant power in the BB-ELF emissions is now identified to be from spatially broad, low frequency Alfv nic structures. For a cusp crossing, we determine using the Electric Field Investigation (EFI), that the electric and magnetic field fluctuations are Alfv nic and the electric field gradients satisfy the inequality for stochastic acceleration. With all the Polar 1996 horizontal crossings of the cusp, we determine the O+ heating rate using the Thermal Ion Dynamics Experiment (TIDE) and Plasma Wave Investigation (PWI). We then compare this heating rate to other heating rates assuming the electric field gradient criteria exceeds the limit for stochastic acceleration for the remaining crossings. The comparison suggests that a stochastic acceleration mechanism is operational and the heating is controlled by the transverse spatial scale of the Alfvenic waves.

  16. Long-term development of hypolimnetic oxygen depletion rates in the large Lake Constance.

    PubMed

    Rhodes, Justin; Hetzenauer, Harald; Frassl, Marieke A; Rothhaupt, Karl-Otto; Rinke, Karsten

    2017-01-30

    This study investigates over 30 years of dissolved oxygen dynamics in the deep interior of Lake Constance (max. depth: 250 m). This lake supplies approximately four million people with drinking water and has undergone strong re-oligotrophication over the past decades. We calculated depth-specific annual oxygen depletion rates (ODRs) during the period of stratification and found that 50% of the observed variability in ODR was already explained by a simple separation into a sediment- and volume-related oxygen consumption. Adding a linear factor for water depth further improved the model indicating that oxygen depletion increased substantially along the depth. Two other factors turned out to significantly influence ODR: total phosphorus as a proxy for the lake's trophic state and mean oxygen concentration in the respective depth layer. Our analysis points to the importance of nutrient reductions as effective management measures to improve and protect the oxygen status of such large and deep lakes.

  17. Glucose utilization rates regulate intake levels of artificial sweeteners.

    PubMed

    Tellez, Luis A; Ren, Xueying; Han, Wenfei; Medina, Sara; Ferreira, Jozélia G; Yeckel, Catherine W; de Araujo, Ivan E

    2013-11-15

    It is well established that animals including humans attribute greater reinforcing value to glucose-containing sugars compared to their non-caloric counterparts, generally termed 'artificial sweeteners'. However, much remains to be determined regarding the physiological signals and brain systems mediating the attribution of greater reinforcing value to sweet solutions that contain glucose. Here we show that disruption of glucose utilization in mice produces an enduring inhibitory effect on artificial sweetener intake, an effect that did not depend on sweetness perception or aversion. Indeed, such an effect was not observed in mice presented with a less palatable, yet caloric, glucose solution. Consistently, hungry mice shifted their preferences away from artificial sweeteners and in favour of glucose after experiencing glucose in a hungry state. Glucose intake was found to produce significantly greater levels of dopamine efflux compared to artificial sweetener in dorsal striatum, whereas disrupting glucose oxidation suppressed dorsal striatum dopamine efflux. Conversely, inhibiting striatal dopamine receptor signalling during glucose intake in sweet-naïve animals resulted in reduced, artificial sweetener-like intake of glucose during subsequent gluco-deprivation. Our results demonstrate that glucose oxidation controls intake levels of sweet tastants by modulating extracellular dopamine levels in dorsal striatum, and suggest that glucose utilization is one critical physiological signal involved in the control of goal-directed sweetener intake.

  18. Glucose utilization rates regulate intake levels of artificial sweeteners

    PubMed Central

    Tellez, Luis A; Ren, Xueying; Han, Wenfei; Medina, Sara; Ferreira, Jozélia G; Yeckel, Catherine W; de Araujo, Ivan E

    2013-01-01

    It is well established that animals including humans attribute greater reinforcing value to glucose-containing sugars compared to their non-caloric counterparts, generally termed ‘artificial sweeteners’. However, much remains to be determined regarding the physiological signals and brain systems mediating the attribution of greater reinforcing value to sweet solutions that contain glucose. Here we show that disruption of glucose utilization in mice produces an enduring inhibitory effect on artificial sweetener intake, an effect that did not depend on sweetness perception or aversion. Indeed, such an effect was not observed in mice presented with a less palatable, yet caloric, glucose solution. Consistently, hungry mice shifted their preferences away from artificial sweeteners and in favour of glucose after experiencing glucose in a hungry state. Glucose intake was found to produce significantly greater levels of dopamine efflux compared to artificial sweetener in dorsal striatum, whereas disrupting glucose oxidation suppressed dorsal striatum dopamine efflux. Conversely, inhibiting striatal dopamine receptor signalling during glucose intake in sweet-naïve animals resulted in reduced, artificial sweetener-like intake of glucose during subsequent gluco-deprivation. Our results demonstrate that glucose oxidation controls intake levels of sweet tastants by modulating extracellular dopamine levels in dorsal striatum, and suggest that glucose utilization is one critical physiological signal involved in the control of goal-directed sweetener intake. PMID:24060992

  19. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions

    PubMed Central

    Müller, Jonas; Schmidt, Dominik

    2016-01-01

    Summary Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine. PMID:28115896

  20. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  1. 1982 CRC Fuel Rating Program: Road Octane Performance of Oxygenates in 1982 Model Cars.

    DTIC Science & Technology

    1985-07-01

    RATING PROGRAM: ROAD OCTANE PERFORMANCE OF OXYGENATES IN 1982 MODEL CARS July 1985 L 85 09 11 023 COORDINATING RESEARCH COUNCIL, INC. 219 PERIMETER...1982 CRC FUEL RATING PROGRAM: ROAD OCTANE PERFORM4ANCE OF OXYGENATES IN 1982 MODEL CARS (CRC, PROJECT N~O. CM-124-82) IN FORMULATING AND APPROVING...3 V. TEST CARS ............................................ 4 VI. BLENDING OCTANE NUMBERS................................ 5 VII. ROAD

  2. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model.

    PubMed

    Orcutt, Beth N; Wheat, C Geoffrey; Rouxel, Olivier; Hulme, Samuel; Edwards, Katrina J; Bach, Wolfgang

    2013-01-01

    Oceanic crust is the largest potential habitat for life on Earth and may contain a significant fraction of Earth's total microbial biomass; yet, empirical analysis of reaction rates in basaltic crust is lacking. Here we report the first assessment of oxygen consumption in young (~8 Ma) and cool (<25 °C) basaltic crust, which we calculate from modelling dissolved oxygen and strontium pore water gradients in basal sediments collected during Integrated Ocean Drilling Program Expedition 336 to 'North Pond' on the western flank of the Mid-Atlantic Ridge. Dissolved oxygen is completely consumed within the upper to middle section of the sediment column, with an increase in concentration towards the sediment-basement interface, indicating an upward supply from oxic fluids circulating within the crust. A parametric reaction transport model of oxygen behaviour in upper basement suggests oxygen consumption rates of 1 nmol  cm(-3)ROCK d(-1) or less in young and cool basaltic crust.

  3. Integrating spatial and temporal oxygen data to improve the quantification of in situ petroleum biodegradation rates.

    PubMed

    Davis, Gregory B; Laslett, Dean; Patterson, Bradley M; Johnston, Colin D

    2013-03-15

    Accurate estimation of biodegradation rates during remediation of petroleum impacted soil and groundwater is critical to avoid excessive costs and to ensure remedial effectiveness. Oxygen depth profiles or oxygen consumption over time are often used separately to estimate the magnitude and timeframe for biodegradation of petroleum hydrocarbons in soil and subsurface environments. Each method has limitations. Here we integrate spatial and temporal oxygen concentration data from a field experiment to develop better estimates and more reliably quantify biodegradation rates. During a nine-month bioremediation trial, 84 sets of respiration rate data (where aeration was halted and oxygen consumption was measured over time) were collected from in situ oxygen sensors at multiple locations and depths across a diesel non-aqueous phase liquid (NAPL) contaminated subsurface. Additionally, detailed vertical soil moisture (air-filled porosity) and NAPL content profiles were determined. The spatial and temporal oxygen concentration (respiration) data were modeled assuming one-dimensional diffusion of oxygen through the soil profile which was open to the atmosphere. Point and vertically averaged biodegradation rates were determined, and compared to modeled data from a previous field trial. Point estimates of biodegradation rates assuming no diffusion ranged up to 58 mg kg(-1) day(-1) while rates accounting for diffusion ranged up to 87 mg kg(-1) day(-1). Typically, accounting for diffusion increased point biodegradation rate estimates by 15-75% and vertically averaged rates by 60-80% depending on the averaging method adopted. Importantly, ignoring diffusion led to overestimation of biodegradation rates where the location of measurement was outside the zone of NAPL contamination. Over or underestimation of biodegradation rate estimates leads to cost implications for successful remediation of petroleum impacted sites.

  4. Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.

    PubMed

    Vitale, Sarah A; Robbins, Gary A

    2017-03-22

    Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%.

  5. The Validity and Utility of the Depression Proneness Rating Scale.

    ERIC Educational Resources Information Center

    Zemore, Robert; And Others

    The development of the Depression Proneness Rating Scale (DPRS) and three investigations into its reliability, validity, and factor structure are described. Subjects of all three studies were university undergraduates. The first study (n=100) found a stability coefficient of 0.82 for the DPRS over a test-retest (Time 1-Time 2) interval of 9 weeks.…

  6. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOEpatents

    Turick, C.E.

    1997-06-10

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  7. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOEpatents

    Turick, Charles E.

    1997-01-01

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

  8. Stock Price Change Rate Prediction by Utilizing Social Network Activities

    PubMed Central

    Mitsubuchi, Takashi; Sakurai, Akito

    2014-01-01

    Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS) before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL) and genetic algorithm (GA). MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques. PMID:24790586

  9. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in

  10. Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygenic species.

    PubMed

    Mielke, S P; Kiang, N Y; Blankenship, R E; Gunner, M R; Mauzerall, D

    2011-09-01

    The cyanobacterium Acaryochloris marina uses chlorophyll d to carry out oxygenic photosynthesis in environments depleted in visible and enhanced in lower-energy, far-red light. However, the extent to which low photon energies limit the efficiency of oxygenic photochemistry in A. marina is not known. Here, we report the first direct measurements of the energy-storage efficiency of the photosynthetic light reactions in A. marina whole cells, and find it is comparable to or higher than that in typical, chlorophyll a-utilizing oxygenic species. This finding indicates that oxygenic photosynthesis is not fundamentally limited at the photon energies employed by A. marina, and therefore is potentially viable in even longer-wavelength light environments.

  11. Efficiency of Photosynthesis in a Chl d-Utilizing Cyanobacterium is Comparable to or Higher than that in Chl a-Utilizing Oxygenic Species

    NASA Technical Reports Server (NTRS)

    Mielke, S. P.; Kiang, N. Y.; Blankenship, R. E.; Gunner, M. R.; Mauzerall, D.

    2011-01-01

    The cyanobacterium Acaryochloris marina uses chlorophyll d to carry out oxygenic photosynthesis in environments depleted in visible and enhanced in lower-energy, far-red light. However, the extent to which low photon energies limit the efficiency of oxygenic photochemistry in A. marina is not known. Here, we report the first direct measurements of the energy-storage efficiency of the photosynthetic light reactions in A. marina whole cells,and find it is comparable to or higher than that in typical, chlorophyll a-utilizing oxygenic species. This finding indicates that oxygenic photosynthesis is not fundamentally limited at the photon energies employed by A. marina, and therefore is potentially viable in even longer-wavelength light environments.

  12. A nondestructive technique to determine the rate of oxygen permeation into solid dosage forms.

    PubMed

    Felton, L A; Timmins, G S

    2006-02-01

    The current study investigated the use of electron paramagnetic resonance (EPR) spectroscopy as a nondestructive method to quantify the partial pressure of oxygen (PO2) in tablets and hard shell capsules. Lithium phthalocyanine crystals (LiPC) were placed inside the dosage forms. The peak-to-peak linewidth of the first derivative of the LiPC EPR spectra was measured and, by calibration tables, the oxygen partial pressure, pO2, within the dosage form was determined. The intra-dosage form pO2 was followed as a function of time after changing the exterior gas stream composition. Results showed initial oxygen concentrations comparable to atmospheric levels in all tablets and capsules investigated. Oxygen rapidly permeated into unsealed gelatin and cellulosic hard shell capsules. Banding at the cap/body joint significantly reduced the oxygen permeation rate. Oxygen also rapidly permeated into tablet compacts, regardless of the compressional force used during tableting, while application of a polymeric film significantly decreased the rate of oxygen permeation. This EPR technique was shown to be a suitable nondestructive method to study oxygen permeation kinetics in solid dosage forms.

  13. Theoretical analysis of engineered cartilage oxygenation: influence of construct thickness and media flow rate.

    PubMed

    Pierre, Julien; Gemmiti, Christopher V; Kolambkar, Yash M; Oddou, Christian; Guldberg, Robert E

    2008-12-01

    A novel parallel-plate bioreactor has been shown to modulate the mechanical and biochemical properties of engineered cartilage by the application of fluid-induced shear stress. Flow or perfusion bioreactors may improve tissue development via enhanced transport of nutrients or gases as well as the application of mechanical stimuli, or a combination of these factors. The goal of this study was to complement observed experimental responses to flow by simulating oxygen transport within cartilage constructs of different thicknesses (250 microm or 1 mm). Using numerical computation of convection-diffusion equations, the evaluation of the tissue oxygenation is performed. Four culture conditions are defined based on tissue thickness and flow rates ranging from 0 to approximately 25 mL min(-1). Under these experimental conditions results show a mean oxygen concentration within the tissue varying from 0.01 to 0.19 mol m(-3) as a function of the tissue thickness and the magnitude of the applied shear stress. More generally, the influence of shear stress varying (via flow rate modification) from 10(-3) to 10 dynes cm(-2) on the tissue oxygenation is studied. The influence on the results of important physical parameters such as the maximal oxygen consumption rate of cells is discussed. Lastly, the importance of oxygen concentration in the lower chamber and its relevance to tissue oxygenation are highlighted by the model results.

  14. Estimating streambed travel times and respiration rates based on temperature and oxygen consumption

    NASA Astrophysics Data System (ADS)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2015-12-01

    Oxygen consumption is a common proxy for aerobic respiration and novel in situ measurement techniques with high spatial resolution enable an accurate determination of the oxygen distribution in the streambed. The oxygen concentration at a certain location in the streambed depends on the input concentration, the respiration rate, temperature, and the travel time of the infiltrating flowpath. While oxygen concentrations and temperature can directly be measured, respiration rate and travel time must be estimated from the data. We investigated the interplay of these factors using a 6 month long, 5-min resolution dataset collected in a 3rdorder gravel-bed stream. Our objective was twofold, to determine transient rates of hyporheic respiration and to estimate travel times in the streambed based solely on oxygen and temperature measurements. Our results show that temperature and travel time explains ~70% of the variation in oxygen concentration in the streambed. Independent travel times were obtained using natural variations in the electrical conductivity (EC) of the stream water as tracer (µ=4.1 h; σ=2.3 h). By combining these travel times with the oxygen consumption, we calculated a first order respiration rate (µ=9.7 d-1; σ=6.1 d-1). Variations in the calculated respiration rate are largely explained by variations in streambed temperature. An empirical relationship between our respiration rate and temperature agrees with the theoretical Boltzmann-Arrhenius equation. With this relationship, a temperature-based respiration rate can be estimated and used to re-estimate subsurface travel times. The resulting travel times distinctively resemble the EC-derived travel times (R20.47; Nash-Sutcliffe coefficient 0.32). Both calculations of travel time are correlated to stream water levels and increase during discharge events, enhancing the oxygen consumption for these periods. No other physical factors besides temperature were significantly correlated with the respiration

  15. Ratings of Perceived Exertion, Heart Rate, and Power Output in Predicting Maximal Oxygen Uptake During Submaximal Cycle Ergometry.

    ERIC Educational Resources Information Center

    Wilmore, Jack H.; And Others

    1986-01-01

    Sixty-two subjects completed a four-stage submaximal cycle ergometer test to determine if estimates of maximal oxygen uptake could be improved by using ratings of perceived exertion singly or in combination with easily obtainable physiological measures. These procedures could be used to estimate the aerobic power of patients and athletes. (MT)

  16. Novel Wireless Sensor System for Monitoring Oxygen, Temperature and Respiration Rate of Horticultural Crops Post Harvest

    PubMed Central

    Løkke, Mette Marie; Seefeldt, Helene Fast; Edwards, Gareth; Green, Ole

    2011-01-01

    In order to design optimal packages, it is of pivotal importance to determine the rate at which harvested fresh fruits and vegetables consume oxygen. The respiration rate of oxygen (RRO2) is determined by measuring the consumed oxygen per hour per kg plant material, and the rate is highly influenced by temperature and gas composition. Traditionally, RRO2 has been determined at discrete time intervals. In this study, wireless sensor networks (WSNs) were used to determine RRO2 continuously in plant material (fresh cut broccoli florets) at 5 °C, 10 °C and 20 °C and at modified gas compositions (decreasing oxygen and increasing carbon dioxide levels). Furthermore, the WSN enabled concomitant determination of oxygen and temperature in the very close vicinity of the plant material. This information proved a very close relationship between changes in temperature and respiration rate. The applied WSNs were unable to determine oxygen levels lower than 5% and carbon dioxide was not determined. Despite these drawbacks in relation to respiration analysis, the WSNs offer a new possibility to do continuous measurement of RRO2 in post harvest research, thereby investigating the close relation between temperature and RRO2. The conclusions are that WSNs have the potential to be used as a monitor of RRO2 of plant material after harvest, during storage and packaging, thereby leading to optimized consumer products. PMID:22164085

  17. Characterization of the Oxygen Transmission Rate of Oak Wood Species Used in Cooperage.

    PubMed

    Del Alamo-Sanza, María; Cárcel, Luis Miguel; Nevares, Ignacio

    2017-01-25

    The oxygen that wine receives while aged in barrels is of interest because it defines the reactions that occur during aging and, therefore, the final properties of the wine. This study is intended to make up for the lack of information concerning the oxygen permeability of eight different woods of Quercus alba L. and Quercus petraea (Matt.) Liebl. commonly used. In addition, it shows how oxygen transfer evolves with the liquid contact time during testing under similar aging conditions to those in wine barrels. French oak woods permitted a higher oxygenation rate than American ones in all cases. A decrease in the oxygen entry caused by impregnation of the wood during the process was observed in all of the species studied. This process is determined by the thickness of the flooded wood layer containing free water, although differently in the two species, possibly due to the anatomical structure and the logging process for each.

  18. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden–Popper phases?

    SciTech Connect

    Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; McIntosh, Steven

    2015-03-02

    There is a possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides; it is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form An-1A2'BnO3n+1, An-1A2'BnX3n+1; LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2) and LaSr3Co1.5Fe1.5O10-δ (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. Furthermore this is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. This paper conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  19. Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets.

    PubMed

    Tichauer, Kenneth M; Elliott, Jonathan T; Hadway, Jennifer A; Lee, David S; Lee, Ting-Yim; St Lawrence, Keith

    2010-09-01

    Improving neurological care of neonates has been impeded by the absence of suitable techniques for measuring cerebral hemodynamics and energy metabolism at the bedside. Currently, near-infrared spectroscopy (NIRS) appears to be the technology best suited to fill this gap, and techniques have been proposed to measure both cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2). We have developed a fast and reliable bolus-tracking method of determining CMRO2 that combines measurements of CBF and cerebral venous oxygenation [venous oxygen saturation (CSvO2)]. However, this method has never been validated at different levels of arterial oxygenation [arterial oxygen saturation (SaO2)], which can be highly variable in the clinical setting. In this study, NIRS measurements of CBF, CSvO2, and CMRO2 were obtained over a range of SaO2 in newborn piglets (n=12); CSvO2 values measured directly from sagittal sinus blood samples were collected for validation. Two alternative NIRS methods that measure CSvO2 by manipulating venous oxygenation (i.e., head tilt and partial venous occlusion methods) were also employed for comparison. Statistically significant correlations were found between each NIRS technique and sagittal sinus blood oxygenation (P<0.05). Correlation slopes were 1.03 (r=0.91), 0.73 (r=0.73), and 0.73 (r=0.81) for the bolus-tracking, head tilt, and partial venous occlusion methods, respectively. The bolus-tracking technique displayed the best correlation under hyperoxic (SaO2=99.9±0.03%) and normoxic (SaO2=86.9±6.6%) conditions and was comparable to the other techniques under hypoxic conditions (SaO2=40.7±9.9%). The reduced precision of the bolus-tracking method under hypoxia was attributed to errors in CSvO2 measurement that were magnified at low SaO2 levels. In conclusion, the bolus-tracking technique of measuring CSvO2, and therefore CMRO2, is accurate and robust for an SaO2>50% but provides reduced accuracy under more severe hypoxic levels.

  20. Interaction of nitroimidazole sensitizers and oxygen in the radiosensitization of mammalian cells at ultrahigh dose rates

    SciTech Connect

    Michaels, H.B.; Ling, C.C.; Epp, E.R.; Peterson, E.C.

    1981-03-01

    When CHO cells, equilibrated with 0.44% oxygen, are irradiated with single 3-nsec pulses of electrons from a 600-kV-field emission source, a breaking survival curve is observed. The breaking behavior, believed to be the result of radiolytic oxygen depletion, can be prevented by the presence of a relatively low concentration of the hypoxic cell sensitizer misonidazole; similar results are obtained with metronidazole and Ro-05-9963. The resulting survival curves exhibit a sensitized response similar to that obtained with conventional dose rate radiation for CHO cells under this oxygen concentration. This degree of sensitization is greater than that observed for CHO cells irradiated at ultrahigh dose rates under the same concentration of sensitizer in nitrogen. The data suggest that the nitroimidazole compounds interfere with the radiation chemical oxygen depletion process and that the radiosensitization observed in the nonbreaking survival curve is the consequence of sensitization by both the nitroimidazole and, primarily, the oxygen rather than a direct subsitution for oxygen by the sensitizer. This conclusion is also supported by data obtained in double-pulse experiments. The results are discussed with regard to the mechanisms of the oxygen depletion process and radiosensitization.

  1. Temperature and Oxygen Dependent Metabolite Utilization by Salmonella enterica Serovars Derby and Mbandaka

    PubMed Central

    Hayward, Matthew R.; AbuOun, Manal; Woodward, Martin J.; Jansen, Vincent A. A.

    2015-01-01

    Salmonella enterica is a zoonotic pathogen of clinical and veterinary significance, with over 2500 serovars. In previous work we compared two serovars displaying host associations inferred from isolation statistics. Here, to validate genome sequence data and to expand on the role of environmental metabolite constitution in host range determination we use a phenotypic microarray approach to assess the ability of these serovars to metabolise ~500 substrates at 25°C with oxygen (aerobic conditions) to represent the ex vivo environment and at 37°C with and without oxygen (aerobic/anaerobic conditions) to represent the in vivo environment. A total of 26 substrates elicited a significant difference in the rate of metabolism of which only one, D-galactonic acid-g-lactone, could be explained by the presence (S. Mbandaka) or the absence (S. Derby) of metabolic genes. We find that S. Mbandaka respires more efficiently at ambient temperatures and under aerobic conditions on 18 substrates including: glucosominic acid, saccharic acid, trehalose, fumaric acid, maltotriose, N-acetyl-D-glucosamine, N-acetyl-beta-D-mannosamine, fucose, L-serine and dihydroxy-acetone; whereas S. Derby is more metabolically competent anaerobically at 37°C for dipeptides, glutamine-glutamine, alanine-lysine, asparagine-glutamine and nitrogen sources glycine and nitrite. We conclude that the specific phenotype cannot be reliably predicted from the presence of metabolic genes directly relating to the metabolic pathways under study. PMID:25798944

  2. System for measuring oxygen consumption rates of mammalian cells in static culture under hypoxic conditions.

    PubMed

    Kagawa, Yuki; Miyahara, Hirotaka; Ota, Yuri; Tsuneda, Satoshi

    2016-01-01

    Estimating the oxygen consumption rates (OCRs) of mammalian cells in hypoxic environments is essential for designing and developing a three-dimensional (3-D) cell culture system. However, OCR measurements under hypoxic conditions are infrequently reported in the literature. Here, we developed a system for measuring OCRs at low oxygen levels. The system injects nitrogen gas into the environment and measures the oxygen concentration by an optical oxygen microsensor that consumes no oxygen. The developed system was applied to HepG2 cells in static culture. Specifically, we measured the spatial profiles of the local dissolved oxygen concentration in the medium, then estimated the OCRs of the cells. The OCRs, and also the pericellular oxygen concentrations, decreased nonlinearly as the oxygen partial pressure in the environment decreased from 19% to 1%. The OCRs also depended on the culture period and the matrix used for coating the dish surface. Using this system, we can precisely estimate the OCRs of various cell types under environments that mimic 3-D culture conditions, contributing crucial data for an efficient 3-D culture system design.

  3. Measurement of mitochondrial oxygen consumption rates in mouse primary neurons and astrocytes.

    PubMed

    Ribeiro, Sofia M; Giménez-Cassina, Alfredo; Danial, Nika N

    2015-01-01

    The introduction of microplate-based assays that measure extracellular fluxes in intact, living cells has revolutionized the field of cellular bioenergetics. Here, we describe a method for real time assessment of mitochondrial oxygen consumption rates in primary mouse cortical neurons and astrocytes. This method requires the Extracellular Flux Analyzer Instrument (XF24, Seahorse Biosciences), which uses fluorescent oxygen sensors in a microplate assay format.

  4. Simultaneous monitoring of tissue P2 and NADH fluorescence during synaptic stimulation and spreading depression reveals a transient dissociation between oxygen utilization and mitochondrial redox state in rat hippocampal slices

    PubMed Central

    Galeffi, Francesca; Somjen, George G; Foster, Kelley A; Turner, Dennis A

    2011-01-01

    Nicotinamide adenine dinucleotide (NADH) imaging can be used to monitor neuronal activation and ascertain mitochondrial dysfunction, for example during hypoxia. During neuronal stimulation in vitro, NADH normally becomes more oxidized, indicating enhanced oxygen utilization. A subsequent NADH overshoot during activation or on recovery remains controversial and reflects either increased metabolic activity or limited oxygen availability. Tissue P2 measurements, obtained simultaneously with NADH imaging in area CA1 in hippocampal slices, reveal that during prolonged train stimulation (ST) in 95% O2, a persistent NADH oxidation is coupled with increased metabolic demand and oxygen utilization, for the duration of the stimulation. However, under conditions of either decreased oxygen supply (ST-50% O2) or enhanced metabolic demand (K+-induced spreading depression (K+-SD) 95% O2) the NADH oxidation is brief and the redox balance shifts early toward reduction, leading to a prolonged NADH overshoot. Yet, oxygen utilization remains elevated and is correlated with metabolic demand. Under these conditions, it appears that the rate of NAD+ reduction may transiently exceed oxidation, to maintain an adequate oxygen flux and ATP production. In contrast, during SD in 50% O2, the oxygen levels dropped to a point at which oxidative metabolism in the electron transport chain is limited and the rate of utilization declined. PMID:20736960

  5. [Oxygen consumption rate and effects of hypoxia stress on enzyme activities of Sepiella maindron].

    PubMed

    Wang, Chun-lin; Wu, Dan-hua; Dong, Tian-ye; Jiang, Xia-min

    2008-11-01

    The oxygen consumption rate and suffocation point of Sepiella maindroni were determined through the measurement of dissolved oxygen in control and experimental respiration chambers by Winkler's method, and the changes of S. maindroni enzyme activities under different levels of hypoxia stress were studied. The results indicated that the oxygen consumption rate of S. maindroni exhibited an obvious diurnal fluctuation of 'up-down-up-down', and positively correlated with water temperature (16 degrees C-28 degrees C) and illumination (3-500 micromol x m(-2) x s(-1)) while negatively correlated with water pH (6.25-9.25). With increasing water salinity from 18.1 to 29.8, the oxygen consumption rate had a variation of 'up-down-up', being the lowest at salinity 24. 8. Female S. maindroni had a higher oxygen consumption rate than male S. maindroni. The suffocation point of S. maindroni decreased with its increasing body mass, and that of (38.70 +/- 0.52) g in mass was (0.9427 +/- 0.0318) mg x L(-1). With the increase of hypoxia stress, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased after an initial increase, lipase activity decreased, protease activity had a variation of 'decrease-increase-decrease', and lactate dehydrogenase (LDH) activity had a trend of increasing first and decreasing then. The enzyme activities were higher under hypoxia stress than under normal conditions.

  6. Modelling Oxygen Dynamics in an Intermittently Stratified Estuary: Estimation of Process Rates Using Field Data

    NASA Astrophysics Data System (ADS)

    Borsuk, M. E.; Stow, C. A.; Luettich, R. A.; Paerl, H. W.; Pinckney, J. L.

    2001-01-01

    The relationship between bottom water dissolved oxygen concentration, vertical stratification, and temperature was investigated for the Neuse River estuary, North Carolina, a shallow, intermittently-mixed estuary using approximately 10 years of weekly/biweekly, mid-channel data. A generalized additive model (GAM) was used to initially explore the major relationships among observed variables. The results of this statistical model guided the specification of a process-based model of oxygen dynamics that is consistent with theory yet simple enough to be parameterized using available field data. The nonlinear optimization procedure employed allows for the direct estimation of microbial oxygen consumption and physical reoxygenation rates, including the effects of temperature and vertical stratification. These estimated rates may better represent aggregate system behaviour than closed chamber measurements made in the laboratory and in situ. The resulting model describes 79% of the variation in dissolved oxygen concentration and is robust when compared across separate locations and time periods. Model predictions suggest that the spatial extent and duration of hypoxia in the bottom waters of the Neuse are controlled by the balance between the net oxygen depletion rate and the frequency of vertical mixing events. During cool months, oxygen consumption rates remain low enough to keep oxygen concentration well above levels of concern even under extended periods of stratification. A concentration below 4 mg l -1is only expected under extended periods without vertical mixing when bottom water temperature exceeds 15 °C, while a concentration below 2 mg l -1is only expected when water temperature exceeds 20 °C. To incorporate the effects of parameter uncertainty, model error, and natural variability on model prediction, we used Monte Carlo simulation to generate distributions for the predicted number of days of hypoxia during the summer season. The expected number of days with

  7. The influence of thermal annealing on oxygen uptake and combustion rates of a bituminous coal char

    SciTech Connect

    Osvalda Senneca; Piero Salatino; Daniela Menghini

    2007-07-01

    The effect of thermal annealing on the combustion reactivity of a bituminous coal char has been investigated with a focus on the role of the formation of surface oxides by oxygen chemisorption. The combined use of thermogravimetric analysis and of analysis of the off-gas during isothermal combustion of char samples enabled the determination of the rate and extent of oxygen uptake along burn-off. Combustion was carried out at temperatures between 350 and 510{sup o}C. Char samples were prepared by controlled isothermal heat treatment of coal for different times (in the range between 1 s and 30 min) at different temperatures (in the range 900-2000{sup o}C). Results indicate that oxygen uptake is extensive along burn-off of chars prepared under mild heat treatment conditions. The maximum oxygen uptake is barely affected by the combustion temperature within the range of combustion conditions investigated. The severity of heat treatment has a pronounced effect on char combustion rate as well as on the extent and rate at which surface oxides are built up by oxygen chemisorption. Chars prepared under severe heat treatment conditions show negligible oxygen uptake and strongly reduced combustion rates. Altogether it appears that a close correlation can be established between the extent and the accessibility of active sites on the carbon surface and the combustion rate. Despite the investigation has been carried out at temperatures well below those of practical interest, results provide useful insight into the relationship existing between thermal annealing, formation of surface oxide and combustion reactivity which is relevant to the proper formulation of detailed kinetic models of char combustion. 31 refs., 6 figs., 1 tab.

  8. Understanding the biological activity of high rate algae ponds through the calculation of oxygen balances.

    PubMed

    Arbib, Zouhayr; de Godos Crespo, Ignacio; Corona, Enrique Lara; Rogalla, Frank

    2017-03-24

    Microalgae culture in high rate algae ponds (HRAP) is an environmentally friendly technology for wastewater treatment. However, for the implementation of these systems, a better understanding of the oxygenation potential and the influence of climate conditions is required. In this work, the rates of oxygen production, consumption, and exchange with the atmosphere were calculated under varying conditions of solar irradiance and dilution rate during six months of operation in a real scale unit. This analysis allowed determining the biological response of these dynamic systems. The rates of oxygen consumption measured were considerably higher than the values calculated based on the organic loading rate. The response to light intensity in terms of oxygen production in the bioreactor was described with one of the models proposed for microalgae culture in dense concentrations. This model is based on the availability of light inside the culture and the specific response of microalgae to this parameter. The specific response to solar radiation intensity showed a reasonable stability in spite of the fluctuations due to meteorological conditions. The methodology developed is a useful tool for optimization and prediction of the performance of these systems.

  9. The Utility of Thin Slice Ratings for Predicting Language Growth in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Walton, Katherine M.; Ingersoll, Brooke R.

    2016-01-01

    Literature on "Thin Slice" ratings indicates that a number of personality characteristics and behaviors can be accurately predicted by ratings of very short segments (<5?min) of behavior. This study examined the utility of Thin Slice ratings of young children with autism spectrum disorder for predicting developmental skills and…

  10. Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans.

    PubMed Central

    Boyle, P J; Scott, J C; Krentz, A J; Nagy, R J; Comstock, E; Hoffman, C

    1994-01-01

    Systemic glucose utilization declines during sleep in man. We tested the hypothesis that this decline in utilization is largely accounted for by reduced brain glucose metabolism. 10 normal subjects underwent internal jugular and radial artery cannulation to determine cerebral blood flow by N2O equilibrium technique and to quantitate cross-brain glucose and oxygen differences before and every 3 h during sleep. Sleep stage was graded by continuous electroencephalogram, and systemic glucose turnover was estimated by isotope dilution. Brain glucose metabolism fell from 33.6 +/- 2.2 mumol/100 g per min (mean +/- SE) before sleep (2300 h) to a mean nadir of 24.3 +/- 1.1 mumol/100 g per min at 0300 h during sleep (P = 0.001). Corresponding rates of systemic glucose utilization fell from 13.2 +/- 0.8 to 11.0 +/- 0.5 mumol/kg per min (P = 0.003). Diminished brain glucose metabolism was the product of a reduced arteriovenous glucose difference, 0.643 +/- 0.024 to 0.546 +/- 0.020 mmol/liter (P = 0.002), and cerebral blood flow, 50.3 +/- 2.8 to 44.6 +/- 1.4 cc/100 g per min (P = 0.021). Brain oxygen metabolism fell commensurately from 153.4 +/- 11.8 to 128.0 +/- 8.4 mumol/100 g per min (P = 0.045). The observed reduction in brain metabolism occurred independent of stage of central nervous system electrical activity (electroencephalographic data), and was more closely linked to duration of sleep. We conclude that a decline in brain glucose metabolism is a significant determinant of falling rates of systemic glucose utilization during sleep. Images PMID:8113391

  11. Effect of Solvent Dielectric Properties on the Spontaneous-Emission Rate Constant of Molecular Singlet Oxygen

    NASA Astrophysics Data System (ADS)

    Jarnikova, E. S.; Parkhats, M. V.; Stasheuski, A. S.; Dzhagarov, B. M.

    2017-01-01

    Quantum yields and luminescence lifetimes of singlet oxygen in 18 different solvents and binary mixtures were measured using laser fluorometry. The results allowed a direct effect of the refractive index on the radiative rate constant kr of the singlet-oxygen a 1 Δ g → X 3 Σ g - transition caused by a change of photon state density in addition to an indirect effect through a local-field factor to be determined. The experimentally observed rise of kr with increasing medium refractive index could not be explained by the influence of only these two factors. The discrepancy was overcome by taking into account changes of the singlet-oxygen transition dipole moment. Consideration of all three factors explained the influence of the medium on rate constant kr

  12. Hemolytic and thrombocytopathic characteristics of extracorporeal membrane oxygenation systems at simulated flow rate for neonates*

    PubMed Central

    Meyer, Andrew D.; Wiles, Andrew A.; Rivera, Oswaldo; Wong, Edward C.; Freishtat, Robert J.; Rais-Bahrami, Khoydar; Dalton, Heidi J.

    2012-01-01

    Objective A state-of-the-art centrifugal pump combined with hollow-fiber oxygenator for extracorporeal membrane oxygenation has potential advantages such as smaller priming volumes and decreased potential to cause tubing rupture as compared with the traditional roller head/silicone membrane systems. Adoption of these state-of-the-art systems has been slow in neonates as a result of past evidence of severe hemolysis that may lead to renal failure and increased mortality. Extracorporeal systems have also been linked to platelet dysfunction, a contributing factor toward intracranial hemorrhage, a leading cause of infant morbidity. Little data exist comparing the centrifugal systems with the roller systems in terms of hemolysis and platelet aggregation at low flow rates commonly used in neonatal extracorporeal membrane oxygenation. Design Prospective, comparative laboratory study. Setting University research laboratory. Subjects Centrifugal pump, roller pump, hollow-fiber oxygenator, and silicone membrane oxygenator. Interventions Comparative study using two pumps, the centrifugal Jostra Rotaflow (Maquet, Wayne, NJ) and the roller-head (Jostra, Maquet, Wayne, NJ), and two oxygenators, polymethly-pentene Quadrox-D (Maquet) and silicone membrane (Medtronic, Minneapolis, MN). Five test runs of four circuit combinations were examined for hemolysis and platelet aggregation during 6 hrs of continuous use in a simulated in vitro extracorporeal membrane oxygenation circuit circulating whole swine blood at 300 mL/min. Measurements and Main Results Hemolysis was assessed by spectrophometric measurement of plasma-free hemoglobin. Platelet aggregation was evaluated using monoclonal CD61 antibody fluorescent flow cytometry profiles. All of the extracorporeal membrane oxygenation systems created plasma-free hemoglobin at a similar rate compared with static blood control. There was no difference in the mean normalized index of hemolysis of the centrifugal/hollow-fiber oxygenator

  13. The Utility of Clinicians Ratings of Anxiety Using the Pediatric Anxiety Rating Scale (PARS)

    ERIC Educational Resources Information Center

    Ginsburg, Golda S.; Keeton, Courtney P.; Drazdowski, Tess K.; Riddle, Mark A.

    2011-01-01

    Clinician ratings of anxiety hold the promise of clarifying discrepancies often found between child and parent reports of anxiety. The Pediatric Anxiety Rating Scale (PARS) is a clinician-administered instrument that assesses the frequency, severity, and impairment of common pediatric anxiety disorders and has been used as a primary outcome…

  14. Determining Permissible Oxygen and Water Vapor Transmission Rate for Non-Retort Military Ration Packaging

    DTIC Science & Technology

    2011-11-01

    oxygen transmission rate ( OTR ) and water vapor transmission rate (WVTR), for the non-retort pouch found in the Meal, Ready to EatTM (MRETM) individual...water vapor ingress is 0.004 g/pouch/d. Cracker samples used to determine permissible OTR did not fall below the overall quality requirement for...sensory attributes during the 32-week study. Thus, an allowable OTR for the non-retort pouch cannot be calculated from the results obtained. 15

  15. Optical fiber head for monitoring of heart rate and blood oxygenation

    NASA Astrophysics Data System (ADS)

    Hoffmann, Kacper; Baranowska, Agata; Zmojda, Jacek; Kochanowicz, Marcin; Dorosz, Dominik

    2016-09-01

    In this article we presented possibility of heart rate and blood oxygenation measurements by classic displacement optical fiber sensor in reflection mode. Based on numerical analysis of sensor head characteristics the optimal construction was developed. Three LED diodes at the wavelengths of 530nm (green), 650nm (red) and 850nm (infrared) were used for determine heart rate and saturation of blood during "in vivo" measurements. Developed sensor head allows noninvasive and continuously monitoring of blood parameters.

  16. Effect of rocker shoe radius on oxygen consumption rate in young able-bodied persons.

    PubMed

    Hansen, Andrew H; Wang, Charles C

    2011-04-07

    We studied oxygen consumption rate of eleven young able-bodied persons walking at self-selected speed with five different pairs of shoes: one regular pair without rocker soles (REG) and four pairs with uniform hardness (35-40 shore A durometer) rocker soles of different radii (25% of leg length (LL) (R25), 40% LL (R40), 55% LL (R55), and infinite radius (FLAT)). Rocker soled shoes in the study were developed to provide similar vertical lift (three inches higher than the REG shoes condition). Oxygen consumption rate was significantly affected by the use of the different shoes (p<0.001) and pairwise comparisons indicated that persons consumed significantly less oxygen (per minute per kilogram of body mass) when walking on the R40 shoes when compared with both the FLAT (p<0.001) and REG (p=0.021) shoe conditions. Oxygen consumption was also significantly less for the R25 shoes compared with the FLAT shoes (p=0.005) and for the R55 shoes compared with FLAT shoes (p=0.027). The three-inch lift on the FLAT shoe did not cause a significant change in oxygen consumption compared to the shoe without the lift (REG).

  17. Detection of the oxygen consumption rate of migrating zebrafish by electrochemical equalization systems.

    PubMed

    Yasukawa, Tomoyuki; Koide, Masahiro; Tatarazako, Norihisa; Abe, Ryoko; Shiku, Hitoshi; Mizutani, Fumio; Matsue, Tomokazu

    2014-01-07

    A novel measurement system to determine oxygen consumption rates via respiration in migrating Zebrafish (Danio rerio) has been developed. A signal equalization system was adapted to detect oxygen in a chamber with one fish, because typical electrochemical techniques cannot measure respiration activities for migrating organisms. A closed chamber was fabricated using a pipet tip attached to a Pt electrode, and a columnar Vycor glass tip was used as the salt bridge. Pt electrode, which was attached to the chamber with one zebrafish, and Ag electrode were immersed in 10 mM potassium iodide (KI), and both the electrodes were connected externally to form a galvanic cell. Pt and Ag electrodes act as the cathode and anode to reduce oxygen and oxidize silver, respectively, allowing the deposition of insoluble silver iodide (AgI). The AgI acts as the signal source accumulated on the Ag electrode by conversion of oxygen. The amount of AgI deposited on the Ag electrode was determined by cathodic stripping voltammetry. The presence of zebrafish or its embryo led to a decrease in the stripping currents generated by a 10 min conversion of oxygen to AgI. The conversion of oxygen to AgI is disturbed by the migration of the zebrafish and allows the detection of different equalized signals corresponding to respiration activity. The oxygen consumption rates of the zebrafish and its embryo were estimated and determined to be ∼4.1 and 2.4 pmol·s(-1), respectively. The deposited AgI almost completely disappeared with a single stripping process. The signal equalization system provides a method to determine the respiration activities for migrating zebrafish and could be used to estimate environmental risk and for effective drug screening.

  18. Improving oxygen prescribing rates by tailoring interventions for specific healthcare professional groups

    PubMed Central

    Helliar, Sebastian

    2016-01-01

    Oxygen prescription remains a nationwide problem. The dangers associated with unregulated oxygen administration are well described in the literature with the potential for serious harm in patients with chronic hypercapnia, as well as potentially delaying discharge in patients who are administered it without a prescription. This project identifies poor compliance with regional and national standards and sets out to improve the frequency of oxygen prescribing on a cardiology ward. By studying the problem at a Somerset district general hospital we identified two main groups of professionals responsible for the poor compliance, nursing staff (who administer the oxygen) and junior doctors (who should prescribe it). A series of interventions was designed to firstly raise awareness of the problem within these two groups before going on to target each group with a further intervention over 24 weeks. At baseline we found only 11.3% of patients receiving oxygen had it prescribed. At the end of the project this had improved to 69.6%. We also found that following raised awareness in the nursing staff and introduction of a bedside warning the number of patients receiving oxygen on the ward fell by 35%. In conclusion, this project outlines a strategy for improving oxygen prescribing rates on a medical ward. By targeting different populations we had hoped to see a cumulative improvement after each improvement cycle, however, some resistance from junior doctors in engaging with our third intervention was reflected with a slight decrease in prescribing rates. Further work should address this issue and look to apply this strategy across a wider clinical area with a greater sample size to see if the results are replicable on a larger scale. PMID:28074129

  19. Oxygen consumption in the foraging honeybee depends on the reward rate at the food source.

    PubMed

    Moffatt, L; Núñez, J A

    1997-01-01

    Oxygen consumption of the honeybee Apis mellifera ligustica was measured as a function of the flow rate supply of sucrose solution at an automatic feeder located inside a respirometric chamber. Trained bees freely entered the respirometric chamber and collected the sucrose solution supplied. The mean value of the O2 consumption rate per visit increased with the sucrose flow rate, and for a given flow rate, with increasing locomotor activity. However, when no locomotor activity was displayed, O2 consumption also increased with increasing nectar flow rate. Crop load attained at the end of the visit showed a positive relationship with the nectar flow rate; however, for a given flow rate, O2 consumption showed either no correlation or a negative one with the final crop load attained. It is concluded that the energy expenditure of the foraging bee is controlled by a motivational drive whose intensity depends on the reward rate at the food source.

  20. Atomic oxygen, atomic hydrogen, and chemical heating rates derived from SABER

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.

    The SABER instrument on the TIMED satellite measures the infrared OH airglow at 2.0 um in the terrestrial mesosphere. These measurements are inverted to provide the volume emissions rates of the OH(9-7 + 8-6) bands. These high-lying bands are formed directly upon the reaction of atomic hydrogen and ozone and thus the measured volume emission rate is a direct measure of the rate of reaction. The SABER OH emission rates and the measured SABER ozone are used to derive the concentration of atomic hydrogen in the mesopause region. The emission rate is also a direct measure of the rate of energy deposition due to the reaction of atomic hydrogen and ozone. Rates of chemical heating are then readily derived upon provision of atmospheric temperature and density from SABER. Under the assumption of photochemical steady state in the production and loss of ozone, the emission rates can also be used to derive atomic oxygen. The abundances of H and O enable the computation of rates of chemical heating due to numerous exothermic reactions. A key to these derivations lies in the knowledge of the rate of quenching/reaction of vibrationally excited OH with atomic oxygen. We present the SABER airglow models, data inversion approach, and results for O, H, and chemical heating.

  1. Utilization of native oxygen in Eu(RE)-doped GaN for enabling device compatibility in optoelectronic applications

    DOE PAGES

    Mitchell, Brandon; Timmerman, D.; Poplawsky, Jonathan D.; ...

    2016-01-04

    The detrimental influence of oxygen on the performance and reliability of V/III nitride based devices is well known. However, the influence of oxygen on the nature of the incorporation of other co-dopants, such as rare earth ions, has been largely overlooked in GaN. Here, we report the first comprehensive study of the critical role that oxygen has on Eu in GaN, as well as atomic scale observation of diffusion and local concentration of both atoms in the crystal lattice. We find that oxygen plays an integral role in the location, stability, and local defect structure around the Eu ions thatmore » were doped into the GaN host. Although the availability of oxygen is essential for these properties, it renders the material incompatible with GaN-based devices. However, the utilization of the normally occurring oxygen in GaN is promoted through structural manipulation, reducing its concentration by 2 orders of magnitude, while maintaining both the material quality and the favorable optical properties of the Eu ions. Furthermore, these findings open the way for full integration of RE dopants for optoelectronic functionalities in the existing GaN platform.« less

  2. Utilization of native oxygen in Eu(RE)-doped GaN for enabling device compatibility in optoelectronic applications

    SciTech Connect

    Mitchell, Brandon; Timmerman, D.; Poplawsky, Jonathan D.; Zhu, W.; Lee, D.; Wakamatsu, R.; Takatsu, J.; Matsuda, M.; Guo, Wei; Lorenz, K.; Alves, E.; Koizumi, A.; Dierolf, Volkmar; Fujiwara, Yasufumi

    2016-01-04

    The detrimental influence of oxygen on the performance and reliability of V/III nitride based devices is well known. However, the influence of oxygen on the nature of the incorporation of other co-dopants, such as rare earth ions, has been largely overlooked in GaN. Here, we report the first comprehensive study of the critical role that oxygen has on Eu in GaN, as well as atomic scale observation of diffusion and local concentration of both atoms in the crystal lattice. We find that oxygen plays an integral role in the location, stability, and local defect structure around the Eu ions that were doped into the GaN host. Although the availability of oxygen is essential for these properties, it renders the material incompatible with GaN-based devices. However, the utilization of the normally occurring oxygen in GaN is promoted through structural manipulation, reducing its concentration by 2 orders of magnitude, while maintaining both the material quality and the favorable optical properties of the Eu ions. Furthermore, these findings open the way for full integration of RE dopants for optoelectronic functionalities in the existing GaN platform.

  3. Reduced metabolic rate and oxygen radicals production in stored insect sperm.

    PubMed

    Ribou, Anne-Cécile; Reinhardt, Klaus

    2012-06-07

    Females of internally fertilizing species can significantly extend sperm lifespan and functionality during sperm storage. The mechanisms for such delayed cellular senescence remain unknown. Here, we apply current hypotheses of cellular senescence developed for diploid cells to sperm cells, and empirically test opposing predictions on the relationship between sperm metabolic rate and oxygen radical production in an insect model, the cricket Gryllus bimaculatus. Using time-resolved microfluorimetry, we found a negative correlation between metabolic rate (proportion of protein-bound NAD[P]H) and in situ intracellular oxygen radicals production in freshly ejaculated sperm. In contrast, sperm stored by females for periods of 1 h to 26 days showed a positive correlation between metabolic rate and oxygen radicals production. At the same time, stored sperm showed a 37 per cent reduced metabolic rate, and 42 per cent reduced reactive oxygen species (ROS) production, compared with freshly ejaculated sperm. Rank differences between males in ROS production and metabolic rate observed in ejaculated sperm did not predict rank differences in stored sperm. Our method of simultaneously measuring ROS production and metabolic rate of the same sample has the advantage of providing data that are independent of sperm density and any extracellular antioxidants that are proteins. Our method also excludes effects owing to accumulated hydrogen peroxide. Our results unify aspects of competing theories of cellular ageing and suggest that reducing metabolic rate may be an important means of extending stored sperm lifespan and functionality in crickets. Our data also provide a possible explanation for why traits of ejaculates sampled from the male may be rather poor predictors of paternity in sexual selection studies and likelihood of pregnancy in reproductive medicine.

  4. How important are lens oxygen ratings? They are one of many performance factors.

    PubMed

    Bennett, E S

    1990-01-01

    To prevent corneal edema in most patients, contact lenses must transmit oxygen to the following minimum degree: (a) in daily wear, 24.1 x 10(-9) (cm x ml O2)/(s x ml x mm Hg), and (b) in extended wear, 34.3 x 10(-9) (cm x ml O2)/(s x ml x mm Hg). High Dk/L ratings are particularly important for patients wearing extended wear lenses and for those with exceptionally high corneal oxygen demand. Nevertheless, it is well known that other lens performance properties can be compromised by manipulating material or design parameters to increase the Dk/L rating. Increasing the Dk/L of hydrogel lenses, for example, may lead to problems such as fragility, dehydration, and corneal adherence. Similarly, high-Dk/L, rigid gas-permeable lenses may exhibit poor surface wettability and flexural resistance, base curve radius changes, and possible corneal adherence. Because such problems can compromise visual acuity, affect ease of handling, or decrease comfort, nonoxygen factors may exert a stronger influence on successful lens wear than high oxygen transmissibility alone for most patients. Among the nonoxygen factors important for contact lens wear are good movement, surface wettability, resistance to deposit buildup, and flexural resistance. Clinicians must consider these properties, along with oxygen transmission ratings, when fitting patients with contact lenses. Lenses that exhibit good overall performance, in my view, provide the greatest probability of successful wear.

  5. The relationship between heart rate and rate of oxygen consumption in Galapagos marine iguanas (Amblyrhynchus cristatus) at two different temperatures.

    PubMed

    Butler, Patrick J; Frappell, Peter B; Wang, Tobias; Wikelski, Martin

    2002-07-01

    To enable the use of heart rate (fH) for estimating field metabolic rate (FMR) in free-ranging Galapagos marine iguanas Amblyrhynchus cristatus, we determined the relationships between fH and mass-specific rate of oxygen consumption (sVO2) in seven iguanas before and during exercise on a treadmill and during the post-exercise period. The experiments were conducted at 27 and 35 degrees C, which are the temperatures that represent the lowest and highest average body temperatures of these animals in the field during summer. There were linear and significant relationships between fH and sVO2 at both temperatures (r(2)=0.86 and 0.91 at 27 degrees C and 36 degrees C, respectively). The slopes of the two regression lines did not differ, but there were significant differences in their intercepts. Thus, while heart rate can be used to predict FMR, the effects of temperature on the intercept of the regression must be taken into account when converting fH to sVO2. On the basis of our data, this can be achieved by applying the following formula: sVO2=0.0113fH-0.2983Q(10)((T(b)-27)/10). The increase in sVO2 with elevated body temperature results from an increase in fH, with no significant change in mass-specific oxygen pulse (sO(2) pulse; cardiac stroke volume times the difference in oxygen content between arterial and mixed venous blood). However, during exercise at both temperatures, increases in fH are insufficient to provide all of the additional O(2) required and there are also significant increases in the sO(2) pulses. This creates the situation whereby the same fH at the two temperatures can represent different values of sVO2.

  6. The rate constant for the reaction of oxygen /3P/ atoms with dichlorine monoxide

    NASA Technical Reports Server (NTRS)

    Miziolek, A. W.; Molina, M. J.

    1978-01-01

    A fast flow discharge apparatus was used to measure the rate constant for the reaction of ground state oxygen atoms with dichlorine monoxide in the temperature range 236-295 K. The air afterflow technique (NO2 chemiluminescence) was used for detection of oxygen atoms. The Arrhenius expression for the rate constant was found to be 2.7 plus or minus 0.3 times 10 to the -11th power exp(-560 plus or minus 80/T) cu cm per molecule per sec. At 295 K the rate constant is 4.1 plus or minus 0.5 times 10 to the -12th power cu cm per molecule per sec.

  7. The effects of strenuous exercises on resting heart rate, blood pressure, and maximal oxygen uptake.

    PubMed

    Oh, Deuk-Ja; Hong, Hyeon-Ok; Lee, Bo-Ae

    2016-02-01

    The purpose of this study is to investigate the effects of strenuous exercises on resting heart rate, blood pressure, and maximal oxygen uptake. To achieve the purpose of the study, a total of 30 subjects were selected, including 15 people who performed continued regular exercises and 15 people as the control group. With regard to data processing, the IBM SPSS Statistics ver. 21.0 was used to calculate the mean and standard deviation. The difference of mean change between groups was verified through an independent t-test. As a result, there were significant differences in resting heart rate, maximal heart rate, maximal systolic blood pressure, and maximal oxygen uptake. However, the maximal systolic blood pressure was found to be an exercise-induced high blood pressure. Thus, it is thought that a risk diagnosis for it through a regular exercise stress test is necessary.

  8. Childhood asthma utilization rates in a nonsmoking population of utah compared to state and national rates.

    PubMed

    Gren, Lisa H; Taylor, Brooke; Lyon, Joseph L

    2011-01-01

    Risk factors, such as parental smoking, are commonly associated with increased asthma symptoms and hospitalizations of children. Deseret Mutual Benefits Administrators (DMBA) is the health insurer for employees of The Church of Jesus Christ of Latter-day Saints and their families. Due to religious proscription, employees abstain from alcohol and tobacco use, creating a cohort of children not exposed to parental smoking. Calculation of hospitalization rates for DMBA, Utah, and the US were made in children to compare rates between a nonsmoking population and general populations. Compared to DMBA, rate ratios for asthma hospitalization and emergency department asthma visits were higher for the US and Utah. The incidence of hospital outpatient department and physician office visits was significantly greater for the US population compared to the DMBA. This study demonstrates a decreased need for health services used by children not exposed to second-hand smoke.

  9. Tide-related biological rhythm in the oxygen consumption rate of ghost shrimp (Neotrypaea uncinata).

    PubMed

    Leiva, Félix P; Niklitschek, Edwin J; Paschke, Kurt; Gebauer, Paulina; Urbina, Mauricio A

    2016-07-01

    The effects of tidal height (high and low), acclimation to laboratory conditions (days in captivity) and oxygen level (hypoxia and normoxia) were evaluated in the oxygen consumption rate (OCR) of the ghost shrimp Neotrypaea uncinata We evaluated the hypothesis that N. uncinata reduces its OCR during low tide and increases it during high tide, regardless of oxygen level or acclimation. Additionally, the existence of an endogenous rhythm in OCR was explored, and we examined whether it synchronized with tidal, diurnal or semidiurnal cycles. Unexpectedly, high OCRs were observed at low tide, during normoxia, in non-acclimated animals. Results from a second, longer experiment under normoxic conditions suggested the presence of a tide-related metabolic rhythm, a response pattern not yet demonstrated for a burrowing decapod. Although rhythms persisted for only 2 days after capture, their period of 12.8 h closely matched the semidiurnal tidal cycle that ghost shrimp confront inside their burrows.

  10. Prediction of heart rate and oxygen uptake during incremental and maximal exercise in healthy adults.

    PubMed

    Fairbarn, M S; Blackie, S P; McElvaney, N G; Wiggs, B R; Paré, P D; Pardy, R L

    1994-05-01

    Measurement of heart rate and oxygen uptake during incremental exercise and at maximal exercise is useful in evaluating mechanisms responsible for exercise limitation in patients with cardiopulmonary disease. Presently used prediction equations are based on relatively small groups of subjects in whom there was an uneven distribution of subjects with regard to age and sex or based on equations that were from extrapolated data. Our prediction equations are based on data from 231 men and women equally divided within decades between 20 and 80 years. Patients exercised to a symptom-limited maximum on a cycle ergometer while measurements of heart rate and oxygen uptake were recorded. The relationship between heart rate and oxygen uptake throughout exercise (HR:VO2) was determined using a statistical technique that included each data point from each subject. The HR:VO2 throughout incremental exercise was best described by separate equations for women younger than 50 years and older than 50 years and for men younger than 70 years and older than 70 years. Prediction equations for maximal heart rate (HRmax) and maximal oxygen uptake (VO2max) were developed by linear regression and were selected from all possible combinations of parameters. The HRmax was most accurately predicted by age alone for both sexes. Unlike the HR:VO2 relationship, the slope of the line relating heart rate to age was not different for the older women compared with the younger women so that a single equation was derived to predict HRmax. A single equation for the men was also sufficient since the slope of heart rate to age was the same for all ages. To most accurately predict VO2max, a separate equation was required for both the women and men that included age, height, and weight.

  11. The relationship between energy-dependent phagocytosis and the rate of oxygen consumption in Tetrahymena.

    PubMed

    Skriver, L; Nilsson, J R

    1978-12-01

    The induction of high rates of food vacuole formation in Tetrahymena pyriformis increased the rate of respiration in exponentially growing cells by 17% and in starving cells by 47.5%. The increased rate of oxygen uptake was caused by phagocytosis itself, as shown by comparing the rates of respiration of a Tetrahymena mutant exposed to particles at the permissive or restrictive temperatures for food vacuole formation. During cell division, heat-synchronized cells in rich, particle-supplemented medium showed a significant decrease in the rate of respiration. Furthermore, dimethyl sulphoxide, in concentrations sufficient to block food vacuole formation, suppressed the rate of respiration to a level similar to that of starved cells. Cytochalasin B, fowever, did not reduce the rate of oxygen uptake despite the inability of the cells to complete the formation of food vacuoles during treatment; a possible explanation for this finding is discussed. There was a strong correlation between formation of food vacuoles and a high metabolic rate in Tetrahymena.

  12. Public Utility Regulatory Policies Act of 1978: Natural Gas Rate Design Study

    SciTech Connect

    1980-05-01

    First, the comments on May 3, 1979 Notice of Inquiry of DOE relating to the Gas Utility Rate Design Study Required by Section 306 of PURPA are presented. Then, comments on the following are included: (1) ICF Gas Utility Model, Gas Utility Model Data Outputs, Scenario Design; (2) Interim Model Development Report with Example Case Illustrations; (3) Interim Report on Simulation of Seven Rate Forms; (4) Methodology for Assessing the Impacts of Alternative Rate Designs on Industrial Energy Use; (5) Simulation of Marginal-Cost-Based Natural Gas Rates; and (6) Preliminary Discussion Draft of the Gas Rate Design Study. Among the most frequent comments expressed were the following: (a) the public should be given the opportunity to review the final report prior to its submission to Congress; (b) results based on a single computer model of only four hypothetical utility situations cannot be used for policy-making purposes for individual companies or the entire gas industry; (c) there has been an unobjective treatment of traditional and economic cost rate structures; the practical difficulties and potential detrimental consequences of economic cost rates are not fully disclosed; and (d) it is erroneous to assume that end users, particularly residential customers, are influenced by price signals in the rate structure, as opposed to the total bill.

  13. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  14. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  15. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  16. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  17. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  18. The Balancing Act: How Utility Rates Are Decided. Teacher/Facilitator's Guide.

    ERIC Educational Resources Information Center

    American Gas Association, Arlington, VA. Educational Services.

    Designed for secondary level students, this guide describes the process of establishing utility rates for gas, electricity, telephone, or water services. Insights are presented into the parties and interests involved in rate changes, along with procedures and issues that influence decision-making. The goals of this teaching guide include: (1)…

  19. Oxygen ionization rates at Mars and Venus - Relative contributions of impact ionization and charge exchange

    NASA Technical Reports Server (NTRS)

    Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.

    1993-01-01

    Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.

  20. ENHANCED BIOREMEDIATION UTILIZING HYDROGEN PEROXIDE AS A SUPPLEMENTAL SOURCE OF OXYGEN: A LABORATORY AND FIELD STUDY

    EPA Science Inventory

    Laboratory and field scale studies were conducted to investigate the feasibility of using hydrogen peroxide as a supplemental source of oxygen for bioremediation of an aviation gasoline fuel spill. Field samples of aviation gasoline contaminated aquifer material were artificially...

  1. Utilizing intake-air oxygen-enrichment technology to reduce cold- phase emissions

    SciTech Connect

    Poola, R.B.; Ng, H.K.; Sekar, R.R.; Baudino, J.H.; Colucci, C.P.

    1995-12-31

    Oxygen-enriched combustion is a proven, serious considered technique to reduce exhaust hydrocarbons (HC) and carbon monoxide (CO) emissions from automotive gasoline engines. This paper presents the cold-phase emissions reduction results of using oxygen-enriched intake air containing about 23% and 25% oxygen (by volume) in a vehicle powered by a spark-ignition (SI) engine. Both engineout and converter-out emissions data were collected by following the standard federal test procedure (FTP). Converter-out emissions data were also obtained employing the US Environmental Protection Agency`s (EPA`s) ``Off-Cycle`` test. Test results indicate that the engine-out CO emissions during the cold phase (bag 1) were reduced by about 46 and 50%, and HC by about 33 and 43%, using nominal 23 and 25% oxygen-enriched air compared to ambient air (21% oxygen by volume), respectively. However, the corresponding oxides of nitrogen (NO{sub x}) emissions were increased by about 56 and 79%, respectively. Time-resolved emissions data indicate that both HC and CO emissions were reduced considerably during the initial 127 s of the cold-phase FTP, without any increase in NO, emissions in the first 25 s. Hydrocarbon speciation results indicate that all major toxic pollutants, including ozone-forming specific reactivity factors, such as maximum incremental reactivity (NUR) and maximum ozone incremental reactivity (MOIR), were reduced considerably with oxygen-enrichment. Based on these results, it seems that using oxygen-enriched intake air during the cold-phase FTP could potentially reduce HC and CO emissions sufficiently to meet future emissions standards. Off-cycle, converter-out, weighted-average emissions results show that both HC and CO emissions were reduced by about 60 to 75% with 23 or 25% oxygen-enrichment, but the accompanying NO{sub x}, emissions were much higher than those with the ambient air.

  2. Polymer Growth Rate in a Wire Chamber with Oxygen,Water, or Alcohol Gas Additives

    SciTech Connect

    Boyarski, Adam; /SLAC

    2008-07-02

    The rate of polymer growth on wires was measured in a wire chamber while the chamber was aged initially with helium-isobutane (80:20) gas, and then with either oxygen, water, or alcohol added to the gas. At the completion of the aging process for each gas mixture, the carbon content on the wires was measured in a SEM/EDX instrument. The same physical wires were used in all the gas mixtures, allowing measurement of polymer build up or polymer depletion by each gas additive. It is found that the rate of polymer growth is not changed by the presence of oxygen, water or alcohol. Conjecture that oxygen reduces breakdown by removing polymer deposits on field wires is negated by these measurements. Instead, it appears that the reduced breakdown is due to lower resistance in the polymer from oxygen ions being transported into the polymer. It is also observed that field wires bombarded by the electrons in the SEM and then placed back into the chamber show an abundance of single electrons being emitted, indicating that electron charge is stored in the polymer layer and that a high electric field is necessary to remove the charge.

  3. Oxygen additive amount dependence of rate of photoresist removal by H radicals generated on a tungsten hot-wire catalyst

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masashi; Umemoto, Hironobu; Ohdaira, Keisuke; Shikama, Tomokazu; Nishiyama, Takashi; Horibe, Hideo

    2016-07-01

    We examined an environmentally friendly photoresist removal method using radicals produced by decomposing mixtures of hydrogen and oxygen on a hot tungsten catalyst. The photoresist removal rate increased with the oxygen additive amount (the flow rate ratio of oxygen to hydrogen) up to an optimal amount and then decreased gradually. When the catalyst temperature was 1600 °C, the optimal oxygen additive amount was 1.0% and the removal rate was 1.7 times higher than that in the pure hydrogen system. At 2000 °C, the optimal amount increased to 2.5% but the increase ratio decreased by 1.3 times. At high catalyst temperatures, the absolute removal rate as well as the optimal oxygen additive amount is high, but the increase ratio is low. At the optimal oxygen additive amount, H, O, and OH radicals may exert their effects together to decompose photosensitive polymers.

  4. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  5. Rate of oxygen consumption in seasonal and non-seasonal depression.

    PubMed

    Pinchasov, Boris B; Grischin, Oleg V; Putilov, Arcady A

    2002-04-01

    Most depressives suffer from weight loss, anorexia and insomnia, while for winter depressives the typical symptoms are weight gain, carbohydrate craving, overeating, oversleeping and extreme lack of energy. It is important to know whether winter depressives differ from most other depressives on measures of energy regulation. In wintertime, we evaluated the rate of oxygen consumption in relationship to neuro-vegetative depressive symptoms in 92 Siberian women. The seated subjects underwent oxyspirography in the mid-morning (1.5 hours after a standard breakfast). It was found that the oxygen consumption rate was similar in non-depressed women (n = 25) and depressed women with non-seasonal depression (n = 27). The comparatively lower values were obtained in women with winter depression (n = 40). This finding supports the suggestion that the behaviour disturbances typical for winter depression may represent a physiological feedback loop to energy conservation.

  6. Rates and mechanisms of the atomic oxygen reaction with nickel at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Christian, J. D.; Gilbreath, W. P.

    1973-01-01

    The oxidation of nickel by atomic oxygen at pressure from 1 to 45 N/sq m between 1050 and 1250 K was investigated. In these ranges, the oxidation was found to follow the parobolic rate law, viz., K sub p = 0.0000114 exp(-13410/T) g squared/cm4/sec for films of greater than 1 micron thickness and was pressure independent. The activation enthalpy for the oxidation reaction was 112 + or - 11 kj/mole (27 + or - 3 kcal/mole). Of a number of possible mechanisms and defect structures considered, it was shown that the most likely was a saturated surface defect model for atomic oxidation, based on reaction activation enthalpies, impurity effects, pressure independence, and magnitudes of rates. A model judged somewhat less likely was one having doubly ionized cationic defects rate controlling in both atomic and molecular oxygen. From comparisons of the appropriate processes, the following enthalpy values were derived: enthalpy of activation (Ni diffusion in Ni0) = 110 + or - 30 kj/mole and standard enthalpy change for reaction formation (doubly ionized cation vacancies in Ni0 from atomic oxygen)= -9 + or - 25 kj/mole.

  7. User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates

    SciTech Connect

    Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

    1982-05-01

    SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

  8. Oxygen in the deep-sea: The challenge of maintaining uptake rates in a changing ocean

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2011-12-01

    Although focused on recently, ocean acidification is not the only effect of anthropogenic CO2 emissions on the ocean. Ocean warming will reduce dissolved oxygen concentrations and at the hypoxic limit for a given species this can pose challenges to marine life. The limit is traditionally reported simply as the static mass concentration property [O2]; here we treat it as a dynamic gas exchange problem for the animal analogous to gas exchange at the sea surface. The diffusive limit and its relationship to water velocity is critical for the earliest stages of marine life (eggs, embryos), but the effect is present for all animals at all stages of life. We calculate the external limiting O2 conditions for several representative metabolic rates and their relationship to flow of the bulk fluid under different environmental conditions. Ocean O2 concentrations decline by ≈ 14 μmol kg-1 for a 2 °C rise in temperature. At standard 1000 m depth conditions in the Pacific, flow over the surface would have to increase by ≈ 60% from 2.0 to 3.2 cm s-1 to compensate for this change. The functions derived allow new calculations of depth profiles of limiting O2 concentrations, as well as maximal diffusively sustainable metabolic oxygen consumption rates at various places around the world. Our treatment shows that there is a large variability in the global ocean in terms of facilitating aerobic life. This variability is greater than the variability of the oxygen concentration alone. It becomes clear that temperature and pressure dependencies of diffusion and partial pressure create a region typically around 1000 m depth where a maximal [O2] is needed to sustain a given metabolic rate. This zone of greatest physical constriction on the diffusive transport in the boundary layer is broadly consistent with the oxygen minimum zone, i.e., the zone of least oxygen concentration supply, resulting in a pronounced minimum of maximal diffusively sustainable metabolic oxygen consumption

  9. Efficient-market perspectives on utility rate-of-return adequacy

    SciTech Connect

    Harlow, F.

    1984-03-29

    The article introduces a conceptual framework from assessing utility rate of return adequacy based upon a market-based profitability index called the ''Q-ratio.'' Reviewing the theory of financial market efficiency, the author explores potential application in a regulated industry environment. The rationale for Q-ratio analysis is presented, and the implication for investment in a ''typical'' utility are highlighted. (A second article by this author, to follow in another issue, will discuss the techniques of comparing Q-ratios and deriving target rates of return on equity.)

  10. Rate of Utilization of Skilled Birth Attendant and the Influencing Factors in an Urban Myanmar Population.

    PubMed

    Chamroonsawasdi, Kanittha; Soe, Malar; Charupoonphol, Phitaya; Srisorrachatr, Suwat

    2015-07-01

    A survey study aimed at identifying rates and predictive factors on utilization of skilled birth attendant (SBA) among pregnant women. A stratified random sampling technique was used to select 200 Myanmar women aged 18 to 49 years in Kalay Township. Data were collected by interview questionnaire from March 1 to 15, 2012, and data were analyzed by frequency, percentage, mean and standard deviation, χ(2) test, and multiple logistic regression analysis. The utilization rate of SBA was 74%. Factors significantly predicting utilization of SBA (P < .05) were level of maternal and child health (MCH) knowledge, attitude toward SBA, and accessibility to MCH services. The women who had a moderate to good level of knowledge utilized SBA 2.7 times more than those who had a poor level of knowledge (odds ratio = 2.705, 95% confidence interval = 1.31-5.57). The women who had a positive attitude toward SBA utilized SBA 7.7 times more than those who had a negative attitude (odds ratio = 7.708, 95% confidence interval = 3.71-15.98). The women who had high accessibility to MCH services utilized SBA 1.4 times more than those who had low accessibility (odds ratio = 1.477, 95% confidence interval = 1.05-2.21). These factors were able to correctly predict utilization of SBA at 74.9%. MCH knowledge and information on utilization of SBA should be strengthened during every antenatal care visit to enhance positive attitude on utilization of SBA and to increase accessibility to MCH services by providing community antenatal care or home visits.

  11. Faster heart rate and muscular oxygen uptake kinetics in type 2 diabetes patients following endurance training.

    PubMed

    Koschate, Jessica; Drescher, Uwe; Brinkmann, Christian; Baum, Klaus; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2016-11-01

    Cardiorespiratory kinetics were analyzed in type 2 diabetes patients before and after a 12-week endurance exercise-training intervention. It was hypothesized that muscular oxygen uptake and heart rate (HR) kinetics would be faster after the training intervention and that this would be detectable using a standardized work rate protocol with pseudo-random binary sequences. The cardiorespiratory kinetics of 13 male sedentary, middle-aged, overweight type 2 diabetes patients (age, 60 ± 8 years; body mass index, 33 ± 4 kg·m(-2)) were tested before and after the 12-week exercise intervention. Subjects performed endurance training 3 times a week on nonconsecutive days. Pseudo-random binary sequences exercise protocols in combination with time series analysis were used to estimate kinetics. Greater maxima in cross-correlation functions (CCFmax) represent faster kinetics of the respective parameter. CCFmax of muscular oxygen uptake (pre-training: 0.31 ± 0.03; post-training: 0.37 ± 0.1, P = 0.024) and CCFmax of HR (pre-training: 0.25 ± 0.04; post-training: 0.29 ± 0.06, P = 0.007) as well as peak oxygen uptake (pre-training: 24.4 ± 4.7 mL·kg(-1)·min(-1); post-training: 29.3 ± 6.5 mL·kg(-1)·min(-1), P = 0.004) increased significantly over the course of the exercise intervention. In conclusion, kinetic responses to changing work rates in the moderate-intensity range are similar to metabolic demands occurring in everyday habitual activities. Moderate endurance training accelerated the kinetic responses of HR and muscular oxygen uptake. Furthermore, the applicability of the used method to detect these accelerations was demonstrated.

  12. On the silicate crystallinities of oxygen-rich evolved stars and their mass-loss rates

    NASA Astrophysics Data System (ADS)

    Liu, Jiaming; Jiang, B. W.; Li, Aigen; Gao, Jian

    2017-04-01

    For decades ever since the early detection in the 1990s of the emission spectral features of crystalline silicates in oxygen-rich evolved stars, there is a long-standing debate on whether the crystallinity of the silicate dust correlates with the stellar mass-loss rate. To investigate the relation between the silicate crystallinities and the mass-loss rates of evolved stars, we carry out a detailed analysis of 28 nearby oxygen-rich stars. We derive the mass-loss rates of these sources by modelling their spectral energy distributions from the optical to the far-infrared. Unlike previous studies in which the silicate crystallinity was often measured in terms of the crystalline-to-amorphous silicate mass ratio, we characterize the silicate crystallinities of these sources with the flux ratios of the emission features of crystalline silicates to that of amorphous silicates. This does not require the knowledge of the silicate dust temperatures, which are the major source of uncertainties in estimating the crystalline-to-amorphous silicate mass ratio. With a Pearson correlation coefficient of ∼-0.24, we find that the silicate crystallinities and the mass-loss rates of these sources are not correlated. This supports the earlier findings that the dust shells of low mass-loss rate stars can contain a significant fraction of crystalline silicates without showing the characteristic features in their emission spectra.

  13. 40 CFR Table I-3 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing for... Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing...

  14. 40 CFR Table I-3 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing for... Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for...

  15. 40 CFR Table I-4 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing for... Factors(1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for...

  16. Triiodothyronine facilitates weaning from extracorporeal membrane oxygenation by improved mitochondrial substrate utilization

    SciTech Connect

    Files, Matthew D.; Kajimoto, Masaki; Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Des Rosiers, Christine; Isern, Nancy G.; Portman, Michael A.

    2014-03-20

    Extracorporeal membrane oxygenation (ECMO) provides a bridge to recovery after myocardial injury in infants and children, yet morbidity and mortality remain high. Weaning from the circuit requires adequate cardiac contractile function, which can be impaired by metabolic disturbances induced either by ischemia-reperfusion and / or by ECMO.

  17. The Campylobacter jejuni RacRS system regulates fumarate utilization in a low oxygen environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural environment of the human pathogen Campylobacter jejuni is the gastrointestinal tract of warm blooded animals. In the gut, the availability of oxygen is limited; therefore, less efficient electron acceptors such as nitrate or fumarate are used by C. jejuni. C. jejuni has a highly branched...

  18. Method and apparatus for reducing cold-phase emissions by utilizing oxygen-enriched intake air

    DOEpatents

    Poola, Ramesh B.; Sekar, Ramanujam R.; Stork, Kevin C.

    1997-01-01

    An oxygen-enriched air intake control system for an internal combustion engine includes air directing apparatus to control the air flow into the intake of the engine. During normal operation of the engine, ambient air flowing from an air filter of the engine flows through the air directing apparatus into the intake of the engine. In order to decrease the amount of carbon monoxide (CO) and hydrocarbon (HC) emissions that tend to be produced by the engine during a short period of time after the engine is started, the air directing apparatus diverts for a short period of time following the start up of the engine at least a portion of the ambient air from the air filter through a secondary path. The secondary path includes a selectively permeable membrane through which the diverted portion of the ambient air flows. The selectively permeable membrane separates nitrogen and oxygen from the diverted air so that oxygen enriched air containing from about 23% to 25% oxygen by volume is supplied to the intake of the engine.

  19. A luminescence lifetime-based capillary oxygen sensor utilizing monolithically integrated organic photodiodes.

    PubMed

    Lamprecht, Bernhard; Tschepp, Andreas; Čajlaković, Merima; Sagmeister, Martin; Ribitsch, Volker; Köstler, Stefan

    2013-10-21

    A novel optical sensor device monolithically integrated on a glass capillary is presented. Therefore, we took advantage of the ability to fabricate organic optoelectronic devices on non-planar substrates. The functionality of the concept is demonstrated by realizing an integrated oxygen sensor based on luminescence decay time measurement.

  20. Influence of oxygen concentration, fuel composition, and strain rate on synthesis of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Hou, Shuhn-Shyurng; Huang, Wei-Cheng

    2015-02-01

    This paper investigates the influence of flame parameters including oxygen concentration, fuel composition, and strain rate on the synthesis of carbon nanomaterials in opposed-jet ethylene diffusion flames with or without rigid-body rotation. In the experiments, a mixture of ethylene and nitrogen was introduced from the upper burner; meanwhile, a mixture of oxygen and nitrogen was supplied from the lower burner. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. With non-rotating opposed-jet diffusion flames, carbon nanotubes (CNTs) were successfully produced for oxygen concentrations in the range of 21-50 % at a fixed ethylene concentration of 20 %, and for ethylene concentrations ranging from 14 to 24 % at a constant oxygen concentration of 40 %. With rotating opposed-jet diffusion flames, the strain rate was varied by adjusting the angular velocities of the upper and lower burners. The strain rate governed by flow rotation greatly affects the synthesis of carbon nanomaterials [i.e., CNTs and carbon nano-onions (CNOs)] either through the residence time or carbon sources available. An increase in the angular velocity lengthened the residence time of the flow and thus caused the diffusion flame to experience a decreased strain rate, which in turn produced more carbon sources. The growth of multi-walled CNTs was achieved for the stretched flames experiencing a higher strain rate [i.e., angular velocity was equal to 0 or 1 rotations per second (rps)]. CNOs were synthesized at a lower strain rate (i.e., angular velocity was in the range of 2-5 rps). It is noteworthy that the strain rate controlled by flow rotation greatly influences the fabrication of carbon nanostructures owing to the residence time as well as carbon source. Additionally, more carbon sources and higher temperature are required for the synthesis of CNOs compared with those required for CNTs (i.e., about 605-625 °C for CNTs and 700-800 °C for CNOs).

  1. Effects of temperature and dissolved oxygen content on oxygen consumption rate of Chinese prawn, giant tiger prawn and giant freshwater prawn

    NASA Astrophysics Data System (ADS)

    Dai, Xi-Lin; Zang, Wei-Ling; Wang, Wei-Dong; Shi, Yong-Hai; Liu, Wen-Cui; Xu, Gui-Rong; Li, Shi-Hua

    1999-06-01

    Temperature and the dissolved oxygen content affect the oxygen consumption of juveniles of Chinese prawn ( Penaeus chinensis), giant tiger prawn ( P. monodon) and giant freshwater prawn ( Macrobrachium rosenbergii). There is good correlation between the oxygen consumption rate ( V, mg/g·h) of the above three prawn species and the water temperature, and dissolved oxygen. In the range of test temperature, V increased with water temperature and dissolved oxygen content. The V of the above three prawn species increased 0.085 mg/g·h, 0.093 mg/g·h and 0.08 mg/g·h respectively with each °C of rising temperature. The comatose point and stifling point of the juveniles rose obviously at unsuitable temperature.

  2. Application of the gas tracer method for measuring oxygen transfer rates in subsurface flow constructed wetlands.

    PubMed

    Tyroller, Lina; Rousseau, Diederik P L; Santa, Santa; García, Joan

    2010-07-01

    The oxygen transfer rate (OTR) has a significant impact on the design, optimal operation and modelling of constructed wetlands treating wastewater. Oxygen consumption is very fast in wetlands and the OTR cannot be determined using an oxygen mass balance. This problem is circumvented in this study by applying the gas tracer method. Experiments were conducted in an unplanted gravel bed (dimensions L x W x d 125 x 50 x 35 cm filled with a 30-cm layer of 10-11-mm gravel) and a planted horizontal subsurface flow constructed wetland (HSSFCW) (L x W x d 110 x 70 x 38 cm filled with a 30-cm layer of 3.5-mm gravel with Phragmites australis). Tap water saturated with propane as gas tracer (pure or commercial cooking gas, depending on the test) was used. The mass transfer ratio between oxygen and commercial propane gas was quite constant and averaged R = 1.03, which is slightly lower than the value of R = 1.39 that is usually reported for pure propane. The OTR ranged from 0.31 to 5.04 g O(2) m(-2) d(-1) in the unplanted gravel bed and from 0.3 to 3.2 g O(2) m(-2) d(-1) in the HSSFCW, depending on the hydraulic retention time (HRT). The results of this study suggest that the OTR in HSSFCW is very low for the oxygen demand of standard wastewater and the OTR calculations based on mass balances and theoretical stoichiometric considerations overestimate OTR values by a factor that ranges from 10 to 100. The gas tracer method is a promising tool for determining OTR in constructed wetlands, with commercial gas proving to be a viable low-cost alternative for determining OTR.

  3. The relationship between body temperature, heart rate, breathing rate, and rate of oxygen consumption, in the tegu lizard (Tupinambis merianae) at various levels of activity.

    PubMed

    Piercy, Joanna; Rogers, Kip; Reichert, Michelle; Andrade, Denis V; Abe, Augusto S; Tattersall, Glenn J; Milsom, William K

    2015-12-01

    The present study determined whether EEG and/or EMG recordings could be used to reliably define activity states in the Brazilian black and white tegu lizard (Tupinambis merianae) and then examined the interactive effects of temperature and activity states on strategies for matching O2 supply and demand. In a first series of experiments, the rate of oxygen consumption (VO2), breathing frequency (fR), heart rate (fH), and EEG and EMG (neck muscle) activity were measured in different sleep/wake states (sleeping, awake but quiet, alert, or moving). In general, metabolic and cardio-respiratory changes were better indictors of the transition from sleep to wake than were changes in the EEG and EMG. In a second series of experiments, the interactive effects of temperature (17, 27 and 37 °C) and activity states on fR, tidal volume (VT), the fraction of oxygen extracted from the lung per breath (FIO2-FEO2), fH, and the cardiac O2 pulse were quantified to determine the relative roles of each of these variables in accommodating changes in VO2. The increases in oxygen supply to meet temperature- and activity-induced increases in oxygen demand were produced almost exclusively by increases in fH and fR. Regression analysis showed that the effects of temperature and activity state on the relationships between fH, fR and VO2 was to extend a common relationship along a single curve, rather than separate relationships for each metabolic state. For these lizards, the predictive powers of fR and fH were maximized when the effects of changes in temperature, digestive state and activity were pooled. However, the best r(2) values obtained were 0.63 and 0.74 using fR and fH as predictors of metabolic rate, respectively.

  4. Effect of flow rate on growth and oxygen consumption of biofilm in gravity sewer.

    PubMed

    Xu, Jingwei; Li, Muzhi; He, Qiang; Sun, Xingfu; Zhou, Xiangren; Su, Zhenping; Ai, Hainan

    2017-01-01

    The function of sewer as reactors must rely on the biofilm in it. In this paper, the formation, structure, oxygen transfer, and activity of the biofilm under different hydraulic conditions were studied by the microelectrode technology, oxygen uptake rate (OUR) technology, and 454 high-throughput pyrosequencing technology. Results showed that when the wall-shear stresses were 1.12, 1.29, and 1.45 Pa, the porosity of the steady-state biofilm were 69.1, 64.4, and 55.1 %, respectively. The maximum values of OUR were 0.033, 0.027, and 0.022 mg/(L*s), respectively, and the COD removal efficiency in the sewers reached 40, 35, and 32 %, respectively. The research findings had an important significance on how to improve the treatment efficiency of the sewers. Fig. a Graphical Abstract.

  5. The Effect of Increased Travel Reimbursement Rates on Health Care Utilization in the VA

    ERIC Educational Resources Information Center

    Nelson, Richard E.; Hicken, Bret; West, Alan; Rupper, Randall

    2012-01-01

    Purpose: The reimbursement rate that eligible veterans receive for travel to Department of Veterans Affairs (VA) facilities increased from 11 to 28.5 cents per mile on February 1, 2008. We examined the effect of this policy change on utilization of outpatient, inpatient, and pharmacy services, stratifying veterans based on distance from a VA…

  6. Utilization of Hyperbaric Oxygen Therapy and Induced Hypothermia After Hydrogen Sulfide Exposure

    PubMed Central

    Asif, Mir J.; Exline, Matthew C.

    2013-01-01

    Hydrogen sulfide is a toxic gas produced as a byproduct of organic waste and many industrial processes. Hydrogen sulfide exposure symptoms may vary from mild (dizziness, headaches, nausea) to severe lactic acidosis via its inhibition of oxidative phosphorylation, leading to cardiac arrhythmias and death. Treatment is generally supportive. We report the case of a patient presenting with cardiac arrest secondary to hydrogen sulfide exposure treated with both hyperbaric oxygen therapy and therapeutic hypothermia with great improvement in neurologic function. PMID:22004989

  7. The utility of Thin Slice ratings for predicting language growth in children with autism spectrum disorder.

    PubMed

    Walton, Katherine M; Ingersoll, Brooke R

    2016-04-01

    Literature on "Thin Slice" ratings indicates that a number of personality characteristics and behaviors can be accurately predicted by ratings of very short segments (<5 min) of behavior. This study examined the utility of Thin Slice ratings of young children with autism spectrum disorder for predicting developmental skills and language gains over time. A total of 22 preschool-aged children with autism spectrum disorder participated in a battery of developmental assessments and a video-taped therapist-child interaction at Time 1. They then participated in follow-up testing of language skills and a second therapist-child interaction 6 months later (Time 2). Groups of approximately 25 naïve undergraduate students provided impression ratings ("Thin Slice ratings") about each child's skills and behaviors during 2-min segments taken from the therapist-child interaction videos at each time point. Thin Slice ratings at Time 1 were highly correlated with child scores on several developmental assessments at Time 1. In addition, Thin Slice ratings at Time 1 predicted gain in parent-reported expressive vocabulary over the course of 6 months, over and above the predictive utility of Time 1 vocabulary size. These findings provide preliminary evidence for the concurrent and predictive validity of Thin Slice ratings in young children with autism spectrum disorder.

  8. Association of apneic oxygenation with decreased desaturation rates during rapid sequence intubation by a Chinese emergency medicine service.

    PubMed

    Mao, Yong; Qin, Zong-He

    2015-01-01

    Rapid and safe airway management has always been of paramount importance in successful management of critically ill and injured patients in the emergency department. The achievement rate of emergency medicine inhabitants in airway management improved enhanced essentially subsequent to finishing anaesthesiology turn. There was a slightly higher rate of quick sequence intubation in the postapneic oxygenation groups (preapneic oxygenation 6.4%; postapneic oxygenation 9.1%). The majority of patients intubated in both groups were men (preapneic oxygenation 72.3%; postapneic oxygenation 63.5%). A higher percentage of patients in the preapneic oxygenation group had a Cormack-Lehane grade III or worse view (23.2% versus 11.8%). Anaesthesiology turns should be considered as an essential component of emergency medicine training programs. A collateral curriculum of this nature should also focus on the acquisition of skills in airway management.

  9. Heart rate variability of human in hypoxic oxygen-argon environment

    NASA Astrophysics Data System (ADS)

    Khayrullina, Rezeda; Smoleevskiy, Alexandr; Bubeev, Yuri

    Human adaptive capacity, reliability and stability in extreme environments depend primarily on the individual resistance to stresses, includes both innate and acquired components. We have conducted studies in six healthy subjects - men aged between 24 to 42 years who psychophysiological indicators acterizing the severity of stress reactions studied directly during an emergency situation, before and after it. The subjects were in a hypoxic oxygen-argon atmosphere 10 days. Cardiovascular system is one of the first to respond to stressful reaction. The method of heart rate variability (HRV) allows us to estimate balance of sympathetic and parasympathetic parts of vegetative nervous system. In the course of the baseline study it was found that resting heart rate (HR) in the examined individuals is within normal limits. During the experiment in all subjects there was a trend towards more frequent heartbeat. Each subject at one stage or another stay in a hypoxic oxygen-argon environment heart rate go beyond the group norm, but the extent and duration of these abnormalities were significantly different. Marked increase in middle heart rate during of subjects experiment, fluctuating within a wide range (from 2.3% to 29.1%). Marked increase in middle heart rate during of subjects experiment, fluctuating within a wide range (from 2.3% to 29.1%). This suggests that the ability to adapt to living in the investigated gas environment have marked individual differences. SDNN (mean square deviation of all R-R intervals) is the integral indicator of the total effect of the sinus node to the sympathetic and parasympathetic parts of vegetative nervous system, as well as indicating the higher functional reserves of the cardiovascular systems. Increase in heart rate in the majority of subject was accompanied by an increase in individual SDNN. This suggests that the parasympathetic system is able to balance the increase in activity of the sympathetic system, and functional reserves are

  10. Pedaling rate is an important determinant of human oxygen uptake during exercise on the cycle ergometer

    PubMed Central

    Formenti, Federico; Minetti, Alberto E; Borrani, Fabio

    2015-01-01

    Estimation of human oxygen uptake () during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its prediction accuracy. Ten healthy male participants’ (age 19–48 years) were recruited and their steady-state was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of . Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal during exercise (mean bias 1.9 vs. 3.3 mL O2 kg−1 min−1) but it did not affect the accuracy for prediction of maximal (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human during cycling exercise, and it should be considered when predicting oxygen consumption. PMID:26371230

  11. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear

    PubMed Central

    Del Castillo, Luis F.; da Silva, Ana R. Ferreira; Hernández, Saul I.; Aguilella, M.; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente

    2014-01-01

    Purpose We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (pO2) obtained from in vivo estimation previously reported by other authors.1 Methods Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Results Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low pO2) are considered at the interface cornea-tears film. Conclusion Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. PMID:25649636

  12. Non-invasive Quantification of Whole-brain Cerebral Metabolic Rate of Oxygen by MRI

    PubMed Central

    Xu, Feng; Ge, Yulin; Lu, Hanzhang

    2009-01-01

    Cerebral metabolic rate of oxygen (CMRO2) is an important marker for brain function and brain health. Existing techniques for quantification of CMRO2 with Positron Emission Tomography (PET) or MRI involve special equipment and/or exogenous agent, and may not be suitable for routine clinical studies. In the present study, a non-invasive method is developed to estimate whole-brain CMRO2 in humans. This method applies phase-contrast MRI for quantitative blood flow measurement and T2-Relaxation-Under-Spin-Tagging (TRUST) MRI for venous oxygenation estimation, and uses the Fick principle of arteriovenous difference for the calculation of CMRO2. Whole-brain averaged CMRO2 values in young, healthy subjects were 132.1±20.0 μmol/100g/min, in good agreement with literature reports using PET. Various acquisition strategies for phase-contrast and TRUST MRI were compared, and it was found that non-gated phase-contrast and sagittal sinus TRUST MRI were able to provide the most efficient and accurate estimation of CMRO2. In addition, blood flow and venous oxygenation were found to be positively correlated across subjects. Owing to the non-invasive nature of this method, it may be a convenient and useful approach for assessment of brain metabolism in brain disorders as well as under various physiologic conditions. PMID:19353674

  13. On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers

    NASA Astrophysics Data System (ADS)

    Chinga-Carrasco, Gary; Syverud, Kristin

    2012-03-01

    Cellulose nanofibrils have been proposed for novel barrier concepts, based on their capability to form smooth, strong and transparent films, with high oxygen barrier properties. A series of cellulose-based films were manufactured and tested with respect to their oxygen transmission rate (OTR) capabilities. The obtained OTR levels were considerably better than the levels recommended for packaging applications. Part of the nanofibrillated material applied in this study was produced with 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) mediated oxidation as pretreatment. Films made of TEMPO-pretreated samples yielded lower OTR values. The minimum obtained OTR value was 3.0 mL m-2 day-1 atm-1 with a corresponding oxygen permeability of 0.04 mL mm m-2 day-1 atm-1, tested at 50% relative humidity. The good barrier properties are due to the compact and dense structure of the films, as revealed by field-emission scanning electron microscopy. A relationship between OTR and the structure of the corresponding nanofibril-based films was confirmed.

  14. [Effects of temperature and salinity on oxygen consumption rate and asphyxiation point of Sagitta crassa].

    PubMed

    Liu, Qing; Zhu, Hai-Yan; Liu, Fang; Ding, Zi-Yuan

    2011-11-01

    A laboratory test was conducted to study the effects of different temperature and salinity on the oxygen consumption rate and asphyxiation point of chaetognath Sagitta crassa. Both temperature and salinity had significant effects on the oxygen consumption rate (IO) and specific oxygen consumption rate (SO) of S. crassa. When the temperature raised from 5 degrees C to 25 degrees C, the IO and SO of S. crassa increased first, and then presented an obvious decreasing trend, with the regression function being y = 0.0058x3-0.2956x2 +4.415x-8.7816 (R2 = 0.99, P < 0.05) for IO and y = 0.0011x3-0.0546x2+0.8161x-1.6232 (R2 = 0.99, P < 0.05) for SO. The IO and SO at different temperature were in the ranges of 6.30-11.71 microg x ind(-1) x h(-1) and 1.22-2.16 microg x mg(-1) x h(-1), respectively, and the asphyxiation point was 4.18-6.87 mg x L(-1). When the salinity increased from 10 to 40, the IO and SO of S. crassa decreased gradually, with the regression function being y = -0.0068x2-0.1412x+21.702 (R2 = 0.89, P < 0.05) for IO and y = -0.0013x2 -0.0261x+ 4.0114 (R2 = 0.89, P < 0.05) for SO. The IO and SO at different salinity were in the ranges of 4.98-17.73 microg x ind(-1) x h(-1) and 0.92-3.56 microg x mg(-1) x h(-1), respectively, and the asphyxiation point was 4.02-6.24 mg x L(-1). Based on the differences in the oxygen consumption rate and asphyxiation point between S. crassa and other aquatic animals, it was concluded that S. crassa was a stenooxybiotic zooplankton species.

  15. Rates of glucose utilization and glucogenesis in rats in the basal state induced by halothane anaesthesia.

    PubMed

    Heath, D F; Frayn, K N; Rose, J G

    1977-03-15

    1. Rates and rate coefficients of glucose utilization and replacement were determined with [5-3H]- and [U-14C]-glucose in rats starved for 24h, either conscious or under halothane anaesthesia, in a thermoneutral environment. Plasma insulin concentrations were also measured. 2. Halothane anaesthesia decreased the turnover rate by 20%, which was similar to previously reported decreases in metabolic rates caused by natural sleep. 3. Fractional recycling of glucose carbon was little affected by halothane. 4. Comparison of values in one rat with those in another, among both conscious rats and those under halothane anaesthesia, showed that rate coefficients were inversely correlated with plasma glucose concentrations. 5. These findings indicated that halothane, in the concentration used (1.25%, v/v), had little specific effect on glucose metabolism. 6. Although equilibrium plasma glucose concentrations in different rats under halothane were widely different (4-8 mmol/l) the rates of utilization were very similar (2.5-3.1 micronmol/min per 100 g), indicating that these rates were determined by the production of glucose from gluconeogenic precursors released by basal metabolism, the rate of which is necessarily similar in different rats. 7. Among rats under halothane anaesthesia plasma insulin concentrations were negatively correlated with rate coefficients, showing that the differences between rate coefficients were mostly accounted for by differences between rats in tissue sensitivities to insulin. Thus in each 24h-starved rat, sleeping or resting, the main regulators of the plasma glucose concentrations were the rate of supply of gluconeogenic substrates from energy metabolism and the intrinsic sensitivity of the tissues to insulin. 8. We found that a commonly used deionization method of purifying glucose for determination of its specific radioactivity was inadequate.

  16. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  17. Non-homogeneous hybrid rocket fuel for enhanced regression rates utilizing partial entrainment

    NASA Astrophysics Data System (ADS)

    Boronowsky, Kenny

    A concept was developed and tested to enhance the performance and regression rate of hydroxyl terminated polybutadiene (HTPB), a commonly used hybrid rocket fuel. By adding small nodules of paraffin into the HTPB fuel, a non-homogeneous mixture was created resulting in increased regression rates. The goal was to develop a fuel with a simplified single core geometry and a tailorable regression rate. The new fuel would benefit from the structural stability of HTPB yet not suffer from the large void fraction representative of typical HTPB core geometries. Regression rates were compared between traditional HTPB single core grains, 85% HTPB mixed with 15% (by weight) paraffin cores, 70% HTPB mixed with 30% paraffin cores, and plain paraffin single core grains. Each fuel combination was tested at oxidizer flow rates, ranging from 0.9 - 3.3 g/s of gaseous oxygen, in a small scale hybrid test rocket and average regression rates were measured. While large uncertainties were present in the experimental setup, the overall data showed that the regression rate was enhanced as paraffin concentration increased. While further testing would be required at larger scales of interest, the trends are encouraging. Inclusion of paraffin nodules in the HTPB grain may produce a greater advantage than other more noxious additives in current use. In addition, it may lead to safer rocket motors with higher integrated thrust due to the decreased void fraction.

  18. Benthic oxygen fluxes and denitrification rates from high-resolution porewater profiles from the Western Antarctic Peninsula continental shelf

    NASA Astrophysics Data System (ADS)

    Hartnett, Hilairy; Boehme, Susan; Thomas, Carrie; DeMaster, David; Smith, Craig

    2008-11-01

    Benthic fluxes of dissolved oxygen and nitrate were calculated from high-resolution porewater profiles collected on the continental margin of the Western Antarctic Peninsula. Profiles were collected in four seasons between March 2000 and February 2001 as part of the FOODBANCS program. Oxygen consumption rates ranged from 0.92 to 3.11 mmol O 2 m -2 d -1 over the course of the year with an average annual oxygen consumption rate of 1.74 mmol O 2 m -2 d -1. The oxygen fluxes follow a trend similar to the particulate carbon export flux with smaller fluxes during the winter and larger fluxes during the spring bloom period. However, the range in oxygen fluxes is substantially smaller than the range in the particulate carbon export. Denitrification rates ranged from 0.66 to 1.46 mmol N m -2 d -1, and the average annual denitrification rate was 1.29 mmol N m -2 d -1. The O 2 consumption and denitrification rates are of similar magnitude to rates measured on other deep (˜500 m) continental margins. Denitrification rates are strongly coupled to nitrification rates, with coupled nitrification-denitrification accounting for more than 80% of the total denitrification rate in these sediments. The Antarctic continental-margin sediment denitrification rates correspond to ˜3-5 Tg N yr -1, and thus these continental-margin sediments account for roughly 1-2% of the global sediment denitrification signal.

  19. [On-line monitoring of oxygen uptake rate and its application in hybridoma culture].

    PubMed

    Feng, Qiang; Mi, Li; Li, Ling; Wang, Xian-Hui; Chen, Zhi-Nan

    2003-09-01

    On-line analysis and control are critical for the optimization of product yields in animal cell culture. The close monitor of viable cell number helps to gain a better insight into the metabolism and to refine culture strategy. In this study, we use the oxygen uptake rate (OUR) to estimate the number of viable cell and the OUR-based feed-back control strategy for nutrients feeding to improve the efficiency of cell culture. A hybridoma cell line (HAb18) was cultured in fed-batch and perfusion model using serum free medium in 5L CelliGen Plus bioreactor (NBS Co., American) and 5L Biostat B bioreactor (Braun Co., Germany). The system and the method for online monitoring OUR in bioreactors, based on the dynamic measurement of dissolved oxygen (DO), were developed. The method of on-line cell concentration estimation was established based on the relationship between the growth of the hybridoma and the uptake rate of oxygen. This method was then used to determine OUR and the concentrations of cell, antibody, glucose, lactate, glutamine and ammonia in the bioreactors at given times. The relationship between OUR and nutrients metabolism was studied and OUR-based feed-back control strategy, which used the state deltaOUR = 0 as the regulation point, was established and used to control the rates of nutrients or medium feeding rate in the perfusion culture. The results showed that there was close relationship between OUR, concentration of live cells, productivity of antibody and consumption of glutamine. The sudden decrease in OUR may be caused by glutamine depletion, and with different delay times, the viable cell concentration and antibody productivity also decreased. The further analysis revealed the linear relationship between OUR and the density of live cells in the exponential growth phase as qOUR = (0.103 +/- 0.028) x 10(-12) mol/cell/h. These findings can be applied to the on-line detection of live cell density. Our study also indicated that by adjusting the perfusion

  20. Comparative analysis of oxygen transfer rate distribution in stirred bioreactor for simulated and real fermentation broths.

    PubMed

    Caşcaval, Dan; Galaction, Anca-Irina; Turnea, Marius

    2011-09-01

    Study of the distribution of the oxygen mass transfer coefficient, k (l) a, for a stirred bioreactor and simulated (pseudoplastic solutions of carboxymethylcellulose sodium salt) bacterial (P. shermanii), yeast (S. cerevisiae), and fungal (P. chrysogenum free mycelia) broths indicated significant variation of transfer rate with bioreactor height. The magnitude of the influence of the considered factors differed from one region to another. As a consequence of cell adsorption to bubble surface, the results indicated the impossibility of achieving a uniform oxygen transfer rate throughout the whole bulk of the microbial broth, even when respecting the conditions for uniform mixing. Owing to the different affinity of biomass for bubble surface, the positive influence of power input on k (l) a is more important for fungal broths, while increasing aeration is favorable only for simulated, bacterial and yeast broths. The influence of the considered factors on k (l) a were included in mathematical correlations established based on experimental data. For all considered positions, the proposed equations for real broths have the general expression [Formula in text] exhibiting good agreement with experimental results (with maximum deviations of ± 10.7% for simulated broths, ± 8.4% for P. shermanii, ± 9.3% for S. cerevisiae, and ± 6.6% for P. chrysogenum).

  1. Improving estimates of the cerebral metabolic rate of oxygen from optical imaging data.

    PubMed

    Barrett, Matthew J P; Suresh, Vinod

    2015-02-01

    The cerebral metabolic rate of oxygen (CMRO2) is an important measure of brain function. Since it is challenging to measure directly, especially dynamically, a number of neuroimaging techniques aim to infer activation-induced changes in CMRO2 from indirect data. Here, we employed a mathematical modelling approach, based on fundamental biophysical principles, to investigate the validity of the widely-used method to calculate CMRO2 from optical measurements of cerebral blood flow and haemoglobin saturation. In model-only simulations and simulations of in vivo data changes in CMRO2 calculated in this way differed substantially from the changes in CMRO2 directly imposed on the model, under both steady state and dynamic conditions. These results suggest that the assumptions underlying the calculation method are not appropriate, and that it is important to take into account, under steady state conditions: 1) the presence of deoxyhaemoglobin in arteriolar vessels; and 2) blood volume changes, especially in veins. Under dynamic conditions, the model predicted that calculated changes in CMRO2 are moderately correlated with the rate of oxygen extraction--not consumption--during the initial phase of stimulation. However, during later phases of stimulation the calculation is dominated by the change in blood flow. Therefore, we propose that a more sophisticated approach is required to estimate CMRO2 changes from these types of data.

  2. Modular continuous wavelet processing of biosignals: extracting heart rate and oxygen saturation from a video signal

    PubMed Central

    2016-01-01

    A novel method of extracting heart rate and oxygen saturation from a video-based biosignal is described. The method comprises a novel modular continuous wavelet transform approach which includes: performing the transform, undertaking running wavelet archetyping to enhance the pulse information, extraction of the pulse ridge time–frequency information [and thus a heart rate (HRvid) signal], creation of a wavelet ratio surface, projection of the pulse ridge onto the ratio surface to determine the ratio of ratios from which a saturation trending signal is derived, and calibrating this signal to provide an absolute saturation signal (SvidO2). The method is illustrated through its application to a video photoplethysmogram acquired during a porcine model of acute desaturation. The modular continuous wavelet transform-based approach is advocated by the author as a powerful methodology to deal with noisy, non-stationary biosignals in general. PMID:27382479

  3. Modular continuous wavelet processing of biosignals: extracting heart rate and oxygen saturation from a video signal.

    PubMed

    Addison, Paul S

    2016-06-01

    A novel method of extracting heart rate and oxygen saturation from a video-based biosignal is described. The method comprises a novel modular continuous wavelet transform approach which includes: performing the transform, undertaking running wavelet archetyping to enhance the pulse information, extraction of the pulse ridge time-frequency information [and thus a heart rate (HRvid) signal], creation of a wavelet ratio surface, projection of the pulse ridge onto the ratio surface to determine the ratio of ratios from which a saturation trending signal is derived, and calibrating this signal to provide an absolute saturation signal (SvidO2). The method is illustrated through its application to a video photoplethysmogram acquired during a porcine model of acute desaturation. The modular continuous wavelet transform-based approach is advocated by the author as a powerful methodology to deal with noisy, non-stationary biosignals in general.

  4. Denitrification Rates in the Low-Oxygen Waters of the Stratified Baltic Proper

    PubMed Central

    Rönner, Ulf; Sörensson, Fred

    1985-01-01

    Denitrification activity was shown in the deep, low-oxygen waters of the Baltic proper by both in vitro and in situ methods. The vertical distribution of NO3− in the water column showed nitrate consumption and NO2− and N2O maxima in the deep waters when O2 was below 0.2 ml liter−1, which is suggestive evidence for denitrification. Direct in situ evidence for denitrification was obtained by finding an N2 saturation of up to 108% in the deep waters. When these waters were incubated with 15NO3−, 15N2 was produced. Quantification of the denitrification rate done by the addition of C2H2 to water samples from the active depths showed a rate of about 0.10 μmol liter−1 day−1. PMID:16346913

  5. A new highly sensitive method to assess respiration rates and kinetics of natural planktonic communities by use of the switchable trace oxygen sensor and reduced oxygen concentrations.

    PubMed

    Tiano, Laura; Garcia-Robledo, Emilio; Revsbech, Niels Peter

    2014-01-01

    Oxygen respiration rates in pelagic environments are often difficult to quantify as the resolutions of our methods for O2 concentration determination are marginal for observing significant decreases during bottle incubations of less than 24 hours. Here we present the assessment of a new highly sensitive method, that combine Switchable Trace Oxygen (STOX) sensors and all-glass bottle incubations, where the O2 concentration was artificially lowered. The detection limit of respiration rate by this method is inversely proportional to the O2 concentration, down to <2 nmol L(-1) h(-1) for water with an initial O2 concentration of 500 nmol L(-1). The method was tested in Danish coastal waters and in oceanic hypoxic waters. It proved to give precise measurements also with low oxygen consumption rates (∼7 nmol L(-1) h(-1)), and to significantly decrease the time required for incubations (≤14 hours) compared to traditional methods. This method provides continuous real time measurements, allowing for a number of diverse possibilities, such as modeling the rate of oxygen decrease to obtain kinetic parameters. Our data revealed apparent half-saturation concentrations (Km values) one order of magnitude lower than previously reported for marine bacteria, varying between 66 and 234 nmol L(-1) O2. Km values vary between different microbial planktonic communities, but our data show that it is possible to measure reliable respiration rates at concentrations ∼0.5-1 µmol L(-1) O2 that are comparable to the ones measured at full air saturation.

  6. Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization

    PubMed Central

    Miller, Gabriel A.; Clissold, Fiona J.; Mayntz, David; Simpson, Stephen J.

    2009-01-01

    Ectotherms have evolved preferences for particular body temperatures, but the nutritional and life-history consequences of such temperature preferences are not well understood. We measured thermal preferences in Locusta migratoria (migratory locusts) and used a multi-factorial experimental design to investigate relationships between growth/development and macronutrient utilization (conversion of ingesta to body mass) as a function of temperature. A range of macronutrient intake values for insects at 26, 32 and 38°C was achieved by offering individuals high-protein diets, high-carbohydrate diets or a choice between both. Locusts placed in a thermal gradient selected temperatures near 38°C, maximizing rates of weight gain; however, this enhanced growth rate came at the cost of poor protein and carbohydrate utilization. Protein and carbohydrate were equally digested across temperature treatments, but once digested both macronutrients were converted to growth most efficiently at the intermediate temperature (32°C). Body temperature preference thus yielded maximal growth rates at the expense of efficient nutrient utilization. PMID:19625322

  7. Water has no effect on oxygen self-diffusion rate in forsterite

    NASA Astrophysics Data System (ADS)

    Fei, H.; Yamazaki, D.; Wiedenbeck, M.; Katsura, T.

    2014-12-01

    Water is thought to play an essential role in dynamical processes in the Earth's interior. Even several tens wt. ppm of water may enhance the creep rates in olivine by orders of magnitude based on deformation experiments [1, 2]. High temperature creep in olivine is believed to be controlled by self-diffusion of the slowest species, which is silicon in olivine. However, silicon self-diffusion experiments suggest that the role of water on olivine rheology is overestimated in previous deformation studies because of the experimental difficulties [3].On the other hand, oxygen is the second slowest species with similar diffusion rate as silicon. It may also play an essential role in olivine creep. By comparing the oxygen self-diffusion coefficient (DO) in olivine at ambient pressure and dry conditions [4] with those at 2 GPa and hydrous conditions, it is found that even 30-50 wt. ppm of water could enhance DO by one order of magnitude [5]. However, comparison of experimental results obtained at different pressures could lead to misinterpretations because different experimental setups have different error sources [6]. In this study, we systematically measured DO in an iron-free olivine, namely, forsterite, at 8 GPa and 1600-1800 K over a wide range of water content (CH2O) from <1 up to 800 wt. ppm. Our results show that DO∝(CH2O)0.05±0.06≈(CH2O)0. Thus, water has no significant effect on oxygen self-diffusion rate in forsterite. Since the water content dependence of silicon self-diffusion rate is also very small [3], the role of water on olivine rheology is not as significant as previously thought by assuming the diffusion controlled creep mechanism. [1] Karato &Jung (2003), Philosophical Mag. 83, 401-414.[2] Hirth & Kohlstedt (2003) Geophys. Monogr. 138, 83-105.[3] Fei et al. (2013), Nature 498, 213-215.[4] Dohmen et al. (2002), GRL 29, 2030.[5] Costa & Chakraborty (2008), PEPI 166, 11-29.[6] Fei et al. (2012), EPSL 345, 95-103.

  8. Rates of oxygen uptake increase independently of changes in heart rate in late stages of development and at hatching in the green iguana, Iguana iguana.

    PubMed

    Sartori, Marina R; Abe, Augusto S; Crossley, Dane A; Taylor, Edwin W

    2017-03-01

    Oxygen consumption (VO2), heart rate (fH), heart mass (Mh) and body mass (Mb) were measured during embryonic incubation and in hatchlings of green iguana (Iguana iguana). Mean fH and VO2 were unvarying in early stage embryos. VO2 increased exponentially during the later stages of embryonic development, doubling by the end of incubation, while fH was constant, resulting in a 2.7-fold increase in oxygen pulse. Compared to late stage embryos, the mean inactive level of VO2 in hatchlings was 1.7 fold higher, while fH was reduced by half resulting in a further 3.6 fold increase in oxygen pulse. There was an overall negative correlation between mean fH and VO2 when data from hatchlings was included. Thus, predicting metabolic rate as VO2 from measurements of fH is not possible in embryonic reptiles. Convective transport of oxygen to supply metabolism during embryonic incubation was more reliably indicated as an index of cardiac output (COi) derived from the product of fH and Mh. However, a thorough analysis of factors determining rates of oxygen supply during development and eclosion in reptiles will require cannulation of blood vessels that proved impossible in the present study, to determine oxygen carrying capacity by the blood and arteriovenous oxygen content difference (A-V diff), plus patterns of blood flow.

  9. Temperature and Atomic Oxygen Effects on Helium Leak Rates of a Candidate Main Interface Seal

    NASA Technical Reports Server (NTRS)

    Penney, Nicholas; Wasowski, Janice L.; Daniels, Christopher C.

    2011-01-01

    Helium leak tests were completed to characterize the leak rate of a 54 in. diameter composite space docking seal design in support of the National Aeronautics and Space Administration s (NASA's) Low Impact Docking System (LIDS). The evaluated seal design was a candidate for the main interface seal on the LIDS, which would be compressed between two vehicles, while docked, to prevent the escape of breathable air from the vehicles and into the vacuum of space. Leak tests completed at nominal temperatures of -30, 20, and 50 C on untreated and atomic oxygen (AO) exposed test samples were examined to determine the influence of both test temperature and AO exposure on the performance of the composite seal assembly. Results obtained for untreated seal samples showed leak rates which increased with increased test temperature. This general trend was not observed in tests of the AO exposed specimens. Initial examination of collected test data suggested that AO exposure resulted in higher helium leak rates, however, further analysis showed that the differences observed in the 20 and 50 C tests between the untreated and AO exposed samples were within the experimental error of the test method. Lack of discernable trends in the test data prevented concrete conclusions about the effects of test temperature and AO exposure on helium leak rates of the candidate seal design from being drawn. To facilitate a comparison of the current test data with results from previous leak tests using air as the test fluid, helium leak rates were converted to air leak rates using standard conversion factors for viscous and molecular flow. Flow rates calculated using the viscous flow conversion factor were significantly higher than the experimental air leakage values, whereas values calculated using the molecular flow conversion factor were significantly lower than the experimentally obtained air leak rates. The difference in these sets of converted flow rates and their deviation from the

  10. Pedaling rate is an important determinant of human oxygen uptake during exercise on the cycle ergometer.

    PubMed

    Formenti, Federico; Minetti, Alberto E; Borrani, Fabio

    2015-09-01

    Estimation of human oxygen uptake (V˙o2) during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human V˙o2 during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its V˙o2 prediction accuracy. Ten healthy male participants' (age 19-48 years) were recruited and their steady-state V˙o2 was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). V˙o2 was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of V˙o2. Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal V˙o2 during exercise (mean bias 1.9 vs. 3.3 mL O2 kg(-1) min(-1)) but it did not affect the accuracy for prediction of maximal V˙o2 (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human V˙o2 during cycling exercise, and it should be considered when predicting oxygen consumption.

  11. Global rate coefficients for ionization and recombination of carbon, nitrogen, oxygen, and argon

    NASA Astrophysics Data System (ADS)

    Annaloro, Julien; Morel, Vincent; Bultel, Arnaud; Omaly, Pierre

    2012-07-01

    The flow field modeling of planetary entry plasmas, laser-induced plasmas, inductively coupled plasmas, arcjets, etc., requires to use Navier-Stokes codes. The kinetic mechanisms implemented in these codes involve global (effective) rate coefficients. These rate coefficients result from the excited states coupling during a quasi-steady state. In order to obtain these global rate coefficients over a wide electron temperature (Te) range for ionization and recombination of carbon, nitrogen, oxygen, and argon, the behavior of their excited states is investigated using a zero-dimensional (time-dependent) code. The population number densities of these electronic states are considered as independent species. Their relaxation is studied within the range 3000 K ≤Te≤20 000 K and leads to the determination of the ionization (ki) and recombination (kr) global rate coefficients. Comparisons with existing data are performed. Finally, the ratio ki/kr is compared with the Saha equilibrium constant. This ratio increases more rapidly than the equilibrium constant for Te>15 000 K.

  12. Global rate coefficients for ionization and recombination of carbon, nitrogen, oxygen, and argon

    SciTech Connect

    Annaloro, Julien; Morel, Vincent; Bultel, Arnaud; Omaly, Pierre

    2012-07-15

    The flow field modeling of planetary entry plasmas, laser-induced plasmas, inductively coupled plasmas, arcjets, etc., requires to use Navier-Stokes codes. The kinetic mechanisms implemented in these codes involve global (effective) rate coefficients. These rate coefficients result from the excited states coupling during a quasi-steady state. In order to obtain these global rate coefficients over a wide electron temperature (T{sub e}) range for ionization and recombination of carbon, nitrogen, oxygen, and argon, the behavior of their excited states is investigated using a zero-dimensional (time-dependent) code. The population number densities of these electronic states are considered as independent species. Their relaxation is studied within the range 3000 K{<=}T{sub e}{<=}20 000 K and leads to the determination of the ionization (k{sub i}) and recombination (k{sub r}) global rate coefficients. Comparisons with existing data are performed. Finally, the ratio k{sub i}/k{sub r} is compared with the Saha equilibrium constant. This ratio increases more rapidly than the equilibrium constant for T{sub e}>15 000 K.

  13. Impact of bypass flow rate and catheter position in veno-venous extracorporeal membrane oxygenation on gas exchange in vivo.

    PubMed

    Togo, Konomi; Takewa, Yoshiaki; Katagiri, Nobumasa; Fujii, Yutaka; Kishimoto, Satoru; Date, Kazuma; Miyamoto, Yuji; Tatsumi, Eisuke

    2015-06-01

    The clinical use of veno-venous extracorporeal membrane oxygenation (VVECMO) in adult patients with respiratory failure is rapidly increasing. However, recirculation of blood oxygenated by ECMO back into the circuit may occur in VVECMO, resulting in insufficient oxygenation. The cannula position and bypass flow rate are two major factors influencing recirculation, but the relationship and ideal configuration of these factors are not fully understood. In the present study, we attempted to clarify these parameters for effective gas exchange. VVECMO was performed in eight adult goats under general anesthesia. The position of the drainage cannula was fixed in the inferior vena cava (IVC), but the return cannula position was varied between the IVC, right atrium (RA), and superior vena cava (SVC). At each position, the recirculation rates calculated, and the adequacy of oxygen delivery by ECMO in supplying systemic oxygen demand was assessed by measuring the arterial oxygen saturation (SaO2) and pressure (PaO2). Although the recirculation rates increased as the bypass flow rates increased, SaO2 and PaO2 also increased in any position of return cannula. The recirculation rates and PaO2 were 27 ± 2% and 162 ± 16 mmHg, 36 ± 6% and 139 ± 11 mmHg, and 63 ± 6% and 77 ± 9 mmHg in the SVC, RA and IVC position at 4 L/min respectively. In conclusion, the best return cannula position was the SVC, and a high bypass flow rate was advantageous for effective oxygenation. Both the bypass flow rates and cannula position must be considered to achieve effective oxygenation.

  14. Elevated Oxygen Consumption Rate in Response to Acute Low- Glucose Stress: Metformin Restores Rate to Normal Level

    PubMed Central

    Williams, Emmanuel D.; Rogers, Steven C.; Zhang, Xiaomin; Azhar, Gohar; Wei, Jeanne Y.

    2015-01-01

    Cardiovascular Disease (CVD) continues to be the leading cause of mortality among all age demographics in the United States, with the highest occurrence in populations aged 65 and older. Glucose levels, particularly hyperglycemia, are associated with the premature onset of age-related diseases including CVD. A major challenge in the treatment of elderly patients with chronically elevated blood glucose is the frequency of hypoglycemic episodes. Molecular mechanisms of hypoglycemia remain unclear, but are associated with premature onset of age-related-diseases. Here we report a mitochondrial metabolic profile assessing short-term (up to six hours) and longer-term (12–24 hours) durations of low-glucose stress. We observed that the antidiabetic biguanide and mitochondrial complex I inhibitor, metformin, can lower and restore the elevated oxygen consumption rate during shorter-term glucose stress to levels similar to that of cells cultured in normal glucose. This effect appears, in part, to involve activation of the 5′ AMP-activated protein kinase (AMPK). PMID:26256471

  15. Oxygen Uptake and Heart Rate Kinetics after Different Types of Resistance Exercise

    PubMed Central

    Vianna, Jeferson M.; Werneck, Francisco Z.; Coelho, Emerson F.; Damasceno, Vinicius O.; Reis, Victor M.

    2014-01-01

    Oxygen uptake (VO2) and heart rate (HR) kinetics after exercise are important indicators of fitness and cardiovascular health. However, these variables have been little investigated in resistance exercise (RE). The current study compared post-exercise kinetics of VO2 and the HR among different types of REs. The study included 14 males (age: 26.5±5.4 years, body mass: 80.1±11.4 kg, body height: 1.77±0.07 m, fat content: 11.3±4.6%) with RE experience. Dynamic muscle strength was measured using one repetition maximum (1RM) with regard to the half-squat, bench press, pull-down, and triceps pushdown exercises. The participants performed a maximum number of repetitions at 80% of 1RM for each exercise, separated by a recovery period of 60 minutes. VO2 was measured using ergospirometry. VO2 and HR kinetics were assessed using the time constant of the recovery curves, and excess oxygen consumption (EPOC) was calculated afterward. Significant differences were not observed across the exercises with regard to VO2 kinetics. However, the half-squat exercise elicited a greater EPOC than the bench press and triceps pushdown exercises (p<.05). HR kinetics was slower for the half-squat exercise than for the other exercises (p<.05). These findings confirm that the type of RE influences both the cardiac autonomic response post-exercise and EPOC, but not VO2 kinetics. PMID:25414756

  16. Utility rate equations of group population dynamics in biological and social systems.

    PubMed

    Yukalov, Vyacheslav I; Yukalova, Elizaveta P; Sornette, Didier

    2013-01-01

    We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human) composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate equations, whose parameters are characterized by the utility of each group with respect to the society as a whole and by the mutual utilities of groups with respect to each other. We analyze in detail the cases of two groups (cooperators and defectors) and of three groups (cooperators, defectors, and regulators) and find that, in a self-organized society, neither defectors nor regulators can overpass the maximal fractions of about [Formula: see text] each. This is in agreement with the data for bee and ant colonies. The classification of societies by their distance from equilibrium is proposed. We apply the formalism to rank the countries according to the introduced metric quantifying their relative stability, which depends on the cost of defectors and regulators as well as their respective population fractions. We find a remarkable concordance with more standard economic ranking based, for instance, on GDP per capita.

  17. Utility Rate Equations of Group Population Dynamics in Biological and Social Systems

    PubMed Central

    Yukalov, Vyacheslav I.; Yukalova, Elizaveta P.; Sornette, Didier

    2013-01-01

    We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human) composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate equations, whose parameters are characterized by the utility of each group with respect to the society as a whole and by the mutual utilities of groups with respect to each other. We analyze in detail the cases of two groups (cooperators and defectors) and of three groups (cooperators, defectors, and regulators) and find that, in a self-organized society, neither defectors nor regulators can overpass the maximal fractions of about each. This is in agreement with the data for bee and ant colonies. The classification of societies by their distance from equilibrium is proposed. We apply the formalism to rank the countries according to the introduced metric quantifying their relative stability, which depends on the cost of defectors and regulators as well as their respective population fractions. We find a remarkable concordance with more standard economic ranking based, for instance, on GDP per capita. PMID:24386163

  18. Physical properties and surface/interface analysis of nanocrystalline WO3 films grown under variable oxygen gas flow rates

    SciTech Connect

    Vemuri, R. S.; Carbjal-Franco, G.; Ferrer, D. A.; Engelhard, Mark H.; Ramana, Chintalapalle V.

    2012-10-15

    Nanocrystalline WO3 films were grown by reactive magnetron sputter-deposition in a wide range of oxygen gas flow rates while keeping the deposition temperature fixed at 400 oC. The physical characteristics of WO3 films were evaluated using grazing incidence X-ray diffraction (GIXRD), X-ray reflectivity (XRR) and transmission electron microscopy (TEM) measurements. Physical characterization indicates that the thickness, grain size, and density of WO3 films are sensitive to the oxygen gas flow rate during deposition. XRD data indicates the formation of tetragonal WO3 films. The grain size increases from 21 to 25 nm with increasing oxygen gas flow rate to 65%, at which point the grain size exhibits a decreasing trend to attain the lowest value of 15 nm at 100% oxygen. TEM analysis provides a model consisting of isotropic WO3 film (nanocrystalline)-SiO2 interface (amorphous)-Si(100) substrate. XRR simulations, which are based on this model, provide excellent agreement to the experimental data indicating that the normalized thickness of WO3 films decreases with the increasing oxygen gas flow rate. The density of WO3 films increases with increasing oxygen gas flow rate.

  19. Triiodothyronine Facilitates Weaning From Extracorporeal Membrane Oxygenation by Improved Mitochondrial Substrate Utilization

    PubMed Central

    Files, Matthew D.; Kajimoto, Masaki; O'Kelly Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Des Rosiers, Christine; Isern, Nancy; Portman, Michael A.

    2014-01-01

    Background Extracorporeal membrane oxygenation (ECMO) provides a bridge to recovery after myocardial injury in infants and children, yet morbidity and mortality remain high. Weaning from the circuit requires adequate cardiac contractile function, which can be impaired by metabolic disturbances induced either by ischemia‐reperfusion and/or by ECMO. We tested the hypothesis that although ECMO partially ameliorates metabolic abnormalities induced by ischemia‐reperfusion, these abnormalities persist or recur with weaning. We also determined if thyroid hormone supplementation (triiodothyronine) during ECMO improves oxidative metabolism and cardiac function. Methods and Results Neonatal piglets underwent transient coronary ischemia to induce cardiac injury then were separated into 4 groups based on loading status. Piglets without coronary ischemia served as controls. We infused into the left coronary artery [2‐13C]pyruvate and [13C6, 15N]l‐leucine to evaluate oxidative metabolism by gas chromatography‐mass spectroscopy and nuclear magnetic resonance methods. ECMO improved survival, increased oxidative substrate contribution through pyruvate dehydrogenase, reduced succinate and fumarate accumulation, and ameliorated ATP depletion induced by ischemia. The functional and metabolic benefit of ECMO was lost with weaning, yet triiodothyronine supplementation during ECMO restored function, increased relative pyruvate dehydrogenase flux, reduced succinate and fumarate, and preserved ATP stores. Conclusions Although ECMO provides metabolic rest by decreasing energy demand, metabolic impairments persist, and are exacerbated with weaning. Treating ECMO‐induced thyroid depression with triiodothyronine improves substrate flux, myocardial oxidative capacity and cardiac contractile function. This translational model suggests that metabolic targeting can improve weaning. PMID:24650924

  20. Relationship of vitamin A utilization rate to vitamin A status in the rat

    SciTech Connect

    Lewis, K.C.; Green, J.B.; Green, M.H.

    1986-03-01

    Weanling male rats were fed diets providing either 45 ..mu..g retinal equivalents (REq)/d for 4 wks, then 12 ..mu..g/d for 11 wks (HI; n = 9); or 0 ..mu..g/d for 7 wks, then 2 ..mu..g/d for 6 wks (LO; n = 8); or 0 ..mu..g/d for 7 wks, then 2 ..mu..g REq + 240 ..mu..g retinoic acid/d for 6 wks (RA; n = 6). At this time, plasma retinol (ROH) concentrations averaged 48.9 +/- 7.2, 10.3 +/- 1.7 and 8.5 +/- 0.9 ..mu..g/dl, respectively; and liver retinoid levels were 984.9 +/- 146.2, < 0.5, and < 5 ..mu..g REq. Growth rates were similar in all groups. Plasma ROH kinetics were monitored for 115 d (HI) or 35 d (LO and RA) after an IV pulse dose injection of plasma containing /sup 3/H-ROH in its physiological transport complex. Vitamin A utilization rates (disposal rates, DR) were estimated from the inverse of the area under the tracer disappearance curve obtained by nonlinear, least-squares regression. Group average DR were 12.2 (HI), 1.8 (LO), and 1.2 (RA) ..mu..g REq/d. Since in similar studies the DR was 6.9 ..mu..g/d in rats consuming approx. 9 ..mu..g REq/d, and with liver stores of approx. 73 ..mu..g, the authors data suggest that vitamin A utilization rate adjusts to stores and/or dietary input, and that rats with virtually no liver vitamin A reserves and chronically fed marginal levels of vitamin A, are able to adapt by decreasing vitamin A utilization.

  1. Effects of oxygen flow rate on the electrical stability of zinc oxynitride thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hwan; Jeong, Hwan-Seok; Jeong, Chan-Yong; Song, Sang-Hun; Kwon, Hyuck-In

    2017-02-01

    We investigated the effects of the oxygen flow rate (OFR) during the deposition of a zinc oxynitride (ZnON) channel layer on the electrical performance and stability of high-mobility ZnON thin-film transistors (TFTs). The ZnON TFTs prepared at a lower OFR exhibited higher electrical performance characteristics and a higher electrical stability under positive gate bias stresses than those prepared at a higher OFR, but showed a lower electrical stability under negative gate bias stresses. The lower density of subgap states within the channel layer and the higher hole concentration due to the small bandgap were considered as physical mechanisms responsible for the observed phenomena, respectively.

  2. A novel wearable apnea dive computer for continuous plethysmographic monitoring of oxygen saturation and heart rate.

    PubMed

    Kuch, Benjamin; Koss, Bernhard; Dujic, Zeljko; Buttazzo, Giorgio; Sieber, Arne

    2010-03-01

    We describe the development of a novel wrist-mounted apnea dive computer. The device is able to measure and display transcutaneous oxygen saturation, heart rate, plethysmographic pulse waveform, depth, time and temperature during breath-hold dives. All measurements are stored in an external memory chip. The data-processing software reads from the chip and writes the processed data into a comma-separated values file which can be analysed by applications such as Microsoft Excel™ or Open Office™. The housing is waterproof and pressure-resistant to more than 20 bar (2.026 MPa) (breath-hold divers have already exceeded 200 metres' sea water depth). It is compact, lightweight, has low power requirements and is easy to use.

  3. [Influence of the rate and the share of freezing water on hydrogen and oxygen separation].

    PubMed

    Danilov, K L; Lavrik, N L; Boriskin, V V; Fokin, G A

    2009-01-01

    The influence of the rate nu and the share of freezing water g on the separation of hydrogen D and oxygen 18O has been studied by mass spectromertry. Evidence was obtained supporting the well known facts that, upon freezing of water: (1) the concentration of D in ice is higher than in water; (2) the degree of separation for D is higher than for 18O; (3) an increase in the concentration of D and 18O in ice takes place as the nu value decreases. It was shown for the first time that, at g < 0.05, the concentrations of D at high nu values are higher than at g > 0.05, and at low nu values, it is less than at g > 0.05.

  4. Design a Wearable Device for Blood Oxygen Concentration and Temporal Heart Beat Rate

    NASA Astrophysics Data System (ADS)

    Myint, Cho Zin; Barsoum, Nader; Ing, Wong Kiing

    2010-06-01

    The wireless network technology is increasingly important in healthcare as a result of the aging population and the tendency to acquire chronic disease such as heart attack, high blood pressure amongst the elderly. A wireless sensor network system that has the capability to monitor physiological sign such as SpO2 (Saturation of Arterial Oxygen) and heart beat rate in real-time from the human's body is highlighted in this study. This research is to design a prototype sensor network hardware, which consists of microcontroller PIC18F series and transceiver unit. The sensor is corporate into a wearable body sensor network which is small in size and easy to use. The sensor allows a non invasive, real time method to provide information regarding the health of the body. This enables a more efficient and economical means for managing the health care of the population.

  5. Reaction of singlet oxygen with tryptophan in proteins: a pronounced effect of the local environment on the reaction rate.

    PubMed

    Jensen, Rasmus Lybech; Arnbjerg, Jacob; Ogilby, Peter R

    2012-06-13

    Singlet molecular oxygen, O(2)(a(1)Δ(g)), can influence many processes pertinent to the function of biological systems, including events that result in cell death. Many of these processes involve a reaction between singlet oxygen and a given amino acid in a protein. As a result, the behavior of that protein can change, either because of a structural alteration and/or a direct modification of an active site. Surprisingly, however, little is known about rate constants for reactions between singlet oxygen and amino acids when the latter are in a protein. In this report, we demonstrate using five separate proteins, each containing only a single tryptophan residue, that the rate constant for singlet oxygen reaction with tryptophan depends significantly on the position of this amino acid in the protein. Most importantly, the reaction rate constant depends not only on the accessibility of the tryptophan residue to oxygen, but also on factors that characterize the local molecular environment of the tryptophan in the protein. The fact that the local protein environment can either appreciably inhibit or accelerate the reaction of singlet oxygen with a given amino acid can have significant ramifications for singlet-oxygen-mediated events that perturb cell function.

  6. Dissolved oxygen and dietary phosphorus modulate utilization and effluent partitioning of phosphorus in rainbow trout (Oncorhynchus mykiss) aquaculture.

    PubMed

    McDaniel, Nichole K; Sugiura, Shozo H; Kehler, Thomas; Fletcher, John W; Coloso, Relicardo M; Weis, Peddrick; Ferraris, Ronaldo P

    2005-11-01

    Phosphorus (P) is the limiting nutrient in freshwater primary production, and excessive levels cause premature eutrophication. P levels in aquaculture effluents are now tightly regulated. Increasing our understanding of waste P partitioning into soluble, particulate, and settleable fractions is important in the management of effluent P. When water supply is limited, dissolved oxygen concentration (DO) decreases below the optimum levels. Therefore, we studied effects of DO (6 and 10mg/L) and dietary P (0.7 and 1.0% P) on rainbow trout growth, P utilization, and effluent P partitioning. Biomass increased by 40% after 3 weeks. DO at 10mg/L significantly increased fish growth and feed efficiency, and increased the amount of P in the soluble fraction of the effluent. Soluble effluent P was greater in fish fed 1.0% P. DO increases fish growth and modulates P partitioning in aquaculture effluent.

  7. Oxy-Mat™ Mattress System Development Utilizing Simultaneous Measurement of Interface Pressure and Deep Tissue Oxygen Saturation.

    PubMed

    Butler, Glenn J; Kenyon, David J; Gorenstein, Scott; Davenport, Thomas; Golembe, Edward; Lee, Bok; Vieweg, Jacques

    2015-05-01

    The development and management of pressure ulcers (PUs) among hospital and nursing home patients is one of the greatest preventable challenges to healthcare worldwide. For over 50 years, pressure mapping and subjective comfort has been the primary indicators for mattress selection. Our research demonstrates that mattress/patient interface pressure and relative blood/oxygen perfusion do not inversely correlate and pressure is not a meaningful, real-time indicator of tissue ischemia and risk of pressure ulcer development. Developed in our research is a real-time sensor system to simultaneously measure and record these parameters over the anatomical sites at risk for PUs. Measurements focused on the heel, sacrum, trochanter, ischium, scapula and occipital. A modified pressure mapping system is used for interface pressure measurements and integrated with multiple near-infrared sensors to measure specific deep tissue hemoglobin saturated oxygen or rSO2. Testing and mattress design development was done during the period of 2008 to present. Over 200 human tests of commercially available mattresses were conducted in supine, 30 degree, and 70 degree positions, ranging in times of up to four hours. During this time period, we utilized 20 test subjects-eight female and 12 male-with ages ranging from 18 to 65 years. The result of this proprietary off-loading device evaluation and design system shows that the new Oxy-Mat™ (Off-Loading Technologies, Tarrytown, NY) Non-Powered Mattress System consistently provides optimized tissue perfusion as measured by natural deep tissue oxygen saturation levels. In extensive laboratory and clinical evaluations, the Oxy-Mat™ was shown to be functionally superior to CMS Group 2 powered mattresses. Another outcome of our research was that a powered mattress system may not be appropriate for most sensate and semi-ambulatory patients. Further research is underway.

  8. Changes of heart rate variability and prefrontal oxygenation during Tai Chi practice versus arm ergometer cycling.

    PubMed

    Lu, Xi; Hui-Chan, Christina Wan-Ying; Tsang, William Wai-Nam

    2016-11-01

    [Purpose] Exercise has been shown to improve cardiovascular fitness and cognitive function. Whether the inclusion of mind over exercise would increase parasympathetic control of the heart and brain activities more than general exercise at a similar intensity is not known. The aim of this study was to compare the effects of Tai Chi (mind-body exercise) versus arm ergometer cycling (body-focused exercise) on the heart rate variability and prefrontal oxygenation level. [Subjects and Methods] A Tai Chi master was invited to perform Tai Chi and arm ergometer cycling with similar exercise intensity on two separate days. Heart rate variability and prefrontal oxyhemoglobin levels were measured continuously by a RR recorder and near-infrared spectroscopy, respectively. [Results] During Tai Chi exercise, spectral analysis of heart rate variability demonstrated a higher high-frequency power as well as a lower low-frequency/high-frequency ratio than during ergometer cycling, suggesting increased parasympathetic and decreased sympathetic control of the heart. Also, prefrontal oxyhemoglobin and total hemoglobin levels were higher than those during arm ergometer exercise. [Conclusion] These findings suggest that increased parasympathetic control of the heart and prefrontal activities may be associated with Tai Chi practice. Having a "mind" component in Tai Chi could be more beneficial for older adults' cardiac health and cognitive function than body-focused ergometer cycling.

  9. Changes of heart rate variability and prefrontal oxygenation during Tai Chi practice versus arm ergometer cycling

    PubMed Central

    Lu, Xi; Hui-Chan, Christina Wan-Ying; Tsang, William Wai-Nam

    2016-01-01

    [Purpose] Exercise has been shown to improve cardiovascular fitness and cognitive function. Whether the inclusion of mind over exercise would increase parasympathetic control of the heart and brain activities more than general exercise at a similar intensity is not known. The aim of this study was to compare the effects of Tai Chi (mind-body exercise) versus arm ergometer cycling (body-focused exercise) on the heart rate variability and prefrontal oxygenation level. [Subjects and Methods] A Tai Chi master was invited to perform Tai Chi and arm ergometer cycling with similar exercise intensity on two separate days. Heart rate variability and prefrontal oxyhemoglobin levels were measured continuously by a RR recorder and near-infrared spectroscopy, respectively. [Results] During Tai Chi exercise, spectral analysis of heart rate variability demonstrated a higher high-frequency power as well as a lower low-frequency/high-frequency ratio than during ergometer cycling, suggesting increased parasympathetic and decreased sympathetic control of the heart. Also, prefrontal oxyhemoglobin and total hemoglobin levels were higher than those during arm ergometer exercise. [Conclusion] These findings suggest that increased parasympathetic control of the heart and prefrontal activities may be associated with Tai Chi practice. Having a “mind” component in Tai Chi could be more beneficial for older adults’ cardiac health and cognitive function than body-focused ergometer cycling. PMID:27942158

  10. The utility of heart rate and minute ventilation as predictors of whole-body metabolic rate during occupational simulations involving load carriage.

    PubMed

    Notley, Sean R; Peoples, Gregory E; Taylor, Nigel A S

    2015-01-01

    The utility of cardiac and ventilatory predictors of metabolic rate derived under temperate and heated laboratory conditions was evaluated during three fire-fighting simulations (70-mm hose drag, Hazmat recovery, bushfire hose drag; N = 16 per simulation). The limits of agreement for cardiac (temperate: - 0.54 to 1.77; heated: - 1.39 to 0.80 l min(- 1)) and ventilatory surrogates (temperate: - 0.19 to 1.27; heated: - 0.26 to 1.16 l min(- 1)) revealed an over-estimation of oxygen consumption that exceeded the acceptable limits required by occupational physiologists (N = 25; ± 0.24 l min(- 1)). Although ventilatory predictions offered superior precision during low-intensity work (P < 0.05), a cardiac prediction was superior during more demanding work (P < 0.05). Deriving those equations under heated conditions failed to improve precision, with the exception of the cardiac surrogate during low-intensity work (P < 0.05). These observations imply that individualised prediction curves are necessary for valid estimations of metabolic demand in the field.

  11. Utility of percentage of births to teenagers as a surrogate for the teen birth rate.

    PubMed Central

    Gould, J; Blackwell, T; Heilig, C; Axley, M

    1998-01-01

    OBJECTIVES: The teen birth rate is commonly used in comparing regional variation in teen pregnancies, but local teen birth rates are not always available. In this study the percentage of all births that are to teens was evaluated for its utility as a surrogate for the teen birth rate. METHODS: Rank correlation and sensitivity and specificity analyses were used. RESULTS: The Spearman rank correlations between percentage of teen births (PTB) and teen birth rate (TBR) were .995, .906, and .841 for the 3 age groups suggesting that it may be reasonable to employ PTB to prioritize zip codes. Zip codes with upper quartile levels of percentages of teen births identified zip codes with upper quartile levels of TBR with a sensitivity of 83.8%, 68.8%, and 65%; a false-positive rate of 2.1%, 8.6%, and 10%; and a positive predictive value of 89.3%, 67.6%, and 67.5% for the age groups 10 through 14, 15 through 17, and 18 through 19 years. CONCLUSIONS: The percentage of births to teens is a useful surrogate for teen birth rate in California, especially among younger teenagers. PMID:9618618

  12. Public Utility Regulatory Policies Act of 1978: Natural Gas Rate Design Study

    SciTech Connect

    None,

    1980-05-01

    The report concludes that, to effectively deal with our national energy problems, gas rate structures should be designed to reflect the costs which the nation avoids if gas is efficiently used and substituted for oil. Current pipeline and distribution company rate structures generally do not meet this test. Although gas is a substitute for oil in many applications, and conserved gas can reduce oil imports, gas rate structures often fail to convey to consumers the fact that, from a national perspective, gas is as valuable as oil. The provisions of the Natural Gas Policy Act of 1978 (NGPA) take a strong first step in correcting these problems. But, as clearly recognized in both NGPA and PURPA, these provisions need to be supplemented by updating pipeline and distribution company rate designs to address the problems of the 1980's - rather than the problems of the 1950's. In this regard, NGPA mandates incremental pricing, which raises the average price of gas to certain industrial users only. The Department of Energy (DOE) study suggests an alternate approach: pipeline and distribution rate structures that reflect in their tailblocks, for all customer classes, the economic costs of gas usage. Such rates would convey to all users the costs incurred by the nation as a consequence of their decisions to use or conserve gas. Such rate structures should promote the three purposes of PURPA - end-use conservation, efficient use of utility resources, and equitable rates - to a greater extent than do traditional accounting cost rate designs, which reflect decisions made in the distant past.

  13. Direct measurement of oxygen consumption rates from attached and unattached cells in a reversibly sealed, diffusionally isolated sample chamber

    PubMed Central

    Strovas, Timothy J.; McQuaide, Sarah C.; Anderson, Judy B.; Nandakumar, Vivek; Kalyuzhnaya, Marina G.; Burgess, Lloyd W.; Holl, Mark R.; Meldrum, Deirdre R.; Lidstrom, Mary E.

    2011-01-01

    Oxygen consumption is a fundamental component of metabolic networks, mitochondrial function, and global carbon cycling. To date there is no method available that allows for replicate measurements on attached and unattached biological samples without compensation for extraneous oxygen leaking into the system. Here we present the Respiratory Detection System, which is compatible with virtually any biological sample. The RDS can be used to measure oxygen uptake in microliter-scale volumes with a reversibly sealed sample chamber, which contains a porphyrin-based oxygen sensor. With the RDS, one can maintain a diffusional seal for up to three hours, allowing for the direct measurement of respiratory function of samples with fast or slow metabolic rates. The ability to easily measure oxygen uptake in small volumes with small populations or dilute samples has implications in cell biology, environmental biology, and clinical diagnostics. PMID:21546993

  14. 75 FR 37430 - Community Power & Utility LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... Energy Regulatory Commission Community Power & Utility LLC; Supplemental Notice That Initial Market-Based... supplemental notice in the above-referenced proceeding of Community Power & Utility LLC's application for market-based rate authority, with an accompanying rate tariff, noting that such application includes...

  15. Process for the oxidation of materials in water at supercritical temperatures utilizing reaction rate enhancers

    SciTech Connect

    Swallow, K.C.; Killilea, W.R.; Hong, G.T.; Bourhis, A.L.

    1993-08-03

    A method is described for substantially completely oxidizing combustible materials in which an aqueous stream bearing the combustible materials is reacted in the presence of an oxidant comprising diatomic oxygen and at a temperature greater than the critical temperature of water and at a pressure greater than about 25 bar, within a reactor for a period of less than about 5 minutes to produce a reaction product stream, wherein the reaction is initiated in the presence of a rate enhancer comprising at least one oxidizing agent in addition to said oxidant selected from the group consisting of ozone, hydrogen peroxide, salts containing persulfate, salts containing permanganate, nitric acid, salts containing nitrate, oxyacids of chlorine and their corresponding salts, hypochlorous acid, salts containing hypochlorite, chlorous acid, salts containing chlorite, chloric acid, salts containing chlorate, perchloric acid, and salts containing perchlorate.

  16. Peripheral oxygen transport and utilization in rats following continued selective breeding for endurance running capacity.

    PubMed

    Howlett, Richard A; Kirkton, Scott D; Gonzalez, Norberto C; Wagner, Harrieth E; Britton, Steven L; Koch, Lauren G; Wagner, Peter D

    2009-06-01

    Untrained rats selectively bred for either high (HCR) or low (LCR) treadmill running capacity previously demonstrated divergent physiological traits as early as the seventh generation (G7). We asked whether continued selective breeding to generation 15 (G15) would further increase the divergence in skeletal muscle capillarity, morphometry, and oxidative capacity seen previously at G7. At G15, mean body weight was significantly lower (P < 0.001) in the HCR rats (n = 11; 194 +/- 3 g) than in LCR (n = 12; 259 +/- 9 g) while relative medial gastrocnemius muscle mass was not different (0.23 +/- 0.01 vs. 0.22 +/- 0.01% total body weight). Normoxic (Fi(O(2)) = 0.21) Vo(2max) was 50% greater (P < 0.001) in HCR despite the lower absolute muscle mass, and skeletal muscle O(2) conductance (measured in hypoxia; Fi(O(2)) = 0.10) was 49% higher in HCR (P < 0.001). Muscle oxidative enzyme activities were significantly higher in HCR (citrate synthase: 16.4 +/- 0.4 vs. 14.0 +/- 0.6; beta-hydroxyacyl-CoA dehydrogenase: 5.2 +/- 0.2 vs. 4.2 +/- 0.2 mmol.kg(-1).min(-1)). HCR rats had approximately 36% more total muscle fibers and also 36% more capillaries in the medial gastrocnemius. Because average muscle fiber area was 35% smaller, capillary density was 36% higher in HCR, but capillary-to-fiber ratio was the same. Compared with G7, G15 HCR animals showed 38% greater total fiber number with an additional 25% decrease in mean fiber area. These data suggest that many of the skeletal muscle structural and functional adaptations enabling greater O(2) utilization in HCR at G7 continue to progress following additional selective breeding for endurance capacity. However, the largest changes at G15 relate to O(2) delivery to skeletal muscle and not to the capacity of skeletal muscle to use O(2).

  17. Low effective activation energies for oxygen release from metal oxides: evidence for mass-transfer limits at high heating rates.

    PubMed

    Jian, Guoqiang; Zhou, Lei; Piekiel, Nicholas W; Zachariah, Michael R

    2014-06-06

    Oxygen release from metal oxides at high temperatures is relevant to many thermally activated chemical processes, including chemical-looping combustion, solar thermochemical cycles and energetic thermite reactions. In this study, we evaluated the thermal decomposition of nanosized metal oxides under rapid heating (~10(5) K s(-1)) with time-resolved mass spectrometry. We found that the effective activation-energy values that were obtained using the Flynn-Wall-Ozawa isoconversional method are much lower than the values found at low heating rates, indicating that oxygen transport might be rate-determining at a high heating rate.

  18. Role of Free Radicals/Reactive Oxygen Species in MeHg Photodegradation: Importance of Utilizing Appropriate Scavengers.

    PubMed

    Han, Xiaoxiao; Li, Yanbin; Li, Dan; Liu, Chang

    2017-04-04

    A variety of free radicals (FR)/reactive oxygen species (ROS) have been proposed to dominate methylmercury (MeHg) photodegradation, primarily based on the results of FR/ROS scavenger addition experiments. However, in addition to eliminating FR/ROS, the added scavengers may also affect the experimental results by altering some water chemical properties, resulting in a misleading assessment of the importance of FR/ROS. In this study, 20 common FR/ROS scavengers were evaluated in terms of their influence on light absorbance, pH, MeHg analysis, MeHg-dissolved organic matter (DOM) complexation, and the scavenger-induced degradation of MeHg. Only nine scavengers were identified to be appropriate for investigating MeHg photodegradation. By utilizing these appropriate scavengers, direct photodegradation of MeHg-DOM complexes was found to be the major pathway of MeHg photodegradation in Laoshan Reservoir water and Stone Old Beach seawater. In contrast, MeHg photodegradation in Ink River water primarily occurs through both ·OH and (3)DOM* mediated indirect pathways and direct photodegradation of MeHg-DOM complexes. The diverse pathways of MeHg photodegradation in the tested water may be due to differences in water chemical properties. A severe overestimation of the role of FR/ROS was observed when several improper but commonly used scavengers were adopted, highlighting the necessity of utilizing appropriate scavengers.

  19. Both superficial and deep zone articular chondrocyte subpopulations exhibit the Crabtree effect but have different basal oxygen consumption rates.

    PubMed

    Heywood, Hannah K; Knight, Martin M; Lee, David A

    2010-06-01

    In the absence of in vivo measurements, the oxygen concentration within articular cartilage is calculated from the balance between cellular oxygen consumption and mass transfer. Current estimates of the oxygen tension within articular cartilage are based on oxygen consumption data from full-depth tissue samples. However, superficial and deep cell subpopulations of articular cartilage express intrinsic metabolic differences. We test the hypothesis that the subpopulations differ with respect to their intrinsic oxygen consumption rate. Chondrocytes from the full cartilage thickness demonstrate enhanced oxygen consumption when deprived of glucose, consistent with the Crabtree phenomena. Chondrocyte subpopulations differ in the prevailing availability of oxygen and glucose, which decrease with distance from the cartilage-synovial fluid interface. Thus, we tested the hypothesis that the oxygen consumption of each subpopulation is modulated by nutrient availability, by examining the expression of the Crabtree effect. The deep cells had a greater oxygen consumption than the superficial cells (V(max) of 6.6 compared to 3.2 fmol/cell/h), consistent with our observations of mitochondrial volume (mean values 52.0 vs. 36.4 microm(3)/cell). Both populations expressed the Crabtree phenomena, with oxygen consumption increasing approximately 2.5-fold in response to glycolytic inhibition by glucose deprivation or 2-deoxyglucose. Over 90% of this increase was oligomycin-sensitive and thus accounted for by oxidative phosphorylation. The data contributes towards our understanding of chondrocyte energy metabolism and provides information valuable for the accurate calculation of the oxygen concentration that the cells experience in vivo. The work has further application to the optimisation of bioreactor design and engineered tissues.

  20. TMI Rain Rate Estimation Over Land and Ocean Utilizing Convective and Stratiform Discrimination

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Weinman, J. A.; Dalu, G.

    1999-01-01

    Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer brightness temperature data in the 85 GHz channel (T85) reveal distinct local minima in a regional map containing a Mesoscale Convective System (MCS). This is because of relatively small footprint size (approximately 5.5 km) and strong extinction properties in this channel of the TMI. A map of rain rate for that region, deduced from simultaneous measurements made by the Precipitation Radar (PR) on board the TRMM satellite, reveals that these T85 minima, produced by scattering, correspond to local PR rain maxima. Utilizing the PR rain rate map as a guide, we infer from TMI data the presence of three different kinds of thunderstorms or Cbs. They are young, mature, and decaying Cbs that have a scale of about 20 km on the average. Two parameters enable us to infer these three kinds of Cbs objectively: a) the magnitude of scattering depression deduced from local T85 minima and b) the mean horizontal gradient of T85 around such minima. Knowing the category of a given Cb, we can estimate the rain rate associated with it. Such estimation is done with the help of relationships linking T85 minimum to rain rate in each Cb type. Similarly, a weak background rain rate in all the areas where T85 is less than 260 K is deduced with another relationship linking T85 to rain rate. In our rain retrieval model, this background rain constitutes the stratiform rain where the Cbs are absent. Initially, these relationships are optimized or tuned utilizing the PR and TMI data of a few MCS events. After such tuning, the model is applied to independent MCS cases. The areal distribution of light (1-10 mm/hr), moderate (10-20 mm/hr), and intense (> 20 mm/hr) rain rates are retrieved satisfactorally. Accuracy in the estimates of the light, moderate and intense rain areas and the mean rain rates associated with such areas in these independent MCS cases is on the average about 15%. Taking advantage of this ability of our

  1. Species-Level Variability in Extracellular Production Rates of Reactive Oxygen Species by Diatoms

    PubMed Central

    Schneider, Robin J.; Roe, Kelly L.; Hansel, Colleen M.; Voelker, Bettina M.

    2016-01-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 × 10−16 mol cell−1 h−1, while H2O2 production rates ranged from undetectable to 3.4 × 10−16 mol cell−1 h−1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2-. T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94–100% H2O2; 10–80% O2-) were consistently higher than those for live cultures (65–95% H2O2; 10–50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even

  2. Species-level variability in extracellular production rates of reactive oxygen species by diatoms

    NASA Astrophysics Data System (ADS)

    Schneider, Robin; Roe, Kelly; Hansel, Colleen; Voelker, Bettina

    2016-03-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 x 10-16 mol cell-1 hr-1, while H2O2 production rates ranged from undetectable to 3.4 x 10-16 mol cell-1 hr-1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O¬2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2 . T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94-100% H2O2; 10-80% O2-) were consistently higher than those for live cultures (65-95% H2O2; 10-50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even between those that are

  3. A New Highly Sensitive Method to Assess Respiration Rates and Kinetics of Natural Planktonic Communities by Use of the Switchable Trace Oxygen Sensor and Reduced Oxygen Concentrations

    PubMed Central

    Tiano, Laura; Garcia-Robledo, Emilio; Revsbech, Niels Peter

    2014-01-01

    Oxygen respiration rates in pelagic environments are often difficult to quantify as the resolutions of our methods for O2 concentration determination are marginal for observing significant decreases during bottle incubations of less than 24 hours. Here we present the assessment of a new highly sensitive method, that combine Switchable Trace Oxygen (STOX) sensors and all-glass bottle incubations, where the O2 concentration was artificially lowered. The detection limit of respiration rate by this method is inversely proportional to the O2 concentration, down to <2 nmol L−1 h−1 for water with an initial O2 concentration of 500 nmol L−1. The method was tested in Danish coastal waters and in oceanic hypoxic waters. It proved to give precise measurements also with low oxygen consumption rates (∼7 nmol L−1 h−1), and to significantly decrease the time required for incubations (≤14 hours) compared to traditional methods. This method provides continuous real time measurements, allowing for a number of diverse possibilities, such as modeling the rate of oxygen decrease to obtain kinetic parameters. Our data revealed apparent half-saturation concentrations (Km values) one order of magnitude lower than previously reported for marine bacteria, varying between 66 and 234 nmol L−1 O2. Km values vary between different microbial planktonic communities, but our data show that it is possible to measure reliable respiration rates at concentrations ∼0.5–1 µmol L−1 O2 that are comparable to the ones measured at full air saturation. PMID:25127458

  4. Rate of utilization of glucose and `compartmentation' of α-oxoglutarate and glutamate in rat brain

    PubMed Central

    Gaitonde, M. K.

    1965-01-01

    1. The rate of incorporation of 14C into pyruvate, α-oxoglutarate, lactate and glucose of rat tissues was measured after the subcutaneous injection of uniformly labelled glucose. 2. In rat brain the specific radioactivities of lactate and glucose were similar to that of alanine. In liver the specific radioactivity of glucose was considerably higher than that of lactate or alanine. 3. The specific radioactivities of α-oxo acids of rat brain were lower than those of corresponding amino acids, alanine and glutamate. These findings have been explained in relation to metabolic compartments in vivo. 4. The approximate estimated rate of glucose utilization in rat brain in vivo is 0·96μmole/g. of brain/min. PMID:14342519

  5. Singlet Molecular Oxygen on Ice: Rates of Formation and Steady State Concentrations

    NASA Astrophysics Data System (ADS)

    Bower, J. P.; Anastasio, C.

    2007-12-01

    Singlet molecular oxygen (1O2*), the first electronically excited state of molecular oxygen, reacts rapidly with certain types of environmental pollutants such as furans, phenols, and polycyclic aromatic hydrocarbons (PAHs). Its formation requires the absorption of light by a chromophore (a.k.a. sensitizer), which subsequently transfers energy to ground state molecular oxygen. In the environment, 1O2* chemistry has been studied primarily in the aqueous phase, such as in surface waters or cloud and fog drops. In this work, we expand our current understanding by investigating the rate of formation (Rf) and steady state concentration ([1O2*]) of 1O2* on ice. To investigate 1O2* kinetics, we use a chemical probe technique in which photoformed 1O2* reacts with furfuryl alcohol (FFA). To generate 1O2*, we illuminated frozen samples containing a sensitizer (Rose Bengal, RB) at 549 nm. The concentration of total solutes in each sample was controlled using sodium sulfate (Na2SO4). Following illumination, the decay of FFA was measured using high performance liquid chromatography (HPLC). Ice tests were conducted at 253, 263, and 268 K. Liquid tests for comparison were conducted at 278 K. Results showed dramatically faster (~104) FFA decay on ice than in liquid samples prepared from the same solutions, in agreement with the calculated solute concentration factor in the quasi-liquid layer (QLL) on ice compared to bulk solution. Varying the concentration of RB resulted in similar changes in both Rf and [1O2*], with magnitudes of change close to those expected. Changing temperature and total solutes, both of which control the volume of the QLL on ice, revealed two model regimes: FFA as a major (1) or minor (2) sink of 1O2*. Experimental results from the former regime show good agreement with expected values for both Rf and [1O2*]. Experiments in the later regime are currently in progress. We will also discuss the potential implications of 1O2* to the chemistry of naturally

  6. Quantitative Mapping of Cerebral Metabolic Rate of Oxygen (CMRO2) using Quantitative Susceptibility Mapping (QSM)

    PubMed Central

    Zhang, Jingwei; Liu, Tian; Gupta, Ajay; Spincemaille, Pascal; Nguyen, Thanh D.; Wang, Yi

    2014-01-01

    Purpose To quantitatively map cerebral metabolic rate of oxygen (CMRO2) and oxygen extraction fraction (OEF) in human brains using quantitative susceptibility mapping (QSM) and arterial spin labeling measured cerebral blood flow (CBF) before and after caffeine vasoconstriction. Methods Using the multiecho 3D gradient echo sequence and an oral bolus of 200 mg caffeine, whole brain CMRO2 and OEF were mapped at 3mm isotropic resolution on 13 healthy subjects. The QSM based CMRO2 was compared with an R2* based CMRO2 to analyze the regional consistency within cortical gray matter (CGM) with the scaling in the R2* method set to provide same total CMRO2 as the QSM method for each subject. Results Compared to pre-caffeine, susceptibility increased (5.1±1.1ppb, p<0.01) and CBF decreased (−23.6±6.7ml/100g/min, p<0.01) at 25min post-caffeine in CGM. This corresponded to a CMRO2 of 153.0±26.4µmol/100g/min with an OEF of 33.9±9.6% and 54.5±13.2% (p<0.01) pre- and post- caffeine respectively at CGM, and a CMRO2 of 58.0±26.6µmol/100g/min at white matter. CMRO2 from both QSM and R2* based methods showed good regional consistency (p>0.05), but quantitation of R2* based CMRO2 required an additional scaling factor. Conclusion QSM can be used with perfusion measurements pre- and post- caffeine vascoconstriction to map CMRO2 and OEF. PMID:25263499

  7. Primary Productivity Rates at Station ALOHA Determined by 18O Labeling and the Triple Isotope Composition of Dissolved Oxygen

    NASA Astrophysics Data System (ADS)

    Juranek, L. W.; Quay, P. D.; Karl, D. M.

    2002-12-01

    Although knowledge of accurate Primary Productivity (PPr) rates is essential to the understanding of ocean carbon cycling, the standard method of determining ocean productivity, 14C labeling, often yields uncertain results. Typically, 14C-derived PPr rates fall ambiguously between gross and net productivity because the method is sensitive to recycling of a relatively small POC pool. Bottle incubations using labeled oxygen produced from 18O-enriched water have shown promise in giving a more consistent measure of gross productivity, since the pool of dissolved oxygen is less sensitive to recycling than POC. Typically this method gives gross PPr rates that are 2-3 times 14C-derived rates. Recently Luz and Barkan (2001) have pioneered a new technique to determine PPr rates using the triple isotope composition of dissolved oxygen as an in situ tracer. This relies on the observation that a signature of mass-independent fractionation originating in the stratosphere and imparted to the surface ocean by air-sea exchange is diminished by biological oxygen production. In February 2002 we measured gross productivity using both the 18O-labeling and triple isotope in situ methods at Hawaii Ocean Time-Series station ALOHA in the N. Pacific subtropical gyre. We found the in situ oxygen isotope method yielded double the 14C-derived PPr rates while 18O bottle incubations yielded similar rates as 14C. In addition, comparison of in situ isotope measurements with the biological oxygen saturation state indicate that community respiration is approximately equal to gross photosynthesis in the upper 60 m while from 80-200 m respiration exceeds photosynthesis by at most 10 %. We will present these results along with new results from upcoming measurements at station ALOHA.

  8. Influence of methanol/sorbitol co-feeding rate on pAOX1 induction in a Pichia pastoris Mut+ strain in bioreactor with limited oxygen transfer rate.

    PubMed

    Carly, F; Niu, H; Delvigne, F; Fickers, P

    2016-04-01

    High Pichia pastoris biomass density could be obtained using high co-feeding rate of methanol and sorbitol in a fed-batch or continuous culture, while further higher feeding rate finally leads to oxygen limitation in bioreactor. In the literature, there is lack of report about AOX1 promoter regulation with regard to dissolved oxygen level (DO). Therefore, in this work, chemostat cultures were performed to investigate the cell growth, metabolism and regulation of the AOX1 promoter (pAOX1) regarding co-feeding rate of optimized methanol/sorbitol mixture (methanol fraction 0.60 C-mol/C-mol) using a P. pastoris Mut+/pAOX1-lacZ strain. The oxygen transfer rates (OTR) in bioreactor were kept in the range of typical values of large bioreactor, i.e., 4-8 g/(L h) if DO equals 30 % saturation or 5-10 g/(L h) if DO nears zero. For DO >0, an increase of the carbon fed led to an increase of pAOX1 induction. By contrast, when dissolved oxygen was completely depleted, methanol accumulated, causing a 30 % decrease of pAOX1 induction. However, this decrease is more likely to be lined to methanol accumulation than to low level of dissolved oxygen (<4 % DO). Methanol/sorbitol co-feeding allowed cells to adapt to oxygen transient limitations that often occur at industrial scale with reduced effect on pAOX1 induction. The optimal feeding rate tested here was 6.6 mmol C (DCW h)(-1) at an OTR of 8.28 g O2(L h)(-1) with over fivefold pAOX1 induction (probably directly associated with target protein productivity) compared with previous work.

  9. Determination of oxygen diffusion rates in magnetite from natural isotopic variations

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.

    1991-06-01

    The oxygen isotope compositions of magnetite grains, hosted in a calcite marble from the Bancroft terrane of the Ontario Grenville province, vary systematically with grain size. The δ18O values of magnetite and corresponding closure temperatures (Tc) based on Δcalcite-magnetite range from δ18O = 2.6‰, Tc = 505 °C for a grain radius of 0.075 mm, to δ18O = 5.5‰ Tc = 660 °C for a grain radius of 1.15 mm. The δ18O of the calcite is constant within a scale of 100 μm at a value of 12.3‰. The observed isotopic variations can be fit to the diffusion model of Dodson by the method of least squares (r = 0.98) to yield an activation energy (Q) = 211 (±20) kJ/mole and a pre-exponential factor (Do) = 4.3 (+3.3, -1.9) x 10-7 cm2/s for a cooling rate of 4 °C/m.y. The activation energy estimate is independent of the assumed cooling rate, but the calculated pre-exponential factor varies as follows: Do (cm2/s) = (dT/dt) x (-1.08 x 10-7). (Note: dT/dt is in °C/m.y.) The activation energy is identical to an experimental determination by Giletti and Hess, but the pre-exponential factor is 100 times lower. The difference is attributed to the water-rich conditions in the experiments and the absence of fluid in the slowly cooled marbles investigated in this study. The strong dependence of diffusion rate on water presence, or fH2O, may be used as a sensor for water-rich fluids during cooling in natural systems.

  10. Oxygen transfer rates in shaken culture vessels from Fernbach flasks to microtiter plates.

    PubMed

    Running, Jeffrey A; Bansal, Karan

    2016-08-01

    By a sulfite oxidation method, oxygen transfer rates (OTRs) were determined in 11 types of culture vessels from 2.8-L Fernbach (FB) flasks to 96-, 48-, and 24-well square deepwell microtiter plates (MTPs). OTRs ranged from 140 mM/h in 250-mL Ultrayield™ flasks shaken at 300 rpm with a 50 mm diameter shaker throw to 5 mM/h in unbaffled FBs shaken at 200 rpm with a 25 mm throw. Baffles in FBs increased OTRs 6-12-fold under various shaking conditions, and up to five-fold in 250-mL flasks, depending on the type of baffles. Corner-baffling was superior to bottom-baffling in glass, 250-mL flasks. In MTPs, OTRs increased with increasing well size and decreasing fill volume. At 50 mm throw and 300 rpm, 24-well MTPs had OTRs comparable to corner-baffled, 250-mL flasks (∼100 mM/h). The OTRs in unbaffled flasks were relatively insensitive to shaking conditions, increasing less than two-fold between the most modest and the most vigorous conditions. There was no consistency across vessels as to whether the alternate incubation conditions of 70 mm throw and 250 rpm produced higher OTRs than the 50 mm throw and 300 rpm regimen. No increase in OTR was seen in any MTP when the cover hole diameter was increased beyond 4.5 mm. OTRs decreased as viscosity increased, falling smoothly in unbaffled flasks and 24-well MTPs, but 48-well and 96-well MTPs showed precipitous OTR drops as viscosity increased. Matching the OTRs of screening vessels to the oxygen uptake rates of microbial cultures can greatly reduce the number of false positive strains that are forwarded from microbial screens. Biotechnol. Bioeng. 2016;113: 1729-1735. © 2016 Wiley Periodicals, Inc.

  11. Watershed Influences on Residence Time and Oxygen Reduction Rates in an Agricultural Landscape

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Tesoriero, A. J.

    2015-12-01

    Agricultural use of synthetic fertilizers and animal manure has led to increased crop production, but also elevated nitrogen concentrations in groundwater, resulting in impaired water quality. Groundwater oxygen concentrations are a key indicator of potential biogeochemical processes, which control water/aquifer interactions and contaminant transport. The U.S. Geological Survey's National Water-Quality Assessment Program has a long-history of studying nutrient transport and processing across the United States and the Glacial Aquifer system in particular. A series of groundwater well networks in Eastern Wisconsin is being used to evaluate the distribution of redox reaction rates over a range of scales with a focus on dissolved O2 reduction rates. An analysis of these multi-scale networks elucidates the influence of explanatory variables (i.e.: soil type, land use classification) on reduction rates and redox reactions throughout the Fox-Wolf-Peshtigo watersheds. Multiple tracers including dissolved gasses, tritium, helium, chlorofluorocarbons, sulfur hexafluoride, and carbon-14 were used to estimate groundwater ages (0.8 to 61.2 yr) at over 300 locations. Our results indicate O2 reduction rates along a flowpath study area (1.2 km2) of 0.15 mg O2 L-1 yr-1 (0.12 to 0.18 mg O2 L-1 yr-1) up to 0.41 mg O2 L-1 yr-1 (0.23 to 0.89 mg O2 L-1 yr-1) for a larger scale land use study area (3,300 km2). Preliminary explanatory variables that can be used to describe the variability in reduction rates include soil type (hydrologic group, bulk density) and chemical concentrations (nitrite plus nitrate, silica). The median residence time expected to reach suboxic conditions (≤ 0.4 mg O2 L-1) for the flowpath and the land use study areas was 66 and 25 yr, respectively. These results can be used to elucidate and differentiate the impact of residence time on groundwater quality vulnerability and sustainability in agricultural regions without complex flow models.

  12. Upper limit on the rate constant for isotope exchange between molecular oxygen and ozone at 298 K

    NASA Technical Reports Server (NTRS)

    Anderson, S. M.; Morton, J.; Mauersberger, K.

    1987-01-01

    The gas phase bimolecular isotope exchange reaction between molecular oxygen and ozone has been investigated directly for the first time. Its rate coefficient is found to be less than 2 x 10 to the -25th cu cm/sec at 298 K, over six orders of magnitude below recent estimates. Much faster exchange was observed over condensed ozone at 77 K, suggesting isotopic scrambling is catalyzed under these conditions. The low rate coefficient implies that homogeneous exchange between ground state oxygen and ozone molecules cannot play a significant role in heavy ozone chemistry.

  13. Oxygen consumption rate and Na+/K+-ATPase activity in early developmental stages of the sea urchin Paracentrotus lividus Lam.

    NASA Astrophysics Data System (ADS)

    Tomšić, Sanja; Stanković, Suzana; Lucu, Čedomil

    2011-09-01

    Changes in oxygen consumption rate and Na+/K+-ATPase activity during early development were studied in the sea urchin Paracentrotus lividus Lam. The oxygen consumption rate increased from 0.12 μmol O2 mg protein-1 h-1 in unfertilized eggs to 0.38 μmol O2 mg protein-1 h-1 25 min after fertilization. Specific activity of the Na+/K+-ATPase was significantly stimulated after fertilization, ranging up to 1.07 μmol Pi h-1 mg protein-1 in the late blastula stage and slightly lower values in the early and late pluteus stages.

  14. The optimization of incident angles of low-energy oxygen ion beams for increasing sputtering rate on silicon samples

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Yoshida, N.; Takahashi, M.; Tomita, M.

    2008-12-01

    In order to determine an appropriate incident angle of low-energy (350-eV) oxygen ion beam for achieving the highest sputtering rate without degradation of depth resolution in SIMS analysis, a delta-doped sample was analyzed with incident angles from 0° to 60° without oxygen bleeding. As a result, 45° incidence was found to be the best analytical condition, and it was confirmed that surface roughness did not occur on the sputtered surface at 100-nm depth by using AFM. By applying the optimized incident angle, sputtering rate becomes more than twice as high as that of the normal incident condition.

  15. Human islet oxygen consumption rate and DNA measurements predict diabetes reversal in nude mice.

    PubMed

    Papas, K K; Colton, C K; Nelson, R A; Rozak, P R; Avgoustiniatos, E S; Scott, W E; Wildey, G M; Pisania, A; Weir, G C; Hering, B J

    2007-03-01

    There is a need for simple, quantitative and prospective assays for islet quality assessment that are predictive of islet transplantation outcome. The current state-of-the-art athymic nude mouse bioassay is costly, technically challenging and retrospective. In this study, we report on the ability of 2 parameters characterizing human islet quality: (1) oxygen consumption rate (OCR), a measure of viable volume; and (2) OCR/DNA, a measure of fractional viability, to predict diabetes reversal in nude mice. Results demonstrate that the probability for diabetes reversal increases as the graft's OCR/DNA and total OCR increase. For a given transplanted OCR dose, diabetes reversal is strongly dependent on OCR/DNA. The OCR and OCR/DNA (the 'OCR test') data exhibit 89% sensitivity and 77% specificity in predicting diabetes reversal in nude mice (n = 86). We conclude that the prospective OCR test can effectively replace the retrospective athymic nude mouse bioassay in assessing human islet quality prior to islet transplantation.

  16. Reactive oxygen species in plasma against E. coli cells survival rate

    NASA Astrophysics Data System (ADS)

    Zhou, Ren-Wu; Zhang, Xian-Hui; Zong, Zi-Chao; Li, Jun-Xiong; Yang, Zhou-Bin; Liu, Dong-Ping; Yang, Si-Ze

    2015-08-01

    In this paper, we report on the contrastive analysis of inactivation efficiency of E. coli cells in solution with different disinfection methods. Compared with the hydrogen peroxide solution and the ozone gas, the atmospheric-pressure He plasma can completely kill the E. coli cells in the shortest time. The inactivation efficiency of E. coli cells in solution can be well described by using the chemical reaction rate model. X-ray photoelectron spectroscopy (XPS) analysis shows that the C-O or C=O content of the inactivated E. coli cell surface by plasma is predominantly increased, indicating the quantity of oxygen-containing species in plasma is more than those of two other methods, and then the C-C or C-H bonds can be broken, leading to the etching of organic compounds. Analysis also indicates that plasma-generated species can play a crucial role in the inactivation process by their direct reactions or the decompositions of reactive species, such as ozone into OH radicals in water, then reacting with E. coli cells. Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), and the Funds from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.

  17. Measurements of the effective diffusion coefficient of dissolved oxygen and oxidation rate of pyrite by dissolved oxygen in compacted sodium bentonite

    SciTech Connect

    Manaka, Mitsuo; Kawasaki, Manabu; Honda, Akira

    2000-05-01

    The redox condition of the near field is expected to affect the performance of engineered barrier systems. In particular, the oxygen initially existing in the pore spaces of compacted bentonites strongly affects the redox condition of the near field. To assess the influence of the oxygen, research was done to assess its transport parameters in the compacted bentonite and consumption process. To understand the diffusion of dissolved oxygen (DO) in compacted bentonite and to predict the effect of the DO, the measurements of the effective diffusion coefficient of DO in compacted sodium bentonite were made by electro-chemistry. As a result, the following relationship between the dry density of compacted sodium bentonite and the effective diffusion coefficient of DO in compacted sodium bentonite was derived: D{sub e} = 3.0 {+-} 0.5 {times} 10{sup {minus}9} exp({minus}3.7 {+-} 0.2 {times} 10{sup -3}p), where D{sub e} is the effective diffusion coefficient (m{sup 2}s{sup -1}) of DO in compacted sodium bentonite and p is the dry density (kg m{sup -3})of compacted sodium bentonite. The oxygen concentration in the bentonite is expected to be controlled by the oxidation of pyrite as an impurity in the bentonite. To investigate this idea, the rates of pyrite oxidation by DO in compacted sodium bentonite were estimated from the experimental data in pyrite-bentonite systems using the obtained effective diffusion coefficient of DO. The results show that the average of the rate constants of pyrite oxidation by DO in compacted sodium bentonite was 1.16 {+-} 0.35 {times} 10{sup {minus}8}m s{sup {minus}1}, whereas the rate constant in a carbonate-buffered solution (pH = 9.24) was 1.46 {+-} 0.09 {times}10{sup {minus}9}m s{sup {minus}1}.

  18. (n-3) Long chain PUFA dose-dependently increase oxygen utilization efficiency and inhibit arrhythmias after saturated fat feeding in rats.

    PubMed

    Pepe, Salvatore; McLennan, Peter L

    2007-11-01

    Fish oil (FO) modifies cardiac membrane phospholipid fatty acid composition to confer increased efficiency of oxygen utilization and antiarrhythmic effects. We tested the capacity of low-dose increments of FO, rich in (n-3) PUFA, to reverse the detrimental pro-arrhythmic and inefficient oxygen usage effects of dietary saturated fat (SAT) [including high ratio of (n-6) PUFA:(n-3) PUFA] during ischemia and reperfusion. Wistar rats were fed an SAT-enriched diet (15.3% fat, including 12% SAT, added by weight) for 6 wk and were then divided into 4 groups (n = 10/group) fed that diet or a 12% fat diet containing 3, 6, or 12% FO in place of SAT for 6 wk. Paced (300/min), erythrocyte-perfused isolated working hearts were subjected to low coronary flow ischemia (15 min) and were then reperfused. At normoxic baseline, external work capacity increased marginally at 6 and 12% FO; however, marked dose-related reductions in oxygen consumption were evident due to FO-dependent reduction in oxygen-energy utilization efficiency and associated reductions in coronary flow and oxygen extraction. Postischemic recovery resulted in lower oxygen consumption, greater oxygen-energy utilization efficiency, reduced coronary release of creatine kinase, and reduced incidence of arrhythmias in all FO groups compared with the SAT group. FO at a dose as low as 3% of total fat dietary supplement effectively reversed the high oxygen requirements and pro-arrhythmic effects of a SAT-rich diet even with continued consumption of SAT (9%) in this ex vivo animal model.

  19. Long-term trends of nutrients and apparent oxygen utilization South of the polar front in Southern Ocean intermediate water from 1965 to 2008.

    PubMed

    Iida, Takahiro; Odate, Tsuneo; Fukuchi, Mitsuo

    2013-01-01

    The variation of nutrients over decadal timescales south of the polar front in the Southern Ocean is poorly known because of a lack of continuous observational data in this area. We examined data from long-term continuous hydrographic monitoring of 43 years (1965-2008) in the Indian sector of the Southern Ocean, via the resupply of Antarctic stations under the Japanese Antarctic Research Expedition and Australian Antarctic Research Expedition. We found significant increasing trends in phosphate and nitrate, and a decreasing trend in apparent oxygen utilization (AOU) in intermediate water (neutral density = 27.8-28.1 kgm(-3)) south of the polar front. The rates of phosphate and nitrate increase are 0.004 µmol yr(-1) and 0.02 µmol yr(-1), respectively. The rate of decline of AOU was 0.32 µmol yr(-1). One reason for this phosphate and nitrate increase and AOU decline is reduced horizontal advection of North Atlantic Deep Water, which is characterized by low nutrients and high AOU. The relationship between climate change and nutrient variability remains obscure, emphasizing the importance of long-term monitoring.

  20. Effect of work rate increment on peak oxygen uptake during wheelchair ergometry in men with quadriplegia.

    PubMed

    Lasko-McCarthey, P; Davis, J A

    1991-01-01

    The purpose of this study was to determine the effect of work rate increment on peak oxygen uptake (VO2 peak) during wheelchair ergometry (WCE) in men with quadriplegia due to cervical spinal cord injuries (CSCI). Twenty-two non-ambulatory subjects (aged 20-38 years) with CSCI were divided into two groups based on wheelchair sports classification (n = 12 for IA group and n = 10 for IB/IC group). Subjects underwent three different, continuous graded exercise tests (spaced at least 1 week apart) on an electronically braked wheelchair ergometer. Following a 3-min warmup, the work rate was increased 2, 4, or 6 W.min-1 for the IA group and 4, 6, or 8 W.min-1 for the IB/IC group. Ventilation and gas exchange were measured breath-by-breath with a computerized system. Repeated-measures ANOVA showed no significant difference among the three protocols for VO2 peak in the IA group (P greater than 0.05). The mean (SD) VO2 peak values (ml.kg-1.min-1) were 9.3 (2.4), 9.4 (3.2), and 8.4 (2.6) for the 2, 4, and 6 W.min-1 protocols, respectively. In contrast, the IB/IC group showed a significant difference among the protocols for VO2 peak (P less than 0.05). The mean (SD) VO2 peak values (ml.kg-1,min-1) were 15.1 (4.0), 14.1 (4.4), and 12.7 (4.0) for the 4, 6, and 8 W.min-1 protocols, respectively. Post hoc analysis revealed a difference between the 4 and 8 W.min-1 protocols. Our results suggest that graded exercise testing of men with quadriplegia due to CSCI, using WCE, should employ work rate increments between 2 and 6 W.min-1 and that work rate increments of 8 W.min-1 or greater will result in an underestimate of VO2 peak.

  1. N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Bristow, L. A.; Callbeck, C. M.; Larsen, M.; Altabet, M. A.; Dekaezemacker, J.; Forth, M.; Gauns, M.; Glud, R. N.; Kuypers, M. M. M.; Lavik, G.; Milucka, J.; Naqvi, S. W. A.; Pratihary, A.; Revsbech, N. P.; Thamdrup, B.; Treusch, A. H.; Canfield, D. E.

    2017-01-01

    A third or more of the fixed nitrogen lost from the oceans as N2 is removed by anaerobic microbial processes in open ocean oxygen minimum zones. These zones have expanded over the past decades, and further anthropogenically induced expansion could accelerate nitrogen loss. However, in the Bay of Bengal there has been no indication of nitrogen loss, although oxygen levels are below the detection level of conventional methods (1 to 2 μM). Here we quantify the abundance of microbial genes associated with N2 production, measure nitrogen transformations in incubations of sampled seawater with isotopically labelled nitrogen compounds and analyse geochemical signatures of these processes in the water column. We find that the Bay of Bengal supports denitrifier and anammox microbial populations, mediating low, but significant N loss. Yet, unlike other oxygen minimum zones, our measurements using a highly sensitive oxygen sensor demonstrate that the Bay of Bengal has persistent concentrations of oxygen in the 10 to 200 nM range. We propose that this oxygen supports nitrite oxidation, thereby restricting the nitrite available for anammox or denitrification. If these traces of oxygen were removed, nitrogen loss in the Bay of Bengal oxygen minimum zone waters could accelerate to global significance.

  2. Research on the Algorithm for 3L-CVRP with Considering the Utilization Rate of Vehicles

    NASA Astrophysics Data System (ADS)

    Ma, Han-Wu; Zhu, Wei; Xu, Sen

    Integrated optimization of vehicle routing problem and container loading problem has become a research hotspot in current logistics distribution. Firstly, a mathematical model of the three-dimensional loading capacitated vehicle routing problem (3L-CVRP) is made out under the assumption of which the delivered items are rectangular, considering the rotation of items, last in first out (LIFO) rule and the loading of fragile items which are all in accordance with the realistic conditions, and the objective is to minimize the total driving distance and maximize the utilization rate of vehicle. Then, in order to solve this problem, this paper divides the process of routing and loading into two levels, and a new algorithm which combined Tabu Search (TS) with Local Search (LS) is presented. At last, the feasibility and effectiveness of the method and algorithm is proved by the adoption example.

  3. Multiplexed MRI methods for rapid estimation of global cerebral metabolic rate of oxygen consumption.

    PubMed

    Lee, Hyunyeol; Langham, Michael C; Rodriguez-Soto, Ana E; Wehrli, Felix W

    2017-04-01

    The global cerebral metabolic rate of oxygen (CMRO2), which reflects metabolic activity of the brain under various physiologic conditions, can be quantified using a method, referred to as 'OxFlow', which simultaneously measures hemoglobin oxygen saturation in a draining vein (Yv) and total cerebral blood flow (tCBF). Conventional OxFlow (Conv-OxFlow) entails four interleaves incorporated in a single pulse sequence - two for phase-contrast based measurement of tCBF in the supplying arteries of the neck, and two to measure the intra- to extravascular phase difference in the superior sagittal sinus to derive Yv [Jain et al., JCBFM 2010]. However, this approach limits achievable temporal resolution thus precluding capture of rapid changes of brain metabolic states such as the response to apneic stimuli. Here, we developed a time-efficient, multiplexed OxFlow method and evaluated its potential for measuring dynamic alterations in global CMRO2 during a breath-hold challenge. Two different implementations of multiplexed OxFlow were investigated: 1) simultaneous-echo-refocusing based OxFlow (SER-OxFlow) and 2) simultaneous-multi-slice imaging-based dual-band OxFlow (DB-OxFlow). The two sequences were implemented on 3T scanners (Siemens TIM Trio and Prisma) and their performance was evaluated in comparison to Conv-OxFlow in ten healthy subjects for baseline CMRO2 quantification. Comparison of measured parameters (Yv, tCBF, CMRO2) revealed no significant bias of SER-OxFlow and DB-OxFlow, with respect to the reference Conv-OxFlow while improving temporal resolution two-fold (12.5 versus 25s). Further acceleration shortened scan time to 8 and 6s for SER and DB-OxFlow, respectively, for time-resolved CMRO2 measurement. The two sequences were able of capturing smooth transitions of Yv, tCBF, and CMRO2 over the time course consisting of 30s of normal breathing, 30s of volitional apnea, and 90s of recovery. While both SER- and DB-OxFlow techniques provide significantly improved

  4. Oxygen consumption and heart rate responses to isolated ballet exercise sets.

    PubMed

    Rodrigues-Krause, Josianne; Dos Santos Cunha, Giovani; Alberton, Cristine Lima; Follmer, Bruno; Krause, Mauricio; Reischak-Oliveira, Alvaro

    2014-01-01

    Ballet stage performances are associated with higher cardiorespiratory demand than rehearsals and classes. Hence, new interest is emerging to create periodized training that enhances dancers' fitness while minimizing delayed exercise-induced fatigue and possible injuries. Finding out in what zones of intensity dancers work during different ballet movements may support the use of supplemental training adjusted to the needs of the individual dancer. Therefore, the main purpose of this study was to describe dancers' oxygen consumption (VO2) and heart rate (HR) responses during the performance of nine isolated ballet exercise sets, as correlated with their first and second ventilatory thresholds (VT1 and VT2). Twelve female ballet dancers volunteered for the study. Their maximum oxygen consumption (VO2max), VT1, and VT2 were determined by use of an incremental treadmill test. Nine sets of ballet movements were assessed: pliés, tendus, jetés, rond de jambes, fondus, grand adage (adage), grand battements, temps levés, and sautés. The sets were randomly executed and separated by 5 minute rest periods. ANOVA for repeated measurements followed by the Bonferroni Post-hoc test were applied (p < 0.05). VO2 responses were as follows: pliés (17.6 ± 1.6 ml·kg(-1)·min(-1)); tendus and adage were not significantly greater than VT1; rond de jambes (21.8 ± 3.1 ml·kg(-1) ·min(-1)); fondus and jetés were higher than VT1 and the previous exercises; grand battements (25.8 ± 2.9 ml·kg(-1)·min(-1)) was greater than all the other exercises and VT1; and VT2 was significantly higher than all ballet sets. This stratification followed closely, but not exactly, the variation in HR. For example, rond de jambes (156.8 ± 19 b·min(-1)) did not show any significant difference from all the other ballet sets, nor VT1 or VT2. It is concluded that the workloads of isolated ballet sets, based on VO2 responses, vary between low and moderate aerobic intensity in relation to dancers' VT1 and

  5. Utilization of electromigration in civil and environmental engineering--processes, transport rates and matrix changes.

    PubMed

    Ottosen, Lisbeth M; Christensen, Iben V; Rorig-Dalgård, Inge; Jensen, Pernille E; Hansen, Henrik K

    2008-07-01

    Electromigration (movement of ions in an applied electric field) is utilized for supply or extraction of ions from various porous materials within both civil and environmental engineering. In civil engineering, most research has been conducted on the removal of chlorides from concrete to hinder reinforcement corrosion while in environmental engineering remediation of heavy metal polluted soil is the issue most studied. Never the less, experiments have been conducted with utilization for several other materials and purposes within both engineering fields. Even though there are many topics of common interest in the use of electromigration for the two fields, there is no tradition for collaboration. The present paper is a review with the aim of pointing out areas of shared interest. Focus is laid on the purposes of the different processes, transport rates of various ions in different materials and on changes in the matrix itself. Desorption and dissolution of the target elements into ionic form is a key issue to most of the processes, and can be the limiting step. The removal rate is generally below 1 cm day(- 1), but it can be much less than 1 mm day(- 1) when desorption is slow and insufficient. Matrix changes occurs under the action of the applied electric field and it includes both physico-chemical and hydrological changes. Some of the solid phases is weathered and new can be formed. Increased fundamental understanding of the effects and side effects, when applying the electric field to a porous material, can lead to improvement of the known technologies and possibly to new applications.

  6. Prediction of maximal or peak oxygen uptake from ratings of perceived exertion.

    PubMed

    Coquart, Jérémy B; Garcin, Murielle; Parfitt, Gaynor; Tourny-Chollet, Claire; Eston, Roger G

    2014-05-01

    Maximal or peak oxygen uptake (V˙O2 max and V˙O2 peak , respectively) are commonly measured during graded exercise tests (GXTs) to assess cardiorespiratory fitness (CRF), to prescribe exercise intensity and/or to evaluate the effects of training. However, direct measurement of CRF requires a GXT to volitional exhaustion, which may not always be well accepted by athletes or which should be avoided in some clinical populations. Consequently, numerous studies have proposed various sub-maximal exercise tests to predict V˙O2 max or V˙O2 peak . Because of the strong link between ratings of perceived exertion (RPE) and oxygen uptake (V˙O2), it has been proposed that the individual relationship between RPE and V˙O2 (RPE:V˙O2) can be used to predict V˙O2 max (or V˙O2 peak) from data measured during submaximal exercise tests. To predict V˙O2 max or V˙O2 peak from these linear regressions, two procedures may be identified: an estimation procedure or a production procedure. The estimation procedure is a passive process in which the individual is typically asked to rate how hard an exercise bout feels according to the RPE scale during each stage of a submaximal GXT. The production procedure is an active process in which the individual is asked to self-regulate and maintain an exercise intensity corresponding to a prescribed RPE. This procedure is referred to as a perceptually regulated exercise test (PRET). Recently, prediction of V˙O2max or V˙O2 peak from RPE:V˙O2 measured during both GXT and PRET has received growing interest. A number of studies have tested the validity, reliability and sensitivity of predicted V˙O2 max or V˙O2 peak from RPE:V˙O2 extrapolated to the theoretical V˙O2 max at RPE20 (or RPE19). This review summarizes studies that have used this predictive method during submaximal estimation or production procedures in various populations (i.e., sedentary individuals, athletes and pathological populations). The accuracy of the methods is

  7. FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL.

    PubMed

    Etzkorn, James R; McQuaide, Sarah C; Anderson, Judy B; Meldrum, Deirdre R; Parviz, Babak A

    2009-06-01

    We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing "single-cell" biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells.

  8. 78 FR 36768 - Battery Utility of Ohio, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... Energy Regulatory Commission Battery Utility of Ohio, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding, of Battery Utility of Ohio, LLC's application for market-based rate... authorization, under 18 CFR Part 34, of future issuances of securities and assumptions of liability. Any...

  9. Longitudinal Analyses of Geographic Differences in Utilization Rates of Children with Developmental Delays Who Participation in Early Intervention Services

    ERIC Educational Resources Information Center

    Lin, Jin-Ding; Chen, Yong-Chen; Chou, Yu-Ching

    2012-01-01

    The purposes of the present study were to describe the longitudinal utilization rates of participation in early intervention services of children with developmental delays, and to examine the geographical difference of services in this vulnerable population. We analyzed service utilization of the developmentally delayed children based on data of…

  10. Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations

    NASA Astrophysics Data System (ADS)

    Huguet, Arnaud; Meador, Travis B.; Laggoun-Défarge, Fatima; Könneke, Martin; Wu, Weichao; Derenne, Sylvie; Hinrichs, Kai-Uwe

    2017-04-01

    Interpretations of the abundance and distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) lipids have been increasingly applied to infer changes in paleoenvironment and to estimate terrigenous organic matter inputs into estuarine and marine sediments. However, only preliminary information is known regarding the ecology and physiology of the source organisms of these biomarkers. We assessed the production rates of brGDGTs under different redox conditions in peat, where these lipids are found in high concentrations, particularly at greater depths below the fluctuating water table. The incorporation of hydrogen relative to carbon into lipids observed in our dual stable isotope probing assay indicates that brGDGTs were produced by heterotrophic bacteria. Unexpectedly, incubations with stable isotope tracers of the surface horizon (5-20 cm) initiated under oxic conditions before turning suboxic and eventually anoxic exhibited up to one order of magnitude higher rates of brGDGT production (16-87 ng cm-3 y-1) relative to the deeper, anoxic zone (20-35 cm; ca. 7 ng cm-3 y-1), and anoxic incubations of the surface horizon (<3 ng cm-3 y-1). Turnover times of brGDGTs in the surface horizon ranged between 8 and 41 years in the incubations initiated under oxic conditions, in contrast to 123-742 years in anoxic incubations. As brGDGTs were actively produced during both anoxic incubations and those exposed to oxygen, we conclude that their source organisms are likely facultative aerobic heterotrophs that are particularly active in the peat acrotelm. Production rates of bacterial fatty acids (ca. 2 μg cm-3 y-1) were roughly two orders of magnitude higher than those of brGDGTs, suggesting that brGDGT producers are a minor constituent of the microbial community or that brGDGTs are a small component of the microbial cell membrane in comparison to fatty acids, despite the typically high brGDGT concentrations observed in peat. Multivariate analysis identified two

  11. Predictive Finite Rate Model for Oxygen-Carbon Interactions at High Temperature

    NASA Astrophysics Data System (ADS)

    Poovathingal, Savio

    An oxidation model for carbon surfaces is developed to predict ablation rates for carbon heat shields used in hypersonic vehicles. Unlike existing empirical models, the approach used here was to probe gas-surface interactions individually and then based on an understanding of the relevant fundamental processes, build a predictive model that would be accurate over a wide range of pressures and temperatures, and even microstructures. Initially, molecular dynamics was used to understand the oxidation processes on the surface. The molecular dynamics simulations were compared to molecular beam experiments and good qualitative agreement was observed. The simulations reproduced cylindrical pitting observed in the experiments where oxidation was rapid and primarily occurred around a defect. However, the studies were limited to small systems at low temperatures and could simulate time scales only of the order of nanoseconds. Molecular beam experiments at high surface temperature indicated that a majority of surface reaction products were produced through thermal mechanisms. Since the reactions were thermal, they occurred over long time scales which were computationally prohibitive for molecular dynamics to simulate. The experiments provided detailed dynamical data on the scattering of O, O2, CO, and CO2 and it was found that the data from molecular beam experiments could be used directly to build a model. The data was initially used to deduce surface reaction probabilities at 800 K. The reaction probabilities were then incorporated into the direct simulation Monte Carlo (DSMC) method. Simulations were performed where the microstructure was resolved and dissociated oxygen convected and diffused towards it. For a gas-surface temperature of 800 K, it was found that despite CO being the dominant surface reaction product, a gas-phase reaction forms significant CO2 within the microstructure region. It was also found that surface area did not play any role in concentration of

  12. Effects of pressure, oxygen concentration, and forced convection on flame spread rate of Plexiglas, Nylon and Teflon

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; Burkhardt, L. A.; Cochran, T. H.

    1974-01-01

    Experiments were conducted in which the burning of cylindrical materials in a flowing oxidant stream was studied. Plexiglas, Nylon, and Teflon fuel specimens were oriented such that the flames spread along the surface in a direction opposed to flowing gas. Correlations of flame spread rate were obtained that were power law relations in terms of pressure, oxygen concentration, and gas velocity.

  13. Effect of the oxygen transfer rate (OSR) on the formation of cellulases by Trichoderma viride in submersion culture

    SciTech Connect

    Skachova, H.; Gottvaldova, M.; Kucera, J.; Podrazky, V.

    1981-12-01

    The formation of cellulases by Trichoderma viride in a medium containing cellulose as a sole source of carbon depends on the oxygen transfer rate (OSR); the OSR, on the other hand, depends on the concentration of cellulose in the medium because the concentration of cellulose strongly affects the viscosity of the medium. In the work presented here, the dependence has been determined for the oxygen transfer rate on geometric relations and viscosity in cellulose-containing media during cultivation in shaken flasks, and the oxygen transfer rates on NRE, NG, and Na during cultivation in a laboratory fermentor of 3000-mL volume. Two cellulosic materials have been compared with a different effect on viscosity; microcrystalline beach cellulose and fibrous cellulose. It has been found that, in an applicable range of concentration, microcrystalline cellulose does not affect the oxygen transfer rate (at concentrations up to 3%). Fibrous cellulose increases the OSR during cultivation in shake flasks but decreases its during cultivation in fermentors. On the basis of these results, the optimizing has been carried out on the cultivation conditions in fermentors. (Refs. 50).

  14. Oxygen tension changes the rate of migration of human skin keratinocytes in an age-related manner.

    PubMed

    Ross, Caitlin; Alston, Myrissa; Bickenbach, Jackie R; Aykin-Burns, Nukhet

    2011-01-01

    Migration of keratinocytes to re-epithelialize wounds is a key step in dermal wound healing. In aged human skin, wound healing rates decrease and cellular damage by reactive oxygen species (ROS) accumulates. The relationship between age, ROS and human skin keratinocyte migration is not clearly understood. In this study, 4% and 21% oxygen tensions were used to modify levels of ROS produced by metabolism to model low and high oxidative stress conditions. When migration of keratinocytes from young and old primary skin was compared using an in vitro scratch assay, old keratinocytes migrated faster in high oxygen tension than did young keratinocytes, whereas young keratinocytes migrated faster in low oxygen tension. Although all young and old cells at the scratch margins showed intense increases in dihydroethidium oxidation immediately after scratching, the old keratinocytes grown at 21% oxygen demonstrated a greater decrease in the DHE oxidation following scratching and migrated the fastest. These results show that old and young keratinocytes respond to oxygen tension differently and support the hypothesis that keratinocyte migration is affected by the capacity to remove ROS.

  15. A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS

    SciTech Connect

    Zahid, H. J.; Dima, G. I.; Kewley, L. J.; Erb, D. K.; Dave, R.

    2012-09-20

    In this contribution, we present the first census of oxygen in star-forming galaxies in the local universe. We examine three samples of galaxies with metallicities and star formation rates (SFRs) at z = 0.07, 0.8, and 2.26, including the Sloan Digital Sky Survey (SDSS) and DEEP2 survey. We infer the total mass of oxygen produced and mass of oxygen found in the gas-phase from our local SDSS sample. The star formation history is determined by requiring that galaxies evolve along the relation between stellar mass and SFR observed in our three samples. We show that the observed relation between stellar mass and SFR for our three samples is consistent with other samples in the literature. The mass-metallicity relation is well established for our three samples, and from this we empirically determine the chemical evolution of star-forming galaxies. Thus, we are able to simultaneously constrain the SFRs and metallicities of galaxies over cosmic time, allowing us to estimate the mass of oxygen locked up in stars. Combining this work with independent measurements reported in the literature, we conclude that the loss of oxygen from the interstellar medium of local star-forming galaxies is likely to be a ubiquitous process with the oxygen mass loss scaling (almost) linearly with stellar mass. We estimate the total baryonic mass loss and argue that only a small fraction of the baryons inferred from cosmological observations accrete onto galaxies.

  16. Real‐time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device

    PubMed Central

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh

    2016-01-01

    Abstract Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real‐time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time‐course data for bulk and peri‐cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non‐invasive and label‐free approach. Additionally, we confirmed non‐invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell−1 s−1, and 5 and 35 amol cell−1 s−1 were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non‐invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell‐based therapies. PMID:27214658

  17. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device.

    PubMed

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh; Szita, Nicolas

    2016-09-01

    Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real-time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time-course data for bulk and peri-cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non-invasive and label-free approach. Additionally, we confirmed non-invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell(-1) s(-1) , and 5 and 35 amol cell(-1) s(-1) were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non-invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell-based therapies.

  18. Optically based quantification of absolute cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution in rodents

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Sakadžić, Sava; Vinogradov, Sergei A.; Boas, David A.

    2010-02-01

    Measuring oxygen delivery in brain tissue is important for identifying the pathophysiological changes associated with brain injury and various diseases such as cancer, stroke, and Alzheimer's disease. We have developed a multi-modal imaging system for minimally invasive measurement of cerebral oxygenation and blood flow in small animals with high spatial resolution. The system allows for simultaneous measurement of blood flow using Fourier-domain optical coherence tomography, and oxygen partial pressure (pO2) using either confocal or multiphoton phosphorescence lifetime imaging with exogenous porphyrin-based dyes sensitive to dissolved oxygen. Here we present the changes in pO2 and blood flow in superficial cortical vessels of Sprague Dawley rats in response to conditions such as hypoxia, hyperoxia, and functional stimulation. pO2 measurements display considerable heterogeneity over distances that cannot be resolved with more widely used oxygen-monitoring techniques such as BOLD-fMRI. Large increases in blood flow are observed in response to functional stimulation and hypoxia. Our system allows for quantification of cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution, providing a better understanding of metabolic dynamics during functional stimulation and under various neuropathologies. Ultimately, better insight into the underlying mechanisms of neuropathologies will facilitate the development of improved therapeutic strategies to minimize damage to brain tissue.

  19. Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?

    PubMed

    Boas, D A; Strangman, G; Culver, J P; Hoge, R D; Jasdzewski, G; Poldrack, R A; Rosen, B R; Mandeville, J B

    2003-08-07

    We have measured the changes in oxy-haemoglobin and deoxy-haemoglobin in the adult human brain during a brief finger tapping exercise using near-infrared spectroscopy (NIRS). The cerebral metabolic rate of oxygen (CMRO2) can be estimated from these NIRS data provided certain model assumptions. The change in CMRO2 is related to changes in the total haemoglobin concentration, deoxy-haemoglobin concentration and blood flow. As NIRS does not provide a measure of dynamic changes in blood flow during brain activation, we relied on a Windkessel model that relates dynamic blood volume and flow changes, which has been used previously for estimating CMRO2 from functional magnetic resonance imaging (fMRI) data. Because of the partial volume effect we are unable to quantify the absolute changes in the local brain haemoglobin concentrations with NIRS and thus are unable to obtain an estimate of the absolute CMRO2 change. An absolute estimate is also confounded by uncertainty in the flow-volume relationship. However, the ratio of the flow change to the CMRO2 change is relatively insensitive to these uncertainties. For the linger tapping task, we estimate a most probable flow-consumption ratio ranging from 1.5 to 3 in agreement with previous findings presented in the literature, although we cannot exclude the possibility that there is no CMRO2 change. The large range in the ratio arises from the large number of model parameters that must be estimated from the data. A more precise estimate of the flow-consumption ratio will require better estimates of the model parameters or flow information, as can be provided by combining NIRS with fMRI.

  20. Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?

    NASA Astrophysics Data System (ADS)

    Boas, D. A.; Strangman, G.; Culver, J. P.; Hoge, R. D.; Jasdzewski, G.; Poldrack, R. A.; Rosen, B. R.; Mandeville, J. B.

    2003-08-01

    We have measured the changes in oxy-haemoglobin and deoxy-haemoglobin in the adult human brain during a brief finger tapping exercise using near-infrared spectroscopy (NIRS). The cerebral metabolic rate of oxygen (CMRO2) can be estimated from these NIRS data provided certain model assumptions. The change in CMRO2 is related to changes in the total haemoglobin concentration, deoxy-haemoglobin concentration and blood flow. As NIRS does not provide a measure of dynamic changes in blood flow during brain activation, we relied on a Windkessel model that relates dynamic blood volume and flow changes, which has been used previously for estimating CMRO2 from functional magnetic resonance imaging (fMRI) data. Because of the partial volume effect we are unable to quantify the absolute changes in the local brain haemoglobin concentrations with NIRS and thus are unable to obtain an estimate of the absolute CMRO2 change. An absolute estimate is also confounded by uncertainty in the flow-volume relationship. However, the ratio of the flow change to the CMRO2 change is relatively insensitive to these uncertainties. For the finger tapping task, we estimate a most probable flow-consumption ratio ranging from 1.5 to 3 in agreement with previous findings presented in the literature, although we cannot exclude the possibility that there is no CMRO2 change. The large range in the ratio arises from the large number of model parameters that must be estimated from the data. A more precise estimate of the flow-consumption ratio will require better estimates of the model parameters or flow information, as can be provided by combining NIRS with fMRI.

  1. 40 CFR Table I-12 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing for... (Bijk) for Semiconductor Manufacturing for Use With the Stack Test Method (300 mm and 450 mm...

  2. 40 CFR Table I-11 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing for... (Bijk) for Semiconductor Manufacturing for Use With the Stack Test Method (150 mm and 200 mm...

  3. 40 CFR Table I-7 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for PV Manufacturing I Table I-7 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-7 Table...

  4. 40 CFR Table I-5 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for MEMS Manufacturing I Table I-5 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table...

  5. 40 CFR Table I-5 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for MEMS Manufacturing I Table I-5 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table...

  6. 40 CFR Table I-6 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates(Bijk) for LCD Manufacturing I Table I-6 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-6 Table...

  7. 40 CFR Table I-7 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for PV Manufacturing I Table I-7 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-7 Table...

  8. 40 CFR Table I-6 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for LCD Manufacturing I Table I-6 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-6 Table...

  9. Rate of three-body electron attachment to an oxygen molecule in a semi-self-maintained discharge

    NASA Astrophysics Data System (ADS)

    Krasiukov, A. G.; Naumov, V. G.; Shachkin, L. V.; Shashkov, V. M.

    1981-06-01

    The rate of three-body electron attachment to an oxygen molecule has been investigated in a semi-self-maintained discharge sustained by a fast electron beam in a mixture of O2:N2 = 1:20 at atmospheric pressure. Experimental results are in good agreement with theory. It is found that the attachment rate decreases with the increasing energy input, and a qualitative explanation of this effect is presented.

  10. Heart rate response to hypoxic exercise: role of dopamine D2-receptors and effect of oxygen supplementation.

    PubMed

    Lundby, C; Møller, P; Kanstrup, I L; Olsen, N V

    2001-10-01

    This study examined the effects of dopamine D(2)-receptor blockade on the early decrease in maximal heart rate at high altitude (4559 m). We also attempted to clarify the time-dependent component of this reduction and the extent to which it is reversed by oxygen breathing. Twelve subjects performed two consecutive maximal exercise tests, without and with oxygen supplementation respectively, at sea level and after 1, 3 and 5 days at altitude. On each study day, domperidone (30 mg; n=6) or no medication (n=6) was given 1 h before the first exercise session. Compared with sea level, hypoxia progressively decreased the maximal heart rate from day 1 and onwards; also, hypoxia by itself increased plasma noradrenaline levels after maximal exercise. Domperidone further increased maximal noradrenaline concentrations, but had no effect on maximal heart rate. On each study day at altitude, oxygen breathing completely reversed the decrease in maximal heart rate to values not different from those at sea level. In conclusion, dopamine D(2)-receptor blockade with domperidone demonstrates that hypoxic exercise in humans activates D(2)-receptors, resulting in a decrease in circulating levels of noradrenaline. However, dopamine D(2)-receptors are not involved in the hypoxia-induced decrease in the maximal heart rate. These data suggest that receptor uncoupling, and not down-regulation, of cardiac adrenoreceptors, is responsible for the early decrease in heart rate at maximal hypoxic exercise.

  11. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Vukmirovic, Miomir

    2012-11-13

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  12. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOEpatents

    Adzic, Radoslav [East Setauket, NY; Zhang, Junliang [Stony Brook, NY; Vukmirovic, Miomir [Port Jefferson Station, NY

    2011-11-22

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  13. Discovery of temporal and disease association patterns in condition-specific hospital utilization rates

    PubMed Central

    Haimovich, Julian S.; Venkatesh, Arjun K.; Coppi, Andreas; Li, Shu-Xia; Krumholz, Harlan M.

    2017-01-01

    Identifying temporal variation in hospitalization rates may provide insights about disease patterns and thereby inform research, policy, and clinical care. However, the majority of medical conditions have not been studied for their potential seasonal variation. The objective of this study was to apply a data-driven approach to characterize temporal variation in condition-specific hospitalizations. Using a dataset of 34 million inpatient discharges gathered from hospitals in New York State from 2008–2011, we grouped all discharges into 263 clinical conditions based on the principal discharge diagnosis using Clinical Classification Software in order to mitigate the limitation that administrative claims data reflect clinical conditions to varying specificity. After applying Seasonal-Trend Decomposition by LOESS, we estimated the periodicity of the seasonal component using spectral analysis and applied harmonic regression to calculate the amplitude and phase of the condition’s seasonal utilization pattern. We also introduced four new indices of temporal variation: mean oscillation width, seasonal coefficient, trend coefficient, and linearity of the trend. Finally, K-means clustering was used to group conditions across these four indices to identify common temporal variation patterns. Of all 263 clinical conditions considered, 164 demonstrated statistically significant seasonality. Notably, we identified conditions for which seasonal variation has not been previously described such as ovarian cancer, tuberculosis, and schizophrenia. Clustering analysis yielded three distinct groups of conditions based on multiple measures of seasonal variation. Our study was limited to New York State and results may not directly apply to other regions with distinct climates and health burden. A substantial proportion of medical conditions, larger than previously described, exhibit seasonal variation in hospital utilization. Moreover, the application of clustering tools yields groups

  14. Mitochondrial alternative oxidase acts to dampen the generation of active oxygen species during a period of rapid respiration induced to support a high rate of nutrient uptake.

    PubMed

    Yip, Justine Y. H.; Vanlerberghe, Greg C.

    2001-07-01

    When wild type (wt) tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) suspension cells were grown under phosphate (P) limitation, they contained large amounts of mitochondrial alternative oxidase (AOX). When these cells were resupplied with P, there was a large, immediate and sustained stimulation of respiration to support a period of rapid P uptake. Two lines of evidence suggest that the abundant level of AOX present in wt cells contributed to this stimulated rate of respiration. First, when P-limited transgenic antisense tobacco cells (AS8) lacking AOX were resupplied with P, the stimulation of respiration was much less dramatic even though these cells displayed similar rates of P uptake. Second, while the stimulated rate of respiration in AS8 cells was insensitive (as expected) to the AOX inhibitor n-propyl gallate (nPG), much of the stimulated rate of respiration in wt cells could be inhibited by nPG. Given the non-phosphorylating nature of AOX respiration, wt cells required higher rates of electron transport to O2 than AS8 cells to support similar rates of P uptake. The utilization of AOX by wt cells during P uptake was apparently not occurring because the cytochrome (Cyt) pathway alone could not fully support the rate of P uptake, as the respiration of cells lacking AOX (either untreated AS8 cells or wt cells treated with nPG) supported similar rates of P uptake as wt cells with abundant AOX. Rather, we provide in vivo evidence that the utilization of AOX during the period of high respiration supporting P uptake was to dampen the mitochondrial generation of active oxygen species (AOS).

  15. Vertical and horizontal eddy diffusivities and oxygen dissipation rate in the subtropical Northwest Pacific

    NASA Astrophysics Data System (ADS)

    Kawabe, Masaki

    2008-03-01

    KV and may form the maximum of KV at 2000-2500 m. The contribution of Rossby waves to KV should be examined further, although instability of the bottom current formed by Rossby waves was suggested. The diffusive pseudo-velocity Wd(≡-∂ KV/∂ z) is a downwelling of 0.5×10 -5 cm s -1 in the deep layer at A0-C0, which may depress vertical advection because of the upwelling of deep water. The value of KH decreases with increasing depth: 1.7×10 7 cm 2 s -1 at 750-2000 m, 3.5×10 6 at 2250-4000 m, and 7.3×10 5 at 4250-5000 m. The oxygen dissipation rate, estimated using the obtained KV and KH, also decreases with increasing depth; it is 0.33 ml l -1 year -1 at the oxygen minimum and 0.12, 0.020, and 0.0090 in the upper, middle, and lower deep layers, respectively. These values are larger than past results by 1 order of magnitude or more at depths less than 3750 m and a few times at depths greater than 4250 m.

  16. Managing the extracorporeal membrane oxygenation (ECMO) circuit integrity and safety utilizing the perfusionist as the "ECMO Specialist".

    PubMed

    Mongero, L B; Beck, J R; Charette, K A

    2013-11-01

    Extracorporeal membrane oxygenation (ECMO) is an extracorporeal technique of providing both cardiac and respiratory support to patients whose heart and lungs are so severely diseased or damaged that they can no longer serve their function. Neonatal and pediatric ECMO was accepted as practice in the early 1990s and according to the Extracorporeal Life Support Organization, ELSO; of the >50,000 patients registered, 73% have survived extracorporeal life support (ECLS). It is not uncommon to find initial cannulation of a patient receiving ECMO performed by a surgeon and then the maintenance of the patient being left in the hands of various others deemed as the "ECMO Specialists". The specialist has a broad base of professionals, including: nurses, respiratory therapists, perfusionists and physicians. Each institution, having its own unique training for these individuals, has provided a milieu for education, but does not share an established standard of care. From 2009, after the surge of the H1N1 epidemic, adult ECMO has been increasing; n=53 in 2010 to n=110 in 2012 at our institution. The perfusionist has been the "specialist" for ECMO at our institution since the early 1990s and remained at bedside during ECMO. We have now developed a safe circuit and fiscally responsible staffing model that utilizes a perfusionist and a telemetry-based electronic record keeper, permitting the perfusionist to leave the bedside and interact with the circuit when necessary. This has permitted an expansive growth of ECMO in our intensive care units at our facility incorporating a multidisciplinary collaboration system wide.

  17. Separating arterial and venous-related components of photoplethysmographic signals for accurate extraction of oxygen saturation and respiratory rate.

    PubMed

    Yousefi, Rasoul; Nourani, Mehrdad

    2015-05-01

    We propose an algorithm for separating arterial and venous-related signals using second-order statistics of red and infrared signals in a blind source separation technique. The separated arterial signal is used to compute accurate arterial oxygen saturation. We have also introduced an algorithm for extracting the respiratory pattern from the extracted venous-related signal. In addition to real-time monitoring, respiratory rate is also extracted. Our experimental results from multiple subjects show that the proposed separation technique is extremely useful for extracting accurate arterial oxygen saturation and respiratory rate. Specifically, the breathing rate is extracted with average root mean square deviation of 1.89 and average mean difference of -0.69.

  18. Interaction of root nodule size and oxygen pressure on the rate of nitrogen fixation by cowpea and peanut

    SciTech Connect

    Sen, D.; Weaver, R.W.

    1987-04-01

    Size and anatomical features of nodules influence the rate of O/sub 2/ diffusion into nodules. Availability of oxygen can be a limiting factor in nitrogen fixation. Larger nodules have thicker cortices and low surface to volume ratio leading to lower rates of gaseous diffusion. Increased oxygen pressure in the environment alters the rate of nitrogen fixation but the rate of change may depend on the nodule size. This was investigated by measuring /sup 15/N/sub 2/ incorporation into nodules. Root nodules from 38 day old cowpea and peanut plants were collected and sorted into size groups having diameters of >3 mm, 2-3 mm, and just below 2 mm. Samples of each size group were enclosed in tubes and exposed to various combination of oxygen (8-28%) and /sup 15/N/sub 2/. With higher O/sub 2/ pressure all nodules showed increased N/sub 2/ fixation but the largest nodules showed the maximum increase. Specific activity of larger nodules was higher for N/sub 2/ fixation. For the sizes of nodules examined the largest nodules did not reflect any of the disadvantages of the large size but the benefits of higher rates of O/sub 2/ entry was evident.

  19. Exercise limitations by the oxygen delivery and utilization systems in aging and disease: coordinated adaptation and deadaptation of the lung-heart muscle axis - a mini-review.

    PubMed

    Burtscher, Martin

    2013-01-01

    Cardiorespiratory fitness (aerobic exercise capacity) is one of the most important prerequisites for successful aging in human beings and depends on adequate oxygen transport by the respiratory and circulatory systems from environmental air to the working muscles and the efficient utilization of oxygen by the mitochondria. A linear dose-response relation between aerobic exercise capacity, morbidity, mortality, and quality of life is well documented. The process of normal aging is associated with a variable reduction in functional capacity of the main organs involved in oxygen delivery and utilization. Integrated changes of the heart-lung muscle axis are termed here 'coordinated deadaptation', e.g. due to aging and disease, in contrast to the beneficial effects of 'coordinated adaptation', e.g. resulting from exercise training. Physical inactivity in aging persons initiates a circulus vitiosus resulting in coordinated deadaptation of the oxygen delivery and utilization systems mainly affecting the heart-muscle axis. Whereas in the healthy elderly the deadaptation process starts from inactive locomotor muscles, the lung or the heart represent the origin in patients suffering from respiratory or cardiovascular diseases. Specific exercise training programs, considering the state of cardiorespiratory health and physical activity, are the most important and almost the only effective intervention to avoid or to break the circulus vitiosus, thereby promoting quality and expectancy of life in aging humans.

  20. The Initial Rate of C Substrate Utilization and Longer-Term Soil C Storage

    SciTech Connect

    Smith, Jeff L.; Bell, Jennifer M.; Bolton, Harvey; Bailey, Vanessa L.

    2007-12-01

    Increasing soil C storage is viewed as a legitimate mechanism to offset current increases in atmospheric CO2 from anthropogenic sources. However, microbial transformation and turnover of soil carbon inputs will influence the magnitude of net soil C storage. The purpose of this study was to investigate several simple model C compounds to determine their decomposition rates in soil and the relationship between their initial decomposition rate and longer-term C sequestration. Pure 14C compounds of glucose, acetate, arginine, oxalate, phenylalanine and urea were incubated in soil for 125 days at 24 and 34oC. Respired 14CO2 and specific activity was quantitatively measured every day for 15 days and residual soil 14C after 125 days. At both temperatures, the percent 14C remaining in the soil after 125 days of incubation was positively and significantly correlated with the percent substrate utilized in the first day. For the two temperatures, the correlation of total 14CO2 and specific activity was significant (R2=.86,.78) as was the percent remaining after 125 days (C34oC = 0.75 x C24oC, R2 = 0.90). The 14C in the microbial biomass ranged from 4-15% after 15 days and declined through day 125 contributing significantly to the 14C evolved. Priming of 12C SOM was negative at day 3 but became positive, reaching a maximum on day 12, the total increase in soil C from substrates was greater than the primed C. The data support the concept that the more rapidly a substrate is initially mineralized the more persistent it will be in the soil.

  1. Evaluating free vs bound oxygen on ignition of nano-aluminum based energetics leads to a critical reaction rate criterion

    NASA Astrophysics Data System (ADS)

    Zhou, Wenbo; DeLisio, Jeffery B.; Wang, Xizheng; Egan, Garth C.; Zachariah, Michael R.

    2015-09-01

    This study investigates the ignition of nano-aluminum (n-Al) and n-Al based energetic materials (nanothermites) at varying O2 pressures (1-18 atm), aiming to differentiate the effects of free and bound oxygen on ignition and to assess if it is possible to identify a critical reaction condition for ignition independent of oxygen source. Ignition experiments were conducted by rapidly heating the samples on a fine Pt wire at a heating rate of ˜105 °C s-1 to determine the ignition time and temperature. The ignition temperature of n-Al was found to reduce as the O2 pressure increased, whereas the ignition temperatures of nanothermites (n-Al/Fe2O3, n-Al/Bi2O3, n-Al/K2SO4, and n-Al/K2S2O8) had different sensitivities to O2 pressure depending on the formulations. A phenomenological kinetic/transport model was evaluated to correlate the concentrations of oxygen both in condensed and gaseous phases, with the initiation rate of Al-O at ignition temperature. We found that a constant critical reaction rate (5 × 10-2 mol m-2 s-1) for ignition exists which is independent to ignition temperature, heating rate, and free vs bound oxygen. Since for both the thermite and the free O2 reaction the critical reaction rate for ignition is the same, the various ignition temperatures are simply reflecting the conditions when the critical reaction rate for thermal runaway is achieved.

  2. The Utility of Maze Accurate Response Rate in Assessing Reading Comprehension in Upper Elementary and Middle School Students

    ERIC Educational Resources Information Center

    McCane-Bowling, Sara J.; Strait, Andrea D.; Guess, Pamela E.; Wiedo, Jennifer R.; Muncie, Eric

    2014-01-01

    This study examined the predictive utility of five formative reading measures: words correct per minute, number of comprehension questions correct, reading comprehension rate, number of maze correct responses, and maze accurate response rate (MARR). Broad Reading cluster scores obtained via the Woodcock-Johnson III (WJ III) Tests of Achievement…

  3. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins

    PubMed Central

    Neufeld-Cohen, Adi; Robles, Maria S.; Aviram, Rona; Manella, Gal; Adamovich, Yaarit; Ladeuix, Benjamin; Nir, Dana; Rousso-Noori, Liat; Kuperman, Yael; Golik, Marina; Mann, Matthias; Asher, Gad

    2016-01-01

    Mitochondria are major suppliers of cellular energy through nutrients oxidation. Little is known about the mechanisms that enable mitochondria to cope with changes in nutrient supply and energy demand that naturally occur throughout the day. To address this question, we applied MS-based quantitative proteomics on isolated mitochondria from mice killed throughout the day and identified extensive oscillations in the mitochondrial proteome. Remarkably, the majority of cycling mitochondrial proteins peaked during the early light phase. We found that rate-limiting mitochondrial enzymes that process lipids and carbohydrates accumulate in a diurnal manner and are dependent on the clock proteins PER1/2. In this conjuncture, we uncovered daily oscillations in mitochondrial respiration that peak during different times of the day in response to different nutrients. Notably, the diurnal regulation of mitochondrial respiration was blunted in mice lacking PER1/2 or on a high-fat diet. We propose that PERIOD proteins optimize mitochondrial metabolism to daily changes in energy supply/demand and thereby, serve as a rheostat for mitochondrial nutrient utilization. PMID:26862173

  4. Utilization Rates and Perceptions of (VCT) Services in Kisii Central District, Kenya

    PubMed Central

    Epule, Epule Terence; Mirielle, Moto Wase; Peng, Changhui; Nguh, Balgah Sounders; Nyagero, Josephat M.; Lakati, Alice; Mafany, Ndiva Mongoh

    2013-01-01

    Voluntary counseling and testing (VCT) services have been set up in most Districts in Kenya due to the rising surge of HIV/AIDS. However, the use of these services among married persons has not been fully explored. In Kissi, the issue of VCT is pressing as the rate of HIV prevalence is close to 3%. In 2006, about 20 000 clients came for VCT services in Kenya yet only 165 of these were married persons. In the Keumbu sub-district hospital, of the more than 1000 clients that came for VCT services, approximately 29% were married persons. This paper therefore aims at determining the utilization of VCT services by married persons in the study area. The qualitative data was obtained principally through two focus group discussions (FGDs) in which the respondents were asked to comment on their use of VCT services while the quantitative data was obtained from interviews with 245 respondents. The qualitative data was analyzed through verbatim transcription while for the quantitative data; the responses were coded and populated into SPSS from which the frequencies and percentages were calculated. The results show that actual use of the VCT services is low (28.1%) but slightly higher among female respondents than males. The low usage may be attributed to (a) fear of results, (b) death anxiety, (c) lack of confidentiality and lastly, (d) fear of stigmatization. Female respondents were found to have a greater awareness of VCT and thus its potential use. PMID:23283034

  5. Validity of using a 3-dimensional PET scanner during inhalation of 15O-labeled oxygen for quantitative assessment of regional metabolic rate of oxygen in man.

    PubMed

    Hori, Yuki; Hirano, Yoshiyuki; Koshino, Kazuhiro; Moriguchi, Tetsuaki; Iguchi, Satoshi; Yamamoto, Akihide; Enmi, Junichiro; Kawashima, Hidekazu; Zeniya, Tsutomu; Morita, Naomi; Nakagawara, Jyoji; Casey, Michael E; Iida, Hidehiro

    2014-09-21

    Use of 15O labeled oxygen (15O2) and positron emission tomography (PET) allows quantitative assessment of the regional metabolic rate of oxygen (CMRO2) in vivo, which is essential to understanding the pathological status of patients with cerebral vascular and neurological disorders. The method has, however, been challenging, when a 3D PET scanner is employed, largely attributed to the presence of gaseous radioactivity in the trachea and the inhalation system, which results in a large amount of scatter and random events in the PET assessment. The present study was intended to evaluate the adequacy of using a recently available commercial 3D PET scanner in the assessment of regional cerebral radioactivity distribution during an inhalation of 15O2. Systematic experiments were carried out on a brain phantom. Experiments were also performed on a healthy volunteer following a recently developed protocol for simultaneous assessment of CMRO2 and cerebral blood flow, which involves sequential administration of 15O2 and C15O2. A particular intention was to evaluate the adequacy of the scatter-correction procedures. The phantom experiment demonstrated that errors were within 3% at the practically maximum radioactivity in the face mask, with the greatest radioactivity in the lung. The volunteer experiment demonstrated that the counting rate was at peak during the 15O gas inhalation period, within a verified range. Tomographic images represented good quality over the entire FOV, including the lower part of the cerebral structures and the carotid artery regions. The scatter-correction procedures appeared to be important, particularly in the process to compensate for the scatter originating outside the FOV. Reconstructed images dramatically changed if the correction was carried out using inappropriate procedures. This study demonstrated that accurate reconstruction could be obtained when the scatter compensation was appropriately carried out. This study also suggested the

  6. Validity of using a 3-dimensional PET scanner during inhalation of 15O-labeled oxygen for quantitative assessment of regional metabolic rate of oxygen in man

    NASA Astrophysics Data System (ADS)

    Hori, Yuki; Hirano, Yoshiyuki; Koshino, Kazuhiro; Moriguchi, Tetsuaki; Iguchi, Satoshi; Yamamoto, Akihide; Enmi, Junichiro; Kawashima, Hidekazu; Zeniya, Tsutomu; Morita, Naomi; Nakagawara, Jyoji; Casey, Michael E.; Iida, Hidehiro

    2014-09-01

    Use of 15O labeled oxygen (15O2) and positron emission tomography (PET) allows quantitative assessment of the regional metabolic rate of oxygen (CMRO2) in vivo, which is essential to understanding the pathological status of patients with cerebral vascular and neurological disorders. The method has, however, been challenging, when a 3D PET scanner is employed, largely attributed to the presence of gaseous radioactivity in the trachea and the inhalation system, which results in a large amount of scatter and random events in the PET assessment. The present study was intended to evaluate the adequacy of using a recently available commercial 3D PET scanner in the assessment of regional cerebral radioactivity distribution during an inhalation of 15O2. Systematic experiments were carried out on a brain phantom. Experiments were also performed on a healthy volunteer following a recently developed protocol for simultaneous assessment of CMRO2 and cerebral blood flow, which involves sequential administration of 15O2 and C15O2. A particular intention was to evaluate the adequacy of the scatter-correction procedures. The phantom experiment demonstrated that errors were within 3% at the practically maximum radioactivity in the face mask, with the greatest radioactivity in the lung. The volunteer experiment demonstrated that the counting rate was at peak during the 15O gas inhalation period, within a verified range. Tomographic images represented good quality over the entire FOV, including the lower part of the cerebral structures and the carotid artery regions. The scatter-correction procedures appeared to be important, particularly in the process to compensate for the scatter originating outside the FOV. Reconstructed images dramatically changed if the correction was carried out using inappropriate procedures. This study demonstrated that accurate reconstruction could be obtained when the scatter compensation was appropriately carried out. This study also suggested the

  7. Atmospheric oxygen level affects growth trajectory, cardiopulmonary allometry and metabolic rate in the American alligator (Alligator mississippiensis).

    PubMed

    Owerkowicz, Tomasz; Elsey, Ruth M; Hicks, James W

    2009-05-01

    Recent palaeoatmospheric models suggest large-scale fluctuations in ambient oxygen level over the past 550 million years. To better understand how global hypoxia and hyperoxia might have affected the growth and physiology of contemporary vertebrates, we incubated eggs and raised hatchlings of the American alligator. Crocodilians are one of few vertebrate taxa that survived these global changes with distinctly conservative morphology. We maintained animals at 30 degrees C under chronic hypoxia (12% O(2)), normoxia (21% O(2)) or hyperoxia (30% O(2)). At hatching, hypoxic animals were significantly smaller than their normoxic and hyperoxic siblings. Over the course of 3 months, post-hatching growth was fastest under hyperoxia and slowest under hypoxia. Hypoxia, but not hyperoxia, caused distinct scaling of major visceral organs-reduction of liver mass, enlargement of the heart and accelerated growth of lungs. When absorptive and post-absorptive metabolic rates were measured in juvenile alligators, the increase in oxygen consumption rate due to digestion/absorption of food was greatest in hyperoxic alligators and smallest in hypoxic ones. Hyperoxic alligators exhibited the lowest breathing rate and highest oxygen consumption per breath. We suggest that, despite compensatory cardiopulmonary remodelling, growth of hypoxic alligators is constrained by low atmospheric oxygen supply, which may limit their food utilisation capacity. Conversely, the combination of elevated metabolism and low cost of breathing in hyperoxic alligators allows for a greater proportion of metabolised energy to be available for growth. This suggests that growth and metabolic patterns of extinct vertebrates would have been significantly affected by changes in the atmospheric oxygen level.

  8. Monitoring cerebral oxygen saturation during cardiopulmonary bypass using near-infrared spectroscopy: the relationships with body temperature and perfusion rate

    NASA Astrophysics Data System (ADS)

    Teng, Yichao; Ding, HaiShu; Gong, Qingcheng; Jia, Zaishen; Huang, Lan

    2006-03-01

    During cardiopulmonary bypass (CPB) because of weak arterial pulsation, near-IR spectroscopy (NIRS) is almost the only available method to monitor cerebral oxygenation noninvasively. Our group develops a NIRS oximeter to monitor regional cerebral oxygenation especially its oxygen saturation (rScO2). To achieve optimal coupling between the sensor and human brain, the distances between the light source and the detectors on it are properly chosen. The oximeter is calibrated by blood gas analysis, and the results indicate that its algorithm is little influenced by either background absorption or overlying tissue. We used it to measure the rScO2 of 15 patients during CPB. It is shown that rScO2 is negatively correlated with body temperature and positively with perfusion rate. There are two critical stages during CPB when rScO2 might be relatively low: one is the low-perfusion-rate stage, the other is the early rewarming stage. During cooling, the changes of total hemoglobin concentration (CtHb) compared with its original value is also monitored. It is shown that CtHb decreases to a small extent, which may mainly reflect cerebral vasoconstriction induced by cooling. All these results indicate that NIRS can be used to monitor cerebral oxygenation to protect cerebral tissue during CPB.

  9. Monitoring cerebral oxygen saturation during cardiopulmonary bypass using near-infrared spectroscopy: the relationships with body temperature and perfusion rate.

    PubMed

    Teng, Yichao; Ding, Haishu; Gong, Qingcheng; Jia, Zaishen; Huang, Lan

    2006-01-01

    During cardiopulmonary bypass (CPB) because of weak arterial pulsation, near-IR spectroscopy (NIRS) is almost the only available method to monitor cerebral oxygenation noninvasively. Our group develops a NIRS oximeter to monitor regional cerebral oxygenation especially its oxygen saturation (rScO2). To achieve optimal coupling between the sensor and human brain, the distances between the light source and the detectors on it are properly chosen. The oximeter is calibrated by blood gas analysis, and the results indicate that its algorithm is little influenced by either background absorption or overlying tissue. We used it to measure the rScO2 of 15 patients during CPB. It is shown that rScO2 is negatively correlated with body temperature and positively with perfusion rate. There are two critical stages during CPB when rScO2 might be relatively low: one is the low-perfusion-rate stage, the other is the early rewarming stage. During cooling, the changes of total hemoglobin concentration (C(tHb)) compared with its original value is also monitored. It is shown that C(tHb) decreases to a small extent, which may mainly reflect cerebral vasoconstriction induced by cooling. All these results indicate that NIRS can be used to monitor cerebral oxygenation to protect cerebral tissue during CPB.

  10. Outcome Rating Scale and Session Rating Scale in Psychological Practice: Clinical Utility of Ultra-Brief Measures

    ERIC Educational Resources Information Center

    Campbell, Alistair; Hemsley, Samantha

    2009-01-01

    The validity and reliability of the Outcome Rating Scale (ORS) and the Session Rating Scale (SRS) were evaluated against existing longer measures, including the Outcome Questionnaire-45, Working Alliance Inventory, Depression Anxiety Stress Scale-21, Quality of Life Scale, Rosenberg Self-Esteem Scale and General Self-efficacy Scale. The measures…

  11. Routine Metabolic Rate and Limiting Oxygen Concentration of Freshwater Prawn Macrobrachium rosenbergii Larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malaysian prawns, Macrobrachium rosenbergii, are hatched and raised indoors in small tanks. Prawns may be raised and shipped at high densities which could result in low dissolved oxygen (DO) conditions. Because DO may play an important role in prawn development and survival, we measured routine me...

  12. You say banana[hor ellipsis]. [Is there a difference between consumer and utility discount rates for energy efficiency

    SciTech Connect

    Cater, J.C. )

    1992-12-15

    In the debate over the efficacy of utility sponsored demand-side management (DSM) programs, some argue that vigorous efforts by utilities are not required. After all, the argument goes, DSM measures that are truly cost-effective from a consumer's point of view will be adopted through normal, relatively efficient free-market mechanisms. Others argue that active utility participation is necessary. They contend that, among other reasons, market barriers exist causing consumers to make decisions contrary to their own, or society's, best interests. One of these alleged market barriers is the discrepancy between the respective discount rates used by consumers and utilities to evaluate the life-cycle benefits of DSM measures. The apparent discrepancy is due, in large part, to an inappropriate comparison of discount rates measured on an inconsistent basis. When measured against a consistent frame of reference, the discrepancy is not nearly as large as some would suggest.

  13. The Effective Diffusion Coefficient of Dissolved Oxygen and Oxidation Rate of Pyrite by Dissolved Oxygen in Compacted Purified and Crude Sodium Bentonites in Carbonate Buffered Solution

    SciTech Connect

    Manaka, Mitsuo

    2003-09-15

    Immediately after the geological disposal of high-level radioactive waste, the oxygen initially existing in the repository is expected to strongly affect the redox condition of the near field. The oxygen dissolves in the groundwater, is transported by diffusion through it, and is consumed by the oxidation of pyrite as an impurity in bentonite. To assess the influence of the oxygen, this study was conducted to estimate the diffusion of dissolved oxygen (DO) and the rate of pyrite oxidation by DO in compacted purified and crude sodium bentonites (SBs) in more detail than the Manaka et al. study. The effective diffusion coefficient (De) of DO in the compacted purified SB was measured in low ionic strength solution (carbonate buffered solution with pH {approx} 9) using the electrochemical method. The empirical equation between De value of DO and dry density (0.5 x 10{sup 3}-1.8 x 10{sup 3} kg m{sup -3}) of purified SB was obtained as follows:De{sub DO}{sup Kunipia-F} = 8.2 {+-} 1.5 x 10{sup -10}x exp(-2.6 {+-} 0.2 x10{sup -3}{rho},where De{sub DO}{sup Kunipia-F} is the De of DO in compacted purified SB (Kunipia F) (m{sup 2} s{sup -1}) and {rho} is the dry density of the SB (kg m{sup -3}).On the other hand, the De value of DO in the compacted crude SB was estimated using the relationship between De values of tritiated water in compacted purified and crude SBs. The empirical equation between the De value of DO and dry density (0.5 x 10{sup 3}-1.8 x 10{sup 3} kg m{sup -3}) of crude SB was derived as follows:De{sub DO}{sup Kunigel-V1} = 2.04 x 10{sup -9} exp(-2.6 x 10{sup -3}{rho}),where De{sub DO}{sup Kunigel-V1} is the De of DO in compacted crude SB (Kunigel V1) (m{sup 2} s{sup -1}) and {rho} is the dry density of the SB (kg m{sup -3}).The rates of pyrite oxidation by DO were estimated from the experimental data in pyrite-purified SB systems using the obtained De values of DO. The relation between rate constant (k') of pyrite oxidation by DO and dry density ({rho}) of

  14. Relationship between heart rate variability, blood pressure and arterial wall properties during air and oxygen breathing in healthy subjects.

    PubMed

    Graff, Beata; Szyndler, Anna; Czechowicz, Krzysztof; Kucharska, Wiesława; Graff, Grzegorz; Boutouyrie, Pierre; Laurent, Stephane; Narkiewicz, Krzysztof

    2013-11-01

    Previous studies reported that normobaric hyperoxia influences heart rate, arterial pressure, cardiac output and systemic vascular resistance, but the mechanisms underlying these changes are still not fully understood. Several factors are considered including degeneration of endothelium-derived nitric oxide by reactive oxygen species, the impact of oxygen-free radicals on tissues and alterations of autonomic nervous system function. Recently, new devices for the detailed non-invasive assessment of large and small arteries have been developed. Therefore, the aim of our study was to assess heart rate variability (HRV) as a potential indicator of autonomic balance and its relation to blood pressure and vascular properties during medical air (MAB) and 100% oxygen breathing (OXB) in healthy volunteers. In 12 healthy subjects we assessed heart rate and blood pressure variability, baroreflex sensitivity, respiratory frequency, common carotid artery diameter and its wall distensibility, as well as changes in the digital artery pulse waveform, stroke index and systemic vascular resistance during MAB and OXB. Mean and systolic blood pressure have increased significantly while digital pulse amplitude and carotid artery diameter were significantly lower during hyperoxia. Heart rate variability measures did not differ during MAB and OXB. However, the correlations between spectral HRV components and those hemodynamic parameters which have changed due to hyperoxia varied substantially during MAB (correlated significantly) and OXB (no significant correlations were noted). Our findings suggest that autonomic nervous system might not be the main mediator of the cardiovascular changes during 100% oxygen breathing in healthy subjects. It seems that the direct vascular responses are initial consequences of hyperoxia and other cardiovascular parameter alterations are secondary to them.

  15. Ventilation rates and activity levels of juvenile jumbo squid under metabolic suppression in the oxygen minimum zone.

    PubMed

    Trübenbach, Katja; Pegado, Maria R; Seibel, Brad A; Rosa, Rui

    2013-02-01

    The Humboldt (jumbo) squid, Dosidicus gigas, is a part-time resident of the permanent oxygen minimum zone (OMZ) in the Eastern Tropical Pacific and, thereby, it encounters oxygen levels below its critical oxygen partial pressure. To better understand the ventilatory mechanisms that accompany the process of metabolic suppression in these top oceanic predators, we exposed juvenile D. gigas to the oxygen levels found in the OMZ (1% O(2), 1 kPa, 10 °C) and measured metabolic rate, activity cycling patterns, swimming mode, escape jet (burst) frequency, mantle contraction frequency and strength, stroke volume and oxygen extraction efficiency. In normoxia, metabolic rate varied between 14 and 29 μmol O(2) g(-1) wet mass h(-1), depending on the level of activity. The mantle contraction frequency and strength were linearly correlated and increased significantly with activity level. Additionally, an increase in stroke volume and ventilatory volume per minute was observed, followed by a mantle hyperinflation process during high activity periods. Squid metabolic rate dropped more than 75% during exposure to hypoxia. Maximum metabolic rate was not achieved under such conditions and the metabolic scope was significantly decreased. Hypoxia changed the relationship between mantle contraction strength and frequency from linear to polynomial with increasing activity, indicating that, under hypoxic conditions, the jumbo squid primarily increases the strength of mantle contraction and does not regulate its frequency. Under hypoxia, jumbo squid also showed a larger inflation period (reduced contraction frequency) and decreased relaxed mantle diameter (shortened diffusion pathway), which optimize oxygen extraction efficiency (up to 82%/34%, without/with consideration of 60% potential skin respiration). Additionally, they breathe 'deeply', with more powerful contractions and enhanced stroke volume. This deep-breathing behavior allows them to display a stable ventilatory volume per

  16. A surface work function measurement technique utilizing constant deflected grazing electron trajectories: oxygen uptake on Cu(001).

    PubMed

    Ermakov, A V; Ciftlikli, E Z; Syssoev, S E; Shuttleworth, I G; Hinch, B J

    2010-10-01

    We report on the application of a novel nondestructive in-vacuum technique for relative work function measurements, employing a grazing incidence electron deflection above a sample with a planar surface. Two deflected electron beam detectors are used as a position sensitive detector to control feedback to the sample potential as the sample work function changes. With feedback the sample potential exactly follows the surface sample-size averaged work function variation, so that the deflected beam trajectory remains stable. We also discuss methods to optimize the initial electron trajectories for this method, so as to minimize unwanted effects such as from uncontrolled external magnetic fields. As the electron beam does not impinge on the surface in this new technique electron induced desorption, ionization, dissociation, and/or decomposition is not induced at the interface. Importantly also the technique allows for free access to the surfaces enabling simultaneous deposition/evaporation and/or application of other surface characterization methods. We demonstrate its application in concurrent measurements of helium atom reflectivity and work function changes taking place during molecular oxygen exposure of a Cu(001) surface. A work function measurement sensitivity and stability is demonstrated at ∼10 mV at a sampling rate of 1 Hz and after application of an ∼7 s smoothing routine. In comparison to the helium atom reflectivity measurements, the work function measurements are more sensitive to the initial O uptake, and less so to the final coverage variations and possible surface reordering at higher O coverages.

  17. On the in vivo photochemical rate parameters for PDT reactive oxygen species modeling

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Ghogare, Ashwini A.; Greer, Alexander; Zhu, Timothy C.

    2017-03-01

    Photosensitizer photochemical parameters are crucial data in accurate dosimetry for photodynamic therapy (PDT) based on photochemical modeling. Progress has been made in the last few decades in determining the photochemical properties of commonly used photosensitizers (PS), but mostly in solution or in vitro. Recent developments allow for the estimation of some of these photochemical parameters in vivo. This review will cover the currently available in vivo photochemical properties of photosensitizers as well as the techniques for measuring those parameters. Furthermore, photochemical parameters that are independent of environmental factors or are universal for different photosensitizers will be examined. Most photosensitizers discussed in this review are of the type II (singlet oxygen) photooxidation category, although type I photosensitizers that involve other reactive oxygen species (ROS) will be discussed as well. The compilation of these parameters will be essential for ROS modeling of PDT.

  18. Relationship of efficiency indices with performance, heart rate, oxygen consumption, blood parameters, and estimated heat production in Nellore steers.

    PubMed

    Chaves, A S; Nascimento, M L; Tullio, R R; Rosa, A N; Alencar, M M; Lanna, D P

    2015-10-01

    The objective of this study was to examine the relationship of efficiency indices with performance, heart rate, oxygen consumption, blood parameters, and estimated heat production (EHP) in Nellore steers. Eighteen steers were individually lot-fed diets of 2.7 Mcal ME/kg DM for 84 d. Estimated heat production was determined using oxygen pulse (OP) methodology, in which heart rate (HR) was monitored for 4 consecutive days. Oxygen pulse was obtained by simultaneously measuring HR and oxygen consumption during a 10- to 15-min period. Efficiency traits studied were feed efficiency (G:F) and residual feed intake (RFI) obtained by regression of DMI in relation to ADG and midtest metabolic BW (RFI). Alternatively, RFI was also obtained based on equations reported by the NRC's to estimate individual requirement and DMI (RFI calculated by the NRC [1996] equation [RFI]). The slope of the regression equation and its significance was used to evaluate the effect of efficiency indices (RFI, RFI, or G:F) on the traits studied. A mixed model was used considering RFI, RFI, or G:F and pen type as fixed effects and initial age as a covariate. For HR and EHP variables, day was included as a random effect. There was no relationship between efficiency indices and back fat depth measured by ultrasound or daily HR and EHP ( > 0.05). Because G:F is obtained in relation to BW, the slope of G:F was positive and significant ( < 0.05). Regardless of the method used, efficient steers had lower DMI ( < 0.05). The initial LM area was indirectly related to RFI and RFI ( < 0.05); however, the final muscle area was related to only RFI. Oxygen consumption per beat was not related to G:F; however, it was lower for RFI- and RFI-efficient steers, and consequently, oxygen volume (mL·min·kg) and OP (μL O·beat·kg) were also lower ( < 0.05). Blood parameters were not related to RFI and RFI ( > 0.05); however, G:F-efficient steers showed lower hematocrit and hemoglobin concentrations ( < 0

  19. Monitoring the variations of the oxygen transfer rate in a full scale membrane bioreactor using daily mass balances.

    PubMed

    Racault, Y; Stricker, A-E; Husson, A; Gillot, S

    2011-01-01

    Oxygen transfer in biological wastewater treatment processes with high sludge concentration, such as membrane bioreactor (MBR), is an important issue. The variation of alpha-factor versus mixed liquor suspended solids (MLSS) concentration was investigated in a full scale MBR plant under process conditions, using mass balances. Exhaustive data from the Supervisory Control And Data Acquisition (SCADA) and from additional online sensors (COD, DO, MLSS) were used to calculate the daily oxygen consumption (OC) using a non-steady state mass balance for COD and total N on a 24-h basis. To close the oxygen balance, OC has to match the total oxygen transfer rate (OTRtot) of the system, which is provided by fine bubble (FB) diffusers in the aeration tank and coarse bubbles (CB) in separate membrane tanks. First assessing OTR(CB) then closing the balance OC = OTRtot allowed to calculate OTR(FB) and to fit an exponential relationship between OTR(FB) and MLSS. A comparison of the alpha-factor obtained by this balance method and by direct measurements with the off-gas method on the same plant is presented and discussed.

  20. A new method for on-line measurement of the volumetric oxygen uptake rate in membrane aerated animal cell cultures.

    PubMed

    Ducommun, P; Ruffieux, P; Furter, M; Marison, I; von Stockar, U

    2000-03-10

    Oxygen is a key substrate in animal cell metabolism and its consumption is thus a parameter of great interest for bioprocess monitoring and control. A system for measuring it based on an oxygen balance on the liquid phase was developed. The use of a gas-permeable membrane offered the possibility to provide the required quantity of oxygen into the culture, while avoiding problems of foaming or shear stress generally linked to sparging. This aeration system allowed moreover to keep a known and constant k(L)a value through cultures up to 400 h. Oxygen uptake rate (OUR) was measured on-line with a very good accuracy of +/-5%, and the specific OUR for a CHO cell line was determined during batch (growth phase) and continuous culture as, respectively, equal to 2. 85x10(-13) and 2.54x10(-13) mol O(2) cell(-1) h(-1). It was also shown that OUR continuous monitoring gives actually more information about the metabolic state of the culture than the cell concentration itself, especially during transition phases like the end of the growth phase in a batch culture.

  1. Kinetic modeling of hydrogen production rate by photoautotrophic cyanobacterium A. variabilis ATCC 29413 as a function of both CO2 concentration and oxygen production rate.

    PubMed

    Salleh, Siti Fatihah; Kamaruddin, Azlina; Uzir, Mohamad Hekarl; Mohamed, Abdul Rahman; Shamsuddin, Abdul Halim

    2017-02-07

    Hydrogen production by cyanobacteria could be one of the promising energy resources in the future. However, there is very limited information regarding the kinetic modeling of hydrogen production by cyanobacteria available in the literature. To provide an in-depth understanding of the biological system involved during the process, the Haldane's noncompetitive inhibition equation has been modified to determine the specific hydrogen production rate (HPR) as a function of both dissolved CO2 concentration (CTOT) and oxygen production rate (OPR). The highest HPR of 15 [Formula: see text] was found at xCO2 of 5% vol/vol and the rate consequently decreased when the CTOT and OPR were 0.015 k mol m(-3) and 0.55 mL h(-1), respectively. The model provided a fairly good estimation of the HPR with respect to the experimental data collected.

  2. Influence of oxygen flow rate on metal-insulator transition of vanadium oxide thin films grown by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Liu, Xinkun; Li, Haizhu; Zhang, Angran; Huang, Mingju

    2017-03-01

    High-quality vanadium oxide ( VO2) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO2 has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO2 thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm.

  3. Homogenous Electrocatalytic Oxygen Reduction Rates Correlate with Reaction Overpotential in Acidic Organic Solutions

    PubMed Central

    2016-01-01

    Improved electrocatalysts for the oxygen reduction reaction (ORR) are critical for the advancement of fuel cell technologies. Herein, we report a series of 11 soluble iron porphyrin ORR electrocatalysts that possess turnover frequencies (TOFs) from 3 s–1 to an unprecedented value of 2.2 × 106 s–1. These TOFs correlate with the ORR overpotential, which can be modulated by changing the E1/2 of the catalyst using different ancillary ligands, by changing the solvent and solution acidity, and by changing the catalyst’s protonation state. The overpotential is well-defined for these homogeneous electrocatalysts by the E1/2 of the catalyst and the proton activity of the solution. This is the first such correlation for homogeneous ORR electrocatalysis, and it demonstrates that the remarkably fast TOFs are a consequence of high overpotential. The correlation with overpotential is surprising since the turnover limiting steps involve oxygen binding and protonation, as opposed to turnover limiting electron transfer commonly found in Tafel analysis of heterogeneous ORR materials. Computational studies show that the free energies for oxygen binding to the catalyst and for protonation of the superoxide complex are in general linearly related to the catalyst E1/2, and that this is the origin of the overpotential correlations. This analysis thus provides detailed understanding of the ORR barriers. The best catalysts involve partial decoupling of the influence of the second coordination sphere from the properties of the metal center, which is suggested as new molecular design strategy to avoid the limitations of the traditional scaling relationships for these catalysts. PMID:27924314

  4. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek; Pim , Aristidou; Aristos , Rush; Brian

    2007-06-19

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  5. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim; Aristidou, Aristos; Rush, Brian

    2014-09-09

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  6. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim; Aristidou, Aristos; Rush, Brian J.

    2016-08-30

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  7. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim; Aristidou, Aristos; Rush, Brian

    2011-05-10

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  8. High-rate oxygen evolution reaction on Al-doped LiNiO2.

    PubMed

    Gupta, Asha; Chemelewski, William D; Buddie Mullins, C; Goodenough, John B

    2015-10-21

    LiNi0.8 Al0.2 O2 with a higher Ni(3+) /Li(+) ordering, synthesized by the solution-combustion method, gives oxygen-evolution-reaction (OER) activity in alkaline solution that is comparable to that of IrO2 . This confirms that the octahedral-site Ni(IV) /Ni(III) couple in an oxide is an active redox center for the OER with -redox energy pinned at the top of the O-2p bands.

  9. New Measurement of the Rate Coefficient for Three-Body Recombination of Oxygen Atoms in Presence of N2

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Pejaković, D. A.; Copeland, R. A.; Kalogerakis, K. S.

    2004-12-01

    In the atmospheres of Earth, Venus, and Mars photodissociation of O2 and CO2 produces oxygen atoms that eventually undergo three-body recombination: O + O + M -> O2* + M. The competition between photodissociation, recombination, and diffusive vertical transport controls the atomic and molecular composition of the mesosphere and lower thermosphere. Knowledge of the rate coefficient for recombination of atomic oxygen is essential for modeling atmospheric composition. The most recent measurement of O-atom recombination rate coefficient is over thirty years old [1]. The published values of this rate coefficient have large divergence for both M = O2 and M = N2. For N2 as the third body, the room temperature coefficient varies between about 3 × 10-33 cm6s-1, which is the value recommended in the combustion science community, and 5 × 10-33 cm6s-1, a value used in the atmospheric modeling community. Previous laboratory investigations [2] of the process O + O + N2 -> O2* + N2 shared the same basic approach, which was to use N2 discharge flow system with NO added downstream to generate O-atoms in the absence of O2 through the reaction N + NO -> O + N2. This approach is vulnerable to heterogeneous recombination and other processes that may obscure the reaction of interest, mostly due to the low O-atom densities and, consequently, long reaction times. We employ an F2 laser with up to 50 mJ of 157 nm pulsed output to achieve nearly complete photodissociation of molecular oxygen. In a high-pressure (760 Torr) background of N2 the oxygen atoms recombine in a time scale of several milliseconds. Oxygen atom population is monitored by detecting 845-nm fluorescence, which is induced by the 226 nm output of the second laser via a two-photon process O(2p4 3P) + 2hν -> O(2p33p ^3P). Our measurements give a preliminary value for the O + O + N_2 recombination rate coefficient of approximately 3 \\times 10^{-33} cm^6s^{-1}, which favors the value recommended in the combustion community

  10. Impacts of Western Area Power Administration`s power marketing alternatives on retail electricity rates and utility financial viability

    SciTech Connect

    Bodmer, E.; Fisher, R.E.; Hemphill, R.C.

    1995-03-01

    Changes in power contract terms for customers of Western`s Salt Lake City Area Office affect electricity rates for consumers of electric power in Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. The impacts of electricity rate changes on consumers are studied by measuring impacts on the rates charged by individual utility systems, determining the average rates in regional areas, and conducting a detailed rate analysis of representative utility systems. The primary focus is an evaluation of the way retail electricity rates for Western`s preference customers vary with alternative pricing and power quantity commitment terms under Western`s long-term contracts to sell power (marketing programs). Retail rate impacts are emphasized because changes in the price of electricity are the most direct economic effect on businesses and residences arising from different Western contractual and operational policies. Retail rates are the mechanism by which changes in cost associated with Western`s contract terms are imposed on ultimate consumers, and rate changes determine the dollar level of payments for electric power incurred by the affected consumers. 41 figs., 9 tabs.

  11. Rating Health and Social Indicators for Use with Indigenous Communities: A Tool for Balancing Cultural and Scientific Utility

    ERIC Educational Resources Information Center

    Daniel, Mark; Cargo, Margaret; Marks, Elisabeth; Paquet, Catherine; Simmons, David; Williams, Margaret; Rowley, Kevin; O'Dea, Kerin

    2009-01-01

    This study reports on the development and evaluation of a rating tool to assess the scientific utility and cultural appropriateness of community-level indicators for application with Indigenous populations. Indicator criteria proposed by the U.S. Institute of Medicine were culturally adapted through reviewing the literature and consultations with…

  12. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    NASA Astrophysics Data System (ADS)

    Green, Christopher T.; Jurgens, Bryant C.; Zhang, Yong; Starn, J. Jeffrey; Singleton, Michael J.; Esser, Bradley K.

    2016-12-01

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O2 reduction and denitrification (NO3- reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H (tritiogenic He), 14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3- and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that O2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O2 and NO3- reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Estimated historical NO3- trends were similar to historical measurements. Results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.

  13. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    USGS Publications Warehouse

    Green, Christopher T.; Jurgens, Bryant; Zhang, Yong; Starn, Jeffrey; Singleton, Michael J.; Esser, Bradley K.

    2016-01-01

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O2 reduction and denitrification (NO3− reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H (tritiogenic He),14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3− and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that O2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O2 and NO3− reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Estimated historical NO3− trends were similar to historical measurements. Results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.

  14. Charging/Discharging Nanomorphology Asymmetry and Rate-Dependent Capacity Degradation in Li-Oxygen Battery.

    PubMed

    Kushima, Akihiro; Koido, Tetsuya; Fujiwara, Yoshiya; Kuriyama, Nariaki; Kusumi, Nobuhiro; Li, Ju

    2015-12-09

    Liquid-cell in situ transmission electron microscopy (TEM) observations of the charge/discharge reactions of nonaqueous Li-oxygen battery cathode were performed with ∼5 nm spatial resolution. The discharging reaction occurred at the interface between the electrolyte and the reaction product, whereas in charging, the reactant was decomposed at the contact with the gold current collector, indicating that the lithium ion diffusivity/electronic conductivity is the limiting factor in discharging/charging, respectively, which is a root cause for the asymmetry in discharging/charging overpotential. Detachments of lithium oxide particles from the current collector into the liquid electrolyte are frequently seen when the cell was discharged at high overpotentials, with loss of active materials into liquid electrolyte ("flotsam") under minute liquid flow agitation, as the lithium peroxide dendritic trees are shown to be fragile mechanically and electrically. Our result implies that enhancing the binding force between the reaction products and the current collector to maintain robust electronic conduction is a key for improving the battery performance. This work demonstrated for the first time the in situ TEM observation of a three-phase-reaction involving gold electrode, lithium oxides, DMSO electrolyte and lithium salt, and O2 gas. The technique described in this work is not limited to Li-oxygen battery but also can be potentially used in other applications involving gas/liquid/solid electrochemical reactions.

  15. The Storekeeper Rating: New Concepts To Improve Training, Assignment, Performance, and Utilization.

    ERIC Educational Resources Information Center

    Sass, Del H.

    Storekeeper personnel skill and knowledge requirements are discussed in terms of training, identification, and utilization. Manual skills which predominate in the material handling functions of supply (storerooms and warehouses) are contrasted to the clerical skills which predominate in the administrative functions (inventory and financial…

  16. [Evaluation of heart impact in the 100 m extreme intensity sport using near-infrared non-invasive muscle oxygen detecting device and sports heart rate detection technology].

    PubMed

    Wang, Pei-Yong; Long, Fei-Xiao; Fu, Lan-Ying; Li, Yue; Ding, Hai-Shu; Qu, An-Lian; Zhou, Xiao-Ping

    2010-02-01

    Using continuous two wavelength near-infrared technology to detect the variation in the consistency of oxygen hemoglobin in the muscle and the sports heart rate wireless real time collection technology, we devised the real time muscle tissue oxygenation and instantaneous heart rate experiment scheme and implemented it for the process of the 100 m run with two parameters given simultaneously. The experiment shows that the concentration of the oxygen hemoglobin in the muscle tissue continues decreasing after the end of the 100 m run, and the time interval between the moment when the concentration of the oxygen hemoglobin attains the minimum value and the moment when the athletes finish the 100 m run is (6.65 +/- 1.10) sec; while the heart rate continues increasing after the end of the 100 m run, and the time interval between the moment when the heart rate attains the maximum value and the moment when the athletes finish the 100 m run is (8.00 +/- 1.57) sec. The results show that the two wavelength near-infrared tissue oxygenation detection technology and the sports heart rate real time collection equipment can accurately measure the sports tissue oxygenation and the heart rate in the extreme intensity sport, and reveal the process of muscle oxygen transportation and consumption and its dynamic character with the heart rate in the extreme intensity sport.

  17. Human Cells Cultured under Physiological Oxygen Utilize Two Cap-binding Proteins to recruit Distinct mRNAs for Translation.

    PubMed

    Timpano, Sara; Uniacke, James

    2016-05-13

    Translation initiation is a focal point of translational control and requires the binding of eIF4E to the 5' cap of mRNA. Under conditions of extreme oxygen depletion (hypoxia), human cells repress eIF4E and switch to an alternative cap-dependent translation mediated by a homolog of eIF4E, eIF4E2. This homolog forms a complex with the oxygen-regulated hypoxia-inducible factor 2α and can escape translation repression. This complex mediates cap-dependent translation under cell culture conditions of 1% oxygen (to mimic tumor microenvironments), whereas eIF4E mediates cap-dependent translation at 21% oxygen (ambient air). However, emerging evidence suggests that culturing cells in ambient air, or "normoxia," is far from physiological or "normal." In fact, oxygen in human tissues ranges from 1-11% or "physioxia." Here we show that two distinct modes of cap-dependent translation initiation are active during physioxia and act on separate pools of mRNAs. The oxygen-dependent activities of eIF4E and eIF4E2 are elucidated by observing their polysome association and the status of mammalian target of rapamycin complex 1 (eIF4E-dependent) or hypoxia-inducible factor 2α expression (eIF4E2-dependent). We have identified oxygen conditions where eIF4E is the dominant cap-binding protein (21% normoxia or standard cell culture conditions), where eIF4E2 is the dominant cap-binding protein (1% hypoxia or ischemic diseases and cancerous tumors), and where both cap-binding proteins act simultaneously to initiate the translation of distinct mRNAs (1-11% physioxia or during development and stem cell differentiation). These data suggest that the physioxic proteome is generated by initiating translation of mRNAs via two distinct but complementary cap-binding proteins.

  18. The relationship between oxygen consumption rate and viability of in vivo-derived pig embryos vitrified by the micro volume air cooling method.

    PubMed

    Sakagami, N; Nishida, K; Misumi, K; Hirayama, Y; Yamashita, S; Hoshi, H; Misawa, H; Akiyama, K; Suzuki, C; Yoshioka, K

    2016-01-01

    The aim of this study was to assess the viability of vitrified-warmed in vivo-derived pig embryos after measuring the oxygen consumption rate. Six days after artificial insemination, blastocysts were collected from gilts and vitrified by the micro volume air cooling method. The oxygen consumption rate was measured in 60 vitrified-warmed embryos, which were then cultured for 48h to assess the viability. The survival (re-expansion) rate of embryos after warming was 85.0%. The average oxygen consumption rate of embryos immediately after warming was greater in embryos which could re-expand during subsequent culture (F=0.75±0.04) than that in those which failed to re-expand (F=0.33±0.05). Moreover, the oxygen consumption rate of vitrified-warmed embryos was greater in the hatched (F=0.88±0.06) than that in the not-hatched group (F=0.53±0.04). When the oxygen consumption rate of the vitrified-warmed embryos and the numbers of viable and dead cells in embryos were determined, there was a positive correlation between the oxygen consumption rate and the number of live cells (P<0.01, r=0.538). A total of 29 vitrified embryos after warming and measuring the oxygen consumption rate were surgically transferred into uterine horns of two recipients. Both of the recipients become pregnant and farrowed 12 healthy piglets. These results demonstrate that the oxygen consumption rate of vitrified-warmed pig embryos can be related to the number of live cells and that the measurement of oxygen consumption of embryos after cryopreservation may be useful for estimating embryo survivability.

  19. The impact of dehydration rate on the production and cellular location of reactive oxygen species in an aquatic moss

    PubMed Central

    Cruz de Carvalho, Ricardo; Catalá, Myriam; Marques da Silva, Jorge; Branquinho, Cristina; Barreno, Eva

    2012-01-01

    Background and Aims The aquatic moss Fontinalis antipyretica requires a slow rate of dehydration to survive a desiccation event. The present work examined whether differences in the dehydration rate resulted in corresponding differences in the production of reactive oxygen species (ROS) and therefore in the amount of cell damage. Methods Intracellular ROS production by the aquatic moss was assessed with confocal laser microscopy and the ROS-specific chemical probe 2,7-dichlorodihydrofluorescein diacetate. The production of hydrogen peroxide was also quantified and its cellular location was assessed. Key Results The rehydration of slowly dried cells was associated with lower ROS production, thereby reducing the amount of cellular damage and increasing cell survival. A high oxygen consumption burst accompanied the initial stages of rehydration, perhaps due to the burst of ROS production. Conclusions A slow dehydration rate may induce cell protection mechanisms that serve to limit ROS production and reduce the oxidative burst, decreasing the number of damaged and dead cells due upon rehydration. PMID:22875812

  20. [Mass-transfer, utilization, and diffusion of oxygen in skeletal muscles of the stenohaline goby Gobius cobitus Pallas under conditions of hypoosmotic medium].

    PubMed

    Soldatov, A A

    2012-01-01

    Effect of hypoosmotic conditions of medium on oxygen regime of skeletal muscles of the stenohalin goby Gobius cobitus Pallas was studied under conditions of experiment. The control fish group was maintained at 12-14 %o, the experimental one - at 4.8-5.6 per thousand. Duration of the experiment - 44-45 days, water temperature - 15 +/- 1 degrees C, photoperiod - 12 day/12 night. It was established that under conditions of external hypoosmia there occurred hydration of the goby skeletal muscles and a decrease of their diffusion capability with respect to oxygen. The latter was accompanied by the tissue P(O2) decrease, which is indicated by low values of P(O2) in the venous blood outflowing from muscles. For the first 14-16 days of adaptation to the hypoosmotic medium there were restricted processes of mass transfer and oxygen utilization, which was associated with a decrease of the voluminous tissue blood flow and the blood oxygen concentration. These changes occurred on the background of the blood plasma hydration and a decrease of the number of circulated erythrocytes, and then they were completely compensated.

  1. Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy.

    PubMed

    Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St Lawrence, Keith

    2013-02-01

    Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268 ± 0.8340 mLO2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.

  2. Maximal oxygen consumption increases with temperature in the European eel (Anguilla anguilla) through increased heart rate and arteriovenous extraction

    PubMed Central

    Claësson, Débora; Wang, Tobias; Malte, Hans

    2016-01-01

    Global warming results in increasing water temperature, which may represent a threat to aquatic ectotherms. The rising temperature affects ecology through physiology, by exerting a direct limiting effect on the individual. The mechanism controlling individual thermal tolerance is still elusive, but some evidence shows that the heart plays a central role, and that insufficient transport of oxygen to the respiring tissues may determine the thermal tolerance of animals. In this study, the influence of the heart in thermal limitation was investigated by measurements of aerobic scope in the European eel (Anguilla anguilla) together with measurements of cardiac output during rest and activity. Aerobic capacity was not limited by an acutely increased temperature in the European eel. Oxygen demand was met by an increase in heart rate and arteriovenous extraction. These findings suggest that thermal tolerance during exposure to acute temperature changes is not defined by oxygen transport capacity in the eel, and other mechanisms may play a central role in limiting thermal tolerance in these fish. PMID:27766150

  3. Maximal oxygen consumption increases with temperature in the European eel (Anguilla anguilla) through increased heart rate and arteriovenous extraction.

    PubMed

    Claësson, Débora; Wang, Tobias; Malte, Hans

    2016-01-01

    Global warming results in increasing water temperature, which may represent a threat to aquatic ectotherms. The rising temperature affects ecology through physiology, by exerting a direct limiting effect on the individual. The mechanism controlling individual thermal tolerance is still elusive, but some evidence shows that the heart plays a central role, and that insufficient transport of oxygen to the respiring tissues may determine the thermal tolerance of animals. In this study, the influence of the heart in thermal limitation was investigated by measurements of aerobic scope in the European eel (Anguilla anguilla) together with measurements of cardiac output during rest and activity. Aerobic capacity was not limited by an acutely increased temperature in the European eel. Oxygen demand was met by an increase in heart rate and arteriovenous extraction. These findings suggest that thermal tolerance during exposure to acute temperature changes is not defined by oxygen transport capacity in the eel, and other mechanisms may play a central role in limiting thermal tolerance in these fish.

  4. Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St. Lawrence, Keith

    2013-02-01

    Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268±0.8340 mL O2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.

  5. Absolute rate parameters for the reaction of ground state atomic oxygen with carbonyl sulfide

    NASA Technical Reports Server (NTRS)

    Klemm, R. B.; Stief, L. J.

    1974-01-01

    The rate parameters for the reaction of O(3P) with carbonyl sulfide, O(3P) + OCS yields CO + SO, have been determined directly by monitoring O(3P) using the flash photolysis-resonance fluorescence technique. The value for reaction rate was measured over a temperature range of 263-502 K and the data were fitted to an Arrhenius expression with good linearity. A comparison of the present results with those from previous studies of this reaction is also presented.

  6. Individual surgeon mortality rates: can outliers be detected? A national utility analysis

    PubMed Central

    Drake, Thomas M; Shaw, Catherine A; Garden, O James; Wigmore, Stephen J

    2016-01-01

    Objectives There is controversy on the proposed benefits of publishing mortality rates for individual surgeons. In some procedures, analysis at the level of an individual surgeon may lack statistical power. The aim was to determine the likelihood that variation in surgeon performance will be detected using published outcome data. Design A national analysis surgeon-level mortality rates to calculate the level of power for the reported mortality rate across multiple surgical procedures. Setting The UK from 2010 to 2014. Participants Surgeons who performed colon cancer resection, oesophagectomy or gastrectomy, elective aortic aneurysm repair, hip replacement, bariatric surgery or thyroidectomy. Outcomes The likelihood of detecting an individual with a 30-day, 90-day or in-patient mortality rate of up to 5 times the national mean or median (as available). This was represented using a novel heat-map approach. Results Overall mortality rates for the procedures ranged from 0.07% to 4.5% and mean/median surgeon volume was between 23 and 75 cases. The national median case volume for colorectal (n=55) and upper gastrointestinal (n=23) cancer resections provides around 20% power to detect a mortality rate of 3 times the national median, while, for hip replacement, this is a rate 5 times the national average. At the mortality rates reported for thyroid (0.08%) and bariatric (0.07%) procedures, it is unlikely a surgeon would perform a sufficient number of procedures in his/her entire career to stand a good chance of detecting a mortality rate 5 times the national average. Conclusions At present, surgeons with increased mortality rates are unlikely to be detected. Performance within an expected mortality rate range cannot be considered reliable evidence of acceptable performance. Alternative approaches should focus on commonly occurring meaningful outcome measures, with infrequent events analysed predominately at the hospital level. PMID:27799243

  7. A Comparison of Dependent Primary Care Utilization Rates Based on Deployments

    DTIC Science & Technology

    2009-03-09

    Healthcare System (MHS), Dependents, Automated Staffing Model ( ASAM ), Primary Care 16. SECURITY CLASSIFICATION OF: a. REPORT U b. ABSTRACT U c. THIS...enrollees based on the Automated Staffing Assessment Model ( ASAM ) that the Army Medical Command (MEDCOM) uses to determine staffing requirements of...deployment. While the ASAM model helps to figure out the number of provider and support staff needed within the MEDCOM with an expected utilization

  8. Use of Isolated Mitochondria and Pulmonary Artery Endothelial Cell Systems in Studies of Oxygen Utilization and the Effects of Hemoglobin-Based Oxygen Carriers

    DTIC Science & Technology

    2008-07-16

    postpartum hemorrhage, while resulting in hemodynamic stability, led to oliguria and renal failure, and ultimately death (9, 10). Hence, due to a...preparations with either 13.5g/dl HbAo, metmyoglobin, or 3mM hydrogen peroxide led to depressed State 4 (resting) respiration rates, which were respectively

  9. Sensitivity Analysis of Corrosion Rate Prediction Models Utilized for Reinforced Concrete Affected by Chloride

    NASA Astrophysics Data System (ADS)

    Siamphukdee, Kanjana; Collins, Frank; Zou, Roger

    2013-06-01

    Chloride-induced reinforcement corrosion is one of the major causes of premature deterioration in reinforced concrete (RC) structures. Given the high maintenance and replacement costs, accurate modeling of RC deterioration is indispensable for ensuring the optimal allocation of limited economic resources. Since corrosion rate is one of the major factors influencing the rate of deterioration, many predictive models exist. However, because the existing models use very different sets of input parameters, the choice of model for RC deterioration is made difficult. Although the factors affecting corrosion rate are frequently reported in the literature, there is no published quantitative study on the sensitivity of predicted corrosion rate to the various input parameters. This paper presents the results of the sensitivity analysis of the input parameters for nine selected corrosion rate prediction models. Three different methods of analysis are used to determine and compare the sensitivity of corrosion rate to various input parameters: (i) univariate regression analysis, (ii) multivariate regression analysis, and (iii) sensitivity index. The results from the analysis have quantitatively verified that the corrosion rate of steel reinforcement bars in RC structures is highly sensitive to corrosion duration time, concrete resistivity, and concrete chloride content. These important findings establish that future empirical models for predicting corrosion rate of RC should carefully consider and incorporate these input parameters.

  10. Homogenous Electrocatalytic Oxygen Reduction Rates Correlate with Reaction Overpotential in Acidic Organic Solutions

    SciTech Connect

    Pegis, Michael L.; McKeown, Bradley A.; Kumar, Neeraj; Lang, Kai; Wasylenko, Derek J.; Zhang, X. Peter; Raugei, Simone; Mayer, James M.

    2016-10-28

    Improvement of electrocatalysts for the oxygen reduction reaction (ORR) is critical for the advancement of fuel cell technologies. Herein, we report a series of eleven soluble iron porphyrin ORR electrocatalysts that possess turnover frequencies (TOFs) from 3 s-1 to an unprecedented 2.2 x 106 s-1. These TOFs correlate with the ORR overpotential, which can be changed by modulating the ancillary ligand, by varying the reaction conditions or by changing the catalyst’s protonation state. This is the first such correlation for homogeneous ORR electrocatalysis, and it demonstrates that the remarkably fast TOFs are a consequence of the high overpotential. Computational studies indicate that the correlation is analogous to the volcano plot analysis developed for heterogeneous ORR materials. This unique parallel between homo- and heterogeneous ORR electrocatalysts allows a fundamental understanding of intrinsic barriers associated with the ORR, which can aid the design of new catalytic systems that operate at low overpotential. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Additional data is given in the Electronic Supporting Information.

  11. Rate of recombination of oxygen atoms and CO at temperatures below ambient

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.

    1974-01-01

    The measurements reported were conducted with 30.0 torr CO, 40.0 torr argon, and varying amounts of carbon dioxide from about 20 to 230 torr. Measurements were made at 277, 272, 263, and 257 K. The pseudo-first-order decay rate as a function of carbon dioxide pressure is shown in a graph. An Arrhenius plot for the rate constants obtained from the measurements is also presented. A value for the activation energy was determined on the basis of a linear least-squares fit to the data.

  12. A Comparison Between Ventilation and Heart Rate as Indicator of Oxygen Uptake During Different Intensities of Exercise

    PubMed Central

    Gastinger, Steven; Sorel, Anthony; Nicolas, Guillaume; Gratas-Delamarche, Arlette; Prioux, Jacques

    2010-01-01

    The aim of this study is to compare the relation between ventilation (VE) and oxygen uptake (VO2) [VO2=ƒ(VE)] and between heart rate (HR) and VO2 [VO2=ƒ(HR)]. Each one of the subjects performed three types of activities of different intensities (walking without load, walking with load and intermittent work). VO2, VE, and HR were measured continuously by using indirect calorimetry and an electrocardiogram. Linear regressions and coefficients of determination (r2) were calculated to compare the relation VO2 =ƒ(VE) and VO2 =ƒ(HR) for two different regroupings: by session duration (r2session) and by subject (r2subject). Results showed that r2session of the relation VO2 =ƒ(VE) were significantly higher than those of the relation VO2 =ƒ(HR) for steady state activities (walking with or without load during 3 or 6 min, p < 0.01) and for activities without oxygen consumption steady state (walking with or without load during 1 min, p < 0.01 and intermittent work, p < 0.05). VE is more strongly correlated with VO2 than with HR. This is a very promising approach to develop a new method to estimate energy expenditure. Key points Ventilation is more strongly correlated with oxygen uptake than heart rate during physical activities of different intensities. This study shows the interest to looking for ventilation to estimate energy expenditure. This study is a promising approach to develop a new method to estimate energy expenditure An interesting perspective could be to develop a light and portable device to measure ventilation based on the coupling of four magnetometers. PMID:24149394

  13. Performance of Regolith Feed Systems for Analog Field Tests of In-Situ Resource Utilization Oxygen Production Plants in Mauna Kea, Hawaii

    NASA Technical Reports Server (NTRS)

    Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.; Zacny, Kris A.; Craft, Jack

    2010-01-01

    This paper focuses on practical aspects of mechanical auger and pneumatic regolith conveying system feeding In-Situ Resource Utilization Oxygen production plants. The subsystems of these feedstock delivery systems include an enclosed auger device, pneumatic venturi educator, jet-lift regolith transfer, innovative electro-cyclone gas-particle separation/filtration systems, and compressors capable of dealing with hot hydrogen and/or methane gas re-circulating in the system. Lessons learned from terrestrial laboratory, reduced gravity and field testing on Mauna Kea Volcano in Hawaii during NASA lunar analog field tests will be discussed and practical design tips will be presented.

  14. Heart Rate and Oxygen Uptake Kinetics in Type 2 Diabetes Patients - A Pilot Study on the Influence of Cardiovascular Medication on Regulatory Processes.

    PubMed

    Koschate, Jessica; Drescher, Uwe; Baum, Klaus; Brinkmann, Christian; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2017-02-15

    The aim of this pilot study was to investigate whether there are differences in heart rate and oxygen uptake kinetics in type 2 diabetes patients, considering their cardiovascular medication. It was hypothesized that cardiovascular medication would affect heart rate and oxygen uptake kinetics and that this could be detected using a standardized exercise test. 18 subjects were tested for maximal oxygen uptake. Kinetics were measured in a single test session with standardized, randomized moderate-intensity work rate changes. Time series analysis was used to estimate kinetics. Greater maxima in cross-correlation functions indicate faster kinetics. 6 patients did not take any cardiovascular medication, 6 subjects took peripherally acting medication and 6 patients were treated with centrally acting medication. Maximum oxygen uptake was not significantly different between groups. Significant main effects were identified regarding differences in muscular oxygen uptake kinetics and heart rate kinetics. Muscular oxygen uptake kinetics were significantly faster than heart rate kinetics in the group with no cardiovascular medication (maximum in cross-correlation function of muscular oxygen uptake vs. heart rate; 0.32±0.08 vs. 0.25±0.06; p=0.001) and in the group taking peripherally acting medication (0.34±0.05 vs. 0.28±0.05; p=0.009) but not in the patients taking centrally acting medication (0.28±0.05 vs. 0.30±0.07; n.s.). It can be concluded that regulatory processes for the achievement of a similar maximal oxygen uptake are different between the groups. The used standardized test provided plausible results for heart rate and oxygen uptake kinetics in a single measurement session in this patient group.

  15. The utility of kindergarten teacher ratings for predicting low academic achievement in first grade.

    PubMed

    Teisl, J T; Mazzocco, M M; Myers, G F

    2001-01-01

    The purpose of this study was to assess the predictive value of kindergarten teachers' ratings of pupils for later first-grade academic achievement. Kindergarten students were rated by their teachers on a variety of variables, including math and reading performance, teacher concerns, and amount of learning relative to peers. These variables were then analyzed with respect to outcome measures for math and reading ability administered in the first grade. The teachers' ratings of academic performance were significantly correlated with scores on the outcome measures. Analyses were also carried out to determine sensitivity, specificity, and predictive values of the different teacher ratings. The results indicated high overall accuracy, sensitivity, specificity, and negative predictive value for the ratings. Positive predictive value tended to be lower. A recommendation to follow from these results is that teacher ratings of this sort be used to determine which children should receive cognitive screening measures to further enhance identification of children at risk for learning disability. However, this recommendation is limited by the lack of empirically supported screening measures for math disability versus well-supported screening tools for reading disability.

  16. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  17. Direct rate constant measurements for the reaction of ground-state atomic oxygen with ethylene, 244-1052 K

    SciTech Connect

    Klemm, R.B.; Nesbitt, F.L.; Skolnik, E.G.; Lee, J.H.; Smalley, J.F.

    1987-03-12

    The rate constant for the reaction of ground-state atomic oxygen with ethylene was determined by using two techniques: flash photolysis-resonance fluorescence (FP-RF, 244-1052 K) and discharge flow-resonance fluorescence (DF-RF, 298-1017 K). Kinetic complications due to the presence of molecular oxygen in the FP-RF experiments at high temperatures (T > 800 K) were overcome by using NO as the photolytic source of the O atoms. The rate constant, k/sub 1/ (T), derived in this study exhibits extreme non-Arrhenius behavior, but it can be successfully fit to the sum of exponentials expression, 244-1052 K, k/sub 1/(T) = (1.02 +/- 0.06) x 10/sup -11/ exp(-753 +/- 17 K/T) + (2.75 +/- 0.26) x 10/sup -10/ exp(-4220 +/- 550 K/T), in units of cm/sup 3/ molecule/sup -1/ s/sup -1/. Additionally, a fit of the results of this work to a simple transition-state theory expression and the comparison of these results with those of other workers are discussed.

  18. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

    PubMed

    Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi

    2015-12-01

    The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (<200μm) of the autotrophic PN granules. N2O production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule.

  19. Effect of thiamine pyrophosphate on levels of serum lactate, maximum oxygen consumption and heart rate in athletes performing aerobic activity.

    PubMed

    Bautista-Hernández, V M; López-Ascencio, R; Del Toro-Equihua, M; Vásquez, C

    2008-01-01

    The aim of this study was to determine the effect of thiamine pyrophosphate (TPP) on serum lactate levels, maximum oxygen consumption (Vo(2max)) and heart rate in male athletes performing aerobic activity. A double-blind, randomized, crossover study was performed in which lactate levels, Vo(2max) and heart rates in 27 male athletes were compared at rest and after exercise, following administration of placebo (sodium chloride 0.9%) or TPP (1 mg/kg). At rest, serum lactate levels after placebo or TPP were similar; however, after exercise, the levels were lower in the athletes after taking TPP than after placebo. During exercise, Vo(2max) in athletes on TPP was higher than on placebo. At rest, heart rate after taking placebo or TPP was similar but, after exercise, heart rate was lower after taking TPP than after placebo. It is concluded that TPP caused serum lactate levels and heart rate to be lower than placebo and Vo(2max) to be higher in athletes performing aerobic physical activity.

  20. Relation of rate of urine production to oxygen tension in small-for-gestational-age fetuses.

    PubMed

    Nicolaides, K H; Peters, M T; Vyas, S; Rabinowitz, R; Rosen, D J; Campbell, S

    1990-02-01

    Hourly fetal urine production rate was determined by real-time ultrasonography immediately before cordocentesis for blood gas analysis in 27 small-for-gestational-age fetuses at 20 to 37 weeks' gestation; in 14 cases there was associated oligohydramnios. The values were compared with those of 101 appropriate-for-gestational-age fetuses. The hourly fetal urine production rate was significantly lower in the small-for-gestational-age fetuses than in the appropriate-for-gestational-age fetuses. Furthermore, there was a significant correlation between the degree of decrease in urine production and both the degree of fetal hypoxemia and the degree of fetal smallness. There was no significant difference between the oligohydramnios and nonoligohydramnios groups in either the degree of decrease in urine production or the degree of fetal hypoxemia.

  1. Effective Utilization of Computerized Curricular Assistive Tools in Improving NCLEX-RN Pass Rates for a Baccalaureate Nursing Program.

    PubMed

    Shoemaker, Joy R; Chavez, Ruth A; Keane, Patricia; Butz, Susan; Yowler, Susan K

    2016-11-10

    Achieving satisfactory first-time pass rates on the national nursing licensure examination represents a challenge for nursing programs across the United States. The consequences of examination failure for first-time test takers can be devastating, both emotionally and financially. Nursing programs are evaluated by national higher-education credentialing bodies and state boards of nursing based on the first-time pass rate of their students. One Midwestern nursing program faced unsatisfactory first-time pass rates and developed strategies for improving first-time pass rates over a 3-year period. The nursing program utilized several strategies documented in the literature but found implementing computerized curricular assistive tools that complemented the nursing program's curriculum to be most effective. In addition, changing faculty and student culture on preparation for the national licensure examination was beneficial to all involved in the process.

  2. Unconventional Gas and Oil Drilling Is Associated with Increased Hospital Utilization Rates

    PubMed Central

    Neidell, Matthew; Chillrud, Steven; Yan, Beizhan; Stute, Martin; Howarth, Marilyn; Saberi, Pouné; Fausti, Nicholas; Penning, Trevor M.; Roy, Jason; Propert, Kathleen J.; Panettieri, Reynold A.

    2015-01-01

    Over the past ten years, unconventional gas and oil drilling (UGOD) has markedly expanded in the United States. Despite substantial increases in well drilling, the health consequences of UGOD toxicant exposure remain unclear. This study examines an association between wells and healthcare use by zip code from 2007 to 2011 in Pennsylvania. Inpatient discharge databases from the Pennsylvania Healthcare Cost Containment Council were correlated with active wells by zip code in three counties in Pennsylvania. For overall inpatient prevalence rates and 25 specific medical categories, the association of inpatient prevalence rates with number of wells per zip code and, separately, with wells per km2 (separated into quantiles and defined as well density) were estimated using fixed-effects Poisson models. To account for multiple comparisons, a Bonferroni correction with associations of p<0.00096 was considered statistically significant. Cardiology inpatient prevalence rates were significantly associated with number of wells per zip code (p<0.00096) and wells per km2 (p<0.00096) while neurology inpatient prevalence rates were significantly associated with wells per km2 (p<0.00096). Furthermore, evidence also supported an association between well density and inpatient prevalence rates for the medical categories of dermatology, neurology, oncology, and urology. These data suggest that UGOD wells, which dramatically increased in the past decade, were associated with increased inpatient prevalence rates within specific medical categories in Pennsylvania. Further studies are necessary to address healthcare costs of UGOD and determine whether specific toxicants or combinations are associated with organ-specific responses. PMID:26176544

  3. Unconventional Gas and Oil Drilling Is Associated with Increased Hospital Utilization Rates.

    PubMed

    Jemielita, Thomas; Gerton, George L; Neidell, Matthew; Chillrud, Steven; Yan, Beizhan; Stute, Martin; Howarth, Marilyn; Saberi, Pouné; Fausti, Nicholas; Penning, Trevor M; Roy, Jason; Propert, Kathleen J; Panettieri, Reynold A

    2015-01-01

    Over the past ten years, unconventional gas and oil drilling (UGOD) has markedly expanded in the United States. Despite substantial increases in well drilling, the health consequences of UGOD toxicant exposure remain unclear. This study examines an association between wells and healthcare use by zip code from 2007 to 2011 in Pennsylvania. Inpatient discharge databases from the Pennsylvania Healthcare Cost Containment Council were correlated with active wells by zip code in three counties in Pennsylvania. For overall inpatient prevalence rates and 25 specific medical categories, the association of inpatient prevalence rates with number of wells per zip code and, separately, with wells per km2 (separated into quantiles and defined as well density) were estimated using fixed-effects Poisson models. To account for multiple comparisons, a Bonferroni correction with associations of p<0.00096 was considered statistically significant. Cardiology inpatient prevalence rates were significantly associated with number of wells per zip code (p<0.00096) and wells per km2 (p<0.00096) while neurology inpatient prevalence rates were significantly associated with wells per km2 (p<0.00096). Furthermore, evidence also supported an association between well density and inpatient prevalence rates for the medical categories of dermatology, neurology, oncology, and urology. These data suggest that UGOD wells, which dramatically increased in the past decade, were associated with increased inpatient prevalence rates within specific medical categories in Pennsylvania. Further studies are necessary to address healthcare costs of UGOD and determine whether specific toxicants or combinations are associated with organ-specific responses.

  4. In-situ sediment oxygen demand rates in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, August-October 2009

    USGS Publications Warehouse

    Wilson, Timothy P.

    2014-01-01

    Sediment oxygen demand rates were measured in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, during August through October 2009. These rates were measured as part of an ongoing water-quality monitoring program being conducted in cooperation with the New Jersey Department of Environmental Protection. Oxygen depletion rates were measured using in-situ test chambers and a non-consumptive optical electrode sensing technique for measuring dissolved oxygen concentrations. Sediment oxygen demand rates were calculated on the basis of these field measured oxygen depletion rates and the temperature of the stream water at each site. Hammonton Creek originates at an impoundment, then flows through pine forest and agricultural fields, and receives discharge from a sewage-treatment plant. The streambed is predominantly sand and fine gravel with isolated pockets of organic-rich detritus. Sediment oxygen demand rates were calculated at four sites on Hammonton Creek and were found to range from -0.3 to -5.1 grams per square meter per day (g/m2/d), adjusted to 20 degrees Celsius. When deployed in pairs, the chambers produced similar values, indicating that the method was working as expected and yielding reproducible results. At one site where the chamber was deployed for more than 12 hours, dissolved oxygen was consumed linearly over the entire test period. Crosswicks Creek originates in a marshy woodland area and then flows through woodlots and pastures. The streambed is predominantly silt and clay with some bedrock exposures. Oxygen depletion rates were measured at three sites within the main channel of the creek, and the calculated sediment oxygen demand rates ranged from -0.33 to -2.5 g/m2/d, adjusted to 20 degrees Celsius. At one of these sites sediment oxygen demand was measured in both a center channel flowing area of a pond in the stream and in a stagnant non-flowing area along the shore of the pond where organic-rich bottom

  5. High-Rate Oxygen Reduction in Mixed Nonaqueous Electrolyte Containing Acetonitrile

    SciTech Connect

    Zheng D.; Yang X.; Qu D.

    2011-12-02

    A mixed nonaqueous electrolyte that contains acetonitrile and propylene carbonate (PC) was found to be suitable for a LiO2 battery with a metallic Li anode. Both the concentration and diffusion coefficient for the dissolved O2 are significantly higher in the mixed electrolyte than those in the pure PC electrolyte. A powder microelectrode was used to investigate the O2 solubility and diffusion coefficient. A 10 mA?cm-2 discharge rate on a gas-diffusion electrode is demonstrated by using the mixed electrolyte in a LiO2 cell.

  6. Prekindergarten Children's Executive Functioning Skills and Achievement Gains: The Utility of Direct Assessments and Teacher Ratings

    ERIC Educational Resources Information Center

    Fuhs, Mary Wagner; Farran, Dale Clark; Nesbitt, Kimberly Turner

    2015-01-01

    An accumulating body of evidence suggests that young children who exhibit greater executive functioning (EF) skills in early childhood also achieve more academically. The goal of the present study was to examine the unique contributions of direct assessments and teacher ratings of children's EF skills at the beginning of prekindergarten (pre-k) to…

  7. High temporal resolution MRI quantification of global cerebral metabolic rate of oxygen consumption in response to apneic challenge.

    PubMed

    Rodgers, Zachary B; Jain, Varsha; Englund, Erin K; Langham, Michael C; Wehrli, Felix W

    2013-10-01

    We present a technique for quantifying global cerebral metabolic rate of oxygen consumption (CMRO2) in absolute physiologic units at 3-second temporal resolution and apply the technique to quantify the dynamic CMRO2 response to volitional apnea. Temporal resolution of 3 seconds was achieved via a combination of view sharing and superior sagittal sinus-based estimation of total cerebral blood flow (tCBF) rather than tCBF measurement in the neck arteries. These modifications were first validated in three healthy adults and demonstrated to produce minimal errors in image-derived blood flow and venous oxygen saturation (SvO2) values. The technique was then applied in 10 healthy adults during an apnea paradigm of three repeated 30-second breath-holds. Subject-averaged baseline tCBF, arteriovenous oxygen difference (AVO2D), and CMRO2 were 48.6 ± 7.0 mL/100 g per minute, 29.4 ± 3.4 %HbO2, and 125.1 ± 11.4 μmol/100 g per minute, respectively. Subject-averaged maximum changes in tCBF and AVO2D were 43.5 ± 9.4% and -32.1 ± 5.7%, respectively, resulting in a small (6.0 ± 3.5%) but statistically significant (P=0.00044, two-tailed t-test) increase in average end-apneic CMRO2. This method could be used to investigate neurometabolic-hemodynamic relationships in normal physiology, to better define the biophysical origins of the BOLD signal, and to quantify neurometabolic responsiveness in diseases of altered neurovascular reactivity.

  8. Effect of Argon/Oxygen Flow Rate Ratios on DC Magnetron Sputtered Nano Crystalline Zirconium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Rani, D. Jhansi; Kumar, A. GuruSampath; Sarmash, T. Sofi; Chandra Babu Naidu, K.; Maddaiah, M.; Rao, T. Subba

    2016-06-01

    High transmitting, non absorbent, nano crystalline zirconium titanate (ZT) thin films suitable for anti reflection coatings (ARC) were deposited on to glass substrates by direct current (DC) magnetron reactive sputtering technique, under distinct Argon to Oxygen (Ar/O2) gas flow rate ratios of 31/1, 30/2, 29/3 and 28/4, with a net gas flow (Ar + O2) of 32sccm, at an optimum substrate temperature of 250°C. The influence of the gas mixture ratio on the film properties has been investigated by employing x-ray diffraction (XRD), ultra violet visible (UV-vis) spectroscopy, atomic force microscopy (AFM), energy dispersive x-ray analysis (EDX) and four point probe methods. The films showed a predominant peak at 30.85° with (111) orientation. The crystallite size reduced from 22.94 nm to 13.5 nm and the surface roughness increased from 11.53 nm to 50.58 nm with increase in oxygen content respectively. The films deposited at 31/1 and 30/2 showed almost similar chemical composition. Increased oxygen content results an increase in electrical resistivity from 3.59 × 103 to 2.1 × 106 Ωm. The film deposited at Ar/O2 of 28/4 exhibited higher average optical transmittance of 91%, but its refractive index is higher than that of what is required for ARC. The films deposited at 31/1 and 30/2 of Ar/O2 possess higher transmittance (low absorbance) apart from suitable refractive index. Thus, these films are preferable candidates for ARC.

  9. A Novel Layered Sedimentary Rocks Structure of the Oxygen-Enriched Carbon for Ultrahigh-Rate-Performance Supercapacitors.

    PubMed

    Zhang, Lin-Lin; Li, Huan-Huan; Shi, Yan-Hong; Fan, Chao-Ying; Wu, Xing-Long; Wang, Hai-Feng; Sun, Hai-Zhu; Zhang, Jing-Ping

    2016-02-17

    In this paper, gelatin as a natural biomass was selected to successfully prepare an oxygen-enriched carbon with layered sedimentary rocks structure, which exhibited ultrahigh-rate performance and excellent cycling stability as supercapacitors. The specific capacitance reached 272.6 F g(-1) at 1 A g(-1) and still retained 197.0 F g(-1) even at 100 A g(-1) (with high capacitance retention of 72.3%). The outstanding electrochemical performance resulted from the special layered structure with large surface area (827.8 m(2) g(-1)) and high content of oxygen (16.215 wt %), which effectively realized the synergistic effects of the electrical double-layer capacitance and pseudocapacitance. Moreover, it delivered an energy density of 25.3 Wh kg(-1) even with a high power density of 34.7 kW kg(-1) and ultralong cycling stability (with no capacitance decay even over 10,000 cycles at 2 A g(-1)) in a symmetric supercapacitor, which are highly desirable for their practical application in energy storage devices and conversion.

  10. Quantification of Low-Level Drug Effects Using Real-Time, in vitro Measurement of Oxygen Consumption Rate.

    PubMed

    Neal, Adam; Rountree, Austin M; Philips, Craig W; Kavanagh, Terrance J; Williams, Dominic P; Newham, Peter; Khalil, Gamal; Cook, Daniel L; Sweet, Ian R

    2015-12-01

    There is a general need to detect toxic effects of drugs during preclinical screening. We propose that increased sensitivity of xenobiotics toxicity combined with improved in vitro physiological recapitulation will more accurately assess potentially toxic perturbations of cellular biochemistry that are near in vivo pharmacological exposure levels. Importantly, measurement of such cytopathologies avoids activating mechanisms mediating toxicity at suprapharmacologic levels not relevant to in vivo effects. We present a sensitive method to measure changes in oxygen consumption rate (OCR), a well-established parameter reflecting a potential hazard, in response to exposure to pharmacologic levels of drugs using a flow culture system and state of the art oxygen sensing system. We tested metformin and acetaminophen on rat liver slices to illustrate the method. The features of the method include continuous and very stable measurement of OCR over the course of 48 h in liver slices in a continuous flow chamber with the ability to resolve changes as small as 0.3%/h. Kinetic modeling of metformin inhibition of OCR over a wide range of concentrations revealed both a slow and fast mechanism, where the fast mechanism activated only at concentrations above 0.6 mM. For both drugs, small amounts of inhibition were reversible, but higher decrements were irreversible. Overall the study highlights the advantages of measuring low-level toxicity so as to avoid the common extrapolations made about drug toxicity based on effects of drugs tested at suprapharmacologic levels.

  11. Factors controlling the growth rate, carbon and oxygen isotope variation in modern calcite precipitation in a subtropical cave, Southwest China

    NASA Astrophysics Data System (ADS)

    Pu, Junbing; Wang, Aoyu; Shen, Licheng; Yin, Jianjun; Yuan, Daoxian; Zhao, Heping

    2016-04-01

    A prerequisite for using cave speleothems to reconstruct palaeoenvironmental conditions is an accurate understanding of specific factors controlling calcite growth, in particular the isotopic partitioning of oxygen (δ18O) and carbon (δ13C) which are the most commonly used proxies. An in situ monitoring study from April 2008 to September 2009 at Xueyu Cave, Chongqing, SW China, provides insight into the controls on calcite growth rates, drip water composition, cave air parameters and δ18O and δ13C isotopic values of modern calcite precipitation. Both cave air PCO2 and drip water hydrochemical characteristics show obvious seasonality driven by seasonal changes in the external environment. Calcite growth rates also display clear intra-annual variation, with the lowest values occurring during wet season and peak values during the dry season. Seasonal variations of calcite growth rate are primarily controlled by variations of cave air PCO2 and drip water rate. Seasonal δ18O-VPDB and δ13C-VPDB in modern calcite precipitates vary, with more negative values in the wet season than in the dry season. Strong positive correlation of δ18O-VPDB vs. δ13C-VPDB is due to simultaneous enrichment of both isotopes in the calcite. This correlation indicates that kinetic fractionation occurs between parent drip water and depositing calcite, likely caused by the variations of cave air PCO2 and drip rate influenced by seasonal cave ventilation. Kinetic fractionation amplifies the equilibrium fractionation value of calcite δ18O (by ∼1.5‰) and δ13C (by ∼1.7‰), which quantitatively reflects surface conditions during the cave ventilation season. These results indicate that the cave monitoring of growth rate and δ18O and δ13C of modern calcite precipitation are necessary in order to use a speleothem to reconstruct palaeoenvironment.

  12. Self-rated health and health care utilization after military deployments.

    PubMed

    Trump, David H

    2006-07-01

    Self-rated general health is one element of the standard health assessment required of U.S. military service members upon completion of major deployments. A cohort study of 22,229 male U.S. Army and Air Force personnel returning from Europe or Southwest Asia in 2000 used survival analysis methods and Cox proportional hazard models to examine postdeployment self-rated health (SRH) status and subsequent hospitalization, separation, and ambulatory care visits. Self-rated health was fair/poor for 1.5% and good for 20.4%; 11% documented at least one health concern. During 30,433 person-years of follow-up (median, 1.5 person-years), there were 22.8 hospitalizations per 1,000 person-years and 4.0 ambulatory care visits per person-years. After adjustment, deployers with fair/poor SRH had an increased risk for hospitalization (hazard ratio [HRI, 1.6; 95% confidence interval [CI], 1.0,2.7); the risk was lower for those with good SRH (HR, 1.3; 95% CI,1.1,1.5). Deployers with fair/poor SRH health had an increased risk for illness-related ambulatory care visits (HR, 1.8, 95%; CI, 1.6,2.1) and administrative visits (HR, 1.4; 95% CI, 1.1,1.7), but not injury-related visits (HR, 1.2; 95% CI, 0.8,1.7). Self-reported low health status and other health concerns identify military members with higher levels of health care needs following return from major deployments.

  13. Effect of oxygen transfer rate on the composition of the pectolytic enzyme complex of Aspergillus niger

    SciTech Connect

    Zetelaki-Horvath, K.; Vas, K.

    1981-01-01

    Optimal agitation and aeration conditions (assuring O/sub 2/ transfer rates (OTR) of 12-179 mmol/L-h) were determined for pectin lyase (PL) synthesis of an Aspergillus niger strain. Components of the pectolytic enzyme complex were also investigated in order to determine whether their O/sub 2/ demand is identical with or different from that of pectin lyase. Should the latter be the case, a possibility would be given to produce enzyme complexes of different agitation and aeration conditions. The mycelium yield of Aspergillus niger was maximum at an OTR of 100 mmol/L-h. The yields of the various pectolytic enzymes reached maximum at different OTRs. PL production was highest (0.555 mumol/min-mL) at an OTR of 60 mmol/L-h. Endopolygalacturonase (PG) production has a maximum at OTR 49 mmol/L-h, with a 2nd peak at 100-135 mmol O2/L-h. Pectin esterase (PE) synthesis showed a maximum at an OTR of 12-14 mmol/L-h, while both apple juice clarifying and macerating activities gave 2 maximum at 14 and 60 mmol/L-h due to the optima of PE and endo-PG. Macerating activity showed a high value at OTR optimal for PL production as well.

  14. The influence of food intake and ambient temperature on the rate of thyroxine utilization.

    PubMed Central

    Ingram, D L; Kaciuba-Uscilko, H

    1977-01-01

    Young growing pigs of both sexes were subjected to changes in (1) energy intake, (2) ambient temperature, and (3) bulk of food. The rate of disappearance of injected 125I-labelled thyroxine from the plasma (K) was measured. An analysis of variance revealed that the effect attributable to changes in the energy content of the food intake was statistically significant (P less 0-01). A change in ambient temperature had no statistically significant effect on K, nor did a change in the bulk of food when energy intake was constant (P less than 0-05). PMID:903901

  15. Utility of late summer transient snowline migration rate on Taku Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Pelto, M.

    2011-12-01

    On Taku Glacier, Alaska a combination of field observations of snow water equivalent (SWE) from snowpits and probing in the vicinity of the transient snowline (TSL) are used to quantify the mass balance gradient. The balance gradient derived from the TSL and SWE measured in snowpits at 1000 m from 1998-2010 ranges from 2.6-3.8 mm m-1. Probing transects from 950 m-1100 m directly measure SWE and yield a slightly higher balance gradient of 3.3-3.8 mm m-1. The TSL on Taku Glacier is identified in MODIS and Landsat 4 and 7 Thematic Mapper images for 31 dates during the 2004-2010 period to assess the consistency of its rate of rise and reliability in assessing ablation for mass balance assessment. For example, in 2010, the TSL was 750 m on 28 July, 800 m on 5 August, 875 m on 14 August, 925 m on 30 August, and 975 m on 20 September. The mean observed probing balance gradient was 3.3 mm m-1, combined with the TSL rise of 3.7 m day-1 yields an ablation rate of 12.2 mm day-1 from mid-July to mid-Sept, 2010. The TSL rise in the region from 750-1100 m on Taku Glacier during eleven periods each covering more than 14 days during the ablation season indicates a mean TSL rise of 3.7 m day-1, the rate of rise is relatively consistent ranging from 3.1 to 4.4 m day-1. This rate is useful for ascertaining the final ELA if images or observations are not available near the end of the ablation season. The mean ablation from 750-1100 m during the July-September period determined from the TSL rise and the observed balance gradient is 11-13 mm day-1 on Taku Glacier during the 2004-2010 period. The potential for providing an estimate of bn from TSL observations late in the melt season from satellite images combined with the frequent availability of such images provides a means for efficient mass balance assessment in many years and on many glaciers.

  16. Promotion of melt-assisted growth in Bi-2223 tapes utilizing rapid heating rates

    NASA Astrophysics Data System (ADS)

    Avgeros, S.; Al-Mosawi, M.; Young, E. A.; Yang, Y.

    2005-04-01

    Recent differential thermal analysis studies on green Bi-2223 tapes showed two phase transitions, with onset temperatures 800 and 820 °C. From microstructural examination of the long-term phase formation in the tapes the higher temperature endotherm was associated with a partial melt. In this study it is demonstrated how control of the heating rate can promote the partial melt (characterized by DTA), and thereby improve the transport current, Ic. XRD, SEM and transport measurements in field show microstructure features typical of an increased volume of liquid phase: a reduction in secondary phase volume and pores with a corresponding increase in c-plane texture.

  17. Solar Energy Systems for Lunar Oxygen Generation

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  18. The Relationship between Oxygen A-band Photon Pathlength Distributions and 3D Structures of Heating Rate Profiles

    NASA Astrophysics Data System (ADS)

    Song, L.; Min, Q.

    2012-12-01

    Broadband heating directly drives the global atmospheric and oceanic circulation and its vertical profiles strongly depend upon cloud three-dimensional (3D) structures. Due to the complexity of cloud 3D problems and the difficulties in observations of broadband heating rate profiles (BBHRP), there are still large uncertainties in the relationship of clouds, radiation and climate feedback. Oxygen A-band photon pathlength distributions (PPLD) contain rich information about the 3D structures of clouds and BBHRP and can be observed by both ground based and space based measurements. Therefore, it is meaningful to explore the possibility of connecting A-band PPLD and BBHRP and consequently to describe the internal relationship between them together with the cloud 3D effects on BBHRP. A 3D Monte Carlo radiative transfer model is applied to simulate solar broadband heating rate profiles and oxygen A-band photon pathlength distributions of several ideal cloud fields and two typical cloud fields generated by cloud resolving model (CRM). Principal components (PCs) and the first four moments are selected to represent the vertical structures of BBHRP and PPLD, respectively. In ideal cloud fields, the moments show clear constraint to PCs of BBHRP. The results demonstrate the feasibility to describe the vertical structures of BBHRP by PPLD. The relationship between moments and PCs turns complicated in CRM cloud fields due to the composition of various 3D effects. However, detailed analysis still show that the moments, the PCs and total cloud optical depth are effective factors in defining BBHRP, especially for the vertical structures of relative low clouds. Further, a statistical fitting between the PCs and the moments by a two-layer neural network is applied to provide a quantitative representation of the linkages.

  19. In vitro measurements of oxygen consumption rates in hTERT-RPE cells exposed to low levels of red light

    NASA Astrophysics Data System (ADS)

    Wigle, Jeffrey C.; Castellanos, Cherry C.

    2016-03-01

    Exposure to 2.88 J/cm2 of red light induces an adaptive response against a lethal pulse of 2.0 μm laser radiation in hTERT-RPE cells in vitro, but not in a knockdown mutant for vascular endothelial growth factor c (VEGF-C). The generally accepted initiation sequence for photobiomodulation is that absorption of red light by cytochome c oxidase (CCOX) of the electron transport chain increases the binding affinity of CCOX for O2 vs. nitric oxide (NO). This results in displacement of NO by O2 in the active site of CCOX, thereby increasing cellular respiration and intracellular ATP. We've previously reported that red-light exposure induces a small, but consistently reproducible, increase in NO levels in these cells. But the relative importance of NO and oxidative phosphorylation is unclear because little is known about the relative contributions of NO and ATP to the response. However, if NO dissociation from CCOX actually increases oxidative phosphorylation, one should see a corresponding increase in oxygen consumption. A Seahorse Extracellular Flux Analyzer was used to measure oxygen consumption rates (OCR) in normal and mutant cells as a proxy for oxidative phosphorylation. Both basal respiration and maximum respiration rates in normal cells are significantly higher than in the mutant. The normal cells have a significant amount of "excess capacity," whereas the VEGF-C(KD) have little or none. The OCR in exposed normal cells is lower than in unexposed cells when measured immediately after exposure. The exposures used for these experiments had no effect on the OCR in mutant cells.

  20. The effects of perceiving color in living environment on QEEG, oxygen saturation, pulse rate, and emotion regulation in humans.

    PubMed

    Sroykham, Watchara; Wongsathikun, J; Wongsawat, Y

    2014-01-01

    Light and color have been shown to have substantial physical, psychological and sociological effects on humans. Hence, an investigation on the effect of changes in light and color to the biological signals is a challenging problem. Five participants were measured the oxygen saturation (SpO2), pulse rate, and quantitative electroencephalogram (QEEG) in six colors (white, blue, green, yellow, red and black) of living environment for 5 minutes per color. Then all participants were asked to answer the emotional questionnaire of BRUMS and color performance for each color environment. The results showed brain activity of high beta wave (25-30 Hz) that associated with alertness, agitation, mental activity, and general activation of mind and body functions (at frontal lobes and temporal lobes) in red and yellow colored rooms were higher than blue, green, white and black colored rooms, respectively. It also had the relationship with the psychological effect (BRUMS). The amplitude asymmetry of beta wave (12-25 Hz) was highly attenuated in warm color (red and yellow colored rooms), moderately attenuated in cool color (green and blue colored room) and little attenuated in white and black colored rooms. The BRUMS showed that red and yellow yielded significant effect on anger (F = 4.966, p = 0.002) and confusion (F=3.853, p=0.008). Red and green color yielded high effect on vigor. Green color did not affect the depression. Blue color yielded moderate effect on confusion, tension and fatigue. White and black colors yielded low effect on any mood, but black color had no effect on vigor. In addition, we cannot observe any significant changes of pulse rate and blood oxygen saturation in each color. The results can possibly be used as the recommendation to design the room for either normal people or patients.

  1. Vinasse added to dried sugar beet pulp: preference rate, voluntary intake, and digestive utilization in sheep.

    PubMed

    Fernández, B; Bodas, R; López-Campos, O; Andrés, S; Mantecón, A R; Giráldez, F J

    2009-06-01

    Three experiments were performed to study the nutritional characteristics of sugar beet pulp (SBP) according to the concentration of vinasse (condensed molasses solubles) added. Eighteen Merino ewes were used to study preference in Exp. 1, and 18 Merino ewes were used in Exp. 2 to study voluntary intake of SBP with different amounts of vinasse inclusion (0, 7, and 13% on a DM basis; SBP0, SBP7, and SPB13, respectively). Sheep showed a marked preference for SBP with vinasse, regardless of the amount of addition, whereas voluntary feed intake was not affected (P > 0.34). Eight ruminally cannulated Merino ewes were used in Exp. 3 to study rumen fermentation of SBP0 and SBP13. Regardless of the diet fed to the animals (SBP0 or SBP13), disappearance rates of DM, NDF, and CP were greater when SBP13, compared with SBP0, was incubated in sacco (P < 0.05), and NDF and CP disappearance rates were increased when animals were fed the SBP13 diet. No significant differences were observed for pH, ammonia concentration, or total or individual VFA in the ruminal liquor of sheep at different sampling times after feeding (P > 0.23) in response to vinasse addition. Experiment 4 was designed to study digestibility, solid passage rate, and excretion of purine derivatives from 12 Merino ewes fed SBP0 and SBP13. Digestibility of NDF tended to be greater (P < 0.10) for the SBP13 group compared with the SBP0 group; digestibilities of DM, OM, CP, and ADF were not affected (P > 0.11). Digesta flow kinetics and urinary excretion of purine derivatives were not significantly affected by the presence (SBP13) or absence (SBP0) of vinasse in the diet (P > 0.21). In conclusion, sheep showed a clear preference for SBP with vinasse. However, the lack of significant differences in most of the in vivo variables measured indicates that ewes can be satisfactorily fed with any of the amounts of vinasse inclusion studied.

  2. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions.

    PubMed

    Quinlan, Casey L; Orr, Adam L; Perevoshchikova, Irina V; Treberg, Jason R; Ackrell, Brian A; Brand, Martin D

    2012-08-03

    Respiratory complex II oxidizes succinate to fumarate as part of the Krebs cycle and reduces ubiquinone in the electron transport chain. Previous experimental evidence suggested that complex II is not a significant contributor to the production of reactive oxygen species (ROS) in isolated mitochondria or intact cells unless mutated. However, we find that when complex I and complex III are inhibited and succinate concentration is low, complex II in rat skeletal muscle mitochondria can generate superoxide or H(2)O(2) at high rates. These rates approach or exceed the maximum rates achieved by complex I or complex III. Complex II generates these ROS in both the forward reaction, with electrons supplied by succinate, and the reverse reaction, with electrons supplied from the reduced ubiquinone pool. ROS production in the reverse reaction is prevented by inhibition of complex II at either the ubiquinone-binding site (by atpenin A5) or the flavin (by malonate), whereas ROS production in the forward reaction is prevented by malonate but not by atpenin A5, showing that the ROS from complex II arises only from the flavin site (site II(F)). We propose a mechanism for ROS production by complex II that relies upon the occupancy of the substrate oxidation site and the reduction state of the enzyme. We suggest that complex II may be an important contributor to physiological and pathological ROS production.

  3. Video rate passive millimeter-wave imager utilizing optical upconversion with improved size, weight, and power

    NASA Astrophysics Data System (ADS)

    Martin, Richard D.; Shi, Shouyuan; Zhang, Yifei; Wright, Andrew; Yao, Peng; Shreve, Kevin P.; Schuetz, Christopher A.; Dillon, Thomas E.; Mackrides, Daniel G.; Harrity, Charles E.; Prather, Dennis W.

    2015-05-01

    In this presentation we will discuss the performance and limitations of our 220 channel video rate passive millimeter wave imaging system based on a distributed aperture with optical upconversion architecture. We will cover our efforts to reduce the cost, size, weight, and power (CSWaP) requirements of our next generation imager. To this end, we have developed custom integrated circuit silicon-germanium (SiGe) low noise amplifiers that have been designed to efficiently couple with our high performance lithium niobate upconversion modules. We have also developed millimeter wave packaging and components in multilayer liquid crystal polymer (LCP) substrates which greatly improve the manufacturability of the upconversion modules. These structures include antennas, substrate integrated waveguides, filters, and substrates for InP and SiGe mmW amplifiers.

  4. Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures

    NASA Technical Reports Server (NTRS)

    Makikallio, T. H.; Ristimae, T.; Airaksinen, K. E.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.

    1998-01-01

    Dynamic analysis techniques may uncover abnormalities in heart rate (HR) behavior that are not easily detectable with conventional statistical measures. However, the applicability of these new methods for detecting possible abnormalities in HR behavior in various cardiovascular disorders is not well established. Conventional measures of HR variability were compared with short-term (< or = 11 beats, alpha1) and long-term (> 11 beats, alpha2) fractal correlation properties and with approximate entropy of RR interval data in 38 patients with stable angina pectoris without previous myocardial infarction or cardiac medication at the time of the study and 38 age-matched healthy controls. The short- and long-term fractal scaling exponents (alpha1, alpha2) were significantly higher in the coronary patients than in the healthy controls (1.34 +/- 0.15 vs 1.11 +/- 0.12 [p <0.001] and 1.10 +/- 0.08 vs 1.04 +/- 0.06 [p <0.01], respectively), and they also had lower approximate entropy (p <0.05), standard deviation of all RR intervals (p <0.01), and high-frequency spectral component of HR variability (p <0.05). The short-term fractal scaling exponent performed better than other heart rate variability parameters in differentiating patients with coronary artery disease from healthy subjects, but it was not related to the clinical or angiographic severity of coronary artery disease or any single nonspectral or spectral measure of HR variability in this retrospective study. Patients with stable angina pectoris have altered fractal properties and reduced complexity in their RR interval dynamics relative to age-matched healthy subjects. Dynamic analysis may complement traditional analyses in detecting altered HR behavior in patients with stable angina pectoris.

  5. Nitrogen utilization in growing lambs: effects of grain (starch) and protein sources with various rates of ruminal degradation.

    PubMed

    Matras, J; Bartle, S J; Preston, R L

    1991-01-01

    The potential interaction between grain (starch) and protein sources with varying ruminal degradation rates on N utilization in growing lambs was evaluated. Three grain sources with varying ruminal degradation rates, (barley greater than steam-flaked sorghum [SFSG] greater than dry-rolled sorghum [DRSG]) and three protein sources (urea greater than a 50:25:25 mixture of urea: blood meal:corn gluten meal [N basis, U/BC] greater than 50:50 mixture of meal:corn gluten meal [N basis, BC]), were evaluated in a 3 x 3 factorial arrangement. Supplemental protein sources provided 33% of dietary N (CP = 11.0%). For each grain-protein combination, a 3 x 3 Latin square metabolism trial was conducted using two sets of three lambs and three periods. Within-square treatments were 1.4, 1.7 and 2.0 times maintenance intake levels. No interactions were observed (P greater than .2) between dietary treatments and intake level. Grain sources did not differ (P greater than .2) in N balance or the proportion of N retained. Lambs fed urea diets retained less N (3.6 vs 4.2 and 4.1 g/d for urea vs U/BC and BC, respectively; linear, P = .07; quadratic, P = .12) and utilized N less efficiently (43.1 vs 51.9 and 52.5%, respectively; linear, P less than .001; quadratic, P = .10) than lambs fed BC diets. The grain x protein interaction was significant for most variables. Nitrogen utilization was most efficient (24 to 27% of N intake retained) when rapidly degraded sources (barley and urea) and slowly degraded sources (sorghum and BC) were fed together or when U/BC was the supplemental protein source (interaction P less than .08). An advantage was found for selection of starch and protein sources with similar ruminal degradation rates.

  6. The relationship of oxygen uptake rate and k(L)a with rheological properties in high cell density cultivation of docosahexaenoic acid by Schizochytrium sp. S31.

    PubMed

    Chang, Guifang; Wu, Juan; Jiang, Cuihong; Tian, Guiwei; Wu, Qinghang; Chang, Ming; Wang, Xingguo

    2014-01-01

    Three independent cultures by fed batch strategy under different oxygen supply levels were investigated with Schizochytrium sp. S31 on glycerol in 50 L bioreactor. Three cultures all achieved high cell density cultivation (HCDC) with more than 100 g/L biomass density. However, the culture with middle oxygen supply level achieved the highest DHA concentration at 21.26 g/L. Dissolved oxygen (DO) limitation was commonly encountered in the present cultures, which was due to the dramatic decrease of kLa in high oxygen supply culture resulted from significantly increasing apparent viscosity of the broth. The rheological properties of the three cultures all exhibited shear-thinning behavior. The oxygen uptake rate (OUR) predominately influenced by kLa was suggested to replace DO as on-line control parameter for scale-up production of DHA.

  7. Strain energy release rate as a function of temperature and preloading history utilizing the edge delamination fatique test method

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1989-01-01

    Static laminate and tension-tension fatigue tests of IM7/8551-7 composite materials was performed. The Edge Delamination Test (EDT) was utilized to evaluate the temperature and preloading history effect on the critical strain energy release rate. Static and fatigue testing was performed at room temperature and 180 F (82 C). Three preloading schemes were used to precondition fatigue test specimens prior to performing the normal tension-tension fatigue EDT testing. Computer software was written to perform all fatigue testing while monitoring the dynamic modulus to detect the onset of delamination and record the test information for later retrieval and reduction.

  8. Source Anonymity in WSNs against Global Adversary Utilizing Low Transmission Rates with Delay Constraints

    PubMed Central

    Bushnag, Anas; Abuzneid, Abdelshakour; Mahmood, Ausif

    2016-01-01

    Wireless sensor networks (WSN) are deployed for many applications such as tracking and monitoring of endangered species, military applications, etc. which require anonymity of the origin, known as Source Location Privacy (SLP). The aim in SLP is to prevent unauthorized observers from tracing the source of a real event by analyzing the traffic in the network. Previous approaches to SLP such as Fortified Anonymous Communication Protocol (FACP) employ transmission of real or fake packets in every time slot, which is inefficient. To overcome this shortcoming, we developed three different techniques presented in this paper. Dummy Uniform Distribution (DUD), Dummy Adaptive Distribution (DAD) and Controlled Dummy Adaptive Distribution (CAD) were developed to overcome the anonymity problem against a global adversary (which has the capability of analyzing and monitoring the entire network). Most of the current techniques try to prevent the adversary from perceiving the location and time of the real event whereas our proposed techniques confuse the adversary about the existence of the real event by introducing low rate fake messages, which subsequently lead to location and time privacy. Simulation results demonstrate that the proposed techniques provide reasonable delivery ratio, delay, and overhead of a real event's packets while keeping a high level of anonymity. Three different analysis models are conducted to verify the performance of our techniques. A visualization of the simulation data is performed to confirm anonymity. Further, neural network models are developed to ensure that the introduced techniques preserve SLP. Finally, a steganography model based on probability is implemented to prove the anonymity of the techniques. PMID:27355948

  9. The changes of radiotherapy in Lithuania: infrastructure, utilization rate, and cost

    PubMed Central

    Ramunė, Mineikytė; Ernestas, Janulionis; Vydmantas, Atkočius; Laimonas, Jaruševičius; Aista, Plieskienė; Jonas, Gečas

    2016-01-01

    Background. The aim of this study was to evaluate radiation therapy (RT) productivity, capacity, and cost in Lithuania. Materials and methods. An electronic questionnaire was prepared and sent to the country’s RT centres. The data was collected for the years 2011–2014. The early data of the RT infrastructure was obtained from the QUARTS Project (2001). Results. In Lithuania the external beam RT was applied to 32.6% of new cancer cases (non-melanomatous skin cancer and benign conditions were excluded). In 2014, RT was more frequently applied for breast and prostate carcinomas, 23 and 20%, respectively. The country owned 11 units of linear accelerators (linacs) and this accounts for 3.7 linacs per one million population. 3D conformal RT is the standard approach in all four RT centres in Lithuania. IMRT practices were established in three centers and VMAT or stereotactic RT in two of them. 73% of linacs were capable of IGRT, while only 27% were equipped with CBCT. The average linac workload was 567 patients per year and showed a 10% decrease compared with the 2011 data. During a ten-year period, the average cost per patient for RT treatment increased 7.6 times – from EUR 129 to 974. The reimbursement system in Lithuania is not favourable for application of RT. Conclusions. During the recent thirteen years, RT services in Lithuania have dramatically improved, but we are still behind the average of European countries and benchmark rates. It is important to continue optimising the efficiency of RT services, and further evidence-based studies on RT infrastructure assessment and planning are needed. PMID:28356788

  10. Source Anonymity in WSNs against Global Adversary Utilizing Low Transmission Rates with Delay Constraints.

    PubMed

    Bushnag, Anas; Abuzneid, Abdelshakour; Mahmood, Ausif

    2016-06-27

    Wireless sensor networks (WSN) are deployed for many applications such as tracking and monitoring of endangered species, military applications, etc. which require anonymity of the origin, known as Source Location Privacy (SLP). The aim in SLP is to prevent unauthorized observers from tracing the source of a real event by analyzing the traffic in the network. Previous approaches to SLP such as Fortified Anonymous Communication Protocol (FACP) employ transmission of real or fake packets in every time slot, which is inefficient. To overcome this shortcoming, we developed three different techniques presented in this paper. Dummy Uniform Distribution (DUD), Dummy Adaptive Distribution (DAD) and Controlled Dummy Adaptive Distribution (CAD) were developed to overcome the anonymity problem against a global adversary (which has the capability of analyzing and monitoring the entire network). Most of the current techniques try to prevent the adversary from perceiving the location and time of the real event whereas our proposed techniques confuse the adversary about the existence of the real event by introducing low rate fake messages, which subsequently lead to location and time privacy. Simulation results demonstrate that the proposed techniques provide reasonable delivery ratio, delay, and overhead of a real event's packets while keeping a high level of anonymity. Three different analysis models are conducted to verify the performance of our techniques. A visualization of the simulation data is performed to confirm anonymity. Further, neural network models are developed to ensure that the introduced techniques preserve SLP. Finally, a steganography model based on probability is implemented to prove the anonymity of the techniques.

  11. Dissolved oxygen: Chapter 6

    USGS Publications Warehouse

    Senn, David; Downing-Kunz, Maureen; Novick, Emily

    2016-01-01

    Dissolved oxygen (DO) concentration serves as an important indicator of estuarine habitat condition, because all aquatic macro-organisms require some minimum DO level to survive and prosper. The instantaneous DO concentration, measured at a specific location in the water column, results from a balance between multiple processes that add or remove oxygen (Figure 6.1): primary production produces O2; aerobic respiration in the water column and sediments consumes O2; abiotic or microbially-mediated biogeochemical reactions utilize O2 as an oxidant (e.g., oxidation of ammonium, sulfide, and ferrous iron); O2 exchange occurs across the air:water interface in response to under- or oversaturated DO concentrations in the water column; and water currents and turbulent mixing transport DO into and out of zones in the water column. If the oxygen loss rate exceeds the oxygen production or input rate, DO concentration decreases. When DO losses exceed production or input over a prolonged enough period of time, hypoxia ((<2-3 mg/L) or anoxia can develop. Persistent hypoxia or anoxia causes stress or death in aquatic organism populations, or for organisms that can escape a hypoxic or anoxic area, the loss of habitat. In addition, sulfide, which is toxic to aquatic organisms and causes odor problems, escapes from sediments under low oxygen conditions. Low dissolved oxygen is a common aquatic ecosystem response to elevated organic

  12. Oxygen consumption and filtering rate of Daphnia Pulex after exposure to water-soluble fractions of naphthalene, phenanthrene, No. 2 fuel oil, and coal-tar creosote

    SciTech Connect

    Geiger, J.G.; Buikema, A.L.

    1981-12-01

    The effects of short-term exposure to water-soluble fractions (WSF) of naphthalene, phenanthrene, No. 2 fuel oil, and coal-tar creosote upon oxygen consumption and filtering rates of Daphnia pulex are examined. Approximately 60 young Daphnia were exposed to test solutions of LC20 and LC30 concentrations of WSF for at least three molt cycles. Oxygen consumption was determined by the azide modification of the Winkler Method (American Public Health Association et al. 1975). Algal counts were made for experimental and control bottles using an Electrozone electronic particle counter interfaced with a PDP-11 minicomputer. Filtering rates were computed and expressed as ml/Daphnia/day. Results indicate no significant differences in oxygen consumption rates. However, changes in filtering rates may be a sensitive indicator of sublethal stress. 3 tables (JMT)

  13. CO2 sequestration utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V-Cr concerns.

    PubMed

    Su, Tung-Hsin; Yang, Huai-Jen; Shau, Yen-Hong; Takazawa, Eiichi; Lee, Yu-Chen

    2016-03-01

    Basic-oxygen furnace slag (BOF-slag) contains >35% CaO, a potential component for CO2 sequestration. In this study, slag-water-CO2 reaction experiments were conducted with the longest reaction duration extending to 96hr under high CO2 pressures of 100-300kg/cm(2) to optimize BOF-slag carbonation conditions, to address carbonation mechanisms, and to evaluate the extents of V and Cr release from slag carbonation. The slag carbonation degree generally reached the maximum values after 24hr slag-water-CO2 reaction and was controlled by slag particle size and reaction temperature. The maximum carbonation degree of 71% was produced from the experiment using fine slag of ≤0.5mm under 100°C and a CO2 pressure of 250kg/cm(2) with a water/slag ratio of 5. Vanadium release from the slag to water was significantly enhanced (generally >2 orders) by slag carbonation. In contrast, slag carbonation did not promote chromium release until the reaction duration exceeded 24hr. However, the water chromium content was generally at least an order lower than the vanadium concentration, which decreased when the reaction duration exceeded 24hr. Therefore, long reaction durations of 48-96hr are proposed to reduce environmental impacts while keeping high carbonation degrees. Mineral textures and water compositions indicated that Mg-wüstite, in addition to CaO-containing minerals, can also be carbonated. Consequently, the conventional expression that only considered carbonation of the CaO-containing minerals undervalued the CO2 sequestration capability of the BOF-slag by ~20%. Therefore, the BOF-slag is a better CO2 storage medium than that previously recognized.

  14. Modeling the impact of paste additives and pellet geometry on paste utilization within lead acid batteries during low rate discharges

    NASA Astrophysics Data System (ADS)

    Vargonen, Muhammed M.

    2015-01-01

    When designing a lead acid battery, there are many factors to consider in order to obtain the best compromise of cost, performance, and ease of manufacturability. We use a modeling approach to study some of the key factors which affect the amount of active material which can be utilized during a low rate discharge. We investigate the effects of pellet size, pellet geometry, disconnected grid mesh borders, and inert paste additives. Furthermore, we look at how the internal path length resistance within a pellet is dependent on those features. Our findings correlate well with earlier works, and help to explain some of the previously observed phenomenon. It is observed that utilization is indeed affected by pellet size, but small grid mesh sizes on the order of ∼4 mm edge lengths are necessary in order to realize a significant benefit. Utilization is presented as a function of pellet size, aspect ratio of the pellets, and the loading level of the inert additives in the pellets up to ten percent by volume.

  15. THE USE OF HEART RATE TO ESTIMATE OXYGEN CONSUMPTION OF FREE-RANGING BLACK-BROWED ALBATROSSES DIOMEDEA MELANOPHRYS

    PubMed

    Bevan; Woakes; Butler; Boyd

    1994-08-01

    Heart rates (fh) and rates of oxygen consumption (V(dot)O2) were measured in eight black-browed albatrosses (Diomedea melanophrys) when walking on a treadmill, with the aim of using fh to predict V(dot)O2 in free-ranging albatrosses. The resulting relationship between the variables was: V(dot)O2 (ml min-1) = [0.0157fh (beats min-1)]1.60, r2=0.80, P<0.001. In addition to the calibration procedure, six of the albatrosses were injected with doubly labelled water (DLW), and fh and V(dot)O2 were monitored continuously over a 3 day period while the birds were held in a respirometer. During the 3 day period, the birds were walked for up to 3­4 h day-1 in bouts lasting approximately 0.5 h. The heart rate data were used to estimate the metabolic rates of these birds using the above regression. Estimates of metabolic rate derived from fh, DLW and respirometry did not differ (ANOVA; P=0.94), primarily because of the variance between individual birds. There was also no significant difference between the different estimates obtained from the different equations used to calculate energy expenditure from the DLW technique (ANOVA; P=0.95). Mean estimates of V(dot)O2 from fh under active and inactive conditions differed from measured values of V(dot)O2 by -5.9 % and -1.7 % respectively. In addition, the estimates of V(dot)O2 from fh at different walking speeds did not differ significantly from the measured values. It appears that, in the black-browed albatross, fh is as good a predictor of the mean metabolic rate of free-ranging birds as DLW or time­energy budgets combined with either respirometry or DLW. However, the method should be applied to as many individuals and as many instances of a particular behaviour as possible. The heart rate technique offers potential for much more detailed analyses of the daily energy budgets of these birds, and over much longer periods, than has previously been possible.

  16. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC.

    PubMed

    Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Liu, Yen-Liang

    2015-01-26

    To increase the traffic rate in phosphor-LED visible light communication (VLC), a multi-band orthogonal frequency division multiplexed (OFDM) modulation is first proposed and demonstrated. In the measurement, we do not utilize optical blue filter to increase modulation bandwidth of phosphor-LED in the VLC system. In this proposed scheme, different bands of OFDM signals are applied to different LED chips in a LED lamp, this can avoid the power fading and nonlinearity issue by applying the same OFDM signal to all the LED chips in a LED lamp. Here, the maximum increase percentages of traffic rates are 41.1%, 17.8% and 17.8% under received illuminations of 200, 500 and 1000 Lux, respectively, when the proposed three-band OFDM modulation is used in the VLC system. In addition, the analysis and verification by experiments are also performed.

  17. The effects of physical fitness and body composition on oxygen consumption and heart rate recovery after high-intensity exercise.

    PubMed

    Campos, E Z; Bastos, F N; Papoti, M; Freitas Junior, I F; Gobatto, C A; Balikian Junior, P

    2012-08-01

    The aim of this study was to investigate the potential relationship between excess post-exercise oxygen consumption (EPOC), heart rate recovery (HRR) and their respective time constants (tvo2 and t HR) and body composition and aerobic fitness (VO2max) variables after an anaerobic effort. 14 professional cyclists (age=28.4±4.8 years, height=176.0±6.7 cm, body mass=74.4±8.1 kg, VO2max=66.8±7.6 mL·kg - 1·min - 1) were recruited. Each athlete made 3 visits to the laboratory with 24 h between each visit. During the first visit, a total and segmental body composition assessment was carried out. During the second, the athletes undertook an incremental test to determine VO2max. In the final visit, EPOC (15-min) and HRR were measured after an all-out 30 s Wingate test. The results showed that EPOC is positively associated with % body fat (r=0.64), total body fat (r=0.73), fat-free mass (r=0.61) and lower limb fat-free mass (r=0.55) and negatively associated with HRR (r= - 0.53, p<0.05 for all). HRR had a significant negative correlation with total body fat and % body fat (r= - 0.62, r= - 0.56 respectively, p<0.05 for all). These findings indicate that VO2max does not influence HRR or EPOC after high-intensity exercise. Even in short-term exercise, the major metabolic disturbance due to higher muscle mass and total muscle mass may increase EPOC. However, body fat impedes HRR and delays recovery of oxygen consumption after effort in highly trained athletes.

  18. Metabolic profile analysis of a single developing zebrafish embryo via monitoring of oxygen consumption rates within a microfluidic device.

    PubMed

    Huang, Shih-Hao; Huang, Kuo-Sheng; Yu, Chu-Hung; Gong, Hong-Yi

    2013-01-01

    A combination of a microfluidic device with a light modulation system was developed to detect the oxygen consumption rate (OCR) of a single developing zebrafish embryo via phase-based phosphorescence lifetime detection. The microfluidic device combines two components: an array of glass microwells containing Pt(II) octaethylporphyrin as an oxygen-sensitive luminescent layer and a microfluidic module with pneumatically actuated glass lids above the microwells to controllably seal the microwells of interest. The total basal respiration (OCR, in pmol O2/min/embryo) of a single developing zebrafish embryo inside a sealed microwell has been successfully measured from the blastula stage (3 h post-fertilization, 3 hpf) through the hatching stage (48 hpf). The total basal respiration increased in a linear and reproducible fashion with embryonic age. Sequentially adding pharmacological inhibitors of bioenergetic pathways allows us to perform respiratory measurements of a single zebrafish embryo at key developmental stages and thus monitor changes in mitochondrial function in vivo that are coordinated with embryonic development. We have successfully measured the metabolic profiles of a single developing zebrafish embryo from 3 hpf to 48 hpf inside a microfluidic device. The total basal respiration is partitioned into the non-mitochondrial respiration, mitochondrial respiration, respiration due to adenosine triphosphate (ATP) turnover, and respiration due to proton leak. The changes in these respirations are correlated with zebrafish embryonic development stages. Our proposed platform provides the potential for studying bioenergetic metabolism in a developing organism and for a wide range of biomedical applications that relate mitochondrial physiology and disease.

  19. Effect of a Healthcare-system Respiratory Fluoroquinolone Restriction Program to Alter Utilization and Impact Rates of C. difficile Infection.

    PubMed

    Shea, Katherine M; Hobbs, Athena L V; Jaso, Theresa C; Bissett, Jack D; Cruz, Christopher M; Douglass, Elizabeth T; Garey, Kevin W

    2017-03-27

    Fluoroquinolones are one of the most commonly prescribed antibiotic classes in the United States despite their association with adverse consequences, including Clostridium difficile infection (CDI). We sought to evaluate the impact of a healthcare-system antimicrobial stewardship-initiated respiratory fluoroquinolone restriction program on utilization, appropriateness of quinolone-based therapy based on institutional guidelines, and CDI rates. Following implementation, respiratory fluoroquinolone utilization decreased from a monthly mean (SD) of 41.0 (4.4) days of therapy per 1000 patient days (DOT/1000 PD) pre-intervention to 21.5 (6.4) DOT/1000 PD and 4.8 (3.6) DOT/1000 PD post-education and restriction, respectively. Using segmented regression analysis, both education (14.5 DOT/1000 PD per month decrease; p=0.023) and restriction (24.5 DOT/1000 PD per month decrease; p<0.0001) were associated with decreased utilization. Additionally, CDI rates decreased significantly (p=0.044) from pre-intervention using education (3.43 cases/10,000 PD) and restriction (2.2 cases/10,000 PD). Mean (SD) monthly CDI cases/10,000 PD decreased from 4.0 (2.1) pre-intervention to 2.2 (1.35) post-restriction. A significant increase in appropriate respiratory fluoroquinolone use was experienced post-restriction vs. pre-intervention in patients administered at least 1 dose [74/232 (32%) vs. 74/130 (57%); p<0.001] as well as those receiving 2 or more doses [47/65 (72%) vs. 67/191 (35%); p<0.001]. A significant reduction in the annual acquisition cost of moxifloxacin, the formulary respiratory fluoroquinolone, was found post-restriction compared to pre-intervention within the healthcare-system ($123,882 vs. $12,273; p=0.002). Implementation of a stewardship-initiated respiratory fluoroquinolone restriction program can increase appropriate use while reducing overall utilization, acquisition cost, and CDI rates within a healthcare-system.

  20. Simultaneous, real-time measurement of nitric oxide and oxygen dynamics during cardiac ischemia-reperfusion of the rat utilizing sol-gel-derived electrochemical microsensors.

    PubMed

    Kang, Sung Wook; Kim, Ok Kyun; Seo, Bochan; Lee, Sung Ho; Quan, Fu Shi; Shin, Jae Ho; Lee, Gi-Ja; Park, Hun-Kuk

    2013-11-13

    In this study, we simultaneously measured nitric oxide (NO) and oxygen (O2) dynamics in the myocardium during myocardial ischemia-reperfusion (IR) utilizing sol-gel modified electrochemical NO and O2 microsensors. In addition, we attempted to clarify the correlation between NO release in the ischemic period and O2 restoration in the myocardium after reperfusion, comparing a control heart with a remote ischemic preconditioning (RIPC)-treated heart as an attractive strategy for myocardial protection. Rat hearts were randomly divided into two groups: a control group (n=5) and an RIPC group (n=5, with RIPC treatment). Myocardia that underwent RIPC treatment (182±70 nM, p<0.05) released more NO during the ischemic period than those of the control group (63±41 nM). The restoration value of oxygen tension (pO2) in the RIPC group significantly increased and was restored to pre-ischemic levels (92.6±36.8%); however, the pO2 of the control group did not increase throughout the reperfusion period (5.7±7.5%, p=0.001). Myocardial infarct size measurements revealed a significant decrease in cell death in the myocardium region of the RIPC group (41.44±6.42%, p=0.001) compared with the control group (60.05±10.91%). As a result, we showed that the cardioprotective effect of RIPC could be attributed to endogenous NO production during the ischemic period, which subsequently promoted reoxygenation in post-ischemic myocardia during early reperfusion. Our results suggest that the promotion of endogenous formation during an ischemic episode might be helpful as a therapeutic strategy for protecting the myocardium from IR injury. Additionally, our NO and O2 perm-selective microsensors could be utilized to evaluate the effect of drug or treatment.

  1. [Variation characteristics of maize yield and fertilizer utilization rate on an upland yellow soil under long term fertilization].

    PubMed

    Luo, Long-Zao; Li, Yu; Zhang, Wen-An; Xiao, Hou-Jun; Jiang, Tai-Ming

    2013-10-01

    An analysis was made on the 16-year experimental data from the long term fertilization, experiment of maize on a yellow soil in Guizhou of Southwest China. Four treatments, i. e. , no fertilization (CK), chemical fertilization (165 kg N x hm(-2), 82.5 kg P2O5 x hm(-2), and 82.5 kg K2O x hm(-2), NPK), organic manure (30555 kg x hm(-2), M), and combined applicatioin of chemical fertilizers and organic manure (NPKM), were selected to analyze the variation trends of maize yield and fertilizer use efficiency on yellow soil under effects of different long term fertilization modes, aimed to provide references for evaluating and establishing long term fertilization mode and promote the sustainable development of crop production. Overall, the maize yield under long term fertilization had an increasing trend, with a large annual variation. Treatment NPKM had the best yield-increasing effect, with the maize yield increased by 4075.71 kg x hm(-2) and the increment being up to 139.2%. Long term fertilization increased the fertilizer utilization efficiency of maize. In treatment M, the nitrogen and phosphorus utilization rates were increased significantly by 35.4% and 18.8%, respectively. Treatment NPK had obvious effect in improving potassium utilization rate, with an increment of 20% and being far higher than that in treatments M (8.7%) and NPKM (9.2%). The results showed that long term fertilization, especially the combined application of chemical fertilizers and organic manure, was of great importance in increasing crop yield and fertilizer use efficiency.

  2. Metabolic rate measurement system

    NASA Technical Reports Server (NTRS)

    Koester, K.; Crosier, W.

    1980-01-01

    The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise. MRMS utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus.

  3. Dissolved oxygen as a factor influencing nitrogen removal rates in a one-stage system with partial nitritation and Anammox process.

    PubMed

    Cema, G; Płaza, E; Trela, J; Surmacz-Górska, J

    2011-01-01

    A biofilm system with Kaldnes biofilm carrier was used in these studies to cultivate bacteria responsible for both partial nitritation and Anammox processes. Due to co-existence of oxygen and oxygen-free zones within the biofilm depth, both processes can occur in a single reactor. Oxygen that inhibits the Anammox process is consumed in the outer layer of the biofilm and in this way Anammox bacteria are protected from oxygen. The impact of oxygen concentration on nitrogen removal rates was investigated in the pilot plant (2.1 m3), supplied with reject water from the Himmerfjärden Waste Water Treatment Plant. The results of batch tests showed that the highest nitrogen removal rates were obtained for a dissolved oxygen (DO) concentration around 3 g O2 m(-3) At a DO concentration of 4 g O2 m(-3), an increase of nitrite and nitrate nitrogen concentrations in the batch reactor were observed. The average nitrogen removal rate in the pilot plant during a whole operating period oscillated around 1.3 g N m(-2)d(-1) (0.3 +/- 0.1 kg N m(-3)d(-1)) at the average dissolved oxygen concentration of 2.3 g O2 m(-3). The maximum value of a nitrogen removal rate amounted to 1.9 g N m(-2)d(-1) (0.47 kg N m(-3)d(-1)) and was observed for a DO concentration equal to 2.5 g O2 m(-3). It was observed that increase of biofilm thickness during the operational period, had no influence on nitrogen removal rates in the pilot plant.

  4. Evaluation of a Stirling Solar Dynamic System for Lunar Oxygen Production

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Wong, Wayne A.

    2006-01-01

    An evaluation of a solar concentrator-based system for producing oxygen from the lunar regolith was performed. The system utilizes a solar concentrator mirror to provide thermal energy for the oxygen production process as well as thermal energy to power a Stirling heat engine for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The oxygen production method utilized in the analysis was the hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process rate effected the oxygen production rate.

  5. The Kindergarten Academic and Behavior Readiness Screener: The utility of single-item teacher ratings of kindergarten readiness.

    PubMed

    Stormont, Melissa; Herman, Keith C; Reinke, Wendy M; King, Kathleen R; Owens, Sarah

    2015-06-01

    The purpose of the study was to explore the effectiveness of a brief, feasible, and cost-effective universal screener for kindergarten readiness. The study examined whether teacher ratings of kindergarteners' academic, behavioral, and overall readiness at the beginning of the year were predictive of academic, emotional, and behavioral outcomes at the end of the year. Participants included 19 kindergarten teachers and their students (n = 350) from 6 urban elementary schools; all teachers were female and the majority of children were African American (74%) or White (23%). Thirty-six percent of children qualified for free or reduced lunch. Teachers completed single-item ratings of student readiness as well as full scale ratings of student prosocial skills, disruptive behaviors, and academic competence. Students also completed a standardized academic achievement test. Independent observers rated disruptive behaviors in the classroom. Readiness items had statistically significant relations with a range of academic, emotional, and behavior indicators. Hierarchical linear regression analyses found that readiness items predicted end-of-year outcomes when controlling for baseline covariates. Items also predicted higher likelihood of negative academic and behavior categorical outcomes and demonstrated classification utility. Schools need universal screening options that are feasible and easy to implement school-wide. The screening tool presented in this study offers a viable, psychometrically strong option for school teams and professionals interested in universal screening.

  6. Analysis of the application of the generalized monod kinetics model to describe the human corneal oxygen-consumption rate during soft contact lens wear.

    PubMed

    Compañ, V; Aguilella-Arzo, M; Del Castillo, L F; Hernández, S I; Gonzalez-Meijome, J M

    2016-07-26

    This work is an analysis of the application of the generalized Monod kinetics model describing human corneal oxygen consumption during soft contact lens wear to models previously used by Chhabra et al. (J Biomed Mater Res B Appl Biomater, 2009a;90:202-209, Optom Vis Sci 2009b;86:454-466) and Larrea and Büchler (Invest Ophthalmol Vis Sci 2009;50:1076-1080). We use oxygen tension from in vivo estimations provided by Bonanno [Bonanno et al., Invest Ophthalmol Vis Sci 2002;43:371-376, and Bonanno et al 2009]. We consider four hydrogel and six silicone hydrogel lenses. The cornea is considered a single homogeneous layer, with constant oxygen permeability regardless of the type of lens worn. Our calculations yield different values for the maximum oxygen consumption rate Qc,max , whith differents oxygen tensions (high and low pc ) at the cornea-tears interface. Surprisingly, for both models, we observe an increase in oxygen consumption near an oxygen tension of 105 mmHg until a maximum is reached, then decreasing for higher levels of oxygen pressure. That is, when lowering the pressure of oxygen, the parameter Qc,max initially increases depending on the intensity of the change in pressure. Which, it could be related with the variation of the pH. Furthermore, it is also noted that to greater reductions in pressure, this parameter decreases, possibly due to changes in the concentration of glucose related to the anaerobic respiration. The averaged in vivo human corneal oxygen consumption rate of 1.47 × 10(-4) cm(3) of O2 /cm(3) tissue s, with Monod kinetics model, considering all the lenses studied, is smaller than the average oxygen consumption rate value obtained using the Larrea and Büchler model. The impact that these calculations have on the oxygen partial pressure available at different depths in the corneal tissue is presented and discussed, taking into consideration previous models used in this study. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl

  7. Scaling the amplitudes of the circadian pattern of resting oxygen consumption, body temperature and heart rate in mammals.

    PubMed

    Mortola, Jacopo P; Lanthier, Clement

    2004-09-01

    We questioned whether the amplitudes of the circadian pattern of body temperature (T(b)), oxygen consumption (V (O(2))) and heart rate (HR) changed systematically among species of different body weight (W). Because bodies of large mass have a greater heat capacitance than those of smaller mass, if the relative amplitude (i.e., amplitude/mean value) of metabolic rate was constant, one would expect the T(b) oscillation to decrease with the increase in the species W. We compiled data of T(b), V (O(2)) and HR from a literature survey of over 200 studies that investigated the circadian pattern of these parameters. Monotremata, Marsupials and Chiroptera, were excluded because of their characteristically low metabolic rate and T(b). The peak-trough ratios of V (O(2)) (42 species) and HR (35 species) averaged, respectively, 1.57+/-0.08, and 1.35+/-0.07, and were independent of W. The daily high values of T(b) did not change, while the daily low T(b) values slightly increased, with the species W; hence, the high-low T(b) difference (57 species) decreased with W (3.3 degrees C.W(-0.13)). However, the decrease in T(b) amplitude with W was much less than expected from physical principles, and the high-low T(b) ratio remained significantly above unity even in the largest mammals. Thus, it appears that in mammals, despite the huge differences in physical characteristics, the amplitude of the circadian pattern is a fixed (for V (O(2)) and HR), or almost fixed (for T(b)), fraction of the 24-h mean value. Presumably, the amplitudes of the oscillations are controlled parameters of physiological significance.

  8. The multi-year cumulative effects of alternative stocking rate and grazing management practices on pasture productivity and utilization efficiency.

    PubMed

    McCarthy, B; Delaby, L; Pierce, K M; McCarthy, J; Fleming, C; Brennan, A; Horan, B

    2016-05-01

    The production and utilization of increased quantities of high quality pasture is of paramount importance in pasture-based milk production systems. The objective of this study was to evaluate the cumulative effects of alternative integrated grazing strategies, incorporating alternative stocking rate (SR) and grazing severities, on pasture productivity and grazing efficiency over multiple years within farm systems using perennial ryegrass dominant pastures. Three whole-farm SR treatments were compared over 4 complete grazing seasons (2009 to 2012 inclusive): low (2.51 cows/ha; LSR), medium (2.92 cows/ha; MSR), and high (3.28 cows/ha; HSR). Each system had its own farmlet containing 18 paddocks and remained on the same treatment for the duration of the study. Stocking rate had a significant effect on all grazing variables with the exception of soil fertility status and sward density. Increased SR resulted in increased total annual net pasture accumulation, improved sward nutritive value, and increased grazed pasture utilization. Total annual net pasture accumulation was greatest in HSR [15,410kg of dry matter (DM)/ha], intermediate for MSR (14,992kg of DM/ha), and least for LSR (14,479kg of DM/ha) during the 4-yr study period. A linear effect of SR on net pasture accumulation was detected with an increase in net pasture accumulation of 1,164.4 (SE=432.7) kg of DM/ha for each 1 cow/ha increase in SR. Pregrazing pasture mass and height and postgrazing residual pasture mass and height were greatest for LSR, intermediate for the MSR, and lowest for the HSR. In comparison with the LSR, the imposition of a consistently increased grazing severity coupled with increased whole farm SR in MSR and HSR treatments arrested the decline in sward nutritive value, typically observed during mid-season. Incorporating the individual beneficial effects of SR on pasture accumulation, nutritive value, and utilization efficiency, total proportional energy (unité fourragère lait

  9. Utilization of "Stand-By" Extracorporeal Membrane Oxygenation in a High-Risk Parturient With Methamphetamine-Associated Cardiomyopathy Undergoing Dilation and Evacuation: A Case Report.

    PubMed

    Padilla, Cesar; Hernandez Conte, Antonio; Ramzy, Danny; Lubin, Lorraine; LaBounty, Troy; Chung, Judith H; Zeng, Ying

    2017-03-01

    Parturients may present with evidence of acute heart failure or respiratory distress during the peripartum period. This case report documents utilization of "stand-by" extracorporeal membrane oxygenation (ECMO) for a 40-year-old woman with a history of severe left ventricular dysfunction who presented for elective dilation and evacuation of triplets at 20 weeks' gestation. The patient's medical history was significant for hypertension, diabetes mellitus, methamphetamine use (acute/chronic), and cardiac-respiratory arrest before her previous emergent cesarean delivery. The patient underwent general anesthesia with the placement of peripheral venous and arterial cannulas for "stand-by" ECMO. The patient remained stable throughout the procedure, and "stand-by" ECMO was not initiated; the patient was discharged 5 days' postprocedure. The use of "stand-by" ECMO in the parturient with severe cardiopulmonary dysfunction is still in its infancy. Centers managing populations of both high-risk parturients and nonparturients may consider development of algorithms for implementation and utilization of ECMO.

  10. Non-linear scaling of oxygen consumption and heart rate in a very large cockroach species (Gromphadorhina portentosa): correlated changes with body size and temperature.

    PubMed

    Streicher, Jeffrey W; Cox, Christian L; Birchard, Geoffrey F

    2012-04-01

    Although well documented in vertebrates, correlated changes between metabolic rate and cardiovascular function of insects have rarely been described. Using the very large cockroach species Gromphadorhina portentosa, we examined oxygen consumption and heart rate across a range of body sizes and temperatures. Metabolic rate scaled positively and heart rate negatively with body size, but neither scaled linearly. The response of these two variables to temperature was similar. This correlated response to endogenous (body mass) and exogenous (temperature) variables is likely explained by a mutual dependence on similar metabolic substrate use and/or coupled regulatory pathways. The intraspecific scaling for oxygen consumption rate showed an apparent plateauing at body masses greater than about 3 g. An examination of cuticle mass across all instars revealed isometric scaling with no evidence of an ontogenetic shift towards proportionally larger cuticles. Published oxygen consumption rates of other Blattodea species were also examined and, as in our intraspecific examination of G. portentosa, the scaling relationship was found to be non-linear with a decreasing slope at larger body masses. The decreasing slope at very large body masses in both intraspecific and interspecific comparisons may have important implications for future investigations of the relationship between oxygen transport and maximum body size in insects.

  11. Sorbent performance in fluidized-bed combustors: The effect of calcination on the sulfation rate and calcium utilization

    NASA Astrophysics Data System (ADS)

    Romans, David Earl

    This investigation was conducted to determine if greater amounts of SOsb2 can be removed by naturally occurring sorbents from coal-fired, atmospheric, fluidized-bed combustors if a greater understanding of the calcination process during simultaneous calcination and sulfation is ascertained. A bench-scale, fluidized-bed reactor, ca. 68 insp3 (1,114 cmsp3) of total volume, 1.5 inI.D., utilizing 100 mesh U.S. Standard Sieve stainless steel screens for a frit, was successfully operated and found to be capable of producing the necessary, repeatable data for addressing the hypothesis. Electronic mass flow meters were used to deliver a synthetic gas mixture consisting of Nsb2,\\ Osb2,\\ COsb2, and SOsb2. On-line gas analyzers were used to measure the real-time effluent concentrations of the latter three species. Gas compositions usually consisted of 4 vol% Osb2; 2,000 vppm SOsb2; 0-40 vol% COsb2; and the balance Nsb2. Three limestones with particles sizes ranging from 150 to 1,000 mum were used along with sized quartz for bed material. All experiments were performed at atmospheric pressure with temperatures generally ranging from 850 to 900sp°C. Calcination and sulfation occur simultaneously with respect to time and both the sulfation rate and calcium utilization generally increase with increasing calcination rates. COsb2-induced sintering decreases the calcine surface area while simultaneously increasing the mean diameter pore size; the significant reduction in developed surface area negates any perceived benefit of larger mean diameter pores for increased sorbent performance. Additionally, the use of elevated concentrations of COsb2 in an attempt to minimize the development of an impermeable CaSOsb4 rim via the slow release of COsb2 through the porous solid is generally not a viable method for increasing the sorbent performance (sulfation rate and calcium utilization) since intra-particle, thermally-induced fractures provide access paths for CaO located towards the

  12. Measuring the activities of higher organisms in activated sludge by means of mechanical shearing pretreatment and oxygen uptake rate.

    PubMed

    Hao, Xiaodi; Wang, Qilin; Cao, Yali; van Loosdrecht, Mark C M

    2010-07-01

    A pretreatment method was developed to assess the activities of higher organisms. The method is based on mechanical shearing to damage the large cells of the protozoan and metazoan community in activated sludge. The procedure was confirmed through experimentation to be effective in determining the activities of higher organisms by comparing oxygen uptake rates (OURs) before and after the higher organisms were eradicated. Shearing led to disintegration of flocs, which could be effectively reconstituted by centrifugation. The reconstitution of the sludge flocs was essential since otherwise the activity of the floc mass would be too high due to lack of diffusion limitation. Mechanical shearing had no influence on the morphology, quantity and specific activity of yeasts, and it was inferred that bacteria smaller than yeasts in size would also not be influenced by the applied shearing procedure. Moreover, the effect of filamentous organisms on the measured activities of higher organisms was experimentally demonstrated and analyzed, and determined to be so weak that it could be ignored. Based on these tests, five typical activated sludge processes were selected to measure the contribution of higher organisms to the original OUR. The measured activities of higher organisms ranged from 9.4 to 25.0% of the original OURs.

  13. Calculated volatilization rates of fuel oxygenate compounds and other gasoline-related compounds from rivers and streams

    USGS Publications Warehouse

    Pankow, J.F.; Rathbun, R.E.; Zogorski, J.S.

    1996-01-01

    Large amounts of the 'fuel-oxygenate' compound methyl-tert-butyl ether (MTBE) are currently being used in gasoline to reduce carbon monoxide and ozone in urban air and to boost fuel octane. Because MTBE can be transported to surface waters in various ways, established theory was used to calculate half-lives for MTBE volatilizing from flowing surface waters. Similar calculations were made for benzene as a representative of the 'BTEX' group of compounds (benzene, toluene, ethyl benzene, and the xylenes), and for tert-butyl alcohol (TBA). The calculations were made as a function of the mean flow velocity u (m/day), the mean flow depth h (m), the ambient temperature, and the wind speed. In deep, slow-moving flows, MTBE volatilizes at rates which are similar to those for the BTEX compounds. In shallow, fast-moving flows, MTBE volatilizes more slowly than benzene, though in such flows both MTBE and benzene volatilize quickly enough that these differences may often not have much practical significance. TBA was found to be essentially nonvolatile from water.

  14. Effects of auricular acupuncture on heart rate, oxygen consumption and blood lactic acid for elite basketball athletes.

    PubMed

    Lin, Zen-Pin; Chen, Yi-Hung; Fan, Chia; Wu, Huey-June; Lan, Lawrence W; Lin, Jaung-Geng

    2011-01-01

    This study investigated the effects of auricular acupuncture on athletes' recovery abilities after exercise. Subjects were selected from twenty-four male elite university basketball players, randomly divided into two groups: auricular acupuncture group (AAG), and normal control group (NCG), each group containing twelve subjects. Auricular acupuncture was experimented to each AAG athlete while no auricular acupuncture was conducted to each NCG athlete. Each subject in both groups performed a ride on the stationary bike until exhausted. The data of heart rate (HR(max)), oxygen consumption (VO(2 max)), and blood lactic acid were measured at four points of time: during the rest period after warm-ups and at the 5th, 30th and 60th minutes post-exercise, respectively. One-way ANOVA and repeated Scheffé methods were used to test the differences of the data between these two groups. The results showed that both HR(max) and blood lactic acid in AAG were significantly lower than those in NCG at the 30th and 60th minutes post-exercise. This suggests that auricular acupuncture can enhance athletes' recovery abilities after aggressive exercise.

  15. Bladder Preservation for Localized Muscle-Invasive Bladder Cancer: The Survival Impact of Local Utilization Rates of Definitive Radiotherapy

    SciTech Connect

    Kozak, Kevin R.; Hamidi, Maryam; Manning, Matthew; Moody, John S.

    2012-06-01

    Purpose: This study examines the management and outcomes of muscle-invasive bladder cancer in the United States. Methods and Materials: Patients with muscle-invasive bladder cancer diagnosed between 1988 and 2006 were identified in the Surveillance, Epidemiology, and End Results (SEER) database. Patients were classified according to three mutually exclusive treatment categories based on the primary initial treatment: no local management, radiotherapy, or surgery. Overall survival was assessed with Kaplan-Meier analysis and Cox models based on multiple factors including treatment utilization patterns. Results: The study population consisted of 26,851 patients. Age, sex, race, tumor grade, histology, and geographic location were associated with differences in treatment (all p < 0.01). Patients receiving definitive radiotherapy tended to be older and have less differentiated tumors than patients undergoing surgery (RT, median age 78 years old and 90.6% grade 3/4 tumors; surgery, median age 71 years old and 77.1% grade 3/4 tumors). No large shifts in treatment were seen over time, with most patients managed with surgical resection (86.3% for overall study population). Significant survival differences were observed according to initial treatment: median survival, 14 months with no definitive local treatment; 17 months with radiotherapy; and 43 months for surgery. On multivariate analysis, differences in local utilization rates of definitive radiotherapy did not demonstrate a significant effect on overall survival (hazard ratio, 1.002; 95% confidence interval, 0.999-1.005). Conclusions: Multiple factors influence the initial treatment strategy for muscle-invasive bladder cancer, but definitive radiotherapy continues to be used infrequently. Although patients who undergo surgery fare better, a multivariable model that accounted for patient and tumor characteristics found no survival detriment to the utilization of definitive radiotherapy. These results support continued

  16. Acute resistance exercise with blood flow restriction effects on heart rate, double product, oxygen saturation and perceived exertion.

    PubMed

    Neto, Gabriel R; Sousa, Maria S C; Costa e Silva, Gabriel V; Gil, Ana L S; Salles, Belmiro F; Novaes, Jefferson S

    2016-01-01

    The aim of this study was to compare the acute effect of resistance exercise (RE) with and without blood flow restriction (BFR) on heart rate (HR), double product (DP), oxygen saturation (SpO2 ) and rating of perceived exertion (RPE). Twenty-four men (21·79 ± 3·21 years) performed three experimental protocols in a random order (crossover): (i) high-intensity RE at 80% of 1RM (HI), (ii) low-intensity RE at 20% of 1RM (LI) and (iii) low-intensity RE at 20% of 1RM combined with partial blood flow restriction (LI+BFR). HR, blood pressure, SpO2 and RPE were assessed. The data were analysed using repeated measures analysis of variance and the Wilcoxon test for RPE. The results indicated that all protocols significantly increased HR, both immediately postexercise and during the subsequent 60 min (P<0·05), and postexercise DP (P<0·05), but there were no differences between protocols. The protocols of LI and LI+BFR reduced postexercise SpO2 (P = 0·033, P = 0·007), and the LI+BFR protocol presented a perception of greater exertion in the lower limbs compared with HI (P = 0·022). We conclude that RE performed at low intensity combined with BFR seems to reduce the SpO2 after exercise and increase HR and DP while maintaining a perception of greater exertion on the lower limbs.

  17. Temporal changes and spatial variation of soil oxygen consumption, nitrification and denitrification rates in a tidal salt marsh of the Lagoon of Venice, Italy

    NASA Astrophysics Data System (ADS)

    Eriksson, P. G.; Svensson, J. M.; Carrer, G. M.

    2003-12-01

    The aim of the present study was to investigate seasonal and spatial patterns of soil oxygen consumption, nitrification, denitrification and fluxes of dissolved inorganic nitrogen (DIN) in a tidal salt marsh of the Lagoon of Venice, Italy. In the salt marsh, intact soil cores including overlying water were collected monthly at high tide from April to October in salt marsh creeks and in areas covered by the dominant vegetation, Limonium serotinum. In May, cores were also collected in areas with vegetation dominated by Juncus maritimus and Halimione portulacoides. In laboratory incubations at in situ temperature in the dark, flux rates of oxygen and DIN were monitored in the overlying water of the intact cores. 15N-nitrate was added to the overlying water and nitrification and denitrification were measured using isotope-dilution and -pairing techniques. The results show that highest soil oxygen consumption coincided with the highest water temperature in June and July. The highest denitrification rates were recorded in spring and autumn coinciding with the highest nitrate concentrations. Soil oxygen consumption and nitrification rates differed between sampling sites, but denitrification rates were similar among the different vegetation types. The highest rates were recorded in areas covered with L. serotinum. Burrowing soil macrofauna enhanced oxygen consumption, nitrification and denitrification in April and May. The data presented in this study indicate high temporal as well as spatial variations in the flux of oxygen and DIN, and nitrogen transformations in the tidal salt marshes of the Venice lagoon during the growth season. The results identify the salt marshes of the Venice lagoon as being metabolically very active ecosystems with a high capacity to process nitrogen.

  18. A Study of the Relationship Between Utilization Patterns of Support Services and the Attrition and Retention Rates of Black College Students.

    ERIC Educational Resources Information Center

    Savitz, Fred R.; Walls, Adrienne

    1986-01-01

    Studied the effectiveness of the Support Service Staff at Saint Joseph's University by measuring the relationship between actual utilization of the services and perceived sensitivity of the personnel who are charged to provide them. The variables of rates of attrition and retention were used to determine the extent of utilization and its…

  19. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria

    PubMed Central

    Chowdhury, Subir Roy; Djordjevic, Jelena; Albensi, Benedict C.; Fernyhough, Paul

    2015-01-01

    Mitochondrial membrane potential (mtMP) is critical for maintaining the physiological function of the respiratory chain to generate ATP. The present study characterized the inter-relationship between mtMP, using safranin and tetramethyl rhodamine methyl ester (TMRM), and mitochondrial respiratory activity and established a protocol for functional analysis of mitochondrial bioenergetics in a multi-sensor system. Coupled respiration was decreased by 27 and 30–35% in the presence of TMRM and safranin respectively. Maximal respiration was higher than coupled with Complex I- and II-linked substrates in the presence of both dyes. Safranin showed decreased maximal respiration at a higher concentration of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) compared with TMRM. FCCP titration revealed that maximal respiration in the presence of glutamate and malate was not sustainable at higher FCCP concentrations as compared with pyruvate and malate. Oxygen consumption rate (OCR) and mtMP in response to mitochondrial substrates were higher in isolated mitochondria compared with tissue homogenates. Safranin exhibited higher sensitivity to changes in mtMP than TMRM. This multi-sensor system measured mitochondrial parameters in the brain of transgenic mice that model Alzheimer's disease (AD), because mitochondrial dysfunction is believed to be a primary event in the pathogenesis of AD. The coupled and maximal respiration of electron transport chain were decreased in the cortex of AD mice along with the mtMP compared with age-matched controls. Overall, these data demonstrate that safranin and TMRM are suitable for the simultaneous evaluation of mtMP and respiratory chain activity using isolated mitochondria and tissue homogenate. However, certain care should be taken concerning the selection of appropriate substrates and dyes for specific experimental circumstances. PMID:26647379

  20. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans.

    PubMed

    Trangmar, Steven J; Chiesa, Scott T; Stock, Christopher G; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2014-07-15

    Intense exercise is associated with a reduction in cerebral blood flow (CBF), but regulation of CBF during strenuous exercise in the heat with dehydration is unclear. We assessed internal (ICA) and common carotid artery (CCA) haemodynamics (indicative of CBF and extra-cranial blood flow), middle cerebral artery velocity (MCA Vmean), arterial-venous differences and blood temperature in 10 trained males during incremental cycling to exhaustion in the heat (35°C) in control, dehydrated and rehydrated states. Dehydration reduced body mass (75.8 ± 3 vs. 78.2 ± 3 kg), increased internal temperature (38.3 ± 0.1 vs. 36.8 ± 0.1°C), impaired exercise capacity (269 ± 11 vs. 336 ± 14 W), and lowered ICA and MCA Vmean by 12-23% without compromising CCA blood flow. During euhydrated incremental exercise on a separate day, however, exercise capacity and ICA, MCA Vmean and CCA dynamics were preserved. The fast decline in cerebral perfusion with dehydration was accompanied by increased O2 extraction (P < 0.05), resulting in a maintained cerebral metabolic rate for oxygen (CMRO2). In all conditions, reductions in ICA and MCA Vmean were associated with declining cerebral vascular conductance, increasing jugular venous noradrenaline, and falling arterial carbon dioxide tension (P aCO 2) (R(2) ≥ 0.41, P ≤ 0.01) whereas CCA flow and conductance were related to elevated blood temperature. In conclusion, dehydration accelerated the decline in CBF by decreasing P aCO 2 and enhancing vasoconstrictor activity. However, the circulatory strain on the human brain during maximal exercise does not compromise CMRO2 because of compensatory increases in O2 extraction.

  1. Ambiguities in the rate of oxygen formation during stellar helium burning in the 12C(α,γ) reaction

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2013-12-01

    The rate of oxygen formation determines the C/O ratio during stellar helium burning. It is the single most important nuclear input in stellar evolution theory, including the evolution of type II and type Ia supernova. However, the low-energy cross section of the fusion of 4He +12C, denoted as the 12C(α,γ)16O reaction, still remains uncertain. I analyze and critically review the most recent measurements of complete angular distributions of the outgoing γ rays at very low energies (Ec.m.≥1.0 MeV). My analysis of the angular distributions measured with the EUROGAM/GANDI arrays leads to considerably larger error bars than have been published, which excludes them from the current sample of “world data.” I show that the current sample of “world data” of the measured E2 cross-section factors below 1.7 MeV cluster into two distinct groups that lead to two distinct extrapolations: SE2(300)≈60 or SE2(300)≈154 keVb. There is a discrepancy between the measured E1-E2 phase difference (ϕ12) and unitarity as required by the Watson theorem, which suggests systematic problem(s) in some of the measured γ-ray angular distributions. The ambiguity of the extrapolated SE2(300) together with the previously observed ambiguity of SE1(300) (approximately 80 or 10 keVb) must be resolved by future measurements of complete and detailed angular distributions of the 12C(α,γ) reaction at very low energies (Ec.m.≤1.0 MeV).

  2. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans

    PubMed Central

    Trangmar, Steven J; Chiesa, Scott T; Stock, Christopher G; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2014-01-01

    Intense exercise is associated with a reduction in cerebral blood flow (CBF), but regulation of CBF during strenuous exercise in the heat with dehydration is unclear. We assessed internal (ICA) and common carotid artery (CCA) haemodynamics (indicative of CBF and extra-cranial blood flow), middle cerebral artery velocity (MCA Vmean), arterial–venous differences and blood temperature in 10 trained males during incremental cycling to exhaustion in the heat (35°C) in control, dehydrated and rehydrated states. Dehydration reduced body mass (75.8 ± 3 vs. 78.2 ± 3 kg), increased internal temperature (38.3 ± 0.1 vs. 36.8 ± 0.1°C), impaired exercise capacity (269 ± 11 vs. 336 ± 14 W), and lowered ICA and MCA Vmean by 12–23% without compromising CCA blood flow. During euhydrated incremental exercise on a separate day, however, exercise capacity and ICA, MCA Vmean and CCA dynamics were preserved. The fast decline in cerebral perfusion with dehydration was accompanied by increased O2 extraction (P < 0.05), resulting in a maintained cerebral metabolic rate for oxygen (CMRO2). In all conditions, reductions in ICA and MCA Vmean were associated with declining cerebral vascular conductance, increasing jugular venous noradrenaline, and falling arterial carbon dioxide tension () (R2 ≥ 0.41, P ≤ 0.01) whereas CCA flow and conductance were related to elevated blood temperature. In conclusion, dehydration accelerated the decline in CBF by decreasing and enhancing vasoconstrictor activity. However, the circulatory strain on the human brain during maximal exercise does not compromise CMRO2 because of compensatory increases in O2 extraction. PMID:24835170

  3. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria.

    PubMed

    Chowdhury, Subir Roy; Djordjevic, Jelena; Albensi, Benedict C; Fernyhough, Paul

    2015-12-08

    Mitochondrial membrane potential (mtMP) is critical for maintaining the physiological function of the respiratory chain to generate ATP. The present study characterized the inter-relationship between mtMP, using safranin and tetramethyl rhodamine methyl ester (TMRM), and mitochondrial respiratory activity and established a protocol for functional analysis of mitochondrial bioenergetics in a multi-sensor system. Coupled respiration was decreased by 27 and 30-35% in the presence of TMRM and safranin respectively. Maximal respiration was higher than coupled with Complex I- and II-linked substrates in the presence of both dyes. Safranin showed decreased maximal respiration at a higher concentration of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) compared with TMRM. FCCP titration revealed that maximal respiration in the presence of glutamate and malate was not sustainable at higher FCCP concentrations as compared with pyruvate and malate. Oxygen consumption rate (OCR) and mtMP in response to mitochondrial substrates were higher in isolated mitochondria compared with tissue homogenates. Safranin exhibited higher sensitivity to changes in mtMP than TMRM. This multi-sensor system measured mitochondrial parameters in the brain of transgenic mice that model Alzheimer's disease (AD), because mitochondrial dysfunction is believed to be a primary event in the pathogenesis of AD. The coupled and maximal respiration of electron transport chain were decreased in the cortex of AD mice along with the mtMP compared with age-matched controls. Overall, these data demonstrate that safranin and TMRM are suitable for the simultaneous evaluation of mtMP and respiratory chain activity using isolated mitochondria and tissue homogenate. However, certain care should be taken concerning the selection of appropriate substrates and dyes for specific experimental circumstances.

  4. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students.

    PubMed

    Scheer, Krista S; Siebrant, Sarah M; Brown, Gregory A; Shaw, Brandon S; Shaw, Ina

    Nintendo Wii, Sony Playstation Move, and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a "physically active" home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system.

  5. A new method combining soil oxygen concentration measurements with the quantification of gross nitrogen turnover rates and associated formation of N2O and N2 emissions

    NASA Astrophysics Data System (ADS)

    Gütlein, Adrian; Dannenmann, Michael; Sörgel, Christoph; Meier, Rudi; Meyer, Astrid; Kiese, Ralf

    2014-05-01

    Climate change and the expansion of land use have led to significant changes in terrestrial ecosystems. These include changes in the biogeochemical cycle of nitrogen and therewith implications for biodiversity, water cycle and pedosphere-atmosphere exchange. To understand these impacts detailed research on nitrogen turnover and fluxes are conducted at various (semi-) natural and managed ecosystems in the Mt. Kilimanjaro region. In this context, we execute 15N tracing analyses on soil samples in our stable isotope laboratory including a new experimental setup. The soils were sampled from different forest ecosystems of Mt. Kilimanjaro varying in altitude (1600 - 4500 m) and will be analyzed for gross rates of ammonification and nitrification, gross rates of microbial inorganic N uptake as well as for the gaseous losses of ^15N2 and ^15N2O using ^15NH4+ and ^15NO3- tracing and pool dilution approaches. Since nitrogen turnover of nitrification and denitrification is dependent on soil oxygen concentrations we developed an incubation method which allows to adjust soil samples to different oxygen concentrations. For this purpose, soil is incubated in glass bottles with side tubes to ensure a constant gas flow over the whole incubation time. To adjust the oxygen levels in the laboratory experiment as close as possible to the natural conditions, we started to monitor soil oxygen concentrations with a FirestingO2 Sensor (Pyroscience) connected to a timer and a datalogger (MSR 145 IP 60 E3333) at a Mt. Kilimanjaro rainforest site. The equipment is complemented with soil temperature, moisture and pressure sensors (MSR 145 IP 60). A solar panel connected to an energy source guarantees a working time for over 2 years by a measuring frequency of 20 seconds each 30 minutes. The new laboratory incubation method together with in-situ oxygen concentration measurements in soils will facilitate laboratory incubations with realistic oxygen concentrations and thus will allow for a better

  6. Estimation of the Optimal Brachytherapy Utilization Rate in the Treatment of Gynecological Cancers and Comparison With Patterns of Care

    SciTech Connect

    Thompson, Stephen R.; Delaney, Geoff P.; Gabriel, Gabriel S.; Jacob, Susannah; Das, Prabir; Barton, Michael B.

    2013-02-01

    Purpose: We aimed to estimate the optimal proportion of all gynecological cancers that should be treated with brachytherapy (BT)-the optimal brachytherapy utilization rate (BTU)-to compare this with actual gynecological BTU and to assess the effects of nonmedical factors on access to BT. Methods and Materials: The previously constructed inter/multinational guideline-based peer-reviewed models of optimal BTU for cancers of the uterine cervix, uterine corpus, and vagina were combined to estimate optimal BTU for all gynecological cancers. The robustness of the model was tested by univariate and multivariate sensitivity analyses. The resulting model was applied to New South Wales (NSW), the United States, and Western Europe. Actual BTU was determined for NSW by a retrospective patterns-of-care study of BT; for Western Europe from published reports; and for the United States from Surveillance, Epidemiology, and End Results data. Differences between optimal and actual BTU were assessed. The effect of nonmedical factors on access to BT in NSW were analyzed. Results: Gynecological BTU was as follows: NSW 28% optimal (95% confidence interval [CI] 26%-33%) compared with 14% actual; United States 30% optimal (95% CI 26%-34%) and 10% actual; and Western Europe 27% optimal (95% CI 25%-32%) and 16% actual. On multivariate analysis, NSW patients were more likely to undergo gynecological BT if residing in Area Health Service equipped with BT (odds ratio 1.76, P=.008) and if residing in socioeconomically disadvantaged postcodes (odds ratio 1.12, P=.05), but remoteness of residence was not significant. Conclusions: Gynecological BT is underutilized in NSW, Western Europe, and the United States given evidence-based guidelines. Access to BT equipment in NSW was significantly associated with higher utilization rates. Causes of underutilization elsewhere were undetermined. Our model of optimal BTU can be used as a quality assurance tool, providing an evidence-based benchmark against

  7. [Long-term effect of iodine deficiency on growth and food utilization rate in second filial generation rats].

    PubMed

    Muyeseer, Ainiwaer; Zhang, G X; Wang, J; Liu, Y; Meng, X H; Liu, Q

    2017-02-06

    Objective: To study the effect of iodine deficiency on body weight, food consumption, and food utilization rate of second filial generation Wistar rats. Methods: According to the food pattern of a high-iodine deficient population, two types of low-iodine food have been produced using the main crops grown in this area (iodine levels of 50 and 20 μg/kg, respectively). Wistar rats were randomly divided into three groups, normal iodine group (NI group), low-iodine group one (LI group) and low-iodine group two (LII group), using the random number table method and fed diets containing 300, 50, and 20 μg/kg of iodine, respectively. Parental generation rats were fed until they reached reproductive age; first filial generation rats were allocated to the same diet as their mothers. After 3 months of feeding, first filial generation rats gave birth to second filial generation rats; second filial generation rats were allocated to the same diet as their mothers. After feeding for 90, 180, and 270 days, rats were sacrificed. One-way analysis of variance was used to analyze body weight, food intake, and food utilization rate data collected during the time of feeding and blood iodine hormone level, which was determined after sacrifice. Results: The LI and LII groups generally demonstrated decreased activity, slow reaction, and growth retardation compared with the NI group. After 270 days, the urine iodine levels of the LI and LII groups were 1.7 and 0.2 μg/L, respectively, which were significantly lower than the NI group (255.2 μg/L) (P<0.001). Additionally, the weight of female rats in the LI and LII groups were (288.1±10.5) and (275.7±2.7) g, respectively, which was significantly lower than that of the NI group ((311.0±2.3) g) (P<0.001). The weight of male rats were (446.0±4.6) and (451.8±19.1) g, respectively, which were significantly lower than that of the NI group ((517.2±7.8) g) (P<0.001). In the LI and LII groups, food intake of female and male rats after 270 days

  8. Investigation of stability characteristics of cold-season convective precipitation events by utilizing the growth rate parameter

    NASA Astrophysics Data System (ADS)

    Melick, Christopher J.; Market, Patrick S.; Smith, Larry L.; Pettegrew, Brian P.; Becker, Amy E.; Lupo, Anthony R.

    2008-04-01

    The seldom utilized growth rate parameter (σ2), which predicts how rapidly a small-amplitude disturbance will grow in a conditional symmetrically unstable environment, was applied to study the stability characteristics of convective precipitation case studies across the central United States during the winter seasons of 2003-2004 and 2004-2005. The goals were to improve our understanding of how the environment becomes destabilized over a relatively short period of time, as well as to determine approximately where and when elevated thunderstorms are likely to develop. The comprehensive evaluation comprised a case study example and summary of statistics obtained by tabulations at the initiation site and spatial compositing of all case studies identified. The doubling time for the convection (the time required for a convective element to achieve twice its current depth) was found to be on the order of 1.3 h, which is consistent with the typical timescale for moist slantwise convection resulting from the release of conditional symmetric instability. The development of cold-season precipitation with lightning (i.e., thundersnow) and any associated banding was correctly and most accurately predicted from trends in plots of σ2 analyzed at the level at which the highest significant growth rates occurred. While this naturally varied from one event to the next, the average elevation tended to be close to 650 hPa. Furthermore, a term-by-term diagnosis of the mathematical expression for the growth rate was determined to be quite useful as another means of identifying the type of instability released within instances of wintertime convection. By calculating the individual contributions to the growth rate and observing whether a positive or negative response was obtained, the nature of the stability regime present was also ascertained. The inclusion of a set of non-thundering snowstorms helped to substantiate the assumption that atmospheres are less stable and more susceptible

  9. Using Optical Oxygen Sensors and Injection Experiments to Determine in situ Microbial Rate Constants for Methane Oxidation and Heterotrophic Respiration in a Boreal Bog and Fen

    NASA Astrophysics Data System (ADS)

    Waldo, N.; Moorberg, C.; Waldrop, M. P.; Turetsky, M. R.; Neumann, R. B.

    2015-12-01

    Wetlands are the largest natural source of methane to the atmosphere, and play a key role in feedback cycles to climate change. In recognition of this, many researchers are developing process-based models of wetland methane emissions at various scales. In these models, the three key biogeochemical reactions are methane production, methane oxidation, and heterotrophic respiration, and they are modeled using Michaelis-Menten kinetics. The majority of Michaelis-Menten rate constants used in models are based on experiments involving slurries of peat incubated in vials. While these slurries provide a highly controlled setting, they are different from in situ conditions in multiple ways; notably they lack live plants and the centimeter-scale heterogeneities that exist in the field. To determine rate constants in a system more representative of in situ conditions, we extracted peat cores intact from a bog and fen located in the Bonanza Creek Experimental Forest near Fairbanks, Alaska and part of the Alaska Peatland Experiment (APEX) research program. Into those cores we injected water with varying concentrations of methane and oxygen at multiple depths. We used planar oxygen sensors installed on the peat cores to collect high resolution, two dimensional oxygen concentration data during the injections and used oxygen consumption rates under various conditions to calculate rate constants. Results were compared to a similar but smaller set of injection experiments conducted against planar oxygen sensors installed in the bog. Results will inform parametrization of microbial processes in wetland models, improving estimates of methane emissions both under current climate conditions and in the future.

  10. The utility of the Dementia Severity Rating Scale in differentiating mild cognitive impairment and Alzheimer disease from controls.

    PubMed

    Mitchell, Joel C; Dick, Malcolm B; Wood, Amanda E; Tapp, Andre M; Ziegler, Raphael

    2015-01-01

    The current study investigated the utility of the Dementia Severity Rating Scale (DSRS) total score to identify individuals at the earliest stage of impairment (ie, mild cognitive impairment/MCI). In addition, the authors sought to investigate how well the measure correlates with an expanded battery of cognitive tests and other measures of functional abilities. Of the 320 participants included in this study, 85 were normal controls, 96 had single-domain or multiple-domain amnestic MCI, and 139 had possible or probable Alzheimer disease (AD). Each participant underwent a thorough cognitive, neurological, and physical examination. Results from this study indicated that the DSRS total scores differed significantly between the 3 groups (P<0.001) and accurately identified 81% of the control group, 60% of the MCI group, and 78% of the AD group in a post hoc discriminant analysis. When combined with a brief cognitive measure (ie, Consortium to Establish a Registry for Alzheimer's Disease Word List 5 min recall test), the DSRS accurately identified 98% of the control group, 76% of the MCI group, and 82% of the AD group. Implications for clinical practice and proposed areas of future research are discussed.

  11. An exploration of an alternative rate structure as a means of integrating equity and efficiency in a municipally owned natural gas distribution utility

    SciTech Connect

    Lynch, D.A.

    1989-01-01

    After two decades of a somewhat golden age for gas utilities and regulators, the 1970's saw a changing energy market characterized by curtailments and allocations in the natural gas industry. The Natural Gas Policy Act of 1978 provided incentives for new supplies but at increased prices. During a period of rapidly calculating natural gas prices (1979-1984), municipal owned public utility operators were criticized for not meeting the needs of the poor and other deprived members of society. The thesis of this paper is that this criticism of operators of municipal owned natural gas utilities stemmed from the observer conceiving of the utility as a social agency of government. This paper investigates the background of the problem and public utilities' obligations because of their status as regulated monopolies. The municipal owned natural gas utility's responsibility in meeting the social functions of government are considered. This paper argues that such a utility should be viewed as a business not a societal agency. Use of a utility's rate structure for satisfying the dictates of a system of distributive justice is investigated. The attempts made by state and local governments (moratoriums on delinquent shutoffs, lifeline rates, etc.) have been ineffective and counter productive. The utility's duty to offer service to all who request it; without discrimination among people similarly situated; to the limit of its capacity is considered with consumers duty to pay just bills. Arguments show that the rate structure, not quantity delivered, is the crucial factor in assuring distributive justice. Pricing is viewed from a philosophical perspective also an economic perspective. The only need identified for equity and economic efficiency is in rate structures.

  12. Water utilization of the Cretaceous Mussentuchit Member local vertebrate fauna, Cedar Mountain Formation, Utah, USA: Using oxygen isotopic composition of phosphate

    USGS Publications Warehouse

    Suarez, C.A.; Gonzalez, Luis A.; Ludvigson, Greg A.; Cifelli, R.L.; Tremain, E.

    2012-01-01

    While the oxygen isotopic composition of pedogenic carbonate has successfully been used to address the effects of global climate change on the hydrologic cycle, detailed regional paleohydrologic studies are lacking. Since the hydrologic cycle can vary extensively on local or regional scales due to events such as such as mountain building, and since pedogenic carbonates (calcite) form in a narrow moisture regime, other proxies, such as vertebrate remains, must be used to decipher local versus regional variations in paleohydrology. In this study, the oxygen isotopic composition (?? 18O p) of phosphatic remains from a diverse set of vertebrate fossils (fish, turtles, crocodiles, dinosaurs, and micro-mammals) from the Mussentuchit Member (MM) of the Cedar Mountain Formation, Utah, USA (Aptian to Cenomanian) are analyzed in order to determine differences among the available water reservoirs and water utilization of each taxon. Calculated changes in water reservoir ?? 18O w over time are then used to determine the effects of the incursion of the Western Interior Seaway (WIS) and the Sevier Mountains on paleohydrology during the MM time. Calculation of ?? 18O w from the results of isotopic analysis of phosphate oxygen suggests that turtles and crocodiles serve as another proxy for meteoric water ?? 18O that can be used as a measure of average local precipitation ?? 18O w similar to pedogenic calcite. Pedogenic calcites can be slightly biased toward higher values, however, due to their formation during evaporative conditions. Turtles and crocodiles can be used in place of pedogenic calcite in environments that are not conducive to pedogenic carbonate formation. Remains of fish with rounded tooth morphology have ?? 18O p values that predict temperatures consistent with other estimates of mean annual temperature for this latitude and time. The ?? 18O p of ganoid scales and teeth with pointed morphology, however, indicates that these skeletal materials were precipitated from

  13. EFFECT OF HYPOXIA ON THE RATE OF OXYGEN CONSUMPTION OF NEWBORN, YOUNG, AND ADULT MICE AT VARIOUS ENVIRONMENTAL TEMPERATURES,

    DTIC Science & Technology

    Critical Po2 that is, Po2 below the point at which oxygen consumption is reduced - was measured in newborn, 5-day-old, and adult mice. At...thermoneutral environmental temperatures, the critical Po2 of newborn was 85 mm. Hg; that of 5-day-old mice was 100 mm. Hg; and that of adults was 70 mm. Hg

  14. Radiative power and electron cooling rates for oxygen in steady-state and transient plasmas at densities beyond the coronal limit

    SciTech Connect

    Keane, C.; Skinner, C.H.

    1986-01-01

    We have developed a time-dependent, collisional-radiative model to calculate radiative power and electron cooling rates for oxygen at intermediate densities (10/sup 16/ cm/sup -3/ less than or equal to n/sub e/ less than or equal to 10/sup 20/ cm/sup -3/) where the usual coronal approximation is not valid. Large differences from coronal values are predicted. The behavior of the steady-state radiative power loss coefficient, L/sub Z, is investigated as the electron density is increased. Generalized power loss coefficients applicable to transient plasmas are derived and applied to ionizing and recombining oxygen plasmas. Time-dependent effects are found to play a large role both in terms of the total radiated power and the net electron energy loss rate. 41 refs., 11 figs.

  15. The effect of oxygen flow rate and radio frequency plasma power on cubic ZnMgO ultraviolet sensors grown by plasma-enhanced molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Casey Boutwell, R.; Wei, Ming; Schoenfeld, Winston V.

    2013-07-01

    Cubic Zn1-xMgxO thin films were produced by Plasma-Enhanced Molecular Beam Epitaxy. Oxygen flow rate and applied Radio-Frequency (RF) plasma power were varied to investigate the impact on film growth and optoelectronic device performance. Solar-blind and visible-blind detectors were fabricated with metal-semiconductor-metal interdigitated Ni/Mg/Au contacts and responsivity is compared under different growth conditions. Increasing oxygen flow rate and RF plasma power increased Zn incorporation in the film, which leads to phase segregation at relatively high Zn/Mg ratio. Responsivity as high as 61 A/W was measured in phase-segregated ZnMgO visible-blind detectors.

  16. Heart rate recovery after the 6-min walk test is related to 6-min walk distance and percutaneous oxygen saturation recovery in patients with COPD.

    PubMed

    Shiroishi, Ryota; Kitagawa, Chika; Miyamoto, Naomi; Kakuno, Nao; Koyanagi, Harumi; Rikitomi, Naoto; Senjyu, Hideaki

    2015-05-01

    Heart rate recovery (HRR) after maximal load exercise affects mortality in chronic obstructive pulmonary disease (COPD). However, the associations of clinical characteristics with HRR after the 6-min walk test (6MWT), which is defined as a submaximal load test, remain unclear. We showed that HRR in patients with COPD after 6MWT was related to 6-min walk distance and percutaneous oxygen saturation recovery. HRR after the 6MWT may be useful to assess exercise capacity in COPD.

  17. Grafting of Cucumis sativus onto Cucurbita ficifolia leads to improved plant growth, increased light utilization and reduced accumulation of reactive oxygen species in chilled plants.

    PubMed

    Zhou, Yanhong; Zhou, Jie; Huang, Lifeng; Ding, Xiaotao; Shi, Kai; Yu, Jingquan

    2009-09-01

    The effects of chilling at 14 and 7 degrees C on plant growth, CO(2) assimilation, light allocation, photosynthetic electron flux and antioxidant metabolism were examined in cucumber (Cucumis sativus L. cv. Jinyan No. 4, CS) plants with figleaf gourd (Cucurbita ficifolia Bouché, CF) and cucumber as rootstocks, respectively. Growth inhibition by chilling at 7 degrees C was characterized by irreversible inhibition of CO(2) assimilation in grafted plants with cucumber as rootstock and scion (CS/CS) but this effect was significantly alleviated by grafting onto CF roots (CS/CF). Chilled CS/CF plants exhibited a higher photosynthetic activity and lower proportion of energy dissipation than chilled CS/CS plants. Chilling resulted in a greater decrease in the electron flux in photosystem (PS) II (J (PSII)) than the rate of energy dissipation either via light-dependent (J (NPQ)) or via constitutive thermal dissipation and fluorescence (J (f,D)) in CS/CS plants. In parallel with the reduction in J (PSII), electron flux to oxygenation (J (o)) and carboxylation by Rubisco (J (c)) all decreased significantly whilst alternative electron flux in PS II (J (a)) increased, especially in CS/CS plants. Moreover, CS/CF plants exhibited higher activity of antioxidant enzymes, lower antioxidant content and less membrane peroxidation relative to CS/CS plants after chilling.

  18. On-line gas analysis in animal cell cultivation: II. Methods for oxygen uptake rate estimation and its application to controlled feeding of glutamine.

    PubMed

    Eyer, K; Oeggerli, A; Heinzle, E

    1995-01-05

    Different methods for oxygen uptake rate (OUR) determinations in animal cell cultivation were investigated using a high quality mass spectrometer. Dynamic measurements have considerable disadvantages because of disturbances of the growing cells by the necessary variations of dissolved oxygen concentration. Only infrequent discrete measurements are possible using this method. Stationary liquid phase balance yielded better results with much higher frequency. Gas phase balancing has the advantage of not requiring dissolved oxygen measurement and knowledge of K(L)a, both of them are easily biased. It was found that simple gas phase balancing is either very inaccurate (error larger than expected signal) or very slow, with gas phase residence times of several hours. Therefore, a new method of aeration was designed. Oxygen and CO(2) transfer are mainly achieved via sparging. The gas released to the headspace is diluted with a roughly 100-fold stream of an inert gas (helium). Through this dilution, gas ratios are not changed for O(2), CO(2), Ar, and N(2). The measurement of lower concentrations (parts per million and below) is easy using mass spectrometry with a secondary electron multiplier. With this new method an excellent accuracy and sufficient speed of analysis were obtained. All these on-line methods for OUR measurement were tested during the cultivation of animal cells. The new method allowed better study of the kinetics of animal cell cultures as was shown with a hybridoma cell line (HFN 7.1, ATCC CRL 1606) producing monoclonal antibodies against human fibronectin. With the aid of these methods it was possible to find a correlation between a rapid decrease in oxygen uptake rate (OUR) and glutamine concentration. The sudden decrease in OUR can be attributed to glutamine depletion. This provided a basis for the controlled addition of glutamine to reduce the formation of ammonia produced by hydrolysis. This control method based on OUR measurement resulted in

  19. Effect of Oxygen Tension, Mn(II) Concentration, and Temperature on the Microbially Catalyzed Mn(II) Oxidation Rate in a Marine Fjord †

    PubMed Central

    Tebo, Bradley M.; Emerson, Steven

    1985-01-01

    We present evidence that the oxidation of Mn(II) in a zone above the O2/H2S interface in the water column of Saanich Inlet, British Columbia, Canada, is microbially catalyzed. We measured the uptake of 54Mn(II) in water samples under in situ conditions of pH and temperature and in the presence and absence of oxygen. Experiments in the absence of oxygen provided a measure of the exchange of the tracer between the dissolved and solid pools of Mn(II); we interpret the difference between experiments in the presence and absence of oxygen to be a measure of Mn(II) oxidation. Using this method we examined the effect of oxygen tension, Mn(II) concentration, and temperature on the initial in situ Mn(II) oxidation rate (V0). Mn(II) oxidation was almost twice as fast under conditions of 67% air saturation (V0=5.5 nM h−1) as with the in situ concentration of 15 μM (5% air saturation; V0=3.1 nM h−1). Additions of ca. 18 μM Mn(II) completely inhibited all Mn(II) oxidation at three different depths in the oxidizing zone, and there was a temperature optimum for Mn(II) oxidation of around 20°C. These results are consistent with biologically mediated Mn(II) oxidation and indicate that the rate is limited by both oxygen and the concentration of microbial binding sites in this environment. PMID:16346931

  20. Comparison of six oxygen delivery systems for COPD patients at rest and during exercise.

    PubMed

    Braun, S R; Spratt, G; Scott, G C; Ellersieck, M

    1992-09-01

    Five different oxygen-conserving devices were tested in each of ten oxygen-dependent patients with COPD who had met the NOTT criteria for continuous oxygen use. They were tested on room air, their prescribed continuous oxygen flow and then on each of the five devices. The devices which delivered a bolus of oxygen during early inspiration or increased oxygen delivery as the respiratory rate increased did better than those devices which delivered oxygen at a normal flow rate during inspiration or a fixed portion of inspiration. In at least one of the subjects each device was associated with desaturation to less than 80 percent during a 12-min walk. It is concluded that oxygen-conserving devices vary in their ability to maintain SaO2 levels during exercise. It is recommended that a home oxygen evaluation include measurement of an exercise SaO2 utilizing the prescribed oxygen delivery system.

  1. Nonpharmacological therapies and provision of aids in outpatient dementia networks in Germany: utilization rates and associated factors

    PubMed Central

    Wübbeler, Markus; Thyrian, Jochen René; Michalowsky, Bernhard; Hertel, Johannes; Laporte Uribe, Franziska; Wolf-Ostermann, Karin; Schäfer-Walkmann, Susanne; Hoffmann, Wolfgang

    2015-01-01

    Background Nonpharmacological therapies and the provision of aids are described to be supportive in the treatment of persons with dementia (PWDs). These aim to maintain individuals’ participation in daily activities as long as possible, to slow the progression of their disease, and to support their independent living at home. However, there is a lack of knowledge about the utilization of therapies and aids among community-dwelling PWDs. Objective The aims of the study were a) to describe the utilization of nonpharmacological therapies and aids among community-dwelling PWDs and b) to analyze the factors associated with utilization. Method As part of a cross-sectional study of n=560 caregivers of PWDs in dementia networks throughout Germany, we assessed sociodemographics, clinical variables, and the utilization of nonpharmacological therapies (physiotherapy [PT], occupational therapy [OT]), and aids (sensory, mobility, and others), using face-to-face interviews and questionnaires. Results Approximately every fourth PWD received PT and every seventh PWD received OT. Sensory aids were utilized by 91.1%, personal hygiene aids by 77.2%, mobility aids by 58.6%, and medical aids by 57.7% of the sample. Regression analysis revealed that the utilization of PT and medical aids was associated with comorbidities (odds ratio [OR] 1.17 and OR 1.27, respectively) and that the utilization of OT and sensory aids was associated with age (OR 1.06 and OR 0.95, respectively). Conclusion The utilization of nonpharmacological therapies and aids among community-dwelling people served by dementia networks is more frequent than that reported for people in other settings. This result indicates that PWDs in integrated care models such as dementia networks receive better health care. PMID:26056468

  2. Effect of high-barrier packaging films with different oxygen transmission rates on the growth of Lactobacillus sp. on meat fillets.

    PubMed

    Tsigarida, E; Nychas, G J E

    2006-04-01

    The goal of this study was to determine the combined effect of (i) the oxygen transmission rate (OTR) of packaging film, often called oxygen film permeability or film permeability and (ii) temperature on the growth rate of the main prevailing organism, Lactobacillus sp., in 100% CO2-packed sterile meat fillets. Multifactorial experiments were designed to study the effect of OTR and temperature (0, 5, 8, and 10 degrees C) on the growth rate of Lactobacillus sp. inoculated on sterile meat fillets under 100% CO2 and aerobic conditions. The packaging conditions (air or 100% CO2) and the film OTR significantly affected the growth rate of Lactobacillus sp. only at temperatures higher than 0 degrees C. Low-permeable films with different OTRs did not affect the final population of the bacterium, but the growth rate was significantly changed. The correlation of an ephemeral microbial association with a low spoilage potential (e.g., lactic acid bacteria) or their growth retardation cannot always be assumed unless other determinants (e.g., OTR) of equal importance are taken into account. The present study provides information that can be of benefit to industry and the consumer.

  3. Reconfigurable intensity modulation and direct detection optical transceivers for variable-rate wavelength-division-multiplexing passive optical networks utilizing digital signal processing-based symbol mapper

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiguo; Zhang, Bingbing; Chen, Yanxu; Chen, Xue

    2017-01-01

    Variable-rate intensity modulation and direct detection-based optical transceivers with software-controllable reconfigurability and transmission performance adaptability are experimentally demonstrated, utilizing M-QAM symbol mapping implemented in MATLAB® programs. A frequency division multiplexing-based symbol demapping and wavelength management method is proposed for the symbol demapper and tunable laser management used in colorless optical network unit.

  4. Ambulatory 24-hour cardiac oxygen consumption and blood pressure-heart rate variability: effects of nebivolol and valsartan alone and in combination.

    PubMed

    Izzo, Joseph L; Khan, Safi U; Saleem, Osman; Osmond, Peter J

    2015-07-01

    We compared an angiotensin receptor blocker (valsartan; VAL), a beta-blocker (nebivolol; NEB) and the combination of NEB/VAL with respect to 24-hour myocardial oxygen consumption (determined by 24-hour ambulatory heart rate-central systolic pressure product [ACRPP]) and its components. Subjects with hypertension (systolic blood pressure >140 or diastolic blood pressure >90; n = 26) were studied in a double-blinded, double-dummy, forced-titration, crossover design with 3 random-order experimental periods: VAL 320 mg, NEB 40 mg, and NEB/VAL 320/40 mg daily. After 4 weeks of each drug, ambulatory pulse wave analysis (MobilOGraph) was performed every 20 minutes for 24 hours. All three treatments resulted in nearly identical brachial and central systolic blood pressures. NEB alone or in combination with VAL resulted in lower ACRPP (by 11%-14%; P < .001 each) and heart rate (by 18%-20%; P < .001 each) compared with VAL, but stroke work (ACRPP per beat) was lower with VAL. Relative and adjusted variability (standard deviation and coefficient of variation) of heart rate were also lower with NEB and NEB/VAL than VAL. Results in African Americans, the majority subpopulation, were similar to those of the entire treatment group. We conclude that the rate-slowing effects of NEB cause ambulatory cardiac myocardial oxygen consumption to be lower with NEB monotherapy or NEB/VAL combination therapy than with VAL monotherapy. NEB/VAL is not superior to NEB alone in controlling heart rate, blood pressure, or ACRPP. Heart rate variability but not ACRPP variability is reduced by NEB or the combination NEB/VAL. There is no attenuation of beta-blocker-induced rate-slowing effects of in African Americans.

  5. Hurricane exposure and county fetal death rates, utilization of a county environmental quality index for confounding control.

    EPA Science Inventory

    The effects of natural disasters on public health are a rising concern, with increasing severity of disaster events. Many disaster studies utilize county-level analysis, however most do not control for county level environmental factors. Hurricane exposure during pregnancy could ...

  6. On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca).

    PubMed

    Seibel, Brad A

    2007-01-01

    Recent ecological theory depends, for predictive power, on the apparent similarity of metabolic rates within broad taxonomic or functional groups of organisms (e.g. invertebrates or ectotherms). Such metabolic commonality is challenged here, as I demonstrate more than 200-fold variation in metabolic rates independent of body mass and temperature in a single class of animals, the Cephalopoda, over seven orders of magnitude size range. I further demonstrate wide variation in the slopes of metabolic scaling curves. The observed variation in metabolism reflects differential selection among species for locomotory capacity rather than mass or temperature constraints. Such selection is highest among epipelagic squids (Lolignidae and Ommastrephidae) that, as adults, have temperature-corrected metabolic rates higher than mammals of similar size.

  7. [Utilization rate of fertilizer N and dynamic changes of soil NO3(-)-N in summer maize field in semi-humid area of Northwest China].

    PubMed

    Fan, Ya-ning; Li, Shi-qing; Li, Sheng-xiu

    2008-04-01

    A field experiment on manual loessial soil was conducted to study the dynamic changes of NO3(-)-N in soil profile, utilization rate of fertilizer N, and relationships between N application rate and soil residual N accumulation during the growth period of summer maize under different N application rates (0, 45, 90, 135, and 180 kg hm(-2)). The results showed that in the whole growth period of summer maize, the NO3(-)-N concentration in the soil profile was the highest in 0-20 cm layer, and increased with increasing N application rate. The NO3(-)-N concentration in 0-60 cm soil layer changed significantly, but no significant change was observed in 60-100 cm soil layer. In the growth season of summer maize, soil NO3(-)-N accumulation presented a fluctuated decreasing trend due to the N uptake by crop and the precipitation. The N utilization rate (NUR) increased with increasing N application rate when the application rate was less than 135 kg hm(-2), but tended to decrease when the application rate exceeded 135 kg hm(-2). With the increase of N application rate, the N agronomy efficiency (NAE) decreased but the N physiology efficiency (NPE) increased. There was a significant positive correlation between soil residual N accumulation and N application rate (R2 = 0.957**, n = 5). The grain yield under N application was significantly higher than that without N application (P <0.05), and there existed a significant positive correlation between grain yield and N application rate (R2 = 0.934**, n = 5). In our experiment, the optimal application rate of fertilizer N was 135 kg hm(-2), which could harmonize the relationship between economic benefits and environment.

  8. A Three-Axis Fixed-Simulator Investigation of the Effects on Control Precision of Various Ways of Utilizing Rate Signals

    NASA Technical Reports Server (NTRS)

    McKee, John W.

    1961-01-01

    A three-axis vehicle control study has been made by use of a fixed simulator and analog computing equipment, to evaluate the effects of various ways of utilizing rate information. A side-arm controller providing proportional acceleration control was used with a simulated vehicle having no inherent stability or damping. Vehicle rate signals were used to provide control feedback or system damping and were used in the instrument display either separate from or summed with displacement signals. Near optimum performance of both transitions in roll and control of system disturbance was obtained by using a combination of system damping and summed displacement signals and rate signals.

  9. Evaluation of scavenging rate constants of DOPA and tyrosine enantiomers against multiple reactive oxygen species and methyl radical as measured with ESR trapping method.

    PubMed

    Sueishi, Yoshimi; Takemoto, Tsubasa

    2015-04-15

    The scavenging rates of DOPA (dl- and l-3-(3,4-dihydroxyphenyl)alanine) and Tyr (tyrosine (dl- and l-3-(4-hydroxyphenyl)alanine)) against five reactive oxygen species (ROS) and methyl radical were measured with the use of electron spin resonance (ESR) spin-trapping method and the scavenging rate constants of DOPA and Tyr were determined. The scavenging rate constants for multiple active species increased in the order of O2(-)

  10. Influence of residual elements in lead on oxygen- and hydrogen-gassing rates of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Ceylan, H.; Haigh, N. P.; Lwin, T.; Rand, D. A. J.

    Raw lead materials contain many residual elements. With respect to setting 'safe' levels for these elements, each country has its own standard, but the majority of the present specifications for the lead used to prepare battery oxide apply to flooded batteries that employ antimonial grids. In these batteries, the antimony in the positive and negative grids dominates gassing characteristics so that the influence of residual elements is of little importance. This is, however, not the case for valve-regulated lead-acid (VRLA) batteries, which use antimony-free grids and less sulfuric acid solution. Thus, it is necessary to specify 'acceptable' levels of residual elements for the production of VRLA batteries. In this study, 17 elements are examined, namely: antimony, arsenic, bismuth, cadmium, chromium, cobalt, copper, germanium, iron, manganese, nickel, selenium, silver, tellurium, thallium, tin, and zinc. The following strategy has been formulated to determine the acceptable levels: (i) selection of a control oxide; (ii) determination of critical float, hydrogen and oxygen currents; (iii) establishment of a screening plan for the elements; (iv) development of a statistical method for analysis of the experimental results. The critical values of the float, hydrogen and oxygen currents are calculated from a field survey of battery failure data. The values serve as a base-line for comparison with the corresponding measured currents from cells using positive and negative plates produced either from the control oxide or from oxide doped with different levels of the 17 elements in combination. The latter levels are determined by means of a screening plan which is based on the Plackett-Burman experimental design. Following this systematic and thorough exercise, two specifications are proposed for the purity of the lead to be used in oxide production for VRLA technology.

  11. Oxygen Consumption by Red Wines. Part I: Consumption Rates, Relationship with Chemical Composition, and Role of SO₂.

    PubMed

    Ferreira, Vicente; Carrascon, Vanesa; Bueno, Mónica; Ugliano, Maurizio; Fernandez-Zurbano, Purificación

    2015-12-30

    Fifteen Spanish red wines extensively characterized in terms of SO2, color, antioxidant indexes, metals, and polyphenols were subjected to five consecutive sensor-controlled cycles of air saturation at 25 °C. Within each cycle, O2 consumption rates cannot be interpreted by simple kinetic models. Plots of cumulated consumed O2 made it possible to define a fast and highly wine-dependent initial O2 consumption rate and a second and less variable average O2 consumption rate which remains constant in saturations 2 to 5. Both rates have been satisfactorily modeled, and in both cases they were independent of Fe and SO2 and highly dependent on Cu levels. Average rates were also related to Mn, pH, Folin, protein precipitable proanthocyanidins (PPAs), and polyphenolic profile. Initial rates were strong and negatively correlated to SO2 consumption, indicating that such an initial rate is either controlled by an unknown antioxidant present in some wines or affected by a poor real availability of SO2. Remaining unreacted SO2 is proportional to initial combined SO2 and to final free acetaldehyde.

  12. Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches.

    PubMed

    Beamonte-Barrientos, Rene; Verhulst, Simon

    2013-07-01

    Understanding the sources of variation in oxidative stress level is a challenging issue due to the implications of oxidative stress for late age diseases, longevity and life-history trade-offs. Reactive oxygen species that cause oxidative stress are mostly a by-product of energy metabolism and it is therefore often assumed that oxidative stress is proportional to energy consumption. In mammals, an increased metabolic rate induced by cold exposure generally increases oxidative stress. However, compared to mammals, birds generate fewer free radicals per ATP produced and hence it is not obvious that, in birds, a cold-induced increase of metabolic rate increase oxidative stress. We tested whether cold-induced increase in metabolic rate increased oxidative stress in zebra finches by exposing individuals to cold and warm overnight temperatures. We registered metabolic rate and plasma levels of non-enzymatic antioxidants and reactive oxygen metabolites (ROMs), a measure of oxidative damage. Metabolic rate was on average 88 % higher in cold compared to warm temperature, with females being stronger affected than males. However, temperature had no effect on plasma antioxidants or our measure of oxidative damage. Middle-age birds had higher levels of plasma antioxidants than younger and older birds, but age was unrelated to ROMs. Birds showed repeatability of plasma ROMs across temperatures but not of non-enzymatic antioxidants. In contrast to similar studies in mammals, our results do not show evidence of increased oxidative stress in plasma after an acute cold-induced increase of metabolic rate but research in more bird species is needed to assess the generality of this pattern.

  13. Determining adolescents' suitability for inpatient psychotherapy: utility of the clinician-rated Readiness for Inpatient Psychotherapy Scale with an adolescent inpatient sample.

    PubMed

    Haggerty, Greg; Siefert, Caleb; Stoycheva, Valentina; Sinclair, Samuel Justin; Baity, Matthew; Zodan, Jennifer; Mehra, Ashwin; Chand, Vijay; Blais, Mark A

    2014-01-01

    Growing economic pressure on inpatient services for adolescents has resulted in fewer clinicians to provide individual psychotherapy. As a result, inpatient treatment trends have favored group psychotherapy modalities and psychopharmacological interventions. Currently, no clinician-rated measures exist to assist clinicians in determining who would be able to better utilize individual psychotherapy on inpatient units. The current study sought to demonstrate the utility of the Readiness for Inpatient Psychotherapy Scale with an adolescent inpatient sample. This study also used the RIPS as it is intended to be used in everyday practice. Results from the authors' analyses reveal that the RIPS demonstrates good psychometrics and interrater reliability, as well as construct validity.

  14. Treatment of a slaughterhouse wastewater: effect of internal recycle rate on chemical oxygen demand, total Kjeldahl nitrogen and total phosphorus removal.

    PubMed

    Fongsatitkul, P; Wareham, D G; Elefsiniotis, P; Charoensuk, P

    2011-12-01

    This study investigated the ability of an anaerobic/anoxic/oxic (A2/O) system to treat a slaughterhouse wastewater. The system employed two identical continuous-flow reactors (101 total liquid volume each) running in parallel with the main operational variable, being the internal recycle (IR) rate. The chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN) and total phosphorus (TP) performance was evaluated as the IR flowrate was increased from a Q of 151d(-1) to 4Q at a system hydraulic retention time of 16 h and a solids retention time of 10 d. The COD:TKN and COD:TP ratios were 8.2:1 and 54:1, which supported both nitrogen and phosphorus removal. For all IR multiples of Q, the COD removal was in excess of 90%. The TKN removal showed a modest improvement (a 4-5% increase, depending on the dissolved oxygen (DO)) as the IR doubled from Q to 2Q, but no further increase was observed at the 4Q IR rate. The TP removal reached its optimum (around 85%-89% (again depending on the DO)) at the 2Q rate.

  15. Remifentanil patient-controlled analgesia for labor – monitoring of newborn heart rate, blood pressure and oxygen saturation during the first 24 hours after delivery

    PubMed Central

    Konefał, Halina; Jaskot, Brygida; Pastuszka, Joanna

    2012-01-01

    Introduction There is no available information about the effects of remifentanil labor analgesia on newborns’ vital signs in the first hours after delivery. The aim of the study was to assess changes in the heart rate, blood pressure and oxygen saturation during the first 24 h of neonatal life after using remifentanil patient-controlled analgesia (PCA) for labor analgesia. Material and methods Forty-four full-term neonates, 23 from intravenous PCA remifentanil labor anesthesia 0.2 µg/kg, repeated not more frequently than every 2 min, and 21 born to mothers without any pharmacological forms of analgesia, were studied. Heart rate, oxygen saturation, and systolic (SBP) and diastolic blood pressure (DBP) were monitored using a Nellcor Oxi Max monitor N5500 (Tyco Healthcare), and recorded at 1 h, 6 h, 12 h and 24 h. Results No significant differences in heart rate (p = 0.54; p = 0.26; p = 0.60; p = 0.83), oxygen saturation (p = 0.21; p = 0.27; p = 0.61; p = 0.9) and DBP (p = 0.98; p = 0.31; p = 0.83; p = 0.58) between the groups at 1 h, 6 h, 12 h and 24 h. Newborns from the remifentanil group had lower SBP at 1 h of life (59 mm Hg vs. 68.5 mm Hg) but the difference was just on the borderline of statistical significance (p > 0.06). There were no significant differences in SBP between the groups at 6 h (p = 0.65), 12 h (p = 0.11), and 24 h (p = 0.89) of life. Conclusions Remifentanil PCA analgesia during labor does not significantly modify the oxygen saturation, heart rate and blood pressure in infants during the first day of their life. Therefore, further studies are needed to explain the observed trend for arterial hypotension in the first hour of life in infants born to mothers treated with remifentanil. PMID:24049531

  16. In Situ Resource Utilization (ISRU) on the Moon: Moessbauer Spectroscopy as a Process Monitor for Oxygen Production. Results from a Field Test on Mauna Kea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Morris, R.V.; Schroder, C.; Graff, T.G.; Sanders, G.B.; Lee, K.A.; Simon, T.M.; Larson, W.E.; Quinn, J.W.; Clark, L.D.; Caruso, J.J.

    2009-01-01

    Essential consumables like oxygen must to be produced from materials on the lunar surface to enable a sustained, long-term presence of humans on the Moon. The Outpost Precursor for ISRU and Modular Architecture (OPTIMA) field test on Mauna Kea, Hawaii, facilitated by the Pacific International Space Center for Exploration Systems (PISCES) of the University of Hawaii at Hilo, was designed to test the implementation of three hardware concepts to extract oxygen from the lunar regolith: Precursor ISRU Lunar Oxygen Testbed (PILOT) developed by Lockheed Martin in Littleton, CO; Regolith & Environmental Science and Oxygen & Lunar Volatiles Extraction (RESOLVE) developed at the NASA Kennedy Space Center in Cape Canaveral, FL; and ROxygen developed at the NASA Johnson Space Center in Houston, TX. The three concepts differ in design, but all rely on the same general principle: hydrogen reduction of metal cations (primarily Fe2+) bonded to oxygen to metal (e.g., Fe0) with the production of water. The hydrogen source is residual hydrogen in the fuel tanks of lunar landers. Electrolysis of the water produces oxygen and hydrogen (which is recycled). We used the miniaturized M ssbauer spectrometer MIMOS II to quantify the yield of this process on the basis of the quantity of Fe0 produced. Iron M ssbauer spectroscopy identifies iron-bearing phases, determines iron oxidation states, and quantifies the distribution of iron between mineral phases and oxidation states. The oxygen yield can be calculated by quantitative measurements of the distribution of Fe among oxidation states in the regolith before and after hydrogen reduction. A M ssbauer spectrometer can also be used as a prospecting tool to select the optimum feedstock for the oxygen production plants (e.g., high total Fe content and easily reduced phases). As a demonstration, a MIMOS II backscatter spectrometer (SPESI, Germany) was mounted on the Cratos rover (NASA Glenn Research Center in Cleveland, OH), which is one of

  17. Impairment in Occupational Functioning and Adult ADHD: The Predictive Utility of Executive Function (EF) Ratings Versus EF Tests

    PubMed Central

    Barkley, Russell A.; Murphy, Kevin R.

    2010-01-01

    Attention deficit hyperactivity disorder (ADHD) is associated with deficits in executive functioning (EF). ADHD in adults is also associated with impairments in major life activities, particularly occupational functioning. We investigated the extent to which EF deficits assessed by both tests and self-ratings contributed to the degree of impairment in 11 measures involving self-reported occupational problems, employer reported workplace adjustment, and clinician rated occupational adjustment. Three groups of adults were recruited as a function of their severity of ADHD: ADHD diagnosis (n = 146), clinical controls self-referring for ADHD but not diagnosed with it (n = 97), and community controls (n = 109). Groups were combined and regression analyses revealed that self-ratings of EF were significantly predictive of impairments in all 11 measures of occupational adjustment. Although several tests of EF also did so, they contributed substantially less than did the EF ratings, particularly when analyzed jointly with the ratings. We conclude that EF deficits contribute to the impairments in occupational functioning that occur in conjunction with adult ADHD. Ratings of EF in daily life contribute more to such impairments than do EF tests, perhaps because, as we hypothesize, each assesses a different level in the hierarchical organization of EF as a meta-construct. PMID:20197297

  18. ENHANCED GROWTH RATE AND SILANE UTILIZATION IN AMORPHOUS SILICON AND NANOCRYSTALLINE-SILICON SOLAR CELL DEPOSITION VIA GAS PHASE ADDITIVES

    SciTech Connect

    Ridgeway, R G; Hegedus, S S; Podraza, N J

    2012-08-31

    Air Products set out to investigate the impact of additives on the deposition rate of both CSi and Si-H films. One criterion for additives was that they could be used in conventional PECVD processing, which would require sufficient vapor pressure to deliver material to the process chamber at the required flow rates. The flow rate required would depend on the size of the substrate onto which silicon films were being deposited, potentially ranging from 200 mm diameter wafers to the 5.7 m2 glass substrates used in GEN 8.5 flat-panel display tools. In choosing higher-order silanes, both disilane and trisilane had sufficient vapor pressure to withdraw gas at the required flow rates of up to 120 sccm. This report presents results obtained from testing at Air Products electronic technology laboratories, located in Allentown, PA, which focused on developing processes on a commercial IC reactor using silane and mixtures of silane plus additives. These processes were deployed to compare deposition rates and film properties with and without additives, with a goal of maximizing the deposition rate while maintaining or improving film properties.

  19. Evaluating behavior of oxygen, nitrate, and sulfate during recharge and quantifying reduction rates in a contaminated aquifer

    USGS Publications Warehouse

    McGuire, Jennifer T.; Long, David T.; Klug, Michael J.; Haack, Sheridan K.; Hyndman, David W.

    2002-01-01

    This study evaluates the biogeochemical changes that occur when recharge water comes in contact with a reduced aquifer. It specifically addresses (1) which reactions occur in situ, (2) the order in which these reactions will occur if terminal electron acceptors (TEAs) are introduced simultaneously, (3) the rates of these reactions, and (4) the roles of the aqueous and solid-phase portions of the aquifer. Recharge events of waters containing various combinations of O2, NO3, and SO4 were simulated at a shallow sandy aquifer contaminated with waste fuels and chlorinated solvents using modified push−pull tests to quantify rates. In situ rate constants for aerobic respiration (14.4 day -1), denitrification (5.04−7.44 day-1), and sulfate reduction (4.32−6.48 day-1) were estimated. Results show that when introduced together, NO3 and SO4can be consumed simultaneously at similar rates. To distinguish the role of aqueous phase from that of the solid phase of the aquifer, groundwater was extracted, amended with NO3 and SO4, and monitored over time. Results indicate that neither NO3 nor SO4 was reduced during the course of the aqueous-phase study, suggesting that NO3 and SO4 can behave conservatively in highly reduced water. It is clear that sediments and their associated microbial communities are important in driving redox reactions.

  20. Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors.

    PubMed

    Quijano, Guillermo; Rocha-Ríos, José; Hernández, Maria; Villaverde, Santiago; Revah, Sergio; Muñoz, Raúl; Thalasso, Frédéric

    2010-03-15

    The effect of liquid and solid transfer vectors (silicone oil and Desmopan, respectively) on the gaseous interfacial area (a(g)) was evaluated in a two-phase partitioning bioreactor (TPPB) using fresh mineral salt medium and the cultivation broth of a toluene degradation culture (Pseudomonas putida DOT-T1E cultures continuously cultivated with and without silicone oil at low toluene loading rates). Higher values of a(g) were recorded in the presence of both silicone oil and Desmopan compared to the values obtained in the absence of a vector, regardless of the aqueous medium tested (1.6 and 3 times higher, respectively, using fresh mineral salt medium). These improvements in a(g) were well correlated to the oxygen mass transfer enhancements supported by the vectors (1.3 and 2.5 for liquid and solid vectors, respectively, using fresh medium). In this context, oxygen transfer rates of 2.5 g O(2)L(-1)h(-1) and 1.3 g O(2)L(-1)h(-1) were recorded in the presence of Desmopan and silicone oil, respectively, which are in agreement with previously reported values in literature. These results suggest that mass transfer enhancements in TPPBs might correspond to an increase in a(g) rather than to the establishment of a high-performance gas/vector/water transfer pathway.

  1. Comparing the effectiveness of heat rate improvements in different coal-fired power plants utilizing carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Walsh, Martin Jeremy

    New Congressional legislation may soon require coal-fired power generators to pay for their CO2 emissions and capture a minimum level of their CO2 output. Aminebased CO2 capture systems offer plants the most technically proven and commercially feasible option for CO2 capture at this time. However, these systems require a large amount of heat and power to operate. As a result, amine-based CO2 capture systems significantly reduce the net power of any units in which they are installed. The Energy Research Center has compiled a list of heat rate improvements that plant operators may implement before installing a CO2 capture system. The goal of these improvements is to upgrade the performance of existing units and partially offset the negative effects of adding a CO2 capture system. Analyses were performed in Aspen Plus to determine the effectiveness of these heat rate improvements in preserving the net power and net unit heat rate (NUHR) of four different power generator units. For the units firing high-moisture sub-bituminous coal, the heat rate improvements reduced NUHR by an average of 13.69% across a CO 2 capture level range of 50% to 90%. For the units firing bituminous coal across the same CO2 capture range, the heat rate improvements reduced NUHR by an average of 12.30%. Regardless of the units' coal or steam turbine cycle type, the heat rate improvements preserved 9.7% to 11.0% of each unit's net power across the same CO2 capture range. In general, the heat rate improvements were found to be most effective in improving the performance of units firing high-moisture sub-bituminous. The effect of the CO2 capture system on these units and the reasons for the improvements' greater effectiveness in them are described in this thesis.

  2. Oral glucose before venepuncture relieves neonates of pain, but stress is still evidenced by increase in oxygen consumption, energy expenditure, and heart rate.

    PubMed

    Bauer, Karl; Ketteler, Jörg; Hellwig, Magdalena; Laurenz, Maren; Versmold, Hans

    2004-04-01

    Oral glucose was recommended as pain therapy during venepuncture in neonates. It is unclear whether this intervention reduces excess oxygen consumption (o(2)), energy loss, or cardiovascular destabilization associated with venepuncture, and whether <2 mL glucose solution is effective. We tested the hypothesis that oral glucose solution attenuates the increases in neonatal oxygen consumption, energy expenditure (EE), and heart rate associated with venepuncture for two different volumes of glucose solution (2 and 0.4 mL). In this prospective, randomized, controlled, double-blind trial, 58 neonates (gestational age, 31-42 wk; postnatal age, 1-7 d) were randomized to 2 mL glucose 30%, 0.4 mL glucose 30%, or 2 mL water by mouth before venepuncture. The videotaped behavioral pain reactions were scored with the Premature Infant Pain Profile. Cry duration, o(2), EE (indirect calorimetry), and heart rate were measured. The 2 mL glucose solution reduced pain score and crying after venepuncture compared with controls [median pain score, 5.5 (interquartile range, 4-9) versus 11 (7-12), p = 0.01; median duration of first cry, 0 s (0-43 s) versus 13 s (2-47 s), p < 0.05, respectively]. The 0.4 mL glucose solution had no effect. The 2 mL glucose solution did not attenuate the o(2) increase during venepuncture (1.5 +/- 0.2 mL/kg min (water) versus 1.7 +/- 0.5 (0.4 mL glucose) versus 1.1 +/- 0.2 (2 mL glucose) (mean +/- SEM) nor EE nor heart rate. We conclude that oral administration of 2 mL glucose 30% before venepuncture reduced pain expression and crying, but did not prevent the rise in o(2), EE, or heart rate. Alternative therapies against the stress of nonpainful handling during venepuncture should be explored.

  3. Effects of a catheter-associated urinary tract infection prevention campaign on infection rate, catheter utilization, and health care workers' perspective at a community safety net hospital.

    PubMed

    Gray, Dorinne; Nussle, Richard; Cruz, Abner; Kane, Gail; Toomey, Michael; Bay, Curtis; Ostovar, Gholamabbas Amin

    2016-01-01

    Preventing catheter-associated urinary tract infections is in the forefront of health care quality. However, nurse and physician engagement is a common barrier in infection prevention efforts. After implementation of a multidisciplinary catheter-associated urinary tract infection (CAUTI) prevention campaign, we studied the impact of our campaign and showed its association with reducing the CAUTI rate and catheter utilization and the positive effect on health care workers' engagement and perspectives. CAUTI prevention campaigns can lead to lower infection rates and change health care workers' perspective.

  4. Effects of pH, Temperature, Dissolved Oxygen, and Flow Rate on Phosphorus Release Processes at the Sediment and Water Interface in Storm Sewer

    PubMed Central

    Li, Haiyan; Li, Mingyi; Zhang, Xiaoran

    2013-01-01

    The effects of pH, temperature, dissolved oxygen (DO), and flow rate on the phosphorus (P) release processes at the sediment and water interface in rainwater pipes were investigated. The sampling was conducted in a residential storm sewer of North Li Shi Road in Xi Cheng District of Beijing on August 3, 2011. The release rate of P increased with the increase of pH from 8 to 10. High temperature is favorable for the release of P. The concentration of total phosphorus (TP) in the overlying water increased as the concentration of DO decreased. With the increase of flow rate from 0.7 m s−1 to 1.1 m s−1, the concentration of TP in the overlying water increased and then tends to be stable. Among all the factors examined in the present study, the flow rate is the primary influence factor on P release. The cumulative amount of P release increased with the process of pipeline runoff in the rainfall events with high intensities and shorter durations. Feasible measures such as best management practices and low-impact development can be conducted to control the P release on urban sediments by slowing down the flow rate. PMID:24349823

  5. Effect of Cooling Rate and Oxygen Fugacity on the Crystallization of the Queen Alexandra Range 94201 Martian Melt Composition

    NASA Technical Reports Server (NTRS)

    Koizumi, E.; Mikouchi, T.; McKay, G.; Schwandt, C.; Monkawa, A.; Miyamoto, M.

    2002-01-01

    Although many basaltic shergottites have been recently found in north African deserts, QUE94201 basaltic shergottite (QUE) is still important because of its particular mineralogical and petrological features. This meteorite is thought to represent its parent melt composition [1 -3] and to crystallize under most reduced condition in this group [1,4]. We performed experimental study by using the synthetic glass that has the same composition as the bulk of QUE. After homogenization for 48 hours at 1300 C, isothermal and cooling experiments were done under various conditions (e.g. temperature, cooling rates, and redox states). Our goals are (1) to verify that QUE really represents its parent melt composition, (2) to estimate a cooling rate of this meteorite, (3) to clarify the crystallization sequences of present minerals, and (4) to verity that this meteorite really crystallized under reduced condition.

  6. Absolute rate parameters for the reaction of ground state atomic oxygen with carbonyl sulfide. [using O(3P) monitoring

    NASA Technical Reports Server (NTRS)

    Klemm, R. B.; Stief, L. J.

    1974-01-01

    The rate parameters for the reaction of O(3P) with carbonyl sulfide, O(3P) + OCS yields CO + SO have been determined directly by monitoring O(3P) using the flash photolysis-resonance fluorescence technique. The value for k sub 1 was measured over a temperature range of 263 - 502 K and the data were fitted to an Arrhenuis expression with good linearity.

  7. Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen

    NASA Astrophysics Data System (ADS)

    Ma, Quanxin; Li, Ruhong; Zheng, Rujuan; Liu, Yuanlong; Huo, Hua; Dai, Changsong

    2016-11-01

    To improve the rate performance and decelerate the voltage decay of Li-rich layered oxide cathode materials, a series of cathode materials Li1.2[Mn0.7Ni0.2Co0.1]0.8-xSexO2 (x = 0, 0.07, 0.14 and 0.21) was synthesized via co-precipitation. Based on the characterization results, it can be concluded that uniform Se6+ doping can improve the degree of crystallinity of Li2MnO3, resulting in a better ordering of atoms in the transition metal layer of this type of cathode materials. In the electrochemical experiments, compared to un-doped samples, one of the Se doped samples (LLMO-Se0.14) exhibited a longer sloping region and shorter potential plateau in the initial charge curves, a larger first coulombic efficiency (ca. 77%), better rate capability (178 mAhm g-1 at 10 C) and higher mid-point voltage (MPV) retention (ca. 95%) after 100 cycles. These results prove that Se doping can effectively improve the rate capability and decelerate the voltage decay process of these cathode materials during cycling via suppressing the oxidation process of O2- to O2 and curbing a layered-to-spinel phase transformation. The above-mentioned functions of Se doping are probably due to the higher bonding energy of Sesbnd O than that of Mnsbnd O.

  8. Enhanced low dose rate sensitivity (ELDRS) in a voltage comparator which only utilizes complementary vertical NPN and PNP transistors

    SciTech Connect

    Krieg, J.F.; Titus, J.L.; Emily, D.; Gehlhausen, M.; Swonger, J.; Platteter, D.

    1999-12-01

    For the first time, enhanced low dose rate sensitivity (ELDRS) is reported in a vertical bipolar process. A radiation hardness assurance (RHA) test method was successfully demonstrated on a linear circuit, the HS139RH quad comparator, and its discrete transistor elements. This circuit only uses vertical NPN and PNP transistors. Radiation tests on the HS139RH were performed at 25 C using dose rates of 50 rd(Si)/s, 100 mrd(Si)/s and 10 mrd(Si)/s, and at 100 C using a dose rate of 10 rd(Si)/s. Tests at dose rates of 50 rd(Si)/s at 25 C and 10 rd(Si)/s at 100 C were performed on discrete vertical NPN and PNP transistor elements which comprise the HS139RH. Transistor and circuit responses were evaluated. The die's passivation overcoat layers were varied to examine the effect of removing a nitride layer and thinning a deposited SiO{sup 2} (silox) layer.

  9. Operational Considerations for Oxygen Flammability Risks: Concentrated Oxygen Diffusion and Permeation Behaviors

    NASA Technical Reports Server (NTRS)

    Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David

    2010-01-01

    Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.

  10. Effect of muscle temperature on rate of oxygen uptake during exercise in humans at different contraction frequencies.

    PubMed

    Ferguson, Richard A; Ball, Derek; Sargeant, Anthony J

    2002-04-01

    The effect of elevated human muscle temperature on energy turnover was investigated during cycling exercise (at 85 % of (VO(2)max)) at a contraction frequency of 60 revs min(-1). Muscle temperature was passively elevated prior to exercise by immersion of the legs in a hot water bath (42 degrees C). During exercise at this low pedalling rate, total energy turnover was higher (P<0.05) when muscle temperature was elevated compared with normal temperature (70.4+/-3.7 versus 66.9+/-2.4 kJ min(-1), respectively). Estimated net mechanical efficiency was found to be lower when muscle temperature was elevated. A second experiment was conducted in which the effect of elevated human muscle temperature on energy turnover was investigated during cycling exercise (at 85 % of (VO(2)max)) at a contraction frequency of 120 revs min(-1). Under the conditions of a high pedalling frequency, an elevated muscle temperature resulted in a lower energy turnover (P<0.05) compared with the normal muscle temperature (64.9+/-3.7 versus 69.0+/-4.7 kJ min(-1), respectively). The estimated net mechanical efficiency was therefore higher when muscle temperature was elevated. We propose that, in these experiments, prior heating results in an inappropriately fast rate of cross-bridge cycling when exercising at 60 revs min(-1), leading to an increased energy turnover and decreased efficiency. However, at the faster pedalling rate, the effect of heating the muscle shifts the efficiency/velocity relationship to the right so that cross-bridge detachment is more appropriately matched to the contraction velocity and, hence, energy turnover is reduced.

  11. Oxygen and nitrate in utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their syntheses.

    PubMed

    Broman, K; Lauwers, N; Stalon, V; Wiame, J M

    1978-09-01

    Bacillus licheniformis has two pathways of arginine catabolism. In well-aerated cultures, the arginase route is present, and levels of catabolic ornithine carbamoyltransferase were low. An arginase pathway-deficient mutant, BL196, failed to grow on arginine as a nitrogen source under these conditions. In anaerobiosis, the wild type contained very low levels of arginase and ornithine transaminase. BL196 grew normally on glucose plus arginine in anaerobiosis and, like the wild type, had appreciable levels of catabolic transferase. Nitrate, like oxygen, repressed ornithine carbamoyltransferase and stimulated arginase synthesis. In aerobic cultures, arginase was repressed by glutamine in the presence of glucose, but not when the carbon-energy source was poor. In anaerobic cultures, ammonia repressed catabolic ornithine carbamoyltransferase, but glutamate and glutamine stimulated its synthesis. A second mutant, derived from BL196, retained the low arginase and ornithine transaminase levels of BL196 but produced high levels of deiminase pathway enzymes in the presence of oxygen.

  12. A comparison of constant acceleration swimming speeds when acceleration rates are different with critical swimming speeds in Chinese bream under two oxygen tensions.

    PubMed

    Wang, Jian-Wei; Cao, Zhen-Dong; Fu, Shi-Jian

    2016-10-01

    To investigate the effect of acceleration rates on the constant acceleration test speed (U cat) and to compare U cat with the critical swimming speed (U crit) in Chinese bream (Parabramis pekinensis), the U cat test at acceleration rates of 0.05, 0.1, 0.2, 0.4 and 0.8 cm s(-2) and the U crit test in juvenile fish at 20 °C in either normoxia (>90 % saturation oxygen tension) or hypoxia (30 % saturation) were compared. The lactate concentration ([lactate]) of white muscle, liver and plasma and the glycogen concentration ([glycogen]) of white muscle and liver were also measured to identify whether tissue substrate depletion or tissue lactate accumulation correlated with exhaustion. The U cat decreased with the acceleration rate, and there was no significant difference between U crit and U cat at lower acceleration rates. Hypoxia resulted in lower U cat and U crit, and the difference increased with decreased acceleration rates of the U cat test, possibly due to the increased contribution of aerobic components in U crit or U cat at low acceleration rates. Hypoxia elicited a significant decrease in muscle [glycogen] and an increase in muscle and liver [lactate] in resting fish. All post-exercise fish had similar muscle [lactate], suggesting that tissue lactate accumulation may correlate with exercise exhaustion. Unlike hypoxia, exercise induced an increase in muscle [lactate] and a significant increase in plasma [lactate], which were worthy of further investigation. The similar swimming speed and biochemical indicators after exercise in the U crit and U cat groups at low acceleration rates suggested that U cat can be an alternative for the more frequently adopted protocols in U crit in Chinese bream and possibly in other cyprinid fish species.

  13. Comment on "Ribosome utilizes the minimum free energy changes to achieve the highest decoding rate and fidelity"

    NASA Astrophysics Data System (ADS)

    Savir, Yonatan; Tlusty, Tsvi

    2016-05-01

    We examined [Y. Savir and T. Tlusty, Cell 153, 471 (2013), 10.1016/j.cell.2013.03.032] the decoding performance of tRNA by the ribosome. For this purpose, we specified the kinetics of tRNA decoding and the corresponding energy landscape, from which we calculated the steady-state decoding rate RC. Following our work, Xie reexamined [P. Xie, Phys. Rev. E 92, 022716 (2015), 10.1103/PhysRevE.92.022716] the energy landscape of tRNA decoding. His analysis relies on an alternative expression for RC, while claiming that the expression we use is missing some terms. In this Comment we rederive in detail our expression for the steady-state decoding rate RC, show they hold, explain why the alternative expression for RC is inaccurate, and discuss the underlying intuition.

  14. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model

    SciTech Connect

    Hallam, Brett Abbott, Malcolm; Nampalli, Nitin; Hamer, Phill; Wenham, Stuart

    2016-02-14

    A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead to a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation.

  15. Experimental Rate Study of Vitrinite Maturation as a Function of Temperature, Time, Starting Material, Aqueous Fluid Pressure, and Oxygen Fugacity: Corroboration of Prior Work

    NASA Astrophysics Data System (ADS)

    Ernst, W. G.; Mählmann, R. F.

    2002-05-01

    Kinetic studies were performed on disaggregated samples of gymnosperm and angiosperm huminite at 2.0 kbar aqueous fluid pressure and oxygen fugacities defined by hematite-magnetite and magnetite + quartz-fayalite solid buffers. Individual experiments lasted from 5-204 days. The rate of vitrinite reflectance (VR) increase was evaluated at 200, 250, 300, and 400oC isotherms; experimentally determined, approximately steady-state values for the mean percentage Rmax are 0.54, 0.74, 1.10, and 2.25, respectively. The overall activation energy governing the kinetics of several devolatilization reactions responsible for increase in VR measured in our experiments is 21.8+/- 0.3 kJ/mol. Combined with earlier rate studies conducted by Dalla Torre et al. (1997), we conclude that the rate of vitrinite maturation is unaffected by oxidation state, "wet" versus "dry" conditions, and the nature of the starting lignitic material. To a small extent, elevated lithostatic pressure retards the rate of increase in VR. These new run data demonstrate that VR is chiefly a function of temperature and time. In support of most earlier field, theoretical, and laboratory studies, our research indicates that, for all but geologically insignificant times intervals, vitrinite reflectance is an appropriate proxy for host-rock burial temperature.

  16. 7x 40 Gb/s base-rate RZ all-optical broadcasting utilizing an electroabsorption modulator.

    PubMed

    Xu, L; Chi, N; Yvind, K; Christiansen, L; Oxenløwe, L; Mørk, J; Jeppesen, P; Hanberg, J

    2004-02-09

    We experimentally demonstrate all-optical broadcasting through simultaneous 7 x 40 Gb/s base-rate wavelength conversion in RZ format based on cross absorption modulation in an electroabsorption modulator. In this experiment the original intensity-modulated information is successfully duplicated onto seven wavelengths that comply with the ITU-T proposal. The advantages of the proposed wavelength conversion scheme are also discussed.

  17. Effects of exercise-induced muscle damage on resting metabolic rate, sub-maximal running and post-exercise oxygen consumption.

    PubMed

    Burt, Dean Gareth; Lamb, Kevin; Nicholas, Ceri; Twist, Craig

    2014-01-01

    Exercise-induced muscle damage (EIMD), described as the acute weakness of the musculature after unaccustomed eccentric exercise, increases oxidative metabolism at rest and during endurance exercise. However, it is not known whether oxygen uptake during recovery from endurance exercise is increased when experiencing symptoms of EIMD. Therefore, the purpose of this study was to investigate the effects of EIMD on physiological and metabolic responses before, during and after sub-maximal running. After a 12 h fast, eight healthy male participants completed baseline measurements comprising resting metabolic rate (RMR), indirect markers of EIMD, 10 min of sub-maximal running and 30 min of recovery to ascertain excess post-exercise oxygen consumption (EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine squats. Data analysis revealed significant (P<0.05) increases in muscle soreness and creatine kinase (CK) and decreases in peak knee extensor torque at 24 and 48 h after squatting exercise. Moreover, RMR, physiological, metabolic and perceptual responses during sub-maximal running and EPOC were increased in the two days after squatting exercise (P<0.05). It is suggested that the elevated RMR was a consequence of a raised energy requirement for the degradation and resynthesis of damaged muscle fibres. The increased oxygen demand during sub-maximal running after muscle damage was responsible for the increase in EPOC. Individuals engaging in unaccustomed resistance exercise that results in muscle damage should be mindful of the increases in resting energy expenditure and increased metabolic demand to exercise in the days that follow.

  18. Multiplex growth rate phenotyping of synthetic mutants in selection to engineer glucose and xylose co-utilization in Escherichia coli.

    PubMed

    Groot, Joost; Cepress-Mclean, Sidney C; Robbins-Pianka, Adam; Knight, Rob; Gill, Ryan T

    2017-04-01

    Engineering the simultaneous consumption of glucose and xylose sugars is critical to enable the sustainable production of biofuels from lignocellulosic biomass. In most major industrial microorganisms glucose completely inhibits the uptake of xylose, limiting efficient sugar mixture conversion. In E. coli removal of the major glucose transporter PTS allows for glucose and xylose co-consumption but only after prolonged adaptation, which is an effective process but hard to control and prone to co-evolving undesired traits. Here we synthetically engineer mutants to target sugar co-consumption properties; we subject a PTS(-) mutant to a short adaptive step and subsequently either delete or overexpress key genes previously suggested to affect sugar consumption. Screening the co-consumption properties of these mutants individually is very laborious. We show we can evaluate sugar co-consumption properties in parallel by culturing the mutants in selection and applying a novel approach that computes mutant growth rates in selection using chromosomal barcode counts obtained from Next-Generation Sequencing. We validate this multiplex growth rate phenotyping approach with individual mutant pure cultures, identify new instances of mutants cross-feeding on metabolic byproducts, and, importantly, find that the rates of glucose and xylose co-consumption can be tuned by altering glucokinase expression in our PTS(-) background. Biotechnol. Bioeng. 2017;114: 885-893. © 2016 Wiley Periodicals, Inc.

  19. Development of a new oxygen consumption rate assay in cultures of Acanthamoeba (Protozoa: Lobosea) and its application to evaluate viability and amoebicidal activity in vitro.

    PubMed

    Heredero-Bermejo, I; Criado-Fornelio, A; Soliveri, J; Díaz-Martín, J A; Matilla-Fuentes, J; Sánchez-Arias, J A; Copa-Patiño, J L; Pérez-Serrano, J

    2015-08-01

    A new fluorometric method has been developed for measuring the oxygen consumption rate (OCR) of Acanthamoeba cultures in microplates and for screening molecules with amoebicidal activity against this microorganism. The use of a biofunctional matrix (containing an oxygen-sensitive fluorogenic probe) attached to the microplate wells allowed continuous measurement of OCR in the medium, hence assessment of amoebic growth. The new OCR method applied to cell viability yielded a linear relationship and monitoring was much quicker than with indirect viability assays previously used. In addition, two drugs were tested in a cytotoxicity assay monitored by the new OCR viability test. With this procedure, the standard amoebicidal drug chlorhexidine digluconate showed an IC50 of 3.53 + 1.3 mg/l against Acanthamoeba polyphaga and 3.19 + 1.2 mg/l against Acanthamoeba castellanii, whereas a cationic dendrimer [G1Si(NMe3+)4] showed an IC50 of 6.42 + 1.3 mg/l against A. polyphaga. These data agree with previous studies conducted in our laboratory. Therefore, the new OCR method has proven powerful and quick for amoebicidal drug screening and is likely to be applied in biochemical studies concerning protozoa respiration and metabolism.

  20. Transpiration rate relates to within- and across-species variations in effective path length in a leaf water model of oxygen isotope enrichment.

    PubMed

    Song, Xin; Barbour, Margaret M; Farquhar, Graham D; Vann, David R; Helliker, Brent R

    2013-07-01

    Stable oxygen isotope ratio of leaf water (δ(18)O(L)) yields valuable information on many aspects of plant-environment interactions. However, current understanding of the mechanistic controls on δ(18)O(L) does not provide complete characterization of effective path length (L) of the Péclet effect,--a key component of the leaf water model. In this study, we collected diurnal and seasonal series of leaf water enrichment and estimated L in six field-grown angiosperm and gymnosperm tree species. Our results suggest a pivotal role of leaf transpiration rate (E) in driving both within- and across-species variations in L. Our observation of the common presence of an inverse scaling of L with E in the different species therefore cautions against (1) the conventional treatment of L as a species-specific constant in leaf water or cellulose isotope (δ(18)O(p)) modelling; and (2) the use of δ(18)O(p) as a proxy for gs or E under low E conditions. Further, we show that incorporation of a multi-species L-E scaling into the leaf water model has the potential to both improve the prediction accuracy and simplify parameterization of the model when compared with the conventional approach. This has important implications for future modelling of oxygen isotope ratios.

  1. Preemptive cadaveric renal transplantation: fairness and utility in the case of high donation rate-pilot experience of Tuscany region.

    PubMed

    Salvadori, M; Bertoni, E; Rosso, G; Larti, A; Rosati, A

    2009-05-01

    Preemptive kidney transplantation is performed before the initiation of chronic dialysis. Preemptive transplantation is the best treatment modality for patients reaching end-stage renal disease. The Tuscany region has experienced, in the last years, a marked increase in donation rate. Starting from 2006, the first Italian cadaveric preemptive transplant program was activated. The aim of our study was to investigate the characteristics and preliminary results of this program. Among 163 patients entered on to the waiting list for renal transplantation from October 2006 to October 2008, 120 (73.6%) were on dialysis for 21.3 +/- 17.8 months, whereas 43 patients (26.4%) had not yet been on dialysis (preemptive). Eighty two patients (50.3%) resided in Tuscany and 81 (49.7) outside Tuscany; 36.6% of Tuscany patients and 16% of extraregional patients (P = .003) were listed as preemptive. Fifty-eight of 163 (35.6%) patients were transplanted during the period after a mean waiting time of 10.3 +/- 6.4 months. The estimated overall man waiting time was 17.5 months (confidence interval (CI) = 15.8-19.2). Upon Cox multivariate analysis, the probability of transplantation was similar for preemptive and dialysed patients (relative risk [RR] 1.02, P = NS). According to local allocation policy, only residents of Tuscany showed a significant advantage in both groups (RR = 0.43, CI = 0.24-0.75, P = .003). Two-year graft and patients survivals were similar, but delayed graft function was lower in the preemptive group (13% vs 42%, P = .007). The 1-year serum creatinine was 1.56 +/- 0.43 in the preemptive group and 1.68 +/- 0.92 in the dialysis group (P = NS). No differences were observed concerning rejection rate. The preemptive listing rate for cadaveric renal transplantation was more than 35% for Tuscany patients.

  2. Recovery and Utilization of Extraterrestrial Resources

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes the extraction, processing, and utilization of lunar, planetary, and asteroid resources; mining and excavation equipment, oxygen and propellant production; and in situ resource utilization.

  3. Kansas City Cardiomyopathy Questionnaire Utility in Prediction of 30-Day Readmission Rate in Patients with Chronic Heart Failure

    PubMed Central

    Gui, Junhong; Zhu, Xiang; Malhotra, Divyanshu; Li, Shenjing; Virkram, Fnu; Chada, Aditya; Jiang, Haibing

    2016-01-01

    Background. Heart failure (HF) is one of the most common diagnoses associated with hospital readmission. We designed this prospective study to evaluate whether Kansas City Cardiomyopathy Questionnaire (KCCQ) score is associated with 30-day readmission in patients hospitalized with decompensated HF. Methods and Results. We enrolled 240 patients who met the study criteria. Forty-eight (20%) patients were readmitted for decompensated HF within thirty days of hospital discharge, and 192 (80%) patients were not readmitted. Compared to readmitted patients, nonreadmitted patients had a higher average KCCQ score (40.8 versus 32.6, P = 0.019) before discharge. Multivariate analyses showed that a high KCCQ score was associated with low HF readmission rate (adjusted OR = 0.566, P = 0.022). The c-statistic for the base model (age + gender) was 0.617. The combination of home medication and lab tests on the base model resulted in an integrated discrimination improvement (IDI) increase of 3.9%. On that basis, the KCQQ further increased IDI of 2.7%. Conclusions. The KCCQ score determined before hospital discharge was significantly associated with 30-day readmission rate in patients with HF, which may provide a clinically useful measure and could significantly improve readmission prediction reliability when combined with other clinical components. PMID:27872790

  4. The Formation Rate of R11 Hydrate (CCl3F·17H2O) Utilized as a Cool Storage Material

    NASA Astrophysics Data System (ADS)

    Kawasaki, Shigetake; Oowa, Masaru; Akiya, Takaji; Nakaiwa, Masaru

    An equationon the formation rate of R11 hydrate in water and aqueous alcohol solutions is derived on basis of a dispersed liquid interface reaction model. From the equation, the relation between percent conversion(β) of R11 and elapse time (θ) is obtained by; -(1⁄m)ln(1-β)=kAΔTnθ where, m is conversion coefficient (R11 in hydrate⁄hydrate = 0.3095), k is over-all coefficient of mass trnsfer [kg⁄m2h°C], A is surface area of dispersed liquid (R11) [m2⁄kg], and ΔT is supercooling degree [°C]. Using above equation, the experimental date of the previous paper are analyzed, and it is found that these date are well applied to the equation. From these results, it can be considered that the formation rate of R11 hydrate in water and the aqueous solutions of ethanol (3.6% and 10%), n-propanol(0.9%) and n-butanol(1.9%) is principally governed by the dispersed liquid interface reaction, not by the crystal growth of R11 hydrate.

  5. Development of a Mist Singlet Oxygen Generator

    NASA Astrophysics Data System (ADS)

    Muto, Shigeki; Endo, Masamori; Nanri, Kenzo; Fujioka, Tomoo

    2002-08-01

    The singlet oxygen generator (SOG) generates singlet oxygen for a chemical oxygen iodine laser (COIL), using the gas-liquid reaction between basic hydrogen peroxide (BHP) and Cl2 gas. The Jet-SOG has been widely used, wherein jet BHP from small orifices reacts with Cl2 gas, and the BHP utilization is less than 1% in a single pass through the reaction zone. To improve BHP utilization, the reaction surface with Cl2 gas should be increased, and the droplet diameter of BHP should be decreased. In this study, two types of mist generators were tested for the SOG, with which 65-μm- and 15-μm-diameter droplets were generated. In the 65 μm mist generator, BHP utilization was 22.5% at the Cl2 flow rate of 8.3 mmol/s, and in the 15 μm mist generator, BHP utilization was 41.5% at the Cl2 flow rate of 9.0 mmol/s, that is, BHP utilization of the new SOG, Mist-SOG, markedly exceeded that of the conventional Jet-SOG.

  6. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  7. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  8. GAS EXCHANGE WITH MASS CULTURES OF ALGAE. I. EFFECTS OF LIGHT INTENSITY AND RATE OF CARBON DIOXIDE INPUT ON OXYGEN PRODUCTION.

    PubMed

    HANNAN, P J; PATOUILLET, C

    1963-09-01

    The performance of a small photosynthetic gas exchanger is described in which simultaneous measurements of suspension density, O(2) production, and CO(2) absorption are readily accomplished. The volume of suspension was 6200 ml. With the Sorokin strain of Chlorella pyrenoidosa 7-11-05, this unit produced 4500 cc of O(2) per hr at a light intensity of 34,000 ft-c from each of six Quartzline lamps. At any given light intensity, the O(2) production was proportional to the rate of CO(2) input up to a maximum. The impetus for this study was the consideration of the algal system as a means of oxygen generation in a submarine. Based on the performance of this unit, the power requirement per man for a system having the geometry described would be 52 kw, but reasons are given for the hope that this may be reduced to less than 5 kw.

  9. Effect of dietary supplementation of l-tryptophan on thermal tolerance and oxygen consumption rate in Cirrhinus mrigala fingerlings under varied stocking density.

    PubMed

    Tejpal, C S; Sumitha, E B; Pal, A K; Shivananda Murthy, H; Sahu, N P; Siddaiah, G M

    2014-04-01

    A 60 day feeding trial was conducted to study the effect of dietary l-tryptophan on thermal tolerance and oxygen consumption rate of freshwater fish, mrigala, Cirrhinus mrigala reared under ambient temperature at low and high stocking density. Four hundred eighty fingerlings were distributed into eight experimental groups. Four groups each of low density group (10 fishes/75L water) and higher density group (30 fishes/75L water) were fed a diet containing 0, 0.68, 1.36 or 2.72% l-tryptophan in the diet, thus forming eight experimental groups namely, Low density control (LC) (basal feed +0% l-tryptophan); LT1 (basal feed+0.68% l-tryptophan); LT2 (basal feed+1.36% l-tryptophan); LT3 (basal feed+2.72% l-tryptophan); high density control (HC) (basal feed+0% l-tryptophan); HT1 (basal feed+0.68% l-tryptophan); HT2 (basal feed+1.36% l-tryptophan); and HT3 (basal feed+2.72% l-tryptophan) were fed at 3% of the body weight. The test diets having crude protein 34.33±0.23 to 35.81±0.18% and lipid 423.49±1.76 to 425.85±0.31KCal/100g were prepared using purified ingredients. The possible role of dietary l-tryptophan on thermal tolerance and oxygen consumption rate was assessed in terms of critical thermal maxima (CTMax), critical thermal minima (CTMin), lethal thermal maxima (LTMax) and lethal thermal minima (LTMin). The CTMax, CTMin, LTMax and LTMin values were found to be significantly higher (p<0.05) in the treatment groups with CTMax 42.94±0.037 (LT2); LT Max 43.18±0.070 (LT2); CTMin 10.47±0.088 (LT2) and LTMin 9.42±0.062 (LT3), whereas the control group showed a lower tolerance level. The same trend was observed in the high density group (CTMax 42.09±0.066 (LT3); LTMax 43 23±0.067 (HT3); CTMin 10.98±0.040 (HT3) and LTMin 9.74±0.037 (HT3). However, gradual supplementation of dietary l-tryptophan in the diet significantly reduced the oxygen consumption rate in both the low density group (Y=-26.74x+222.4, r²=0.915) and the high density group (Y=-32.96x+296.5, r²=0

  10. Monitoring Cerebral Oxygenation in Neonates: An Update

    PubMed Central

    Dix, Laura Marie Louise; van Bel, Frank; Lemmers, Petra Maria Anna

    2017-01-01

    Cerebral oxygenation is not always reflected by systemic arterial oxygenation. Therefore, regional cerebral oxygen saturation (rScO2) monitoring with near-infrared spectroscopy (NIRS) is of added value in neonatal intensive care. rScO2 represents oxygen supply to the brain, while cerebral fractional tissue oxygen extraction, which is the ratio between rScO2 and systemic arterial oxygen saturation, reflects cerebral oxygen utilization. The balance between oxygen supply and utilization provides insight in neonatal cerebral (patho-)physiology. This review highlights the potential and limitations of cerebral oxygenation monitoring with NIRS in the neonatal intensive care unit. PMID:28352624

  11. Respirometric kinetic parameter calculations of a batch jet loop bioreactor treating leachate and oxygen uptake rate estimation by DTM.

    PubMed

    Ince, M; Yildiz, F; Engin, G Onkal; Engin, S N; Keskinler, B

    2008-05-30

    A novel circulating jet loop bioreactor adapted for organic matter oxidation has been designed and constructed. In this study, the input was leachate samples collected from Kemerburgaz Odayeri waste landfill site located on the European side of Istanbul. Controlling the jet loop bioreactor to realize high rates of purification depends on maintaining the appropriate loadings and operating conditions. This requires collecting various system data to estimate the dynamics of the system satisfactorily with the aim of keeping certain parameters within the specified range. The differential transform method (DTM) based solution of the state equations reveals the current state of the process so that any deviation in the system parameters can be immediately detected and regulated accordingly. The respirometric method for kinetic parameter calculations for biodegradation has been used for some time. In many studies, the respirometer was designed separately, usually in bench-scale. However, when a separate respirometer is used, the scale effect and parameters that affect the hydrodynamic structure of the system should be taken into consideration. In this study, therefore, the jet loop reactor itself was used as a respirometer. Thus, the kinetic parameters found reflecting the characteristics of microorganisms used for biodegradation would be more realistic. If the main reactor, here the jet loop reactor, would be used as the respirometer, the kinetic parameter changes can easily be monitored in the long run. Using the bioreactor as a respirometer, the most important kinetic parameters, Ks, kd and micromax were found to be 11,000 mg L(-1), 0.019 day(-1), and 0.21 day(-1), respectively. The stoichiometric coefficient, Y, was found to be 0.28 gr gr(-1) for the present system.

  12. The Online Morphology Control and Dynamic Studies on Improving Vitamin B12 Production by Pseudomonas denitrificans with Online Capacitance and Specific Oxygen Consumption Rate.

    PubMed

    Wang, Ze-Jian; Shi, Hui-Lin; Wang, Ping

    2016-07-01

    The relationship between the morphological character of Pseudomonas denitrificans and vitamin B12 synthesis based on real-time capacitance measurement and online specific oxygen consumption rate (Q O2) control was established for enhancing vitamin B12 production. Results demonstrated that the threshold Q O2 value lower than 2.0 mmol/gDCW/l would greatly stimulate the state transfer from the cell number growth phase to the cell elongation phase and promote rapid vitamin B12 biosynthesis, while the vitamin B12 biosynthesis rate could also be inhibited when the rate of cell's length-to-width ratio (ratio-LW) was higher than 10:1. Furthermore, the optimal morphology controlling strategy was achieved based on online Q O2 control, which increases the appropriate active cell numbers at the former phase, and then control the elongation of ratio-LW no more than 10:1 at the vitamin B12 biosynthesis phase. The maximal vitamin B12 production reached 239.7 mg/l at 168 h, which was improved by 14.7 % compared with the control (208 mg/l). This online controlling strategy would be effectively applied for improving industrial vitamin B12 fermentation.

  13. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  14. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  15. Effect of increased cardiac output on liver blood flow, oxygen exchange and metabolic rate during longterm endotoxin-induced shock in pigs

    PubMed Central

    Šantak, Borislav; Radermacher, Peter; Adler, Jens; Iber, Thomas; Rieger, Karen M; Wachter, Ulrich; Vogt, Josef; Georgieff, Michael; Träger, Karl

    1998-01-01

    We investigated hepatic blood flow, O2 exchange and metabolism in porcine endotoxic shock (Control, n=8; Endotoxin, n=10) with administration of hydroxyethylstarch to maintain arterial pressure (MAP)>60 mmHg. Before and 12, 18 and 24 h after starting continuous i.v. endotoxin we measured portal venous and hepatic arterial blood flow, intracapillary haemoglobin O2 saturation (Hb-O2%) of the liver surface and arterial, portal and hepatic venous lactate, pyruvate, glyercol and alanine concentrations. Glucose production rate was derived from the plasma isotope enrichment during infusion of [6,6-2H2]-glucose. Despite a sustained 50% increase in cardiac output endotoxin caused a progressive, significant fall in MAP. Liver blood flow significantly increased, but endotoxin affected neither hepatic O2 delivery and uptake nor mean intracapillary Hb-O2% and Hb-O2% frequency distributions. Endotoxin nearly doubled endogenous glucose production rate while hepatic lactate, alanine and glycerol uptake rates progressively decreased significantly. The lactate uptake rate even became negative (P<0.05 vs Control). Endotoxin caused portal and hepatic venous pH to fall significantly concomitant with significantly increased arterial, portal and hepatic venous lactate/pyruvate ratios. During endotoxic shock increased cardiac output achieved by colloid infusion maintained elevated liver blood flow and thereby macro- and microcirculatory O2 supply. Glucose production rate nearly doubled with complete dissociation of hepatic uptake of glucogenic precursors and glucose release. Despite well-preserved capillary oxygenation increased lactate/pyruvate ratios reflecting impaired cytosolic redox state suggested deranged liver energy balance, possibly due to the O2 requirements of gluconeogenesis. PMID:9756385

  16. Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 utilized in lithium ion battery

    NASA Astrophysics Data System (ADS)

    Bi, Yujing; Yang, Wenchao; Du, Rui; Zhou, Jingjing; Liu, Meng; Liu, Yang; Wang, Deyu

    2015-06-01

    In this work, we investigate the influence of oxygen non-stoichiometry on the characteristics of LiNi0.8Co0.1Mn0.1O2 cathode material. Among the investigated samples, the level of Ni/Li disorder in the bulk and the thickness of auto-generated layer on the surface share the same trend as the amount of oxygen loss in LiNi0.8Co0.1Mn0.1O2 materials. It indicates that the aforementioned key structural instabilities should be tightly related to the oxygen defects and the induced structural relaxation. As a consequence of structural entirety, the sample with the least defects presents the highest discharge capacity (192.9 mAhg-1 at 0.1C), the best rate capability (160.1 mAhg-1 at 5C), and the most stable cyclibility (89.9% at 200th). Our results demonstrate that oxygen deficiency plays a key role to determine the electrochemical performance of high-nickel cathode materials.