Science.gov

Sample records for oxygen-17 nmr studies

  1. An oxygen-17 dynamic NMR study of the Pr-DOTA complex.

    PubMed

    Fusaro, Luca; Luhmer, Michel

    2014-01-21

    The complex between (17)O-enriched DOTA (tetraazacyclododecanetetraacetic acid) and praseodymium(III) (Pr(3+)) was studied in aqueous solution by variable-temperature (17)O NMR at 14.1 T. pH effects as well as the influence of metal ions free in solution were investigated. At low temperature, the so-called TSAP and SAP conformations give rise to distinct signals for the oxygen atoms coordinated to the metal ion (O2); coalescence occurs between 20 and 30 °C. In contrast, a single signal was detected for the noncoordinated oxygen atoms (O1) in the entire investigated temperature range, i.e. between -3 and 135 °C. At high temperature, the spectra exhibit signal broadening that reveals the interchange of the O1 and O2 oxygen atoms of the carboxylate groups. The linewidths measured for O1 were deconvolved into contributions from quadrupole relaxation and chemical exchange, allowing the corresponding activation barriers to be determined. The present (17)O dynamic NMR study provides the first quantitative experimental data characterizing the interchange of the oxygen atoms in a DOTA chelate of a lanthanide metal ion. The activation entropy of this process is negligible and the activation enthalpy is found to range between 66 and 77 kJ mol(-1), depending on the pH and the presence of free Pr(3+) ions in solution. These data support the results of a previous computational study according to which the exchange mechanism involves the internal rotation of the carboxylate groups.

  2. Solution oxygen-17 NMR application for observing a peroxidized cysteine residue in oxidized human SOD1

    NASA Astrophysics Data System (ADS)

    Fujiwara, Noriko; Yoshihara, Daisaku; Sakiyama, Haruhiko; Eguchi, Hironobu; Suzuki, Keiichiro

    2016-12-01

    NMR active nuclei, 1H, 13C and 15N, are usually used for determination of protein structure. However, solution 17O-NMR application to proteins is extremely limited although oxygen is an essential element in biomolecules. Proteins are oxidized through cysteine residues by two types of oxidation. One is reversible oxidation such as disulphide bonding (Cys-S-S-Cys) and the other is irreversible oxidation to cysteine sulfinic acid (Cys-SO 2H) and cysteine sulfonic acid (Cys-SO 3H). Copper,Zinc-superoxide dismutase (SOD1) is a key enzyme in the protection of cells from the superoxide anion radical. The SH group at Cys 111 residue in human SOD1 is selectively oxidized to -SO 2H and -SO 3H with atmospheric oxygen, and this oxidized human SOD1 is also suggested to play an important role in the pathophysiology of various neurodegenerative diseases, probably mainly via protein aggregation. Therefore, information on the structural and the dynamics of the oxidized cysteine residue would be crucial for the understanding of protein aggregation mechanism. Although the -SO 3H group on proteins cannot be directly detected by conventional NMR techniques, we successfully performed the site-specific 17O-labeling of Cys 111 in SOD1 using ^{17}it {O}2 gas and the 17O-NMR analysis for the first time. We observed clear 17O signal derived from a protein molecule and show that 17O-NMR is a sensitive probe for studying the structure and dynamics of the 17O-labeled protein molecule. This novel and unique strategy can have great impact on many research fields in biology and chemistry.

  3. Oxygen-17 dynamic nuclear polarisation enhanced solid-state NMR spectroscopy at 18.8 T.

    PubMed

    Brownbill, Nick J; Gajan, David; Lesage, Anne; Emsley, Lyndon; Blanc, Frédéric

    2017-02-23

    We report (17)O dynamic nuclear polarisation (DNP) enhanced solid-state NMR experiments at 18.8 T. Several formulations were investigated on the Mg(OH)2 compound. A signal enhancement factor of 17 could be obtained when the solid particles were incorporated into a glassy o-terphenyl matrix doped with BDPA using the Overhauser polarisation transfer scheme whilst the cross effect mechanism enabled by TEKPol yielded a slightly lower enhancement but more time efficient data acquisition.

  4. Oxygen-17 NMR in solids by dynamic-angle spinning and double rotation

    NASA Astrophysics Data System (ADS)

    Chmelka, B. F.; Mueller, K. T.; Pines, A.; Stebbins, J.; Wu, Y.; Zwanziger, J. W.

    1989-05-01

    IT is widely lamented that despite its unqualified success with spin-1/2 nuclei such as 13C, 29Si and31P, the popular NMR technique of magic-angle spinning (MAS) has experienced a somewhat restricted applicability among quadrupolar nuclei such as 17O, 23Na and 27A1 (refs 1-3). The resolution in the central (1/2 lrarr-1/2) transition of these non-integer quadrupolar spins under MAS is thought to be limited primarily by second-order quadrupolar broadening. Such effects of second-order spatial anisotropy cannot be eliminated by rotation about a fixed axis or by multiple-pulse techniques4,5. More general mechanisms of sample reorientation (refs 6-8 and A. Samoson and A. Pines, manuscript in preparation) can, however, make high-resolution NMR of quadrupolar nuclei feasible. MAS is implemented by spinning a sample about a single axis so that second-rank spherical harmonics (which give rise to first-order broadening through anisotropy of electrical and magnetic interactions) are averaged away. But dynamic-angle-spinning (DAS) and double-rotation (DOR) NMR involve spinning around two axes, averaging away both the second- and fourth-rank spherical harmonics, which are responsible for second-order broadening. Here we present the application of these new techniques to 17O in two minerals, cristobalite (SiO2) and diopside (CaMgSi2O6). This work goes beyond previous results on 23Na (ref. 8) by showing the first experimental results using DAS and by demonstrating the application of DOR to the resolution of distinct oxygen sites in an important class of oxide materials.

  5. Oxygen-17 NMR Shifts Caused by Cr{Sup ++} in Aqueous Solutions

    DOE R&D Accomplishments Database

    Jackson, J. A.; Lemons, J. F.; Taube, H.

    1962-01-01

    Cr{sup ++} in solution produces a paramagnetic shift in the NMR absorption of O{sup 17} in ClO{sub 4}{sup -}, as well as the expected paramagnetic shift for O{sup 17} in H{sub 2}O. As the concentration of ClO{sub 4}{sup -} increases, the shift in the H{sub 2}O{sup 17} absorption is diminished, and eventually changes sign. The effects are ascribed to preferential replacement by ClO{sub 4}{sup -} of water molecules from the axial positions in the first coordination sphere about Cr{sup ++}.

  6. Water dynamics on ice and hydrate lattices studied by second-order central-line stimulated-echo oxygen-17 nuclear magnetic resonance

    SciTech Connect

    Adjei-Acheamfour, Mischa; Tilly, Julius F.; Beerwerth, Joachim; Böhmer, Roland

    2015-12-07

    Oxygen-17 stimulated-echo spectroscopy is a novel nuclear magnetic resonance (NMR) technique that allows one to investigate the time scale and geometry of ultraslow molecular motions in materials containing oxygen. The method is based on detecting orientationally encoded frequency changes within oxygen’s central-transition NMR line that are caused by second-order quadrupolar interactions. In addition to the latter, the present theoretical analysis of various two-pulse echo and stimulated-echo pulse sequences takes also heteronuclear dipolar interactions into account. As an experimental example, the ultraslow water motion in polycrystals of tetrahydrofuran clathrate hydrate is studied via two-time oxygen-17 stimulated-echo correlation functions. The resulting correlation times and those of hexagonal ice are similar to those from previous deuteron NMR measurements. Calculations of the echo functions’ final-state correlations for various motional models are compared with the experimental data of the clathrate hydrate. It is found that a six-site model including the oxygen-proton dipolar interaction describes the present results.

  7. Water dynamics on ice and hydrate lattices studied by second-order central-line stimulated-echo oxygen-17 nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Adjei-Acheamfour, Mischa; Tilly, Julius F.; Beerwerth, Joachim; Böhmer, Roland

    2015-12-01

    Oxygen-17 stimulated-echo spectroscopy is a novel nuclear magnetic resonance (NMR) technique that allows one to investigate the time scale and geometry of ultraslow molecular motions in materials containing oxygen. The method is based on detecting orientationally encoded frequency changes within oxygen's central-transition NMR line that are caused by second-order quadrupolar interactions. In addition to the latter, the present theoretical analysis of various two-pulse echo and stimulated-echo pulse sequences takes also heteronuclear dipolar interactions into account. As an experimental example, the ultraslow water motion in polycrystals of tetrahydrofuran clathrate hydrate is studied via two-time oxygen-17 stimulated-echo correlation functions. The resulting correlation times and those of hexagonal ice are similar to those from previous deuteron NMR measurements. Calculations of the echo functions' final-state correlations for various motional models are compared with the experimental data of the clathrate hydrate. It is found that a six-site model including the oxygen-proton dipolar interaction describes the present results.

  8. Dynamic Nuclear Polarization of Oxygen-17

    PubMed Central

    Michaelis, Vladimir K.; Markhasin, Evgeny; Daviso, Eugenio; Herzfeld, Judith

    2012-01-01

    Oxygen-17 detected DNP NMR of a water/glycerol glass enabled an 80-fold enhancement of signal intensities at 82 K, using the biradical TOTAPOL. The >6,000-fold savings in acquisition time enables 17O-1H distance measurements and heteronuclear correlation experiments. These experiments are the initial demonstration of the feasibility of DNP NMR on quadrupolar 17O. PMID:23024834

  9. Dynamic Nuclear Polarization of Oxygen-17.

    PubMed

    Michaelis, Vladimir K; Markhasin, Evgeny; Daviso, Eugenio; Herzfeld, Judith; Griffin, Robert G

    2012-08-02

    Oxygen-17 detected DNP NMR of a water/glycerol glass enabled an 80-fold enhancement of signal intensities at 82 K, using the biradical TOTAPOL. The >6,000-fold savings in acquisition time enables (17)O-(1)H distance measurements and heteronuclear correlation experiments. These experiments are the initial demonstration of the feasibility of DNP NMR on quadrupolar (17)O.

  10. Kinetics of oxygen exchange between bisulfite ion and water as studied by oxygen-17 nuclear magnetic resonance spectroscopy

    SciTech Connect

    Horner, D.A.

    1984-08-01

    The nuclear magnetic relaxation times of oxygen-17 have been measured in aqueous sodium bisulfite solutions in the pH range from 2.5 to 5 as a function of temperature, pH, and S(IV) concentration, at an ionic strength of 1.0 m. The rate law for oxygen exchange between bisulfite ion and water was obtained from an analysis of the data, and is consistent with oxygen exchange occurring via the reaction SO/sub 2/ + H/sub 2/O right reversible H/sup +/ + SHO/sub 3//sup -/. The value of k/sub -1/ is in agreement with relaxation measurements. Direct spectroscopic evidence was found for the existence of two isomers of bisulfite ion: one with the proton bonded to the sulfur (HSO/sub 3//sup -/) and the other with the proton bonded to an oxygen (SO/sub 3/H/sup -/). (The symbol SHO/sub 3//sup -/ in the above chemical equation refers to both isomeric forms of bisulfite ion.) The relative amounts of the two isomers were determined as a function of temperature, and the rate and mechanism of oxygen exchange between the two was investigated. One of the two isomers, presumably SO/sub 3/H/sup -/, exchanges oxygens with water much more rapidly than does the other. A two-pulse sequence was developed which greatly diminished the solvent peak in the NMR spectrum.

  11. 224} studied by NMR

    SciTech Connect

    Furukawa, Y; Fang, X; Kögerler, P

    2014-05-14

    7Li nuclear magnetic resonance (NMR) studies have been performed to investigate magnetic properties and spin dynamics of Mn3+ (S = 2) spins in the giant polyoxometalate molecule {Mn40W224}. The 7Li-NMR line width is proportional to the external magnetic field H as expected in a paramagnetic state above 3 K. Below this temperature the line width shows a sudden increase and is almost independent of H, which indicates freezing of the local Mn3+ spins. The temperature dependence of T1 for both 1H and 7Li reveals slow spin dynamics at low temperatures, consistent with spin freezing. The slow spin dynamics is also evidenced by the observation of a peak of 1/T2 around 3 K, where the fluctuation frequency of spins is of the order of ~200 kHz. An explicit form of the temperature dependence of the fluctuation frequency of Mn3+ spins is derived from the nuclear relaxation data.

  12. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  13. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project during the past reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have been reinvestigating the prospects of using zero field NMR types of techniques for two dimensional NMR structural analysis of complex organic solids such as coals. Currently MAS spin rates are not sufficiently high to permit zero field in high field NMR for protons in typical organic solids, however they are compatible with {sup 13}C-{sup 13}C dipolar couplings. In collaboration with Dr. Robert Tycko of AT T Bell Laboratories, inventor of the zero field in high field NMR method, the authors have performed the first zero field in high field {sup 13}C NMR experiments. These results are described. 9 refs., 2 figs.

  14. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  15. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focused on variable temperature spin lattice relaxation measurements for several of the Argonne coals. 5 figs.

  16. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focussed on spin lattice relaxation measurements for several of the Argonne coals. 2 figs., 1 tab.

  17. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  18. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1990-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have concentrated on a theoretical treatment of pairs of tightly coupled spin {1/2} nuclei under magic angle spinning conditions. The average Hamiltonian theory developed here is required for a quantitative understanding of two dimensional NMR experiments of such spin pairs in solids. These experiments in turn provide a means of determining connectivities between resonances in solid state NMR spectra. Development of these techniques will allow us to establish connectivities between functional components in coals. The complete description of these spin dynamics has turned out to be complex, and is necessary to provide a foundation upon which such experiments may be quantitatively interpreted in complex mixtures such as coals. 25 refs., 4 figs., 3 tabs.

  19. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concern how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. During the last quarter the authors have concentrated on improvements in cross polarization (CP) sequences with a goal of making the CP process insensitive to experimental conditions such as the magic angle spinning (MAS) rate. In order to be able to use fields the order of 7.0 T or higher, CP efficiency must be maintained at MAS rates of over 10 kHz. The standard sequences have severe limitations at these rates which lead to intensity distortions in {sup 13}C CPMAS spectra. Thus in order to be able to take advantage of the increases in sensitivity and resolution that accompany high field operation, improvements in the NMR methods are required. The new sequences the authors are developing will be especially important for quantitative analysis of coal structure by {sup 13}C solid state NMR at high field strengths. 13 refs., 7 figs., 2 tabs.

  20. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  1. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coal models. Along the same lines the author are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. During the last quarter the authors has concentrated on improvements in cross polarization (CP) sequences with a goal of making the CP process insensitive to experimental conditions such as the Hartmann-Hahn mismatch. It has been found that the usual theories of CP are incorrect, and that the CP process is very heterogeneous in nature. This has significant implications on methods typically used in quantifying {sup 13}C CPMAS spectra of coals. 19 refs., 11 figs.

  2. Interfaces in polymer nanocomposites - An NMR study

    NASA Astrophysics Data System (ADS)

    Böhme, Ute; Scheler, Ulrich

    2016-03-01

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. 1H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T2 is most suited. In this presentation we report on two applications of T2 measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  3. NMR Methods to Study Dynamic Allostery.

    PubMed

    Grutsch, Sarina; Brüschweiler, Sven; Tollinger, Martin

    2016-03-01

    Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach.

  4. NMR Methods to Study Dynamic Allostery

    PubMed Central

    Grutsch, Sarina; Brüschweiler, Sven; Tollinger, Martin

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach. PMID:26964042

  5. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  6. NMR structural studies on antifreeze proteins.

    PubMed

    Sönnichsen, F D; Davies, P L; Sykes, B D

    1998-01-01

    Antifreeze proteins (AFPs) are a structurally diverse class of proteins that bind to ice and inhibit its growth in a noncolligative manner. This adsorption-inhibition mechanism operating at the ice surface results in a lowering of the (nonequilibrium) freezing point below the melting point. A lowering of approximately 1 degree C, which is sufficient to prevent fish from freezing in ice-laden seawater, requires millimolar AFP levels in the blood. The solubility of AFPs at these millimolar concentrations and the small size of the AFPs (typically 3-15 kDa) make them ideal subjects for NMR analysis. Although fish AFPs are naturally abundant, seasonal expression, restricted access to polar fishes, and difficulties in separating numerous similar isoforms have made protein expression the method of choice for producing AFPs for structural studies. Expression of recombinant AFPs has also facilitated NMR analysis by permitting isotopic labeling with 15N and 13C and has permitted mutations to be made to help with the interpretation of NMR data. NMR analysis has recently solved two AFP structures and provided valuable information about the disposition of ice-binding side chains in a third. The potential exists to solve other AFP structures, including the newly described insect AFPs, and to use solid-state NMR techniques to address fundamental questions about the nature of the interaction between AFPs and ice.

  7. Structural Studies of Biological Solids Using NMR

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  8. An NMR Study of Microvoids in Polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattrix, Larry

    1996-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is most crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally not be found naturally in polymer or in NMR probe materials. There are two NMR active Xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb and Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe-129-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts in Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of Xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A series of spectra were obtained interspersed with applications of vacuum and heating to drive out the adsorbed Xe and determine the role of Xe-Xe interactions in the observed chemical shift.

  9. NMR techniques in the study of cardiovascular structure and functions

    SciTech Connect

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy. NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance.

  10. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  11. An NMR study of microvoids in polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattix, Larry

    1995-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally be found naturally in polymer or in NMR probe materials. There are two NMR active xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb the Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe(129)-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts line Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A single Xe-129 line at 83.003498 Mhz (with protons at 300 Mhz) was observed for the gas. With the xenon charged PMR-15 samples, a second broader line is observed 190 ppm downfield from the gas line (also observed). The width of the NMR line from the Xe-129 absorbed in the polymer is at least partially due to the distribution of microvoid sizes. From the chemical shift (relative to the gas line) and the line width, we estimate the average void sizes to be 2.74 +/- 0.20 angstroms. Since Xe-129 has such a large chemical shift range (approximately 5000 ppm), we expect the chemical shift anisotropy to contribute to the

  12. NMR studies of protein structure and dynamics

    NASA Astrophysics Data System (ADS)

    Kay, Lewis E.

    2011-12-01

    Recent advances in solution NMR spectroscopy have significantly extended the spectrum of problems that can now be addressed with this technology. In particular, studies of proteins with molecular weights on the order of 100 kDa are now possible at a level of detail that was previously reserved for much smaller systems. An example of the sort of information that is now accessible is provided in a study of malate synthase G, a 723 residue enzyme that has been a focal point of research efforts in my laboratory. Details of the labeling schemes that have been employed and optimal experiments for extraction of structural and dynamics information on this protein are described. NMR studies of protein dynamics, in principle, give insight into the relation between motion and function. A description of deuterium-based spin relaxation methods for the investigation of side chain dynamics is provided. Examples where millisecond (ms) time scale dynamics play an important role and where relaxation dispersion NMR spectroscopy has been particularly informative, including applications involving the membrane enzyme PagP and mutants of the Fyn SH3 domain that fold on a ms time scale, are presented.

  13. Nuclear Magnetic Spin-Noise and Unusual Relaxation of Oxygen-17 in Water

    NASA Astrophysics Data System (ADS)

    Bendet-Taicher, Eli

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) have evolved into widely used techniques, providing diagnostic power in medicine and material sciences due to their high precision and non-invasive nature. Due to the small population differences between spin energy states, a significant sensitivity problem for NMR arises. The low sensitivity of NMR is probably its greatest limitation for applications to biological systems. An alternative probe tuning strategy based on the spin-noise response for application in standard one-dimensional and common high-resolution multidimensional standard biomolecular NMR experiments has shown an increase of up to 50% signal-to-noise (SNR) in one-dimensional NMR experiments and an increase of up to 22% in multi-dimensional ones. The method requires the adjustment of the optimal tuning condition, which may be offset by several hundreds kHz from the conventional tuning settings using the noise response of the water protons as an indicator. This work is described in the first part of the thesis (chapters 2--3). The second part (Chapter 4) of the thesis deals with anomalous oxygen-17 NMR relaxation behavior in water. Oxygen-17 (17O), which has spin of 5/2 and a natural abundance of 0.0373% possesses an electric quadrupole moment. Spin-lattice and spin-spin relaxation occur by the quadrupole interaction, while the J-coupling to 1H spins and exchange are deciding factors. T1 and T2 of 17O in water have been previously measured over a large range of temperatures. The spin-spin relaxation times of 17O as a function of temperature show an anomalous behaviour, expressed by a local maximum at the temperature of maximum density (TMD) of water. It is shown that the same anomalous behaviour shifts to the respective temperatures of maximum density for H2O/D2O solutions with different compositions and salt concentrations. This phenomenon can be correlated to the pH dependency of T2 of 17O in water, and water proton exchange rates

  14. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Treesearch

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  15. HPLC & NMR-based forced degradation studies of ifosfamide: The potential of NMR in stability studies.

    PubMed

    Salman, D; Peron, J-M R; Goronga, T; Barton, S; Swinden, J; Nabhani-Gebara, S

    2016-03-01

    The aim of this study is to conduct a forced degradation study on ifosfamide under several stress conditions to investigate the robustness of the developed HPLC method. It also aims to provide further insight into the stability of ifosfamide and its degradation profile using both HPLC and NMR. Ifosfamide solutions (20mg/mL; n=15, 20mL) were stressed in triplicate by heating (70°C), under acidic (pH 1 & 4) and alkaline (pH 10 & 12) conditions. Samples were analysed periodically using HPLC and FT-NMR. Ifosfamide was most stable under weakly acidic conditions (pH 4). NMR results suggested that the mechanism of ifosfamide degradation involves the cleavage of the PN bond. For all stress conditions, HPLC was not able to detect ifosfamide degradation products that were detected by NMR. These results suggest that the developed HPLC method for ifosfamide did not detect the degradation products shown by NMR. It is possible that degradation products co-elute with ifosfamide, do not elute altogether or are not amenable to the detection method employed. Therefore, investigation of ifosfamide stability requires additional techniques that do not suffer from the aforementioned shortcomings. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  16. NMR study of magnetism and superparamagnetism

    NASA Astrophysics Data System (ADS)

    Yuan, Shaojie

    The research described in this dissertation is concerned with two different types of magnetic materials. Both types of systems involve competing interactions between transition metal ions. New approaches involving magnetic resonance in the large hyperfine fields at nuclear sites have been developed. The interactions responsible for the properties that have been investigated in the materials studied are geometric frustration in an insulator and ferromagnetic and antiferromagnetic interactions in a metal alloy. Further details are given below. The extended kagome frustrated system YBaCo4O7 has 2D kagome and triangular lattices of Co ions stacked along the c-axis. Antiferromagnetic (AF) ordering accompanied by a structural transition has been reported in the literature. From a zero field (ZF) NMR single crystal rotation experiment, we have obtained the Co spin configurations for both the kagome and triangular layers. A 'spin-flop' configuration between the spins on the kagome layer and the spins on the triangular layer is indicated by our results. Our NMR findings are compared with neutron scattering results for this intriguing frustrated AF spin system. The non-stoichiometric oxygenated sister compound YBaCo4O7.1 has application potential for oxygen storage. While, its' magnetic properties are quite different from those of the stoichiometric compound, in spite of their similar structures of alternating kagome and triangular Co layers. Various techniques, including ZF NMR have been used to investigate the spin dynamics and spin configuration in a single crystal of YBaCo4O7.1. A magnetic transition at 80 K is observed, which is interpreted as the freezing out of spins in the triangular layers. At low temperatures (below 50 K), the spin dynamics persists and a fraction of spins in the kagome layers form a viscous spin liquid. Below 10 K, a glass-like spin structure forms and a large distribution of spin correlation times are suggested by nuclear spin lattice relaxation

  17. Microslot NMR probe for metabolomics studies.

    PubMed

    Krojanski, Hans Georg; Lambert, Jörg; Gerikalan, Yilmaz; Suter, Dieter; Hergenröder, Roland

    2008-11-15

    A NMR microprobe based on microstrip technology suitable for investigations of volume-limited samples in the low nanoliter range was designed. NMR spectra of sample quantities in the 100 pmol range can be obtained with this probe in a few seconds. The planar geometry of the probe is easily adaptable to the size and geometry requirements of the samples.

  18. Isotope labeling for NMR studies of macromolecular structure and interactions

    SciTech Connect

    Wright, P.E.

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  19. NMR-Metabolic Methodology in the Study of GM Foods

    USDA-ARS?s Scientific Manuscript database

    The 1H NMR methodology used in the study of genetically modified (GM) foodstuff is discussed. The study of transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the KNAT1 gene from Arabidopsis is presented as a novel study-case. The 1H NMR metabolic profiling was carried out. Twenty-two wat...

  20. NMR studies of multiphase flows II

    SciTech Connect

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  1. Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry

    ERIC Educational Resources Information Center

    Gonzalez-Gaitano, Gustavo; Tardajos, Gloria

    2004-01-01

    Undergraduate students are required to study the chemical balance in supramolecular assemblies constituting two or more interacting species, by using proton NMR spectrometry. A good knowledge of physical chemistry, fundamentals of chemical balance, and NMR are pre-requisites for conducting this study.

  2. Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry

    ERIC Educational Resources Information Center

    Gonzalez-Gaitano, Gustavo; Tardajos, Gloria

    2004-01-01

    Undergraduate students are required to study the chemical balance in supramolecular assemblies constituting two or more interacting species, by using proton NMR spectrometry. A good knowledge of physical chemistry, fundamentals of chemical balance, and NMR are pre-requisites for conducting this study.

  3. {sup 13}C and {sup 17}O NMR binding constant studies of uranyl carbonate complexes in near-neutral aqueous solution. Yucca Mountain Project Milestone Report 3351

    SciTech Connect

    Clark, D.L.; Newton, T.W.; Palmer, P.D.; Zwick, B.D.

    1995-01-01

    Valuable structural information, much of it unavailable by other methods, can be obtained about complexes in solution through NMR spectroscopy. From chemical shift and intensity measurements of complexed species, NMR can serve as a species-specific structural probe for molecules in solution and can be used to validate thermodynamic constants used in geochemical modeling. Fourier-transform nuclear magnetic resonance (FT-NMR) spectroscopy has been employed to study the speciation of uranium(VI) ions in aqueous carbonate solutions as a function of pH, ionic strength, carbonate concentration, uranium concentration, and temperature. Carbon-13 and oxygen-17 NMR spectroscopy were used to monitor the fractions, and hence thermodynamic binding constants of two different uranyl species U0{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} and (UO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} in aqueous solution. Synthetic buffer solutions were prepared under the ionic strength conditions used in the NMR studies in order to obtain an accurate measure of the hydrogen ion concentration, and a discussion of pH = {minus}log(a{sub H}{sup +}) versus p[H] = {minus}log[H+] is provided. It is shown that for quantitative studies, the quantity p[H] needs to be used. Fourteen uranium(VI) binding constants recommended by the OECD NEA literature review were corrected to the ionic strengths employed in the NMR study using specific ion interaction theory (SIT), and the predicted species distributions were compared with the actual species observed by multinuclear NMR. Agreement between observed and predicted stability fields is excellent. This establishes the utility of multinuclear NMR as a species-specific tool for the study of the actinide carbonate complexation constants, and serves as a means for validating the recommendations provided by the OECD NEA.

  4. A multinuclear static NMR study of geopolymerisation

    SciTech Connect

    Favier, Aurélie; Habert, Guillaume; Roussel, Nicolas; D'Espinose de Lacaillerie, Jean-Baptiste

    2015-09-15

    Geopolymers are inorganic binders obtained by alkali activation of aluminosilicates. While the structure of geopolymers is now well understood, the details of the geopolymerisation reaction and their impact on the rheology of the paste remain uncertain. In this work, we follow the elastic properties of a paste made with metakaolin and sodium silicate solution. After the first sharp increase of elastic modulus occurring a few hundred of seconds after mixing and related to the heterogeneous formation of an alumina–silicate gel with a molar ratio Si/Al < 4 located at the grains boundaries, we focus on the progressive increase in elastic modulus on a period of few hours during the setting of the geopolymer. In this study, we combine the study of rheological properties of the paste with {sup 23}Na, {sup 27}Al and {sup 29}Si static NMR measurement in order to better understand the origin of this second increase in elastic modulus. Our results show that, after a few hours, Al and Na evolution in the liquid phase are concomitant. This suggests the precipitation of an aluminosilicate phase where Al is in tetrahedral position and Na compensates the charge. Furthermore, Si speciation confirms this result and allows us to identify the precipitation of a product, which has a chemical composition close to the final composition of geopolymer. This study provides strong evidence for a heterogeneous formation of an aluminosilicate glass directly from the first gel and the silicate solution without the need for a reorganisation of Gel 1 into Gel 2.

  5. Solid-State NMR Study of Metastable Immiscibility in Alkali Borosilicate Glasses

    NASA Astrophysics Data System (ADS)

    Du, L.; Stebbins, J. F.

    2001-12-01

    Liquid-liquid phase separation is a critical issue in controlling and designing the physical properties of borosilicate glasses such as chemical durability, crystal nucleation, and high temperature strength and can provide insight into unmixing in natural magmatic systems as well. It is important to clarify this phenomenon, especially the immiscibility boundaries, which can be difficult to determine by conventional methods. High resolution NMR can provide a sensitive probe for the observation of phase separation in glass systems. In the M2O-B2O3-SiO2 system (M= Li, Na, K), we have used oxygen-17 MQMAS (Multiple Quantum Magic Angle Spinning) technique to explore changes in connectivities between SiO4, BO3 and BO4 units, based on changes in populations of bridging oxygens, such as B-O-B, B-O-Si and Si-O-Si, and of non-bridging oxygens. We have also used boron-11 MAS and MQMAS to quantify populations of borate units with varying first shell coordination and connectivity to other network units, e.g., "ring" vs. "non-ring" BO3 groups. In a series of alkali borosilicates of the same stoichiometry, the population of Si-O-B oxygen for the Li glass is significantly lower than that for Na and K borosilicates. This implies that the Li glass has a greater degree of phase separation at a submicroscopic scale as expected from phase diagrams. O-17 MQMAS NMR is also useful in determining the effect of quenching rate and annealing temperature on the degree of phase separation. In the Na borosilicates, a reduced concentration of Si-O-B in compositions within the immiscibility region suggests that even optically homogeneous glasses have small-scale heterogeneity. In the B-11 MAS and MQMAS studies, the ratio of BO3 to BO4 does not change with annealing. The non-ring BO3, however, converts to ring BO3 with annealing, which increases the degree of phase separation. In the study of Na2O-B2O3-SiO2 glasses with different Na contents, Si-O-B(III) and Si-O-B(IV) as well as B-O-B(III) and B

  6. Dynamics of Antibody Domains Studied by Solution NMR

    PubMed Central

    Vu, Bang K.; Walsh, Joseph D.; Dimitrov, Dimiter S.; Ishima, Rieko

    2012-01-01

    Information on local dynamics of antibodies is important to evaluate stability, to rationally design variants, and to clarify conformational disorders at the epitope binding sites. Such information may also be useful for improved understanding of antigen recognition. NMR can be used for characterization of local protein dynamics at the atomic level through relaxation measurements. Due to the complexity of the NMR spectra, an extensive use of this method is limited to small protein molecules, for example, antibody domains and some scFv. Here, we describe a protocol that was used to study the dynamics of an antibody domain in solution using NMR. We describe protein preparation for NMR studies, NMR sample optimization, signal assignments, and dynamics experiments. PMID:19252840

  7. High-resolution, high-pressure NMR studies of proteins.

    PubMed Central

    Jonas, J; Ballard, L; Nash, D

    1998-01-01

    Advanced high-resolution NMR spectroscopy, including two-dimensional NMR techniques, combined with high pressure capability, represents a powerful new tool in the study of proteins. This contribution is organized in the following way. First, the specialized instrumentation needed for high-pressure NMR experiments is discussed, with specific emphasis on the design features and performance characteristics of a high-sensitivity, high-resolution, variable-temperature NMR probe operating at 500 MHz and at pressures of up to 500 MPa. An overview of several recent studies using 1D and 2D high-resolution, high-pressure NMR spectroscopy to investigate the pressure-induced reversible unfolding and pressure-assisted cold denaturation of lysozyme, ribonuclease A, and ubiquitin is presented. Specifically, the relationship between the residual secondary structure of pressure-assisted, cold-denatured states and the structure of early folding intermediates is discussed. PMID:9649405

  8. Studies of organic paint binders by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Spyros, A.; Anglos, D.

    2006-06-01

    Nuclear magnetic resonance spectroscopy is applied to the study of aged binding media used in paintings, namely linseed oil, egg tempera and an acrylic medium. High resolution 1D and 2D NMR experiments establish the state of hydrolysis and oxidation of the linseed and egg tempera binders after five years of aging, by determining several markers sensitive to the hydrolytic and oxidative processes of the binder lipid fraction. The composition of the acrylic binder co-polymer is determined by 2D NMR spectroscopy, while the identification of a surfactant, poly(ethylene glycol), found in greater amounts in aged acrylic medium, is reported. The non-destructive nature of the proposed analytical NMR methodology, and minimization of the amount of binder material needed through the use of sophisticated cryoprobes and hyphenated LC-NMR techniques, make NMR attractive for the arts analyst, in view of its rapid nature and experimental simplicity.

  9. NMR contributions to structural dynamics studies of intrinsically disordered proteins☆

    PubMed Central

    Konrat, Robert

    2014-01-01

    Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity. Given their inherent structural flexibility X-ray crystallography is not applicable to study these proteins. In contrast, NMR spectroscopy offers unique opportunities for structural and dynamic studies of IDPs. The past two decades have witnessed significant development of NMR spectroscopy that couples advances in spin physics and chemistry with a broad range of applications. This article will summarize key advances in basic physical-chemistry and NMR methodology, outline their limitations and envision future R&D directions. PMID:24656082

  10. NMR studies of metallic tin confined within porous matrices

    SciTech Connect

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-04-01

    {sup 119}Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown.

  11. NMR studies of nucleic acid dynamics

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, Hashim M.

    2013-12-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner.

  12. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  13. NMR Studies of Dynamic Biomolecular Conformational Ensembles

    PubMed Central

    Torchia, Dennis A.

    2015-01-01

    Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: “Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?” This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA. PMID:25669739

  14. NMR studies on polyphosphide Ce6Ni6P17

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yamada, H.; Ueda, K.; Mito, T.; Aoyama, Y.; Nakano, T.; Takeda, N.

    2016-02-01

    We report the result of 31P nuclear magnetic resonance (NMR) studies on Ce6Ni6P17. The observed NMR spectra show a Lorentzian-type and an asymmetric shapes, reflecting the local symmetry around each P site in the cubic unit cell. We have identified the observed NMR lines corresponding to three inequivalent P sites and deduced the temperature dependence of the Knight shift for each site. The Knight shifts increase with decreasing temperature down to 1.5 K, indicating a localized spin system of Ce6Ni6P17. Antiferromagnetic correlation between 4f spins is suggested from the negative sign of the Weiss-temperature.

  15. Study of molecular interactions with 13C DNP-NMR

    NASA Astrophysics Data System (ADS)

    Lerche, Mathilde H.; Meier, Sebastian; Jensen, Pernille R.; Baumann, Herbert; Petersen, Bent O.; Karlsson, Magnus; Duus, Jens Ø.; Ardenkjær-Larsen, Jan H.

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct 13C NMR ligand binding studies at natural isotopic abundance of 13C gets feasible in this way. Resultant screens are easy to interpret and can be performed at 13C concentrations below μM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands.

  16. Interfaces in polymer nanocomposites – An NMR study

    SciTech Connect

    Böhme, Ute; Scheler, Ulrich

    2016-03-09

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. {sup 1}H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T{sub 2} is most suited. In this presentation we report on two applications of T{sub 2} measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  17. Diamond Deposition and Defect Chemistry Studied via Solid State NMR

    DTIC Science & Technology

    1994-06-30

    same integrated NMR signal, regardless of its chemical environment, provided complete spin-lattice relaxation occurs between averages 3 . Gem -quality...occurs between averages, and broadening from years, a large research effort has been devoted to the study paramagnetic centers is insignificant. Gem ...information on the distribution and motion mond’s durability very attractive. However, while gem - of hydrogen can be obtained from the solid-state NMR

  18. Protein folding on the ribosome studied using NMR spectroscopy

    PubMed Central

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  19. Study of correlations in molecular motion by multiple quantum NMR

    NASA Astrophysics Data System (ADS)

    Tang, J. H.

    1981-11-01

    The theoretical background of spin Hamiltonians, the density matrix formalism of multiple quantum NMR are discussed as well as creation and detection of multiple quantum coherence by multiple pulse sequence. Prototype multiple quantum spectra of oriented benzene are presented. Redfield relaxation theory and the application of multiple quantum NMR to the study of correlations in fluctuations are considered. An oriented methyl group relaxed by paramagnetic impurities is examined and possible correlated motion between two coupled methyl groups is investigated by multiple quantum NMR. For a six spin system it is shown that the four quantum spectrum is sensitive to two body correlations, and serves a ready test of correlated motion. The spin lattice dynamics of orienting or tunneling methyl groups (CH3 and CD3) at low temperatures and the anisotropic spin lattice relaxation of deuterated hexamethylbenzene, caused by the sixfold reorientation of the molecules are described as well as NMR spectrometers.

  20. High-Resolution NMR Studies of Human Tissue Factor

    PubMed Central

    Nuzzio, Kristin M.; Watt, Eric D.; Boettcher, John M.; Gajsiewicz, Joshua M.; Morrissey, James H.; Rienstra, Chad M.

    2016-01-01

    In normal hemostasis, the blood clotting cascade is initiated when factor VIIa (fVIIa, other clotting factors are named similarly) binds to the integral membrane protein, human tissue factor (TF). The TF/fVIIa complex in turn activates fX and fIX, eventually concluding with clot formation. Several X-ray crystal structures of the soluble extracellular domain of TF (sTF) exist; however, these structures are missing electron density in functionally relevant regions of the protein. In this context, NMR can provide complementary structural information as well as dynamic insights into enzyme activity. The resolution and sensitivity for NMR studies are greatly enhanced by the ability to prepare multiple milligrams of protein with various isotopic labeling patterns. Here, we demonstrate high-yield production of several isotopically labeled forms of recombinant sTF, allowing for high-resolution NMR studies both in the solid and solution state. We also report solution NMR spectra at sub-mM concentrations of sTF, ensuring the presence of dispersed monomer, as well as the first solid-state NMR spectra of sTF. Our improved sample preparation and precipitation conditions have enabled the acquisition of multidimensional NMR data sets for TF chemical shift assignment and provide a benchmark for TF structure elucidation. PMID:27657719

  1. Study of cultured fibroblasts in vivo using NMR

    SciTech Connect

    Karczmar, G.S.

    1984-08-01

    The goal was to study the compartmentation of phosphorylated glycolytic intermediates in intact Chicken Embryo Fibroblasts (CEFs) using /sup 31/P NMR at 109 MHz. A technique for maintaining functional cells at high densities in an NMR magnet is described. Signals were detected from cytoplasmic inorganic phosphate (P/sub i/), ATP, NAD, NADH, phosphorylcholine and phosphorylethanolamine. The effect of external glucose on cytoplasmic pools of phosphates was studied. When cells were perfused with glucose-free medium the rate of glycolysis decreased, the amplitudes of the ATP resonances decreased, and the P/sub i/ intensity increased. The quantity of NMR-detectable P/sub i/ produced was significantly greater than the quantity of NMR-detectable ATP which was lost. Experiments with /sup 32/P labeled P/sub i/ showed that as the concentration of glucose in the medium was increase, the amount of phosphate sequestered in the cells increased. We conclude that there is a pool of P/sub i/ which is not detected by high resolution NMR and that the size of this pool increases as the rate of glycolysis increase. Longtitudinal relaxation times of intracellular phosphates in normal, transformed, and primary CEFs were measured. The results demonstrate that relaxation times of phosphates are sensitive to structural and metabolic changes which occur when cells are grown in culture. 59 references. 31 figures.

  2. Solution NMR Spectroscopy for the Study of Enzyme Allostery

    PubMed Central

    Lisi, George P.; Loria, J. Patrick

    2016-01-01

    Allostery is a ubiquitous biological regulatory process in which distant binding sites within a protein or enzyme are functionally and thermodynamically coupled. Allosteric interactions play essential roles in many enzymological mechanisms, often facilitating formation of enzyme-substrate complexes and/or product release. Thus, elucidating the forces that drive allostery is critical to understanding the complex transformations of biomolecules. Currently, a number of models exist to describe allosteric behavior, taking into account energetics as well as conformational rearrangements and fluctuations. In the following review, we discuss the use of solution NMR techniques designed to probe allosteric mechanisms in enzymes. NMR spectroscopy is unequaled in its ability to detect structural and dynamical changes in biomolecules, and the case studies presented herein demonstrate the range of insights to be gained from this valuable method. We also provide a detailed technical discussion of several specialized NMR experiments that are ideally suited for the study of enzymatic allostery. PMID:26734986

  3. NMR-Metabolic Methodology in the Study of GM Foods

    PubMed Central

    Sobolev, Anatoly P.; Capitani, Donatella; Giannino, Donato; Nicolodi, Chiara; Testone, Giulio; Santoro, Flavio; Frugis, Giovanna; Iannelli, Maria A.; Mattoo, Autar K.; Brosio, Elvino; Gianferri, Raffaella; D’Amico, Irene; Mannina, Luisa

    2010-01-01

    The 1H-NMR methodology used in the study of genetically modified (GM) foods is discussed. Transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the ArabidopsisKNAT1 gene is presented as a case study. Twenty-two water-soluble metabolites (amino acids, organic acids, sugars) present in leaves of conventional and GM lettuce were monitored by NMR and quantified at two developmental stages. The NMR spectra did not reveal any difference in metabolite composition between the GM lettuce and the wild type counterpart. Statistical analyses of metabolite variables highlighted metabolism variation as a function of leaf development as well as the transgene. A main effect of the transgene was in altering sugar metabolism. PMID:22253988

  4. Relaxation dispersion NMR spectroscopy for the study of protein allostery.

    PubMed

    Farber, Patrick J; Mittermaier, Anthony

    2015-06-01

    Allosteric transmission of information between distant sites in biological macromolecules often involves collective transitions between active and inactive conformations. Nuclear magnetic resonance (NMR) spectroscopy can yield detailed information on these dynamics. In particular, relaxation dispersion techniques provide structural, dynamic, and mechanistic information on conformational transitions occurring on the millisecond to microsecond timescales. In this review, we provide an overview of the theory and analysis of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiments and briefly describe their application to the study of allosteric dynamics in the homeodomain from the PBX transcription factor (PBX-HD). CPMG NMR data show that local folding (helix/coil) transitions in one part of PBX-HD help to communicate information between two distant binding sites. Furthermore, the combination of CPMG and other spin relaxation data show that this region can also undergo local misfolding, reminiscent of conformational ensemble models of allostery.

  5. NMR STUDY OF MOLECULAR REFORIENTATION UNDER FIVEFOLD SYMMETRY SOLID PERMETHYLFERROCENE

    SciTech Connect

    Wemmer, D.E.; Ruben, D.J.; Pines, A.

    1980-08-01

    The ring reorientation in permethylferrocene has been studied using high resolution solid state {sup 13}C NMR. The constraints which symmetry places upon the number and types of motional parameters which may be determined from the NMR spectrum are discussed. From comparison of the experimental lineshapes in the slow reorientation temperatures range with theoretical models for random rotations and symmetry related jumps, it is concluded that the reorientation occurs as jumps between symmetry related orientations with jumps of 2{pi}/5 highly favored over 4{pi}/5. The activation energy derived for the jump process is 13.5 kjoules/mole.

  6. Novel Dodecaarylporphyrins: Synthesis and Variable Temperature NMR Studies

    SciTech Connect

    Cancilla, Mark; Lebrilla, Carlito; Ma, Jian-Guo; Medforth, Craig J.; Muzzi, Cinzia M.; Shelnutt, John A.; Smith, Kevin M.; Voss, Lisa

    1999-05-05

    An investigation of the synthesis of novel dodecaarylporphyrins using the Suzuki coupling reaction of arylboronic acids with octabromotetraarylporphyrins is reported. Studies of the dynamic properties of these new porphyrins using variable temperature (VT) 1H NMR spectroscopy and molecular mechanics provide interesting insights into their dynamic properties, including the first determination of {beta} aryl rotation in a porphyrin system.

  7. Study of molecular interactions with 13C DNP-NMR.

    PubMed

    Lerche, Mathilde H; Meier, Sebastian; Jensen, Pernille R; Baumann, Herbert; Petersen, Bent O; Karlsson, Magnus; Duus, Jens Ø; Ardenkjaer-Larsen, Jan H

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct (13)C NMR ligand binding studies at natural isotopic abundance of (13)C gets feasible in this way. Resultant screens are easy to interpret and can be performed at (13)C concentrations below muM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  8. Studies of Transition Metal Complexes Using Dynamic NMR Techniques.

    NASA Astrophysics Data System (ADS)

    Coston, Timothy Peter John

    Available from UMI in association with The British Library. This Thesis is primarily concerned with the quantitative study of fluxional processes in, predominantly platinum(IV) complexes, with the ligands 1,1,2,2-tetrakis(methylthio)ethane (MeS)_2CHCH(SMe)_2 , and 1,1,2,2-tetrakis(methylthio)ethene (MeS) _2C=C(SMe)_2. Quantitative information relating to the energetics of these processes has been obtained by a combination of one- and two-dimensional NMR techniques. Chapter One provides an introduction to the background of fluxional processes in transition metal complexes together with data concerning the energetics of the processes that have already been studied by NMR techniques. Chapter Two provides a thorough grounding in NMR techniques, in particular those concerned with the quantitative measurement of rates involved in chemical exchange processes. A description of the use of 2D EXSY NMR spectroscopy in obtaining rate data is given. The properties of the magnetic isotope of platinum are given in Chapter Three. A general survey is also given of some additional compounds that have already been studied by platinum-195 spectroscopy. Chapter Four is concerned with the quantitative study of low temperature (<293 K) fluxionality (sulphur inversion) in the complexes (PtXMe_3 (MeS)_2CHCH(SMe) _2) (X = Cl, Br, I). These complexes were studied by dynamic nuclear magnetic resonance and the information regarding the rates of sulphur inversion was obtained by complete band-shape analysis. Chapter Five is concerned with high temperature (>333 K) fluxionality, of the previous complexes, as studied by a combination of one- and two -dimensional NMR techniques. Aside from obtaining thermodynamic parameters for all the processes, a new novel mechanism is proposed. Chapter Six is primarily concerned with the NMR investigation of the new dinuclear complexes ((PtXMe _3)_2(MeS) _2CHCH(SMe)_2) (X = Cl, Br, I). The solution properties have been established and thermo-dynamic parameters

  9. The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids.

    PubMed

    Charpentier, Thibault

    2011-07-01

    In 2001, Mauri and Pickard introduced the gauge including projected augmented wave (GIPAW) method that enabled for the first time the calculation of all-electron NMR parameters in solids, i.e. accounting for periodic boundary conditions. The GIPAW method roots in the plane wave pseudopotential formalism of the density functional theory (DFT), and avoids the use of the cluster approximation. This method has undoubtedly revitalized the interest in quantum chemical calculations in the solid-state NMR community. It has quickly evolved and improved so that the calculation of the key components of NMR interactions, namely the shielding and electric field gradient tensors, has now become a routine for most of the common nuclei studied in NMR. Availability of reliable implementations in several software packages (CASTEP, Quantum Espresso, PARATEC) make its usage more and more increasingly popular, maybe indispensable in near future for all material NMR studies. The majority of nuclei of the periodic table have already been investigated by GIPAW, and because of its high accuracy it is quickly becoming an essential tool for interpreting and understanding experimental NMR spectra, providing reliable assignments of the observed resonances to crystallographic sites or enabling a priori prediction of NMR data. The continuous increase of computing power makes ever larger (and thus more realistic) systems amenable to first-principles analysis. In the near future perspectives, as the incorporation of dynamical effects and/or disorder are still at their early developments, these areas will certainly be the prime target.

  10. Study of cultured fibroblasts in vivo using NMR

    SciTech Connect

    Karczmar, G.S.

    1984-01-01

    The goal of this thesis was to study the compartmentation of phosphorylated glycolytic intermediates in intact Chicken Embryo Fibroblasts (CEFs) using /sup 31/P NMR at 109 MHz. Because glycolysis is regulated differently in normal and virally transformed CEFs, NMR experiments were performed on both types of cells. A technique for maintaining functional cells at high densities in an NMR magnet is described. Signals were detected from cytoplasmic inorganic phosphate (P/sub i/), ATP, NAD, NADH, phosphorylcholine and phosphorylethanolamine. The effect of external glucose on cytoplasmic pools of phosphates was studied. However, experiments with /sup 32/P labelled P/sub i/ showed that as the concentration of glucose in the medium was increased, the amount of phosphate sequestered in the cells increased. They conclude that there is a pool of P/sub i/ which is not detected by high resolution of NMR and that the size of this pool increases as the rate of glycolysis increases. These effects were found only in cultured cells; the data for transformed and normal cells were similar. Longitudinal relaxation times of intracellular phosphates in normal, transformed, and primary CEFs were measured.

  11. Study of correlations in molecular motion by multiple quantum NMR

    SciTech Connect

    Tang, J.H.

    1981-11-01

    Nuclear magnetic resonance is a very useful tool for characterizing molecular configurations through the measurement of transition frequencies and dipolar couplings. The measurement of spectral lineshapes, spin-lattice relaxation times, and transverse relaxation times also provide us with valuable information about correlations in molecular motion. The new technique of multiple quantum nuclear magnetic resonance has numerous advantages over the conventional single quantum NMR techniques in obtaining information about static and dynamic interactions of coupled spin systems. In the first two chapters, the theoretical background of spin Hamiltonians and the density matrix formalism of multiple quantum NMR is discussed. The creation and detection of multiple quantum coherence by multiple pulse sequence are discussed. Prototype multiple quantum spectra of oriented benzene are presented. Redfield relaxation theory and the application of multiple quantum NMR to the study of correlations in fluctuations are presented. A specific example of an oriented methyl group relaxed by paramagnetic impurities is studied in detail. The study of possible correlated motion between two coupled methyl groups by multiple quantum NMR is presented. For a six spin system it is shown that the four-quantum spectrum is sensitive to two-body correlations, and serves a ready test of correlated motion. The study of the spin-lattice dynamics of orienting or tunneling methyl groups (CH/sub 3/ and CD/sub 3/) at low temperatures is presented. The anisotropic spin-lattice relaxation of deuterated hexamethylbenzene, caused by the sixfold reorientation of the molecules, is investigated, and the NMR spectrometers and other experimental details are discussed.

  12. Solid State NMR Studies of Energy Conversion and Storage Materials

    NASA Astrophysics Data System (ADS)

    Jankuru Hennadige, Sohan Roshel De Silva

    NMR (Nuclear magnetic resonance) spectroscopy is utilized to study energy conversion and storage materials. Different types of NMR techniques including Magic Angle Spinning, Cross-polarization and relaxation measurement experiments were employed. Four different projects are discussed in this dissertation. First, three types of CFx battery materials were investigated. Electrochemical studies have demonstrated different electrochemical performances by one type, delivering superior performance over the other two. 13C and 19F MAS NMR techniques are employed to identify the atomic/molecular structural factors that might account for differences in electrochemical performance among different types. Next as the second project, layered polymer dielectrics were investigated by NMR. Previous studies have shown that thin film capacitors are improved by using alternate layers of two polymers with complementary properties: one with a high breakdown strength and one with high dielectric constant as opposed to monolithic layers. 13C to 1H cross-polarization techniques were used to investigate any inter-layer properties that may cause the increase in the dielectric strength. The third project was to study two types of thermoelectric materials. These samples were made of heavily doped phosphorous and boron in silicon by two different methods: ball-milled and annealed. These samples were investigated by NMR to determine the degree of disorder and obtain insight into the doping efficiency. The last ongoing project is on a lithium-ion battery system. The nature of passivating layers or the solid electrolyte interphase (SEI) formed on the electrodes surface is important because of the direct correlation between the SEI and the battery life time/durability. Multinuclear (7Li, 19F, 31P) techniques are employed to identify the composition of the SEI formation of both positive and negative electrodes.

  13. Multinuclear NMR studies of gaseous and liquid sevoflurane

    NASA Astrophysics Data System (ADS)

    Macięga, E.; Makulski, W.; Jackowski, K.; Blicharska, B.

    2006-03-01

    For the first time, a small amount of sevoflurane ((CF 3) 2CHOCH 2F) in carbon dioxide and xenon as the gaseous solvents has been studied using 19F and 1H NMR spectra. Density-dependent 19F and 1H nuclear magnetic shielding was observed when the pressure of each solvent was increased. After extrapolation of the results to the zero-density limit it was possible to determine the appropriate shielding constants free from intermolecular interactions, σ0(F) and σ0(H). Similar procedure has also been applied for the investigation of fluorine-proton spin-spin couplings and the 2J 0(FH) and 3J 0(FH) constants of an isolated (CF 3) 2CHOCH 2F molecule were also obtained. Additionally, high-resolution 1H, 13C, 17O and 19F NMR spectra of pure liquid sevoflurane were also recorded and all the 1H- 13C, 1H- 19F and 19F- 13C spin-spin coupling constants and NMR chemical shifts were measured. It is shown that the experimental NMR parameters are suitable for comparison with the results of recent quantum-chemical calculations.

  14. Multinuclear NMR study of silica fiberglass modified with zirconia.

    PubMed

    Lapina, O B; Khabibulin, D F; Terskikh, V V

    2011-01-01

    Silica fiberglass textiles are emerging as uniquely suited supports in catalysis, which offer unprecedented flexibility in designing advanced catalytic systems for chemical and auto industries. During manufacturing fiberglass materials are often modified with additives of various nature to improve glass properties. Glass network formers, such as zirconia and alumina, are known to provide the glass fibers with higher strength and to slow down undesirable devitrification processes. In this work multinuclear (1)H, (23)Na, (29)Si, and (91)Zr NMR spectroscopy was used to characterize the effect of zirconia on the molecular-level fiberglass structure. (29)Si NMR results help in understanding why zirconia-modified fiberglass is more stable towards devitrification comparing with pure silica glass. Internal void spaces formed in zirconia-silica glass fibers after acidic leaching correlate with sodium and water distributions in the starting bulk glass as probed by (23)Na and (1)H NMR. These voids spaces are important for stabilization of catalytically active species in the supported catalysts. Potentials of high-field (91)Zr NMR spectroscopy to study zirconia-containing glasses and similarly disordered systems are illustrated. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Studies on supramolecular gel formation using DOSY NMR.

    PubMed

    Nonappa; Šaman, David; Kolehmainen, Erkki

    2015-04-01

    Herein, we present the results obtained from our studies on supramolecular self-assembly and molecular mobility of low-molecular-weight gelators (LMWGs) in organic solvents using pulsed field gradient (PFG) diffusion ordered spectroscopy (DOSY) NMR. A series of concentration-dependent DOSY NMR experiments were performed on selected LMWGs to determine the critical gelation concentration (CGC) as well as to understand the behaviour of the gelator molecules in the gel state. In addition, variable-temperature DOSY NMR experiments were performed to determine the gel-to-sol transition. The PFG NMR experiments performed as a function of gradient strength were further analyzed using monoexponential DOSY processing, and the results were compared with the automated Bayesian DOSY transformation to obtain 2D plots. Our results provide useful information on the stepwise self-assembly of small molecules leading to gelation. We believe that the results obtained from these experiments are applicable in determining the CGC and gel melting temperatures of supramolecular gels.

  16. An NMR Study of Enzyme Activity.

    ERIC Educational Resources Information Center

    Peterman, Keith E.; And Others

    1989-01-01

    A laboratory experiment designed as a model for studying enzyme activity with a basic spectrometer is presented. Included are background information, experimental procedures, and a discussion of probable results. Stressed is the value of the use of Nuclear Magnetic Resonance in biochemistry. (CW)

  17. An NMR Study of Enzyme Activity.

    ERIC Educational Resources Information Center

    Peterman, Keith E.; And Others

    1989-01-01

    A laboratory experiment designed as a model for studying enzyme activity with a basic spectrometer is presented. Included are background information, experimental procedures, and a discussion of probable results. Stressed is the value of the use of Nuclear Magnetic Resonance in biochemistry. (CW)

  18. NMR studies and applications of perfluorocarbon gases

    NASA Astrophysics Data System (ADS)

    Chang, Yulin

    Hyperpolarized 3He has been very successful in magnetic resonance imaging (MRI) of the lungs. It provides ways to study the physiological properties of the lungs and lung function. However, the high costs of the polarizing apparatus and the complicated polarizing procedure are preventing this technique from being clinically used routinely. Recent developments have shown that several fluorinated gases have the potential to replace 3He in some of its applications. This thesis presents some preliminary results of human excised lung imaging using C2F6 and C3F8. These two fluorinated gases were able to yield images with good signal-to-noise ratio and reasonable resolutions in a 1.5 T magnet. Using diffusion MRI of these two gases can distinguish emphysematous lungs from healthy ones. An important application of these gases would be to determine local lung surface-to-volume (S/V) ratio in vivo, which requires the unrestricted (free) diffusivity in each pixel to be known. We present data in this thesis which allow free diffusivities to be calculated from the relaxation time T1. Samples of pure C 2F6 and C3F8 at different pressures and in mixtures with oxygen at different concentrations were made. Measurements were done at two different magnetic fields and temperature was regulated to study the temperature dependence over a small range. These two gases were also used in studies of carbon-block filters, where the strong adsorption of the gases to the high surface-area carbon is beneficial. A brief review of our work on mouse lung imaging using hyperpolarized 3He is presented in Appendix A; Appendix B is a study of the longitudinal spin magnetization in the presence of a strong magnetic field gradient; the construction of the pulsed field gradient waveform measurement coils and some experimental results using these coils are contained in Appendix C.

  19. Proton NMR studies of functionalized nanoparticles in aqueous environments

    NASA Astrophysics Data System (ADS)

    Tataurova, Yulia Nikolaevna

    Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results

  20. NMR Studies of Some Plasma Proteins.

    NASA Astrophysics Data System (ADS)

    Lawrence, Mark P.

    Available from UMI in association with The British Library. Requires signed TDF. The work reported in this thesis consists of a study of the solution structure of a domain of protein structure found in some of the enzymes involved in blood coagulation. These domains, known as kringles, are of between 78 and 82 residues and contain three conserved disulphide bridges in their primary sequence. The study attempts to elucidate the nature of the lysine-binding site of the fourth kringle of human plasminogen to probe its physiological action, and a theory is developed to explain the overall fold of the protein in terms of its physiological role. The protein structure is found to contain only one small region of secondary structure, an antiparallel beta-sheet of about 8 residues, which provides the support for the binding site. The binding site itself consists of a hydrophobic channel provided by the aromatic residues at positions 61, 63, 71 and 73 in the beta-sheet and a negatively charged site at one end of this channel provided by the aspartic acid residues at positions 54 and 56. The beta-sheet appears to become more tightly defined on binding the kringle with alpha,omega -amino acids which are analogues of lysine and exhibit known anti-fibrinolytic properties. The rest of the solution structure appears to be less clearly defined and relies mainly on the three disulphide bridges and some rather isolated hydrogen bonding for maintenance of the fold. An explanation for this structure with a rigid binding site and a more flexible region for the remainder of the domain is proposed. Shorter studies are reported on the second kringle of bovine prothrombin and the first of human plasminogen which suggest strongly that the kringle fold is conserved.

  1. 1H NMR relaxometry, viscometry, and PFG NMR studies of magnetic and nonmagnetic ionic liquids.

    PubMed

    Daniel, Carla I; Chávez, Fabián Vaca; Feio, Gabriel; Portugal, Carla A M; Crespo, João G; Sebastião, Pedro J

    2013-10-03

    A study is presented of the molecular dynamics and of the viscosity in pure [Aliquat][Cl] ionic liquid and in a mixture of [Aliquat][Cl] with 1% (v/v) of [Aliquat][FeCl4]. The (1)H spin-lattice relaxation rate, R1, was measured by NMR relaxometry between 8 and 300 MHz. In addition, the translation self-diffusion, D, was measured by pulse field gradient NMR. The ILs' viscosity was measured as a function of an applied magnetic field, B, and it was found that the IL mixture's viscosity decreased with increasing B, whereas the [Aliquat][Cl] viscosity is independent of B. All experimental results were analyzed taking into account the viscosity's magnetic field dependence, assuming a modified Stokes-Einstein diffusion/viscosity relation. The main difference between the relaxation mechanisms responsible for R1 in the two IL systems is related to the additional paramagnetic relaxation contribution associated with the (1)H spins-[FeCl4] paramagnetic moments' interactions. Cross-relaxation cusps in the R1 dispersion, associated with (35)Cl and (1)H nuclear spins in the IL systems, were detected. The R1 model considered was successfully fitted to the experimental results, and it was possible to estimate the value of D at zero field in the case of the IL mixture which was consistent with the values of D measured at 7 and 14.1 T and with the magnetic field dependence estimated from the viscosity measurements. It was observed that a small concentration of [Aliquat][FeCl4] in the [Aliquat][Cl] was enough to produce a "superparamagnetic"-like effect and to change the IL mixture's molecular dynamics and viscosity and to allow for their control with an external magnetic field.

  2. Studying skin penetration by NMR imaging

    NASA Astrophysics Data System (ADS)

    Burg, J. M.; Voelker, M.; Schlupp, P.; Schmidts, T.; Maeder, U.; Bergmann, T.; Runkel, F.; Heverhagen, J. T.; Fiebich, M.

    2011-03-01

    Skin penetration studies are an important part for the development of dermal drug carrier systems. As a novel approach a 7-tesla Magnetic Resonance Imaging (MRI) Scanner was used to obtain information about the penetration of agents into the skin. The main advantage of this method is, that the properties of the skin does not influence the signals. Compared to optical assessments the MRI method is not limited to imaging depth. Furthermore, it is possible to analyze fat and water components of the skin separately. The aim of this work was to evaluate, if this method is a promising analysis tool for the visualization of the transport of substances across the skin. Gadobutrol (Gadovist®1.0), respresenting a coventional contrast agent in MRI, was used as a model drug for the visualization of the skin penetration. These first promising results showed that Gadobutrol, incorporated in an oil-in-water emulsion, could be detected across the skin tissue compared to an aqueous solution. After 24 hours, the pixel intensity value was increased about 4-fold compared to an untreated tissue.

  3. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-03-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methane groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of coals, and their suitability for possible correlations with the oil sourcing potential of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples. In this report period we have focused our work on 1 segment of the program. Our last report outlined progress in using our NMR editing methods with higher field operation where higher magic angle spinning rates are required. Significant difficulties were identified, and these have been the main subject of study during the most recent granting period.

  4. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  5. Double rotation NMR studies of zeolites and aluminophosphate molecular sieves

    SciTech Connect

    Jelinek, Raz

    1993-07-01

    Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. 27Al and 23Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework 27Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na+ cations are directly involved in adsorption processes and reactions in zeolite cavities.

  6. 1H NMR Studies of MgH2

    NASA Astrophysics Data System (ADS)

    Itoh, Yutaka; Kado, Ryoichi

    We report on 1H NMR studies of commercially available powder MgH2 exposed to air and maybe humidity, which has been believed to be a promising material for hydrogen storage. The Fourier transform of the free-induction decay of the protons indicatesd superposition of broad and narrow components in the NMR spectrum, while the Fourier transform of the 1H nuclear spin-echo reproduced the narrow component. With cooling down below room temperature, the ratio of the narrow peak to the broad spectrum decreased. The broad spectrum is associated with direct dipolar coupled protons on an inhomogeneous rigid lattice. The narrow peak is associated with interstitial protons with more inhomogeneous surroundings.

  7. Solid state NMR studies of materials for energy technology

    NASA Astrophysics Data System (ADS)

    Nambukara Kodiweera Arachchilage, Chandana K.

    Presented in this dissertation are NMR investigations of the dynamical and structural properties of materials for energy conversion and storage devices. 1H and 2H NMR was used to study water and methanol transportation in sulfonated poly(arylene ether ketone) based membranes for direct methanol fuel cells (DMFC). These results are presented in chapter 3. The amount of liquid in the membrane and ion exchange capacity (IEC) are two main factors that govern the dynamics in these membranes. Water and methanol diffusion coefficients also are comparable. Chapters 4 and 5 are concerned with 31P and 1H NMR in phosphoric acid doped PBI membranes (para-PBI and 2OH-PBI) as well as PBI membranes containing ionic liquids (H3PO4/PMIH2PO4/PBI). These membranes are designed for higher-temperature fuel cell operation. In general, stronger short and long range interactions were observed in the 2OH-PBI matrix, yielding reduced proton transport compared to that of para-PBI. In the case of H3PO4/PMIH2PO 4/PBI, both conductivity and diffusion are higher for the sample with molar ratio 2/4/1. Finally, chapter 6 is devoted to the 31P NMR MAS study of phosphorus-containing structural groups on the surfaces of micro/mesoporous activated carbons. Two spectral features were observed and the narrow feature identifies surface phosphates while the broad component identifies heterogeneous subsurface phosphorus environments including phosphate and more complex structure multiple P-C, P-N and P=N bonds.

  8. NMR Structural Studies of Antimicrobial Peptides: LPcin Analogs

    PubMed Central

    Jeong, Ji-Ho; Kim, Ji-Sun; Choi, Sung-Sub; Kim, Yongae

    2016-01-01

    Lactophoricin (LPcin), a component of proteose peptone (113–135) isolated from bovine milk, is a cationic amphipathic antimicrobial peptide consisting of 23 amino acids. We designed a series of N- or C-terminal truncated variants, mutated analogs, and truncated mutated analogs using peptide-engineering techniques. Then, we selected three LPcin analogs of LPcin-C8 (LPcin-YK1), LPcin-T2WT6W (LPcin-YK2), and LPcin-T2WT6W-C8 (LPcin-YK3), which may have better antimicrobial activities than LPcin, and successfully expressed them in E. coli with high yield. We elucidated the 3D structures and topologies of the three LPcin analogs in membrane environments by conducting NMR structural studies. We investigated the purity of the LPcin analogs and the α-helical secondary structures by performing 1H-15N 2D HSQC and HMQC-NOESY liquid-state NMR spectroscopy using protein-containing micelle samples. We measured the 3D structures and tilt angles in membranes by conducting 15N 1D and 2D 1H-15N SAMMY type solid-state NMR spectroscopy with an 800 MHz in-house-built 1H-15N double-resonance solid-state NMR probe with a strip-shield coil, using protein-containing large bicelle samples aligned and confirmed by molecular-dynamics simulations. The three LPcin analogs were found to be curved α-helical structures, with tilt angles of 55–75° for normal membrane bilayers, and their enhanced activities may be correlated with these topologies. PMID:26789765

  9. NMR Studies of Molecular Orientation and Dynamics in Spider silk

    NASA Astrophysics Data System (ADS)

    Michal, Carl; Eles, Philip

    2004-05-01

    Spider dragline silk has a unique combination of strength and extensibility that has been difficult to achieve in synthetic polymer fibres and has inspired industrial efforts to produce genetically engineered analogues. In light of these efforts elsewhere, we describe solid-state NMR experiments that elucidate the molecular structure and dynamics of this remarkable material. These experiments include the use of a 2-D exchange NMR experiment known as DECODER in which the sample is reoriented through a discrete angle during the mixing time. This experiment allows a reconstruction of the orientation distribution of the protein backbone. Our data is well described by a two-component distribution where the protein backbones of both components are preferentially aligned along the silk fibre. This experiment is also sensitive to molecular motion on a wide range of time-scales, and is employed to study changes in the silk as a function of fibre extension and hydration. Hydrated silk undergoes a remarkable phenomena known as supercontraction where fibres shrink by up to 50% in length while swelling in diameter. DECODER NMR of fully and partially supercontracted silk reveals that supercontraction occurs through a process of local phase transitions where water disrupts inter- and intra-chain hydrogen bonds.

  10. 7Li NMR study of normal human erythrocytes

    NASA Astrophysics Data System (ADS)

    Pettegrew, J. W.; Post, J. F. M.; Panchalingam, K.; Withers, G.; Woessner, D. E.

    The biological action of lithium is of great interest because of the therapeutic efficacy of the cation in manic-depressive illness. To investigate possible molecular interactions of lithium, 7Li NMR studies were conducted on normal human erythrocytes which had been incubated with lithium chloride. The uptake of lithium ions was followed by 7Li NMR, using a dysprosium, tripolyphosphate shift reagent. Lithium uptake followed single-exponential kinetics with a time constant of 14.7 h. The intracellular lithium relaxation times were T 1 ⋍ 5 s and T 2 ⋍ 0.15 s, which implies a lengthening of the lithium correlation time. It was found that lithium does not interact significantly with hemoglobin, the erythrocyte membrane, or artificial phospholipid membranes. Based on measurements of lithium T1 and T2 in concentrated agar gels, the large difference between T1 and T2 for intracellular lithium ions may be due to diffusion of the hydrated lithium ion through heterogeneous electrostatic field gradients created by the erythrocyte membrane-associated cytoskeletal network. Lithium binding to the membrane-associated cytoskeleton, however, cannot be ruled out. Because of the large differences between T1 and T2 of intracellular lithium ions, 1Li NMR may be a sensitive and promising noninvasive method to probe the intracellular environment.

  11. MRI and unilateral NMR study of reindeer skin tanning processes.

    PubMed

    Zhu, Lizheng; Del Federico, Eleonora; Ilott, Andrew J; Klokkernes, Torunn; Kehlet, Cindie; Jerschow, Alexej

    2015-04-07

    The study of arctic or subarctic indigenous skin clothing material, known for its design and ability to keep the body warm, provides information about the tanning materials and techniques. The study also provides clues about the culture that created it, since tanning processes are often specific to certain indigenous groups. Untreated skin samples and samples treated with willow (Salix sp) bark extract and cod liver oil are compared in this study using both MRI and unilateral NMR techniques. The two types of samples show different proton spatial distributions and different relaxation times, which may also provide information about the tanning technique and aging behavior.

  12. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  13. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a completion of a detailed comparative analysis of the suite of spectral editing techniques developed in our laboratory for this purpose. The appended report is a manuscript being submitted to the Journal of Magnetic Resonance on this subject.

  14. Solid-state NMR relaxation studies of Australian spider silks.

    PubMed

    Kishore, A I; Herberstein, M E; Craig, C L; Separovic, F

    Solid-state NMR techniques were used to study two different types of spider silk from two Australian orb-web spider species, Nephila edulis and Argiope keyserlingi. A comparison of (13)C-T(1) and (1)H-T(1rho) solid-state NMR relaxation data of the Ala Calpha, Ala Cbeta, Gly Calpha, and carbonyl resonances revealed subtle differences between dragline and cocoon silk. (13)C-T(1rho) and (1)H-T(1) relaxation experiments showed significant differences between silks of the two species with possible structural variations. Comparison of our data to previous (13)C-T(1) relaxation studies of silk from Nephila clavipes (A. Simmons et al., Macromolecules, 1994, Vol. 27, pp. 5235-5237) also supports the finding that differences in molecular mobility of dragline silk exist between species. Interspecies differences in silk structure may be due to different functional properties. Relaxation studies performed on wet (supercontracted) and dry silks showed that the degree of hydration affects relaxation properties, and hence changes in molecular mobility are correlated with functional properties of silk. Copyright 2002 Wiley Periodicals, Inc.

  15. NMR Study of Organic Counterion Binding to Perfluorinated Micellar Structures

    NASA Astrophysics Data System (ADS)

    Bossev, Dobrin; Matsumoto, Mustuo; Nakahara, Masaru

    2008-03-01

    In this study we have applied our previously developed NMR method to study the adsorption of tetramethylammonium (TMA^+) and tetraethylammonium (TEA^+) counterions to micelles formed by perfluorooctylsulfonate (FOS^-) surfactant in water at 30 C. These two counterions induce formation of threadlike surfactant structures that result in well pronounced viscoelastic properties of the solution. To selectively probe the degree of counterion binding we have used ^1H and ^19F NMR chemical shifts and self-diffusion coefficients that are sensitive to the Stern and diffuse double layers, respectively. The competitive adsorption of TMA^+ and TEA^+ was examined as a function of the TMA^+/TEA^+ ratio at a constant FOS^- concentration of 100 mM. The two counterions were found to form Stern layer around the FOS^- micelles with comparable packing; about one counterion per two micellized FOS molecules. When mixed at intermediate proportions, however, the TEA^+ counterion shows preferential binding; the concentration of TEA^+ in the Stern layer is found to be twice higher than that of TMA^+ at equal total respective concentrations in the solution. These results are discussed in terms of counterion size and hydrophobicity and presented in parallel with those that involved the smaller and more hydrophilic lithium counterion.

  16. Tricritical point in ferroelastic ammonium titanyl fluoride: NMR study

    SciTech Connect

    Kavun, V.Ya.; Kozlova, S.G.; Laptash, N.M; Tkachenko, I.A.; Gabuda, S.P

    2010-09-15

    Ionic mobility and phase transitions in ammonium titanyl pentafluoride (NH{sub 4}){sub 3}TiOF{sub 5} were studied using the {sup 19}F and {sup 1}H NMR data. The high-temperature phase (I) is characterized by spherically symmetric (isotropic) reorientation of [TiOF{sub 5}]{sup 3-} anions and by uniaxial reorientation of these anions in the ferroelastic phase II. A previously unknown second-order phase transition to the low-temperature modification (NH{sub 4}){sub 3}TiOF{sub 5}(III) was found at 205 K. The transition is accompanied by hindering of uniaxial rotations of [TiOF{sub 5}]{sup 3-} anions and by noticeable change of {sup 19}F magnetic shielding tensor associated with the influence of pseudo-Jahn-Teller effect. A pressure-induced tricritical point with coordinates p{sub TCR{approx}}2 kbar and T{sub TCR{approx}}170 K is estimated on the base of {sup 19}F NMR chemical shift data, and previously studied p-T diagram of (NH{sub 4}){sub 3}TiOF{sub 5}. - Graphical abstract: p-T phase diagram of (NH{sub 4}){sub 3}TiOF{sub 5}.

  17. Entangled Polymer Melt Dynamics Studied By Low-Field NMR

    NASA Astrophysics Data System (ADS)

    Vaca Chavez, Fabian; Huebsch, Patrick; Zirbs, Ronald; Binder, Wolfgang; Saalwaechter, Kay

    2009-03-01

    Proton Multiple-Quantum (MQ) NMR is a powerful technique to investigate polymer dynamics due to its sensitivity to molecular motions on very different timescales. Entangled melts exhibit dynamic processes that cover a wide range of timescales, starting from fast ps-scale segmental reorientation up to diffusive and cooperative motions on the ms-s-scale. In this work, we apply MQ NMR to linear poly(cis-1,4-isoprene) and poly(isobutylene) of different molecular weight above the glass transition over suitable ranges of temperature, in order to establish the dynamic regimes predicted by the tube model, and, for the first time, to extract actual time scale information. This directly complements many neutron scattering studies, which are restricted to the sub-μs-timescale. Measurements on PIB-grafted silica particles with different molecular weights and different chain densities on the surface of the particle are also shown. The data is analyzed by establishing scaling laws which can be directly associated with different dynamic regimes predicted by the tube/reptation model. Full analytical analyses based on a correlation function which explicitly includes segmental, Rouse, and reptation dynamics are discussed.

  18. Effects of nucleotide binding to LmrA: A combined MAS-NMR and solution NMR study.

    PubMed

    Hellmich, Ute A; Mönkemeyer, Leonie; Velamakanni, Saroj; van Veen, Hendrik W; Glaubitz, Clemens

    2015-12-01

    ABC transporters are fascinating examples of fine-tuned molecular machines that use the energy from ATP hydrolysis to translocate a multitude of substrates across biological membranes. While structural details have emerged on many members of this large protein superfamily, a number of functional details are still under debate. High resolution structures yield valuable insights into protein function, but it is the combination of structural, functional and dynamic insights that facilitates a complete understanding of the workings of their complex molecular mechanisms. NMR is a technique well-suited to investigate proteins in atomic resolution while taking their dynamic properties into account. It thus nicely complements other structural techniques, such as X-ray crystallography, that have contributed high-resolution data to the architectural understanding of ABC transporters. Here, we describe the heterologous expression of LmrA, an ABC exporter from Lactococcus lactis, in Escherichia coli. This allows for more flexible isotope labeling for nuclear magnetic resonance (NMR) studies and the easy study of LmrA's multidrug resistance phenotype. We use a combination of solid-state magic angle spinning (MAS) on the reconstituted transporter and solution NMR on its isolated nucleotide binding domain to investigate consequences of nucleotide binding to LmrA. We find that nucleotide binding affects the protein globally, but that NMR is also able to pinpoint local dynamic effects to specific residues, such as the Walker A motif's conserved lysine residue.

  19. NMR structural studies of PECVD amorphous silicon films

    NASA Astrophysics Data System (ADS)

    Cull, Thomas Sidley, Jr.

    The properties of plasma enhanced chemical vapor deposition (PECVD) amorphous semiconductor films vary depending upon preparation conditions and doping. Hydrogenated amorphous silicon films (a-Si:H) have some properties that make these films desirable for use in solar cells and photoreceptor devices. Maximizing electronic and structural properties of such films is key to their success. Nuclear magnetic resonance, and in particular deuterium magnetic resonance (DMR) for a-Si:H,D films, is a useful means to study the morphology of such samples. The location and motions of hydrogen and the chemically equivalent deuterium within an amorphous semiconductor film can be observed with NMR. The information from the NMR studies can be correlated with electronic properties studies to determine whether a given sample would make a successful photovoltaic device. This thesis focuses on three aspects of study: comparison of two samples that differ in the bias applied to the substrate upon which the amorphous films were grown; derivation of relaxation parameters for covalently bonded deuterium; development of a new pulse sequence "incremental spin echo double resonance (SEDOR)" to study the number of unlike spins that contribute to the local field of a given nuclei. Four significant conclusions can be drawn. First, the electronic quality as measured by the photoresponse product etamutau correlates with the broad Gaussian DMR spectral feature which arises from molecular hydrogen in sites that restrict motion. Second, the relaxation of nuclear magnetization under extreme inhomogeneous broadening can be modeled very well as the relaxation without spin diffusion to faster relaxing species within a sample. Third, incremental SEDOR has either a quantum mechanical or classical behavior depending upon the length of the pulse spacing in comparison to the spin-spin relaxation time. Fourth, the local field at the hydrogen of an HD pair within an a-Si:H,D sample is determined on average by

  20. NMR Studies on the Aqueous Phase Photochemical Degradation of TNT

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2008-04-06

    Aqueous phase photochemical degradation of 2,4,6-trinitrotoluene (TNT) is an important pathway in several environments, including washout lagoon soils, impact craters from partially detonated munitions that fill with rain or groundwater, and shallow marine environments containing unexploded munitions that have corroded. Knowledge of the degradation products is necessary for compliance issues on military firing ranges and formerly used defense sites. Previous laboratory studies have indicated that UV irradiation of aqueous TNT solutions results in a multicomponent product mixture, including polymerization compounds, that has been only partially resolved by mass spectrometric analyses. This study illustrates how a combination of solid and liquid state 1H, 13C, and 15N NMR spectroscopy, including two dimensional analyses, provides complementary information on the total product mixture from aqueous photolysis of TNT, and the effect of reaction conditions. Among the degradation products detected were amine, amide, azoxy, azo, and carboxylic acid compounds.

  1. Unilateral NMR study of a XVI century wall painted

    NASA Astrophysics Data System (ADS)

    Proietti, N.; Capitani, D.; Rossi, E.; Cozzolino, S.; Segre, A. L.

    2007-06-01

    Wall paintings in the XVI century Serra Chapel in the "Chiesa di Nostra Signora del Sacro Cuore" Rome, have been studied using unilateral NMR. In order to map the distribution of moisture content in the wall painted, a large number of Hahn echo measurements, covering large areas of the wall painting were performed. Because the intensity of the Hahn echo is proportional to the amount of moisture in the area under study, the experimental data were transformed into 2D gradient colour maps which allowed an easy visualization of the moisture content of the wall. The state of conservation of the wall painting was monitored using T2 measurements specially with regards to outcropping salt.

  2. NMR studies of two spliced leader RNAs using isotope labeling

    SciTech Connect

    Lapham, J.; Crothers, D.M.

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions between the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.

  3. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    NASA Astrophysics Data System (ADS)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  4. ¹H NMR and hyperpolarized ¹³C NMR assays of pyruvate-lactate: a comparative study.

    PubMed

    Hill, Deborah K; Jamin, Yann; Orton, Matthew R; Tardif, Nicolas; Parkes, Harold G; Robinson, Simon P; Leach, Martin O; Chung, Yuen-Li; Eykyn, Thomas R

    2013-10-01

    Pyruvate-lactate exchange is mediated by the enzyme lactate dehydrogenase (LDH) and is central to the altered energy metabolism in cancer cells. The measurement of exchange kinetics using hyperpolarized (13) C NMR has provided a biomarker of response to novel therapeutics. However, the observable signal is restricted to the exchanging hyperpolarized (13) C pools and the endogenous pools of (12) C-labelled metabolites are invisible in these measurements. In this study, we investigated an alternative in vitro (1) H NMR assay, using [3-(13) C]pyruvate, and compared the measured kinetics with a hyperpolarized (13) C NMR assay, using [1-(13) C]pyruvate, under the same conditions in human colorectal carcinoma SW1222 cells. The apparent forward reaction rate constants (kPL ) derived from the two assays showed no significant difference, and both assays had similar reproducibility (kPL  = 0.506 ± 0.054 and kPL  = 0.441 ± 0.090 nmol/s/10(6) cells; mean ± standard deviation; n = 3); (1) H, (13) C assays, respectively). The apparent backward reaction rate constant (kLP ) could only be measured with good reproducibility using the (1) H NMR assay (kLP  = 0.376 ± 0.091 nmol/s/10(6) cells; mean ± standard deviation; n = 3). The (1) H NMR assay has adequate sensitivity to measure real-time pyruvate-lactate exchange kinetics in vitro, offering a complementary and accessible assay of apparent LDH activity.

  5. NMR studies on an oligodeoxynucleotide containing 2-aminopurine opposite adenine

    SciTech Connect

    Fazakerley, G.V.; Sowers, L.C.; Eritja, R.; Kaplan, B.E.; Goodman, M.F.

    1987-09-08

    A heteroduplex containing the mismatch 2-aminopurine (AP)-adenine has been synthesized and studied by proton NMR. The mismatch was incorporated into the sequence d(CGG(AP)GGC) x d-(GCCACCG). One-dimensional nuclear Overhauser effect measurements in H/sub 2/O and two-dimensional nuclear Overhauser effect spectra in D/sub 2/O show AP x A base pairs in a wobble structure in which both bases are in the anti conformation. The adenine is stacked well in the helix, but the helix twist between the adenine and neighboring cytosine in the 3' direction is unusually small. As a result, the aminopurine on the opposite strand is somewhat pushed out of the helix. From the measurements of the imino proton line widths, the two adjacent G x C base pairs are not found to be significantly destabilized by the presence of the purine-purine wobble pair.

  6. Ion transport in porous media studied by NMR.

    PubMed

    Pel, L; Huinink, H P; Kopinga, K; Rijniers, L A; Kaasschieter, E F

    2001-01-01

    Moisture and salt transport in masonry can give rise to damages. Therefore a detailed knowledge of the moisture and salt transport is essential for understanding the durability of masonry. A special NMR apparatus has been made allowing quasi-simultaneous measurements of both moisture and Na profiles in porous building materials. Using this apparatus both the absorption of a 4 M NaCl solution in a calcium silicate brick and the drying of a 3 M NaCl capillary saturated fired-clay brick have been studied. It was found that during the absorption process the Na ions clearly stay behind, which this is caused by adsorption of these ions to the pore surface. For the drying it was found that at the beginning of the drying process the ions accumulate near the surface. As the drying rate decreases, diffusion becomes dominant and the ion profile levels off again.

  7. NMR and molecular mechanics study of pyrethrins I and II.

    PubMed

    Rugutt, J K; Henry, C W; Franzblau, S G; Warner, I M

    1999-08-01

    Bioassay-directed fractionation of the organic extract of the Kenyan pyrethrum flowers (Chrysanthemum cinerariaefolium Vissiani) resulted in the isolation of two natural pyrethrin esters, pyrethrin I (PI) and pyrethrin II (PII) as the major constituents. These esters elicited inhibition of the multiple drug resistant (MDR) Mycobacterium tuberculosis. The high-field (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of PI and PII were unequivocally assigned using modern two-dimensional (2D) proton-detected heteronuclear multiple-quantum coherence (HMQC) and heteronuclear multiple-bond correlation (HMBC) experiments. The conformations of both esters were deduced from (1)H-(1)H vicinal coupling constants and confirmed by 2D nuclear Overhauser effect spectroscopy (NOESY). Computer molecular modeling (MM) studies revealed that PI and PII molecules adopt a "love-seat" conformation in chloroform (CDCl(3)) solution.

  8. Mass transfer in chromatographic columns studied by PFG NMR.

    PubMed

    Tallarek, U; van Dusschoten, D; Van As, H; Guiochon, G; Bayer, E

    1998-01-01

    Pulsed field gradient (PFG) nuclear magnetic resonance (NMR) is applied to study convective and diffusional transport in chromatographic columns packed with totally porous support particles. Here stagnant zones exist in the particle pores, and diffusional mass-transfer limitations between fluid molecules diffusing in the intraparticle pore network and flowing in the interparticle void space are detected quantitatively. Axial displacement probability distributions were measured for water over a range of Peclet numbers and observation times, with diffusion lengths between 0.15 and 0.91 times the average support particle diameter. The transition towards complete diffusional exchange is demonstrated, thereby also revealing the development of the classical convective dispersion process in a packed bed of (porous) particles.

  9. Ultra-broadband NMR probe: numerical and experimental study of transmission line NMR probe.

    PubMed

    Kubo, Atsushi; Ichikawa, Shinji

    2003-06-01

    We have reinvestigated a transmission line NMR probe first published by Lowe and co-workers in 1970s [Rev. Sci. Instrum. 45 (1974) 631; 48 (1977) 268] numerically and experimentally. The probe is expected to be ultra-broadband, thus might enable new types of solid-state NMR experiments. The NMR probe consists of a coil and capacitors which are connected to the coil at regular intervals. The circuit is the same as a cascaded LC low-pass filter, except there are nonzero mutual inductances between different coil sections. We evaluated the mutual inductances by Neumann's formula and calculated the electrical characteristics of the probe as a function of a carrier frequency. We found that they were almost the same as those of a cascaded LC low-pass filter, when the inductance L of a section was estimated from the inductance of the whole coil divided by the number of the sections, and if C was set to the capacitance in a section. For example, the characteristic impedance of a transmission line coil is given by Z=(L/C)(1/2). We also calculated the magnitude and the distribution of RF magnetic field inside the probe. The magnitude of RF field decreases when the carrier frequency is increased because the phase delay between neighboring sections is proportional to the carrier frequency. For cylindrical coils, the RF field is proportional to (pinu/2nu(d))(1/2)exp(-nu/nu(d)), where the decay frequency nu(d) is determined by the dimensions of the coil. The observed carrier frequency thus must be much smaller than the decay frequency. This condition restricts the size of transmission line coils. We made a cylindrical coil for a 1H NMR probe operating below 400 MHz. It had a diameter 2.3mm and a pitch 1.2mm. Five capacitors of 6pF were connected at every three turns. The RF field strength was 40 and 60 kHz at the input RF power 100 W by a calculation and by experiments, respectively. The calculations showed that the RF field inhomogeneity along the coil axis was caused by a

  10. Overcoming the Solubility Limit with Solubility-Enhancement Tags: Successful Applications in Biomolecular NMR Studies

    PubMed Central

    Zhou, Pei; Wagner, Gerhard

    2010-01-01

    Although the rapid progress of NMR technology has significantly expanded the range of NMR-trackable systems, preparation of NMR-suitable samples that are highly soluble and stable remains a bottleneck for studies of many biological systems. The application of solubility-enhancement tags (SETs) has been highly effective in overcoming solubility and sample stability issues and has enabled structural studies of important biological systems previously deemed unapproachable by solution NMR techniques. In this review, we provide a brief survey of the development and successful applications of the SET strategy in biomolecular NMR. We also comment on the criteria for choosing optimal SETs, such as for differently charged target proteins, and recent new developments on NMR-invisible SETs. PMID:19731047

  11. Solid-State NMR Studies of Amyloid Fibril Structure

    NASA Astrophysics Data System (ADS)

    Tycko, Robert

    2011-05-01

    Current interest in amyloid fibrils stems from their involvement in neurodegenerative and other diseases and from their role as an alternative structural state for many peptides and proteins. Solid-state nuclear magnetic resonance (NMR) methods have the unique capability of providing detailed structural constraints for amyloid fibrils, sufficient for the development of full molecular models. In this article, recent progress in the application of solid-state NMR to fibrils associated with Alzheimer's disease, prion fibrils, and related systems is reviewed, along with relevant developments in solid-state NMR techniques and technology.

  12. In-Cell Solid-State NMR: An Emerging Technique for the Study of Biological Membranes

    PubMed Central

    Warnet, Xavier L.; Arnold, Alexandre A.; Marcotte, Isabelle; Warschawski, Dror E.

    2015-01-01

    Biological molecular processes are often studied in model systems, which simplifies their inherent complexity but may cause investigators to lose sight of the effects of the molecular environment. Information obtained in this way must therefore be validated by experiments in the cell. NMR has been used to study biological cells since the early days of its development. The first NMR structural studies of a protein inside a cell (by solution-state NMR) and of a membrane protein (by solid-state NMR) were published in 2001 and 2011, respectively. More recently, dynamic nuclear polarization, which has been used to enhance the signal in solid-state NMR, has also been applied to the study of frozen cells. Much progress has been made in the past 5 years, and in this review we take stock of this new technique, which is particularly appropriate for the study of biological membranes. PMID:26682804

  13. NMR Relaxation and Diffusion Study of Ultrasound Recycling of Polyurethanes

    NASA Astrophysics Data System (ADS)

    von Meerwall, E.; Ghose, S.; Isayev, A. I.

    2004-04-01

    We have examined the effect of intense ultrasound on unfilled polyurethane foam and rubber using proton NMR transverse relaxation and pulsed-gradient diffusion studies, sol extraction, GPC characterization, and glass transition measurements. Results correlate well with ultrasound amplitude. The proton T2 relaxation at 70.5 deg. C exhibits three discrete components, due to heavily entangled sol and crosslinked network; unentangled polymeric sol plus dangling network chain ends; and oligomer remnants. Devulcanizing produces heavy sol, increases segmental mobility of all species, and generates more dangling chain ends. In foams, but not in rubber, additional light sol is generated at the expense of network. All mobilities are significantly lower than in the other rubbers we have studied, an effect unrelated to the glass transition, nearly constant at -60 deg. C. Diffusion measurements, possible only in foams, show a bimodal spectrum whose fast component slows markedly with ultrasound amplitude, attesting to the production of fragments heavier than the original oligomers, as confirmed by GPC analysis. This work is the first to study ultrasound devulcanization in industrial rubbery foams.

  14. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  15. PFG NMR study of hydrodynamic dispersion in porous media

    NASA Astrophysics Data System (ADS)

    Ding, Aimin

    We have studied hydrodynamic dispersion in plastic bead packs using the pulsed field gradient (PFG) NMR technique. The bead diameter was varied from 15 to 138 mum and the Peclet number Pe varied from 0 to 10sp3 (the Peclet number is a dimensionless measure of the flow velocity). We studied the time dependence of both the longitudinal dispersion coefficient Dsb{||} and the transverse dispersion coefficient Dsb{⊥}. We observed transitions from decreasing with time at low Pe to increasing with time at high Pe for both Dsb{||} and Dsb{⊥}. We used our data to find the transition time tsb0 the time required for dispersion coefficient to reach its long time value. For both Dsb{||} and Dsb{⊥}, we found a power-law dependence of tsb0 on Pe, as has been predicted by Koch and Brady. The Pe dependence of tsb0 provides information on the operative dispersion mechanisms. Our results show that both convection dispersion and boundary layer dispersion contribute to longitudinal dispersion in our experiments. However, the Pe dependence of tsb0 for transverse dispersion does not agree with the theoretical prediction of Koch and Brady. We measured Dsb{||} and Dsb{⊥} as a function of Pe. Our experimental results are consistent with previous results measured using conventional methods. We found that the results for longitudinal dispersion agree with Saffman's capillary tube model in our observation range. The results for transverse dispersion agree with Koch and Brady's fixed bed model to some extent, but at low Pe, the disagreement is significant. We obtained the wave-number and frequency dependent nonlocal dispersion coefficient {buildrel{≈}/{D}}sb{| |,⊥}(q,omega) from our PFG NMR data. In the local (long time and distance) limit, our results agree with previous results obtained with conventional methods and for no flow they agree with a simple model of restricted diffusion. Our results for nonlocal dispersion with flow are in reasonable agreement with Koch and Brady

  16. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  17. NMR study of strontium binding by a micaceous mineral.

    PubMed

    Bowers, Geoffrey M; Ravella, Ramesh; Komarneni, Sridhar; Mueller, Karl T

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na(4)Mg(6)Al(4)Si(4)O(20)F(4). Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 degrees C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a (1)H-(87)Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by (87)Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct (87)Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

  18. NMR Study of Strontium Binding by a Micaceous Mineral

    SciTech Connect

    Bowers, Geoffrey M.; Ravella, Ramesh; Komarneni, S.; Mueller, Karl T.

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na4Mg6Al4Si4O20F4. Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 °C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a 1H-87Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by 87Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct 87Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

  19. Fundamental studies of supported bimetallic catalysts by NMR spectroscopy

    SciTech Connect

    Savargaonkar, Nilesh

    1996-10-17

    Various hydrogenation reactions on transition metals are important commercially whereas certain hydrogenolysis reactions are useful from fundamental point of view. Understanding the hydrogen mobility and kinetics of adsorption-desorption of hydrogen is important in understanding the mechanisms of such reactions involving hydrogen. The kinetics of hydrogen chemisorption was studied by means of selective excitation NMR on silica supported Pt, Rh and Pt-Rh catalysts. The activation energy of hydrogen desorption was found to be lower on silica supported Pt catalysts as compared to Rh and Pt-Rh catalysts. It was found that the rates of hydrogen adsorption and desorption on Pt-Rh catalyst were similar to those on Rh catalyst and much higher as compared to Pt catalyst. The Ru-Ag bimetallic system is much simpler to study than the Pt-Rh system and serves as a model system to characterize more complicated systems such as the K/Ru system. Ag was found to decrease the amounts of adsorbed hydrogen and the hydrogen-to-ruthenium stoichiometry. Ag reduced the populations of states with low and intermediate binding energies of hydrogen on silica supported Ru catalyst. The rates of hydrogen adsorption and desorption were also lower on silica supported Ru-Ag catalyst as compared to Ru catalyst. This report contains introductory information, the literature review, general conclusions, and four appendices. An additional four chapters and one appendix have been processed separately for inclusion on the data base.

  20. Studies of Molecular Dynamics by Solid State Deuterium NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Baiyi

    The rotational dynamics of molecules in a number of solid systems were followed by variable temperature deuterium (^2H), nuclear magnetic resonance (NMR) spectroscopy via changes in the spectral lineshapes and spin-lattice relaxation times (T _1). First the pure solid trimethylamine-borane adduct, (CH_3)_3NBH_3, was studied. For a methyl deuterated sample, T _1 measurements yielded two T_1 minima, 6.9 ms and 4.3 ms corresponding to the slowing of methyl and trimethyl rotation, respectively, with decreasing temperature. Activation energies for methyl and trimethyl rotation, obtained from fitting the T _1 curve as a function of temperature, were 32.8 and 15.0 kJ/mol, respectively; simulations of the spectral lineshapes gave 26.6 and 18.9 kT/mol, respectively. Fitting of the ^2H T_1 curve for the borane deuterated sample gave a BH _3 rotation activation energy of 14.1 kT/mol and a ^2H quadrupolar coupling constant, chi, of 101 kHz. The activation energy for BH_3 rotation obtained from the spectral lineshape simulations gave 12.6 kT/mol. A series of deuterated organic chalcogen cations: (CH_3)_3S^+, (CH_3)_3Se^+ and (CH_3)_3Te^+, were ion exchanged into the cavities of sodium Mordenite LZ-M5 and the dynamics of these guests within the hydrated zeolite were followed by ^2H NMR. All three undergo isotropic motion above about -80 to -90^circC. Below this temperature two superimposed ^2H powder spectra appear; the broad lineshape is consistent with only methyl rotation in a hindered, coordinated site, and the other narrow lineshape is due to both methyl and trimethyl rotation in a less hindered, uncoordinated site. As the temperature is lowered the population of the lower energy coordinated site increases. Relative peak areas yield adsorption enthalpies of 6.7, 7.8 and 10.0 kJ/mol for (CH_3)_3S^+, (CH_3)_3Se^+ and (CH_3)_3Te^+, respectively. The series of methyl deuterated ammonium and phosphonium cations: (CH_3)NH_3^+ , (CH_3)_2NH^+ , (CH_3)_3NH^+ and (CH_3)_4P^+ , were

  1. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  2. NMR study of small molecule adsorption in MOF-74-Mg

    NASA Astrophysics Data System (ADS)

    Lopez, M. G.; Canepa, Pieremanuele; Thonhauser, T.

    2013-04-01

    We calculate the carbon nuclear magnetic resonance (NMR) shielding for CO2 and the hydrogen shieldings for both H2 and H2O inside the metal organic framework MOF-74-Mg. Our ab initio calculations are at the density functional theory level using the van der Waals including density functional vdW-DF. The shieldings are obtained while placing the small molecules throughout the structure, including the calculated adsorption site for various loading scenarios. We then explore relationships between loading, rotational and positional characteristics, and the NMR shieldings for each adsorbate. Our NMR calculations show a change in the shielding depending on adsorbate, position, and loading in a range that is experimentally observable. We further provide a simple model for the energy and the NMR shieldings throughout the cavity of the MOF. By providing this mapping of shielding to position and loading for these adsorbates, we argue that NMR probes could be used to provide additional information about the position at which these small molecules bind within the MOF, as well as the loading of the adsorbed molecule.

  3. NMR study of small molecule adsorption in MOF-74-Mg.

    PubMed

    Lopez, M G; Canepa, Pieremanuele; Thonhauser, T

    2013-04-21

    We calculate the carbon nuclear magnetic resonance (NMR) shielding for CO2 and the hydrogen shieldings for both H2 and H2O inside the metal organic framework MOF-74-Mg. Our ab initio calculations are at the density functional theory level using the van der Waals including density functional vdW-DF. The shieldings are obtained while placing the small molecules throughout the structure, including the calculated adsorption site for various loading scenarios. We then explore relationships between loading, rotational and positional characteristics, and the NMR shieldings for each adsorbate. Our NMR calculations show a change in the shielding depending on adsorbate, position, and loading in a range that is experimentally observable. We further provide a simple model for the energy and the NMR shieldings throughout the cavity of the MOF. By providing this mapping of shielding to position and loading for these adsorbates, we argue that NMR probes could be used to provide additional information about the position at which these small molecules bind within the MOF, as well as the loading of the adsorbed molecule.

  4. Comprehensive multiphase NMR: a promising technology to study plants in their native state.

    PubMed

    Wheeler, Heather L; Soong, Ronald; Courtier-Murias, Denis; Botana, Adolfo; Fortier-Mcgill, Blythe; Maas, Werner E; Fey, Michael; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Campbell, Malcolm M; Simpson, Andre

    2015-09-01

    Nuclear magnetic resonance (NMR) spectroscopy is arguably one the most powerful tools to study the interactions and molecular structure within plants. Traditionally, however, NMR has developed as two separate fields, one dealing with liquids and the other dealing with solids. Plants in their native state contain components that are soluble, swollen, and true solids. Here, a new form of NMR spectroscopy, developed in 2012, termed comprehensive multiphase (CMP)-NMR is applied for plant analysis. The technology composes all aspects of solution, gel, and solid-state NMR into a single NMR probe such that all components in all phases in native unaltered samples can be studied and differentiated in situ. The technology is evaluated using wild-type Arabidopsis thaliana and the cellulose-deficient mutant ectopic lignification1 (eli1) as examples. Using CMP-NMR to study intact samples eliminated the bias introduced by extraction methods and enabled the acquisition of a more complete structural and metabolic profile; thus, CMP-NMR revealed molecular differences between wild type (WT) and eli1 that could be overlooked by conventional methods. Methanol, fatty acids and/or lipids, glutamine, phenylalanine, starch, and nucleic acids were more abundant in eli1 than in WT. Pentaglycine was present in A. thaliana seedlings and more abundant in eli1 than in WT. Copyright © 2015 John Wiley & Sons, Ltd.

  5. A Deuterium NMR Study of Bent-Core Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Dingemans, Theo J.; Madsen, Louis A.; Samulski, Edward T.

    2002-10-01

    We have synthesized two deuterated boomerang-shaped liquid crystals based on 2,5-bis(4-hydroxyphenyl)-1,3,4-oxadiazole (ODBP). Deuterium was introduced in the rigid 2,5-diphenyl-1,3,4-oxadiazole core and in the aromatic ring of the terminal 4-dodecyloxyphenyl moiety using standard acid catalyzed deuterium exchange conditions. Both compounds, (4,4'(1,3,4-oxadiazole-2,5-diyl-d4) di-4-dodecyloxybenzoate: ODBP-d4-Ph-O-C12) and (4,4'(1,3,4-oxadiazole-2,5-diyl) di-4-dodecyloxy-benzoate-d4; ODBP-Ph-d4-O-C12) were investigated by nuclear magnetic resonance, optical microscopy and differential scanning calorimetry. The optical textures and thermal behavior of both compounds were found to be identical to the non-deuterated analog 4,4(1,3,4-oxadiazole-2,5-diyl) di-4-dodecyloxybenzoate (ODBP-Ph-O-C12) which we reported earlier. These compounds exhibit behavior indicative of a biaxial nematic liquid crystal phase, which we hope to confirm using deuterium NMR spectroscopy in the next phase of this study.

  6. Vibrational and NMR probe studies of S Az-1 montmorillonite

    SciTech Connect

    Johnston, C.T.; Erickson, C.; Earl, W.L.

    1992-09-01

    This paper reports a study of the interactions of exchangeable metal cations with mineral surfaces using a combined spectroscopic/macroscopic approach. Objectives were to examine the use of water molecules and metal cations as molecular probes of smectite water interactions. The {nu}{sub 2} mode of water is used as a diagnostic vibrational band. An FTIR-gravimetric cell is used to examine the FTIR spectra of water on homoionic smectites. The {sup 23}Na NMR resonance is used to probe metal-water interactions on the surface. Results show that there are strong changes in both position and absorption coefficient of the H-O-H bending mode of water sorbed on SAz-1 montmorillonite as a function of water content. These changes are attributed to strong electrostatic forces and mobility changes that occur when the water in the interlammelar space is associated with the metal ion. The clay surface is viewed as having at least two distinct sites to which a hydrated Na{sup +} can bind. 32 refs, 5 figs. (DLC)

  7. Vibrational and NMR probe studies of S Az-1 montmorillonite

    SciTech Connect

    Johnston, C.T.; Erickson, C. . Dept. of Soil Science); Earl, W.L. )

    1992-01-01

    This paper reports a study of the interactions of exchangeable metal cations with mineral surfaces using a combined spectroscopic/macroscopic approach. Objectives were to examine the use of water molecules and metal cations as molecular probes of smectite water interactions. The {nu}{sub 2} mode of water is used as a diagnostic vibrational band. An FTIR-gravimetric cell is used to examine the FTIR spectra of water on homoionic smectites. The {sup 23}Na NMR resonance is used to probe metal-water interactions on the surface. Results show that there are strong changes in both position and absorption coefficient of the H-O-H bending mode of water sorbed on SAz-1 montmorillonite as a function of water content. These changes are attributed to strong electrostatic forces and mobility changes that occur when the water in the interlammelar space is associated with the metal ion. The clay surface is viewed as having at least two distinct sites to which a hydrated Na{sup +} can bind. 32 refs, 5 figs. (DLC)

  8. NMR studies of the conformational interconversion of butaclamol in solution.

    PubMed

    Casarotto, M G; Craik, D J; Lloyd, E J

    1991-07-01

    1H NMR experiments at 300 MHz have been carried out to determine the identity and study the interconversion of two conformations of butaclamol in solution. The hydrochloride salt in DMSO exists as an equilibrium mixture of two conformations, which differ in their stereochemistry about the ring junction that contains the single nitrogen atom in butaclamol. The trans form has a relative population of 80% and the cis I form 20%. In CDCl3 only the trans form is observed, while in CDCl3-DMSO mixtures, both forms are detected in a ratio (trans:cis I) that decreases as the percentage of CDCl3 decreases. For the free base in either CD2Cl2 or DMSO, only a single set of resonances is observed at room temperature, but as temperature is lowered, peaks from methine protons H4a and H13b near the ring junction broaden and (for samples in CD2Cl2) eventually split into two resonances corresponding to the cis and trans forms. It is suggested that nitrogen inversion is the dynamic process responsible for the interconversion of the two forms. Line shape analysis as a function of temperature yielded an energy barrier of 9.6 +/- 0.5 kcal/mol for the interconversion, in good agreement with values obtained from saturation transfer experiments. In the hydrochloride salt, the barrier in DMSO was somewhat higher, i.e., 17.3 +/- 0.9 kcal/mol, as determined by saturation transfer and variable-temperature measurements.

  9. NMR study of black-phase in SmS

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yamada, H.; Ueda, K.; Mito, T.; Haga, Y.

    2015-03-01

    We report the result of the 33S nuclear magnetic resonance (NMR) measurement on the nonmagnetic semiconductor SmS at ambient pressure. For this measurement, the 33S isotope enriched powder sample of SmS was prepared to increase the 33S NMR intensity. We have attempted 33S NMR measurement on SmS and successfully observed the signal of it. With decreasing temperature, the spectrum measured at the constant magnetic field shifted to lower frequency and became weakly temperature dependent below 50 K. The presence of the energy gap was microscopically established by the rapid decrease in the nuclear spin-lattice relaxation rate 1/T1. The activation energy was deduced to be 625 K from an Arrhenius plot of T1.

  10. Al NMR study of molten aluminum oxide compounds and mixtures, measured at ultra high temperatures.

    NASA Astrophysics Data System (ADS)

    Piwowarczyk, J.; Marzke, R. F.; Wolf, G. H.; Petuskey, W. T.; Takulapalli, B.

    2002-10-01

    The technique of ultra high-temperature nuclear magnetic resonance (NMR) has provided insight into the chemical structure and properties of molten aluminum-bearing refractory ceramics, at temperatures in excess of 2000 ^oC. Through application of standard NMR measurements we have studied molten aluminum-bearing ceramics via ^27Al NMR. We have measured spin-lattice (T_1) and spin-spin (T_2) relaxation times, have studied Al-O-P chemical bonding within molten aluminua-monazite (Al_2O3 + LaPO_4) samples and have begun to measure Al diffusivity as a function of temperature and composition. To overcome the limitations of standard NMR heating systems a specially designed NMR probe was developed. Application of levitation technology and a laser heating system permit controlled, containerless heating of samples over a wide range of temperatures. Supported by NSF DMR 0116361, DMR 9818133 and by Research Corp. RA 0276

  11. Solid state NMR studies of gels derived from low molecular mass gelators

    PubMed Central

    Kolehmainen, E.

    2016-01-01

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples. PMID:27374054

  12. Solid state NMR studies of gels derived from low molecular mass gelators.

    PubMed

    Nonappa; Kolehmainen, E

    2016-07-13

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples.

  13. NMR studies of osmoregulation in methanogenic archaebacteria. [NMR (nuclear magnetic resonance)

    SciTech Connect

    Robertson, D.E.

    1991-01-01

    Methanogens are strict anaerobic archaebacteria whose metabolism centers around the reduction of CO[sub 2] to CH[sub 4]. Their environments are often extreme (high temperatures, high salt, few nutrients, etc.) and they may have evolved unique ways to handle these stresses. It is proposed that methanogenic archaebacteria respond to osmotic stress by accumulating a series of organic solutes. In two strains of marine methanogens, Methanogenium cariaci and Methanococcus thermolithotrophicus, four key organic solutes are observed: L-[alpha]-glutamate, [beta]-glutamate, N[sup e]-acetyl-[beta]-lysine, and glycine betaine. The first three of these are synthesized de novo; glycine betaine is transported into the Mg. cariaci cells from the medium. In the absence of betaine, Mg. cariaci synthesizes N[sup e]-acetyl-[beta]-lysine as the dominant osmolyte. Mc. thermolithotrophicus also synthesizes N[sup e]-acetyl-[beta]-lysine but only at salt concentrations greater than 1 M. In Mc. thermolithotrophicus intracellular potassium ion concentrations, determined by [sup 39]K NMR spectroscopy, are balanced by the total concentration of anionic amino acid species, [alpha]-glutamate and [beta]-glutamate. Turnover of the organic solutes has been monitored using [sup 13]C-pulse/[sup 12]C-chase, and [sup 15]N-pulse/[sup 14]N-chase experiments. The [beta]-amino acids exhibit slower turnover rates compared to L-[alpha]-glutamate or aspartate, consistent with their role as compatible solutes. Biosynthetic information for the [beta]-amino acids was provided by [sup 13]C-label incorporation and steady state labeling experiments. [beta]-glutamate shows a lag in [sup 13]C uptake from [sup 13]CO[sub 2], indicative of its biosynthesis from a precursor not in equilibrium with the soluble L-[alpha]-glutamate pool, probably a macromolecule. A novel biosynthetic pathway is proposed for N[sup e]-acetyl-[beta]-lysine from the diaminopimelate pathway.

  14. NMR-based simulation studies of Pf1 coat protein in explicit membranes.

    PubMed

    Cheng, Xi; Jo, Sunhwan; Marassi, Francesca M; Im, Wonpil

    2013-08-06

    As time- and ensemble-averaged measures, NMR observables contain information about both protein structure and dynamics. This work represents a computational study to extract such information for membrane proteins from orientation-dependent NMR observables: solid-state NMR chemical shift anisotropy and dipolar coupling, and solution NMR residual dipolar coupling. We have performed NMR-restrained molecular dynamics simulations to refine the structure of the membrane-bound form of Pf1 coat protein in explicit lipid bilayers using the recently measured chemical shift anisotropy, dipolar coupling, and residual dipolar coupling data. From the simulations, we have characterized detailed protein-lipid interactions and explored the dynamics. All simulations are stable and the NMR restraints are well satisfied. The C-terminal transmembrane (TM) domain of Pf1 finds its optimal position in the membrane quickly (within 6 ns), illustrating efficient solvation of TM domains in explicit bilayer environments. Such rapid convergence also leads to well-converged interaction patterns between the TM helix and the membrane, which clearly show the interactions of interfacial membrane-anchoring residues with the lipids. For the N-terminal periplasmic helix of Pf1, we identify a stable, albeit dynamic, helix orientation parallel to the membrane surface that satisfies the amphiphatic nature of the helix in an explicit lipid bilayer. Such detailed information cannot be obtained solely from NMR observables. Therefore, the present simulations illustrate the usefulness of NMR-restrained MD refinement of membrane protein structure in explicit membranes.

  15. Selectively labeling the heterologous protein in Escherichia coli for NMR studies: a strategy to speed up NMR spectroscopy.

    PubMed

    Almeida, F C; Amorim, G C; Moreau, V H; Sousa, V O; Creazola, A T; Américo, T A; Pais, A P; Leite, A; Netto, L E; Giordano, R J; Valente, A P

    2001-01-01

    Nuclear magnetic resonance is an important tool for high-resolution structural studies of proteins. It demands high protein concentration and high purity; however, the expression of proteins at high levels often leads to protein aggregation and the protein purification step can correspond to a high percentage of the overall time in the structural determination process. In the present article we show that the step of sample optimization can be simplified by selective labeling the heterologous protein expressed in Escherichia coli by the use of rifampicin. Yeast thioredoxin and a coix transcription factor Opaque 2 leucine zipper (LZ) were used to show the effectiveness of the protocol. The (1)H/(15)N heteronuclear correlation two-dimensional NMR spectrum (HMQC) of the selective (15)N-labeled thioredoxin without any purification is remarkably similar to the spectrum of the purified protein. The method has high yields and a good (1)H/(15)N HMQC spectrum can be obtained with 50 ml of M9 growth medium. Opaque 2 LZ, a difficult protein due to the lower expression level and high hydrophobicity, was also probed. The (15)N-edited spectrum of Opaque 2 LZ showed only the resonances of the protein of heterologous expression (Opaque 2 LZ) while the (1)H spectrum shows several other resonances from other proteins of the cell lysate. The demand for a fast methodology for structural determination is increasing with the advent of genome/proteome projects. Selective labeling the heterologous protein can speed up NMR structural studies as well as NMR-based drug screening. This methodology is especially effective for difficult proteins such as hydrophobic transcription factors, membrane proteins, and others.

  16. NMR and NQR study of the thermodynamically stable quasicrystals

    SciTech Connect

    Shastri, A.

    1995-02-10

    {sup 27}Al and {sup 61,65}Cu NMR measurements are reported for powder samples of stable AlCuFe and AlCuRu icosahedral quasicrystals and their crystalline approximants, and for a AlPdMn single grain quasicrystal. Furthermore, {sup 27}Al NQR spectra at 4.2 K have been observed in the AlCuFe and AlCuRu samples. From the quadrupole perturbed NMR spectra at different magnetic fields, and from the zero field NQR spectra, a wide distribution of local electric field gradient (EFG) tensor components and principal axis system orientations was found at the Al site. A model EFG calculation based on a 1/1 AlCuFe approximant was successful in explaining the observed NQR spectra. It is concluded that the average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to the lattice contribution to the EFG. Comparison of {sup 63}Cu NMR with {sup 27}Al NMR shows that the EFG distribution at the two sites is similar, but that the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons.

  17. NMR Studies of Biomass and its Reaction Products

    USDA-ARS?s Scientific Manuscript database

    Biomass refers to biological material derived from living or recently living organisms, such as wood, agricultural products and wastes, and alcohol fuels. An increasingly popular R&D approach is to convert biomass into industrial polymers or chemicals. NMR is an excellent technique for the character...

  18. 129Xe NMR studies of biochar made from biobased materials

    USDA-ARS?s Scientific Manuscript database

    Biochar is created by pyrolysis of biobased materials under controlled oxidative environments. The product is charcoal-like and can be used as filtration medium, sequestrant for metallic ions, soil conditioner, and other applications. In our work we have found 129Xe NMR to be an excellent technique...

  19. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    SciTech Connect

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. )

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.

  20. Application of lanthanide-induced shifts in solution NMR studies of coordinated extractants. [Dibutylbutylphosphonate; butyldibutylphosphinate

    SciTech Connect

    Kalina, D.G.; Horwitz, E.P.

    1983-01-01

    A NMR study was conducted to study the coordination of monofunctional extractants (TBP, dibutylbutylphosphonate, and butyldibutylphosphinate) and bifunctional extractants (DHDECMP). Pr, Eu, and Yb ions were used as solution structural probes. (DLC)

  1. Multidimensional HRMAS NMR: a platform for in vivo studies using intact bacterial cells.

    PubMed

    Li, Wei

    2006-07-01

    In vivo analysis in whole cell bacteria, especially the native tertiary structures of the bacterial cell wall, remains an unconquered frontier. The current understanding of bacterial cell wall structures has been based on destructive analysis of individual components. These in vitro results may not faithfully reflect the native structural and conformational information. Multidimensional High Resolution Magic Angle Spinning NMR (HRMAS NMR) has evolved to be a powerful technique in a variety of in vivo studies, including live bacterial cells. Existing studies of HRMAS NMR in bacteria, technical consideration of its successful application, and current limitations in studying true human pathogens are briefly reviewed in this report.

  2. NMR study of n-dodecane adsorbed on graphite.

    PubMed

    Alba, M D; Castro, M A; Clarke, S M; Perdigón, A C

    2003-05-01

    In this brief contribution we demonstrate that 1H and 2H NMR spectroscopy can be an effective method of investigating adsorption from liquids at the solid-liquid interface. The method is illustrated here with the adsorption of a simple alkane adsorbed on graphite, in particular the system n-dodecane and graphite at coverages of 1 and 5 monolayers. Static single-pulse proton nuclear magnetic resonance and static quadrupolar echo deuterium nuclear magnetic resonance spectra were recorded for both coverages. The experimental NMR results presented here show features clearly consistent with earlier calorimetric and neutron scattering work and demonstrate the formation of solid adsorbed layers that coexist with the bulk adsorbate with both isotopes. This ability to probe both deuterated and protonated materials simultaneously illustrates that this experimental approach can be readily extended to investigate the adsorption behaviour of multicomponent mixtures.

  3. 125Te NMR study of IrTe 2

    NASA Astrophysics Data System (ADS)

    Mizuno, Kiyoshi; Magishi, Ko-ichi; Shinonome, Yasuaki; Saito, Takahito; Koyama, Kuniyuki; Matsumoto, Nobuhiro; Nagata, Shoichi

    2002-03-01

    We have measured 125Te NMR of IrTe2 in order to elucidate the origin of the anomalous behaviors in electrical and magnetic properties around 270 K. In high-temperature region, the NMR spectrum exhibits a sharp line. On the other hand, in low-temperature region, the spectrum shifts to higher magnetic field and splits into three lines. Also, the nuclear spin-lattice relaxation rate, 1/T1, is proportional to the temperature in both temperature sides; Korringa-like behavior which is characteristic of a metallic state. From the T dependences of the spectrum and 1/T1 around 270 K, it is suggested that these anomalous behaviors may not be due to the charge density wave formation but be caused by a kind of lattice distortion at low temperature.

  4. NMR study of mesomorphic solutions of cellulose derivatives

    SciTech Connect

    Dayan, S.; Fried, F.; Gilli, J.M.; Sixou, P.

    1983-01-01

    Highly concentrated solutions of hydroxypropylcellulose and cellulose acetate give mesomorphic phases in a precise range of temperatures and concentrations. The existence of an orientational anisotropy in such solutions induces typical parameters of the high-resolution NMR spectra (chemical shift, splitting) that are similar to those of liquid crystal spectra. In the present work, the high-resolution NMR spectra of nuclei belonging to the solute molecules (D/sub 2/O and trifluoroacetic acid) were recorded as a function of various physical parameters such as temperature, concentration, and temporal change of the solutions. The specific variation of the orientational degree of order for each mesophase is described. In the case of the cellulose acetate/trifluoroacetic acid solution, an order parameter is calculated and a model for the orientational organization of the solution is described. 34 references, 10 figures, 1 table.

  5. NMR studies of selective population inversion and spin clustering

    SciTech Connect

    Baum, J.S.

    1986-02-01

    This work describes the development and application of selective excitation techniques in Nuclear Magnetic Resonance. Composite pulses and multiple-quantum methods are used to accomplish various goals, such as broadband and narrowband excitation in liquids, and collective excitation of groups of spins in solids. These methods are applied to a variety of problems, including non-invasive spatial localization, spin cluster size characterization in disordered solids and solid state NMR imaging.

  6. Phase Separation in Polyurethanes - A Deuterium NMR Study.

    DTIC Science & Technology

    1985-02-18

    from the diphenylmethane diisocyanate (MDI) or the soft segment polyol residues. The deuteriunm NMR spectra’ 9 for these four samples are shown in...other decays more slowly and is assigned to the polyester soft segments. With proton spin diffusion as an experimental probe, Assink and Wilkes3 4 35...evaluated phase mixing in a series of MDI- polyester polyurethanes. Their data require the presence of both short and long range degrees of mixing

  7. Study of an organogelator by diffusion-ordered NMR spectroscopy.

    PubMed

    Dama, Murali; Berger, Stefan

    2013-05-09

    The low-molecular weight organogelator 2,3-di-n-decyloxyanthracene was synthezised and dissolved in dimethyl sulfoxide. With diffusion-ordered NMR spectroscopy, the temperature dependence of the diffusion coefficients was measured and a clear hysteresis of the gelation was observed between 320 and 330 K. This hysteresis was interpreted with respect to different entanglement behavior on heating and cooling. No alignment of the gelator with respect to the magnetic field was found despite its 14 π-electrons.

  8. NMR studies of molecules in liquid crystals and graphite

    SciTech Connect

    Rosen, Mark Edward

    1992-06-01

    NMR experiments to measure proton dipole couplings were performed on a series of n-alkanes (n-hexane through n-decane) dissolved in nematic liquid crystals. Computer modeling of the experimental NMR-spectra was done using several different models for intermolecular interactions in these systems. The model of Photinos et al. was found to be best in describing the intermolecular interactions in these systems and can provide a statistical picture of the conformation and orientation of the alkane molecules in their partially-oriented environment. Order parameters and conformational distributions for the alkanes can be calculated from the modeling. The alkanes are found to have conformational distributions very much like those found in liquid alkanes. Proton NMR spectra of tetrahydrofuran (THF) intercalated in two graphite intercalation compounds were also measured. Computer simulations of these spectra provide a picture of THF in the constrained environment between the graphene layers where the THF is oriented at a particular angle, can translate and rotate freely, but does not appear to pseudorotate.

  9. Solid State NMR Studies of the Aluminum Hydride Phases

    NASA Technical Reports Server (NTRS)

    Hwang, Son-Jong; Bowman, R. C., Jr.; Graetz, Jason; Reilly, J. J.

    2006-01-01

    Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the (beta)- and (gamma)- phases as well as the most stable (alpha)-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the (beta)-AlH3 and (gamma)-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the (alpha)-phase materials do not exhibit these changes.

  10. Solid State NMR Studies of the Aluminum Hydride Phases

    NASA Technical Reports Server (NTRS)

    Hwang, Son-Jong; Bowman, R. C., Jr.; Graetz, Jason; Reilly, J. J.

    2006-01-01

    Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the (beta)- and (gamma)- phases as well as the most stable (alpha)-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the (beta)-AlH3 and (gamma)-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the (alpha)-phase materials do not exhibit these changes.

  11. Molecular Mobility of the Interface in a Model Composite: A NMR Study

    DTIC Science & Technology

    1992-07-15

    liquid recovered. This product was analyzed without separation by 1H and 13C NMR to be 2-(N’-butylamino)-N-methylmaleimide. The reaction in acetone...TITLE AND SUBTITLE 5. FUNDING NUMBERS Molecular Mbility of the Interface in a Model Composite: A NMR Study N00014-91-J-1274 6. AUTHOR(S) Joan E. Gamblgi...Maximum 200 worus) The interface of a model polymer composite has been probed using solid-state NMR techniques. The adsorption of aminoalkylsilane

  12. NMR methods for in-situ biofilm metabolism studies: spatial and temporal resolved measurements

    SciTech Connect

    Majors, Paul D.; Mclean, Jeffrey S.; Fredrickson, Jim K.; Wind, Robert A.

    2005-11-01

    We are developing nuclear magnetic resonance (NMR) microscopy, spectroscopy and combined NMR/optical techniques to the study of biofilms. Objectives include: time and depth-resolved metabolite concentrations with isotropic spatial resolution on the order of 10 microns, metabolic pathways and flux rates, mass transport and ultimately their correlation with gene expression by optical microscopy in biofilms. These methods are being developed with Shewanella oneidensis MR-1 as a model system, but are equally applicable to other biofilm systems of interest. Thus, spatially resolved NMR of biofilms is expected to contribute significantly to the understanding of adherent cell metabolism.

  13. Conformational studies by 1H and 13C NMR of lisinopril

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yohko; Ishi, Tomoko

    1993-10-01

    Lisinopril, N-N-[( s-1-carboxy-3-phenylpropyl]- L-lysyl- L-proline) (MK-521), is an inhibitor of angiotensin-converting enzyme and a new drug for the treatment of hypertension. 1H and 13C NMR studies have shown that the s-cis equilibrium about the amide bond is strongly dependent on the configuration of the chiral centres. Vicinal coupling constants of stereochemical significance were obtained in deuterated solvent using NMR techniques. Comparison with values calculated for lisinopril using potential energy calculations and NMR show that lisinopril exists in preferred optimum conformation in solution.

  14. Automated sample preparation station for studying self-diffusion in porous solids with NMR spectroscopy

    SciTech Connect

    Hedin, Niklas; DeMartin, Gregory J.; Reyes, Sebastian C.

    2006-03-15

    In studies of gas diffusion in porous solids with nuclear magnetic resonance (NMR) spectroscopy the sample preparation procedure becomes very important. An apparatus is presented here that pretreats the sample ex situ and accurately sets the desired pressure and temperature within the NMR tube prior to its introduction in the spectrometer. The gas manifold that supplies the NMR tube is also connected to a microbalance containing another portion of the same sample, which is kept at the same temperature as the sample in the NMR tube. This arrangement permits the simultaneous measurement of the adsorption loading on the sample, which is required for the interpretation of the NMR diffusion experiments. Furthermore, to ensure a good seal of the NMR tube, a hybrid valve design composed of titanium, a Teflon registered seat, and Kalrez registered O-rings is utilized. A computer controlled algorithm ensures the accuracy and reproducibility of all the procedures, enabling the NMR diffusion experiments to be performed at well controlled conditions of pressure, temperature, and amount of gas adsorbed on the porous sample.

  15. Investigation of structural information for boron-rich solids and aluminates via NMR and NQR studies

    SciTech Connect

    Lee, D.

    1991-01-01

    Along with NMR, Nuclear Quadrupole Resonance (NQR) has become important recently for obtaining structural information from oxide glasses. The NQR studies prove in this thesis that they provide more accurate structural information than the NMR studies have done. This study presents boron and aluminum NMR, and NQR studies for some borate glasses and compounds, icosahedral boron-rich solids, some crystalline aluminosilicates. Various borates were employed to acquire structural information as well as to determine the quadrupole parameters (the quadrupole coupling constant Qcc and the asymmetry parameter {eta}) using NQR under a guidance of NMR or vice versa. By NQR a previously unknown boron site was observed for vitreous Li{sub 2}O{center dot}B{sub 2}O{sub 3}. The NMR and NQR studies were performed on some icosachedral boron-rich solids: {alpha}-rhombohedral boron (B{sub 12}), {beta}-boron (B{sub 105}) and boron carbide (B{sub 12}C{sub 3}). Three different forms of crystalline aluminosilicate (Al{sub 2}SiO{sub 5}) were studied by NQR. The NQR study yielded more accurate values of the quadrupole parameters for {sup 27}Al than the previous NMR single crystal study did.

  16. Benchmark Theoretical and Experimental Study on (15)N NMR Shifts of Oxidatively Damaged Guanine.

    PubMed

    Dračínský, Martin; Šála, Michal; Klepetářová, Blanka; Šebera, Jakub; Fukal, Jiří; Holečková, Veronika; Tanaka, Yoshiyuki; Nencka, Radim; Sychrovský, Vladimír

    2016-02-11

    The (15)N NMR shifts of 9-ethyl-8-oxoguanine (OG) were calculated and measured in liquid DMSO and in crystal. The OG molecule is a model for oxidatively damaged 2'-deoxyguanosine that occurs owing to oxidative stress in cell. The DNA lesion is repaired with human 8-oxoguanine glycosylase 1 (hOGG1) base-excision repair enzyme, however, the exact mechanism of excision of damaged nucleobase with hOGG1 is currently unknown. This benchmark study on (15)N NMR shifts of OG aims their accurate structural interpretation and calibration of the calculation protocol utilizable in future studies on mechanism of hOGG1 enzyme. The effects of NMR reference, DFT functional, basis set, solvent, structure, and dynamics on calculated (15)N NMR shifts were first evaluated for OG in crystal to calibrate the best performing calculation method. The effect of large-amplitude motions on (15)N NMR shifts of OG in liquid was calculated employing molecular dynamics. The B3LYP method with Iglo-III basis used for B3LYP optimized geometry with 6-311++G(d,p) basis and including effects of solvent and molecular dynamic was the calculation protocol used for calculation of (15)N NMR shifts of OG. The NMR shift of N9 nitrogen of OG was particularly studied because the atom is involved in an N-glycosidic bond that is cleaved with hOGG1. The change of N9 NMR shift owing to oxidation of 9-ethylguanine (G) measured in liquid was -27.1 ppm. The calculated N9 NMR shift of OG deviated from experiment in crystal and in liquid by 0.45 and 0.65 ppm, respectively. The calculated change of N9 NMR shift owing to notable N9-pyramidalization of OG in one previously found polymorph was 20.53 ppm. We therefore assume that the pyramidal geometry of N9 nitrogen that could occur for damaged DNA within hOGG1 catalytic site might be detectable with (15)N NMR spectroscopy. The calculation protocol can be used for accurate structural interpretation of (15)N NMR shifts of oxidatively damaged guanine DNA residue.

  17. From precursors to non-oxide ceramics: Pyrolytic mechanisms studied by NMR

    SciTech Connect

    Sigmund, W.M.; Aldinger, F.; Feike, M.; Spiess, H.W.

    1996-12-31

    The pyrolysis of a poly ethylsilazane was studied using a CO{sub 2}-laser beam heated solid state MAS-NMR probe head. Chemical structures of the intermediate stages could be identified. The analogy of the pyrolysis evolution for the following two different methods could be shown: (A) in an inert gas furnace conventionally prepared and (B) laser irradiated in the NMR probe head under magic-angle spinning (MAS) conditions. Samples prepared by method A were studied by {sup 29}Si MAS-NMR and samples prepared by method B were studied with an appropriate cross polarization time by {sup 29}Si CP-MAS-NMR. Both experiments showed the same mechanisms for the pyrolysis as the polymer is transformed into a Si{sub 3}N{sub 4}/C ceramic.

  18. Recent progress in solid-state NMR studies of drugs confined within drug delivery systems.

    PubMed

    Skorupska, Ewa; Jeziorna, Agata; Kazmierski, Slawomir; Potrzebowski, Marek J

    2014-01-01

    Recent progress in the application of solid-state NMR (SS NMR) spectroscopy in structural studies of active pharmaceutical ingredients (APIs) embedded in different drug carriers is detailed. This article is divided into sections. The first part reports short characterization of the nanoparticles and microparticles that can be used as drug delivery systems (DDSs). The second part shows the applicability of SS NMR to study non-steroidal anti-inflammatory drugs (NSAIDs). In this section, problems related to API-DDS interactions, morphology, local molecular dynamics, nature of inter- or intramolecular connections, and pore filling are reviewed for different drug carriers (e.g. mesoporous silica nanoparticles (MSNs), cyclodextrins, polymeric matrices and others). The third and fourth sections detail the recent applications of SS NMR for searching for antibiotics and anticancer drugs confined in zeolites, MSNs, amorphous calcium phosphate and other carriers.

  19. 119 Sn NMR studies on the heavy fermion compound CeSn3

    NASA Astrophysics Data System (ADS)

    Crocker, John; Kim, Andrew; Klavins, Peter; Curro, Nicholas

    2015-03-01

    CeSn3 does not exhibit long-range order at low temperatures, thus it provides an interesting baseline for NMR studies of the Knight shift. We report the synthesis and characterization of single crystals of CeSn3, as well as 119Sn nuclear magnetic resonance (NMR) measurements from 4.5K to room temperature. Our data reveal a broad peak in the knight shift (K) at Tmax ~ 135K, and a knight shift anomaly at T* ~ 85K.

  20. Multiple-quantum NMR studies of spin clusters in liquid crystals and zeolites

    SciTech Connect

    Pearson, J. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1991-07-01

    This work will describe the use of MQ NMR to study spin clusters in anisotropic materials. A technique known as multiple-quantum spin counting was used to determine average spin cluster sizes liquid crystalline materials and in faujacitic zeolites containing aromatic hydrocarbons. The first half of the thesis will describe MQ NMR and the MQ spin counting technique, and the second half of the thesis will describe the actual experiments and their results.

  1. An NMR probe for the study of aerobic suspensions of cells and organelles

    SciTech Connect

    Balaban, R.S.; Gadian, D.G.; Radda, G.K.; Wong, G.G.

    1981-09-15

    The construction of an NMR probe and cell chamber with good mixing, pH buffering, and oxygenation characteristics, which can be used for relatively dilute cell and organelle suspension is described. The /sup 31/P NMR spectra of acceptable signal-to-noise ratios are obtained from approximately 200 mg (protein) of tissues, and kinetic studies of mitochondrial oxidative phosphorylation are demonstrated. Representative spectra from rabbit kidney cortical tubules and rabbit kidney cortical mitochondria are presented.

  2. NMR Studies of Spin Decoherence in Phosphorus-doped Silicon

    NASA Astrophysics Data System (ADS)

    Li, D.; Dementyev, A. E.; Liu, M.; Barrett, S. E.

    2002-03-01

    Understanding nuclear spin dynamics in Si:P is an important step(B.E. Kane, quant-ph/0003031.) towards the realization of semiconductor spin-based qubits(B.E. Kane, Nature 393, 133 (1998).). We present measurements of NMR spectra and relaxation times for both ^29Si and ^31P, in fields up to 15.3 Tesla. Our progress towards Optically Pumped Nuclear Magnetic Resonance(A.E. Dementyev, P.Khandelwal, N.N. Kuzma, S.E. Barrett, L.N. Pfeiffer, K.W.West, Solid State Commun. 119, 217 (2001).) (OPNMR) of Si:P will be described.

  3. NMR studies on the flexibility of nucleoside diphosphate kinase.

    PubMed

    Xu, Y; Lecroisey, A; Veron, M; Delepierre, M; Janin, J

    1997-06-01

    Human NDP kinase B, product of the nm23-H2 gene, binds DNA. It has been suggested that a helix hairpin on the protein surface, part of the nucleotide substrate binding site, could accommodate DNA binding by swinging away. The presence of flexible regions was therefore investigated by 1H NMR dynamic filtering. Although TOCSY peaks could be assigned to five residues at the N terminus of Dictyostelium NDP kinase, no flexible region was detected in the human enzyme. These data favor the idea that the protein offers different binding sites to mono- and polynucleotides.

  4. NMR study of seven coumarins from mammea siamensis.

    PubMed

    Prachyawarakorn, V; Mahidol, C; Ruchirawat, S

    2000-01-01

    Seven known mammea coumarins, mammea A/AA cyclo D ( 1 ), mammea A/AD cyclo D ( 2 ), mammea A/AB cyclo D ( 3 ), mammea A/AC cyclo F ( 4 ), mam-mea A/AB cyclo F ( 5 ), mammea A/AA cyclo F ( 6 ), mammea B/AC cyclo F ( 7 ), were isolated for the first time from the hexane extract of Mammea siamensis . A detailed analysis of both 1D and 2D NMR spectral data of these compounds was made.

  5. Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth.

    PubMed

    Cao, Xiaobin; Bao, Huiming

    2013-09-03

    A large perturbation in atmospheric CO2 and O2 or bioproductivity will result in a drastic pulse of (17)O change in atmospheric O2, as seen in the Marinoan Oxygen-17 Depletion (MOSD) event in the immediate aftermath of a global deglaciation 635 Mya. The exact nature of the perturbation, however, is debated. Here we constructed a coupled, four-box, and quick-response biosphere-atmosphere model to examine both the steady state and dynamics of the MOSD event. Our model shows that the ultra-high CO2 concentrations proposed by the "snowball' Earth hypothesis produce a typical MOSD duration of less than 10(6) y and a magnitude of (17)O depletion reaching approximately -35‰. Both numbers are in remarkable agreement with geological constraints from South China and Svalbard. Moderate CO2 and low O2 concentration (e.g., 3,200 parts per million by volume and 0.01 bar, respectively) could produce distinct sulfate (17)O depletion only if postglacial marine bioproductivity was impossibly low. Our dynamic model also suggests that a snowball in which the ocean is isolated from the atmosphere by a continuous ice cover may be distinguished from one in which cracks in the ice permit ocean-atmosphere exchange only if partial pressure of atmospheric O2 is larger than 0.02 bar during the snowball period and records of weathering-derived sulfate are available for the very first few tens of thousands of years after the onset of the meltdown. In any case, a snowball Earth is a precondition for the observed MOSD event.

  6. Sedimentary constraints on the duration of the Marinoan Oxygen-17 Depletion (MOSD) event

    PubMed Central

    Killingsworth, Bryan A.; Hayles, Justin A.; Zhou, Chuanming; Bao, Huiming

    2013-01-01

    The ∼635 Ma Marinoan glaciation is marked by dramatic Earth system perturbations. Deposition of nonmass-dependently 17O-depleted sulfate (SO42−) in worldwide postglacial sediments is, thus far, unique to this glaciation. It is proposed that an extremely high-pCO2 atmosphere can result in highly 17O-depleted atmospheric O2, or the Marinoan Oxygen-17 Depletion (MOSD) event. This anomalous 17O signal was imparted to sulfate of oxidative weathering origin. However, 17O-depleted sulfate occurs in limited sedimentary intervals, suggesting that Earth surface conditions conducive to the MOSD had a finite duration. An MOSD duration can, therefore, provide much needed constraint on modeling Earth system responses at that time. Unfortunately, the sulfate 17O record is often sparse or lacks radiometric dates. Here, we report 11 barite layers from a post-Marinoan dolostone sequence at Wushanhu in the South China Block. The 17O depletion fluctuates in magnitude in lower layers but is persistently absent up section, providing the most confident first and last sedimentary appearance of the anomaly. δ13C chemostratigraphy is used to correlate the Wushanhu section to two proximal sections on the same shallow platform that lack barite layers but have published U-Pb dates that occur in dolostone and shale. Assuming a similar pattern and rate for carbonate and shale deposition among the different sections, we estimate the MOSD duration at 0–0.99 My. This number can be further constrained by new radiometric dates from equivalent sequences worldwide, thus underpinning models on the nonsteady-state Earth system response in the immediate aftermath of the Marinoan meltdown. PMID:23386719

  7. Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth

    PubMed Central

    Cao, Xiaobin; Bao, Huiming

    2013-01-01

    A large perturbation in atmospheric CO2 and O2 or bioproductivity will result in a drastic pulse of 17O change in atmospheric O2, as seen in the Marinoan Oxygen-17 Depletion (MOSD) event in the immediate aftermath of a global deglaciation 635 Mya. The exact nature of the perturbation, however, is debated. Here we constructed a coupled, four-box, and quick-response biosphere–atmosphere model to examine both the steady state and dynamics of the MOSD event. Our model shows that the ultra-high CO2 concentrations proposed by the “snowball’ Earth hypothesis produce a typical MOSD duration of less than 106 y and a magnitude of 17O depletion reaching approximately −35‰. Both numbers are in remarkable agreement with geological constraints from South China and Svalbard. Moderate CO2 and low O2 concentration (e.g., 3,200 parts per million by volume and 0.01 bar, respectively) could produce distinct sulfate 17O depletion only if postglacial marine bioproductivity was impossibly low. Our dynamic model also suggests that a snowball in which the ocean is isolated from the atmosphere by a continuous ice cover may be distinguished from one in which cracks in the ice permit ocean–atmosphere exchange only if partial pressure of atmospheric O2 is larger than 0.02 bar during the snowball period and records of weathering-derived sulfate are available for the very first few tens of thousands of years after the onset of the meltdown. In any case, a snowball Earth is a precondition for the observed MOSD event. PMID:23898167

  8. Sedimentary constraints on the duration of the Marinoan Oxygen-17 Depletion (MOSD) event

    NASA Astrophysics Data System (ADS)

    Killingsworth, Bryan A.; Hayles, Justin A.; Zhou, Chuanming; Bao, Huiming

    2013-10-01

    The ∼635 Ma Marinoan glaciation is marked by dramatic Earth system perturbations. Deposition of nonmass-dependently 17O-depleted sulfate (SO42-) in worldwide postglacial sediments is, thus far, unique to this glaciation. It is proposed that an extremely high-pCO2 atmosphere can result in highly 17O-depleted atmospheric O2, or the Marinoan Oxygen-17 Depletion (MOSD) event. This anomalous 17O signal was imparted to sulfate of oxidative weathering origin. However, 17O-depleted sulfate occurs in limited sedimentary intervals, suggesting that Earth surface conditions conducive to the MOSD had a finite duration. An MOSD duration can, therefore, provide much needed constraint on modeling Earth system responses at that time. Unfortunately, the sulfate 17O record is often sparse or lacks radiometric dates. Here, we report 11 barite layers from a post-Marinoan dolostone sequence at Wushanhu in the South China Block. The 17O depletion fluctuates in magnitude in lower layers but is persistently absent up section, providing the most confident first and last sedimentary appearance of the anomaly. δ13C chemostratigraphy is used to correlate the Wushanhu section to two proximal sections on the same shallow platform that lack barite layers but have published U-Pb dates that occur in dolostone and shale. Assuming a similar pattern and rate for carbonate and shale deposition among the different sections, we estimate the MOSD duration at 0-0.99 My. This number can be further constrained by new radiometric dates from equivalent sequences worldwide, thus underpinning models on the nonsteady-state Earth system response in the immediate aftermath of the Marinoan meltdown.

  9. Sedimentary constraints on the duration of the Marinoan Oxygen-17 Depletion (MOSD) event.

    PubMed

    Killingsworth, Bryan A; Hayles, Justin A; Zhou, Chuanming; Bao, Huiming

    2013-10-29

    The ~635 Ma Marinoan glaciation is marked by dramatic Earth system perturbations. Deposition of nonmass-dependently (17)O-depleted sulfate (SO4(2-)) in worldwide postglacial sediments is, thus far, unique to this glaciation. It is proposed that an extremely high-pCO2 atmosphere can result in highly (17)O-depleted atmospheric O2, or the Marinoan Oxygen-17 Depletion (MOSD) event. This anomalous (17)O signal was imparted to sulfate of oxidative weathering origin. However, (17)O-depleted sulfate occurs in limited sedimentary intervals, suggesting that Earth surface conditions conducive to the MOSD had a finite duration. An MOSD duration can, therefore, provide much needed constraint on modeling Earth system responses at that time. Unfortunately, the sulfate (17)O record is often sparse or lacks radiometric dates. Here, we report 11 barite layers from a post-Marinoan dolostone sequence at Wushanhu in the South China Block. The (17)O depletion fluctuates in magnitude in lower layers but is persistently absent up section, providing the most confident first and last sedimentary appearance of the anomaly. δ(13)C chemostratigraphy is used to correlate the Wushanhu section to two proximal sections on the same shallow platform that lack barite layers but have published U-Pb dates that occur in dolostone and shale. Assuming a similar pattern and rate for carbonate and shale deposition among the different sections, we estimate the MOSD duration at 0-0.99 My. This number can be further constrained by new radiometric dates from equivalent sequences worldwide, thus underpinning models on the nonsteady-state Earth system response in the immediate aftermath of the Marinoan meltdown.

  10. Indirect use of deuterium in solution NMR studies of protein structure and hydrogen bonding.

    PubMed

    Tugarinov, Vitali

    2014-02-01

    A description of the utility of deuteration in protein NMR is provided with an emphasis on quantitative evaluation of the effects of deuteration on a number of NMR parameters of proteins: (1) chemical shifts, (2) scalar coupling constants, (3) relaxation properties (R1 and R2 rates) of nuclei directly attached to one or more deuterons as well as protons of methyl groups in a highly deuterated environment, (4) scalar relaxation of 15N and 13C nuclei in 15N-D and 13C-D spin systems as a measure of hydrogen bonding strength, and (5) NOE-based applications of deuteration in NMR studies of protein structure. The discussion is restricted to the 'indirect' use of deuterium in the sense that the description of NMR parameters and properties of the nuclei affected by nearby deuterons (15N, 13C, 1H) is provided rather than those of deuterium itself. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. NMR and NQR studies of URu2Si2 and isostructural nonmagnetic references

    NASA Astrophysics Data System (ADS)

    Emi, Naoya; Hamabata, Ryosuke; Koyama, Takehide; Ueda, Koichi; Mito, Takeshi; Kohori, Yoh; Matsumoto, Yuji; Haga, Yoshinori; Yamamoto, Etsuji; Fisk, Zachary

    2017-06-01

    The non-f compound ThRu2Si2 has been studied as an isostructural nonmagnetic reference for URu2Si2 using nuclear magnetic resonance (NMR) measurement. The temperature dependences of Knight shifts measured by 29Si-NMR and 99Ru-NMR are independent of temperature. The results are consistent with data previously reported on the susceptibility. 101Ru-NQR frequency 101 ν Q was also estimated from the 99Ru-NMR measurement. 101 ν Q of ThRu2Si2 is close to that of URu2Si2, especially at high temperatures, suggesting that U ions in URu2Si2 are in a nearly tetravalent state.

  12. Dynamical properties of confined supercooled water: an NMR study

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2006-09-01

    We report a set of dynamical data of confined water measured in a very deeply supercooled regime (290-190 K). Water is contained in silica matrices (MCM-41-S) which consist of 1D cylindrical pores with diameters d = 14,18 and 24 Å. When confined in these tubular pores, water does not crystallize, and can be supercooled well below 200 K. We use the NMR technique to obtain the characteristic proton relaxation time-constants (the spin-lattice relaxation time-constant T1 and the spin-spin relaxation time-constant T2) and a direct measurement of the self-diffusion coefficient in the whole temperature range. We give evidence of the existence of a fragile-to-strong dynamic crossover (FSC) at TL = 225 K from the temperature dependence of the self-diffusion coefficient. A combination of the NMR self-diffusion coefficient with the average translational relaxation time, as measured by quasi-elastic neutron scattering, shows a well defined decoupling of transport coefficients, i.e. the breakdown of the Stokes-Einstein relation, on approaching the crossover temperature TL.

  13. Cell-free protein production for NMR studies.

    PubMed

    Takeda, Mitsuhiro; Kainosho, Masatsune

    2012-01-01

    The cell-free expression system using an Escherichia coli extract is a practical method for producing isotope-labeled proteins. The advantage of the cell-free system over cellular expression is that any isotope-labeled amino acid can be incorporated into the target protein with minimal scrambling, thus providing opportunities for advanced isotope labeling of proteins. We have modified the standard protocol for E. coli cell-free expression to cope with two problems specific to NMR sample preparation. First, endogenous amino acids present in the E. coli S30 extract lead to dilution of the added isotope. To minimize the content of the remaining amino acids, a gel filtration step is included in the preparation of the E. coli extract. Second, proteins produced by the cell-free system are not necessarily homogeneous due to incomplete processing of the N-terminal formyl-methionine residue, which complicates NMR spectra. Therefore, the protein of interest is engineered to contain a cleavable N-terminal histidine-tag, which generates a homogeneous protein after the digestion of the tag. Here, we describe the protocol for modified E. coli cell-free expression.

  14. An NMR Study of Biomimetic Fluorapatite - Gelatine Mesocrystals

    NASA Astrophysics Data System (ADS)

    Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Scheler, Ulrich; Kniep, Rüdiger

    2015-10-01

    The mesocrystal system fluoroapatite—gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43- groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals.

  15. NMR study of CeTe at low temperatures

    NASA Astrophysics Data System (ADS)

    Hinderer, J.; Weyeneth, S. M.; Weller, M.; Gavilano, J. L.; Felder, E.; Hulliger, F.; Ott, H. R.

    2006-05-01

    We present 125Te NMR measurements on CeTe powder at temperatures between 1 and 150 K and in magnetic fields between 5 and 8 T. CeTe is a rocksalt-type intermetallic compound. It orders antiferromagnetically at TN≈2.2 K with a much reduced ordered moment [H.R. Ott, J.K. Kjems, F. Hulliger, Phys. Rev. Lett. 42 20 (1979) 1378]. From our low-temperature NMR spectra we infer the presence of at least three inequivalent Te sites at low temperatures. Considering the crystal structure this result is completely unexpected. The linewidths and the Knight shifts of the individual lines are significantly different and increase substantially with decreasing temperature. They follow the temperature dependence of the magnetic susceptibility above 20 K. Above TN, hyperfine fields of 1.6, 0.8 and 0.0 T at the three Te sites per Bohr magneton of Ce moment are deduced from Knight shift vs. magnetic susceptibility data. These values are typical for transferred hyperfine fields via conduction electrons.

  16. Positional isotope exchange studies on enzyme using NMR spectroscopy

    SciTech Connect

    Matsunaga, T.O.

    1987-01-01

    The isotopically enriched compounds, /sup 18/O-..beta..,..gamma..-ATP and /sup 18/O bridge-labeled pyrophosphate, synthesized previously in this laboratory, were used to investigate and measure the exchange vs. turnover of substrates and products from their central complexes in four selected enzyme systems. Using hi-field /sup 31/P NMR, we were able to differentiate between /sup 18/O labeled in the bridge vs. the non-bridge positions by virtue of the isotope shift upon the phosphorus nuclei. The bridge to non-bridge scrambling of the label was quantitated and the exchange vs. turnover ratios under a variety of conditions was determined. Using the substrate inhibitor carboxycreatinine, PIX experiments with /sup 18/O-..beta..,..gamma..-ATP and creatine kinase were conducted. It was shown that carboxycreatinine and creatine kinase promoted exchange of the /sup 18/O label as determined by NMR. We have concluded that carboxycreatinine is either a substrate that catalyzes very slow turnover or it catalyzes exchange by a dissociative (SN/sub 1//sub P/) type of mechanism

  17. An NMR Study of Biomimetic Fluorapatite – Gelatine Mesocrystals

    PubMed Central

    Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Scheler, Ulrich; Kniep, Rüdiger

    2015-01-01

    The mesocrystal system fluoroapatite—gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43− groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals. PMID:26515127

  18. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria).

    PubMed

    Kupka, Teobald; Wieczorek, Piotr P

    2016-01-15

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of (1)H and (13)C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  19. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)

    NASA Astrophysics Data System (ADS)

    Kupka, Teobald; Wieczorek, Piotr P.

    2016-01-01

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  20. A Field Study of NMR Logging to Quantify Petroleum Contamination in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Fay, E. L.; Knight, R. J.; Grunewald, E. D.

    2016-12-01

    Nuclear magnetic resonance (NMR) measurements are directly sensitive to hydrogen-bearing fluids including water and petroleum products. NMR logging tools can be used to detect and quantify petroleum hydrocarbon contamination in the sediments surrounding a well or borehole. An advantage of the NMR method is that data can be collected in both cased and uncased holes. In order to estimate the volume of in-situ hydrocarbon, there must be sufficient contrast between either the relaxation times (T2) or the diffusion coefficients (D) of water and the contaminant. In a field study conducted in Pine Ridge, South Dakota, NMR logging measurements were used to investigate an area of hydrocarbon contamination from leaking underground storage tanks. A contaminant sample recovered from a monitoring well at the site was found to be consistent with a mixture of gasoline and diesel fuel. NMR measurements were collected in two PVC-cased monitoring wells; D and T2 measurements were used together to detect and quantify contaminant in the sediments above and below the water table at both of the wells. While the contrast in D between the fluids was found to be inadequate for fluid typing, the T2 contrast between the contaminant and water in silt enabled the estimation of the water and contaminant volumes. This study shows that NMR logging can be used to detect and quantify in-situ contamination, but also highlights the importance of sediment and contaminant properties that lead to a sufficiently large contrast in T2 or D.

  1. NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials.

    PubMed

    Kuhn, A; Kunze, M; Sreeraj, P; Wiemhöfer, H D; Thangadurai, V; Wilkening, M; Heitjans, P

    2012-04-01

    NMR spin relaxometry is known to be a powerful tool for the investigation of Li(+) dynamics in (non-paramagnetic) crystalline and amorphous solids. As long as significant structural changes are absent in a relatively wide temperature range, with NMR spin-lattice (as well as spin-spin) relaxation measurements information on Li self-diffusion parameters such as jump rates and activation energies are accessible. Diffusion-induced NMR relaxation rates are governed by a motional correlation function describing the ion dynamics present. Besides the mean correlation rate of the dynamic process, the motional correlation function (i) reflects deviations from random motion (so-called correlation effects) and (ii) gives insights into the dimensionality of the hopping process. In favorable cases, i.e., when temperature- and frequency-dependent NMR relaxation rates are available over a large dynamic range, NMR spin relaxometry is able to provide a comprehensive picture of the relevant Li dynamic processes. In the present contribution, we exemplarily present two recent variable-temperature (7)Li NMR spin-lattice relaxation studies focussing on Li(+) dynamics in crystalline ion conductors which are of relevance for battery applications, viz. Li(7) La(3)Zr(2)O(12) and Li(12)Si(7).

  2. Double-quantum-filtered 23Na NMR study of intracellular sodium in the perfused liver.

    PubMed Central

    Lyon, R C; McLaughlin, A C

    1994-01-01

    We acquired double-quantum-filtered 23Na NMR spectra from perfused liver, using a range of tau values from 0.2 to 24 ms, where tau is the separation between the first and second pi/2 pulses in the radio-frequency pulse sequence. For each tau value we compared the amplitude of the double-quantum-filtered 23Na NMR signal acquired from intracellular sodium ions when the liver was perfused with buffer containing the "shift reagent" Dy(PPP)2 to the amplitude of the total double-quantum-filtered 23Na NMR signal acquired when the liver was perfused with buffer containing no Dy(PPP)2. For tau < or = 4 ms, the average ratio of the two amplitudes was 0.98 +/- 0.03 (mean +/- SEM). For tau > or = 8 ms, the average ratio was significantly less than 1. These results demonstrate that double-quantum-filtered 23Na NMR signals acquired from perfused liver using short tau values arise almost exclusively from intracellular sodium ions, but double-quantum-filtered 23Na NMR signals acquired from perfused liver using long tau values contain contributions from both intracellular and extracellular sodium ions. This conclusion suggests that multiple-quantum-filtered 23Na NMR spectroscopy will be useful in studying intracellular sodium levels in the perfused liver, and possibly in the intact liver in vivo. PMID:7919009

  3. Protein folding and unfolding studied at atomic resolution by fast two-dimensional NMR spectroscopy.

    PubMed

    Schanda, Paul; Forge, Vincent; Brutscher, Bernhard

    2007-07-03

    Atom-resolved real-time studies of kinetic processes in proteins have been hampered in the past by the lack of experimental techniques that yield sufficient temporal and atomic resolution. Here we present band-selective optimized flip-angle short transient (SOFAST) real-time 2D NMR spectroscopy, a method that allows simultaneous observation of reaction kinetics for a large number of nuclear sites along the polypeptide chain of a protein with an unprecedented time resolution of a few seconds. SOFAST real-time 2D NMR spectroscopy combines fast NMR data acquisition techniques with rapid sample mixing inside the NMR magnet to initiate the kinetic event. We demonstrate the use of SOFAST real-time 2D NMR to monitor the conformational transition of alpha-lactalbumin from a molten globular to the native state for a large number of amide sites along the polypeptide chain. The kinetic behavior observed for the disappearance of the molten globule and the appearance of the native state is monoexponential and uniform along the polypeptide chain. This observation confirms previous findings that a single transition state ensemble controls folding of alpha-lactalbumin from the molten globule to the native state. In a second application, the spontaneous unfolding of native ubiquitin under nondenaturing conditions is characterized by amide hydrogen exchange rate constants measured at high pH by using SOFAST real-time 2D NMR. Our data reveal that ubiquitin unfolds in a gradual manner with distinct unfolding regimes.

  4. Molecular dynamics of solid cortisol studied by NMR

    NASA Astrophysics Data System (ADS)

    Andrew, E. R.

    Polycrystalline cortisol (hydrocortisone; 11β,17α,21-trihydroxy-4-preg- nene-3,20-dione; C21H30O5) has been investigated by continuous and pulse proton NMR methods between 78 and 400 K at Larmor frequencies of 7, 25 and 60 MHz. A reduced value of second moment was found above 90 K and is ascribed to reorientation of two methyl groups. A single asymmetric minimum was found in the temperature dependence of the spin-lattice relaxation times and this also is attributed to reorientation of two methyl groups. The asymmetry suggests an asymmetric distribution of correlation times of the motion. Using the Cole-Davidson distribution, the best computer fit yields the following parameters characterizing the motion: Ea = 11ṡ8 ± 0ṡ1 kJ mol-1, τ0 = 4ṡ6 ± 0ṡ4) x 10-13s, distribution parameter δ = 0ṡ62.

  5. Antimalarial drugs and heme in detergent micelles: An NMR study.

    PubMed

    Casabianca, Leah B; Kallgren, Joye B; Natarajan, Jayakumar K; Alumasa, John N; Roepe, Paul D; Wolf, Christian; de Dios, Angel C

    2009-05-01

    Proton nuclear magnetic resonance relaxation times were measured for the protons of micelles formed by the detergents sodium dodecyl sulfate, dodecyltrimethyl ammonium bromide, and polyethylene glycol sorbitan monolaureate in the presence of ferriprotoporphyrin IX and the antimalarial drugs chloroquine, 7-chloro-4-quinolyl 4-N,N-diethylaminobutyl sulfide, and primaquine. Diffusion coefficients were extracted from pulsed gradient NMR experiments to evaluate the degree of association of these drugs with the detergent micelles. Results indicate that at low or neutral pH when the quinolyl N is protonated, chloroquine does not associate with neutral or cationic detergent micelles. For this reason, chloroquine's interaction with heme perturbs the partitioning of heme between the aqueous medium and detergent micelles.

  6. Pulsed NMR study of the curing process of epoxy resin.

    PubMed

    Kimoto, Hiroki; Tanaka, Chikako; Yaginuma, Michiko; Shinohara, Emi; Asano, Atsushi; Kurotsu, Takuzo

    2008-07-01

    To analyze a curing process of epoxy resin in terms of molecular motion, we adapted a pulsed NMR method. Three kinds of (1)H spin-spin relaxation times (T(2L) (long), T(2S) (short) and T(2M) (intermediate)) were estimated from observed solid echo train signals as the curing process proceeded. A short T(2S) value below 20 micros suggests the existence of a motion-restricted chain, that is, cured elements of resin, and its fraction, P(S), sigmoidally increased with the curing time. On the other hand, the fraction of T(2L), P(L), decreased with the reaction time reciprocally against P(S), suggesting the disappearance of highly mobile molecules raised from pre-cured resin. The spin-lattice relaxation time, T(1), was also measured to check another aspect of molecular motion in the process. T(1) of the mixed epoxy resin and curing agent gradually increased just after mixing both of them. This corresponds to an increment of a less-mobile fraction, of which the correction time is more than 10(-6) s, and also means that the occurrence of a network structure whose mobility is strongly restricted by chemically bonded bridges between the epoxy resin and curing agent. The time courses of these parameters coincided with those of IR peaks pertinent to the curing reaction. Therefore, pulsed NMR is a useful tool to monitor the hardening process of epoxy resin in real time non-distractively in terms of the molecular motion of protons.

  7. The NMR study of biologically active metallated alkanol ammoinium ionic liquids

    NASA Astrophysics Data System (ADS)

    Ushakov, I. A.; Voronov, V. K.; Adamovich, S. N.; Mirskov, R. G.; Mirskova, A. N.

    2016-01-01

    The 1H, 13C, 15N, and 111Cd NMR spectra of a series of metallated alkanol ammonium ionic liquids (MAIL) series [n N(CH2CH2OH;)3M]+ · mX-, where M = Cd, Mg, Zn, Fe, Rh; X = Cl, OOCCH3, obtained in a wide range of temperatures of the studied samples, have been analyzed. It is found that, under biomimetic conditions (H2O, 25 °C), the compounds studied exist as mono- bi- and the tricyclic structures, which are in equilibrium. Shift of the equilibrium depends upon nature of a metal and effects all the parameters of the NMR spectra. Peculiarities of ligand exchange, typical for the studied compounds, have been studied in a wide range of temperatures. It is found that the NMR data can be used to control structure of the compounds formed in the course of synthesis.

  8. NMR study of the reversible trapping of SF6 by cucurbit[6]uril in aqueous solution.

    PubMed

    Fusaro, Luca; Locci, Emanuela; Lai, Adolfo; Luhmer, Michel

    2008-11-27

    The complexation of sulfur hexafluoride (SF(6)), a highly potent greenhouse gas, by cucurbit[6]uril (CB) was studied at various temperatures in Na(2)SO(4) aqueous solutions by (19)F and (1)H NMR. CB shows a remarkable affinity for SF(6), suggesting that it is a suitable molecular container for the design of materials tailored for SF(6) trapping. At 298 K, the equilibrium constant characterizing the inclusion of SF(6) by CB is 3.1 x 10(4) M(-1) and the residence time of SF(6) within the CB cavity is estimated to be of the order of a few seconds. The enthalpic and entropic contributions to the free energy of encapsulation were determined and are discussed. This work also reports on the interest of SF(6) in the framework of the spin-spy methodology. The advantages and drawbacks of solution-state (19)F NMR of SF(6) with respect to (129)Xe NMR are discussed. SF(6) comes forward as a versatile and informative spin-spy molecule for probing systems in solution because its detection limit by (19)F NMR reaches the micromolar range with standard equipment and because quantitative integral measurements, relaxation time measurements, and demanding experiments, such as translational diffusion coefficient measurements, are easily carried out in addition to chemical shift measurements. Solution-state (19)F NMR of SF(6) emerges as a promising alternative to (129)Xe NMR for probing cavities and for other applications relying on the encapsulation of an NMR active gaseous probe.

  9. NMR studies in chemistry. I. Organometallic tin and geramanium compounds. II. The sorbitol pathway in intact lenses

    SciTech Connect

    Williams, W.F.

    1985-01-01

    Nuclear magnetic resonance spectroscopy has been utilized in the study of two very different chemical problems. The bonding and structure of various cyclopropyl derivatives of tin and germanium has been investigated by means of Sn-119, Ge-73, C-13, and H-1 NMR spectroscopy. Intact rabbit lenses have also been studied using NMR spectroscopy with regard to diabetic cataract formation. C-13 and P-31 NMR spectroscopies have been utilized in the study of the sorbitol pathway and aldose reductase inhibition.

  10. Compost effect on soil humic acid: A NMR study.

    PubMed

    Adani, Fabrizio; Genevini, Pierluigi; Tambone, Fulvia; Montoneri, Enzo

    2006-11-01

    The humic acid (HA) fraction of a food and vegetable residues compost (CM) was taken as indicator to trace the fate of CM organic matter in four years CM amended soil. (1)H and (13)C NMR spectroscopy were used to investigate the nature of the HA isolates from CM, control soil (S(4)) and amended soil. The result indicated a significant structural difference between CM HA and S(4) HA, and supported the presence of both HA fractions in soil at the end of the amendment trials. However, the nature and content of CM HA in soil did not fully explain the increase of soil cation exchange capacity (CEC) after amendment. All CM humic fractions (i.e., fulvic acid, humic acid and humin) were found to contribute to the change of the soil organic matter composition. It is concluded that although CM HA is a suitable indicator of the survival of compost organic matter in soil during amendment, all three humic fractions should be monitored and analyzed to fully understand changes in the composition and properties of amended soil.

  11. NMR relaxometry study of plaster mortar with polymer additives

    SciTech Connect

    Jumate, E.; Manea, D.; Moldovan, D.; Fechete, R.

    2013-11-13

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T{sub 2} relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T{sub 2} distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T{sub 2} relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T{sub 2} relaxation rates corresponding to the bound water.

  12. NMR studies of molecular structure in fruit cuticle polyesters.

    PubMed

    Fang, X; Qiu, F; Yan, B; Wang, H; Mort, A J; Stark, R E

    2001-07-01

    The cuticle of higher plants functions primarily as a protective barrier for the leaves and fruits, controlling microbial attack as well as the diffusion of water and chemicals from the outside environment. Its major chemical constituents are waxes (for waterproofing) and cutin (a structural support polymer). However, the insolubility of cutin has hampered investigations of its covalent structure and domain architecture, which are viewed as essential for the design of crop protection strategies and the development of improved synthetic waterproofing materials. Recently developed strategies designed to meet these investigative challenges include partial depolymerization using enzymatic or chemical reagents and spectroscopic examination of the intact polyesters in a solvent-swelled form. The soluble oligomers from degradative treatments of lime fruit cutin are composed primarily of the expected 10,16-dihydroxyhexadecanoic and 16-hydroxy-10-oxo-hexadecanoic acids; low-temperature HF treatments also reveal sugar units that are covalently attached to the hydroxyfatty acids. Parallel investigations of solvent-swollen cutin using 2D NMR spectroscopy assisted by magic-angle spinning yield well-resolved spectra that permit detailed comparisons to be made among chemical moieties present in the intact biopolymer, the soluble degradation products, and the unreacted solid residue.

  13. N-H...F hydrogen bonds in fluorinated benzanilides: NMR and DFT study.

    PubMed

    Manjunatha Reddy, G N; Vasantha Kumar, M V; Guru Row, T N; Suryaprakash, N

    2010-10-28

    Using (19)F and (1)H-NMR (with (14)N decoupling) spectroscopic techniques together with density functional theoretical (DFT) calculations, we have investigated weak molecular interactions in isomeric fluorinated benzanilides. Simultaneous presence of through space nuclear spin-spin couplings ((1h)J(N-HF)) of diverse strengths and feeble structural fluctuations are detected as a function of site specific substitution of fluorine atoms within the basic identical molecular framework. The transfer of hydrogen bonding interaction energies through space is established by perturbing their strengths and monitoring the effect on NMR parameters. Multiple quantum (MQ) excitation, up to the highest possible MQ orders of coupled protons, is utilized as a tool for accurate (1)H assignments. Results of NMR studies and DFT calculations are compared with the relevant structural parameters taken from single crystal X-ray diffraction studies.

  14. Practical applications of hydrostatic pressure to refold proteins from inclusion bodies for NMR structural studies.

    PubMed

    Ogura, Kenji; Kobashigawa, Yoshihiro; Saio, Tomohide; Kumeta, Hiroyuki; Torikai, Shinnosuke; Inagaki, Fuyuhiko

    2013-06-01

    Recently, the hydrostatic pressure refolding method was reported as a practical tool for solubilizing and refolding proteins from inclusion bodies; however, there have been only a few applications for protein structural studies. Here, we report the successful applications of the hydrostatic pressure refolding method to refold proteins, including the MOE-2 tandem zinc-finger, the p62 PB1 domain, the GCN2 RWD domain, and the mTOR FRB domain. Moreover, the absence of aggregation and the correct folding of solubilized protein samples were evaluated with size exclusion chromatography and NMR experiments. The analyses of NMR spectra for MOE-2 tandem zinc-finger and GCN2 RWD further led to the determination of tertiary structures, which are consistent with those from soluble fractions. Overall, our results indicate that the hydrostatic pressure method is effective for preparing samples for NMR structural studies.

  15. NQR-NMR studies of higher alcohol synthesis Cu-Co catalysts

    SciTech Connect

    Not Available

    1991-12-17

    Our previous studies (1,2) on the zerofield NMR spectra of Cu/Co catalysts revealed that the method of preparation sensitively influences the magnetic character of the Catalyst. Catalytic studies of the earlier investigators also (3) show similar influence on the product selectivity and indicate reproducible performance is critically dependent on the control and rigor of the preparation technique. To compliment the NMR results, we have made a thorough investigation of the Hysteresis character of the Cu/Co catalysts with the metal ratio varying from 0.2 to 4.0.

  16. Mechanical Behavior of Polymer Gels for RDCs and RCSAs Collection: NMR Imaging Study of Buckling Phenomena.

    PubMed

    Hellemann, Erich; Teles, Rubens R; Hallwass, Fernando; Barros, W; Navarro-Vázquez, Armando; Gil, Roberto R

    2016-11-07

    Anisotropic NMR parameters, such as residual dipolar couplings (RDCs), residual chemical shift anisotropies (RCSAs) and residual quadrupolar couplings (RQCs or ΔνQ ), appear in solution-state NMR when the molecules under study are subjected to a degree of order. The tunable alignment by reversible compression/relaxation of gels (PMMA and p-HEMA) is an easy, user-friendly, and very affordable method to measure them. When using this method, a fraction of isotropic NMR signals is observed in the NMR spectra, even at a maximum degree of compression. To explain the origin of these isotropic signals we decided to investigate their physical location inside the NMR tube using deuterium 1D imaging and MRI micro-imaging experiments. It was observed that after a certain degree of compression the gels start to buckle and they generate pockets of isotropic solvent, which are never eliminated. The amount of buckling depends on the amount of cross-linker and the length of the gel.

  17. Studies of 27Al NMR in SrAl4

    NASA Astrophysics Data System (ADS)

    Niki, Haruo; Higa, Nonoka; Kuroshima, Hiroko; Toji, Tatsuki; Morishima, Mach; Minei, Motofumi; Yogi, Mamoru; Nakamura, Ai; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika; Harima, Hisatomo

    A charge density wave (CDW) transition at TCDW = 243 K and a structural phase (SP) transition at approximately 100 K occur in SrAl4 with the BaAl4-type body center tetragonal structure, which is the divalent and non-4f electron reference compound of EuAl4. To understand the behaviors of the CDW and SP transitions, the 27Al NMR measurements using a single crystal and a powder sample of SrAl4 have been carried out. The line width below TCDW is modulated by an electrical quadruple interaction between 27Al nucleus and CDW charge modulation. The incommensurate CDW state below TCDW changes into a different structure below TSP. The temperature dependences of Knight shifts of 27Al(I) and 27Al(II) show the different behaviors. The temperature variation of 27Al(I) Knight shift shows anomalies at the CDW and SP transition temperatures, revealing the shift to negative side below TCDW, which is attributable to the core polarization of the d-electrons. However, 27Al(II) Knight shift keeps almost constant except for the small shift due to the SP transition. The 1/T1T of 27Al(I) indicates the obvious changes due to the CDW and SP transitions, while that of 27Al(II) takes a constant value. The density of state at the Fermi level at Al(I) site below 60 K would be about 0.9 times less than that above TCDW.

  18. 2H NMR studies of glycerol dynamics in protein matrices

    NASA Astrophysics Data System (ADS)

    Herbers, C. R.; Sauer, D.; Vogel, M.

    2012-03-01

    We use 2H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  19. 2H NMR studies of glycerol dynamics in protein matrices.

    PubMed

    Herbers, C R; Sauer, D; Vogel, M

    2012-03-28

    We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  20. Calcium binding by phosphatidylserine headgroups. Deuterium NMR study.

    PubMed Central

    Roux, M; Bloom, M

    1991-01-01

    The binding of calcium to headgroup deuterated 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphoserine (POPS) was investigated by using deuterium magnetic resonance in pure POPS membranes and in mixed 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC)/POPS 5:1 (m:m) bilayers. Addition of CaCl2 to pure POPS bilayers led to two component spectra attributed, respectively, to liquid-crystallin POPS (less than 15 kHz) and POPS molecules in the calcium-induced dehydrated phase (cochleate) (approximately 120 kHz). The liquid-crystalline component has nearly disappeared at a Ca2+ to POPS ratio of 0.5, indicating that, under such conditions, most of the POPS molecules are in the precipitated cochleate phase. After dilution of the POPS molecules in zwitterionic POPC membranes (POPC/POPS 5:1 m:m), single component spectra characteristic of POPS in the liquid-crystalline state were observed in the presence of Molar concentrations of calcium ions (Ca2+ to POPS ratio greater than 50), showing that the amount of dehydrated cochleate PS-Ca2+ phase, if any, was low (less than 5%) under such conditions. Deuterium NMR data obtained in the 15-50 degrees C temperature range with the mixed PC/PS membranes, either in the absence or the presence of Ca2+ ions, indicate that the serine headgroup undergoes a temperature-induced conformational change, independent of the presence of Ca2+. This is discussed in relation to other headgroup perturbations such as that observed upon change of the membrane surface charge density. PMID:1883944

  1. 1H NMR, 13C NMR and mass spectral studies of some Schiff bases derived from 3-amino-1,2,4-triazole.

    PubMed

    Issa, Y M; Hassib, H B; Abdelaal, H E

    2009-11-01

    Heterocyclic Schiff bases derived from 3-amino-1,2,4-triazole and different substituted aromatic aldehydes are prepared and subjected to (1)H NMR, (13)C NMR and mass spectral analyses. (1)H NMR spectra in DMSO exhibit a sharp singlet within the 9.35-8.90ppm region which corresponds to the azomethine proton. The position of this signal is largely dependent on the nature of the substituents on the benzal moiety. It is observed that the shape, position and the integration value of the signal of the aromatic proton of the triazole ring ((5)C) are clearly affected by the rate of exchange, relaxation time, concentration of solution as well as the solvent used. (13)C NMR is taken as substantial support for the results reached from (1)H NMR studies. The mass spectral results are taken as a tool to confirm the structure of the investigated compounds. The base peak (100%), mostly the M-1 peak, indicates the facile loss of hydrogen radical. The fragmentation pattern of the unsubstituted Schiff base is taken as the general scheme. Differences in the other schemes result from the effect of the electronegativity of the substituents attached to the aromatic ring.

  2. NMR-BASED METABOLOMIC STUDIES OF ENDOCRINE DISRUPTION IN SMALL FISH MODELS

    EPA Science Inventory

    Metabolomics is now being widely used to obtain complementary information to genomic and proteomic studies. Among the various approaches used in metabolomics, NMR spectroscopy is particularly powerful, in part because it is relatively non-selective, and is amenable to the study o...

  3. NMR-BASED METABOLOMIC STUDIES OF ENDOCRINE DISRUPTION IN SMALL FISH MODELS

    EPA Science Inventory

    Metabolomics is now being widely used to obtain complementary information to genomic and proteomic studies. Among the various approaches used in metabolomics, NMR spectroscopy is particularly powerful, in part because it is relatively non-selective, and is amenable to the study o...

  4. Multivalent ligand mimetics of LecA from P. aeruginosa: synthesis and NMR studies.

    PubMed

    Bini, Davide; Marchetti, Roberta; Russo, Laura; Molinaro, Antonio; Silipo, Alba; Cipolla, Laura

    2016-06-24

    Molecular recognition of glycans plays an important role in glycomic and glycobiology studies. For example, pathogens have a number of different types of lectin for targeting host sugars. In bacteria, lectins exist sometimes as domains of bacterial toxins and exploit adhesion to glycoconjugates as a means of entering host cells. Herein, we describe the synthesis of three glycodendrons with the aim to dissect the fine structural details involved in the multivalent carbohydrate-protein interactions. LecA, from the pathogen Pseudomonas aeruginosa, has been used to characterize galactose dendrons interaction using one of the most widespread NMR technique for the elucidation of receptor-ligand binding in solution, the saturation transfer difference (STD) NMR. Furthermore, the effective hydrodynamic radius of each dendrimer recognized by LecA was estimated from the diffusion coefficients determined by pulsed-field-gradient stimulated echo (PFG-STE) NMR experiments.

  5. Solid-state NMR studies of form I of atorvastatin calcium.

    PubMed

    Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2012-03-22

    Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).

  6. TC and H NMR studies of PQQ and selected derivatives. [Pyrroloquinoline quinone

    SciTech Connect

    Houck, D.R.; Unkefer, C.J.

    1988-01-01

    The ortho-quinone structure of pyrroloquinoline quinone (PQQ) is famous for its reactivity with nucleophilic species of carbon, nitrogen, and oxygen(Duine et. al. 1987). In fact, the crystal structure of PQQ was solved in the form of the C-5 acetone adduct(Salisbury et. al 1979). The propensity of the ortho-quinone to accept nucleophiles is the chemical basis of the function of PQQ at enzyme active sites. The present study focuses on the NMR of PQQ and various derivatives formed with oxygen and nitrogen nucleophiles. Our goals are to assign the H, TC, and VN NMR spectra and to rigorously confirm the structures of the adducts. Once the NMR data of the relevant adducts are well defined, we will use TC and VN labeled substrates to probe the active sites of PQQ containing enzymes. 7 refs., 2 figs., 1 tab.

  7. Solid-state NMR studies of theophylline co-crystals with dicarboxylic acids.

    PubMed

    Pindelska, Edyta; Sokal, Agnieszka; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Kolodziejski, Waclaw

    2014-11-01

    In this work, three polycrystalline materials containing co-crystals of theophylline with malonic, maleic, and glutaric acids were studied using (13)C, (15)N and (1)H solid-state NMR and FT-IR spectroscopy. The NMR assignments were supported by gauge including projector augmented waves (GIPAW) calculations of chemical shielding, performed using X-ray determined geometry. The experimental (13)C cross polarization/magic angle spinning (CP/MAS) NMR results and the calculated isotropic chemical shifts were in excellent agreement. A rapid and convenient method for theophylline co-crystals crystal structure analysis has been proposed for co-crystals, which are potentially new APIs. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Crystal structure and dynamic NMR studies of octaacetyl-tetra(propyl)calix[4]resorcinarene

    NASA Astrophysics Data System (ADS)

    Velásquez-Silva, Astrid; Cortés, Brian; Rivera-Monroy, Zuly J.; Pérez-Redondo, Adrián; Maldonado, Mauricio

    2017-06-01

    The reaction between C-tetra(propyl)calix[4]resorcinarene (1) and acetic anhydride in pyridine results in the formation of octaacetyl-tetra(propyl)calix[4]resorcinarene (2). The structure was determined using FT-IR, 1H-NMR and 13C-NMR. The dynamic 1H-NMR of acetylated resorcinarene was studied by means of variable temperature in a CDCl3 solution and revealed that two conformers are formed in the solution. Boat conformations for acetylated resorcinarene exhibited a rapid interconversion at low temperatures, and the activation barrier for the pseudorotation was determined (54.72 kJmol-1). The acetylated resorcinarene 2 was also characterized by an X-ray crystal structure determination. This analysis indicated a boat configuration for the macrocycle skeleton in the solid state. Csbnd H⋯O hydrogen bonding interactions were observed in the packing of compound.

  9. 125Te and 139La NMR Studies of Single Crystal LaTe3

    NASA Astrophysics Data System (ADS)

    Chudo, Hiroyuki; Michioka, Chishiro; Itoh, Yutaka; Yoshimura, Kazuyoshi

    2007-12-01

    We report 125Te and 139La NMR studies for single crystals of LaTe3 between 10 and 160 K under an applied field of H = 7.4841 T. We observed the broad 125Te(1) NMR signals of metallic Te(1) sheets with a superlattice modulation and the sharp 125Te(2) and 139La NMR signals of LaTe(2) bi-layers. Temperature dependence of 125Te(1) nuclear spin-lattice relaxation times of the modulated Te(1) sheets obeys a modified Korringa relation. The results indicate that the electronic state on the Te(1) sheets is a Landau-Fermi liquid on a misfit superlattice or a Tomonaga-Luttinger liquid in a two-dimensional charge-density wave ordering state.

  10. Molecular motion of micellar solutes: a /sup 13/C NMR relaxation study

    SciTech Connect

    Stark, R.E.; Kasakevich, M.L.; Granger, J.W.

    1982-02-04

    A series of simple NMR relaxation experiments have been performed on nitrobenzene and aniline dissolved in the ionic detergents sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB). Using /sup 13/C relaxation rates at various molecular sites, and comparing data obtained in organic media with those for micellar solutions, the viscosity at the solubilization site was estimated and a detailed picture of motional restrictions imposed by the micellar enviroment was derived. Viscosities of 8 to 17 cp indicate a rather fluid environment for solubilized nitrobenzene; both additives exhibit altered motional preferences in CTAB solutions only. As an aid in interpretation of the NMR data, quasi-elastic light scattering and other physical techniques have been used to evaluate the influence of organic solutes on micellar size and shape. The NMR methods are examined critically in terms of their general usefulness for studies of solubilization in detergent mice

  11. NMR and Infrared Study of Thermal Oxidation of cis-1, 4-Polybutadiene

    NASA Technical Reports Server (NTRS)

    Gemmer, Robert V.; Golub, Morton A.

    1978-01-01

    A study of the microstructural changes occuring in CB during thermal, uncatalyzed oxidation was carried out. Although the oxidation of CB is accompanied by extensive crosslinking with attendant insolubilization, it was found possible to follow the oxidation of solid CB directly with C-13 NMR spectroscopy. The predominant products appearing in the C-13 NMR spectra of oxidized CB are epoxides. The presence of lesser amounts of alcohols, peroxides, and carbonyl structures was adduced from complementary infrared and NMR spectra of soluble extracts obtained from the oxidized, crosslinked CB. This distribution of functional groups contrasts with that previously reported for the autooxidation of 1,4-polyisoprene. The difference was rationalized in terms of the relative stabilities of intermediate radical species involved in the autoxidation of CB and 1,4-polyisoprene.

  12. {sup 57}Fe NMR study of multiferroic BiFeO{sub 3}

    SciTech Connect

    Pokatilov, V. S. Sigov, A. S.

    2010-03-15

    The effects of the {sup 57}Fe isotope content and high-frequency magnetic field amplitude h{sub 1} on the shape of the NMR spectrum of multiferroic BiFeO{sub 3} at T = 4.2 K are studied by pulsed nuclear magnetic resonance. The NMR spectrum shape and transverse relaxation time T{sub 2} are found to depend strongly on the {sup 57}Fe isotope content and h{sub 1} in multiferroic BiFeO{sub 3} in the presence of a spatial spin-modulated structure of a cycloid type. In a sample with a high {sup 57}Fe isotope content, the Suhl-Nakamura interaction contributes substantially to T{sub 2}. When these dynamic effects are taken into account for analysis of the NMR spectrum shape, an undisturbed (without an anharmonicity effect) spatial spin-modulated structure of a cycloid type is shown to exist in BiFeO{sub 3}.

  13. Distal and proximal ligand interactions in heme proteins: correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C17O- and 13CO-labeled species.

    PubMed

    Park, K D; Guo, K M; Adebodun, F; Chiu, M L; Sligar, S G; Oldfield, E

    1991-03-05

    We have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C17O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7----Val E7; His E7----Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase (E.C. 1.11.1.7) isoenzymes A and C, and Caldariomyces fumago chloroperoxidase (E.C. 1.11.1.10), in some cases as a function of pH, and have determined their isotropic 17O NMR chemical shifts, delta i, and spin-lattice relaxation times, T1. We have also obtained similar results on a picket fence prophyrin, [5,10,15,20-tetrakis(alpha, alpha, alpha, alpha, alpha-pivalamidophenyl)porphyrinato]iron(II) (1-MeIm)CO, both in solution and in the solid state. Our results show an excellent correlation between the infrared C-O vibrational frequencies, v(C-O), and delta i, between v(C-O) and the 17O nuclear quadrupole coupling constant (e2qQ/h, derived from T1), and as expected between e2qQ/h and delta i. Taken together with the work of others on the 13C NMR of 13CO-labeled proteins, where we find an excellent correlation between delta i(13C) and v(Fe-C), our results suggest that IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of pi-back-bonding from Fe d to CO pi* orbitals, as outlined previously [Li, X.-Y., & Spiro, T.G. (1988) J. Am. Chem. Soc. 110, 6024]. The modulation of this interaction by the local charge field of the distal heme residue (histidine, glutamine, arginine, and possibly lysine) in a variety of species and mutants, as reflected in the NMR and IR measurements, is discussed, as is the effect of cysteine as the proximal heme ligand.

  14. Lithium substitution in strontium chlorapatite studied by solid state NMR spectroscopy

    SciTech Connect

    Subramanian, S.; Sairam, T. N. Amarendra, G.; Maji, B. K.; Jena, H.

    2016-05-23

    Strontium Chlorapatites with various amounts of Li substitution (Sr{sub 10-x}Li{sub x}(PO{sub 4}){sub 6}Cl{sub 2-δ}) were prepared by solid state reaction method and characterized by powder XRD and solid state NMR spectroscopy. XRD reveals shortening of lattice parameters upon Li incorporation. The linewidth of {sup 31}P solid state Magic Angle Spinning NMR spectra decreases with increase in Li content within the apatite phase. This study confirms Li uptake within the apatite phase.

  15. NMR studies on a new method for selective degradation of lignins

    SciTech Connect

    Lu, F.; Ralph, J.

    1996-10-01

    The selectivity and cleanliness of reactions which form the basis of a proposed new alternative to the analytical thioacidolysis method have been examined by NMR using model compounds and isolated lignins The results from the model study show that all steps involved in the new selective method are almost quantitative. When applied to isolated lignins, the NMR spectra show that the main substructures of lignin a selectively and cleanly converted to desired derivatives which are further degraded by specific ether cleavage reactions resulting in high yields of analyzable monomers. The beautiful selectivity and cleanliness demonstrated here, combined with its mildness, should make this method very attractive to lignin researchers.

  16. Proton-NMR study on chemisorption of ethylene on platinum powder

    NASA Astrophysics Data System (ADS)

    Takashi Shibanuma; Toshiji Matsui

    1985-05-01

    The high-temperature phase of ethylene on surfaces of Pt powder has been studied by proton-NMR in order to decide whether the surface species is the ethylidyne species (CH 3C) proposed by Kesmodel et al. or the multiple-bonded species (CH 2CH) proposed by Demuth. The observed NMR spectrum is not attributable to CH 3-groups on the surfaes, but can be interpreted as the superposition of two signals, one originating from CH 2-groups and the other from CH-groups. In other words, the results suggest that the surface species is the multiple-bonded species.

  17. Proton-NMR study on chemisorption of ethylene on platinum powder

    NASA Astrophysics Data System (ADS)

    Shibanuma, Takashi; Matsui, Toshiji

    The high-temperature phase of ethylene on surfaces of Pt powder has been studied by proton-NMR in order to decide whether the surface species is the ethylidyne species (CH 3-C≡) proposed by Kesmodel et al. or the multiple-bonded species (-CH 2-CH=) proposed by Demuth. The observed NMR spectrum is not attributable to CH 3-groups on the surfaces, but can be interpreted as the superposition of two signals, one originating from CH 2-groups and the other from CH-groups. In other words, the results suggest that the surface species is the multiple-bonded species.

  18. Single and double passage AFP NMR/ON studies of54Mn Ni

    NASA Astrophysics Data System (ADS)

    Pax, R. A.; Chaplin, D. H.; Foster, H. R.; Wilson, G. V. H.

    1985-03-01

    High resolution conventional AFP NMR/ON studies provide evidence for very small efg's of predominantly negative sign at the nucleus of the nominal S-state ion54Mn in single crystal nickel when the applied field is paralled to the <111> direction. The form of the mid passage signals for opposing sweep directions indicates a unique efg super-imposed upon a random component of comparable magnitude. The advantages of a second analyzing sweep performed during spin lattice relaxation of a conventional post-passage AFP NMR/ON sweep are demonstrated.

  19. Oxygen-17 hyperfine structures in the pure rotational spectra of SrO, SnO, BaO, HfO and ThO.

    PubMed

    Dewberry, Christopher T; Etchison, Kerry C; Grubbs Ii, Garry S; Powoski, Robert A; Serafin, Michal M; Peebles, Sean A; Cooke, Stephen A

    2007-11-28

    Hyperfine structures arising from the couplings of the nuclear spin angular momentum of (17)O (I = 5/2) with the end over end rotation of several metal-containing diatomic monoxides have been observed using a Fourier transform microwave spectrometer. The molecules have been produced by reacting (17)O(2) with laser ablated metal atoms. The oxygen-17 nuclear quadrupole coupling constants have been determined for the title molecules and are interpreted in terms of a simple Townes-Dailey model. Also, the oxygen-17 nuclear spin-rotation constants have been determined and used to calculate the oxygen-17 shieldings for each molecule.

  20. Genetic analysis of 16 NMR-lipoprotein fractions in humans, the GOLDN study

    USDA-ARS?s Scientific Manuscript database

    Sixteen nuclear magnetic resonance (NMR) spectroscopy lipoprotein measurements of more than 1,000 subjects of GOLDN study, at fasting and at 3.5 and 6 h after a postprandial fat (PPL) challenge at visits 2 and 4, before and after a 3 weeks Fenofibrate (FF) treatment, were included in 6 time-independ...

  1. Solid-state NMR and ESR studies of activated carbons produced from pecan shells

    USDA-ARS?s Scientific Manuscript database

    Activated carbon from pecan shells has shown promise as an adsorbent in water treatment and sugar refining. However, the chemistry of the material is complex and not fully understood. We report here the application of solid state NMR and ESR to study the chemical structure, mobility, and pore volu...

  2. Silver metallation of hen egg white lysozyme: X-ray crystal structure and NMR studies.

    PubMed

    Panzner, Matthew J; Bilinovich, Stephanie M; Youngs, Wiley J; Leeper, Thomas C

    2011-12-14

    The X-ray crystal structure, NMR binding studies, and enzyme activity of silver(I) metallated hen egg white lysozyme are presented. Primary bonding of silver is observed through His15 with secondary bonding interactions coming from nearby Arg14 and Asp87. A covalently bound nitrate completes a four coordinate binding pocket.

  3. Moisture in untreated, a cetylated, and furfurylated Norway spruce studied during drying using time domain NMR

    Treesearch

    Lisabeth G. Thygesen; Thomas Elder

    2008-01-01

    Using time domain NMR, the moisture in Norway spruce (Picea abies (L.) Karst.) sapwood subjected to four different treatments (never-dried, dried and remoistened, acetylated, and furfurylated) was studied during drying at 40°C, at sample average moisture contents above fiber saturation. Spin-spin relaxation time distributions were derived from CPMG...

  4. Ultra-high field NMR studies of antibody binding and site-specific phosphorylation of alpha-synuclein.

    PubMed

    Sasakawa, Hiroaki; Sakata, Eri; Yamaguchi, Yoshiki; Masuda, Masami; Mori, Tetsuya; Kurimoto, Eiji; Iguchi, Takeshi; Hisanaga, Shin-ichi; Iwatsubo, Takeshi; Hasegawa, Masato; Kato, Koichi

    2007-11-23

    Although biological importance of intrinsically disordered proteins is becoming recognized, NMR analyses of this class of proteins remain as tasks with more challenge because of poor chemical shift dispersion. It is expected that ultra-high field NMR spectroscopy offers improved resolution to cope with this difficulty. Here, we report an ultra-high field NMR study of alpha-synuclein, an intrinsically disordered protein identified as the major component of the Lewy bodies. Based on NMR spectral data collected at a 920 MHz proton frequency, we performed epitope mapping of an anti-alpha-synuclein monoclonal antibody, and furthermore, characterized conformational effects of phosphorylation at Ser129 of alpha-synuclein.

  5. Solid-state 207Pb NMR studies of mixed lead halides, PbFX (X=Cl, Br, or I).

    PubMed

    Glatfelter, Alicia; Dybowski, Cecil; Kragten, David D; Bai, Shi; Perry, Dale L; Lockard, Jenny

    2007-04-01

    Solid-state 207Pb NMR studies have been conducted on mixed lead(II) halides of the type PbFX, where X=Cl, Br, or I. NMR data for the mixed halides are compared to the solid-state NMR data for the divalent, binary lead halides, PbX2 (X=F, Cl, Br, I). The NMR data are evaluated in the context of the structures of the compounds and the effects of the mixed halides on the electronic structure of the divalent lead. Data sets for the mixed halides are discussed and compared to those for the regular lead(II) halides.

  6. Ultra-high field NMR studies of antibody binding and site-specific phosphorylation of {alpha}-synuclein

    SciTech Connect

    Sasakawa, Hiroaki |; Sakata, Eri; Yamaguchi, Yoshiki; Masuda, Masami |; Mori, Tetsuya; Kurimoto, Eiji; Iguchi, Takeshi; Hisanaga, Shin-ichi; Iwatsubo, Takeshi; Hasegawa, Masato; Kato, Koichi |

    2007-11-23

    Although biological importance of intrinsically disordered proteins is becoming recognized, NMR analyses of this class of proteins remain as tasks with more challenge because of poor chemical shift dispersion. It is expected that ultra-high field NMR spectroscopy offers improved resolution to cope with this difficulty. Here, we report an ultra-high field NMR study of {alpha}-synuclein, an intrinsically disordered protein identified as the major component of the Lewy bodies. Based on NMR spectral data collected at a 920 MHz proton frequency, we performed epitope mapping of an anti-{alpha}-synuclein monoclonal antibody, and furthermore, characterized conformational effects of phosphorylation at Ser129 of {alpha}-synuclein.

  7. Solid-state and unilateral NMR study of deterioration of a Dead Sea Scroll fragment.

    PubMed

    Masic, A; Chierotti, M R; Gobetto, R; Martra, G; Rabin, I; Coluccia, S

    2012-02-01

    Unilateral and solid-state nuclear magnetic resonance (NMR) analyses were performed on a parchment fragment of the Dead Sea Scroll (DSS). The analyzed sample belongs to the collection of non-inscribed and nontreated fragments of known archaeological provenance from the John Rylands University Library in Manchester. Therefore, it can be considered as original DSS material free from any contamination related to the post-discovery period. Considering the paramount significance of the DSS, noninvasive approaches and portable in situ nondestructive methods are of fundamental importance for the determination of composition, structure, and chemical-physical properties of the materials under study. NMR studies reveal low amounts of water content associated with very short proton relaxation times, T(1), indicating a high level of deterioration of collagen molecules within scroll fragments. In addition, (13)C cross-polarization magic-angle-spinning (CPMAS) NMR spectroscopy shows characteristic peaks of lipids whose presence we attribute to the production technology that did not involve liming. Extraction with chloroform led to the reduction of both lipid and protein signals in the (13)C CPMAS spectrum indicating probable involvement of lipids in parchment degradation processes. NMR absorption and relaxation measurements provide nondestructive, discriminative, and sensitive tools for studying the deterioration effects on the organization and properties of water and collagen within ancient manuscripts.

  8. Water exchange in plant tissue studied by proton NMR in the presence of paramagnetic centers.

    PubMed

    Bacić, G; Ratković, S

    1984-04-01

    The proton NMR relaxation of water in maize roots in the presence of paramagnetic centers, Mn2+, Mn- EDTA2 -, and dextran-magnetite was measured. It was shown that the NMR method of Conlon and Outhred (1972, Biochem. Biophys. Acta. 288:354-361) can be applied to a heterogenous multicellular system, and the water exchange time between cortical cells and the extracellular space can be calculated. The water exchange is presumably controlled by the intracellular unstirred layers. The Mn- EDTA2 - complex is a suitable paramagnetic compound for complex tissue, while the application of dextran-magnetite is probably restricted to studies of water exchange in cell suspensions. The water free space of the root and viscosity of the cells cytoplasm was estimated with the use of Mn- EDTA2 -. The convenience of proton NMR for studying the multiphase uptake of paramagnetic ions by plant root as well as their transport to leaves is demonstrated. A simple and rapid NMR technique (spin-echo recovery) for continuous measurement of the uptake process is presented.

  9. 17O NMR study of diamagnetic and paramagnetic lanthanide(III)-DOTA complexes in aqueous solution.

    PubMed

    Fusaro, Luca; Luhmer, Michel

    2014-08-18

    The complexes between the polyaminocarboxylate DOTA ligand and the whole series of stable lanthanide(III) metal ions, except Gd(3+), were studied in aqueous solution by (17)O NMR. For all of the paramagnetic systems, the (17)O NMR signals of both the nonchelating (O1) and chelating (O2) oxygen atoms could be detected, and for some of them, the signals of both the SAP and TSAP (TSAP') conformational isomers were also observed. Line width data analysis reveals that signal broadening is not dominated by paramagnetic relaxation enhancement, as it was believed to be. The data indicate that quadrupole relaxation and, for some complexes, chemical exchange between the SAP and TSAP isomers are the major contributions to the (17)O NMR line width at 25 °C. Besides, the Fermi contact and pseudocontact contributions to the observed lanthanide-induced shifts could be extracted. The (17)O hyperfine coupling constants determined for O2 in the SAP and TSAP isomers are similar to each other and to the values reported for several Gd(III) complexes comprising fast-exchanging ligands. Interestingly, the results suggest that (17)O NMR should prove to be useful for the study of highly paramagnetic Gd(III) complexes of nonlabile ligands.

  10. Development of an in Situ NMR Photoreactor To Study Environmental Photochemistry.

    PubMed

    Bliumkin, Liora; Dutta Majumdar, Rudraksha; Soong, Ronald; Adamo, Antonio; Abbatt, Jonathan P D; Zhao, Ran; Reiner, Eric; Simpson, André J

    2016-06-07

    Photochemistry is a key environmental process directly linked to the fate, source, and toxicity of pollutants in the environment. This study explores two approaches for integrating light sources with nuclear magnetic resonance (NMR) spectroscopy: sample irradiation using a "sunlight simulator" outside the magnet versus direct irradiation of the sample inside the magnet. To assess their applicability, the in situ NMR photoreactors were applied to a series of environmental systems: an atmospheric pollutant (p-nitrophenol), crude oil extracts, and groundwater. The study successfully illustrates that environmentally relevant aqueous photochemical processes can be monitored in situ and in real time using NMR spectroscopy. A range of intermediates and degradation products were identified and matched to the literature. Preliminary measurements of half-lives were also obtained from kinetic curves. The sunlight simulator was shown to be the most suitable model to explore environmental photolytic processes in situ. Other light sources with more intense UV output hold potential for evaluating UV as a remediation alternative in areas such as wastewater treatment plants or oil spills. Finally, the ability to analyze the photolytic fate of trace chemicals at natural abundance in groundwater, using a cryogenic probe, demonstrates the viability of NMR spectroscopy as a powerful and complementary technique for environmental applications in general.

  11. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    SciTech Connect

    Bevilaqua, Rochele C. A.; Miranda, Caetano R.; Rigo, Vagner A.; Veríssimo-Alves, Marcos

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  12. Water exchange in plant tissue studied by proton NMR in the presence of paramagnetic centers.

    PubMed Central

    Bacić, G; Ratković, S

    1984-01-01

    The proton NMR relaxation of water in maize roots in the presence of paramagnetic centers, Mn2+, Mn- EDTA2 -, and dextran-magnetite was measured. It was shown that the NMR method of Conlon and Outhred (1972, Biochem. Biophys. Acta. 288:354-361) can be applied to a heterogenous multicellular system, and the water exchange time between cortical cells and the extracellular space can be calculated. The water exchange is presumably controlled by the intracellular unstirred layers. The Mn- EDTA2 - complex is a suitable paramagnetic compound for complex tissue, while the application of dextran-magnetite is probably restricted to studies of water exchange in cell suspensions. The water free space of the root and viscosity of the cells cytoplasm was estimated with the use of Mn- EDTA2 -. The convenience of proton NMR for studying the multiphase uptake of paramagnetic ions by plant root as well as their transport to leaves is demonstrated. A simple and rapid NMR technique (spin-echo recovery) for continuous measurement of the uptake process is presented. PMID:6426539

  13. Two dimensional NMR and NMR relaxation studies of coal structure. Progress report, September 13, 1991--December 31, 1991

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  14. Two dimensional NMR and NMR relaxation studies of coal structure. Progress report, January 1, 1992--March 31, 1992

    SciTech Connect

    Zilm, K.W.

    1992-07-01

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed at delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  15. Two dimensional NMR and NMR relaxation studies of coal structure. Progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Zilm, K.W.

    1992-09-01

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed at delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  16. Layered structure of room-temperature ionic liquids in microemulsions by multinuclear NMR spectroscopic studies.

    PubMed

    Falcone, R Dario; Baruah, Bharat; Gaidamauskas, Ernestas; Rithner, Christopher D; Correa, N Mariano; Silber, Juana J; Crans, Debbie C; Levinger, Nancy E

    2011-06-06

    Microemulsions form in mixtures of polar, nonpolar, and amphiphilic molecules. Typical microemulsions employ water as the polar phase. However, microemulsions can form with a polar phase other than water, which hold promise to diversify the range of properties, and hence utility, of microemulsions. Here microemulsions formed by using a room-temperature ionic liquid (RTIL) as the polar phase were created and characterized by using multinuclear NMR spectroscopy. (1)H, (11)B, and (19)F NMR spectroscopy was applied to explore differences between microemulsions formed by using 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]) as the polar phase with a cationic surfactant, benzylhexadecyldimethylammonium chloride (BHDC), and a nonionic surfactant, Triton X-100 (TX-100). NMR spectroscopy showed distinct differences in the behavior of the RTIL as the charge of the surfactant head group varies in the different microemulsion environments. Minor changes in the chemical shifts were observed for [bmim](+) and [BF(4)](-) in the presence of TX-100 suggesting that the surfactant and the ionic liquid are separated in the microemulsion. The large changes in spectroscopic parameters observed are consistent with microstructure formation with layering of [bmim](+) and [BF(4)](-) and migration of Cl(-) within the BHDC microemulsions. Comparisons with NMR results for related ionic compounds in organic and aqueous environments as well as literature studies assisted the development of a simple organizational model for these microstructures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant

    PubMed Central

    Watkins, Jennifer D; Campbell, Grant R; Halimi, Hubert; Loret, Erwann P

    2008-01-01

    Background The HIV-1 Tat protein is a promising target to develop AIDS therapies, particularly vaccines, due to its extracellular role that protects HIV-1-infected cells from the immune system. Tat exists in two different lengths, 86 or 87 residues and 99 or 101 residues, with the long form being predominant in clinical isolates. We report here a structural study of the 99 residue Tat Eli variant using 2D liquid-state NMR, molecular modeling and circular dichroism. Results Tat Eli was obtained from solid-phase peptide synthesis and the purified protein was proven biologically active in a trans-activation assay. Circular dichroism spectra at different temperatures up to 70°C showed that Tat Eli is not a random coil at 20°C. Homonuclear 1H NMR spectra allowed us to identify 1639 NMR distance constraints out of which 264 were interresidual. Molecular modeling satisfying at least 1474 NMR constraints revealed the same folding for different model structures. The Tat Eli model has a core region composed of a part of the N-terminus including the highly conserved Trp 11. The extra residues in the Tat Eli C-terminus protrude from a groove between the basic region and the cysteine-rich region and are well exposed to the solvent. Conclusion We show that active Tat variants share a similar folding pattern whatever their size, but mutations induce local structural changes. PMID:18808674

  18. A 2H and 14N NMR study of molecular motion in polycrystalline choline salts

    NASA Astrophysics Data System (ADS)

    Pratum, T. K.; Klein, M. P.

    2H and 14N solid-state NMR spectra of polycrystalline choline chloride, bromide, and iodide indicate that 180° cation flipping motion occurs in all three salts. From the temperature dependence of these spectra, the activation energy for this motion is determined to be 5.8 ± I kcal/mol in the iodide salt and 11 ± 1.5 kcal/mol in the chloride salt. In the bromide salt the reorientation rate is too rapid to be determined from the NMR lineshape, but the temperature dependence of the 2H quadrupole coupling parameters is indicative of a second-order phase transition at approximately 273 K. The spectral distortions in the 14N NMR spectra of the chloride and iodide salts are adequately explained using the motional model derived from the 2H NMR results, while the 14N spectra of the bromide salt show no motional effects. The axis of reorientation which is inferred from these data appears to be consistent with that indicated in a previous X-ray crystallographic study.

  19. Solution NMR studies on Helicobacter pylori proteins for antibiotic target discovery.

    PubMed

    Lee, Ki-Young; Lee, Bong-Jin

    2016-07-01

    Helicobacter pylori (H. pylori) is a well-known widespread pathogenic bacterium that survives in the extremely acidic conditions of the human gastric mucosa. The global prevalence of H. pylori-resistant antibiotics has become an emerging issue in the 21st century and has necessitated the development of novel antibiotic drugs. Many efforts have aimed to discover antibiotic target proteins of H. pylori based on its genome of more than 1600 genes. This article highlights NMR spectroscopy as a valuable tool for determining the structure and dynamics of potential antibiotic-targeted proteins of H. pylori and evaluating their modes of interaction with native or synthetic binding partners. The residue-specific information on binding in solution provides a structural basis to identify and optimize lead compounds. NMR spectroscopy is a powerful method for obtaining details of biomolecular interactions with a broad range of binding affinities. This strength facilitates the identification of the binding interface of the encounter complex that plays an integral role in a variety of biological functions. This low-affinity complex is difficult to crystallize, which impedes structure determination using X-ray crystallography. Additionally, the relative binding affinities can be predicted from the type of spectral change upon binding. High-resolution NMR spectroscopy in combination with advanced computer simulation would provide more confidence in complex structures. The application of NMR to studies of the H. pylori protein could contribute to the development of these targeted novel antibiotics.

  20. Comparative study of inversion methods of three-dimensional NMR and sensitivity to fluids

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Wang, Peng; Mao, Keyu

    2014-04-01

    Three-dimensional nuclear magnetic resonance (3D NMR) logging can simultaneously measure transverse relaxation time (T2), longitudinal relaxation time (T1), and diffusion coefficient (D). These parameters can be used to distinguish fluids in the porous reservoirs. For 3D NMR logging, the relaxation mechanism and mathematical model, Fredholm equation, are introduced, and the inversion methods including Singular Value Decomposition (SVD), Butler-Reeds-Dawson (BRD), and Global Inversion (GI) methods are studied in detail, respectively. During one simulation test, multi-echo CPMG sequence activation is designed firstly, echo trains of the ideal fluid models are synthesized, then an inversion algorithm is carried on these synthetic echo trains, and finally T2-T1-D map is built. Futhermore, SVD, BRD, and GI methods are respectively applied into a same fluid model, and the computing speed and inversion accuracy are compared and analyzed. When the optimal inversion method and matrix dimention are applied, the inversion results are in good aggreement with the supposed fluid model, which indicates that the inversion method of 3D NMR is applieable for fluid typing of oil and gas reservoirs. Additionally, the forward modeling and inversion tests are made in oil-water and gas-water models, respectively, the sensitivity to the fluids in different magnetic field gradients is also examined in detail. The effect of magnetic gradient on fluid typing in 3D NMR logging is stuied and the optimal manetic gradient is choosen.

  1. Sb-NMR/NQR studies of heavy fermion system YbRhSb

    NASA Astrophysics Data System (ADS)

    Kishimoto, Yasuki; Awai, Yosiki; Kotegawa, Hisashi; Tou, Hideki; Muro, Yuji; Nakamura, Koji; Sera, Masafumi; Takabatake, Toshiro

    2017-04-01

    We report a study of 121Sb nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) in a Yb-based heavy fermion system YbRhSb using a single crystal. Sharp 121Sb-NMR lines were observed for each crystal axis for B‖a,b,c. From comparison with observed Sb-NMR spectra and numerical simulations, electric field gradient (EFG) parameters and Knight shift parameters are obtained at 10 K. The obtained quadrupole frequency, asymmetry parameter, isotropic Knight shift and anisotropic principal values of Knight shift tensors are νQ = 18.8 MHz, η =0.2,\\text{\\hspace{0.17em}}{K}{iso}≈ 0.6 % , and ({K}\\text{ax}x,{K}\\text{ax}y,{K}\\text{ax}z)≈ (-3.5,4.1,-0.6) % , respectively. We also succeeded in observing 121Sb-NQR signals at around 19.5 and 37 MHz, which are reproduced by the nuclear quadrupole Hamiltonian with νQ = 18.8 MHz and η = 0.2. We mention the relation between the anisotropy of the Knight shift and magnetic susceptibility. Our NMR/NQR results suggest that the weak ferromagnetism in YbRhSb is ascribed to a canted antiferromagnetic state.

  2. (2)H NMR study of the water dynamics in hydrated myoglobin.

    PubMed

    Lusceac, S A; Vogel, M

    2010-08-12

    We use 1D and 2D (2)H NMR to study the temperature-dependent mechanism for the rotational motion of myoglobin hydration water. The results show that isotropic and anisotropic water reorientation is observed at high and low temperatures, respectively, with a continuous crossover in the temperature range of 200-230 K. The anisotropic low-temperature motion has a large angular amplitude. It exhibits a broad distribution of geometries and pronounced dynamical heterogeneities, which are long-lived at least at T approximately 176 K. Exploiting the possibility to vary the angular resolution of (2)H NMR experiments, we find that the large solid angle accessible to low-temperature water reorientation is explored via large-angle rather than small-angle elementary steps; i.e., the rotational motion is not diffusive. Quantitative analysis of the NMR data using random-walk simulations implies that the number of sites involved in the observed water reorientation decreases from an infinite number during essentially isotropic motion above 230 K to a few, possibly two, below 165 K. Although the changes in the mechanism for water rotational motion may be accompanied by a mild change in the temperature dependence of the rotational correlation times, the (2)H NMR data provide strong evidence against the existence of a sharp fragile-to-strong transition at about 225 K. The present results are discussed in the context of previous experimental findings for hydrated proteins.

  3. Li NMR study of heavy-fermion LiV2O4 containing magnetic defects

    SciTech Connect

    Zong, X.; Das, S.; Borsa, F.; Vannette, M.; Prozorov, R.; Schmalian, J.; Johnston, D.

    2008-04-21

    We present a systematic study of the variations of the {sup 7}Li NMR properties versus magnetic defect concentration up to 0.83 mol% within the spinel structure of polycrystalline powder samples and a collection of small single crystals of LiV2O4 in the temperature range from 0.5 to 4.2 K. We also report static magnetization measurements and ac magnetic susceptibility measurements at 14 MHz on the samples at low temperatures. Both the NMR spectrum and nuclear spin-lattice relaxation rate are inhomogeneous in the presence of the magnetic defects. The NMR data for the powders are well explained by assuming that (i) there is a random distribution of magnetic point defects, (ii) the same heavy Fermi liquid is present in the samples containing the magnetic defects as in magnetically pure LiV2O4, and (iii) the influences of the magnetic defects and of the Fermi liquid on the magnetization and NMR properties are separable. In the single crystals, somewhat different behaviors are observed. Remarkably, the magnetic defects in the powder samples show evidence of spin freezing below T {approx} 1.0 K, whereas in the single crystals with similar magnetic defect concentration no spin freezing was found down to 0.5 K. Thus different types of magnetic defects and/or interactions between them appear to arise in the powders versus the crystals, possibly due to the substantially different synthesis conditions of the powders and crystals.

  4. Ammonia fixation by humic substances: A nitrogen-15 and carbon-13 NMR study

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    1992-01-01

    The process of ammonia fixation has been studied in three well characterized and structurally diverse fulvic and humic acid samples. The Suwannee River fulvic acid, and the IHSS peat and leonardite humic acids, were reacted with 15N-labelled ammonium hydroxide, and analyzed by liquid phase 15N NMR spectrometry. Elemental analyses and liquid phase 13C NMR spectra also were recorded on the samples before and after reaction with ammonium hydroxide. The largest increase in percent nitrogen occurred with the Suwannee River fulvic acid, which had a nitrogen content of 0.88% before fixation and 3.17% after fixation. The 15N NMR spectra revealed that ammonia reacted similarly with all three samples, indicating that the functional groups which react with ammonia exist in structural configurations common to all three samples. The majority of nitrogcn incorporated into the samples appears to be in the form of indole and pyrrole nitrogen, followed by pyridine, pyrazine, amide and aminohydroquinone nitrogen. Chemical changes in the individual samples upon fixation could not be discerned from the 13C NMR spectra.

  5. Ceramide – Lipid Interactions studied by MD Simulations and Solid-State NMR

    PubMed Central

    Dutagaci, Bercem; Becker-Baldus, Johanna; Faraldo-Gómez, José D.; Glaubitz, Clemens

    2014-01-01

    Ceramides play a key modulatory role in many cellular processes, which results from their effect on the structure and dynamics of biological membranes. In this study, we investigate the influence of C16-ceramide (C16) on the biophysical properties of DMPC lipid bilayers using solid-state NMR and atomistic molecular dynamics (MD) simulations. MD simulations and NMR measurements were carried out for a pure DMPC bilayer and for a 20% DMPC-C16 mixture. Calculated key structural properties, namely area per lipid, chain order parameters, and mass density profiles, indicate that C16 has an ordering effect on the DMPC bilayer. Furthermore, the simulations predict that specific hydrogen-bonds form between DMPC and C16 molecules. Multi-nuclear solid-state NMR was used to verify these theoretical predictions. Chain order parameters extracted from 13C-1H dipole couplings were measured for both lipid and ceramide and follow the trend suggested by the MD simulations. Furthermore, 1H-MAS NMR experiments showed a direct contact between ceramide and lipids. PMID:24882733

  6. {sup 1}H NMR spectroscopic studies establish that heparanase is a retaining glycosidase

    SciTech Connect

    Wilson, Jennifer C.; Laloo, Andrew Elohim; Singh, Sanjesh; Ferro, Vito

    2014-01-03

    Highlights: •{sup 1}H and {sup 13}C NMR chemical shifts of fondaparinux were fully assigned by 1D and 2D NMR techniques. •Hydrolysis of fondaparinux by heparanase was monitored by {sup 1}H NMR spectroscopy. •Heparanase is established to be a retaining glycosidase. -- Abstract: Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe {sup 1}H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.

  7. NMR and IR spectroscopic study of proton exchange between o-nitrophenol and methanol in CCl/sub 4/

    SciTech Connect

    Bureiko, S.F.; Golubev, N.S.; Lange, I.Y.

    1982-08-01

    The kinetics of proton exchange in solution between o-nitrophenol and methanol have been studied by dynamic NMR and IR spectroscopy, and a method has been developed for the simultaneous determination of the rate constants for H-H, H-D, and D-H exchange from /sup 1/H NMR spectra.

  8. Solid state NMR study of SEI formation in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Dachun

    Recently, rechargeable lithium ion batteries, which offer high energy density and long cycle life, are in great demand as power sources for our mobile electronic society. The formation of a solid electrolyte interphase (SEI) on the surface of electrodes in lithium ion batteries plays an essential role in their performance. This thesis presents solid state NMR and MAS NMR results on the SEI, which contribute to our understanding of SEI formation on both cathodes and anodes. This thesis is organized as following: Chapter 1 surveys the history of batteries and the challenges to further development of the lithium ion battery. Fundamental aspects and SEI formation mechanisms are also included in Chapter l. Chapter 2 deals with the principles and experimental techniques of solid state NMR. Chapter 3 presents studies of SEI formation on anode and cathode in lithium ion batteries using electrochemical impedance spectroscopy (EIS) and NMR. The results provide EIS and NMR evidence that cells containing electrolytes with high EC content display less irreversible capacity after high temperature storage. The irreversible capacity is attributed to SEI growth on electrode surfaces. NMR results on cathodes, on the other hand, imply that the presence of Ni in the cathode may reduce cell performance due to the oxidation of Ni 3+ to Ni4+. Our simulations show that a lower EC/DMC ratio is associated with a smaller SEI intensity for the cathode and higher intensity for the anode. Chapter 4 discusses the effect of temperature on SEI formation on anodes and cathodes. NMR measurements show that MCMB graphite based anodes exhibit high stability no chemical shift is evident over a wide temperature range. On cathodes, however, NMR does reveal changes in SEI intensity as a function of temperature. These changes are believed to be the result of decomposition of the SEI. Evidently, then, changes in the performance of the cell as a factor of temperature are, at least in part, due to changes in

  9. Polyoxomolybdate promoted hydrolysis of a DNA-model phosphoester studied by NMR and EXAFS spectroscopy.

    PubMed

    Absillis, Gregory; Van Deun, Rik; Parac-Vogt, Tatjana N

    2011-11-21

    Hydrolysis of (p-nitrophenyl)phosphate (NPP), a commonly used phosphatase model substrate, was examined in molybdate solutions by means of (1)H, (31)P, and (95)Mo NMR spectroscopy and Mo K-edge Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. At 50 °C and pD 5.1 the cleavage of the phosphoester bond in NPP proceeds with a rate constant of 2.73 × 10(-5) s(-1) representing an acceleration of nearly 3 orders of magnitude as compared to the hydrolysis measured in the absence of molybdate. The pD dependence of k(obs) exhibits a bell-shaped profile, with the fastest cleavage observed in solutions where [Mo(7)O(24)](6-) is the major species in solution. Mixing of NPP and [Mo(7)O(24)](6-) resulted in formation of these two intermediate complexes that were detected by (31)P NMR spectroscopy. Complex A was characterized by a (31)P NMR resonance at -4.27 ppm and complex B was characterized by a (31)P NMR resonance at -7.42 ppm. On the basis of the previous results from diffusion ordered NMR spectroscopy, performed with the hydrolytically inactive substrate phenylphosphonate (PhP), the structure of these two complexes was deduced to be (NPP)(2)Mo(5)O(21)(4-) (complex A) and (NPP)(2)Mo(12)O(36)(H(2)O)(6)(4-) (complex B). The pH studies point out that both complexes are hydrolytically active and lead to the hydrolysis of phosphoester bond in NPP. The NMR spectra did not show evidence of any paramagnetic species, excluding the possibility of Mo(VI) reduction to Mo(V), and indicating that the cleavage of the phosphomonoester bond is purely hydrolytic. The Mo K-edge XANES region also did not show any sign of Mo(VI) to Mo(V) reduction during the hydrolytic reaction. (95)Mo NMR and Mo K-edge EXAFS spectra measured during different stages of the hydrolytic reaction showed a gradual disappearance of [Mo(7)O(24)](6-) during the hydrolytic reaction and appearance of [P(2)Mo(5)O(23)](6-), which was the final complex observed at the end of hydrolytic reaction.

  10. V51 NMR study of the kagome staircase compound Ni3V2O8

    NASA Astrophysics Data System (ADS)

    Ogloblichev, V.; Kumagai, K.; Verkhovskii, S.; Yakubovsky, A.; Mikhalev, K.; Furukawa, Yu.; Gerashenko, A.; Smolnikov, A.; Barilo, S.; Bychkov, G.; Shiryaev, S.

    2010-04-01

    We used V51 NMR to study magnetic ordering in the Ni3V2O8 single crystal with a Kagome staircase structure of Ni atoms. The NMR spectra were measured in the temperature range T=(3-300)K and magnetic fields H=(2-9.4)T directed along the main a,b,c axes of the orthorhombic (Cmca) crystal. The local magnetic field at the V51 NMR probe determines position and the shape of the corresponding NMR line. These parameters yield an unique information, respectively, on the uniform and the staggered spin components of the ordered Ni. The NMR data collected at H≥2T are considered in line with predictions of the representation theory [A. Harris, Phys. Rev. B 76, 054447 (2007)] with a result that incommensurate amplitude-modulated structure of the spine Nis spins acquires in the high-temperature incommensurate (HTI) phase two prominent nearly equal spin components Sa≈Sc≫Sb instead of the longitudinal incommensurate spin-density wave (SDW) order with Sa≫Sc,Sb as it was deduced from neutron-diffraction data [M. Kenzelmann , Phys. Rev. B 74, 014429 (2006)]. No noticeable variation of SDW polarization in the ab plane was detected below the HTI-low-temperature incommensurate (LTI) transition. In both the HTI and LTI phases two almost equal spin components of the Nis spins Sa≈Sc≫Sb exist at H<4.7T . Their phasing is still not determined. The bulk magnetization in these phases is explained by contribution of the cross-tie Nic spins which antiferromagnetic structure in the LTI phase is canted along H .

  11. 13C NMR study of halogen bonding of haloarenes: measurements of solvent effects and theoretical analysis.

    PubMed

    Glaser, Rainer; Chen, Naijun; Wu, Hong; Knotts, Nathan; Kaupp, Martin

    2004-04-07

    Solvent effects on the NMR spectra of symmetrical (X = F (1), X = Cl (2), X = Br (3), X = I (4), X = NO2 (5), X = CN (6)) and unsymmetrical (X = I, Y = MeO (7), Y = PhO (8)) para-disubstituted acetophenone azines X-C6H4-CMe=N-N=CMe-C6H4-Y and of models X-C6H4-CMe=N-Z (X = I, Z = H (9), Z = NH2 (10)), 4-iodoacetophenone (11), and iodobenzene (12) were measured in CDCl(3), DMSO, THF, pyridine, and benzene to address one intramolecular and one intermolecular issue. Solvent effects on the (13)C NMR spectra are generally small, and this finding firmly establishes that the azine bridge indeed functions as a "conjugation stopper," an important design concept in our polar materials research. Since intermolecular halogen bonding of haloarenes do occur in polar organic crystalline materials, the NMR solution data pose the question as to whether the absence of solvent shifts indicates the absence of strong halogen bonding in solution. This question was studied by the theoretical analysis of the DMSO complexes of iodoarenes 4, 9-12, and of iodoacetylene. DFT and MP2 computations show iodine bonding, and characteristic structural and electronic features are described. The nonrelativistic complexation shifts and the change in the spin-orbit induced heavy atom effect of iodine compensate each other, and iodine bonding thus has no apparent effect on Ci in the iodoarenes. For iodides, complexation by DMSO occurs and may or may not manifest itself in the NMR spectra. The absence of complexation shifts in the NMR spectra of halides does not exclude the occurrence of halogen bonding in solution.

  12. Prospects for (207)Pb solid-state NMR studies of lead tetrel bonds.

    PubMed

    Southern, Scott A; Errulat, Dylan; Frost, Jamie M; Gabidullin, Bulat; Bryce, David L

    2017-07-20

    The feasibility and value of (207)Pb solid-state NMR experiments on compounds featuring lead tetrel bonds is explored. Although the definition remains to be formalized, lead tetrel bonds may be qualitatively described as existing when there is evidence of a net attractive interaction between an electrophilic region associated with lead in a molecular entity and a nucleophilic region in another, or the same, molecular entity. Unambiguous identification of lead tetrel bonds can be challenging due to the hypervalent tendency of lead. We report here a series of (207)Pb solid-state NMR experiments on five metal-organic frameworks featuring lead coordinated to hydrazone-based ligands. Such frameworks may be held together in part by lead tetrel bonds. The acquisition of (207)Pb solid-state NMR spectra for such materials is feasible and is readily accomplished using a combination of magic-angle spinning and Carr-Purcell-Meiboom-Gill methods in moderate to low applied magnetic fields. The lead centres are characterized by (207)Pb isotropic chemical shifts ranging from -426 to -2591 ppm and chemical shift tensor spans ranging from 910 to 2681 ppm. Careful inspection of the structures of the compounds and the literature (207)Pb NMR data may suggest that a tetrel bond to lead results in chemical shift parameters which are intermediate between those which are characteristic of holodirected and hemidirected lead coordination geometries. Challenges associated with DFT computations of the (207)Pb NMR parameters are discussed. In summary, the (207)Pb data for the compounds studied herein show a marked response to the presence of non-coordinating electron-rich moieties in close contact with the electrophilic surface of formally hemidirectionally coordinated lead compounds.

  13. Reaction of vanadate with aquatic humic substances: An ESR and {sup 51}V NMR study

    SciTech Connect

    Lu, Xi.; Johnson, W.D.; Hook, J.

    1998-08-01

    Electron spin resonance (ESR) spectroscopy and {sup 51}V nuclear magnetic resonance (NMR) spectroscopy have been used to study the interaction of vanadate with aqueous solutions of humic substances (HS) at different pH values and at different concentrations. Under acidic pH conditions, ESR spectra show that humic substances reduce vanadium(V) to vanadium(IV) without further reduction to vanadium(III). The reduced vanadium(IV) ion is bound to oxygen donor atoms, probably at carboxylic acid sites in the humic substances. {sup 51}V NMR spectra show that the VO{sub 2}{sup +} cation is immediately reduced and that the decavanadate cation decomposes to the VO{sub 2}{sup +} cation prior to reduction. The overall rate of reduction depends on both concentration and pH. There is no reduction above pH 6, which suggests that the standard reduction potential of humic substances is about +0.65 V. Near pH 7, vanadate is stabilized by binding to humic substances. As the concentration of humic substances increases, the total vanadium NMR signal intensity decreases. This is due to the quadrupolar nature of the {sup 51}V nucleus that, when bound to humic substances, is invisible in NMR measurements. Quantitative models applied to intensity changes show that the vanadate monomer forms HS0V(V) complexes. The formation equilibrium constant is estimated to be 108 M{sup {minus}1}. At pH above 9, NMR signals appear at {minus}623.6 and at {minus}763.2 ppm when humic substances are added to vanadate solution. The intensities of the signals increase with increasing pH and with increasing concentration of humic substances. These signals appear to be associated with peroxyvanadate anions, which are not bound to humic substances.

  14. NQR-NMR studies of higher alcohol synthesis Cu-Co catalysts

    SciTech Connect

    Not Available

    1990-01-01

    The primary intent of our study is to investigate the magnetic character of copper-cobalt catalysts and examine the relation between catalytic and magnetic properties of the catalyst. The results reported in the previous report on the zerofield NMR spectra of a series of Cu/Co catalysts have been a serious concern due to the number of high frequency lines observed which did not fit the expected pattern. To further investigate this discrepancy, we have prepared again several catalysts in our laboratory and scanned the NMR/NQR spectra and studied the magnetization characteristics at Howard University during the Summer 1990. Two undergraduate physics majors made the magnetization studies using the vibration sample magnetometer system. 13 refs., 2 figs., 3 tabs.

  15. Preliminary 1H NMR study on archaeological waterlogged wood.

    PubMed

    Maccotta, Antonella; Fantazzini, Paola; Garavaglia, Carla; Donato, Ines D; Perzia, Patrizia; Brai, Maria; Morreale, Filippa

    2005-01-01

    Magnetic Resonance Relaxation (MRR) and Magnetic Resonance Imaging (MRI) are powerful tools to obtain detailed information on the pore space structure that one is unlikely to obtain in other ways. These techniques are particularly suitable for Cultural Heritage materials, because they use water 1H nuclei as a probe. Interaction with water is one of the main causes of deterioration of materials. Porous structure in wood, for example, favours the penetration of water, which can carry polluting substances and promote mould growth. A particular case is waterlogged wood from underwater discoveries and moist sites; in fact, these finds are very fragile because of chemical, physical and biological decay from the long contact with the water. When wood artefacts are brought to the surface and directly dried in air, there is the collapse of the cellular structures, and wood loses its original form and dimensions and cannot be used for study and museum exhibits. In this work we have undertaken the study of some wood finds coming from Ercolano's harbour by MRR and MRI under different conditions, and we have obtained a characterization of pore space in wood and images of the spatial distribution of the confined water in the wood.

  16. Preparation of Protein Samples for NMR Structure, Function, and Small Molecule Screening Studies

    PubMed Central

    Acton, Thomas B.; Xiao, Rong; Anderson, Stephen; Aramini, James; Buchwald, William A.; Ciccosanti, Colleen; Conover, Ken; Everett, John; Hamilton, Keith; Huang, Yuanpeng Janet; Janjua, Haleema; Kornhaber, Gregory; Lau, Jessica; Lee, Dong Yup; Liu, Gaohua; Maglaqui, Melissa; Ma, Lichung; Mao, Lei; Patel, Dayaban; Rossi, Paolo; Sahdev, Seema; Shastry, Ritu; Swapna, G.V.T.; Tang, Yeufeng; Tong, Saichiu; Wang, Dongyan; Wang, Huang; Zhao, Li; Montelione, Gaetano T.

    2014-01-01

    In this chapter, we concentrate on the production of high quality protein samples for NMR studies. In particular, we provide an in-depth description of recent advances in the production of NMR samples and their synergistic use with recent advancements in NMR hardware. We describe the protein production platform of the Northeast Structural Genomics Consortium, and outline our high-throughput strategies for producing high quality protein samples for nuclear magnetic resonance (NMR) studies. Our strategy is based on the cloning, expression and purification of 6X-His-tagged proteins using T7-based Escherichia coli systems and isotope enrichment in minimal media. We describe 96-well ligation-independent cloning and analytical expression systems, parallel preparative scale fermentation, and high-throughput purification protocols. The 6X-His affinity tag allows for a similar two-step purification procedure implemented in a parallel high-throughput fashion that routinely results in purity levels sufficient for NMR studies (> 97% homogeneity). Using this platform, the protein open reading frames of over 17,500 different targeted proteins (or domains) have been cloned as over 28,000 constructs. Nearly 5,000 of these proteins have been purified to homogeneity in tens of milligram quantities (see Summary Statistics, http://nesg.org/statistics.html), resulting in more than 950 new protein structures, including more than 400 NMR structures, deposited in the Protein Data Bank. The Northeast Structural Genomics Consortium pipeline has been effective in producing protein samples of both prokaryotic and eukaryotic origin. Although this paper describes our entire pipeline for producing isotope-enriched protein samples, it focuses on the major updates introduced during the last 5 years (Phase 2 of the National Institute of General Medical Sciences Protein Structure Initiative). Our advanced automated and/or parallel cloning, expression, purification, and biophysical screening

  17. NMR spectroscopy study of local correlations in water

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Stanley, H. Eugene

    2016-12-01

    Using nuclear magnetic resonance we study the dynamics of the hydrogen bond (HB) sub-domains in bulk and emulsified water across a wide temperature range that includes the supercooled regime. We measure the proton spin-lattice T1 and spin-spin T2 relaxation times to understand the hydrophilic interactions that determine the properties of water. We use (i) the Bloembergen, Purcell, and Pound approach that focuses on a single characteristic correlation time τc, and (ii) the Powles and Hubbard approach that measures the proton rotational time τθ. We find that when the temperature is low both relaxation times are strongly correlated when the HB lifetime is long, and that when the temperature is high a decrease in the HB lifetime destroys the water clusters and decouples the dynamic modes of the system.

  18. NMR spectroscopy study of local correlations in water.

    PubMed

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Stanley, H Eugene

    2016-12-07

    Using nuclear magnetic resonance we study the dynamics of the hydrogen bond (HB) sub-domains in bulk and emulsified water across a wide temperature range that includes the supercooled regime. We measure the proton spin-lattice T1 and spin-spin T2 relaxation times to understand the hydrophilic interactions that determine the properties of water. We use (i) the Bloembergen, Purcell, and Pound approach that focuses on a single characteristic correlation time τc, and (ii) the Powles and Hubbard approach that measures the proton rotational time τθ. We find that when the temperature is low both relaxation times are strongly correlated when the HB lifetime is long, and that when the temperature is high a decrease in the HB lifetime destroys the water clusters and decouples the dynamic modes of the system.

  19. Interaction of ferulic acid derivatives with human erythrocytes monitored by pulse field gradient NMR diffusion and NMR relaxation studies.

    PubMed

    Anselmi, Cecilia; Bernardi, Francesca; Centini, Marisanna; Gaggelli, Elena; Gaggelli, Nicola; Valensin, Daniela; Valensin, Gianni

    2005-04-01

    Ferulic acid (Fer), a natural anti-oxidant and chemo-protector, is able to suppress experimental carcinogenesis in the forestomach, lungs, skin, tongue and colon. Several Fer derivatives have been suggested as promising candidates for cancer prevention, being the biological activity related also to the capacity of partitioning between aqueous and lipid phases. In the present work, pulsed field gradient (PFG) NMR diffusion measurement and NMR relaxation rates have been adopted for investigating the interaction of three Fer derivatives (Fer-C11, Fer-C12 and Fer-C13) with human erythrocytes. Binding to the erythrocyte membrane has been shown for all derivatives, which displayed a similar interaction mode such that the aromatic moiety and the terminal part of the alkyl chain were the most affected. Quantitative analysis of the diffusion coefficients was used to show that Fer-C12 and Fer-C13 display higher affinity for the cell membrane when compared with Fer-C11. These findings agree with the higher anti-oxidant activity of the two derivatives.

  20. Proton NMR study of the state of water in fibrin gels, plasma, and blood clots

    SciTech Connect

    Blinc, A.; Lahajnar, G.; Blinc, R.; Zidansek, A.; Sepe, A. )

    1990-04-01

    A proton NMR relaxation and pulsed field gradient self-diffusion study of water in fibrin gels, plasma, and blood clots has been performed with special emphasis on the effect of the sol-gel and shrinkage transitions. Deuteron NMR in fibrin gels was also studied to supplement the proton data. It is shown that a measurement of the water proton or deuteron T1/T2 ratio allows for a determination of the bound water fraction in all these systems. The change in the T1/T2 ratio at the shrinkage transition further allows for a determination of the surface fractal dimension of the gel if the change in the volume of the gel is known. The self-diffusion coefficient of water in these systems, which determines the transport properties of the gel, is found to be proportional to the free water fraction in both the nonshrunken and shrunken state.

  1. Conformational equilibrium of phenylacetic acid and its halogenated analogues through theoretical studies, NMR and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Levandowski, Mariana N.; Rozada, Thiago C.; Melo, Ulisses Z.; Basso, Ernani A.; Fiorin, Barbara C.

    2017-03-01

    This paper presents a study on the conformational preferences of phenylacetic acid (PA) and its halogenated analogues (FPA, CPA, BPA). To clarify the effects that rule these molecules' behaviour, theoretical calculations were used, for both the isolated phase and solution, combined with nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. Most conformations of phenylacetic acid and its halogenated derivatives are stabilized through the hyperconjugative effect, which rules the conformational preference. NMR analyses showed that even with the variation in medium polarity, there was no significant change in the conformation population. Infrared spectroscopy showed similar results for all compounds under study. In most spectra, two bands were found through the carbonyl deconvolution, which is in accordance with the theoretical data. It was possible to prove that variation in the nature of the substituent in the ortho position had no significant influence on the conformational equilibrium.

  2. NMR study of hydrogen diffusion in zirconium hydride

    NASA Astrophysics Data System (ADS)

    Korn, C.; Goren, S. D.

    1986-01-01

    The nuclear-magnetic-resonance method was used to study the diffusion of hydrogen in zirconium hydride by measuring the temperature dependence of T1 in a temperature range where the major relaxation mechanism was due to hydrogen diffusion. The samples investigated were ZrH1.588, ZrH1.629, ZrH1.684, ZrH1.736, ZrH1.815, ZrH1.910, and ZrH1.960. These spanned both the cubic and tetragonal phases. The activation energy was found to be independent of hydrogen concentration in the cubic phase with Ea=13.4+/-0.4 kcal/mol and a preexponential factor given by A=(1/2)(2-x)(45+/-10)×1012 Hz. In the tetragonal phase the activation energy of the bulk of the hydrogen increased modestly with concentration. In addition, it was discovered that a new very fast hydrogen channel was created by the tetragonality for ~3% of the hydrogen. They jump with a preexponential factor that is about 2 orders of magnitude larger than that of the rest of the hydrogen. A comparison was also made between the Bloembergen-Purcell-Pound, the Barton-Sholl, and the Bustard theories for nuclear magnetic relaxation due to diffusion.

  3. NMR study of hydrogen diffusion in zirconium hydride

    SciTech Connect

    Korn, C.; Goren, S.D.

    1986-01-01

    The nuclear-magnetic-resonance method was used to study the diffusion of hydrogen in zirconium hydride by measuring the temperature dependence of T/sub 1/ in a temperature range where the major relaxation mechanism was due to hydrogen diffusion. The samples investigated were ZrH/sub 1.588/, ZrH/sub 1.629/, ZrH/sub 1.684/, ZrH/sub 1.736/, ZrH/sub 1.815/, ZrH/sub 1.910/, and ZrH/sub 1.960/. These spanned both the cubic and tetragonal phases. The activation energy was found to be independent of hydrogen concentration in the cubic phase with E/sub a/ = 13.4 +- 0.4 kcal/mol and a preexponential factor given by A = (1/2)(2-x)(45 +- 10) x 10/sup 12/ Hz. In the tetragonal phase the activation energy of the bulk of the hydrogen increased modestly with concentration. In addition, it was discovered that a new very fast hydrogen channel was created by the tetragonality for approx.3% of the hydrogen. They jump with a preexponential factor that is about 2 orders of magnitude larger than that of the rest of the hydrogen. A comparison was also made between the Bloembergen-Purcell-Pound, the Barton-Sholl, and the Bustard theories for nuclear magnetic relaxation due to diffusion.

  4. NMR studies of electrostatic potential distribution around biologically important molecules.

    PubMed Central

    Likhtenshtein, G I; Adin, I; Novoselsky, A; Shames, A; Vaisbuch, I; Glaser, R

    1999-01-01

    A new experimental approach has been developed to study the distribution of local electrostatic potential around specific protons in biologically important molecules. The approach is the development of a method denoted as "spin label/spin probe," which was proposed by one of us (. Mol. Biol. 6:498-507). The proposed method is based upon the quantitative measurement of the contribution of differently charged nitroxide probes to the spin lattice relaxation rate (1/T1) of protons in the molecule of interest, followed by calculation of local electrostatic potential using the classical Debye equation. In parallel, the theoretical calculation of potential distribution with the use of the MacSpartan Plus 1.0 program has been performed. Application of the method to solutions of simple organic molecules (aliphatic and aromatic alcohols, aliphatic carboxylates (propionate anion), and protonated ethyl amine and imidazole) allowed us to estimate the effective potential around the molecules under investigation. These were found to be in good agreement with theoretically expected values. This technique was then applied to zwitterionic amino acids bearing neutral and charged side chains (glycine, lysine, histidine, and aspartic acid). The reliability of the general approach is proved by the data presented in this paper. Application of this new methodology can afford insight into the biochemical significance of electrostatic effects in biological systems. PMID:10388770

  5. Low-temperature NMR studies of Zn tautomerism and hindered rotations in solid zincocene derivatives.

    PubMed

    Lopez del Amo, Juan Miguel; Buntkowsky, Gerd; Limbach, Hans-Heinrich; Resa, Irene; Fernandez, Rafael; Carmona, Ernesto

    2008-04-24

    Using a combination of NMR methods we have detected and studied fluxional motions in the slip-sandwich structure of solid decamethylzincocene (I, [(eta5-C5Me5)Zn(eta1-C5Me5)]). For comparison, we have also studied the solid iminoacyl derivative [(eta5-C5Me5)Zn(eta1-C(NXyl)C5Me5)] (II). The variable temperature 13C CPMAS NMR spectra of I indicate fast rotations of both Cp* rings in the molecule down to 156 K as well as the presence of an order-disorder phase transition around 210 K. The disorder is shown to be dynamic arising from a fast combined Zn tautomerism and eta1/eta5 reorganization of the Cp* rings between two degenerate states A and B related by a molecular inversion. In the ordered phase, the degeneracy of A and B is lifted; that is, the two rings X and Y are inequivalent, where X exhibits a larger fraction of time in the eta5 state than Y. However, the interconversion is still fast and characterized by a reaction enthalpy of DeltaH = 2.4 kJ mol-1 and a reaction entropy of DeltaS = 4.9 J K-1 mol-1. In order to obtain quantitative kinetic information, variable temperature 2H NMR experiments were performed on static samples of I-d6 and II-d6 between 300 and 100 K, where in each ring one CH3 is replaced by one CD3 group. For II-d6, the 2H NMR line shapes indicate fast CD3 group rotations and a fast "eta5 rotation", corresponding to 72 degrees rotational jumps of the eta5 coordinated Cp* ring. The latter motion becomes slow around 130 K. By line shape analysis, an activation energy of the eta5 rotation of about 21 kJ mol-1 was obtained. 2H NMR line shapes analysis of I-d6 indicates fast CD3 group rotations at all temperatures. Moreover, between 100 and 150 K, a transition from the slow to the fast exchange regime is observed for the 5-fold rotational jumps of both Cp* rings, exhibiting an activation energy of 18 kJ mol-1. This value was corroborated by 2H NMR relaxometry from which additionally the activation energies 6.3 kJ mol-1 and 11.2 kJ mol-1 for the CD3

  6. Protein-Carbohydrate Interactions Studied by NMR: From Molecular Recognition to Drug Design

    PubMed Central

    Fernández-Alonso, María del Carmen; Díaz, Dolores; Berbis, Manuel Álvaro; Marcelo, Filipa; Cañada, Javier; Jiménez-Barbero, Jesús

    2012-01-01

    Diseases that result from infection are, in general, a consequence of specific interactions between a pathogenic organism and the cells. The study of host-pathogen interactions has provided insights for the design of drugs with therapeutic properties. One area that has proved to be promising for such studies is the constituted by carbohydrates which participate in biological processes of paramount importance. On the one hand, carbohydrates have shown to be information carriers with similar, if not higher, importance than traditionally considered carriers as amino acids and nucleic acids. On the other hand, the knowledge on molecular recognition of sugars by lectins and other carbohydrate-binding proteins has been employed for the development of new biomedical strategies. Biophysical techniques such as X-Ray crystallography and NMR spectroscopy lead currently the investigation on this field. In this review, a description of traditional and novel NMR methodologies employed in the study of sugar-protein interactions is briefly presented in combination with a palette of NMR-based studies related to biologically and/or pharmaceutically relevant applications. PMID:23305367

  7. Theoretical and experimental IR, Raman and NMR spectra in studying the electronic structure of 2-nitrobenzoates

    NASA Astrophysics Data System (ADS)

    Świsłocka, R.; Samsonowicz, M.; Regulska, E.; Lewandowski, W.

    2007-05-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-nitrobenzoic acid (2-NBA) was studied. Optimized geometrical structures of studied compounds were calculated by HF, B3PW91, B3LYP methods using 6-311++G ∗∗ basis set. The theoretical IR and NMR spectra were obtained. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-nitrobenzoic acid salts of alkali metals were also recorded. The assignment of vibrational spectra was done. Characteristic shifts of band wavenumbers and changes in band intensities along the metal series were observed. Good correlation between the wavenumbers of the vibrational bands in the IR and Raman spectra for 2-nitrobenzoates (2-NB) and ionic potential, electronegativity, atomic mass and affinity of metals were found. The chemical shifts of protons and carbons ( 1H, 13C NMR) in the series of studied alkali metal 2-nitrobenzoates were observed too. The calculated parameters were compared to experimental characteristic of studied compounds.

  8. Two-dimensional NMR studies of the porcine muscle adenylate kinase

    SciTech Connect

    Klaus, W.; Scharf, M.; Zimmermann, S.; Roesch, P.

    1988-07-26

    Porcine adenylate kinase was subjected to one- and two-dimensional proton NMR studies in order to identify amino acid spin systems and obtain sequence-specific resonance assignments. With a combination of results from a map of side-chain distances resulting from the refined X-ray crystallographic data and nuclear Overhauser effect spectroscopy (NOESY), assignments are suggested for all the aromatic spin systems.

  9. INSTRUMENTS AND METHODS OF INVESTIGATION: NMR potentials for studying physical processes in fossil coals

    NASA Astrophysics Data System (ADS)

    Alekseev, Anatolii D.; Ul'yanova, Ekaterina V.; Vasilenko, Tat'yana A.

    2005-11-01

    High-resolution, pulsed, and wide-line NMR studies of fossil coals are reviewed. Coal substance conversion due to outbursts is discussed. Results on water and methane interactions with coal substance, which provide insight into the dynamic characteristics of boundary water, the location of methane in coal structure, and water and methane's hazard implications for coal beds (gas- or geodynamic phenomena) are presented; these are shown to have potential for predicting and preventing life threatening situations.

  10. Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles

    DOE PAGES

    Furukawa, Yuji

    2016-10-01

    This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K6[V15As6O42(H2O)]·8H2O (in short V15), (2) the spin ball [Mo72Fe30O252(Mo2O7(H2O))2(Mo2O8H2(H2O)) (CH3COO)12(H2O)91]·150H2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl2tachH)3Cl]Cl2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determined in both the nonfrustrated total spin ST = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate ST =more » 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T1) measurements. In the ST = 3/2 state, 1/T1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T1 at very low temperatures is observed in the frustrated ST = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T1 measurements. From the temperature dependence of 1/T1, the fluctuation frequency of the Fe3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The spin freezing is also evidenced by the observation of a sudden broadening of 1H NMR spectra below 0.6 K. Finally, 1H NMR data in Cu3 will be described. An observation of magnetic broadening of 1H NMR spectra at low temperatures below 1 K directly revealed a gapless ground state. The 1/T1 measurements revealed a usual slow spin dynamics in the Cu3 spin tube.« less

  11. NMR studies of the membrane bound form of filamentous bacteriophage fd and Pfl major coat proteins

    SciTech Connect

    Schiksnis, R.A.; Bogusky, M.J.; Opella, S.J.

    1987-05-01

    The major coat proteins of the fd (M13) and Pf1 filamentous bacteriophage exist as integral membrane proteins during the viral life cycle. These proteins adopt their membrane bound conformations when solubilized by a variety of detergents, and the protein-detergent micelle complexes can be studied using solution NMR techniques. Determination of the structure of the coat proteins in their membrane bound form has been accomplished by qualitative interpretation of 2-dimensional /sup 1/H-/sup 1/H NOE spectra (NOESY). The critical amide proton resonance assignments were made through biosynthetic /sup 15/N labeling and /sup 1/H//sup 15/N heteronuclear chemical shift correlation techniques. The data indicate that both proteins adopt helical conformations within the micelle. The /sup 15/N//sup 1/H heteronuclear NOE has been used to characterize the backbone dynamics of both proteins in micelles. The lipid associated residues of the proteins are rigid on the nanosecond timescale, while the hydrophilic solvent associated N- and C-termini are high mobile. These results complement previously reported protein dynamics studies of membrane bound coat proteins conducted using solid state NMR methods. Solid state NMR studies reported in the literature have also investigated the structure and dynamics of the fd and Pf1 major coat proteins when bound to intact phage. Therefore, structure/dynamics comparisons of the proteins in their structural versus membrane bound forms can be made.

  12. NMR study of a membrane protein in detergent-free aqueous solution.

    PubMed

    Zoonens, Manuela; Catoire, Laurent J; Giusti, Fabrice; Popot, Jean-Luc

    2005-06-21

    One of the major obstacles to membrane protein (MP) structural studies is the destabilizing effect of detergents. Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep MPs water-soluble under mild conditions. In the present work, we have explored the feasibility of studying the structure of APol-complexed MPs by NMR. As a test MP, we chose the 171-residue transmembrane domain of outer MP A from Escherichia coli (tOmpA), whose x-ray and NMR structures in detergent are known. 2H,15N-labeled tOmpA was produced as inclusion bodies, refolded in detergent solution, trapped with APol A8-35, and the detergent removed by adsorption onto polystyrene beads. The resolution of transverse relaxation-optimized spectroscopy-heteronuclear single-quantum correlation spectra of tOmpA/A8-35 complexes was found to be close to that of the best spectra obtained in detergent solutions. The dispersion of chemical shifts indicated that the protein had regained its native fold and retained it during the exchange of surfactants. MP-APol interactions were mapped by substituting hydrogenated for deuterated A8-35. The resulting dipolar broadening of amide proton linewidths was found to be limited to the beta-barrel region of tOmpA, indicating that A8-35 binds specifically to the hydrophobic transmembrane surface of the protein. The potential of this approach to MP studies by solution NMR is discussed.

  13. 13C NMR studies of carboxylate inhibitor binding to cobalt(II) carboxypeptidase A.

    PubMed

    Bertini, I; Monnanni, R; Pellacani, G C; Sola, M; Vallee, B L; Auld, D S

    1988-01-01

    Both 13C NMR and electronic absorption spectral studies on cobalt(II) carboxypeptidase A in the presence of acetate and phenylacetate provide evidence for two binding sites for each of these agents. The transverse relaxation rate T2-1 for the 13C-enriched carboxyl groups of the inhibitors is significantly increased when bound to the paramagnetic cobalt carboxypeptidase as compared to the diamagnetic zinc enzyme. The acetate concentration dependence of T2p-1 shows two inflections indicative of sequential binding of two inhibitor molecules. The cobalt-13C distances, calculated by means of the Solomon equation, indicate that the second acetate molecule binds directly to the metal ion while the first acetate molecule binds to a protein group at a distance 0.5-0.8 nm for the metal ion, consistent with it binding to one or more of the arginyl residues (Arg-145, Arg-127, or Arg-71). In the case of phenylacetate, perturbation of the cobalt electronic absorption spectrum shows that binding occurs stepwise. 13C NMR distance measurements indicate that one of the two phenylacetates is bound to the metal in the EI2 complex. These binding sites may correspond to those identified previously by kinetic means (one of which is competitive, the other noncompetitive) with peptide binding. The studies further indicate that it should be possible to map the protein interactions of the carbonyl groups of both substrate and noncompetitive inhibitors during catalysis by means of 13C NMR studies with suitably labeled substrates and inhibitors.

  14. Spin dynamics of the giant polyoxometalate molecule {Mn₄₀W₂₂₄} studied by NMR.

    PubMed

    Furukawa, Y; Fang, X; Kögerler, P

    2014-05-14

    (7)Li nuclear magnetic resonance (NMR) studies have been performed to investigate magnetic properties and spin dynamics of Mn(3+) (S = 2) spins in the giant polyoxometalate molecule {Mn₄₀W₂₂₄}. The (7)Li-NMR line width is proportional to the external magnetic field H as expected in a paramagnetic state above 3 K. Below this temperature the line width shows a sudden increase and is almost independent of H, which indicates freezing of the local Mn(3+) spins. The temperature dependence of T₁ for both (1)H and (7)Li reveals slow spin dynamics at low temperatures, consistent with spin freezing. The slow spin dynamics is also evidenced by the observation of a peak of 1/T₂ around 3 K, where the fluctuation frequency of spins is of the order of ∼200 kHz. An explicit form of the temperature dependence of the fluctuation frequency of Mn(3+) spins is derived from the nuclear relaxation data.

  15. A high-resolution solid-state NMR approach for the structural studies of bicelles.

    PubMed

    Dvinskikh, Sergey; Dürr, Ulrich; Yamamoto, Kazutoshi; Ramamoorthy, Ayyalusamy

    2006-05-17

    Bicelles are increasingly being used as membrane mimicking systems in NMR experiments to investigate the structure of membrane proteins. In this study, we demonstrate the effectiveness of a 2D solid-state NMR approach that can be used to measure the structural constraints, such as heteronuclear dipolar couplings between 1H, 13C, and 31P nuclei, in bicelles without the need for isotopic enrichment. This method does not require a high radio frequency power unlike the presently used rotating-frame separated-local-field (SLF) techniques, such as PISEMA. In addition, multiple dipolar couplings can be measured accurately, and the presence of a strong dipolar coupling does not suppress the weak couplings. High-resolution spectra obtained from magnetically aligned DMPC:DHPC bicelles even in the presence of peptides suggest that this approach will be useful in understanding lipid-protein interactions that play a vital role in shaping up the function of membrane proteins.

  16. A High Resolution Solid State NMR Approach for the Structural Studies of Bicelles

    PubMed Central

    Dvinskikh, Sergey; Dürr, Ulrich; Yamamoto, Kazutoshi; Ramamoorthy, Ayyalusamy

    2008-01-01

    Bicelles are increasingly being used as membrane mimicking systems in NMR experiments to investigate the structure of membrane proteins. In this study, we demonstrate the effectiveness of a 2D solid-state NMR approach that can be used to measure the structural constraints such as heteronuclear dipolar couplings between 1H, 13C and 31P nuclei in bicelles without the need for isotopic enrichment. This method does not require a high radio frequency power unlike the presently used rotating-frame separated-local-field (SLF) techniques like PISEMA. In addition, multiple dipolar couplings can be measured accurately and the presence of a strong dipolar coupling does not suppress the weak couplings. High resolution spectra obtained from magnetically aligned DMPC:DHPC bicelles even in the presence of peptides suggest that this approach will be useful in understanding lipid-protein interactions that play a vital role in shaping up the function of membrane proteins. PMID:16683791

  17. Structural studies of proteins by paramagnetic solid-state NMR spectroscopy

    PubMed Central

    Jaroniec, Christopher P.

    2015-01-01

    Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ~20 Å length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules that suffer from a sparse number of experimentally-accessible atomic distances constraining their three-dimensional fold or intermolecular interactions. This perspective provides a brief overview of the recent developments and applications of paramagnetic magic-angle spinning NMR to biological systems, with primary focus on the investigations of metalloproteins and natively diamagnetic proteins modified with covalent paramagnetic tags. PMID:25797004

  18. Chiral Magnetism in an Itinerant Helical Magnet, MnSi - An Extended 29Si NMR Study

    NASA Astrophysics Data System (ADS)

    Yasuoka, Hiroshi; Motoya, Kiyoichiro; Majumder, Mayukh; Witt, Sebastian; Krellner, Cornelius; Baenitz, Michael

    2016-07-01

    The microscopic magnetism in the helical, conical and ferromagnetically polarized phases in an itinerant helical magnet, MnSi, has been studied by an extended 29Si NMR at zero field and under external magnetic fields. The temperature dependence of the staggered moment, MQ(T), determined by the 29Si NMR frequency, ν(T), and the nuclear relaxation rate, 1/T1(T), at zero field is in general accord with the SCR theory for weak itinerant ferromagnetic metals and its extension to helical magnets. The external field dependence of resonance frequency, ν(H), follows a vector sum of the contributions from the atomic hyperfine and macroscopic fields with a field induced moment characteristic to itinerant magnets. A discontinuous jump of the resonance frequency at the critical field, Hc, between the conical and the polarized phases has also been found, which suggests a first order like change of the electronic states at Hc.

  19. Decomposition of adsorbed VX on activated carbons studied by {sup 31}P MAS NMR

    SciTech Connect

    Ishay Columbus; Daniel Waysbort; Liora Shmueli; Ido Nir; Doron Kaplan

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-(2-(diisopropylamino)ethyl) methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. Four types of activated carbon were used, including coal-based BPL. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) ((DES){sub 2}). Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed. 17 refs., 6 figs., 3 tabs.

  20. Structure-activity study of thiazides by magnetic resonance methods (NQR, NMR, EPR) and DFT calculations.

    PubMed

    Latosińska, J N

    2005-01-01

    The paper presents a comprehensive analysis of the relationship between the electronic structure of thiazides and their biological activity. The compounds of interest were studied in solid state by the resonance methods nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) and quantum chemistry (ab inito and DFT) methods. Detailed parallel analysis of the spectroscopic parameters such as quadrupole coupling constant (QCC) NQR chemical shift (delta), chemical shift anisotropy (CSA), asymmetry parameter (eta), NMR and hyperfine coupling constant (A), EPR was performed and the electronic effects (polarisation and delocalisation) were revealed and compared. Biological activity of thiazides has been found to depend on many factors, but mainly on the physico-chemical properties whose assessment was possible on the basis of electron density determination in the molecules performed by experimental and theoretical methods.

  1. NMR and Mössbauer Study of Al2O3-Eu2O3

    NASA Astrophysics Data System (ADS)

    Nava, N.; Salas, P.; Llanos, M. E.; Pérez-Pastenes, H.; Viveros, T.

    2005-02-01

    Alumina-europia mixed oxides with 5 and 10 wt.% Eu2O3 were studied by Mössbauer spectroscopy, 27Al MAS-NMR and X-ray diffraction (XRD). The samples were prepared by the sol-gel technique. The XRD patterns for the calcined samples show a broad peak around 2 θ = 30° which is assigned to the Eu2O3; after treatment with hydrogen at 1073 K no reduction to Eu+2 or Eu0 was observed. The NMR spectra show three peaks, which are assigned to the octahedral, pentahedral and tetrahedral aluminum sites; the intensity of each peak depends on the concentration of europium ions. The Mössbauer spectra of the calcined samples show a single peak near zero velocity which is attributed to the Eu+3; after H2 treatment at 1073 K similar spectra were obtained, suggesting Eu+3 is not reducibly at this temperature.

  2. Decomposition of adsorbed VX on activated carbons studied by 31P MAS NMR.

    PubMed

    Columbus, Ishay; Waysbort, Daniel; Shmueli, Liora; Nir, Ido; Kaplan, Doron

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) {(DES)2}. Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed.

  3. /sup 13/C NMR studies of the molecular flexibility of antidepressants

    SciTech Connect

    Munro, S.L.; Andrews, P.R.; Craik, D.J.; Gale, D.J.

    1986-02-01

    The solution dynamics of a series of clinically potent antidepressants have been investigated by measuring /sup 13/C NMR relaxation parameters. Correlation times and internal motional rates were calculated from spin-lattice relaxation times and nuclear Overhauser effects for the protonated carbons in mianserin, imipramine-like antidepressants, and amitriptyline-like antidepressants. These data were interpreted in terms of overall molecular tumbling, internal rotations, and inherent flexibility of these structures. Of particular interest was the conformational variability of the tricyclic nucleus of the tricyclic antidepressants, where the data indicated a fivefold difference in mobility of the dimethylene bridge of imipramine-like antidepressants relative to amitriptyline-like compounds. The implications of such a difference in internal motions is discussed in relation to previous NMR studies and to the reported differences in pharmacological activity of these antidepressants.

  4. Solid-state NMR studies of the reactions of silica surfaces with polyfunctional chloromethylsilanes and ethoxymethylsilanes

    SciTech Connect

    Sindorf, D.W.; Maciel, G.E.

    1983-06-15

    The silylation of silica (Si) surfaces by dimethyldichlorosilane, methyltrichlorosilane, dimethyldiethoxysilane, and methyltriethoxysilane has been studied by solid-state /sup 29/Si and /sup 13/C NMR, by use of cross polarization (CP) and magic-angle spinning (MAS). An earlier formalism for the quantitative analysis of the NRM data has been extended for use with polyfunctional silyating agents and applied in detail to dimethyldichlorosilane reactions. Silylation with ethoxysilane reagents is less amenable to quantitative interpretation but appears to parallel closely the behavior of analogous chlorosilane reagents. With ethoxysilane reagents /sup 13/C NMR is found to be quite useful, especially for determining the fate of ethoxy groups. In all of the cases studied, the products are characterized primarily by single silane-to-surface attachments of each silane silicon atom. The presence of absorbed water is found to play an important role in the course and rate of the silylation reactions, especially those employing ethoxysilane reagents. The NMR data are used to address the question of horizontal and vertical polymerization within the silane phase on the silica surface.

  5. NMR and MD studies of the temperature-dependent dynamics of RNA YNMG-tetraloops

    PubMed Central

    Ferner, Jan; Villa, Alessandra; Duchardt, Elke; Widjajakusuma, Elisabeth; Wöhnert, Jens; Stock, Gerhard; Schwalbe, Harald

    2008-01-01

    In a combined NMR/MD study, the temperature-dependent changes in the conformation of two members of the RNA YNMG-tetraloop motif (cUUCGg and uCACGg) have been investigated at temperatures of 298, 317 and 325 K. The two members have considerable different thermal stability and biological functions. In order to address these differences, the combined NMR/MD study was performed. The large temperature range represents a challenge for both, NMR relaxation analysis (consistent choice of effective bond length and CSA parameter) and all-atom MD simulation with explicit solvent (necessity to rescale the temperature). A convincing agreement of experiment and theory is found. Employing a principle component analysis of the MD trajectories, the conformational distribution of both hairpins at various temperatures is investigated. The ground state conformation and dynamics of the two tetraloops are indeed found to be very similar. Furthermore, both systems are initially destabilized by a loss of the stacking interactions between the first and the third nucleobase in the loop region. While the global fold is still preserved, this initiation of unfolding is already observed at 317 K for the uCACGg hairpin but at a significantly higher temperature for the cUUCGg hairpin. PMID:18272534

  6. Novel superconducting phases in copper oxides and iron-oxypnictides: NMR studies

    NASA Astrophysics Data System (ADS)

    Kitaoka, Yoshio; Mukuda, Hidekazu; Shimizu, Sunao; Tabata, Shin-ichiro; Shirage, Parasharam M.; Iyo, Akira

    2011-05-01

    We reexamine the novel phase diagrams of antiferromagnetism (AFM) and high-Tc superconductivity (HTSC) for a disorder-free CuO2 plane based on an evaluation of local hole density (p) by site-selective Cu-NMR studies on multilayered copper oxides. Multilayered systems provide us with the opportunity to research the characteristics of the disorder-free CuO2 plane. The site-selective NMR is the best and the only tool used to extract layer-dependent characteristics. Consequently, we have concluded that the uniform mixing of AFM and SC is a general property inherent to a single CuO2 plane in an underdoped regime of HTSC. The T=0 phase diagram of AFM constructed here is in quantitative agreement with the theories in a strong correlation regime which is unchanged even with mobile holes. This Mott physics plays a vital role for mediating the Cooper pairs to make Tc of HTSC very high. By contrast, we address from extensive NMR studies on electron-doped iron-oxypnictides La1111 compounds that the increase in Tc is not due to the development of AFM spin fluctuations, but because the structural parameters, such as the bond angle α of the FeAs4 tetrahedron and the a-axis length, approach each optimum value. Based on these results, we propose that a stronger correlation in HTSC than in FeAs-based superconductors may make Tc higher significantly.

  7. High resolution NMR for studying lipid hydrolysis and esterification in cod (Gadus morhua) gonads.

    PubMed

    Falch, Eva; Størseth, Trond Røvik; Aursand, Marit

    2007-05-01

    High resolution NMR was applied to study biochemical changes of lipids in cod (Gadus morhua) gonads during 7 days storage at 4 degrees C. Changes were observed in the (13)C and (1)H resonances of cholesterol which were due to esterification of fatty acids at the hydroxyl position in roe and milt. Furthermore, the (13)C NMR spectra showed that the lipolytic changes in milt and roe where different. New resonances appeared during storage, due to formation of specific free fatty acids, with the corresponding changes in resonances of the esterified carbonyls and glycerols. The highly unsaturated n-3 fatty acids were hydrolysed from the sn-1 and sn-2 position of both phosphatidylcholine and phosphatidylethanolamine in milt. The lipolytical changes in roe were less prominent compared to the changes in milt, however significant levels of sn-1-lysophospholipids was detected both in roe and milt. The current data demonstrate that high resolution NMR may be a suitable method to non-destructively study hydrolysis and esterification reactions occurring in heterogeneous marine lipids in a one step procedure.

  8. A comprehensive NMR structural study of Titan aerosol analogs: Implications for Titan's atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    He, Chao; Smith, Mark A.

    2014-11-01

    Titan has a thick atmosphere composed primarily of nitrogen and methane. Complex organic chemistry induced by solar ultraviolet radiation and energetic particles, takes place in Titan's upper atmosphere, producing an optically thick reddish brown carbon based haze encircling this moon. The chemistry in Titan's atmosphere and its resulting chemical structures are still not fully understood in spite of a great many efforts being made. In our previous work, we have investigated the structure of the 13C and 15N labeled, simulated Titan haze aerosols (tholin) by NMR and identified several dominant small molecules in the tholin. Here we report our expanded structural investigation of the bulk of the tholin by more comprehensive NMR study. The NMR results show that the tholin materials are dominated by heavily nitrogenated compounds, in which the macromolecular structures are highly branched polymeric or oligomeric compounds terminated in methyl, amine, and nitrile groups. The structural characteristic suggest that the tholin materials are formed via different copolymerization or incorporation mechanisms of small precursors, such as HCN, CH2dbnd NH, NH3 and C2H2. This study helps to understand the formation process of nitrogenated organic aerosols in Titan's atmosphere and their prebiotic implications.

  9. Cu(II)-Based Paramagnetic Probe to Study RNA-Protein Interactions by NMR.

    PubMed

    Seebald, Leah M; DeMott, Christopher M; Ranganathan, Srivathsan; Asare Okai, Papa Nii; Glazunova, Anastasia; Chen, Alan; Shekhtman, Alexander; Royzen, Maksim

    2017-04-03

    Paramagnetic NMR techniques allow for studying three-dimensional structures of RNA-protein complexes. In particular, paramagnetic relaxation enhancement (PRE) data can provide valuable information about long-range distances between different structural components. For PRE NMR experiments, oligonucleotides are typically spin-labeled using nitroxide reagents. The current work describes an alternative approach involving a Cu(II) cyclen-based probe that can be covalently attached to an RNA strand in the vicinity of the protein's binding site using "click" chemistry. The approach has been applied to study binding of HIV-1 nucleocapsid protein 7 (NCp7) to a model RNA pentanucleotide, 5'-ACGCU-3'. Coordination of the paramagnetic metal to glutamic acid residue of NCp7 reduced flexibility of the probe, thus simplifying interpretation of the PRE data. NMR experiments showed attenuation of signal intensities from protein residues localized in proximity to the paramagnetic probe as the result of RNA-protein interactions. The extent of the attenuation was related to the probe's proximity allowing us to construct the protein's contact surface map.

  10. NMR study on small proteins from Helicobacter pylori for antibiotic target discovery: a review.

    PubMed

    Kang, Su-Jin; Kim, Do-Hee; Lee, Bong-Jin

    2013-10-30

    Due to the widespread and increasing appearance of antibiotic resistance, a new strategy is needed for developing novel antibiotics. Especially, there are no specific antibiotics for Helicobacter pylori (H. pylori). H. pylori are bacteria that live in the stomach and are related to many serious gastric problems such as peptic ulcers, chronic gastritis, mucosa-associated lymphoid tissue lymphoma, and gastric cancer. Because of its importance as a human pathogen, it's worth studying the structure and function of the proteins from H. pylori. After the sequencing of the H. pylori strain 26695 in 1997, more than 1,600 genes were identified from H. pylori. Until now, the structures of 334 proteins from H. pylori have been determined. Among them, 309 structures were determined by X-ray crystallography and 25 structures by Nuclear Magnetic Resonance (NMR), respectively. Overall, the structures of large proteins were determined by X-ray crystallography and those of small proteins by NMR. In our lab, we have studied the structural and functional characteristics of small proteins from H. pylori. In this review, 25 NMR structures of H. pylori proteins will be introduced and their structure-function relationships will be discussed.

  11. 39K, 23Na, and 31P NMR Studies of Ion Transport in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Ogino, T.; den Hollander, J. A.; Shulman, R. G.

    1983-09-01

    The relationship between efflux and influx of K+, Na+, and intracellular pH (pHin) in yeast cells upon energizing by oxygenation was studied by using the noninvasive technique of 39K, 23Na, and 31P NMR spectroscopy. By introducing an anionic paramagnetic shift reagent, Dy3+(P3O105-)2, into the medium, NMR signals of intra- and extracellular K+ and Na+ could be resolved, enabling us to study ion transport processes by NMR. Measurements showed that 40% of the intracellular K+ and Na+ in yeast cells contributed to the NMR intensities. By applying this correction factor, the intracellular ion concentrations were determined to be 130-170 mM K+ and 2.5 mM Na+ for fresh yeast cells. With the aid of a home-built solenoidal coil probe for 39K and a double-tuned probe for 23Na and 31P, we could follow time courses of K+ and Na+ transport and of pHin with a time resolution of 1 min. It was shown that H+ extrusion is correlated with K+ uptake and not with Na+ uptake upon energizing yeast cells by oxygenation. When the cells were deenergized after the aerobic period, K+ efflux, H+ influx, and Na+ influx were calculated to be 1.6, 1.5, and 0.15 μ mol/min per ml of cell water, respectively. Therefore, under the present conditions, K+ efflux is balanced by exchange for H+ with an approximate stoichiometry of 1:1.

  12. A 29Si MAS-NMR study of transition metal site occupancy in forsterite

    NASA Astrophysics Data System (ADS)

    Mccarty, R. J.; Palke, A.; Stebbins, J. F.; Hartman, S.

    2012-12-01

    In this study, we address the problem of transition metal site occupancy in Mg-rich olivine using solid-state magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy. Transition metal substitution in olivine can occur in either of the two crystallographically unique octahedral sites: the smaller, more symmetric M1 site or the larger, more distorted M2 site. Site occupancy of the transition metal is expected to correlate with ionic radius and d-orbital structure. In NMR spectroscopy the presence of paramagnetic ions, such as transition metal ions, can produce accessory peaks referred to as "contact shifts," due to the interaction between unpaired electrons on the paramagnetic ion locally associated with the resonating nucleus. The position and intensity of the contact shifts are dependent on the geometrical association such as bond distances and bond angles between the paramagnetic ion and the resonating nucleus. 29Si MAS-NMR spectra collected on synthetic forsterite (Mg2SiO4) doped with minor amounts (0.2-5%) of individual, divalent, paramagnetic, transition metal cations (Mn, Co, Ni, or Cu) substituting for Mg in the octahedral sites, reveals multiple contact shifts. An interpretation of the number of such contact shifts and their relative intensities correlated with structural information of possible 29Si-M1 and 29Si-M2 configurations, potentially allows for the assignment of specific transition metals to individual M1 or M2 sites. An analysis of the MAS-NMR data will potentially bring a new level of confidence to transition metal site occupancy in forsterite.

  13. Temperature and pressure based NMR studies of detergent micelle phase equilibria.

    PubMed

    Alvares, Rohan; Gupta, Shaan; Macdonald, Peter M; Prosser, R Scott

    2014-05-29

    Bulk thermodynamic and volumetric parameters (ΔGmic°, ΔHmic°, ΔSmic°, ΔCp,mic°, ΔVmic°, and Δκmic°) associated with the monomer–micelle equilibrium, were directly determined for a variety of common detergents [sodium n-dodecyl sulfate (SDS), n-dodecyl phosphocholine (DPC), n-dodecyl-β-d-maltoside (DDM), and 7-cyclohexyl-1-heptyl phosphocholine (CyF)] via 1H NMR spectroscopy. For each temperature and pressure point, the critical micelle concentration (cmc) was obtained from a single 1H NMR spectrum at a single intermediate concentration by referencing the observed chemical shift to those of pure monomer and pure micellar phases. This permitted rapid measurements of the cmc over a range of temperatures and pressures. In all cases, micelle formation was strongly entropically favored, while enthalpy changes were all positive, with the exception of SDS, which exhibited a modestly negative enthalpy of micellization. Heat capacity changes were also characteristically negative, while partial molar volume changes were uniformly positive, as expected for an aggregation process dictated by hydrophobic effects. Isothermal compressibility changes were found to be consistent with previous measurements using other techniques. Thermodynamic measurements were also related to spectroscopic studies of topology and micelle structure. For example, paramagnetic effects resulting from the addition of dioxygen provided microscopic topological details concerning the hydrophobicity gradient along the detergent chains within their respective micelles as detected by 1H NMR. In a second example, combined 13C and 1H NMR chemical shift changes arising from application of high pressure, or upon micellization, of CyF provided site-specific details regarding micelle topology. In this fashion, bulk thermodynamics could be related to microscopic topological details within the detergent micelle.

  14. NMR Studies of Thermo-responsive Behavior of an Amphiphilic Poly(asparagine) Derivative in Water.

    PubMed

    Watanabe, Eiji; Boutis, Gregory S; Sato, Hiroko; Sekine, Sokei; Asakura, Tetsuo

    2014-01-14

    The thermo-responsive behavior of a unique biocompatible polymer, poly(N-substituted α/β-asparagine) derivative (PAD), has been studied with several NMR methods. The (1)H and (13)C solution NMR measurements of the PAD in DMSO-d6 were used to investigate the isolated polymer and perform spectral assignments. By systematic addition of D2O we have tracked structural changes due to aggregation and observed contraction of hydrophilic side chains. Solution and cross polarization / magic angle spinning (CP/MAS) (13)C NMR approaches were implemented to investigate the aggregates of the PAD aqueous solution during the liquid to gel transition as the temperature was increased. At temperatures near 20 °C, all of the peaks from the PAD were observed in the (13)C CP/MAS and (13)C solution NMR spectra, indicating the presence of polymer chain nodes. Increasing the temperature to 40 °C resulted in a partial disentanglement of the nodes due to thermal agitation and further heating resulted in little to no additional structural changes. Deuterium T1-T2 and T2-T2 two-dimensional relaxation spectroscopies using an inverse Laplace transform, were also implemented to monitor the water-PAD interaction during the phase transition. At temperatures near 20 °C the dynamical characteristics of water were manifested into one peak in the deuterium T1-T2 map. Increasing the temperature to 40 °C resulted in several distinguishable reservoirs of water with different dynamical characteristics. The observation of several reservoirs of water at the temperature of gel formation at 40 °C is consistent with a physical picture of a gel involving a network of interconnected polymer chains trapping a fluid. Further increase in temperature to 70 °C resulted in two non-exchanging water reservoirs probed by deuterium T2-T2 measurements.

  15. Novel electrolytes for use in new and improved batteries: An NMR study

    NASA Astrophysics Data System (ADS)

    Berman, Marc B.

    This thesis focuses on the use of nuclear magnetic resonance (NMR) spectroscopy in order to study materials for use as electrolytes in batteries. The details of four projects are described in this thesis as well as a brief theoretical background of NMR. Structural and dynamics properties were determined using several NMR techniques such as static, MAS, PFG diffusion, and relaxation to understand microscopic and macroscopic properties of the materials described within. Nuclei investigate were 1H, 2H, 7Li, 13C, 19F, 23Na, and 27Al. The first project focuses on an exciting new material to be used as a solid electrolyte membrane. T. The second project focuses on the dynamics of ionic liquid-solvent mixtures and their comparison to molecular dynamics computer simulations. The third project involves a solvent-free film containing NaTFSI salt mixed in to PEO for use in sodium-ion batteries. This final project focuses on a composite electrolyte consisting of a ceramic and solid: LiI:PEO:LiAlO2.

  16. Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid

    SciTech Connect

    Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; Gan, Zhehong; Kelly, Jeffery W.; Wright, Peter E.; Wemmer, David E.

    2016-09-20

    © 2016 American Chemical Society. Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectively 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.

  17. Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid

    DOE PAGES

    Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...

    2016-09-20

    © 2016 American Chemical Society. Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlationmore » MAS spectra obtained with selectively 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less

  18. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR

    DOE PAGES

    Zinke, Maximilian; Fricke, Pascal; Samson, Camille; ...

    2017-07-07

    Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH,more » (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.« less

  19. Nuclear Magnetic Resonance (NMR) as a tool for the study of the metabolism of Rickettsia slovaca.

    PubMed

    García-Álvarez, Lara; Busto, Jesús H; Peregrina, Jesús M; Santibáñez, Sonia; Portillo, Aránzazu; Avenoza, Alberto; Oteo, José A

    2015-01-01

    Rickettsial infections are caused by intracellular bacteria. They do not grow in standard culture media so there are limitations in routine practice to study their metabolism. Nuclear Magnetic Resonance (NMR) spectroscopy is used for identification of metabolites in biological samples. Vero cells infected with Rickettsia slovaca as well as uninfected cells were monitored by (1)H NMR showing the presence of ethanol and lactic acid. As no differences were observed, labeled compounds were added into cultures. When D-[1-13C]glucose was monitored by (13)C NMR no differences among infected and uninfected cells were observed in metabolic profiles. Glucose was transformed into ethanol in all cultures. Monitored experiments carried out with [2-13C]glycine showed differences between infected and uninfected cell cultures spectra. Glycine was partially transformed into serine, but the amount of the serine formed was larger in those infected. Moreover, L-[2-13C]leucine, L-[1-13C]isoleucine and L-[15N]tyrosine were evaluated. No differences among infected and uninfected cells were observed in the metabolic profiles when tyrosine and leucine were monitored. The amino acid L-[1-13C]isoleucine exhibited different metabolism in presence of the R. slovaca, showing a promising behavior as biomarker. In this work we focused on finding one or more compounds that could be metabolized specifically by R. slovaca and could be used as an indicator of its activity.

  20. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = 1/2 electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (⩾3 T).

  1. A 140 GHz Pulsed EPR/212 MHz NMR Spectrometer for DNP Studies

    PubMed Central

    Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.

    2012-01-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = ½ electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (>3 T). PMID:22975246

  2. Intrinsic Proton NMR Studies of Mg(OH)2 and Ca(OH)2

    NASA Astrophysics Data System (ADS)

    Itoh, Yutaka; Isobe, Masahiko

    2016-09-01

    We studied the short proton free induction decay signals and the broad 1H NMR spectra of Mg(OH)2 and Ca(OH)2 powders at 77-355 K and 42 MHz using pulsed NMR techniques. Using a Gaussian-type back extrapolation procedure for the obscured data of the proton free induction decay signals, we obtained more precise values of the second moments of the Fourier-transformed broad NMR spectra than those in a previous report [Y. Itoh and M. Isobe, http://doi.org/10.7566/JPSJ.84.113601, J. Phys. Soc. Jpn. 84, 113601 (2015)] and compared with the theoretical second moments. The decrease in the second moment could not account for the large decrease in the magnitude of the intrinsic proton spin-lattice relaxation rate 1/T1 from Mg(OH)2 to Ca(OH)2. The analysis of 1/T1 ∝ exp(-Eg/kBT) with Eg ˜ 0.01 eV points to a local hopping mechanism, and that of 1/T1 ∝ Tn with n ˜ 0.5 points to an anharmonic rattling mechanism.

  3. NMR relaxometry study of development of freeze damage in mandarin orange.

    PubMed

    Zhang, Lu; McCarthy, Michael J

    2016-07-01

    Freeze damage to citrus fruit is one of the major causes of the loss of marketable fruit for the citrus industry. Because freeze damage occurs inside citrus fruit, detecting freeze damage is very challenging. This study addresses this problem by using NMR relaxometry to monitor changes at the sub-cellular level in mandarin flesh at two freezing temperatures, -4 °C and -20 °C. The T2 relaxation spectra of mandarin flesh segments displayed three relaxation components, each representing a sub-cellular water compartment. Freezing treatment at -4 °C for 240 min significantly decreased the relative magnitude of the slow relaxation component and increased that of the intermediate relaxation components. These changes are signs of water redistribution between sub-cellular compartments and an increase in membrane permeability. Freezing treatment at -20 °C caused more evident changes in the T2 relaxation spectra. Noticeable changes occurred as early as 120 min of freezing. In addition, NMR relaxometry was performed on cold-stored mandarins. Smaller changes were observed in samples stored at 4 °C than frozen samples. The relative magnitudes of relaxation components are sensitive to sub-cellular changes in mandarin flesh due to freeze damage. Thus, freeze damage in mandarin flesh can be tracked by NMR relaxometry. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. Molecular ordering of mixed surfactants in mesoporous silicas: A solid-state NMR study

    SciTech Connect

    Kobayashi, Takeshi; Mao, Kanmi; Wang, Shy-Guey; Lin, Victor S.-Y.; Pruski, Marek

    2011-02-17

    The use of mixed surfactants in the synthesis of mesoporous silica nanoparticles (MSNs) is of importance in the context of adjusting pore structures, sizes and morphologies. In the present study, the arrangement of molecules in micelles produced from a mixture of two surfactants, cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPB) was detailed by solid-state NMR spectroscopy. Proximities of methyl protons in the trimethylammonium headgroup of CTAB and protons in the pyridinium headgroup of CPB were observed under fast magic angle spinning (MAS) by {sup 1}H-{sup 1}H double quantum (DQ) MAS NMR and NOESY. This result suggested that CTAB and CPB co-exist in the pores without forming significant monocomponent domain structures. {sup 1}H-{sup 29}Si heteronuclear correlation (HETCOR) NMR showed that protons in the headgroups of CTAB are in closer proximity to the silica surface than those in the CPB headgroups. The structural information obtained in this investigation leads to better understanding of the mechanisms of self-assembly and their role in determining the structure and morphology of mesoporous materials.

  5. Urinary (1)H-NMR metabonomics study on intervention effects of soya milk in Africans.

    PubMed

    Ogegbo, Olumuyiwa L; Dissanyake, Wimal; Crowder, John; Asekun, Olayinka; Familoni, Oluwole; Branford-White, Christopher J; Annie Bligh, S W

    2012-01-01

    Metabonomics is an important tool in understanding the toxicological or therapeutic effects of interventions by analysing metabolic profiles and interpreting complex multi-dimensional spectroscopic/spectrometric data using multivariate data analysis. The objectives of this study were to evaluate the metabolic changes following a short-term 5 day soya milk intervention, and to investigate factors that influence soy-phytoestrogen metabolism focused on Africans based in either UK or Nigeria. (1)H-NMR metabonomics was applied to analyse urine samples collected at four phases I-IV (pre, days 3 and 5, and post) of the soy-intervention from African volunteers (n = 40 in total). Individual proton NMR spectra were visually and statistically assessed using multivariate analyses (MVA): principal component analysis (PCA) and (orthogonal-) partial-least square-discriminant analysis ((O-) PLS-DA). In addition, 22 endogenous metabolites were quantified using a Chenomx NMR suite. The results showed the levels of analysed endogenous metabolites (creatinine adjusted) present ranged from 4 µM to 12 mM with large inter-subject variances in acetate, acetone, lactate and trimethylamine. The MVA results showed high inter-individuality and sampling variances based on PCA score plots, and demonstrated soy metabolism to be significantly influenced by location and gender by both PLS-DA and O-PLS-DA. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Structural Studies of Ethylene-1-Octene and Ethylene-Norbornene Random Copolymers by NMR and WAXD

    NASA Astrophysics Data System (ADS)

    Mowery, Daniel; Carrilero, Isabel; Alamo, Rufina

    2003-03-01

    The properties of two series of melt-quenched, random ethylene copolymers (comonomer content < 15 moldiscussed. Changes in the crystallite properties with increasing comonomer content, including crystallite thickness reduction from ^13C T1 NMR relaxation times and chain packing from the line widths of crystal NMR spectra, were found to be independent of comonomer type. Analyses of the non-crystalline regions revealed differences. Copolymers with norbornene showed a larger reduction in the peak position of the WAXD amorphous halo relative to copolymers with the same content of 1-octene. The NMR resonance of the amorphous CH2 backbone units was broader in the copolymers with norbornene. Both observations are due to significant conformational differences in the non-crystalline chains with different comonomer type. Interestingly, the overall decrease in ^13C T1 times of the amorphous CH2 backbone units with increasing comonomer content was the same for both copolymer systems. Hence, in the range of comonomer content studied, the rates of fast motions for ethylene segments in the backbone are independent of comonomer type.

  7. Mn(II) binding to human serum albumin: a ¹H-NMR relaxometric study.

    PubMed

    Fanali, Gabriella; Cao, Yu; Ascenzi, Paolo; Fasano, Mauro

    2012-12-01

    Human serum albumin (HSA) displays several metal binding sites, participating to essential and toxic metal ions disposal and transport. The major Zn(II) binding site, called Site A, is located at the I/II domain interface, with residues His67, Asn99, His247, and Asp249 contributing with five donor atoms to the metal ion coordination. Additionally, one water molecule takes part of the octahedral coordination geometry. The occurrence of the metal-coordinated water molecule allows the investigation of the metal complex geometry by water (1)H-NMR relaxation, provided that the diamagnetic Zn(II) is replaced by the paramagnetic Mn(II). Here, the (1)H-NMR relaxometric study of Mn(II) binding to HSA is reported. Mn(II) binding to HSA is modulated by Zn(II), pH, and myristate through competitive inhibition and allosteric mechanisms. The body of results indicates that the primary binding site of Zn(II) corresponds to the secondary binding site of Mn(II), i.e. the multimetal binding site A. Excess Zn(II) completely displaces Mn(II) from its primary site suggesting that the primary Mn(II) site corresponds to the secondary Zn(II) site. This uncharacterized site is functionally-linked to FA1; moreover, metal ion binding is modulated by myristate and pH. Noteworthy, water (1)H-NMR relaxometry allowed a detailed analysis of thermodynamic properties of HSA-metal ion complexes.

  8. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies.

    PubMed

    Smith, Albert A; Corzilius, Björn; Bryant, Jeffrey A; DeRocher, Ronald; Woskov, Paul P; Temkin, Richard J; Griffin, Robert G

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz ((1)H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE(011) resonator acts as both an NMR coil and microwave resonator, and a double balanced ((1)H, (13)C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S=1/2 electron spins, 100 kHz on (1)H, and 50 kHz on (13)C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (≥3 T).

  9. Density functional theory study of (13)C NMR chemical shift of chlorinated compounds.

    PubMed

    Li, Songqing; Zhou, Wenfeng; Gao, Haixiang; Zhou, Zhiqiang

    2012-02-01

    The use of the standard density functional theory (DFT) leads to an overestimation of the paramagnetic contribution and underestimation of the shielding constants, especially for chlorinated carbon nuclei. For that reason, the predictions of chlorinated compounds often yield too high chemical shift values. In this study, the WC04 functional is shown to be capable of reducing the overestimation of the chemical shift of Cl-bonded carbons in standard DFT functionals and to show a good performance in the prediction of (13)C NMR chemical shifts of chlorinated organic compounds. The capability is attributed to the minimization of the contributions that intensively increase the chemical shift in the WC04. Extensive computations and analyses were performed to search for the optimal procedure for WC04. The B3LYP and mPW1PW91 standard functionals were also used to evaluate the performance. Through detailed comparisons between the basis set effects and the solvent effects on the results, the gas-phase GIAO/WC04/6-311+G(2d,p)//B3LYP/6-31+G(d,p) was found to be specifically suitable for the prediction of (13)C NMR chemical shifts of chlorides in both chlorinated and non-chlorinated carbons. Further tests with eight molecules in the probe set sufficiently confirmed that WC04 was undoubtedly effective for accurately predicting (13) C NMR chemical shifts of chlorinated organic compounds.

  10. Unilateral NMR, 13C CPMAS NMR spectroscopy and micro-analytical techniques for studying the materials and state of conservation of an ancient Egyptian wooden sarcophagus.

    PubMed

    Proietti, Noemi; Presciutti, Federica; Di Tullio, Valeria; Doherty, Brenda; Marinelli, Anna Maria; Provinciali, Barbara; Macchioni, Nicola; Capitani, Donatella; Miliani, Costanza

    2011-03-01

    A multi-technique approach was employed to study a decorated Egyptian wooden sarcophagus (XXV-XXVI dynasty, Third Intermediate Period), belonging to the Museo del Vicino Oriente of the Sapienza University of Rome. Portable non-invasive unilateral NMR was applied to evaluate the conservation state of the sarcophagus. Moreover, using unilateral NMR, a non-invasive analytical protocol was established to detect the presence of organic substances on the surface and/or embedded in the wooden matrix. This protocol allowed for an educated sampling campaign aimed at further investigating the state of degradation of the wood and the presence of organic substances by (13)C cross polarization magic angle spinning (CPMAS) NMR spectroscopy. The composition of the painted layer was analysed by optical microscopy (OM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Raman and surface enhanced (resonance) Raman spectroscopy (SERS/SERRS), infrared and GC-MS techniques, evidencing original components such as clay minerals, Egyptian green, indigo, natural gums, and also highlighting restoration pigments and alteration compounds. The identification of the wood, of great value for the reconstruction of the history of the artwork, was achieved by means of optical microscopy.

  11. Dynamics of Reassembled Thioredoxin Studied by Magic Angle Spinning NMR: Snapshots from Different Timescales

    PubMed Central

    Yang, Jun; Tasayco, Maria Luisa; Polenova, Tatyana

    2014-01-01

    Solid-state NMR spectroscopy can be used to probe internal protein dynamics in the absence of the overall molecular tumbling. In this study, we report 15N backbone dynamics in differentially enriched 1-73(U-13C, 15N)/74-108(U-15N) reassembled thioredoxin on multiple timescales using a series of 2D and 3D MAS NMR experiments probing the backbone amide 15N longitudinal relaxation, 1H-15N dipolar order parameters, 15N chemical shift anisotropy (CSA), and signal intensities in the temperature-dependent and 1H T2′ -filtered NCA experiments. The spin-lattice relaxation rates R1(R1 = 1/T1) were observed in the range from 0.012 to 0.64 s-1 indicating large site-to-site variations in dynamics on pico- to nanosecond time scales. The 1H-15N dipolar order parameters, , and 15N CSA anisotropies, δσ reveal the backbone mobilities in reassembled thioredoxin, as reflected in the average = 0.89 ± 0.06 and δσ = 92.3 ± 5.2 ppm, respectively. From the aggregate of experimental data from different dynamics methods, some degree of correlation between the motions on the different time scales has been suggested. Analysis of the dynamics parameters derived from these solid-state NMR experiments indicates higher mobilities for the residues constituting irregular secondary structure elements than for those located in the α-helices and β-sheets, with no apparent systematic differences in dynamics between the α-helical and β-sheet residues. Remarkably, the dipolar order parameters derived from the solid-state NMR measurements and the corresponding solution NMR generalized order parameters display similar qualitative trends as a function of the residue number. The comparison of the solid-state dynamics parameters to the crystallographic B-factors has identified the contribution of static disorder to the B-factors. The combination of longitudinal relaxation, dipolar order parameter, and CSA line shape analyses employed in this study provides snapshots of dynamics and a new

  12. Non-polymeric asymmetric binary glass-formers. II. Secondary relaxation studied by dielectric, 2H NMR, and 31P NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Pötzschner, B.; Mohamed, F.; Bächer, C.; Wagner, E.; Lichtinger, A.; Bock, D.; Kreger, K.; Schmidt, H.-W.; Rössler, E. A.

    2017-04-01

    We investigate the secondary (β-) relaxations of an asymmetric binary glass former consisting of a spirobichroman derivative (SBC; Tg = 356 K) as the high-Tg component and the low-Tg component tripropyl phosphate (TPP; Tg = 134 K). The main relaxations are studied in Paper I [B. Pötzschner et al., J. Chem. Phys. 146, 164503 (2017)]. A high Tg contrast of ΔTg = 222 K is put into effect in a non-polymeric system. Component-selective studies are carried out by combining results from dielectric spectroscopy (DS) for mass concentrations cTPP ≥ 60% and those from different methods of 2H and 31P NMR spectroscopy. In the case of NMR, the full concentration range (10% ≤ cTPP ≤ 100%) is covered. The neat components exhibit a β-relaxation (β1 (SBC) and β2 (TPP)). The latter is rediscovered by DS in the mixtures for all concentrations with unchanged time constants. NMR spectroscopy identifies the β-relaxations as being alike to those in neat glasses. A spatially highly restricted motion with angular displacement below ±10° encompassing all molecules is involved. In the low temperature range, where TPP shows the typical 31P NMR echo spectra of the β2-process, very similar spectral features are observed for the (deuterated) SBC component by 2H NMR, in addition to its "own" β1-process observed at high temperatures. Apparently, the small TPP molecules enslave the large SBC molecules to perform a common hindered reorientation. The temperature dependence of the spin-lattice relaxation time of both components is the same and reveals an angular displacement of the SBC molecules somewhat smaller than that of TPP, though the time constants τβ2 are the same. Furthermore, T1(T) of TPP in the temperature region of the β2-process is absolutely the same as in the mixture TPP/polystyrene investigated previously. It appears that the manifestations of the β-process introduced by one component are essentially independent of the second component. Finally, at cTPP ≤ 20% one

  13. Phenol-formaldehyde resins: A quantitative NMR study of molecular structure and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ottenbourgs, Benjamin Tony

    Phenol-formaldehyde (PF) resins have been the subject of this work. 13C liquid-state and solid-state NMR has been used to investigate the molecular structure of mainly novolak and partially of resole resins. 1H wideline in combination with 13C solid-state NMR relaxometry has been applied to study the curing and the molecular dynamics of phenolic resins. It was the intention to provide an insight in the relationship between resin composition, resin structure and subsequent resin properties (by means of the molecular dynamics). An improved 13C liquid-state NMR quantification technique of novolaks in THF-CDCl3 solutions is demonstrated. Full quantitative 13C liquid-state spectra of phenol-formaldehyde resins with high signal- to-noise ratio were obtained by using chromium acetylacetonate under optimized spectral conditions within a few hours spectrometer time. Attached proton test (APT) spectra enabled proper peak assignments in the region with significant overlap. For several novolaks, prepared under different catalytic conditions, the degree of polymerization, degree of branching, number average molecular weight, isomeric distribution, and the number of unreacted ortho and para phenol ring positions was determined with a reduced margin of error, by analyzing and integrating the 13C spectra. The power of 13C solid-state NMR in the analysis of cured PF resins is shown. Particular importance was ascribed to the question of the quantifiability of the experiments when it was desired to measure the degree of conversion by means of a 13C CP/MAS contact time study. The network structure present, and thus also the mechanical properties, is critically dependent upon the final degree of conversion obtained after curing. The degree of conversion, which depended on the cure conditions (cure temperature, cure pressure and cure time), was limited by vitrification as was demonstrated by DSC experiments. Changes in the spin-lattice relaxation time T 1H were observed, providing

  14. a Study of Molecular Dynamics in Water-Cellulose Systems Using NMR

    NASA Astrophysics Data System (ADS)

    Waana, Charles Musannyana

    This thesis presents the application of Nuclear Magnetic Resonance (NMR) to the study of the water dynamics in water-cellulose systems. Both H_2O and D_2O were used in polycrystalline Sigmacell 50 cellulose and in cellulose acetate films. Both the spectral lineshapes and various spin relaxation times were studied as functions of temperature and moisture content of the samples. ^1H and ^2 H NMR spectra of rm H_2O and rm D_2O absorbed in cellulose acetate films were observed while changing the angle between the plane of the film and the static magnetic field. ^1H-NMR spectra show dipolar splittings that vary depending on the angle. The splitting has a maximum when the surface of the film is perpendicular to the magnetic field. From the angular dependence of the dipolar splittings, it is deduced that the motionally averaged axis of the dipole moments is perpendicular to the film surface. ^2H NMR spectra show quadrupolar splittings which indicate that the motionally averaged axis of the electric quadrupole interaction is oriented perpendicular to the film. A number of NMR parameters were determined as a function of moisture content at 20^circ C for water adsorbed on Sigmacell 50 cellulose. The NMR parameters indicate that the cellulose swells as the water is added. Ninety-two percent of the cellulose is in crystalline domains and undergoes very little swelling indicating that it is largely inaccessible to water, whereas the remaining 8% is in paracrystalline or amorphous domains which are accessible to water and undergo considerable swelling. A three state model is applied for the protons in these samples, consisting of cellulose protons, water in intimate contact with these cellulose portons, and water which is not in intimate contact. Exchange and/or cross relaxation occurs between the three different proton groups. All the data are consistent with this model. An NMR relaxation study of water dynamics in hydrated Sigmacell 50 cellulose and cellulose acetate films has

  15. Heteronuclear NMR studies of cobalamins. 11. sup 15 N NMR studies of the axial nucleotide and amide side chains of cyanocobalamin and dicyanocobamides

    SciTech Connect

    Brown, K.; Brooks, H.B.; Xiang, Zou ); Victor, M.; Ray, A. ); Timkovich, R. )

    1990-11-28

    Spectroscopic and thermodynamic evidence for the structure of cobalamines and dicyanocobalamin (CN){sub 2}Cbl have been previously reported. The structure indicated the occurrence of the so-called tuck-in species. Further observations and characterization of the tuck-in species of (CN){sub 2}Cbl by {sup 15}N NMR spectroscopy are presented herein. These results represent the first observation of the {sup 15}N NMR spectrum of benzimidazole nucleotide of cobalamins. The first NMR observation of the amide protons of cobalamins and their connectivity to the amide nitrogens are also reported. 50 refs., 2 figs., 2 tabs.

  16. Xenon NMR of liquid crystals confined to cylindrical nanocavities: a simulation study.

    PubMed

    Karjalainen, Jouni; Vaara, Juha; Straka, Michal; Lantto, Perttu

    2015-03-21

    independent of temperature. Our results show that the combination of CG simulations and a QC pre-parameterised (129)Xe NMR shielding allows efficient studies of the phase behaviour and structure of complex systems containing thousands of molecules, and brings us closer to the simulation of NMR experiments.

  17. Binding mechanism of an SH3 domain studied by NMR and ITC.

    PubMed

    Demers, Jean-Philippe; Mittermaier, Anthony

    2009-04-01

    Complexes between Src-homology 3 domains and proline-rich target peptides can have lifetimes on the order of milliseconds, making them too short-lived for kinetic characterization by conventional methods. Nuclear magnetic resonance (NMR) dynamics experiments are ideally suited to study such rapid binding equilibria, and additionally provide information on partly bound intermediate states. We used NMR together with isothermal titration calorimetry (ITC) to characterize the interaction of the SH3 domain from the Fyn tyrosine kinase with a 12-residue peptide at temperatures between 10 and 50 degrees C. NMR data at all temperatures are consistent with an effectively two-state binding reaction, such that any intermediates are either very weakly populated or exchange extremely rapidly with the free or bound forms. Dissociation rate constants, determined by CPMG and ZZ-exchange NMR experiments, range from k(off)(10 degrees C) = 4.5 s(-1) to k(off)(50 degrees C) = 331 s(-1). ITC data at all temperatures follow a simple two-state interaction model. Binding is favored enthalpically, with a dissociation enthalpy, DeltaH(D)(30 degrees C) = 15.4 kcal mol(-1), and disfavored entropically, with a dissociation entropy, DeltaS(D)(30 degrees C) = 20.0 cal mol(-1) K(-1). The free protein and peptide have significantly higher heat capacity than the bound complex, DeltaC(p) = 352 cal mol(-1) K(-1), which is consistent with the largely hydrophobic character of the binding interface. An Eyring plot of k(off) values gives an activation enthalpy of dissociation, DeltaH(D)(double dagger)(30 degrees C) = 19.3 kcal mol(-1) and exhibits slight curvature consistent with the ITC-derived value of DeltaC(p). The curvature suggests that nonpolar residues of the hydrophobic interface are solvated in the transition state for dissociation. Association rate constants were calculated as k(on) = k(off)/K(D), and range from k(on)(10 degrees C) = 1.03 x 10(8) M(-1) s(-1) to k(on)(50 degrees C) = 2.0 x 10

  18. (1)H NMR Study of the solution structure of sarafotoxin-S6b.

    PubMed

    Aumelas, A; Chiche, L; Mahe, E; Le-Nguyen, D; Sizun, P; Berthault, P; Perly, B

    1991-01-01

    Sarafotoxin-S6b has been synthesized and studied by (1)H NMR in 50 50 acetonitrile/water mixture. All spin systems were identified and assigned with the aid of 2D experiments. On the basis of these data, a 3D structure of sarafotoxin is proposed and compared to that of [Nle(7)]endothelin obtained in the same conditions. From this study, it appeared that sarafotoxin-S6b and [Nle(7)]endothelin roughly share the same 3D structure, the main differences being located in the 4-7 loop bearing the sequence variation.

  19. High-resolution /sup 1/H NMR study of the solution structure of alamethicin

    SciTech Connect

    Esposito, G.; Carver, J.A.; Boyd, J.; Campbell, I.D.

    1987-02-24

    A /sup 1/H NMR study of the peptide alamethicin, which forms voltage-gated ion channels in membranes, is described. The molecule was studied in methanol as a function of temperature and pH. A complete assignment of the spectra is given, including several stereospecific assignments. Alamethicin was found to have a structure substantially similar to the crystal although, in solution, the C-terminal dipeptide adopts a somewhat extended conformation. The overall conformation was insensitive to the ionization of the side chain of the ionizable group, Glu-18.

  20. NMR studies of protein structure and dynamics - a look backwards and forwards.

    PubMed

    Kay, Lewis E

    2011-12-01

    NMR spectroscopy has evolved to become one of the most powerful tools for the study of protein structure and dynamics. Advances over the past decade have greatly extended the methodology to studies of molecules of ever increasing complexity. Herein I provide a short perspective relating the circumstances that led to some of the contributions from my laboratory in this area and highlight how these original experiments, summarized in a Journal of Magnetic Resonance article in 2005 (JMR, 173 193–207), have influenced the current focus of my research. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Detection of platinum dihydride bisphosphine complexes and studies of their reactivity through para-hydrogen-enhanced NMR methods.

    PubMed

    Godard, Cyril; López-Serrano, Joaquín; Gálvez-López, María-Dolores; Roselló-Merino, Marta; Duckett, Simon B; Khazal, Iman; Lledós, Agustí; Whitwood, Adrian C

    2008-01-01

    In-situ NMR studies on the reactions of Pt{CH2 = CHSi(Me)2}2O)(PCy3) with phosphines, HSiEt3 and--hydrogen or Pt(L)(L')(Me)(2) alone enable the detection of cis-Pt(L)(L')(H)2 [L = PCy3 and L' = PCy2H, PPh3 or PCy3] which then undergo hydride site interchange and H2 reductive elimination on the NMR timescale.

  2. NMR study of lanthanide(III) nitrate-CMPO extraction system (I) structure of extracted chemical species

    SciTech Connect

    Nakamura, Takashi; Miyake, Chie )

    1994-10-01

    NMR measurements carried out to study the coordination structure of lanthanide(III)-CMPO complexes indicate that the CMPO molecule is located in the equatorial region with respect to the principal magnetic Z axis. NMR longitudinal relaxation time measurements suggest that CMPO coordinates to the central Ce[sup 3+] ion in a bidentate manner with the phosphoryl and carbonyl groups. Further, it was observed that a rapid intramolecular interconversion occurs at a higher temperature region. 14 refs., 10 figs., 3 tabs.

  3. A NMR reverse diffusion filter for the simplification of spectra of complex mixtures and the study of drug receptor interactions.

    PubMed

    Vega-Vázquez, M; Cobas, J C; Oliveira de Sousa, F F; Martin-Pastor, M

    2011-08-01

    A reverse diffusion filter NMR experiment (Drev) is proposed for the study of small molecules in binding with macromolecules. The filtering efficiency of Drev to eliminate the signals of the macromolecule is shown to be superior to conventional transverse relaxation filters at least for macromolecules containing a significant fraction of flexible residues. The Drev filter was also a useful complement for ligand-based NMR screening in combination with saturation transfer difference experiments.

  4. Characterization of filter extractables by proton NMR spectroscopy: studies on intact filters with process buffers.

    PubMed

    Kao, Y H; Bender, J; Hagewiesche, A; Wong, P; Huang, Y; Vanderlaan, M

    2001-01-01

    Studies were conducted to characterize potential extractables from sterilizing grade filters. The focus of this report is the 0.22 micron Durapore (hydrophilic modified PVDF) filter which is used throughout our recovery processes. The objectives of this study are (1) to identify potential filter extractables from the hydrophilic PVDF filters; (2) to show that NMR spectroscopy may be used to detect filter extractables in the presence of product and excipients; and (3) to establish levels of filter extractables obtained by extraction with a variety of buffers. The data show that the primary source of filter extractables is the hydrophilic modification of the PVDF membrane surface. Extractables from the modified hydrophilic PVDF filter include propylene glycol (PG) and soluble oligomers of the hydroxypropyl acrylate and cross-linker. Propylene glycol, arising from the hydrolysis of the hydroxypropyl acrylate, appears to be the primary extractable in buffers above pH 11. Since the 1H-NMR method can easily detect the methyl proton signals of PG, an NMR assay was developed to detect PG in the presence of buffer excipients and final product. Propylene glycol can be used as a marker for the extractables from Durapore hydrophilic PVDF filters. Although numerous buffers were used to generate extractables from the PVDF filter, significant extractables (PG and soluble oligomers) were found only in high pH extraction buffers. As a result of this finding, only a limited number of new buffers or new PVDF filters will require testing for future validation studies. Process validation studies have shown that neither PG nor soluble oligomers are at levels that impact the quality or safety of the product.

  5. Advanced solids NMR studies of coal structure and chemistry. Progress report, March 1 - September 1, 1996

    SciTech Connect

    Zilm, K.W.

    1996-12-31

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utili- zation of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NNM methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methine groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. We will also develop NMR methods for probing coal macropore structure using hyperpolarized {sup 29}Xe as a probe, and study the molecular dynamics of what appear to be mobile, CH{sub 2} rich, long chain hydrocarbons. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of coals, and their suitability for possible correlations with the oil sourcing potential of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples.

  6. NMR STUDIES OF LIQUID CRYSTALS AND MOLECULES DISSOLVED IN LIQUID CRYSTAL SOLVENTS

    SciTech Connect

    Drobny, G.P.

    1982-11-01

    This thesis describes several studies in which nuclear magnetic resonance (nmr) spectroscopy has been used to probe the structure, orientation and dynamics of liquid crystal mesogens and molecules dissolved in liquid crystalline phases. In addition, a modern high field nmr spectrometer is described which has been used to perform such nmr studies. Chapter 1 introduces the quantum mechanical formalisms used throughout this thesis and briefly reviews the fundamentals of nuclear spin physics and pulsed nmr spectroscopy. First the density operator is described and a specific form for the canonical ensemble is derived. Then Clebsch-Gordon coefficients, Wigner rotation matrices, and irreducible tensor operators are reviewed. An expression for the equilibrium (Curie) magnetization is obtained and the linear response of a spin system to a strong pulsed r.f. irradiation is described. Finally, the spin interaction Hamiltonians relevant to this work are reviewed together with their truncated forms. Chapter 2 is a deuterium magnetic resonance study of two 'nom' liquid crystals which possess several low temperature mesomorphic phases. Specifically, deuterium quadrupolar echo spectroscopy is used to determine the orientation of the liquid crystal molecules in smectic phases, the changes in molecular orientation and motion that occur at smectic-smectic phase transitions, and the order of the phase transitions. For both compounds, the phase sequence is determined to be isotropic, nematic, smectic A, smectic C, smectic B{sub A}, smectic B{sub C}, and crystalline. The structure of the smectic A phase is found to be consistent with the well-known model of a two dimensional liquid in which molecules are rapidly rotating about their long axes and oriented at right angles to the plane of the layers. Molecules in the smectic C phase are found to have their long axes tilted with respect to the layer normal, and the tilt angle is temperature dependent, increasing from zero at the smectic A

  7. NMR study of a membrane protein in detergent-free aqueous solution

    PubMed Central

    Zoonens, Manuela; Catoire, Laurent J.; Giusti, Fabrice; Popot, Jean-Luc

    2005-01-01

    One of the major obstacles to membrane protein (MP) structural studies is the destabilizing effect of detergents. Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep MPs water-soluble under mild conditions. In the present work, we have explored the feasibility of studying the structure of APol-complexed MPs by NMR. As a test MP, we chose the 171-residue transmembrane domain of outer MP A from Escherichia coli (tOmpA), whose x-ray and NMR structures in detergent are known. 2H,15N-labeled tOmpA was produced as inclusion bodies, refolded in detergent solution, trapped with APol A8-35, and the detergent removed by adsorption onto polystyrene beads. The resolution of transverse relaxation-optimized spectroscopy–heteronuclear single-quantum correlation spectra of tOmpA/A8-35 complexes was found to be close to that of the best spectra obtained in detergent solutions. The dispersion of chemical shifts indicated that the protein had regained its native fold and retained it during the exchange of surfactants. MP–APol interactions were mapped by substituting hydrogenated for deuterated A8-35. The resulting dipolar broadening of amide proton linewidths was found to be limited to the β-barrel region of tOmpA, indicating that A8-35 binds specifically to the hydrophobic transmembrane surface of the protein. The potential of this approach to MP studies by solution NMR is discussed. PMID:15956183

  8. Synthesis, NMR and computational studies on tautomerism of dichloroacetate of hydroxyanthraquinone

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Wang, Wenfeng; Miao, Junwei; Yin, Xu; Hu, Xiufang; Yuan, Yaofeng

    2017-08-01

    Three dichloroacetate derivatives of hydroxyanthraquinone were synthesized. NMR studies showed that only monoesterified derivative compound 1 had a tautomerization. Since monoetherified derivative of hydroxyanthraquinone did not show tautomerization, a hypothesis that nucleophilicity played an important role in the tautomerization was proposed. The molecular structures of monoesterified derivative compound 1 and diesterified derivative compound 2 were calculated by using DFT method, and the result showed that the electronic density of carbonyl at 9-position of compound 1 was much larger than that of compound 2, which indicated that the hypothesis mentioned above was reasonable.

  9. Sequence of 12 Monoclonal Anti-Dinitrophenyl Spin-Label Antibodies for NMR Studies

    DTIC Science & Technology

    Eleven monoclonal antibodies specific for a spin-labeled dinitrophenyl hapten ( DNP -SL) have been produced for use in NMR studies. They have been...named AN01 and AN03-AN12. The stability constants for the association of these antibodies with DNP -SL and related haptens were measured by fluorescence...quenching and ranged from 50000/M to > 10 million/M. cDNA clones coding for the heavy and light chains of each antibody and of an additional anti- DNP -SL

  10. (1)H chemical shift differences of Prelog-Djerassi lactone derivatives: DFT and NMR conformational studies.

    PubMed

    Aímola, Túlio J; Lima, Dimas J P; Dias, Luiz C; Tormena, Cláudio F; Ferreira, Marco A B

    2015-02-21

    This work reports an experimental and theoretical study of the conformational preferences of several Prelog-Djerassi lactone derivatives, to elucidate the (1)H NMR chemical shift differences in the lactonic core that are associated with the relative stereochemistry of these derivatives. The boat-like conformation of explains the anomalous (1)H chemical shift between H-5a and H-5b, in which the two methyl groups (C-8 and C-9) face H-5b, leading to its higher shielding effect.

  11. Solid state NMR study of dietary fiber powders from aronia, bilberry, black currant and apple.

    PubMed

    Wawer, I; Wolniak, M; Paradowska, K

    2006-09-01

    13C CPMAS NMR spectra of dietary fiber powders from aronia (chokeberry), bilberry, black currant and apple were recorded. The spectra are complex owing to superposition of resonances from different polysaccharides and polyphenolic compounds. Standard, dipolar dephased and the TH(1rho) partially relaxed spectra enabled the identification of several constituents: microcrystalline cellulose, pectins, lignins, cutin-like polymers and condensed tannins. The fiber powders obtained from berries contain significant amounts of anthocyanins, as indicated by their dark violet color, but not verified by chemical shifts. The anthocyanin-rich extract from aronia berries and its major components, cyanidin-3-O-galactoside and (-)epicatechin were also studied.

  12. 1H NMR study of fermented cocoa (Theobroma cacao L.) beans.

    PubMed

    Caligiani, Augusta; Acquotti, Domenico; Cirlini, Martina; Palla, Gerardo

    2010-12-08

    This study reports for the first time the metabolic profile of cocoa (Theobroma cacao L.) beans using the (1)H NMR technique applied to polar extracts of fermented cocoa beans. The simultaneous detection and quantification of amino acids, polyalcohols, organic acids, sugars, methylxanthines, catechins, and phenols were obtained by assigning the major signals of the spectra for different varieties of cocoa beans (Forastero, Criollo, and Trinitario) from different countries (Ecuador, Ghana, Grenada, and Trinidad). The data set obtained, representative of all classes of soluble compounds of cocoa, was useful to characterize the fermented cocoa beans as a function of the variety and geographic origin.

  13. 1H-NMR study of the spin dynamics of fine superparamagnetic nanoparticles

    SciTech Connect

    Bordonali, L.; Furukawa, Y.; Kraken, M.; Litterst, F.J.; Sangregorio, C.; Casula, M.F.; Lascialfari, A.

    2012-05-25

    We report a broadband 1H-NMR study of the temperature spin dynamics of nearly monodisperse dextran-coated γ-Fe2O3 magnetic nanoparticles. We observed a maximum in T1−1(T) that decreases in amplitude and shifts toward higher temperatures with increasing field. We suggest that this is related to the progressive superparamagnetic spin blocking of the ferrite core. The data can be explained by assuming a single electronic spin-spin correlation time and introducing a field-dependent distribution of anisotropy energy barriers.

  14. Methanol carbonylation over copper-modified mordenite zeolite: A solid-state NMR study.

    PubMed

    Zhou, Lei; Li, Shenhui; Qi, Guodong; Su, Yongchao; Li, Jing; Zheng, Anmin; Yi, Xianfeng; Wang, Qiang; Deng, Feng

    2016-11-01

    The carbonylation of methanol with carbon monoxide to generate methyl acetate over Cu-H-MOR and H-MOR zeolites is studied using solid-state NMR spectroscopy. It is found that the catalytic activity of Cu-H-MOR zeolite is much higher than that of H-MOR zeolite. The presence of Cu(+) species enables the stabilization of dimethyl ether, which efficiently suppresses the hydrocarbon formation during carbonylation process over Cu-H-MOR zeolite. In addition, the carbon monoxide adsorbed on Cu(+) site is not an active species to produce either methyl acetate or acetic acid.

  15. NMR study on iridium(III) complexes for identifying disulfonate substituted bathophenanthroline regio-isomers.

    PubMed

    Liu, Chenchen; Yu, Linpo; Liu, Yang; Li, Fang; Zhou, Ming

    2011-12-01

    A series of novel biscyclometalated iridium (III) complexes with an ancillary disulfonated bathophenanthroline (DSBP(2-)) ligand, Ir(L)(2)DSBPNa, L = 2-phenylpyridine (ppy), 2,4-difluorophenylpyridine (fppy), and 1-phenylisoquinoline (piq) were found to have two isomeric forms. The chemical structures of the isomers were determined by the one- and two-dimensional (1)H and (13)C NMR studies. The isomeric state was proved to have originated from the disulfonate-related regio-isomer of the DSBP(2-) ligand.

  16. [1H-NMR studies of the ACTH-like immunoregulatory peptides].

    PubMed

    Khristoforov, V S; Kutyshenko, V P; Abramov, V M; Zav'ialov, V P

    1997-01-01

    A comparative study of the conformational and dynamics properties of the ACTH-like linear peptides, sequences of which correspond to amino acid residues 11-20 of the heavy chain of human immunoglobulin G1 Eu, residues 78-85 of human pro-interleukin-1 alpha and site 10-18 of human ACTH, was performed in aqueous solution and dimethylsulfoxide by 1H-NMR spectroscopy at 400 MHz. The peptides were shown to possess an unordered unfolded flexible conformation in aqueous solution. The revealed structural and dynamic features of the peptides are discussed together with biological activity of this class of compounds.

  17. A stable amorphous statin: solid-state NMR and dielectric studies on dynamic heterogeneity of simvastatin.

    PubMed

    Nunes, Teresa G; Viciosa, M Teresa; Correia, Natália T; Danède, F; Nunes, Rita G; Diogo, Hermínio P

    2014-03-03

    Statins have been widely used as cholesterol-lowering agents. However, low aqueous solubility of crystalline statins and, consequently, reduced biovailability require seeking for alternative forms and formulations to ensure an accurate therapeutic window. The objective of the present study was to evaluate the stability of amorphous simvastatin by probing molecular dynamics using two nondestructive techniques: solid-state NMR and dielectric relaxation spectroscopy. Glassy simvastatin was obtained by the melt quench technique. (13)C cross-polarization/magic-angle-spinning (CP/MAS) NMR spectra and (1)H MAS NMR spectra were obtained from 293 K up to 333 K (Tg ≈ 302 K). The (13)C spin-lattice relaxation times in the rotating frame, T1ρ, were measured as a function of temperature, and the correlation time and activation energy data obtained for local motions in different frequency scales revealed strong dynamic heterogeneity, which appears to be essential for the stability of the amorphous form of simvastatin. In addition, the (1)H MAS measurements presented evidence for mobility of the hydrogen atoms in hydroxyl groups which was assigned to noncooperative secondary relaxations. The complex dielectric permittivity of simvastatin was monitored in isochronal mode at five frequencies (from 0.1 to 1000 kHz), by carrying out a heating/cooling cycle allowing to obtain simvastatin in the supercooled and glassy states. The results showed that no dipolar moment was lost due to immobilization, thus confirming that no crystallization had taken place. Complementarily, the present study focused on the thermal stability of simvastatin using thermogravimetric analysis while the thermal events were followed up by differential scanning calorimetry and dielectric relaxation spectroscopy. Overall, the results confirm that the simvastatin in the glass form reveals a potential use in the solid phase formulation on the pharmaceutical industry.

  18. Solid-state NMR studies of the dynamics and structure of mouse keratin intermediate filaments

    SciTech Connect

    Mack, J.W.; Torchia, D.A.; Steinert, P.M.

    1988-07-26

    The molecular dynamics and structural organization of mouse epidermal keratin intermediate filaments (IF) have been studied via solid-state nuclear magnetic resonance (NMR) experiments performed on IF labeled both in vivo and in vitro with isotopically enriched amino acids. As a probe of the organization of the peripheral glycine-rich end domains of the IF, carbon-13 NMR experiments have been performed on subfilamentous forms (prekeratin) and on IF reassembled in vitro that had been labeled with either (1-/sup 13/C)glycine or (2-/sup 13/C)glycine, as more than 90% of the glycines of the keratins are located in the end domains. Measurements of carbon relaxation times, nuclear Overhauser enhancements, and signal intensities show that the motions of the peptide backbone in the end domains are effectively isotropic. These results indicate that the end domains of IF are remarkably flexible and have little or no structural order. To probe the structural organization of the coiled-coil rod domains of the IF, separate samples of native keratin IF, raised in primary tissue culture, were labeled with L-(1-/sup 13/C)leucine, L-(/sup 2/H/sub 10/)leucine, or L-(2,3,3-/sup 2/H/sub 3/)leucine, as greater than 90% of the leucyl residues of the keratin IF types studied are located in the coiled coils which form the central core of IF. Deuterium NMR experiments performed on IF labeled with deuteriated leucines indeed reveal a marked degree of peptide backbone rigidity within the coiled coils, confirming the initial conclusions of the carbon-13 data. These data, demonstrating relative peptide backbone rigidity yet side-chain flexibility, are interpreted to mean that the coiled coils of these keratin IF are not tightly packed together but rather form a somewhat looser structure which permits a significant degree of side-chain mobility.

  19. Thermal degradation in a trimodal poly(dimethylsiloxane) network studied by (1)H multiple quantum NMR.

    PubMed

    Giuliani, Jason R; Gjersing, Erica L; Chinn, Sarah C; Jones, Ticora V; Wilson, Thomas S; Alviso, Cynthia T; Herberg, Julie L; Pearson, Mark A; Maxwell, Robert S

    2007-11-15

    Thermal degradation of a filled, cross-linked siloxane material synthesized from poly(dimethylsiloxane) chains of three different average molecular weights and with two different cross-linking species has been studied by (1)H multiple quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting residual dipolar coupling () values of 200 and 600 Hz, corresponding to chains with high average molecular weight between cross-links and chains with low average molecular weight between cross-links or near the multifunctional cross-linking sites. Characterization of the values and changes in distributions present in the material were studied as a function of time at 250 degrees C and indicate significant time-dependent degradation. For the domains with low , a broadening in the distribution was observed with aging time. For the domain with high , increases in both the mean and the width in were observed with increasing aging time. Isothermal thermal gravimetric analysis reveals a 3% decrease in weight over 20 h of aging at 250 degrees C. Degraded samples also were analyzed by traditional solid-state (1)H NMR techniques, and off-gassing products were identified by solid-phase microextraction followed by gas chromatography-mass spectrometry. The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and postcuring cross-linking that both contribute to embrittlement.

  20. UV-visible and (1)H-(15)N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors.

    PubMed

    Farrugia, Kristina N; Makuc, Damjan; Podborska, Agnieszka; Szaciłowski, Konrad; Plavec, Janez; Magri, David C

    2015-02-14

    Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported.

  1. Proton NMR studies of PECVD hydrogenated amorphous silicon films and HWCVD hydrogenated amorphous silicon films

    NASA Astrophysics Data System (ADS)

    Herberg, Julie Lynn

    This dissertation discusses a new understanding of the internal structure of hydrogenated amorphous silicon. Recent research in our group has included nuclear spin echo double resonance (SEDOR) measurements on device quality hydrogenated amorphous silicon photovoltaic films. Using the SEDOR pulse sequence with and without the perturbing 29Si pulse, we obtain Fourier transform spectra for film at 80K that allows us to distinguish between molecular hydrogen and hydrogen bonded to silicon. Using such an approach, we have demonstrated that high quality a-Si:H films produced by Plasma Enhanced Chemical Vapor Deposition (PECVD) from SiH 4 contains about ten atomic percent hydrogen, nearly 40% of which is molecular hydrogen, individually trapped in the amorphous equivalent of tetragonal sites (T-sites). The main objective of this dissertation is to examine the difference between a-Si:H made by PECVD techniques and a-Si:H made by Hot Wire Chemical Vapor Deposition (HWCVD) techniques. Proton NMR and 1H- 29Si SEDOR NMR are used to examine the hydrogen structure of HWCVD a-Si:H films prepared at the University of Utrecht and at the National Renewable Energy Laboratory (NREL). Past NMR studies have shown that high quality PECVD a-Si:H films have geometries in which 40% of the contained hydrogen is present as H2 molecules individually trapped in the amorphous equivalent of T-sites. A much smaller H2 fraction sometimes is physisorbed on internal surfaces. In this dissertation, similar NMR methods are used to perform structural studies of the two HWCVD aSi:H samples. The 3kHz resonance line from T-site-trapped H2 molecules shows a hole-burn behavior similar to that found for PECVD a-Si:H films as does the 24kHz FWHM line from clustered hydrogen bonded to silicon. Radio frequency hole-burning is a tool to distinguish between inhomogenous and homogeneous broadening. In the hole-burn experiments, the 3kHz FWHM resonance line from T-site-trapped H2 molecules shows a hole

  2. Local electromagnetic properties of magnetic pnictides: a comparative study probed by NMR measurements.

    PubMed

    Majumder, M; Ghoshray, K; Ghoshray, A; Pal, A; Awana, V P S

    2013-05-15

    (75)As and (31)P NMR studies are performed in PrCoAsO and NdCoPO respectively. The Knight shift data in PrCoAsO indicate the presence of an antiferromagnetic interaction between the 4f moments along the c axis in the ferromagnetic state of Co 3d moments. We propose a possible spin structure in this system. The (75)As quadrupolar coupling constant, νQ, increases continuously with decrease of temperature and is found to vary linearly with the intrinsic spin susceptibility, K(iso). This indicates the possibility of the presence of a coupling between charge density and spin density fluctuations. Further, the (31)P NMR Knight shift and spin-lattice relaxation rate (1/T1) in the paramagnetic state of NdCoPO indicate that the differences of LaCoPO and NdCoPO from SmCoPO are due to the decrement of the interlayer separation and not due to the moments of the 4f electrons. The nuclear spin-lattice relaxation time (T1) in NdCoPO shows weak anisotropy at 300 K. Using the self-consistent renormalization (SCR) theory of itinerant ferromagnets, it is shown that in the ab plane, the spin fluctuations are three-dimensional ferromagnetic in nature. From SCR theory the important spin-fluctuation parameters (T0, TA, F¯1) are evaluated. The similarities and dissimilarities of the NMR results in As and P based systems with different rare earths are also discussed.

  3. Chain orientation in natural rubber, Part II: 2H-NMR study.

    PubMed

    Rault, J; Marchal, J; Judeinstein, P; Albouy, P A

    2006-11-01

    Stress-induced crystallisation (SIC) and stress-induced melting (SIM) in natural rubbers (NR), unfilled and filled with carbon black (CB) have been studied by (2)H-NMR measurements. Various materials have been swollen with small amount (< 2%) of deuterated alkane chains. The orientation of the amorphous chains, then the local deformation of the amorphous chains during deformation cycles and during stress relaxation, permits to clarify the SIC and SIM processes during hardening and recovery. By mechanical, WAXS and NMR measurements one determines the same critical draw ratio for appearance lambda(A) and disappearance lambda(E) of the crystallites. It is demonstrated that the hysteresis observed by the different techniques (stress sigma, crystallinity chi, NMR splitting Deltanu) are due to the supercooling effect ( lambda(A) > lambda(E), at constant temperature). During hardening at constant strain rate it is found that the local draw ratio remains constant and equal to lambda(A), whereas the crystallinity increases linearly with the macroscopic draw ratio lambda. The hardening sigma approximately (lambda - lambda(A))(2) is then interpreted as a reinforcement effect due to the crystallites, which act as new crosslinks. This confirms the prediction of Flory. In filled rubber the same effects are observed, and the stress amplification factor is determined as a function of the CB content. It is found that the fillers act as nucleation centres for the NR crystallites. The reinforcement of such materials is due principally to this nucleation effect and to the presence of a super network formed by both the NR crystallites and the CB fillers.

  4. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    SciTech Connect

    Volkman, Brian Finley

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a "receiver domain" in the family of "two-component" regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  5. Multinuclear NMR study of the solvated electron in lithium-methylamine solutions

    SciTech Connect

    Holton, D.M.; Edwards, P.P.; McFarlane, W.; Wood, B.

    1983-04-20

    We report a multinuclear NMR study of lithium-methylamine solutions. NMR Knight shift data for solvent (/sup 1/H, /sup 13/C, /sup 14/N) and metal (/sup 6/Li, /sup 7/Li) nuclei are reported for concentrations from 2 mol % lithium to saturation at ca 200 K. The NMR results have been used in conjunction with recent magnetic susceptibility measurements on the title system to provide a precise description of the unpaired-electron spin-density distribution in both the solvated electron, e/sub s//sup -/, and lithium monomer species, Li/sup +//sub s/e/sup -//sub s/. For both species, the vast majority of the unpaired-electron spin density resides in the nitrogen fragment of the solvent molecule. As with metal-ammonia solutions, we also find a small, negative spin density in the /sup 1/H is orbital. The occupancy of the /sup 6/Li and /sup 7/Li 2s orbital in the electron-cation aggregate species Li/sup +//sub s/e/sub s//sup -/ corresponds to approximately 0.5% of the lithium free-atom value for a 7 mol % metal solution. We conclude that the excess-electron species in lithium-methylamine solutions resides in a ground-state orbital which is composed of a simple 1s-like orbital for the electron within a solvent cavity in combination with a set of Rydberg-like orbitals derived from the 3s orbitals of the host solvent matrix.

  6. Interaction of melittin with mixed phospholipid membranes composed of dimyristoylphosphatidylcholine and dimyristoylphosphatidylserine studied by deuterium NMR

    SciTech Connect

    Dempsey, C.; Bitbol, M.; Watts, A. )

    1989-08-08

    The interaction of bee venom melittin with mixed phospholipid bilayers composed of dimyristoylphosphatidylcholine deuterated in the {alpha}- and {beta}-methylenes of the choline head group (DMPC-d{sub 4}) and dimyristoylphosphatidylserine deuterated in the {alpha}-methylene and {beta}-CH positions of the serine head group (DMPS-d{sub 3}) was studied in ternary mixtures by using deuterium NMR spectroscopy. The changes in the deuterium quadrupole splittings of the head-group deuteriomethylenes of DMPC-d{sub 4} induced by DMPS in binary mixtures were systematically reversed by increasing concentrations of melittin, so that at a melittin concentration of 4 mol % relative to total lipid the deuterium NMR spectrum from DMPC-d{sub 4} in the ternary mixture was similar to the spectrum from pure DMPC-d{sub 4} bilayers. The absence of deuterium NMR signals arising from melittin-bound DMPS in ternary mixtures containing DMPS-d{sub 3} indicates that the reversal by melittin of the effects of DMPS on the quadrupole splittings of DMPC-d{sub 4} results from the response of the choline head group to the net surface charge rather than from phase separation of melittin-DMPS complexes. The similarity in the effects of the two cationic but otherwise dissimilar peptides indicates that the DMPS head group responds to the surface charge resulting from the presence in the bilayer of charged amphiphiles, in a manner analogous to the response of the choline head group of phosphatidylcholine to the bilayer surface charge. The presence of DMPS greatly stabilized DMPC bilayers with respect to melittin-induced micellization, indicating that the latter effect of melittin may not be important for the hemolytic activity of the peptide.

  7. Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study.

    PubMed

    Ouellet, Marise; Doucet, Jean-Daniel; Voyer, Normand; Auger, Michèle

    2007-06-05

    We have investigated the interaction between a synthetic amphipathic 14-mer peptide and model membranes by solid-state NMR. The 14-mer peptide is composed of leucines and phenylalanines modified by the addition of crown ethers and forms a helical amphipathic structure in solution and bound to lipid membranes. To shed light on its membrane topology, 31P, 2H, 15N solid-state NMR experiments have been performed on the 14-mer peptide in interaction with mechanically oriented bilayers of dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), and dipalmitoylphosphatidylcholine (DPPC). The 31P, 2H, and 15N NMR results indicate that the 14-mer peptide remains at the surface of the DLPC, DMPC, and DPPC bilayers stacked between glass plates and perturbs the lipid orientation relative to the magnetic field direction. Its membrane topology is similar in DLPC and DMPC bilayers, whereas the peptide seems to be more deeply inserted in DPPC bilayers, as revealed by the greater orientational and motional disorder of the DPPC lipid headgroup and acyl chains. 15N{31P} rotational echo double resonance experiments have also been used to measure the intermolecular dipole-dipole interaction between the 14-mer peptide and the phospholipid headgroup of DMPC multilamellar vesicles, and the results indicate that the 14-mer peptide is in contact with the polar region of the DMPC lipids. On the basis of these studies, the mechanism of membrane perturbation of the 14-mer peptide is associated to the induction of a positive curvature strain induced by the peptide lying on the bilayer surface and seems to be independent of the bilayer hydrophobic thickness.

  8. Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems

    SciTech Connect

    Rottstegge, J.; Arnold, M.; Herschke, L.; Glasser, G.; Wilhelm, M.; Spiess, H.W. . E-mail: spiess@mpip-mainz.mpg.de; Hergeth, W.D.

    2005-12-15

    Construction mortars contain a broad variety of both inorganic and organic additives beside the cement powder. Here we present a study of tile mortar systems based on portland cement, quartz, methyl cellulose and different latex additives. As known, the methyl cellulose stabilizes the freshly prepared cement paste, the latex additive enhances final hydrophobicity, flexibility and adhesion. Measurements were performed by solid state nuclear magnetic resonance (NMR) and low voltage scanning electron microscopy (LVSEM) to probe the influence of the latex additives on the hydration, hardening and the final tile mortar properties. While solid state NMR enables monitoring of the bulk composition, scanning electron microscopy affords visualization of particles and textures with respect to their shape and the distribution of the different phases. Within the alkaline cement paste, the poly(vinyl acetate) (VAc)-based latex dispersions stabilized by poly(vinyl alcohol) (PVA) were found to be relatively stable against hydrolysis. The influence of the combined organic additives methyl cellulose, poly(vinyl alcohol) and latexes stabilized by poly(vinyl alcohol) on the final silicate structure of the cement hydration products is small. But even small amounts of additives result in an increased ratio of ettringite to monosulfate within the final hydrated tile mortar as monitored by {sup 27}Al NMR. The latex was found to be adsorbed to the inorganic surfaces, acting as glue to the inorganic components. For similar latex water interfaces built up by poly(vinyl alcohol), a variation in the latex polymer composition results in modified organic textures. In addition to the networks of the inorganic cement and of the latex, there is a weak network build up by thin polymer fibers, most probably originating from poly(vinyl alcohol). Besides the weak network, polymer fibers form well-ordered textures covering inorganic crystals such as portlandite.

  9. Ab initio and DFT study of 31P-NMR chemical shifts of sphingomyelin and dihydrosphingomyelin lipid molecule

    NASA Astrophysics Data System (ADS)

    Sugimori, K.; Kawabe, H.; Nagao, H.; Nishikawa, K.

    One of the phospholipids, sphingomyelin (SM, N-acyl-sphingosine-1-phosphorylcholine) is the most abundant component of mammalian membranes in brain, nervous tissues, and human ocular lens. It plays an important role for apoptosis, aging, and signal transduction. Recently, Yappert and coworkers have shown that human lens sphingomyelin and its hydrogenated derivative, dihydrosphingomyelin (DHSM) are interacted with Ca2+ ions to develop human cataracts. Previously, we have investigated conformational differences between an isolated SM/DHSM molecule and Ca2+-coordinated form by using density functional theory (DFT) for geometry optimization and normal mode analysis. As a result, one of stable conformers of SMs has a hydrogen bonding between hydroxyl group and phosphate group, whereas another conformer has a hydrogen bonding between hydroxyl and phosphate amide group. In this study, 31P-Nuclear Magnetic Resonance (NMR) shielding constants of the obtained conformers are investigated by using ab initio and DFT with NMR-gauge invariant atomic orbitals (NMR-GIAO) calculations. The experimental 31P-NMR chemical shifts of SMs and DHSMs have significant small value around 0.1 ppm. We consider the relative conformational changes between SMs and DHSMs affect the slight deviations of 31P-NMR chemical shifts, and discuss intramolecular hydrogen bondings and the solvent effect in relation to NMR experimental reference.

  10. A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques.

    PubMed

    Hamzah, Rosniza; Bakar, Mohamad Abu; Khairuddean, Melati; Mohammed, Issam Ahmed; Adnan, Rohana

    2012-09-12

    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the <(13)C-NMR chemical shift assignments of ENR-50 were consistent to the previously reported work. A cyclic dithiocarbonate derivative of ENR-50 was synthesized from the reaction of purified ENR-50 with carbon disulfide (CS(2)), in the presence of 4-dimethylaminopyridine (DMAP) as catalyst at reflux temperature. The cyclic dithiocarbonate formation involved the epoxide ring opening of the ENR-50. This was followed by insertion of the C-S moiety of CS(2) at the oxygen attached to the quaternary carbon and methine carbon of epoxidized isoprene unit, respectively. The bands due to the C=S and C-O were clearly observed in the FTIR spectrum while the (1)H-NMR spectrum of the derivative revealed the peak attributed to the methylene protons had split. The (13)C-NMR spectrum of the derivative further indicates two new carbon peaks arising from the >C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.

  11. A 1H NMR spectroscopic study on the tryptophan residues of lysozyme included by glucosyl-β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tatsuyuki; Kobayashi, Teruya; Yoshikiyo, Keisuke; Matsui, Yoshihisa; Takahashi, Tetsuya; Aso, Yuji

    2009-02-01

    A 1H NMR spectroscopic study showed that the side chains of Trp residues of chicken egg white lysozyme in an aqueous solution are included by Glucosyl-β-cyclodextrin (G1-β-CD). The 1H NMR signals due to Trp residues shifted with the addition of G1-β-CD. The addition of methyl α- D-glucopyranoside, which has no inclusion ability, gave different effect on the shift of 1H NMR signals. The 1H NMR signals due to Cys64 and Ile98 were also influenced to a considerable extent with the addition of G1-β-CD, suggesting that these hydrophobic amino acid residues are also included by the CD. The chemical shift values of 1H NMR signals, due to indole rings of tryptophan residues, changed more with the addition of G1-β-CD. The magnitudes of the chemical shift change were different depending on their locations in the protein. The chemical shift values of 1H NMR signals, due to those Trp residues in the active site of the lysozyme were smaller than those locating at relatively near the surface of the protein.

  12. Solid-state NMR studies of proteins immobilized on inorganic surfaces

    DOE PAGES

    Shaw, Wendy J.

    2014-10-29

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin and leucine rich amelogenin protein (LRAP), have been studied in depth and have different features, challenging our ability to extract design principles. More recent studies of the significantly larger full-length amelogenin represent a challenging but necessary step to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids and silaffin peptide with silica are also being studied, along with qualitative studies of proteins interacting with calcium carbonate. Dipolar recoupling techniquesmore » have formed the core of the quantitative studies, yet, the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques is advancing, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area.« less

  13. Solid-state NMR studies of proteins immobilized on inorganic surfaces

    SciTech Connect

    Shaw, Wendy J.

    2014-10-29

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin and leucine rich amelogenin protein (LRAP), have been studied in depth and have different features, challenging our ability to extract design principles. More recent studies of the significantly larger full-length amelogenin represent a challenging but necessary step to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids and silaffin peptide with silica are also being studied, along with qualitative studies of proteins interacting with calcium carbonate. Dipolar recoupling techniques have formed the core of the quantitative studies, yet, the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques is advancing, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area.

  14. Nuclear magnetic resonance (NMR) in vivo studies: known thresholds for health effects

    SciTech Connect

    Budinger, T.F.

    1981-12-01

    Three sources of harmful health effects from nuclear magnetic resonance (NMR) in vivo techniques have been examined with the following conclusions: (a) Static magnetic fields. Harmful effects on humans and reproducible cellular, biochemical, or genetic effects have not yet been observed at fields less than 2 Tesla (20,000 gauss). (b) Changing magnetic fields. The threshold for effects of induced currents is above that produced from <1 to 100 Hz sinusoidal field changes with a maximum field of 5 mT (50 gauss). Waveform, repetition rate, maximum B field, and duration of exposure are parameters requiring further study, (c) Radiofrequency (RF) heating. A practical upper level for absorbed power is 4 W/kg in medically important studies of short duration (less than 10 min). For long-term studies, 1.5 W/kg is a reasonable level in low humidity environments. The power absorbed by the subject can be estimated by measuring the RF coil Q before and after the subject is placed in the NMR instrument. Large metal objects will absorb power in proportion to the conductivity of the device of prosthesis.

  15. Solid-State NMR Study of Li-Assisted Dehydrogenation of Ammonia Borane

    SciTech Connect

    Kobayashi, Takeshi; Hlova, Ihor; Singh, Niraj; Pecharsky, Vitalij; Pruski, Marek

    2012-03-21

    The mechanism of thermochemical dehydrogenation of the 1:3 mixture of Li3AlH6 and NH3BH3 (AB) has been studied by the extensive use of solid-state NMR spectroscopy and theoretical calculations. The activation energy for the dehydrogenation is estimated to be 110 kJ mol–1, which is lower than for pristine AB (184 kJ mol–1). The major hydrogen release from the mixture occurs at 60 and 72 °C, which compares favorably with pristine AB and related hydrogen storage materials, such as lithium amidoborane (LiNH2BH3, LiAB). The NMR studies suggest that Li3AlH6 improves the dehydrogenation kinetics of AB by forming an intermediate compound (LiAB)x(AB)1–x. A part of AB in the mixture transforms into LiAB to form this intermediate, which accelerates the subsequent formation of branched polyaminoborane species and further release of hydrogen. The detailed reaction mechanism, in particular the role of lithium, revealed in the present study highlights new opportunities for using ammonia borane and its derivatives as hydrogen storage materials.

  16. Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles

    SciTech Connect

    Furukawa, Yuji

    2016-10-01

    This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K6[V15As6O42(H2O)]·8H2O (in short V15), (2) the spin ball [Mo72Fe30O252(Mo2O7(H2O))2(Mo2O8H2(H2O)) (CH3COO)12(H2O)91]·150H2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl2tachH)3Cl]Cl2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determined in both the nonfrustrated total spin ST = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate ST = 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T1) measurements. In the ST = 3/2 state, 1/T1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T1 at very low temperatures is observed in the frustrated ST = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T1 measurements. From the temperature dependence of 1/T1, the fluctuation frequency of the Fe3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The

  17. Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles

    SciTech Connect

    Furukawa, Yuji

    2016-10-01

    This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K6[V15As6O42(H2O)]·8H2O (in short V15), (2) the spin ball [Mo72Fe30O252(Mo2O7(H2O))2(Mo2O8H2(H2O)) (CH3COO)12(H2O)91]·150H2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl2tachH)3Cl]Cl2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determined in both the nonfrustrated total spin ST = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate ST = 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T1) measurements. In the ST = 3/2 state, 1/T1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T1 at very low temperatures is observed in the frustrated ST = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T1 measurements. From the temperature dependence of 1/T1, the fluctuation frequency of the Fe3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The

  18. Synthesis and NMR studies of (13)C-labeled vitamin D metabolites.

    PubMed

    Okamura, William H; Zhu, Gui-Dong; Hill, David K; Thomas, Richard J; Ringe, Kerstin; Borchardt, Daniel B; Norman, Anthony W; Mueller, Leonard J

    2002-03-08

    Isotope-labeled drug molecules may be useful for probing by NMR spectroscopy the conformation of ligand associated with biological hosts such as membranes and proteins. Triple-labeled [7,9,19-(13)C(3)]-vitamin D(3) (56), its 25-hydroxylated and 1 alpha,25-dihydroxylated metabolites (58 and 68, respectively), and other labeled materials have been synthesized via coupling of [9-(13)C]-Grundmann's ketone 39 or its protected 25-hydroxy derivative 43 with labeled A ring enyne fragments 25 or 26. The labeled CD-ring fragment 39 was prepared by a sequence involving Grignard addition of [(13)C]-methylmagnesium iodide to Grundmann's enone 28, oxidative cleavage, functional group modifications leading to seco-iodide 38, and finally a kinetic enolate S(N)2 cycloalkylation. The C-7,19 double labeling of the A-ring enyne was achieved by the Corey-Fuchs/Wittig processes on keto aldehyde 11. By employing these labeled fragments in the Wilson-Mazur route, the C-7,9,19 triple-(13)C-labeled metabolites 56, 58, and 68 as well as other (13)C-labeled metabolites have been prepared. In an initial NMR investigation of one of the labeled metabolites prepared in this study, namely [7,9,19-(13)C(3)]-25-hydroxyvitamin D(3) (58), the three (13)C-labeled carbons of the otherwise water insoluble steroid could be clearly detected by (13)C NMR analysis at 0.1 mM in a mixture of CD(3)OD/D(2)O (60/40) or in aqueous dimethylcyclodextrin solution and at 2 mM in 20 mM sodium dodecyl sulfate (SDS) aqueous micellar solution. In the SDS micellar solution, a double half-filter NOESY experiment revealed that the distance between the H(19Z) and H(7) protons is significantly shorter than that of the corresponding distance calculated from the solid state (X-ray) structure of the free ligand. The NMR data in micelles reveals that 58 exists essentially completely in the alpha-conformer with the 3 beta-hydroxyl equatorially oriented, just as in the solid state. The shortened distance (H(19Z))-H(7)) in micellar

  19. Proton NMR spectral study of UV treated live Escherichia coli Bacteria

    NASA Astrophysics Data System (ADS)

    Sorokopud, Michael

    The lethal effects of ultraviolet radiation on microorganisms have been known and utilized for many years. In sufficiently high photon fluences, light and in particular, UV light, is an effective and subtle means of killing or at least immobilizing most, if not all cells and micro-organisms. Because of their small size, light can penetrate the enclosing protective walls and enter the inner volumes where it can break organic bonds in components that are vital to cell function. Despite the fact that a very low dose of UV light (1-9 mJ/cm2) has been shown to inactivate many micro-organisms, there remains a dearth of biological information about light induced effects in molecules and their interactions within living microbial systems. The use of 1H NMR as a spectroscopic tool was chosen to undertake an examination of the possible effects resulting from exposing E. coli to lethal fluencies of UV radiation. Once sample preparation, treatment, and NMR mounting methods were optimized, the high sensitivity and high resolution capabilities of the method produced reproducible results for a series of experiments. These results reveal significant changes in the ratio of the 1H NMR spectra of the treated to untreated E.coli samples when the treated sample was exposed to a lethal fluence of 275nm light. Photons at the 275nm wavelength, used in this study, have enough energy to break all of the principle bonds in an organic molecule. The difference spectrum between treated to untreated samples appears to be fitted well using specific component spectra from these groups of compounds. Increases in NMR peak amplitudes are observed and appear to be correlated with the spectral locations of several amino acids, membrane components and several sugars/saccharides. Increases in peak intensities of 4-8% were observed in the 0.8-1.1 ppm chemical shift region, characteristic of lipid and amino acid groups. A 3.5-4% increase was observed in the 2 ppm and 3.4-4 ppm region characteristic of

  20. Ionic Liquid-Solute Interactions Studied by 2D NOE NMR Spectroscopy.

    PubMed

    Khatun, Sufia; Castner, Edward W

    2015-07-23

    Intermolecular interactions between a Ru(2+)(bpy)3 solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {(1)H-(19)F} HOESY and {(1)H-(1)H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru(2+)(bpy)3 solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru(2+)(bpy)3 solute interacts with both the polar head and the nonpolar tail groups of the 1-butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.

  1. NMR studies of p7 protein from hepatitis C virus

    PubMed Central

    Cook, Gabriel A.

    2009-01-01

    The p7 protein of hepatitis C virus (HCV) plays an important role in the viral lifecycle. Like other members of the viroporin family of small membrane proteins, the amino acid sequence of p7 is largely conserved over the entire range of genotypes, and it forms ion channels that can be blocked by a number of established channel-blocking compounds. Its characteristics as a membrane protein make it difficult to study by most structural techniques, since it requires the presence of lipids to fold and function properly. Purified p7 can be incorporated into phospholipid bilayers and micelles. Initial solid-state nuclear magnetic resonance (NMR) studies of p7 in 14-O-PC/6-O-PC bicelles indicate that the protein contains helical segments that are tilted approximately 10° and 25° relative to the bilayer normal. A truncated construct corresponding to the second transmembrane domain of p7 is shown to have properties similar to those of the full-length protein, and was used to determine that the helix segment tilted at 10° is in the C-terminal portion of the protein. The addition of the channel blocker amantadine to the full-length protein resulted in selective chemical shift changes, demonstrating that NMR has a potential role in the development of drugs targeted to p7. PMID:19727701

  2. Postharvest ripening study of sweet lime (Citrus limettioides) in situ by volume-localized NMR spectroscopy.

    PubMed

    Banerjee, Abhishek; George, Christy; Bharathwaj, Sathyamoorthy; Chandrakumar, Narayanan

    2009-02-25

    Spatially resolved NMR--especially volume-localized spectroscopy (VLS)is useful in various fields including clinical diagnosis, process monitoring, etc. VLS carries high significance because of its ability to identify molecular species and hence track molecular events. This paper reports the application of VLS at 200 MHz to study the postharvest ripening of sweet lime ( Citrus limettioides ) in situ, including a comparative study of normal and acetylene-mediated ripening. Localization to a cubic voxel of 64 microL was achieved with point-resolved spectroscopy (PRESS). Glucose, sucrose, fructose, and citric acid are found to be among the main constituents in the fruit. In the natural process, the sugar to acid ratio increases with ripening. Ethanol generation is seen to occur at a faster rate in acetylene-mediated ripening. Whereas NMR imaging experiments including parametric imaging (e.g., T(1) or T(2) maps) may be employed for "macro" monitoring of processes such as these, this work demonstrates that the molecular imprint of the process may be tracked noninvasively by VLS.

  3. Acceleration of protein backbone NMR assignment by combinatorial labeling: Application to a small molecule binding study.

    PubMed

    Hein, Christopher; Löhr, Frank; Schwarz, Daniel; Dötsch, Volker

    2017-05-01

    Selective labeling with stable isotopes has long been recognized as a valuable tool in protein NMR to alleviate signal overlap and sensitivity limitations. In this study, combinatorial (15) N-, (13) C(α) -, and (13) C'-selective labeling has been used during the backbone assignment of human cyclophilin D to explore binding of an inhibitor molecule. Using a cell-free expression system, a scheme that involves (15) N, 1-(13) C, 2-(13) C, fully (15) N/(13) C, and unlabeled amino acids was optimized to gain a maximum of assignment information from three samples. This scheme was combined with time-shared triple-resonance NMR experiments, which allows a fast and efficient backbone assignment by giving the unambiguous assignment of unique amino acid pairs in the protein, the identity of ambiguous pairs and information about all 19 non-proline amino acid types. It is therefore well suited for binding studies where de novo assignments of amide (1) H and (15) N resonances need to be obtained, even in cases where sensitivity is the limiting factor. © 2016 Wiley Periodicals, Inc.

  4. NMR and computational studies of chiral discrimination by amylose tris(3,5-dimethylphenylcarbamate).

    PubMed

    Ye, Yun K; Bai, Shi; Vyas, Shyam; Wirth, Mary J

    2007-02-08

    Proton NMR and simulations were combined to study the origin of chiral selectivity by a polysaccharide used in a commercial chromatographic stationary phase: amylose tris(3,5-dimethylphenylcarbamate). This material has unusually high enantioselectivity for p-O-tert-butyltyrosine allyl ester, which is activated by the presence of an acid. Proton NMR spectra agreed with the HPLC in showing that the l-enantiomer interacts much more strongly with the polysaccharide and that acidity switches on the selectivity. 2D NOESY spectra revealed which protons of each enantiomer and the polysaccharide were in proximity, and these spectra revealed folding of the l-enantiomer. Computations generated energy-minimized structures for the polysaccharide-enantiomer complexes, independently predicting folding of the l-enantiomer. Molecular dynamics simulations 2 ns in duration, repeated for three different energy-minimized structures, generated pair distribution functions that are in excellent agreement with the 2D NOESY spectra. The modeling studies revealed why acidity switches on chiral selectivity and minimally affects the chromatographic retention time of the unfavored d-enantiomer. The results comprise the first case of a chiral separation by a commercial polysaccharide stationary phase being explained using a combination of 2D NOESY and simulations, providing excellent agreement between experiment and computation and lending detailed molecular insight into enantioselectivity for this system.

  5. (1)H-NMR-based metabolomic studies of bisphenol A in zebrafish (Danio rerio).

    PubMed

    Yoon, Changshin; Yoon, Dahye; Cho, Junghee; Kim, Siwon; Lee, Heonho; Choi, Hyeonsoo; Kim, Suhkmann

    2017-04-03

    Proton nuclear magnetic resonance ((1)H-NMR) spectroscopy was used to study the response of zebrafish (Danio rerio) to increasing concentrations of bisphenol A (4,4'-(propane-2,2-diyl)diphenol, BPA). Orthogonal partial least squares discriminant analysis (OPLS-DA) was applied to detect aberrant metabolomic profiles after 72 h of BPA exposure at all levels tested (0.01, 0.1, and 1.0 mg/L). The OPLS-DA score plots showed that BPA exposure caused significant alterations in the metabolome. The metabolomic changes in response to BPA exposure generally exhibited nonlinear patterns, with the exception of reduced levels of several metabolites, including glutamine, inosine, lactate, and succinate. As the level of BPA exposure increased, individual metabolite patterns indicated that the zebrafish metabolome was subjected to severe oxidative stress. Interestingly, ATP levels increased significantly at all levels of BPA exposure. In the present study, we demonstrated the applicability of (1)H-NMR-based metabolomics to identify the discrete nature of metabolic changes.

  6. Membrane lipids protected from oxidation by red wine tannins: a proton NMR study.

    PubMed

    Furlan, Aurélien L; Jobin, Marie-Lise; Buchoux, Sébastien; Grélard, Axelle; Dufourc, Erick J; Géan, Julie

    2014-12-01

    Dietary polyphenols widespread in vegetables and beverages like red wine and tea have been reported to possess antioxidant properties that could have positive effects on human health. In this study, we propose a new in situ and non-invasive method based on proton liquid-state nuclear magnetic resonance (NMR) to determine the antioxidant efficiency of red wine tannins on a twice-unsaturated phospholipid, 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC), embedded in a membrane model. Four tannins were studied: (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG). The lipid degradation kinetics was determined by measuring the loss of the bis-allylic protons during oxidation induced by a radical initiator, 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). The antioxidant efficiency, i.e. the ability of tannins to slow down the lipid oxidation rate, was shown to be higher for galloylated tannins, ECG and EGCG. Furthermore, the mixture of four tannins was more efficient than the most effective tannin, EGCG, demonstrating a synergistic effect. To better understand the antioxidant action mechanism of polyphenols on lipid membranes, the tannin location was investigated by NMR and molecular dynamics. A correlation between antioxidant action of tannins and their location at the membrane interface (inserted at the glycerol backbone level) could thus be established. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    SciTech Connect

    Boonsri, Pornthip; Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng; Herdendorf, Timothy J.; Miziorko, Henry M.; Hannongbua, Supa; Sem, Daniel S.

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  8. Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries.

    PubMed

    Wan, Chuan; Xu, Suochang; Hu, Mary Y; Cao, Ruiguo; Qian, Jiangfeng; Qin, Zhaohai; Liu, Jun; Mueller, Karl T; Zhang, Ji-Guang; Hu, Jian Zhi

    2017-04-04

    The composition of the solid electrolyte interphase (SEI) layers formed in Cu|Li cells using lithium bis(fluorosulfonyi)imide (LiFSI) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1,2-dimethoxyethane (DME) electrolytes is determined by a multinuclear solid-state MAS NMR study at high magnetic field. It is found that the "dead" metallic Li is largely reduced in the SEI layers formed in a 4 M LiFSI-DME electrolyte system compared with those formed in a 1 M LiFSI-DME electrolyte system. This finding relates directly to the safety of Li metal batteries, as one of the main safety concerns for these batteries is associated with the "dead" metallic Li formed after long term cycling. It is also found that a large amount of LiF, which exhibits superior mechanical strength and good Li(+) ionic conductivity, is observed in the SEI layer formed in the concentrated 4 M LiFSI-DME and 3 M LiTFSI-DME systems, but not in the diluted 1 M LiFSI-DME system. Quantitative (6)Li MAS NMR results indicate that the SEI associated with the 4 M LiFSI-DME electrolyte is denser than those formed in the 1 M LiFSI-DME and 3 M LiTFSI-DME systems. These studies reveal the fundamental mechanisms behind the excellent electrochemical performance associated with higher concentration LiFSI-DME electrolyte systems.

  9. Simulation studies of instrumental artifacts on spin I=1 double quantum filtered NMR spectroscopy

    PubMed Central

    Sun, Cheng; Boutis, Gregory S.

    2010-01-01

    We report on the results of a simulation based study of the effect of various experimental artifacts for spin I=1 double quantum filtered NMR. The simulation captures the effects of static field inhomogeneity, finite pulse widths, phase errors, transients and radio frequency inhomogeneity. We simulated the spectral distortions introduced under these errors for four, eight and sixteen step phase cycles that are well known in the NMR community. The dominating pulse errors are radio frequency field inhomogeneity and antisymmetric pulse transients. These errors result in the reduction of signal intensity as well as an introduction of distortions in the detected double quantum filtered spectrum. Using the simulation tool we studied the improvement one obtains when implementing a sixteen step phase cycle over a four step phase cycle. The results indicate that implementing a sixteen step phase cycle over an eight or four step phase cycle does not result in a significant reduction in the DQF intensity loss, or reduction in spectral distortions for antisymmetric transients. PMID:20451432

  10. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    SciTech Connect

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.

  11. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    DOE PAGES

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulkmore » IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less

  12. Uptake of cesium ions by human erythrocytes and perfused rat heart: a cesium-133 NMR study

    SciTech Connect

    Davis, D.G.; Murphy, E.; London, R.E.

    1988-05-17

    Cesium-133 NMR studies have been carried out on suspended human erythrocytes and on perfused rat hearts in media containing CsCl. The resulting spectra exhibit two sharp resonances, arising from intra-and extracellular Cs/sup +/, separated in chemical shift by 1.0-1.4 ppm. Thus, intra- and extracellular resonances are easily resolved without the addition of paramagnetic shift reagents required to resolve resonance of the other alkali metal ions. Spin-lattice relaxation times in all cases are monoexponential and significantly shorter (3-4 times) for the intracellular component. When corrections are made for the pulse repetition rate, the total intensity of the intracellular and extracellular Cs/sup +/ resonances in erythrocytes is conserve, implying total observability of the intracellular pool. The uptake of Cs/sup +/ by erythrocytes occurs at approximately one-third the reported rate for K/sup +/ and was reduced by a factor of 2 upon addition of ouabain to the sample. These results indicate that /sup 133/Cs NMR is a promising tool for studying the distribution and transport of cesium ions in biological systems and, in some cases such as uptake by cellular Na,K-ATPase, for analysis of K/sup +/ ion metabolism.

  13. Rotary echo nutation NMR

    NASA Astrophysics Data System (ADS)

    Janssen, R.; Tijink, G. A. H.; Veeman, W. S.

    1988-01-01

    A two-dimensional solid state NMR experiment which combines rotary echoes and nutation NMR is investigated and used to study different sodium sites in zeolite NaA. It is shown that with this technique sodium ions with different relaxation rates in the rotating frame can be distinguished.

  14. Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents.

    PubMed

    Hilty, Christian; Wider, Gerhard; Fernández, César; Wüthrich, Kurt

    2004-04-02

    For solution NMR studies of the structure and function of membrane proteins, these macromolecules have to be reconstituted and solubilized in detergent micelles. Detailed characterization of the mixed detergent/protein micelles is then of key importance to validate the results from such studies, and to evaluate how faithfully the natural environment of the protein in the biological membrane is mimicked by the micelle. In this paper, a selection of paramagnetic probes with different physicochemical properties are used to characterize the 60 kDa mixed micelles consisting of about 90 molecules of the detergent dihexanoylphosphatidylcholine (DHPC) and one molecule of the Escherichia coli outer-membrane protein X (OmpX), which had previously been extensively studied by solution NMR techniques. The observation of highly selective relaxation effects on the NMR spectra of OmpX and DHPC from a water-soluble relaxation agent and from nitroxide spin labels attached to lipophilic molecules, confirmed data obtained previously with more complex NMR studies of the diamagnetic OmpX/DHPC system, and yielded additional novel insights into the protein-detergent interactions in the mixed micelles. The application of paramagnetic probes to the well-characterized OmpX/DHPC system indicates that such probes should be widely applicable as an efficient support of NMR studies of the topology of mixed membrane protein-detergent micelles.

  15. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae—A 2D NMR Metabolomics Study

    PubMed Central

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-01-01

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of 1H-13C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae. PMID:27598144

  16. Rheo-NMR Studies of an Enzymatic Reaction: Evidence of a Shear-Stable Macromolecular System

    PubMed Central

    Edwards, Patrick J.B.; Kakubayashi, Motoko; Dykstra, Robin; Pascal, Steven M.; Williams, Martin A.K.

    2010-01-01

    Abstract Understanding the effects of shear forces on biopolymers is key to understanding how biological systems function. Although currently there is good agreement between theoretical predictions and experimental measurements of the behavior of DNA and large multimeric proteins under shear flow, applying the same arguments to globular proteins leads to the prediction that they should only exhibit shear-induced conformational changes at extremely large shear rates. Nevertheless, contradictory experimental evidence continues to appear, and the effect of shear on these biopolymers remains contentious. Here, a custom-built rheo-NMR cell was used to investigate whether shear flow modifies enzyme action compared with that observed quiescently. Specifically, 1H NMR was used to follow the kinetics of the liberation of methanol from the methylesterified polysaccharide pectin by pectinmethylesterase enzymes. Two different demethylesterifying enzymes, known to have different action patterns, were used. In all experiments performed, Couette flows with shear rates of up to 1570 s−1 did not generate detectable differences in the rate of methanol liberation compared to unsheared samples. This study provides evidence for a shear-stable macromolecular system consisting of a largely β-sheet protein and a polysaccharide, in line with current theoretical predictions, but in contrast to some other experimental work on other proteins. PMID:20441763

  17. Contribution of high-energy conformations to NMR chemical shifts, a DFT-BOMD study.

    PubMed

    Goursot, A; Mineva, T; Vásquez-Pérez, J M; Calaminici, P; Köster, A M; Salahub, D R

    2013-01-21

    This paper highlights the relevance of including the high-energy conformational states sampled by Born-Oppenheimer molecular dynamics (BOMD) in the calculation of time-averaged NMR chemical shifts. Our case study is the very flexible glycerol molecule that undergoes interconversion between conformers in a nonrandom way. Along the sequence of structures from one backbone conformer to another, transition states have been identified. The three (13)C NMR chemical shifts of the molecule were estimated by averaging their calculated values over a large set of BOMD snapshots. The simulation time needed to obtain a good agreement with the two signals present in the experimental spectrum is shown to be dependent on the atomic orbital basis set used for the dynamics, with a necessary longer trajectory for the most extended basis sets. The large structural deformations with respect to the optimized conformer geometries that occur along the dynamics are related to a kinetically driven conformer distribution. Calculated conformer type populations are in good agreement with experimental gas phase microwave results.

  18. Relaxation NMR as a tool to study the dispersion and formulation behavior of nanostructured carbon materials.

    PubMed

    Fairhurst, David; Cosgrove, Terence; Prescott, Stuart W

    2016-06-01

    Solvent relaxation NMR has been used to estimate the surface areas and wettability of various types of nanostructured carbon materials in a range of solvents including water, ethanol, and tetrahydrofuran. We illustrate the application of the technique through several short case studies using samples including nanocarbon blacks, graphene oxide, nanographites, and porous graphenes. The technique is shown to give a good measure of surface area, correlating well with conventional surface area estimates obtained by nitrogen adsorption, transmission electron microscopy, or light scattering for the non-porous samples. NMR relaxation has advantages in terms of speed of analysis and being able to use concentrated, wet, and opaque samples. For samples that are porous, two distinct surface areas can be estimated assuming the two environments ('inner' and 'outer') have the same surface chemistry, and that there is a slow exchange of solvent molecules between them. Furthermore, we show that differences in wettability and dispersability between samples dispersed in water, ethanol, and cyclopentanone can be observed, along with changes to the surface chemistry of the interface. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Morphological Characterization of DMPC/CHAPSO Bicellar Mixtures: A Combined SANS and NMR Study

    SciTech Connect

    Li, Ming; Morales, Hannah H.; Katsaras, John; Kučerka, Norbert; Yang, Yongkun; Macdonald, Peter M.; Nieh, Mu-Ping

    2013-12-23

    Spontaneously forming structures of a system composed of dimyristoyl phosphatidylcholine (DMPC) and 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) were studied by small-angle neutron scattering (SANS), 31P NMR, and stimulated echo (STE) pulsed field gradient (PFG) 1H NMR diffusion measurements. Charged lipid dimyristoyl phosphatidylglycerol (DMPG) was used to induce different surface charge densities. The structures adopted were investigated as a function of temperature and lipid concentration for samples with a constant molar ratio of long-chain to short-chain lipids (=3). In the absence of DMPG, zwitterionic bicellar mixtures exhibited a phase transition from discoidal bicelles, or ribbons, to multilamellar vesicles either upon dilution or with increased temperature. CHAPSO-containing mixtures showed a higher thermal stability in morphology than DHPC-containing mixtures at the corresponding lipid concentrations. In the presence of DMPG, discoidal bicelles (or ribbons) were also found at low temperature and lower lipid concentration mixtures. At high temperature, perforated lamellae were observed in high concentration mixtures ( ≥ 7.5 wt %) whereas uniform unilamellar vesicles and bicelles formed in low-concentration mixtures ( ≤ 2.5 wt %), respectively, when the mixtures were moderately and highly charged. Lastly, from the results, spontaneous structural diagrams of the zwitterionic and charged systems were constructed.

  20. Fate of Pup inside the Mycobacterium Proteasome Studied by in-Cell NMR

    PubMed Central

    Maldonado, Andres Y.; Burz, David S.; Reverdatto, Sergey; Shekhtman, Alexander

    2013-01-01

    The Mycobacterium tuberculosis proteasome is required for maximum virulence and to resist killing by the host immune system. The prokaryotic ubiquitin-like protein, Pup-GGE, targets proteins for proteasome-mediated degradation. We demonstrate that Pup-GGQ, a precursor of Pup-GGE, is not a substrate for proteasomal degradation. Using STINT-NMR, an in-cell NMR technique, we studied the interactions between Pup-GGQ, mycobacterial proteasomal ATPase, Mpa, and Mtb proteasome core particle (CP) inside a living cell at amino acid residue resolution. We showed that under in-cell conditions, in the absence of the proteasome CP, Pup-GGQ interacts with Mpa only weakly, primarily through its C-terminal region. When Mpa and non-stoichiometric amounts of proteasome CP are present, both the N-terminal and C-terminal regions of Pup-GGQ bind strongly to Mpa. This suggests a mechanism by which transient binding of Mpa to the proteasome CP controls the fate of Pup. PMID:24040288

  1. Lanthanide Chelates as Bilayer Alignment Tools in NMR Studies of Membrane-Associated Peptides

    NASA Astrophysics Data System (ADS)

    Prosser, R. S.; Bryant, H.; Bryant, R. G.; Vold, Regitze R.

    1999-12-01

    Theequimolar complex, consisting of the lipid-like, amphiphilic chelating agent 1,11-bis[distearylamino]-diethylenetriamine pentaacetic acid (DTPA-18) and Tm3+, is shown by deuterium (2H) NMR to be useful in aligning bicelle-like model membranes, consisting of dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC). As shown previously (1996, R. S. Prosser et al., J. Am. Chem. Soc. 118, 269-270), in the absence of chelate, the lanthanide ions bind loosely with the lipid phosphate groups and confer the membrane with a sufficient positive magnetic anisotropy to result in parallel alignment (i.e., average bilayer normal along the field). Apparently, DTPA-18 sequesters the lanthanide ions and inserts into the phospholipid bilayer in such a manner that bilayer morphology is preserved over a wide temperature range (35-70°C). The inherent paramagnetic shifts and line broadening effects are illustrated by 2H NMR spectra of the membrane binding peptide, Leu-enkephalin (Lenk-d2, Tyr-(Gly-d2)-Gly-Phe-Leu-OH), in the presence of varying concentrations of Tm3+, and upon addition of DTPA-18. Two conclusions could be drawn from this study: (1) The addition of Tm3+ to the bicelle system is consistent with a conformational change in the surface associated peptide, and this effect is shown to be reversed by addition of the chelate, and (2) The paramagnetic shifts are shown to be significantly reduced by addition of chelate.

  2. Active site dynamics in NADH oxidase from Thermus thermophilus studied by NMR spin relaxation.

    PubMed

    Miletti, Teresa; Farber, Patrick J; Mittermaier, Anthony

    2011-09-01

    We have characterized the backbone dynamics of NADH oxidase from Thermus thermophilus (NOX) using a recently-developed suite of NMR experiments designed to isolate exchange broadening, together with (15)N R (1), R (1ρ ), and {(1)H}-(15)N steady-state NOE relaxation measurements performed at 11.7 and 18.8 T. NOX is a 54 kDa homodimeric enzyme that belongs to a family of structurally homologous flavin reductases and nitroreductases with many potential biotechnology applications. Prior studies have suggested that flexibility is involved in the catalytic mechanism of the enzyme. The active site residue W47 was previously identified as being particularly important, as its level of solvent exposure correlates with enzyme activity, and it was observed to undergo "gating" motions in computer simulations. The NMR data are consistent with these findings. Signals from W47 are dynamically broadened beyond detection and several other residues in the active site have significant R ( ex ) contributions to transverse relaxation rates. In addition, the backbone of S193, whose side chain hydroxyl proton hydrogen bonds directly with the FMN cofactor, exhibits extensive mobility on the ns-ps timescale. We hypothesize that these motions may facilitate structural rearrangements of the active site that allow NOX to accept both FMN and FAD as cofactors.

  3. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    SciTech Connect

    Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of {sup 13}C, {sup 14}N and {sup 1}H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in {sup 13}C, {sup 14}N and {sup 1}H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  4. Equilibrium forms of vitisin B pigments in an aqueous system studied by NMR and visible spectroscopy.

    PubMed

    Oliveira, Joana; Mateus, Nuno; Silva, Artur M S; de Freitas, Victor

    2009-08-13

    The main species in the acid-base equilibria of two pyranoanthocyanins (vitisins B), pyranomalvidin-3-glucoside I and pyranomalvidin-3-O-coumaroylglucoside II, and the respective pK(a) were determined using NMR, visible spectroscopy, and mass spectrometry techniques. The three equilibria involve protonation of the pyranoflavylium cation of vitisin B (pK(a1)) and two deprotonations (pK(a2) and pK(a3)). For pigment I, the values obtained through the titration curves of the chemical shift of some protons versus pH were (pK(a1) < 0.68; pK(a2) = 4.40 +/- 0.08; pK(a3) = 7.45 +/- 0.09) very close to the values obtained by visible spectroscopy (pK(a1) < 0.63; pK(a2) = 4.43 +/- 0.02; pK(a3) = 7.34 +/- 0.03). For pigment II, it was only possible to calculate the pK(a) by visible spectroscopy (pK(a1) < 0.75; pK(a2) = 4.66 +/- 0.10; pK(a3) = 6.76 +/- 0.10). NMR studies have shown that pigment I does not undergo hydration, and the hypothesis of the occurrence of hemiacetal forms in equilibrium was discarded.

  5. PdGa intermetallic hydrogenation catalyst: an NMR and physical property study

    NASA Astrophysics Data System (ADS)

    Klanjšek, M.; Gradišek, A.; Kocjan, A.; Bobnar, M.; Jeglič, P.; Wencka, M.; Jagličić, Z.; Popčević, P.; Ivkov, J.; Smontara, A.; Gille, P.; Armbrüster, M.; Grin, Yu; Dolinšek, J.

    2012-02-01

    The PdGa intermetallic compound is a highly selective and stable heterogeneous hydrogenation catalyst for the semi-hydrogenation of acetylene. We have studied single crystals of PdGa grown by the Czochralski technique. The 69Ga electric-field-gradient (EFG) tensor was determined by means of NMR spectroscopy, giving experimental confirmation of both the recently refined structural model of PdGa and the theoretically predicted Pd-Ga covalent bonding scheme. The hydrogenation experiment has detected no hydrogen uptake in the PdGa, thus preventing in situ hydride formation that leads to a reduction of the catalytic selectivity. We have also determined bulk physical properties (the magnetic susceptibility, the electrical resistivity, the thermoelectric power, the Hall coefficient, the thermal conductivity and the specific heat) of single-crystalline PdGa. The results show that PdGa is a diamagnet with metallic electrical resistivity and moderately high thermal conductivity. The thermoelectric power is negative with complicated temperature dependence, whereas the Hall coefficient is positive and temperature-dependent, indicating complexity of the Fermi surface. Partial fulfillment of the NMR Korringa relation reveals that the charge carriers are weakly correlated. Specific heat measurements show that the density of electronic states (DOS) at the Fermi energy of PdGa is reduced to 15% of the DOS of the elemental Pd metal.

  6. 73Ge-NMR study and ab initio calculations on clathrate compound Ba24Ge100

    NASA Astrophysics Data System (ADS)

    Kanetake, F.; Harada, A.; Rachi, T.; Nagara, H.; Mukuda, H.; Kusakabe, K.; Kitaoka, Y.; Suzuki, N.; Tanigaki, K.; Itoh, K.; Haller, E. E.

    2008-07-01

    Through 73Ge-NMR measurements and ab initio calculations, we have studied electronic properties of a type-III clathrate compound Ba24Ge100. At ambient pressure, the nuclear spin-lattice relaxation rate 1/T1T has a peak around 200K followed by an activation type decrease with decreasing temperature and it becomes constant at very low temperatures. Near the peak temperature, the successive structural transformations have been observed at TS1 = 215K and TS2 = 180K. The constant value of 1/T1T at low temperatures is considerably smaller than the value at temperatures higher than TS1, which implies that the density of states at the Fermi level D(EF) significantly decreases from the high temperature value at ambient pressure. From ab initio calculations on Ba24Ge100 as well as Ba24Si100, we speculate the phase changes of Ba24Ge100 in the relevant region of the T-P plane. Our results of NMR measurements and D(EF) calculations for the P4132 and an R3 structures imply that, at high pressures ~ 2.8 GPa, there should be increase of D(EF) from the value at ambient pressure and low temperatures. We conclude that this result is predominantly related with the large enhancement of the superconducting transition temperature Tc from 0.24 K (at P = 0) to 3.8 K (at P = 2.7 GPa) observed in Ba24Ge100

  7. [Study on three different species tibetan medicine sea buckthorn by 1H-NMR-based metabonomics].

    PubMed

    Su, Yong-Wen; Tan, Er; Zhang, Jing; You, Jia-Li; Liu, Yue; Liu, Chuan; Zhou, Xiang-Dong; Zhang, Yi

    2014-11-01

    The 1H-NMR fingerprints of three different species tibetan medicine sea buckthorn were established by 1H-HMR metabolomics to find out different motablism which could provide a new method for the quality evaluation of sea buckthorn. The obtained free induction decay (FID) signal will be imported into MestReNova software and into divide segments. The data will be normalized and processed by principal component analysis and.partial least squares discriminant analysis to perform pattern recognition. The results showed that 25 metabolites belonging to different chemical types were detected from sea buckthorn,including flavonoids, triterpenoids, amino acids, carbohydrates, fatty acids, etc. PCA and PLS-DA analysis showed three different varietiest of sea buckthorn that can be clearly separated by the content of L-quebrachitol, malic acid and some unidentified sugars, which can be used as the differences metabolites of three species of sea buckthorn. 1H-NMR-based metabonomies method had a holistic characteristic with sample preparation and handling. The results of this study can offer an important reference for the species identification and quality control of sea buckthorn.

  8. Size-dependent properties of Tl2Se studied by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Panich, A. M.; Shao, M.; Teske, C. L.; Bensch, W.

    2006-12-01

    We report on size-dependent properties of dithallium selenide, Tl2Se . We have carried out a comparative nuclear magnetic resonance (NMR) study of Tl2Se nanorods and bulk samples, measuring NMR spectra and spin-lattice relaxation rate of Tl203 and Tl205 isotopes. Though bulk Tl2Se was reported to be a metal, the Korringa-like spin-lattice relaxation behavior is observed only at low temperatures and is transformed to an activation regime above ˜200K . This finding is interpreted assuming a two-band model in the semimetallic compound. Our measurements show significant difference in the Knight shift and indirect nuclear exchange coupling for the bulk and nanorod Tl2Se samples, reflecting noticeable distinction in their electronic structure. At that, Tl2Se nanorods are semiconductors and exhibit a characteristic activation behavior in the spin-lattice relaxation rate due to the thermal excitation of carriers to the conduction band. The obtained size dependence of the Tl2Se properties is interpreted in terms of the semimetal-semiconductor transformation due to the quantum confinement.

  9. PdGa intermetallic hydrogenation catalyst: an NMR and physical property study.

    PubMed

    Klanjšek, M; Gradišek, A; Kocjan, A; Bobnar, M; Jeglič, P; Wencka, M; Jagličić, Z; Popčević, P; Ivkov, J; Smontara, A; Gille, P; Armbrüster, M; Grin, Yu; Dolinšek, J

    2012-02-29

    The PdGa intermetallic compound is a highly selective and stable heterogeneous hydrogenation catalyst for the semi-hydrogenation of acetylene. We have studied single crystals of PdGa grown by the Czochralski technique. The (69)Ga electric-field-gradient (EFG) tensor was determined by means of NMR spectroscopy, giving experimental confirmation of both the recently refined structural model of PdGa and the theoretically predicted Pd-Ga covalent bonding scheme. The hydrogenation experiment has detected no hydrogen uptake in the PdGa, thus preventing in situ hydride formation that leads to a reduction of the catalytic selectivity. We have also determined bulk physical properties (the magnetic susceptibility, the electrical resistivity, the thermoelectric power, the Hall coefficient, the thermal conductivity and the specific heat) of single-crystalline PdGa. The results show that PdGa is a diamagnet with metallic electrical resistivity and moderately high thermal conductivity. The thermoelectric power is negative with complicated temperature dependence, whereas the Hall coefficient is positive and temperature-dependent, indicating complexity of the Fermi surface. Partial fulfillment of the NMR Korringa relation reveals that the charge carriers are weakly correlated. Specific heat measurements show that the density of electronic states (DOS) at the Fermi energy of PdGa is reduced to 15% of the DOS of the elemental Pd metal.

  10. Chiral recognition of imperanene enantiomers by various cyclodextrins: a capillary electrophoresis and NMR spectroscopy study.

    PubMed

    Sohajda, Tamás; Szakács, Zoltán; Szente, Lajos; Noszál, Béla; Béni, Szabolcs

    2012-05-01

    The enantiomers of imperanene, a novel polyphenolic compound of Imperata cylindrica (L.), were separated via cyclodextrin-modified capillary electrophoresis. The anionic form of the analyte at pH 9.0 was subject to complexation and enantioseparation CE studies with neutral and charged cyclodextrins. As chiral selectors 27 CDs were applied differing in cavity size, sidechain, degree of substitution (DS) and charge. Three hydroxypropylated and three sulfoalkylated CD preparations provided enantioseparation and the migration order was successfully interpreted in each case in terms of complex mobilities and stability constants. The best enantioresolution (R(S)  = 1.26) was achieved using sulfobutyl-ether-γ-CD (DS ∼4), but it could be enhanced by extensive investigations on dual selector systems. After optimization (CD concentrations and pH) R(S)  = 4.47 was achieved using a 12.5 mM sulfobutyl-ether-γ-CD and 10 mM 6-monodeoxy-6-mono-(3-hydroxy)-propylamino-β-cyclodextrin dual system. The average stoichiometry of the complex was determined with Job's method using NMR-titration and resulted in a 1:1 complex for both (2-hydroxy)propyl-β- and sulfobutyl-ether-γ-CD. Further NMR experiments suggest that the coniferyl moiety of imperanene is involved in the host-guest interaction.

  11. (39)K NMR and EPR study of multiferroic K(3)Fe(5)F(15).

    PubMed

    Blinc, R; Zalar, B; Cevc, P; Gregorovič, A; Zemva, B; Tavčar, G; Laguta, V; Scott, J F; Dalal, N

    2009-01-28

    (39)K NMR spectra and relaxation times of polycrystalline K(3)Fe(5)F(15) have been used as a microscopic detector of the local magnetic fields at the magnetic transition at T(N) = 123 K. The NMR lineshape widens abruptly upon crossing T(N) due to the onset of internal magnetic fields, while we find no significant lineshift. The paraelectric to ferroelectric transition at T(c) = 490 K and the magnetic transition at T(N) have also been studied using X-band EPR (electron paramagnetic resonance). An increase and subsequent decrease in the EPR susceptibilities is observed on approaching T(N) from above. There is also a significant increase in the linewidth. At the same time the g-factor first decreases and then increases with decreasing temperature. The local magnetic field is different at different K sites and is much smaller than the magnetic field around the Fe sites. This seems to be consistent with the behaviour of a weak ferrimagnet. The ferrimagnetism does not seem to be due to spin canting as the lattice is disordered, but may arise from thermal blocking of superparamagnetic percolation clusters. The ferroelectric transition at T(c) shows no electronic anomaly, demonstrating that we are dealing with a classical phonon anomaly as found in conventional oxides rather than an electronic transition.

  12. Studies on solution NMR structure of brazzein : Secondary structure and molecular scaffold.

    PubMed

    Gao, G; Dai, J; Ding, M; Hellekant, G; Wang, J; Wang, D

    1999-08-01

    Brazzein is a sweet-tasting protein isolated from the fruit of West African plantPentadiplandra brazzeana Baillon. It is the smallest and the most water-soluble sweet protein discovered so far and is highly thermostable. The proton NMR study of brazzein at 600 MHz (pH 3.5, 300 K) is presented. The complete sequence specific assignments of the individual backbone and sidechain proton resonances were achieved using through-bond and through-space connectivities obtained from standard two-dimensional NMR techniques. The secondary structure of brazzein contains one alpha-helix (residues 21-29), one short 3(10)-helix (residues 14-17), two strands of antiparallel beta-sheet (residues 34-39, 44-50) and probably a third strand (residues 5-7) near the N-terminus. A comparative analysis found that brazzein shares a so-called 'cysteine-stabilized alpha-beta' (CSalphabeta) motif with scorpion neurotoxins, insect defensins and plant gamma - thionins. The significance of this multi-function motif, the possible active sites and the structural basis of themostability were discussed.

  13. Structural analysis of molybdo-zinc-phosphate glasses: Neutron scattering, FTIR, Raman scattering, MAS NMR studies

    NASA Astrophysics Data System (ADS)

    Renuka, C.; Shinde, A. B.; Krishna, P. S. R.; Reddy, C. Narayana

    2016-08-01

    Vitreous samples were prepared in the xMoO3-17ZnO-(83-x) NaPO3 with 35 ≥ x ≥ 55 glass forming system by energy efficient microwave heating method. Structural evolution of the vitreous network was monitored as a function of composition by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Raman scattering, Magic Angle Spin Nuclear magnetic resonance (MAS NMR) and Neutron scattering. Addition of MoO3 to the ZnO-NaPO3 glass leads to a pronounced increase in glass transition temperature (Tg) suggesting a significant increase in network connectivity and strength. In order to analyze FTIR and Raman scattering, a simple structural model is presented to rationalize the experimental observations. A number of structural units are formed due to network modification, and the resulting glass may be characterized by a network polyhedral with different numbers of unshared corners. 31P MAS NMR confirms a clear distinction between structural species having 3, 2, 1, 0 bridging oxygens (BOs). Further, Neutron scattering studies were used to probe the structure of these glasses. The result suggests that all the investigated glasses have structures based on chains of four coordinated phosphate and six coordinated molybdate units, besides, two different lengths of P-O bonds in tetrahedral phosphate units that are assigned to bonds of the P-atom with terminal and bridging oxygen atoms.

  14. NMR Studies of Cu/zeolite SCR Catalysts Hydrothermally Aged with Urea

    SciTech Connect

    Cheng, Yisun; Hoard, John; Lambert, Christine; Kwak, Ja Hun; Peden, Charles HF

    2008-06-26

    The effects of hydrothermal aging of Cu/zeolite urea-SCR catalysts on their reactivity and material properties was assessed by performance tests and multiple characterization techniques that included 27Al NMR and XRD. Three aging protocols were used that consisted of varying temperature during hydrothermal aging with or without exposure to aqueous urea solution. Differences in behavior were even found for samples hydrothermally aged immediately following exposure to the urea solution or if the sample was dried overnight before hydrothermal aging. The combination of urea and high temperature exposure increased the deactivation of Cu/zeolite SCR catalysts beyond that observed by hydrothermal aging alone, with an immediate high temperature exposure following wetting of the catalyst core with aqueous urea causing the most significant deterioration in performance. The impact of urea on SCR catalyst durability was also found to increase with the aging temperature. NMR analysis suggested that aging with urea resulted in relatively more dealumination of the zeolite for the SCR catalysts in this study.

  15. An NMR study of macromolecular aggregation in a model polymer-surfactant solution

    NASA Astrophysics Data System (ADS)

    Barhoum, Suliman; Yethiraj, Anand

    2010-01-01

    A model complex-forming nonionic polymer-anionic surfactant system in aqueous solution has been studied at different surfactant concentrations. Using pulsed-field-gradient diffusion NMR spectroscopy, we obtain the self-diffusion coefficients of poly(ethylene glycol) (PEO) and sodium dodecyl sulfate (SDS) simultaneously and as a function of SDS concentration. In addition, we obtain NMR relaxation rates and chemical shifts as a function of SDS concentration. Within the context of a simple model, our experimental results yield the onset of aggregation of SDS on PEO chains (CAC=3.5 mM), a crossover concentration (C2=60 mM) which signals a sharp change in relaxation behavior, as well as an increase in free surfactant concentration and a critical concentration (Cm=145 mM) which signals a distinct change in diffusion behavior and a crossover to a solution containing free micelles. Cm also marks the concentration above which obstruction effects are definitely important. In addition, we obtain the concentration of SDS in monomeric form and in the form of free micelles, as well as the average number of SDS molecules in a PEO-SDS aggregate (NAggr). Taken together, our results suggests continuous changes in the aggregation phenomenon over much of the concentration but with three distinct concentrations that signal changes in the nature of the aggregates.

  16. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae-A 2D NMR Metabolomics Study.

    PubMed

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-09-02

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of ¹H-(13)C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae.

  17. Solid-state NMR and TGA studies of silver reduction in chabazite.

    PubMed

    Chen, Fu; Liu, Yan; Wasylishen, Roderick E; Xu, Zhenghe; Kuznicki, Steven M

    2012-03-01

    Silver-exchanged molecular sieves have shown great promise in applications ranging from antimicrobial materials to the adsorption of xenon and iodide, two key contaminants emitted from nuclear reactors. In this work, solid-state 27Al and 29Si MAS NMR and TGA were used to study silver reduction in silver-exchanged chabazite under various thermal conditions. The solid-state NMR results for both 27Al and 29Si show that there are no major changes in the chabazite during silver reduction in an argon stream; however a progressive structural change does take place in the hydrogen stream. The structural change likely involves breaking the silicon oxygen bond of the Si-O-AI fragment of chabazite, leading to the formation of extra-framework aluminum oxide. The TGA results at temperatures up to 600 degrees C indicate that silver reduction is less complete in an argon stream than in a hydrogen stream. In this paper we propose that silver reduction occurs via the following reactions: 2(Ag + ZO-)+H2O --> 1/2O2+2Ag0 + 2ZOH and nAg + mAg = Ag(m+n)n+ (in an argon stream); and Ag(+) + ZO(-) + 1/2H2 = Ag0 + ZOH and 2ZOH = ZO(-) + Z(+) + H2O (in a hydrogen stream).

  18. The NMR studies on two new furostanol saponins from Agave sisalana leaves.

    PubMed

    Zou, Peng; Fu, Jing; Yu, He-shui; Zhang, Jie; Kang, Li-ping; Ma, Bai-ping; Yan, Xian-zhong

    2006-12-01

    The detailed NMR studies and full assignments of the 1H and 13C spectral data for two new furostanol saponins isolated from Agave sisalana leaves are described. Their structures were established using a combination of 1D and 2D NMR techniques including 1H, 13C, 1H-1H COSY, TOCSY, HSQC, HMBC and HSQC-TOCSY, and also FAB-MS spectrometry and chemical methods. The structures were established as (25S)-26-(beta-D-glucopyranosyl)-22 xi-hydroxyfurost-12-one-3beta-yl-O-alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->3)-O-[O-beta-D-glucopyranosyl-(1-->2)]-O-beta-D-glucopyranosyl-(1-->4)-beta-D-galacto- pyranoside (1) and (25S)-26-(beta-D-glucopyranosyl)-22xi-hydroxyfurost-5-en-12-one-3beta-yl-O-alpha-L-rhamno- pyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->3)-O-[O-beta-D-glucopyranosyl-(1-->2)]-O-beta-D-glucopyranosyl- (1-->4)-beta-D-galactopyranoside (2).

  19. Lithium-7 NMR studies of Li(1-x)CoO2 battery cathodes

    NASA Astrophysics Data System (ADS)

    Ouyang, B.; Cao, X.; Lin, H. W.; Slane, S.; Kostov, S.

    1995-05-01

    Lithium-deficient cathode materials Li(1-x)CoO2, where x = 0.1, 0.4 and 0.6 were prepared electrochemically from the stoichiometric parent compound (x = 0.0). The materials were observed to be air-stable, and x-ray diffraction characterization yielded good agreement with the in situ studies of Dahn and co-workers, regarding changes in lattice parameters. In addition to both static and magic angle spinning (MAS) Li-7 NMR, measurements, the samples were investigated by EPR and cobalt K-edge NEXAFS. The removal of Li is accompanied by compensating electrons from the Co d-orbitals, as evidenced by both shifts in the NEXAFS peak and the observation of EPR signals due to spins localized on the Co ions. These spins, in turn, result in dramatic 7Li chemical shifts (89 ppm for x = 0.6) and line broadening. Whereas MAS analysis of Li(0.9)CoO2 indicates two magnetically inequivalent Li sites, the spectra become too broad to resolve different sites for higher values of x. Finally NMR linewidth and spin- lattice relaxation measurements as a function of temperature suggest a modest increase in Li(+) ion mobility for Li-deficient samples as compared to the parent compound.

  20. NMR Techniques in Metabolomic Studies: A Quick Overview on Examples of Utilization.

    PubMed

    Kruk, Joanna; Doskocz, Marek; Jodłowska, Elżbieta; Zacharzewska, Anna; Łakomiec, Joanna; Czaja, Kornelia; Kujawski, Jacek

    2017-01-01

    Metabolomics is a rapidly developing branch of science that concentrates on identifying biologically active molecules with potential biomarker properties. To define the best biomarkers for diseases, metabolomics uses both models (in vitro, animals) and human, as well as, various techniques such as mass spectroscopy, gas chromatography, liquid chromatography, infrared and UV-VIS spectroscopy and nuclear magnetic resonance. The last one takes advantage of the magnetic properties of certain nuclei, such as (1)H, (13)C, (31)P, (19)F, especially their ability to absorb and emit energy, what is crucial for analyzing samples. Among many spectroscopic NMR techniques not only one-dimensional (1D) techniques are known, but for many years two-dimensional (2D, for example, COSY, DOSY, JRES, HETCORE, HMQS), three-dimensional (3D, DART-MS, HRMAS, HSQC, HMBC) and solid-state NMR have been used. In this paper, authors taking apart fundamental division of nuclear magnetic resonance techniques intend to shown their wide application in metabolomic studies, especially in identifying biomarkers.

  1. An NMR and theoretical study of the conformation and internal flexibility of butaclamol hydrochloride.

    PubMed

    Casarotto, M G; Craik, D J; Lloyd, E J; Partridge, A C

    1991-07-01

    A theoretical (MM2) and experimental (1H and 13C NMR) study of butaclamol hydrochloride in CDCl3 has been done in order to determine preferred conformations and internal molecular flexibility of this molecule. The theoretical calculations suggest the presence of four low-energy conformations, two of which involve a trans junction of the D and E rings, with the other two involving a cis I ring junction. An alternative cis junction (cis II) was excluded on energetic grounds. The 1H NMR data strongly suggest the presence of a trans D-E ring junction and are consistent with a chair conformation of the E ring. 13C spin-lattice relaxation time measurements show that most of the molecule is rigid, although there is some degree of mobility in the seven-membered B ring, associated with rapid flipping of the bridging C8 and C9 carbons between two skewed conformations, which have previously been referred to as conformer A and conformer B (Laus et al. Heterocycles 1984, 22, 311).

  2. Isolation and 2D NMR Studies of Alkaloids from Comptonella sessilifoliola1.

    PubMed

    Pusset, J; Lopez, J L; Pais, M; Neirabeyeh, M A; Veillon, J M

    1991-04-01

    Six known furanoquinoline alkaloids have been isolated from the wood and trunk bark of COMPTONELLA SESSILIFOLIOLA (Guillaumin) Hartley (Rutaceae). 2D NMR experiments gave the assignment of all the signals for both (1)H- and (13)C-NMR spectra. Pteleine and kokusaginine were used as models. The two-dimensional carbon-proton correlation experiments, performed for the first time on furanoquinoline alkaloids, led us to correct (13)C-NMR assignments previously described in the literature.

  3. High-field (95) Mo and (183) W static and MAS NMR study of polyoxometalates.

    PubMed

    Haouas, Mohamed; Trébosc, Julien; Roch-Marchal, Catherine; Cadot, Emmanuel; Taulelle, Francis; Martineau-Corcos, Charlotte

    2017-10-01

    The potential of high-field NMR to measure solid-state (95) Mo and (183) W NMR in polyoxometalates (POMs) is explored using some archetypical structures like Lindqvist, Keggin and Dawson as model compounds that are well characterized in solution. NMR spectra in static and under magic angle spinning (MAS) were obtained, and their analysis allowed extraction of the NMR parameters, including chemical shift anisotropy and quadrupolar coupling parameters. Despite the inherent difficulties of measurement in solid state of these low-gamma NMR nuclei, due mainly to the low spectral resolution and poor signal-to-noise ratio, the observed global trends compare well with the solution-state NMR data. This would open an avenue for application of solid-state NMR to POMs, especially when liquid-state NMR is not possible, e.g., for poorly soluble or unstable compounds in solution, and for giant molecules with slow tumbling motion. This is the case of Keplerate where we provide here the first NMR characterization of this class of POMs in the solid state. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules

    PubMed Central

    Schanda, Paul; Ernst, Matthias

    2016-01-01

    Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043

  5. Solid-state NMR/NQR and first-principles study of two niobium halide cluster compounds.

    PubMed

    Perić, Berislav; Gautier, Régis; Pickard, Chris J; Bosiočić, Marko; Grbić, Mihael S; Požek, Miroslav

    2014-01-01

    Two hexanuclear niobium halide cluster compounds with a [Nb6X12](2+) (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of (95)Mo nuclei in structurally related compounds containing [Mo6Br8](4+) cluster cores. Experimentally determined δiso((93)Nb) values are in the range from 2,400 to 3,000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and δ33) coinciding with the molecular four-fold axis of the [Nb6X12](2+) unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (δ11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by (79/81)Br NQR and (35)Cl solid-state NMR measurements. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Solid state NMR method development and studies of biological and biomimetic nanocomposites

    SciTech Connect

    Hu, Yanyan

    2011-01-01

    This thesis describes application and development of advanced solid-state nuclear magnetic resonance techniques for complex materials, in particular organic-inorganic nanocomposites and thermoelectric tellurides. The apatite-collagen interface, essential for understanding the biomineralization process in bone and engineering the interface for controlled bio-mimetic synthesis and optimized mechanical properties, is buried within the nanocomposite of bone. We used multinuclear solid-state NMR to study the composition and structure of the interface. Citrate has been identified as the main organic molecule strongly bound to the apatite surface with a density of 1/(2 nm)2, covering 1/6 of the total surface area in bovine bone. Citrate provides more carboxylate groups, one of the key functional groups found to affect apatite nucleation and growth, than all the non-collagenous proteins all together in bone; thus we propose that citrate stabilizes apatite crystals at a very small thickness of ~3 nm (4 unit cells) to increase bone fracture tolerance. The hypothesis has been confirmed in vitro by adding citrate in the bio-mimetic synthesis of polymerhydroxyapatite nanocomposites. The results have shown that the size of hydroxyapatite nanocrystals decreases as increasing citrate concentration. With citrate concentrations comparable to that in body fluids, similar-sized nanocrystals as in bone have been produced. Besides the dimensions of the apatite crystals, the composition of bone also affects its biofunctional and macroscopic mechanical properties; therefore, our team also extended its effort to enhance the inorganic portion in our bio-mimetic synthesis from originally 15 wt% to current 50 wt% compared to 65 wt% in bovine bone, by using Lysine-Leucine hydroxyapatite nucleating diblock co-polypeptide, which forms a gel at very low concentration. In this thesis, various advanced solid state NMR techniques have been employed to characterize nanocomposites

  7. Cloud point, fluorimetric and 1H NMR studies of ibuprofen-polymer systems

    NASA Astrophysics Data System (ADS)

    Khan, Iqrar Ahmad; Anjum, Kahkashan; Koya, P. Ajmal; Qadeer, Atiytul; Kabir-ud-Din

    2014-01-01

    Influence of six polymers viz. hydroxyethyl cellulose (HEC), hydroxypropyl methyl cellulose (HPMC), polyethylene glycol (PEG), polyvinyl pyrrolidone (PVP), sodium carboxy methyl cellulose (NaCMC) and dextran sulfate (DxS) on solution properties of amphiphilic drug ibuprofen (IBF) has been described in this work. As only HPMC showed the clouding behavior (among the polymers employed herein), its cloud point (CP) was studied in detail in presence of varying amounts of IBF containing different fixed concentrations of inorganic salts (NaCl, NaNO3, Na2SO4, KBr and KNO3). Presence of all these salts had CP reducing effect. By means of steady state fluorescence quenching studies, average aggregation number of IBF aggregates (Nagg) in the presence of varying amounts of the mentioned polymers were evaluated and discussed. 1H NMR studies show that the magnitude of chemical shifts (δ) varies with the nature of the polymer.

  8. (1)H NMR metabolomics to study the effects of diazepam on anisatin induced convulsive seizures.

    PubMed

    Li, Pei; Wei, Dan-Dan; Wang, Jun-Song; Yang, Ming-Hua; Kong, Ling-Yi

    2016-01-05

    The anticonvulsive properties of diazepam have been extensively studied, mainly focusing on the γ-amino butyrate (GABA) system. The aim of this investigation was to integrally analyze the metabolic events related to neuroprotection of diazepam on anisatin-induced convulsive seizures by a NMR-based metabolomic approach combined with histopathological examination and behavior examination. Multivariate analysis on metabolic profiles of the piriform cortex and cerebellum of mice revealed that diazepam could relieve mice suffering from the convulsive seizures by recovering destructed neurotransmitter and neuromodulator metabolism, ameliorating oxidative stress, alleviating the disturbance in energy, amino acid and nucleic acid metabolism in anisatin intoxicated mice. This integrated metabolomics study provided a powerful and highly effective approach to elucidate therapeutic effects and assessed the safety of diazepam. This study should be helpful for our understanding of convulsive seizures, and provide a holistic view of the treatment effects of benzodiazepine on convulsive seizures.

  9. A systematic study of (25)Mg NMR in paramagnetic transition metal oxides: applications to Mg-ion battery materials.

    PubMed

    Lee, Jeongjae; Seymour, Ieuan D; Pell, Andrew J; Dutton, Siân E; Grey, Clare P

    2016-12-21

    Rechargeable battery systems based on Mg-ion chemistries are generating significant interest as potential alternatives to Li-ion batteries. Despite the wealth of local structural information that could potentially be gained from Nuclear Magnetic Resonance (NMR) experiments of Mg-ion battery materials, systematic (25)Mg solid-state NMR studies have been scarce due to the low natural abundance, low gyromagnetic ratio, and significant quadrupole moment of (25)Mg (I = 5/2). This work reports a combined experimental (25)Mg NMR and first principles density functional theory (DFT) study of paramagnetic Mg transition metal oxide systems Mg6MnO8 and MgCr2O4 that serve as model systems for Mg-ion battery cathode materials. Magnetic parameters, hyperfine shifts and quadrupolar parameters were calculated ab initio using hybrid DFT and compared to the experimental values obtained from NMR and magnetic measurements. We show that the rotor assisted population transfer (RAPT) pulse sequence can be used to enhance the signal-to-noise ratio in paramagnetic (25)Mg spectra without distortions in the spinning sideband manifold. In addition, the value of the predicted quadrupolar coupling constant of Mg6MnO8 was confirmed using the RAPT pulse sequence. We further apply the same methodology to study the NMR spectra of spinel compounds MgV2O4 and MgMn2O4, candidate cathode materials for Mg-ion batteries.

  10. 19F NMR study of the equilibria and dynamics of the Al3+/F- system.

    PubMed

    Bodor, A; Tóth, I; Bányai, I; Szabó, Z; Hefter, G T

    2000-06-12

    A careful reinvestigation by high-field 19F NMR (470 MHz) spectroscopy has been made of the Al3+/F- system in aqueous solution under carefully controlled conditions of pH, concentration, ionic strength (I), and temperature. The 19F NMR spectra show five distinct signals at 278 K and I = 0.6 M (TMACl) which have been attributed to the complexes AlFi(3-i)+(aq) with i < or = 5. There was no need to invoke AlFi(OH)j(3-i-j)+ mixed complexes in the model under our experimental conditions (pH < or = 6.5), nor was any evidence obtained for the formation of AlF6(3-)(aq) at very high ratios of F-/Al3+. The stepwise equilibrium constants obtained for the complexes by integration of the 19F signals are in good agreement with literature data given the differences in medium and temperature. In I = 0.6 M TMACl at 278 K and in I = 3 M KCl at 298 K the log Ki values are 6.42, 5.41, 3.99, 2.50, and 0.84 (for species i = 1-5) and 6.35, 5.25, and 4.11 (for species i = 1-3), respectively. Disappearance of the 19F NMR signals under certain conditions was shown to be due to precipitation. Certain 19F NMR signals exhibit temperature- and concentration-dependent exchange broadening. Detailed line shape analysis of the spectra and magnetization transfer measurements indicate that the kinetics are dominated by F- exchange rather than complex formation. The detected reactions and their rate constants are AlF2(2+) + *F- reversible AlF*F2+ + F- (k02 = (1.8 +/- 0.3) x 10(6) M-1 s-1), AlF3(0) + *F- reversible AlF2*F0 + F- (k03 = (3.9 +/- 0.9) x 10(6) M-1 s-1), and AlF3(0) + H*F reversible AlF2*F0 + HF (kH03 = (6.6 +/- 0.5) x 10(4) M-1 s-1). The rates of these exchange reactions increase markedly with increasing F- substitution. Thus, the reactions of AlF2+(aq) were too inert to be detected even on the T1 NMR time scale, while some of the reactions of AlF3(0)(aq) were fast, causing large line broadening. The ligand exchange appears to follow an associative interchange mechanism. The cis

  11. 19F MAS-NMR studies of strontium oxyfluoride aluminosilicate glass

    NASA Astrophysics Data System (ADS)

    Środa, M.; Olejniczak, Z.

    2011-08-01

    Local environment of fluorine atoms in the lanthanum oxyfluoride aluminosilicate glasses and glass-ceramics modified by SrO was studied by solid state 19F MAS-NMR spectroscopy and X-ray diffraction. The effect of strontium concentration on the formation of crystalline LaF 3 phase was determined, as a function of heat treatment conditions. In all glasses studied, the F-Me( n) (where Me = Sr, La), but no Na-F species were observed. The presence of F-La,Sr( n) units, in which fluorine is coordinated by both lanthanum and strontium, was detected in the glass with higher content of SrO. Supplementary XRD analysis of this series confirmed that an increase of strontium contents leads to the formation of Sr 0.69La 0.31F 2.31 and LaSr 2F 7, instead of the pure LaF 3 only.

  12. Dynamic NMR studies of restricted arene rotation in the chromiu tricarbonyl thiophene and selenophene complexes

    SciTech Connect

    Sanger, Michael J.

    1994-05-27

    This thesis contains the results of organometallic studies of thiophene and selenophene coordination in transition metal complexes. Chromium tricarbonyl complexes of thiophene, selenophene, and their alkyl-substituted derivatives were prepared and variable-temperature 13C NMR spectra of these complexes were recorded in dimethyl ether. Bandshape analyses of these spectra yielded activation parameters for restricted rotation of the thiophene and selenophene ligands in these complexes. Extended Hueckel molecular orbital calculations (EHMO) of the free thiophene and selenophene ligands and selected chromium tricarbonyl thiophene complexes were performed to better explain the activation barriers of these complexes. The structure of Cr(CO)35-2,5-dimethylthiophene) was established by a single crystal X-ray diffraction study.

  13. 1H and 19 F NMR Study of Cation and Anion Motions in Guanidinium Hexafluorozirconate

    NASA Astrophysics Data System (ADS)

    Grottel, M.; Kozak, A.; Pająk, Z.

    1996-09-01

    Proton and fluorine NMR second moments and spin-lattice relaxation times of polycrystalline guanidinium hexafluorozirconate and its deuterated analogue were studied in laboratory (60 MHz) and rotating (H1 = 20 G) frames over a wide range of temperature. An analysis of the experimental results enabled us to reveal a dynamical inequivalence of two crystallographically independent cations and an unexpected high mobility of nonspherical anion dimers. A comparison of the ions dynamics in 2:1 complex studied with the guanidinium 1:1 and 3:1 complexes has shown a significant contribution of the hydrogen bonds to the potential barriers hindering the anion reorientations. At low temperatures a proton motion in the hydrogen bond and at 400 K a solid-solid phase transition have been discerned.

  14. NMR studies of the surface structure and dynamics of semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Sachleben, Joseph R.; Wooten, E. Wrenn; Emsley, Lyndon; Pines, Alexander; Colvin, Vicki L.; Alivisatos, A. Paul

    1992-10-01

    1H NMR studies of thiophenol capping groups on cadmium sulfide nanocrystals demonstrate that the coverage of the capping molecule depends on the size of the nanocrystal. Data are presented which show that as the size of the nanocrystal increases, the coverage of thiophenol decreases. In addition, information about the overall tumbling of the nanocrystal and the motion of the capping groups relative to the surface can be obtained from linewidth studies, indicating that the rotation of the capping groups is hindered in the smaller nanocrystals ( r≈12 Å) and becomes less so in larger nanocrystals ( r≈20 Å). The coverage data are related to the electronic properties of this important class of compounds.

  15. NMR study of the interaction of cations with purple membrane and of the purple-blue transition

    SciTech Connect

    Roux, M.; Seigneuret, M.; Rigaud, J.L.

    1988-09-06

    The authors have studied by /sup 31/P NMR both the native purple membrane and the deionized membrane obtained by removal of endogenous cations. The latter membrane was shown to undergo a blue to purple color transition with increasing pH. In parallel with this color transition, the /sup 31/P NMR spectrum obtained at high membrane concentration was dramatically changed from a normal bilayer powder pattern to a seemingly inverted line shape. This effect was not observed in native purple membrane and was found to be reversed by addition of cations to the deionized purple membrane. Several data indicated that this inversion of the /sup 31/P NMR line shape is due to orientation of the membrane fragments perpendicular to the magnetic field. Further studies indicated that both native and deionized purple membranes can undergo such magnetic orientation but that the favorable concentration range is greatly increased for the deionized preparation. This effect is attributed to differences in bacteriorhodopsin conformation and/or membrane surface charge in the two membranes. Binding of divalent cations to the purple membranes was shown to promote an increase of the chemical shift anisotropy of phospholipid phosphate groups as revealed by /sup 31/P NMR. Accordingly, binding of a trivalent paramagnetic cation promoted strong broadening of the /sup 31/P NMR spectrum. This suggests a close spatial or structural relationship between phospholipid head groups and cation binding sites in the purple membrane.

  16. Carbon-13 NMR studies of salt shock-induced carbohydrate turnover in the marine cyanobacterium Agmenellum quadruplicatum

    NASA Technical Reports Server (NTRS)

    Tel-Or, E.; Spath, S.; Packer, L.; Mehlhorn, R. J.

    1986-01-01

    Carbon turnover in response to abrupt changes in salinity, including the mobilization of glycogen for use in osmoregulation was studied with pulse-chase strategies utilizing nuclear magnetic resonance (NMR)-silent and NMR-detectable 12C and 13C isotopes, respectively. Growth of Agmenellum quadruplicatum in 30%-enriched 13C bicarbonate provided sufficient NMR-detectability of intracellular organic osmoregulants for these studies. A comparison of NMR spectra of intact cells and their ethanol extracts showed that the intact cell data were suitable for quantitative work, and, when combined with ESR measurements of cell volumes, yielded intracellular glucosylglycerol concentrations without disrupting the cells. NMR pulse-chase experiments were used to show that 13C-enriched glycogen, which had previously been accumulated by the cells under nitrogen-limited growth at low salinities, could be utilized for the synthesis of glucosylglycerol when the cells were abruptly transferred to hypersaline media, but only in the light. It was also shown that the accumulation of glucosylglycerol in the light occurred on a time scale similar to that of cell doubling. Depletion of glucosylglycerol when cells abruptly transferred to lower salinities appeared to be rapid--the intracellular pool of this osmoregulant was decreased 2-fold within 2 hours of hypotonic shock.

  17. 93Nb- and 27Al-NMR/NQR studies of the praseodymium based PrNb2Al20

    NASA Astrophysics Data System (ADS)

    Kubo, Tetsuro; Kotegawa, Hisashi; Tou, Hideki; Higashinaka, Ryuji; Nakama, Akihiro; Aoki, Yuji; Sato, Hideyuki

    2015-03-01

    We report a study of 93Nb- and 27Al-nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) in a praseodymium based compound PrNb2Al20. The observed NMR line at around 3 T and 30 K shows a superposition of typical powder patterns of one Nb signal and at least two Al signals. 93Nb-NMR line could be reproduced by using the previously reported NQR frequency νQ ≊ 1.8MHz and asymmetry parameter η ≊ 0 [Kubo T et al 2014 JPS Conf. Proc. 3 012031]. From 27Al-NMR/NQR, NQR parameters are obtained to be νQ,A ≊ 1.53 MHz, and ηA ≊ 0.20 for the site A, and νQ,B ≊ 2.28 MHz, and ηB ≊ 0.17 for the site B. By comparing this result with the previous 27Al-NMR study of PrT2Al20 (T = Ti, V) [Tokunaga Y et al 2013 Phys. Rev. B 88 085124], these two Al site are assigned to the two of three crystallographycally inequivalent Al sites.

  18. Accessible NMR Experiments Studying the Hydrodynamics of [subscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [subscript 15]N-enriched human ubiquitin. These experiments take advantage of [subscript 15]N direct detection of the NMR signal. The first experiment develops skills in acquiring…

  19. Accessible NMR Experiments Studying the Hydrodynamics of [superscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [superscript 15]N-enriched human ubiquitin. These experiments take advantage of [superscript 15]N direct detection of the NMR signal. The first experiment develops skills in…

  20. Accessible NMR Experiments Studying the Hydrodynamics of [subscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [subscript 15]N-enriched human ubiquitin. These experiments take advantage of [subscript 15]N direct detection of the NMR signal. The first experiment develops skills in acquiring…

  1. Accessible NMR Experiments Studying the Hydrodynamics of [superscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [superscript 15]N-enriched human ubiquitin. These experiments take advantage of [superscript 15]N direct detection of the NMR signal. The first experiment develops skills in…

  2. Detergent/Nanodisc Screening for High-Resolution NMR Studies of an Integral Membrane Protein Containing a Cytoplasmic Domain

    PubMed Central

    Maslennikov, Innokentiy; Choe, Senyon; Riek, Roland

    2013-01-01

    Because membrane proteins need to be extracted from their natural environment and reconstituted in artificial milieus for the 3D structure determination by X-ray crystallography or NMR, the search for membrane mimetic that conserve the native structure and functional activities remains challenging. We demonstrate here a detergent/nanodisc screening study by NMR of the bacterial α-helical membrane protein YgaP containing a cytoplasmic rhodanese domain. The analysis of 2D [15N,1H]-TROSY spectra shows that only a careful usage of low amounts of mixed detergents did not perturb the cytoplasmic domain while solubilizing in parallel the transmembrane segments with good spectral quality. In contrast, the incorporation of YgaP into nanodiscs appeared to be straightforward and yielded a surprisingly high quality [15N,1H]-TROSY spectrum opening an avenue for the structural studies of a helical membrane protein in a bilayer system by solution state NMR. PMID:23349867

  3. Sodium-23 NMR analysis of human whole blood, erythrocytes, and plasma. Chemical shift, spin relaxation, and intracellular sodium concentration studies

    NASA Astrophysics Data System (ADS)

    Pettegrew, Jay W.; Woessner, Donald E.; Minshew, Nancy J.; Glonek, Thomas

    Sodium-23 NMR analysis was performed on freshly obtained human whole blood, erythrocytes, and plasma. The intracellular and extracellular sodium signals were separated by adding dysprosium: tripolyphosphate to the plasma bathing the erythrocytes. Quantitation of the intracellular sodium content was easily accomplished by sodium NMR and was shown to agree well with the values obtained by flame photometry. T1 and T2 relaxation studies demonstrated that the sodium in human plasma and within human erythrocytes is substantially different in its physical characteristics than sodium in aqueous solution, and that some fraction of the plasma and erythrocyte sodium is relatively immobilized. Sodium NMR would appear therefore to be a useful method for studying sodium biology in inherited and acquired human diseases.

  4. Localization and interaction of hydroxyflavones with lipid bilayer model membranes: a study using DSC and multinuclear NMR.

    PubMed

    Sinha, Ragini; Joshi, Akshada; Joshi, Urmila J; Srivastava, Sudha; Govil, Girjesh

    2014-06-10

    The localization and interaction of six naturally occurring flavones (FLV, 5HF, 6HF, 7HF, CHY and BLN) in DPPC bilayers were studied using DSC and multi-nuclear NMR. DSC results indicate that FLV and 6HF interact with alkyl chains. The (1)H NMR shows interaction of flavones with the sn-glycero region. Ring current induced chemical shifts indicate that 6HF and BLN acquire parallel orientation in bilayers. 2D NOESY spectra indicate partitioning of the B-ring into the alkyl chain region. The DSC, NMR and binding studies indicate that 5HF and 7HF are located near head group region, while 6HF, CHY and BLN are located in the vicinity of sn-glycero region, and FLV is inserted deepest in the membrane.

  5. The NMR and X-ray study of L-arginine derived Schiff bases and its cadmium complexes

    NASA Astrophysics Data System (ADS)

    Kołodziej, B.; Grech, E.; Schilf, W.; Kamieński, B.; Pazio, A.; Woźniak, K.

    2014-04-01

    The structure study of five Schiff bases derived from L-arginine (L-Arg) and 2-hydroxy carbonyl compounds were performed in both solution and solid state using NMR and X-ray methods. Both analytical methods applied to the solid state sample of two Schiff bases showed a significant difference in molecular structures of unsubstituted and 7-CH3 substituted compounds. This effect was explained as a steric interaction of methyl group. Additionally the structure of two Cd2+ complexes with some Schiff bases were determined by NMR methods in DMSO solution and in the solid state. On the base of heteronuclear NMR measurement (13C, 15N and 113Cd) it was possible to define the complexation site on nitrogen atom. The large set of spectral parameters: chemical shifts, homo- and heteronuclear coupling constants, were used in structure study.

  6. NMR studies of the incommensurate helical antiferromagnet EuCo2P2 : Determination of antiferromagnetic propagation vector

    NASA Astrophysics Data System (ADS)

    Higa, Nonoka; Ding, Qing-Ping; Yogi, Mamoru; Sangeetha, N. S.; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika; Johnston, D. C.; Furukawa, Yuji

    2017-07-01

    Recently, Q.-P. Ding et al. [Phys. Rev. B 95, 184404 (2017), 10.1103/PhysRevB.95.184404] reported that their nuclear magnetic resonance (NMR) study on EuCo2As2 successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out 153Eu, 31P, and 59Co NMR measurements on the helical antiferromagnet EuCo2P2 with an AFM ordering temperature TN=66.5 K. An incommensurate helical AFM structure was clearly confirmed by 153Eu and 31P NMR spectra on single-crystalline EuCo2P2 in zero magnetic field at 1.6 K and its external magnetic field dependence. Furthermore, based on 59Co NMR data in both the paramagnetic and incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k =(0 ,0 ,0.73 ±0.09 )2 π /c , where c is the c -axis lattice parameter. The temperature dependence of k is also discussed.

  7. NMR studies of the incommensurate helical antiferromagnet EuCo2P2: Determination of antiferromagnetic propagation vector

    DOE PAGES

    Higa, Nonoka; Ding, Qing -Ping; Yogi, Mamoru; ...

    2017-07-06

    Recently, Q.-P. Ding et al. reported that their nuclear magnetic resonance (NMR) study on EuCo2As2 successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out 153Eu, 31P, and 59Co NMR measurements on the helical antiferromagnet EuCo2P2 with an AFM ordering temperature TN = 66.5 K. An incommensurate helical AFM structure was clearly confirmed by 153Eu and 31P NMR spectra on single-crystalline EuCo2P2 in zero magnetic field at 1.6 K and its externalmore » magnetic field dependence. Furthermore, based on 59Co NMR data in both the paramagnetic and incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73±0.09)2π/c, where c is the c-axis lattice parameter. As a result, the temperature dependence of k is also discussed.« less

  8. (1)H NMR studies distinguish the water soluble metabolomic profiles of untransformed and RAS-transformed cells.

    PubMed

    Marks, Vered; Munoz, Anisleidys; Rai, Priyamvada; Walls, Jamie D

    2016-01-01

    Metabolomic profiling is an increasingly important method for identifying potential biomarkers in cancer cells with a view towards improved diagnosis and treatment. Nuclear magnetic resonance (NMR) provides a potentially noninvasive means to accurately characterize differences in the metabolomic profiles of cells. In this work, we use (1)H NMR to measure the metabolomic profiles of water soluble metabolites extracted from isogenic control and oncogenic HRAS-, KRAS-, and NRAS-transduced BEAS2B lung epithelial cells to determine the robustness of NMR metabolomic profiling in detecting differences between the transformed cells and their untransformed counterparts as well as differences among the RAS-transformed cells. Unique metabolomic signatures between control and RAS-transformed cell lines as well as among the three RAS isoform-transformed lines were found by applying principal component analysis to the NMR data. This study provides a proof of principle demonstration that NMR-based metabolomic profiling can robustly distinguish untransformed and RAS-transformed cells as well as cells transformed with different RAS oncogenic isoforms. Thus, our data may potentially provide new diagnostic signatures for RAS-transformed cells.

  9. 1H NMR studies distinguish the water soluble metabolomic profiles of untransformed and RAS-transformed cells

    PubMed Central

    Marks, Vered; Munoz, Anisleidys; Rai, Priyamvada

    2016-01-01

    Metabolomic profiling is an increasingly important method for identifying potential biomarkers in cancer cells with a view towards improved diagnosis and treatment. Nuclear magnetic resonance (NMR) provides a potentially noninvasive means to accurately characterize differences in the metabolomic profiles of cells. In this work, we use 1H NMR to measure the metabolomic profiles of water soluble metabolites extracted from isogenic control and oncogenic HRAS-, KRAS-, and NRAS-transduced BEAS2B lung epithelial cells to determine the robustness of NMR metabolomic profiling in detecting differences between the transformed cells and their untransformed counterparts as well as differences among the RAS-transformed cells. Unique metabolomic signatures between control and RAS-transformed cell lines as well as among the three RAS isoform-transformed lines were found by applying principal component analysis to the NMR data. This study provides a proof of principle demonstration that NMR-based metabolomic profiling can robustly distinguish untransformed and RAS-transformed cells as well as cells transformed with different RAS oncogenic isoforms. Thus, our data may potentially provide new diagnostic signatures for RAS-transformed cells. PMID:27330862

  10. ^13C Solid NMR Study of Devulcanization and Revulcanization of SBR Ne

    NASA Astrophysics Data System (ADS)

    Massey, J.; Levin, V.; Isayev, A.; von Meerwall, E.

    1996-03-01

    As part of a larger effort in support of recycling of rubber-based composites, we have used ^13C CP-MAS NMR spectroscopy and relaxation to study molecular and segmental mobilities in styrene-butadiene random copolymers before and after sulfur crosslinking, after subsequent devulcanization using a thermal ultrasound technique, and following revulcanization. Tracking the cis-trans ratio indicates that overall network crosslink density increases during each of these steps, including devulcanization, which produces mesoscale network aggregates and substantial amounts of sol. This observation is confirmed by the transverse (T_2) relaxation times, which show that molecular/segmental mobilities monotonically decrease in the same sequence. Analysis of these effects requires the invocation of alterations in sulfur crosslinking, i.e. density, distribution, and functionality, including extensive cyclization. Measurements of the glass transition temperatures in melt, network, sol , and revulcanizate are in accord with this picture.

  11. NMR analyses of the cold cataract. III. /sup 13/C acrylamide studies

    SciTech Connect

    Lerman, S.; Megaw, J.M.; Moran, M.N.

    1985-10-01

    /sup 13/C-enriched acrylamide was employed to further delineate the action of this compound in preventing the cold cataract phenomenon when it is incorporated (in vitro) into young human and rabbit lenses. The extent of acrylamide incorporation, in the dark and with concurrent UV exposure, was monitored by /sup 13/C NMR spectroscopy. These studies provide further evidence that UV exposure causes permanent acrylamide photobinding within the lens. In such lenses, the gamma crystallin fraction of the soluble lens proteins is affected to the greatest extent. It appears to become aggregated and/or combined with the alpha and beta fractions resulting in an apparent loss of most of the gamma monomers. There is also an age-related effect with respect to the amount of acrylamide that can be incorporated into the lens. The decrease in acrylamide incorporation with age directly parallels the age-related decline in gamma crystallin levels.

  12. 1H NMR study of the complexation of aromatic drugs with dimethylxanthine derivatives

    NASA Astrophysics Data System (ADS)

    Hernandez Santiago, A. A.; Gonzalez Flores, M.; Rosas Castilla, S. A.; Cervantes Tavera, A. M.; Gutierrez Perez, R.; Khomich, V. V.; Ovchinnikov, D. V.; Parkes, H. G.; Evstigneev, M. P.

    2012-02-01

    With an aim of searching efficient interceptors of aromatic drugs, the self- and hetero-association of dimethylxanthine derivatives with different structures, selected according to Strategy 1 (variation of the position of methyl groups) and Strategy 2 (variation of the length of sbnd (CH2)nsbnd COOH group), with aromatic drug molecules: Ethidium Bromide, Proflavine and Daunomycin, were studied using 1H NMR spectroscopy. It was found that the association proceeds in a form of stacking-type complexation and its energetics is relatively independent on the structure of the dimethylxanthines. However, on average, the dimethylxanthines possess higher hetero-association constant and, hence, higher interceptor ability as compared to the trimethylxanthine, Caffeine, used during the past two decades as a typical interceptor molecule.

  13. /sup 23/Na NMR study of DNA thermal transconformation in presence of cysteamine radioprotector

    SciTech Connect

    Lematre, J.; Mallet, G.; Vasilescu, D.

    1988-01-01

    DNA thermal transconformation is studied in absence and in presence of the cysteamine radioprotector, by observing the delta nu 1/2 variation of /sup 23/Na NMR peaks. The sodium state (Free or Bound) is discussed with the help of a two states model with RF and RB relaxation rates. The delta nu 1/2 behavior during the DNA transconformation shows clearly the electrostatic interaction with cysteamine which is accompanied by an Na+ ejection out of phosphate sites. The temperature dependence of delta nu 1/2 in all cases leads to the conclusion that RBc (the average relaxation rate of sodium nuclei that remain bound in the coil state of DNA) tends to zero.

  14. SLOW-MAS NMR METHODS TO STUDY METABOLIC PROCESSES IN VIVO AND IN VITRO

    SciTech Connect

    Wind, Robert A.; Bertram, Hanne Christine; Hu, Jian Zhi

    2005-09-25

    In vitro and in vivo 1H NMR spectroscopy is widely used to measure metabolic profiles in cells, tissues, animals, and humans and to use them, e.g., for diagnosis and therapy response evaluations. However, the spectra often suffer from poor resolution due to variations in the isotropic bulk magnetic susceptibility present in biological objects, resulting in a broadening of the NMR lines. In principle this broadening can be averaged to zero by the technique of magic angle spinning (MAS), where the sample is rotated about an axis making an angle of 54o44’ relative to the external magnetic field. However, a problem is that in a standard MAS experiment spinning speeds of a kHz or more are required in order to avoid the occurrence of spinning sidebands (SSBs) in the spectra, which renders analysis of the spectra difficult again. At these spinning speeds the large centrifugal forces cause severe structural damage in larger biological objects, so that this method cannot be used to study metabolic processes in intact samples. In solid state NMR several methods have been developed where slow MAS is combined with special radio frequency pulse sequences to eliminate spinning side bands or separate them from the isotropic spectrum so that a SSB-free high-resolution isotropic spectrum is obtained. It has been shown recently that two methods, phase-adjusted spinning sidebands (PASS) and phase-corrected magic angle turning (PHORMAT), can successfully be modified for applications in biological materials (1, 2). With PASS MAS speeds as low as 40 Hz can be employed, allowing non or minimally invasive in vitro studies of excised tissues and organs. This method was used, amongst other things, to study post mortem changes in the proton metabolite spectra in excised rabbit muscle tissue (3). With PHORMAT the NMR sensitivity is reduced and longer measuring times are required, but with this methodology the MAS speed can be reduced to ~1 Hz. This makes PHORMAT amenable for in vivo

  15. Resistively detected NMR of the nu=1 quantum Hall state: A tilted magnetic field study

    SciTech Connect

    Bowers, C. R.; Gusev, G. M.; Jaroszynski, J.; Reno, J. L.; Simmons, J. A.

    2010-02-15

    Previous resistively detected NMR (RDNMR) studies on the nuapprox =1 quantum Hall state have reported a 'dispersionlike' line shape and extremely short nuclear-spin-lattice relaxation times, observations which have been attributed to the formation of a skyrme lattice. Here we examine the evolution of the RDNMR line shape and nuclear-spin relaxation for Zeeman:Coulomb energy ratios ranging from 0.012 to 0.036. According to theory, suppression of the skyrme crystal, along with the associated Goldstone mode nuclear-spin-relaxation mechanism, is expected at the upper end of this range. However, we find that the anomalous line shape persists at high Zeeman energy, and only a modest decrease in the RDNMR-detected nuclear-spin-relaxation rate is observed.

  16. NMR Studies of the Structure and Function of the HIV-1 5′-Leader

    PubMed Central

    Keane, Sarah C.; Summers, Michael F.

    2016-01-01

    The 5′-leader of the human immunodeficiency virus type 1 (HIV-1) genome plays several critical roles during viral replication, including differentially establishing mRNA versus genomic RNA (gRNA) fates. As observed for proteins, the function of the RNA is tightly regulated by its structure, and a common paradigm has been that genome function is temporally modulated by structural changes in the 5′-leader. Over the past 30 years, combinations of nucleotide reactivity mapping experiments with biochemistry, mutagenesis, and phylogenetic studies have provided clues regarding the secondary structures of stretches of residues within the leader that adopt functionally discrete domains. More recently, nuclear magnetic resonance (NMR) spectroscopy approaches have been developed that enable direct detection of intra- and inter-molecular interactions within the intact leader, providing detailed insights into the structural determinants and mechanisms that regulate HIV-1 genome packaging and function. PMID:28009832

  17. Neutron scattering, solid state NMR and quantum chemistry studies of 11-keto-progesterone

    NASA Astrophysics Data System (ADS)

    Szyczewski, A.; Hołderna-Natkaniec, K.; Natkaniec, I.

    2004-07-01

    The molecule geometry, frequency and intensity of the IINS and IR vibrational bands of 11-ketoprogesterone have been obtained by the HF, PM3 and density functional theory (DFT) with the B3LYP functionals and 6-31G(d,p) basis set. The optimised bond lengths and bond angles of the steroid skeleton are in good agreement with the X-ray data. The IR and IINS spectra of ketoprogesterone, computed at the DFT level, well reproduce the vibrational wavenumbers and intensities to an accuracy allowing reliable vibrational assignments. The molecular dynamic study by 1H NMR has confirmed the sequence of onset of reorientations of subsequent methyl groups indicated by the results of quantum chemistry calculations and INS spectra.

  18. Phase diagram of high- Tc superconductor: Cu-NMR studies on multi-layered cuprates

    NASA Astrophysics Data System (ADS)

    Mukuda, H.; Abe, M.; Shimizu, S.; Kitaoka, Y.; Iyo, A.; Kodama, Y.; Tanaka, Y.; Tokiwa, K.; Watanabe, T.

    2008-04-01

    A new phase diagram is presented for an ideally flat CuO2 plane through the Cu-NMR studies on five-layered cuprates MBa2Ca4Cu5Oy(M-1245) (M=Hg,Tl,Cu), which includes an antiferromagnetic (AFM) metal phase and a uniform mixing phase of AFM metal and high- Tc superconductivity (HTSC) in an under-doped region. It has been found that a disorder causes a quantum-phase transition from an AFM metal to an insulating state in an under-doped regime in the Cu-1245 where a disorder is introduced via an oxygen-reduced process. This finding reinforces that an AFM metallic phase exists between the AFM insulating phase and the SC phase for the ideally flat CuO2 plane provided that a disorder is absent.

  19. Isotope-edited proton NMR study on the structure of a pepsin/inhibitor complex

    SciTech Connect

    Fesik, S.W.; Luly, J.R.; Erickson, J.W.; Abad-Zapatero, C.

    1988-11-01

    A general approach is illustrated for providing detailed structural information on large enzyme/inhibitor complexes using NMR spectroscopy. The method involves the use of isotopically labeled ligands to simplify two-dimensional NOE spectra of large molecular complexes by isotope-editing techniques. With this approach, the backbone and side-chain conformations (at the P/sub 2/ and P/sub 3/ sites) of a tightly bound inhibitor of porcine pepsin have bene determined. In addition, structural information on the active site of pepsin has been obtained. Due to the sequence homology between porcine pepsin and human renin, this structural information may prove useful for modeling renin/inhibitor complexes with the ultimate goal of designing more effective renin inhibitors. Moreover, this general approach can be applied to study other biological systems of interest such as other enzyme/inhibitor complexes, ligands bound to soluble receptors, and enzyme/substrate interactions.

  20. NMR and X-ray studies of isomeric 22,23-dihydroxy stigmastanes

    NASA Astrophysics Data System (ADS)

    Khripach, Vladimir A.; Zhabinskii, Vladimir N.; Ivanova, Galina V.; Fando, Galina P.; Tsavlovskii, Dmitrii V.; Khripach, Natalya B.; Lyakhov, Alexander S.; Misharin, Alexander Yu.

    2010-06-01

    A comparative conformational study of steroidal side chain of (22 R,23 R)- and (22 S,23 S)-dihydroxy stigmastane derivatives was performed using single crystal X-ray diffraction and NMR spectroscopy. The preferred conformation in solution was shown to be close to that in the crystal. (22 R,23 R)-Isomers typical for natural plant steroid hormones brassinosteroids adopt a conformation in which both hydroxyl groups are pointed toward unhindered α-side of the steroidal plane and can thus participate in biochemical processes. Unnatural (22 S,23 S)-counterparts exhibit a conformation with the two hydroxyl groups oriented in the opposite direction and sterically hindered by 21-methyl group and terminal side chain fragment.

  1. Sorption of mono-, di-, and trimethylamine on ZK-5 and Y zeolites studied by deuterium NMR

    SciTech Connect

    Kustanovich, I.; Luz, Z.; Vega, S. ); Vega, A.J. )

    1990-04-05

    Deuterium NMR is used to study the sorption complexes formed by (methyl-deuterated) mono-, di-, and trimethylamine (MMA-d{sub 3}, DMA-d{sub 6}, and TMA-d{sub 9}) in the acid forms of the zeolites HZK-5 and HY, as well as in dehydroxylated HY and DHY, obtained by high-temperature calcination of HY. The measurements were made in the range {minus}140 to 160{degree}C on samples loaded up to twice the equivalent of the number of Al atoms per unit cell. For HZK-5 the uptake of MMA and DMA is rapid at room temperature, but sorption of TMA requires thermal activation. In HY and DHY all amine gases are readily absorbed upon exposure at room temperature.

  2. NMR Studies of the Structure and Function of the HIV-1 5'-Leader.

    PubMed

    Keane, Sarah C; Summers, Michael F

    2016-12-21

    The 5'-leader of the human immunodeficiency virus type 1 (HIV-1) genome plays several critical roles during viral replication, including differentially establishing mRNA versus genomic RNA (gRNA) fates. As observed for proteins, the function of the RNA is tightly regulated by its structure, and a common paradigm has been that genome function is temporally modulated by structural changes in the 5'-leader. Over the past 30 years, combinations of nucleotide reactivity mapping experiments with biochemistry, mutagenesis, and phylogenetic studies have provided clues regarding the secondary structures of stretches of residues within the leader that adopt functionally discrete domains. More recently, nuclear magnetic resonance (NMR) spectroscopy approaches have been developed that enable direct detection of intra- and inter-molecular interactions within the intact leader, providing detailed insights into the structural determinants and mechanisms that regulate HIV-1 genome packaging and function.

  3. 43Ca NMR Study of Bismuth-Based High-Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Trokiner, A.; Le Noc, L.; Yakubovskii, A.; Mykhalyov, K. N.; Verkhovskii, S. V.

    1994-02-01

    As a first step of a study of the electronic properties of CuO2 planes by probing calcium nuclei in the bismuth-based high-Tc materials we report here the structural assignment of Ca NMR lines measured in 43Ca-enriched samples of n = 2 ((Bi,Pb)2Sr2CaCu2O8+x) and n = 3 ((Bi,Pb)2Sr2-Ca2Cu3O10+x) bismuth compounds. Powdered samples were investigated as well as oriented pow­ ders, achieved by uniaxial alignment of the grains in a 7T magnetic field. For the main calcium site (Ca between two CuO2 planes), we could determine the quadrupolar as well as the shift tensors. The results indicate that, in the same way as yttrium nuclei in YBaCuO, calcium nuclei are sensitive to the magnetic susceptibility of the metallic CuO2 planes.

  4. NMR studies of the interaction between inner membrane-associated and periplasmic cytochromes from Geobacter sulfurreducens.

    PubMed

    Dantas, Joana M; Brausemann, Anton; Einsle, Oliver; Salgueiro, Carlos A

    2017-06-01

    Geobacter sulfurreducens is a dissimilatory metal-reducing bacterium with notable properties and significance in biotechnological applications. Biochemical studies suggest that the inner membrane-associated diheme cytochrome MacA and the periplasmic triheme cytochrome PpcA from G. sulfurreducens can exchange electrons. In this work, NMR chemical shift perturbation measurements were used to map the interface region and to measure the binding affinity between PpcA and MacA. The results show that MacA binds to PpcA in a cleft defined by hemes I and IV, favoring the contact between PpcA heme IV and the MacA high-potential heme. The dissociation constant values indicate the formation of a low-affinity complex between the proteins, which is consistent with the transient interaction observed in electron transfer complexes. © 2017 Federation of European Biochemical Societies.

  5. Molecular Docking and NMR Binding Studies to Identify Novel Inhibitors of Human Phosphomevalonate Kinase

    PubMed Central

    Boonsri, Pornthip; Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng; Herdendorf, Timothy J.; Miziorko, Henry M.; Hannongbua, Supa; Sem, Daniel S.

    2012-01-01

    Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using Autodock. Promising hits were verified and their affinity measured using NMR-based 1H-15N Heteronuclear Single Quantum Coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (Kd). Tight binding compounds with Kd’s ranging from 6–60 µM were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC crosspeak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development. PMID:23146631

  6. Porous Structure of Pharmaceutical Tablets Studied Using PGSTE-NMR Technique

    NASA Astrophysics Data System (ADS)

    Porion, Patrice; Tchoreloff, Pierre; Busignies, Virginie; Leclerc, Bernard; Evesque, Pierre

    2009-06-01

    The compaction of pharmaceutical tablets at high pressure (250 MPa) is a complex process that depends on the nature of the chemical compound. The purpose of this work is to characterize the porous structure of tablets obtained by uniaxial compaction, the most used process in pharmaceutical technology. First, three pharmaceutical excipients (microcrystalline cellulose, lactose and anhydrous calcium phosphate) were compacted and their compressibility properties determined. Secondly, the study of the self-diffusion process of a molecular fluid inside the pore space was performed by using pulsed-gradient stimulated-echo (PGSTE) NMR method, for tablets compacted under various pressure, in the directions perpendicular and parallel to the compaction axis. The results are used to determine the tortuosity factor and the anisotropy of the porous space of such compacted materials.

  7. Anomalous diffusion of Ibuprofen in cyclodextrin nanosponge hydrogels: an HRMAS NMR study

    PubMed Central

    Ferro, Monica; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco

    2014-01-01

    Summary Ibuprofen sodium salt (IP) was encapsulated in cyclodextrin nanosponges (CDNS) obtained by cross-linking of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn) in two different preparations: CDNSEDTA 1:4 and 1:8, where the 1:n notation indicates the CD to EDTAn molar ratio. The entrapment of IP was achieved by swelling the two polymers with a 0.27 M solution of IP in D2O, leading to colourless, homogeneous hydrogels loaded with IP. The molecular environment and the transport properties of IP in the hydrogels were studied by high resolution magic angle spinning (HRMAS) NMR spectroscopy. The mean square displacement (MSD) of IP in the gels was obtained by a pulsed field gradient spin echo (PGSE) NMR pulse sequence at different observation times t d. The MSD is proportional to the observation time elevated to a scaling factor α. The α values define the normal Gaussian random motion (α = 1), or the anomalous diffusion (α < 1, subdiffusion, α > 1 superdiffusion). The experimental data here reported point out that IP undergoes subdiffusive regime in CDNSEDTA 1:4, while a slightly superdiffusive behaviour is observed in CDNSEDTA 1:8. The transition between the two dynamic regimes is triggered by the polymer structure. CDNSEDTA 1:4 is characterized by a nanoporous structure able to induce confinement effects on IP, thus causing subdiffusive random motion. CDNSEDTA 1:8 is characterized not only by nanopores, but also by dangling EDTA groups ending with ionized COO− groups. The negative potential provided by such groups to the polymer backbone is responsible for the acceleration effects on the IP anion thus leading to the superdiffusive behaviour observed. These results point out that HRMAS NMR spectroscopy is a powerful direct method for the assessment of the transport properties of a drug encapsulated in polymeric scaffolds. The diffusion properties of IP in CDNS can be modulated by suitable polymer synthesis; this finding opens the

  8. NMR studies of abasic sites in DNA duplexes: Deoxyadenosine stacks into the helix opposite acyclic lesions

    SciTech Connect

    Kalnik, M.W.; Chang, Chienneng; Johnson, F.; Grollman, A.P.; Patel, D.J. )

    1989-04-18

    Proton and phosphorus NMR studies are reported for two complementary nonanucleotide duplexes containing acyclic abasic sites. The first duplex, d(C-A-T-G-A-G-T-A-C){center dot}d(G-T-A-C-P-C-A-T-G), contains an acyclic propanyl moiety, P, located opposite a deoxyadenosine at the center of the helix (designated AP{sub P} 9-mer duplex). The second duplex, d(C-A-T-G-A-G-T-A-C-){center dot}d(G-T-A-C-E-C-A-T-G), contains a similarly located acyclic ethanyl moiety, E (designated AP{sub E} 9-mer duplex). The ethanyl moiety is one carbon shorter than the natural carbon-phosphodiester backbone of a single nucleotide unit of DNA. The majority of the exchangeable and nonexchangeable base and sugar protons in both the AP{sub P} 9-mer and AP{sub E} 9-mer duplexes, including those at the abasic site, have been assigned by recording and analyzing two-dimensional phase-sensitive NOESY data sets in H{sub 2}O and D{sub 2}O solution between -5 and 5{degree}C. These spectroscopic observations establish that A5 inserts into the helix opposite the abasic site (P14 and El14) and stacks between the flanking G4{center dot}C15 and G6{center dot}C13 Watson-Crick base pairs in both the AP{sub P} 9-mer and AP{sub E} 9-mer duplexes. Proton NMR parameters for the Ap{sub P} 9-mer and AP{sub E}9-mer duplexes are similar to those reported previously. These proton NMR experiments demonstrate that the structures at abasic sites are very similar whether the five-membered ring is open or closed or whether the phosphodiester backbone is shortened by one carbon atom. Phosphorus spectra of the AP{sub P} 9-mer and AP{sub E} 9-mer duplexes (5{degree}C) indicate that the backbone conformation is similarly perturbed at three phosphodiester backbone torsion angles.

  9. Uniaxial plastic deformation of isotactic polypropylene studied by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Kang, Jia

    At alleviated temperatures, some semicrystralline polymers can be stretched to very large deformation ratios. Such deformations of semicrystalline polymers have been extensively studied since 1960s. Based on experimental observations and theoretical investigations, solid-state transformation (three stage model) proposed in 1971 and local melting and recrystallization in 1978 have been considered two major mechanisms to explain the deformations of polymer crystals. With the elucidation of molecular dynamics in the last two decades, it was proposed in 1999 that helical jump motion plays an important role in crystal deformation. On the other hand, the new structures induced by deformation also influence the molecular motions and resultant properties of deformed polymers. Such processing-structure-property relationship is very important to understand the polymer behaviors as well as to inform the polymer industry. In this dissertation, using the advanced tool of solid-state NMR (ss-NMR), we achieve three goals: Firstly, we investigate the hierarchical crystalline structural changes of isotactic polypropylene (i PP) upon high temperature stretching to understand the deformation process. Secondly, we evaluate the roles of local packing structure and crystal thickness in determining the stem motions and thermal properties of deformed alpha-form iPP. Thirdly, we utilize 13C-labeled isotactic polypropylene (iPP) to trace the change of chain folding number as a function of e to conclude molecular-level deformation mechanism. To realize the first and second goals, the chain packing, crystal thickness, molecular dynamics, and melting temperature (Tm) of a-form iPP drawn uniaxially at high temperatures of 100 - 150 °C were investigated using solid-state (SS) NMR and DSC. Two types of iPP samples with disordered (alpha1) and relatively ordered (alpha2-rich) packing structures were prepared via different thermal treatments and drawn up to an engineering strain ( e) of

  10. Membrane interactions in small fast-tumbling bicelles as studied by 31P NMR.

    PubMed

    Bodor, Andrea; Kövér, Katalin E; Mäler, Lena

    2015-03-01

    Small fast-tumbling bicelles are ideal for studies of membrane interactions at molecular level; they allow analysis of lipid properties using solution-state NMR. In the present study we used 31P NMR relaxation to obtain detailed information on lipid head-group dynamics. We explored the effect of two topologically different membrane-interacting peptides on bicelles containing either dimyristoylphosphocholine (DMPC), or a mixture of DMPC and dimyristoylphosphoglycerol (DMPG), and dihexanoylphosphocholine (DHPC). KALP21 is a model transmembrane peptide, designed to span a DMPC bilayer and dynorphin B is a membrane surface active neuropeptide. KALP21 causes significant increase in bicelle size, as evidenced by both dynamic light scattering and 31P T2 relaxation measurements. The effect of dynorphin B on bicelle size is more modest, although significant effects on T2 relaxation are observed at higher temperatures. A comparison of 31P T1 values for the lipids with and without the peptides showed that dynorphin B has a greater effect on lipid head-group dynamics than KALP21, especially at elevated temperatures. From the field-dependence of T1 relaxation data, a correlation time describing the overall lipid motion was derived. Results indicate that the positively charged dynorphin B decreases the mobility of the lipid molecules--in particular for the negatively charged DMPG--while KALP21 has a more modest influence. Our results demonstrate that while a transmembrane peptide has severe effects on overall bilayer properties, the surface bound peptide has a more dramatic effect in reducing lipid head-group mobility. These observations may be of general importance for understanding peptide-membrane interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. An NMR relaxometry and gravimetric study of gelatin-free aqueous polyacrylamide dosimeters

    NASA Astrophysics Data System (ADS)

    Babic, Steven; Schreiner, L. John

    2006-09-01

    In conformal radiation therapy, a high dose of radiation is given to a target volume to increase the probability of cure, and care is taken to minimize the dose to surrounding healthy tissue. The techniques used to achieve this are very complicated and the precise verification of the resulting three-dimensional (3D) dose distribution is required. Polyacrylamide gelatin (PAG) dosimeters with magnetic resonance imaging and optical computed tomography scanning provide the required 3D dosimetry with high spatial resolution. Many basic studies have characterized these chemical dosimeters that polymerize under irradiation. However, the investigation of the fundamental properties of the radiation-induced polymerization in PAG dosimeters is complicated by the presence of the background gelatin matrix. In this work, a gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters has been developed. Experiments were performed on gelatin-free dosimeters, named aqueous polyacrylamide (APA) dosimeters, containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide. The APA dosimeters were prepared with four different total monomer concentrations (2, 4, 6 and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all four dosimeters, show a continuous degree of polymerization over the dose range of 0-25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of crosslinked polymer formed at each dose. This model can be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters.

  12. The Kinetics of Dissociations of Aluminum - Oxygen Bonds in Aqueous Complexes - An NMR Study

    SciTech Connect

    Dr. William Casey

    2003-09-03

    OAK B262 The Kinetics of Dissociations of Aluminum--Oxygen Bonds in Aqueous Complexes--An NMR Study. In this project we determined rates and mechanisms of Al(III)-O bond rupture at mineral surfaces and in dissolved aluminum complexes. We then compared the experimental results to simulations in an attempt to predict rate coefficients. Most of the low-temperature reactions that are geochemically important involve a bonded atom or molecule that is replaced with another. We probe these reactions at the most fundamental level in order to establish a model to predict rates for the wide range of reactions that cannot be experimentally studied. The chemistry of small aluminum cluster (Figure) provides a window into the hydrolytic processes that control rates of mineral formation and the transformation of adsorbates into extended structures. The molecule shown below as an example exposes several types of oxygens to the bulk solution including seven structurally distinct sets of bridging hydroxyls. This molecule is a rich model for the aqueous interface of aluminum (hydr)oxide minerals, since it approaches colloidal dimensions in size, yet is a dissolved complex with +18 charge. We have conducted both {sup 17}O- {sup 27}Al- and {sup 19}F-NMR experiments to identify the reactive sites and to determine the rates of isotopic exchange between these sites and the bulk solution. The research was enormously successful and led to a series of papers that are being used as touchstones for assessing the accuracy of computer models of bond ruptures in water.

  13. Calcination products of gibbsite studied by X-ray diffraction, XPS and solid-state NMR

    SciTech Connect

    Malki, A.; Mekhalif, Z.; Detriche, S.; Fonder, G.; Boumaza, A.; Djelloul, A.

    2014-07-01

    The changes caused by heat treatment of gibbsite powder at 300–1473 K were studied using the X-ray diffraction (XRD), X-ray photoemission (XPS) spectra and {sup 27}Al magic angle spinning nuclear magnetic resonance spectroscopy ({sup 27}Al MAS NMR). XRD analysis indicates that the transformation sequence involves the formation of κ-Al{sub 2}O{sub 3} as an intermediate phase between χ- and α-Al{sub 2}O{sub 3}. The crystallite size of χ-Al{sub 2}O{sub 3} is as small as 10 nm. XPS analysis indicates that the ratio of aluminium atoms to oxygen atoms in χ-Al{sub 2}O{sub 3} and κ-Al{sub 2}O{sub 3} increases, whereas the expected ratio is observed in α-Al{sub 2}O{sub 3}. The percentage of AlO{sub 4} units in the transition aluminas follows the same behaviour as the ratio of Al/O. - Graphical abstract: The percentage of AlO{sub 4} units in transition aluminas follows the same behaviour as the ratio of Al/O. - Highlights: • Calcination products of gibbsite studied by XRD, XPS and solid-state NMR. • The crystallite size of χ-Al{sub 2}O{sub 3} is as small as 10 nm. • The Al/O atomic ratio determined by XPS is larger than 2/3 in χ-Al{sub 2}O{sub 3} and κ-Al{sub 2}O{sub 3}. • The percentage of AlO{sub 4} in the aluminas follows the same behaviour as the Al/O atomic ratio.

  14. Spectroscopic (FT-IR, FT-Raman and NMR) and computational studies on 3-methoxyaniline

    NASA Astrophysics Data System (ADS)

    Sivaranjini, T.; Periandy, S.; Govindarajan, M.; Karabacak, M.; Asiri, A. M.

    2014-01-01

    In this work, the molecular structure, vibrational, UV and NMR spectra of 3-methoxyaniline (abbreviated as 3MOA, C7H9NO) were studied. The FT-IR and FT-Raman spectra were recorded. The ground-state molecular geometry and vibrational frequencies were calculated by using the Hartree-Fock (HF) and density functional theory (DFT)/B3LYP methods and 6-311++G(d, p) as a basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Comparison of the observed fundamental vibrational frequencies of 3MOA with calculated results by HF and DFT methods indicates that B3LYP is superior to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. A study on the Mulliken atomic charges, the electronic properties were performed by time-dependent DFT (TD-DFT) approach, Frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed and compared with methoxybenzene and aniline. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results also show that the 3MOA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. The 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.

  15. NMR studies of ordered structures and valence states in the successive valence-transition system EuPtP

    NASA Astrophysics Data System (ADS)

    Mito, T.; Nishitani, K.; Koyama, T.; Muta, H.; Maruyama, T.; Pristáš, G.; Ueda, K.; Kohara, T.; Mitsuda, A.; Sugishima, M.; Wada, H.

    2014-11-01

    We have studied EuPtP, which undergoes two successive valence transitions at TA˜240 K and TB˜200 K by 31P-nuclear magnetic resonance (NMR) measurements. From the analysis of NMR spectra, we obtained plausible ordered structures and Eu valence states in three phases divided by TA and TB. These ordered structures well explain observed inequivalent P sites and the intensity ratio of the NMR spectra arising from these P sites. The results are also in good accordance with mean Eu valence measured by the x-ray absorption spectroscopy. We also discuss Eu 4 f states and the origin of the transitions from the measurements of nuclear spin lattice relaxation rate and hyperfine coupling constant.

  16. A thorough study on the use of quantitative 1H NMR in Rioja red wine fermentation processes.

    PubMed

    López-Rituerto, Eva; Cabredo, Susana; López, Martina; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M

    2009-03-25

    In this study, we focused our attention on monitoring the levels of important metabolites of wine during the alcoholic and malolactic fermentation processes by quantitative nuclear magnetic resonance (qNMR). Therefore, using (1)H NMR, the method allows the simultaneous quantification of ethanol, acetic, malic, lactic, and succinic acids, and the amino acids proline and alanine, besides the ratio proline/arginine through fermentation of must of grapes corresponding to the Tempranillo variety. Each (1)H NMR spectrum gives direct and visual information concerning these metabolites, and the effectiveness of each process was assessed and compared by carrying out analyses using infrared spectroscopy to ethanol and acetic acid. The quantitative data were explained with the aid of chemometric algorithms.

  17. Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides.

    PubMed

    Vold, R R; Prosser, R S; Deese, A J

    1997-04-01

    In order to illustrate the utility of phospholipid bicelles [Sanders, C.R. and Schwonek, J.P. (1992) Biochemistry, 31, 8898-8905] as a membrane mimetic for high-resolution NMR studies, we have recorded two-dimensional 1H NMR spectra of the tetradecameric peptide mastoparan Vespula lewisii in an isotropic aqueous solution of dimyristoyl and dihexanoyl phosphatidylcholine. Mastoparan is largely unstructured in water, but assumes a well-defined helical conformation in association with the bilayers. A pronounced periodicity of the sequential NH chemical shifts provides strong evidence that the helix axis of this short peptide is parallel, rather than perpendicular, to the bilayer plane. The bicellar solutions still require in-depth morphological characterization, but they appear to be ideal media for NMR determination of the mode of binding and the structure of membrane-associated peptides and proteins.

  18. Sterically Hindered Chiral Organometallic Complexes: AN X-Ray Crystallographic, NMR Spectroscopic and Ehmo Study.

    NASA Astrophysics Data System (ADS)

    Malisza, Krisztina Laura

    Sterically crowded organometallic complexes present fascinating problems of structure and molecular dynamics. Tetrahedral clusters such as (RCequivCR ^')rm(C_5H_5)_2M _2(CO)_4, where M = Mo or W, crystallize in conformations possessing three terminal carbonyls while the fourth is semi-bridging. However, these ligands undergo a rapid exchange process which can be followed by variable -temperature NMR spectroscopy. When the R substituent is derived from a chiral natural product, the low temperature NMR spectra reveal the presence of diastereomers which are interconvertible via rotations of the organometallic vertices. The fluxional behaviour of tetrahedral clusters containing such vertices as Co(CO)_3, Fe(CO)_3 or rm(C_5H _5)Mo(CO)_2 can be rationalized by means of molecular orbital calculations at the extended Huckel level of approximation. These studies show that the barriers to vertex rotation can usually be traced to one principal orbital interaction in each case. However, in rm(C_5H_5)_2Mo_2(CO) _4(R-CequivC-R) clusters, the barriers are primarily steric in character. The ability of transition metal clusters to delocalize electronic charge is well known and, in principle, could be used to stabilize intermediates of biochemical significance. Treatment of 2-methylcyclopentanone with an alkyne anion was carried out in order to generate 1-alkynyl-2-methylcyclopentanols in which the methyl and alkynyl groups are trans diaxial; the aim was to mimic the "D"-ring of the steroidal contraceptive mestranol. In fact, the major epimer was the one in which the methyl and alkynyl substituents were disposed in a cis manner. The conformation of 2-methyl-1-phenylethynylcyclopentanol 47 was elucidated by two-dimensional NMR techniques. Moreover, the structure of 47 and also of its rm Co _2(CO)_6 derivative have been determined crystallographically. Protonation of the dicobalt or dimolybdenum complexes of 47 lead to stable cations; treatment of these cations with nucleophiles

  19. Segmental dynamics of polyethylene-alt-propylene studied by NMR spin echo techniques

    NASA Astrophysics Data System (ADS)

    Lozovoi, A.; Mattea, C.; Hofmann, M.; Saalwaechter, K.; Fatkullin, N.; Stapf, S.

    2017-06-01

    Segmental dynamics of a highly entangled melt of linear polyethylene-alt-propylene with a molecular weight of 200 kDa was studied with a novel proton nuclear magnetic resonance (NMR) approach based upon 1H → 2H isotope dilution as applied to a solid-echo build-up function ISE(t), which is constructed from the NMR spin echo signals arising from the Hahn echo (HE) and two variations of the solid-echo pulse sequence. The isotope dilution enables the separation of inter- and intramolecular contributions to this function and allows one to extract the segmental mean-squared displacements in the millisecond time range, which is hardly accessible by other experimental methods. The proposed technique in combination with time-temperature superposition yields information about segmental translation in polyethylene-alt-propylene over 6 decades in time from 10-6 s up to 1 s. The time dependence of the mean-squared displacement obtained in this time range clearly shows three regimes of power law with exponents, which are in good agreement with the tube-reptation model predictions for the Rouse model, incoherent reptation and coherent reptation regimes. The results at short times coincide with the fast-field cycling relaxometry and neutron spin echo data, yet, significantly extending the probed time range. Furthermore, the obtained data are verified as well by the use of the dipolar-correlation effect on the Hahn echo, which was developed before by the co-authors. At the same time, the amplitude ratio of the intermolecular part of the proton dynamic dipole-dipole correlation function over the intramolecular part obtained from the experimental data is not in agreement with the predictions of the tube-reptation model for the regimes of incoherent and coherent reptation.

  20. 15N NMR study of nitrate ion structure and dynamics in hydrotalcite-like compounds

    USGS Publications Warehouse

    Hou, X.; James, Kirkpatrick R.; Yu, P.; Moore, D.; Kim, Y.

    2000-01-01

    We report here the first nuclear magnetic resonance (NMR) spectroscopic study of the dynamical and structural behavior of nitrate on the surface and in the interlayer of hydrotalcite-like compounds (15NO3--HT). Spectroscopically resolvable surface-absorbed and interlayer NO3- have dramatically different dynamical characteristics. The interlayer nitrate shows a well defined, temperature independent uniaxial chemical shift anisotropy (CS A) powder pattern. It is rigidly held or perhaps undergoes rotation about its threefold axis at all temperatures between -100 ??C and +80 ??C and relative humidities (R.H.) from 0 to 100% at room temperature. For surface nitrate, however, the dynamical behavior depends substantially on temperature and relative humidity. Analysis of the temperature and R.H. dependences of the peak width yields reorieritational frequencies which increase from essentially 0 at -100 ??C to 2.6 ?? 105 Hz at 60 ??C and an activation energy of 12.6 kJ/mol. For example, for samples at R.H. = 33%, the surface nitrate is isotropically mobile at frequencies greater than 105 Hz at room temperature, but it becomes rigid or only rotates on its threefold axis at -100 ??C. For dry samples and samples heated at 200 ??C (R.H. near 0%), the surface nitrate is not isotropically averaged at room temperature. In contrast to our previous results for 35Cl--containing hydrotalcite (35Cl--HT), no NMR detectable structural phase transition is observed for 15NO3--HT. The mobility of interlayer nitrate in HT is intermediate between that of carbonate and chloride.

  1. 1D and 2D NMR studies of isobornyl acrylate - Methyl methacrylate copolymers

    NASA Astrophysics Data System (ADS)

    Khandelwal, Deepika; Hooda, Sunita; Brar, A. S.; Shankar, Ravi

    2011-10-01

    Isobornyl acrylate - methyl methacrylate (B/M) copolymers of different compositions were synthesized by atom transfer radical polymerization (ATRP) using methyl-2-bromopropionate as an initiator and PMDETA copper complex as catalyst under nitrogen atmosphere at 70 °C. 1H NMR spectrum was used to determine the compositions of copolymer. The copolymer compositions were then used to determine the reactivity ratios of monomers. Reactivity ratios of co-monomers in B/M copolymer, determined from linear Kelen-Tudos method (KT) and non linear Error-in-Variable Method (EVM), are rB = 0.41 ± 0.11, rM = 1.11 ± 0.33 and rB = 0.52, rM = 1.31 respectively. The complete resonance assignments of 1H and 13C{ 1H} NMR spectra were carried out with the help of Distortion less Enhancement by Polarization Transfer (DEPT), two-dimensional Heteronuclear Single Quantum Coherence (HSQC). 2D HSQC assignments were further confirmed by 2D Total Correlation Spectroscopy (TOCSY). The carbonyl carbon of B and M units and methyl carbon of M unit were assigned up to triad compositional and configurational sequences whereas β-methylene carbons were assigned up to tetrad compositional and configurational sequences. Similarly the methine carbon of B unit was assigned up to pentad level. 1,3 and 1,4 bond order couplings of carbonyl carbon and quaternary carbon resonances with methine, methylene and methyl protons were studied in detail using 2D Hetero Nuclear Multiple Bond Correlation (HMBC) spectra.

  2. Understanding CO2 capture mechanisms in aqueous hydrazine via combined NMR and first-principles studies.

    PubMed

    Lee, Byeongno; Stowe, Haley M; Lee, Kyu Hyung; Hur, Nam Hwi; Hwang, Son-Jong; Paek, Eunsu; Hwang, Gyeong S

    2017-09-13

    Aqueous amines are currently the most promising solution for large-scale CO2 capture from industrial sources. However, molecular design and optimization of amine-based solvents have proceeded slowly due to a lack of understanding of the underlying reaction mechanisms. Unique and unexpected reaction mechanisms involved in CO2 absorption into aqueous hydrazine are identified using (1)H, (13)C, and (15)N NMR spectroscopy combined with first-principles quantum-mechanical simulations. We find production of both hydrazine mono-carbamate (NH2-NH-COO(-)) and hydrazine di-carbamate ((-)OOC-NH-NH-COO(-)), with the latter becoming more populated with increasing CO2 loading. Exchange NMR spectroscopy also demonstrates that the reaction products are in dynamic equilibrium under ambient conditions due to CO2 exchange between mono-carbamate and di-carbamate as well as fast proton transfer between un-protonated free hydrazine and mono-carbamate. The exchange rate rises steeply at high CO2 loadings, enhancing CO2 release, which appears to be a unique property of hydrazine in aqueous solution. The underlying mechanisms of these processes are further evaluated using quantum mechanical calculations. We also analyze and discuss reversible precipitation of carbamate and conversion of bicarbonate to carbamates. The comprehensive mechanistic study provides useful guidance for optimal design of amine-based solvents and processes to reduce the cost of carbon capture. Moreover, this work demonstrates the value of a combined experimental and computational approach for exploring the complex reaction dynamics of CO2 in aqueous amines.

  3. A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems.

    PubMed

    Guo, Wen; Kurze, Volker; Huber, Thomas; Afdhal, Nezam H; Beyer, Klaus; Hamilton, James A

    2002-09-01

    We used solid-state NMR techniques to probe the interactions of cholesterol (Chol) with bovine brain sphingomyelin (SM) and for comparison of the interactions of Chol with dipalmitoylphosphatidylcholine (DPPC), which has a similar gel-to-liquid crystalline transition temperature. (1)H-, (31)P-, and (13)C-MASNMR yielded high-resolution spectra from multilamellar dispersions of unlabeled brain SM and Chol for analysis of chemical shifts and linewidths. In addition, (2)H-NMR spectra of oriented lipid membranes with specific deuterium labels gave information about membrane ordering and mobility. Chol disrupted the gel-phase of pure SM and increased acyl chain ordering in the liquid crystalline phase. As inferred from (13)C chemical shifts, the boundaries between the ordered and disordered liquid crystalline phases (L and L) were similar for SM and DPPC. The solubility limit of Chol in SM was ~50 mol %, the same value as previously reported for DPPC membranes. We found no evidence for specific H-bonding between Chol and the amide group of SM. The order parameters of a probe molecule, d31-sn1-DPPC, in SM were slightly higher than in DPPC for all carbons except the terminal groups at 30 mol % but were not significantly different at 5 and 60 mol % Chol. These studies show a general similarity with some subtle differences in the way Chol interacts with DPPC and SM. In the environment of a typical biomembrane, the higher proportion of saturated fatty acyl chains in SM compared to other phospholipids may be the most significant factor influencing interactions with Chol.

  4. Solvent dynamical behavior in an organogel phase as studied by NMR relaxation and diffusion experiments.

    PubMed

    Yemloul, Mehdi; Steiner, Emilie; Robert, Anthony; Bouguet-Bonnet, Sabine; Allix, Florent; Jamart-Grégoire, Brigitte; Canet, Daniel

    2011-03-24

    An organogelation process depends on the gelator-solvent pair. This study deals with the solvent dynamics once the gelation process is completed. The first approach used is relaxometry, i.e., the measurement of toluene proton longitudinal relaxation time T(1) as a function of the proton NMR resonance frequency (here in the 5 kHz to 400 MHz range). Pure toluene exhibits an unexpected T(1) variation, which has been identified as paramagnetic relaxation resulting from an interaction of toluene with dissolved oxygen. In the gel phase, this contribution is retrieved with, in addition, a strong decay at low frequencies assigned to toluene molecules within the gel fibers. Comparison of dispersion curves of pure toluene and toluene in the gel phase leads to an estimate of the proportion of toluene embedded within the organogel (found around 40%). The second approach is based on carbon-13 T(1) and nuclear Overhauser effect measurements, the combination of these two parameters providing direct information about the reorientation of C-H bonds. It appears clearly that reorientation of toluene is the same in pure liquid and in the gel phase. The only noticeable changes in carbon-13 longitudinal relaxation times are due to the so-called chemical shift anisotropy (csa) mechanism and reflect slight modifications of the toluene electronic distribution in the gel phase. NMR diffusion measurements by the pulse gradient spin-echo (PGSE) method allow us to determine the diffusion coefficient of toluene inside the organogel. It is roughly two-thirds of the one in pure toluene, thus indicating that self-diffusion is the only dynamical parameter to be slightly affected when the solvent is inside the gel structure. The whole set of experimental observations leads to the conclusion that, once the gel is formed, the solvent becomes essentially passive, although an important fraction is located within the gel structure.

  5. Interaction between beta-Purothionin and dimyristoylphosphatidylglycerol: a (31)P-NMR and infrared spectroscopic study.

    PubMed Central

    Richard, Julie-Andrée; Kelly, Isabelle; Marion, Didier; Pézolet, Michel; Auger, Michèle

    2002-01-01

    The interaction of beta-purothionin, a small basic and antimicrobial protein from the endosperm of wheat seeds, with multilamellar vesicles of dimyristoylphosphatidylglycerol (DMPG) was investigated by (31)P solid-state NMR and infrared spectroscopy. NMR was used to study the organization and dynamics of DMPG in the absence and presence of beta-purothionin. The results indicate that beta-purothionin does not induce the formation of nonlamellar phases in DMPG. Two-dimensional exchange spectroscopy shows that beta-purothionin decreases the lateral diffusion of DMPG in the fluid phase. Infrared spectroscopy was used to investigate the perturbations, induced by beta-purothionin, of the polar and nonpolar regions of the phospholipid bilayers. At low concentration of beta-purothionin, the temperature of the gel-to-fluid phase transition of DMPG increases from 24 degrees C to ~33 degrees C, in agreement with the formation of electrostatic interactions between the cationic protein and the anionic phospholipid. At higher protein concentration, the lipid transition is slightly shifted toward lower temperature and a second transition is observed below 20 degrees C, suggesting an insertion of the protein in the hydrophobic core of the lipid bilayer. The results also suggest that the presence of beta-purothionin significantly modifies the lipid packing at the surface of the bilayer to increase the accessibility of water molecules in the interfacial region. Finally, orientation measurements indicate that the alpha-helices and the beta-sheet of beta-purothionin have tilt angles of ~60 degrees and 30 degrees, respectively, relative to the normal of the ATR crystal. PMID:12324425

  6. Altered Metabolism of Growth Hormone Receptor Mutant Mice: A Combined NMR Metabonomics and Microarray Study

    PubMed Central

    Schirra, Horst Joachim; Anderson, Cameron G.; Wilson, William J.; Kerr, Linda; Craik, David J.; Waters, Michael J.; Lichanska, Agnieszka M.

    2008-01-01

    Background Growth hormone is an important regulator of post-natal growth and metabolism. We have investigated the metabolic consequences of altered growth hormone signalling in mutant mice that have truncations at position 569 and 391 of the intracellular domain of the growth hormone receptor, and thus exhibit either low (around 30% maximum) or no growth hormone-dependent STAT5 signalling respectively. These mutations result in altered liver metabolism, obesity and insulin resistance. Methodology/Principal Findings The analysis of metabolic changes was performed using microarray analysis of liver tissue and NMR metabonomics of urine and liver tissue. Data were analyzed using multivariate statistics and Gene Ontology tools. The metabolic profiles characteristic for each of the two mutant groups and wild-type mice were identified with NMR metabonomics. We found decreased urinary levels of taurine, citrate and 2-oxoglutarate, and increased levels of trimethylamine, creatine and creatinine when compared to wild-type mice. These results indicate significant changes in lipid and choline metabolism, and were coupled with increased fat deposition, leading to obesity. The microarray analysis identified changes in expression of metabolic enzymes correlating with alterations in metabolite concentration both in urine and liver. Similarity of mutant 569 to the wild-type was seen in young mice, but the pattern of metabolites shifted to that of the 391 mutant as the 569 mice became obese after six months age. Conclusions/Significance The metabonomic observations were consistent with the parallel analysis of gene expression and pathway mapping using microarray data, identifying metabolites and gene transcripts involved in hepatic metabolism, especially for taurine, choline and creatinine metabolism. The systems biology approach applied in this study provides a coherent picture of metabolic changes resulting from impaired STAT5 signalling by the growth hormone receptor, and

  7. Methyl quantum tunneling and nitrogen-14 NQR NMR studies using a SQUID magnetic resonance spectrometer

    SciTech Connect

    Black, Bruce Elmer

    1993-07-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) techniques have been very successful in obtaining molecular conformation and dynamics information. Unfortunately, standard NMR and NQR spectrometers are unable to adequately detect resonances below a few megahertz due to the frequency dependent sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a dc SQUID (Superconducting Quantum Interference Device) detector, which has no such frequency dependence, has been developed. Previously, this spectrometer was used to observe 11B and 27Al NQR resonances. The scope of this study was increased to include 23Na, 51V, and 55Mn NQR transitions. Also, a technique was presented to observe 14N NQR resonances through cross relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman splitting matches one nitrogen quadrupoler transition the remaining two 14N transitions can be detected by sweeping a saturating rf field through resonance. Additionally, simultaneous excitation of two nitrogen resonances provides signal enhancement which helps to connect transitions from the same site. In this way, nitrogen-14 resonances were observed in several amino acids and polypeptides. This spectrometer has also been useful in the direct detection of methyl quantum tunneling splittings at 4.2 K. Tunneling, frequencies of a homologous series of carboxylic acids were measured and for solids with equivalent crystal structures, an exponential correlation between the tunneling frequency and the enthalpy of fusion is observed. This correlation provides information about the contribution of intermolecular interactions to the energy barrier for methyl rotation.

  8. Structural studies of the activation of the two component receiver domain NTRC by multidimensional heteronuclear NMR

    SciTech Connect

    Nohaile, Michael James

    1996-05-01

    Multidimensional heteronuclear NMR spectroscopy was used to investigate the N-terminal domain of the transcriptional enhancer NTRC (NiTrogen Regulatory protein C). This domain belongs to the family of receiver domains of two-component regulatory systems involved in signal transduction. Phosphorylation of NTRC at D54 leads to an activated form of the molecule which stimulates transcription of genes involved in nitrogen regulation. Three and four dimensional NMR techniques were used to determine an intermediate resolution structure of the unphosphorylated, inactive form of the N-terminal domain of NTRC. The structure is comprised of five α-helices and a five-stranded β-sheet in a (β/α)5 topology. Analysis of the backbone dynamics of NTRC indicate that helix 4 and strand 5 are significantly more flexible than the rest of the secondary structure of the protein and that the loops making up the active site are flexible. The short lifetime of phospho-NTRC hampers the study of this form. However, conditions for determining the resonance assignments and, possibly, the three dimensional structure of phosphorylated NTRC have been obtained. Tentative assignments of the phosphorylated form indicate that the majority of the changes that NTRC experiences upon phosphorylation occur in helix 3, strand 4, helix 4, strand 5, and the loop between strand 5 and helix 5 (the 3445 face of NTRC) as well as near the site of phosphorylation. In order to examine a stable, activated form of the protein, constitutively active mutants of NTRC were investigated.

  9. NMR studies on 4-thio-5-furan-modified and 4-thio-5-thiophene-modified nucleosides.

    PubMed

    Zhang, Xiao-Hui; Xu, Yao-Zhong

    2016-11-01

    Systematic NMR characterization of 4-thio-5-furan-pyrimidine nucleosides or 4-thio-5-thiophene-pyrimidine nucleosides (ribonucleosides and 2'-deoxynucleosides) was performed. All proton and carbon signals of 4-thio-5-thiophene-ribouridine and related analogues were unambiguously assigned. The orientations of the base (4-thiouridine or its deoxy analogue) relative to the ring (furan or thiophene) are explored by a NMR approach and further supported by X-ray crystallographic studies. The procedures presented here would be applicable to other modified nucleosides and nucleotides. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Sparse (13)C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins.

    PubMed

    Liu, Jing; Liu, Chang; Fan, Ying; Munro, Rachel A; Ladizhansky, Vladimir; Brown, Leonid S; Wang, Shenlin

    2016-05-01

    We demonstrate a novel sparse (13)C labelling approach for methylotrophic yeast P. pastoris expression system, towards solid-state NMR studies of eukaryotic membrane proteins. The labelling scheme was achieved by co-utilizing natural abundance methanol and specifically (13)C labelled glycerol as carbon sources in the expression medium. This strategy improves the spectral resolution by 1.5 fold, displays site-specific labelling patterns, and has advantages for collecting long-range distance restraints for structure determination of large eukaryotic membrane proteins by solid-state NMR.

  11. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    SciTech Connect

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.; Hu, Jian Z.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate and cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.

  12. An investigation into the effect of potassium ions on the folding of silk fibroin studied by generalized two-dimensional NMR-NMR correlation and Raman spectroscopy.

    PubMed

    Ruan, Qing-Xia; Zhou, Ping; Hu, Bing-Wen; Ji, Dan

    2008-01-01

    We used generalized two-dimensional NMR-NMR correlation to examine the effect of potassium ions on the conformation transition in silk fibroin to investigate the possibility that the fairly high K+ ion content found in the distal end of silk-secreting ducts in the silkworms could have a bearing on natural formation of the silk fiber. This has enabled us to propose a detailed mechanism for the transition process. Our evidence indicates that increasing the [K+] from 0 to 3.7 mg.g(-1) in the silk fibroin, as is thought to occur as the silk fibroin moves through the secretory pathway to the spigot, produces a sequence of secondary structural changes: helix and/or random coil-->helix-like-->beta-sheet-like-->beta-sheet. The sequence is the same as that produced in silk fibroin films by decreasing the pH of fibroin from 6.8 to 4.8. In addition, we used Raman spectroscopy to study the effect of K+ ions on the Fermi doublet resonance of the tyrosyl phenolic ring at 850 and 830 cm(-1). The intensity ratio I(850)/I(830) at these wave numbers indicated that the hydrogen bonding formed by the tyrosyl phenolic-OH becomes more stable with an increase in the K+ ion concentration as above. Our investigation on the effect of K+ ions on fibroin may help provide a theoretical basis for understanding the natural silk-spinning process and the conditions required for biomimetic spinning. It may also have relevance to the aggregation of other beta-sheet proteins, including prion proteins, neurofibrillary proteins and amyloid plaques.

  13. Use of NMR Saturation Transfer Difference Spectroscopy to Study Ligand Binding to Membrane Proteins

    PubMed Central

    Venkitakrishnan, Rani Parvathy; Benard, Outhiriaradjou; Max, Marianna; Markley, John L.

    2013-01-01

    Detection of weak ligand binding to membrane-spanning proteins, such as receptor proteins at low physiological concentrations, poses serious experimental challenges. Saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy offers an excellent way to surmount these problems. As the name suggests, magnetization transferred from the receptor to its bound ligand is measured by directly observing NMR signals from the ligand itself. Low-power irradiation is applied to a 1H NMR spectral region containing protein signals but no ligand signals. This irradiation spreads quickly throughout the membrane protein by the process of spin diffusion and saturates all protein 1H NMR signals. 1H NMR signals from a ligand bound transiently to the membrane protein become saturated and, upon dissociation, serve to decrease the intensity of the 1H NMR signals measured from the pool of free ligand. The experiment is repeated with the irradiation pulse placed outside the spectral region of protein and ligand, a condition that does not lead to saturation transfer to the ligand. The two resulting spectra are subtracted to yield the difference spectrum. As an illustration of the methodology, we review here STD-NMR experiments designed to investigate binding of ligands to the human sweet taste receptor, a member of the large family of G-protein-coupled receptors. Sweetener molecules bind to the sweet receptor with low affinity but high specificity and lead to a variety of physiological responses. PMID:22976022

  14. Solid-state NMR studies of proteins immobilized on inorganic surfaces.

    PubMed

    Shaw, Wendy J

    2015-09-01

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin (43 amino acids) and leucine rich amelogenin protein (LRAP; 59 amino acids), have been studied in depth and have different dynamic properties and 2D- and 3D-structural features. These differences make it difficult to extract design principles used in nature for building materials with properties such as high strength, unusual morphologies, or uncommon phases. Consequently, design principles needed for developing synthetic materials controlled by proteins are not clear. Many biomineralization proteins are much larger than statherin and LRAP, necessitating the study of larger biomineralization proteins. More recent studies of the significantly larger full-length amelogenin (180 residues) represent a significant step forward to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids, a silaffin derived peptide, and the model LK peptide with silica are also being studied, along with qualitative studies of the organic matrices interacting with calcium carbonate. Dipolar recoupling techniques have formed the core of the quantitative studies, yet the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques to study biomineralization proteins is becoming more common, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. NMR study of seed hydration with deuterated water: Dependence of proton signals on hydration level

    SciTech Connect

    Di Nola, A.; D'Ubaldo, A.; Fracassi, M.; Brosio, E. )

    1991-01-01

    Proton NMR signals in seeds are shown to depend on hydration level. In fact at low water amount, as it occurs in many native seeds, protons can have a restricted mobility and are not detectable. A NMR method for measuring the dependence of proton signals on hydration is reported. The method also allows the separation of the contributions of water and non-water protons in a low-resolution NMR experiment. It is based on successive hydrations (with deuterated water) - desiccation steps and on the analysis of the transverse magnetization decay curves.

  16. Chemical behavior of methylpyranomalvidin-3-O-glucoside in aqueous solution studied by NMR and UV-visible spectroscopy.

    PubMed

    Oliveira, Joana; Petrov, Vesselin; Parola, A Jorge; Pina, Fernando; Azevedo, Joana; Teixeira, Natércia; Brás, Natércia F; Fernandes, Pedro A; Mateus, Nuno; Ramos, Maria João; de Freitas, Victor

    2011-02-17

    In the present work, the proton-transfer reactions of the methylpyranomalvidin-3-O-glucoside pigment in water with different pH values was studied by NMR and UV-visible spectroscopies. The results showed four equilibrium forms: the methylpyranomalvidin-3-O-glucoside cation, the neutral quinoidal base, the respective anionic quinoidal base, and a dianionic base unprotonated at the methyl group. According to the NMR data, it seems that for methylpyranomalvidin-3-O-glucoside besides the acid-base equilibrium between the pyranoflavylium cation and the neutral quinoidal base, a new species is formed at pD 4.88-6.10. This is corroborated by the appearance of a new set of signals in the NMR spectrum that may be assigned to the formation of hemiketal/cis-chalcone species to a small extent. The two ionization constants (pK(a1) and pK(a2)) obtained by both methods (NMR and UV-visible) for methylpyranomalvidin-3-O-glucoside are in agreement (pK(a1) = 5.17 ± 0.03; pK(a2) = 8.85 ± 0.08; and pK(a1) = 4.57 ± 0.07; pK(a2) = 8.23 ± 0.04 obtained by NMR and UV-visible spectroscopies, respectively). Moreover, the fully dianionic unprotonated form (at the methyl group) of the methylpyranomalvidin-3-O-glucoside is converted slowly into a new structure that displays a yellow color at basic pH. On the basis of the results obtained through LC-MS and NMR, the proposed structure was found to correspond to the flavonol syringetin-3-glucoside.

  17. NMR studies of granular media and two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyu

    This dissertation describes two experimental studies of a vibrofluidized granular medium and a preliminary study of two-phase fluid flow in a porous medium using Nuclear Magnetic Resonance (NMR). The first study of granular medium is to test a scaling law of the rise in center of mass in a three-dimensional vibrofluidized granular system. Our granular system consisted of mustard seeds vibrated vertically at 40 Hz from 0g to 14g. We used Magnetic Resonance Imaging (MRI) to measure density profile in vibrated direction. We observed that the rise in center of mass scaled as nu 0alpha/Nlbeta with alpha = 1.0 +/- 0.2 and beta = 0.5 +/- 0.1, where nu 0 is the vibration velocity and Nl is the number of layers of grains in the container. A simple theory was proposed to explain the scaling exponents. In the second study we measured both density and velocity information in the same setup of the first study. Pulsed Field Gradient (PFG)-NMR combined with MRI was used to do this measurement. The granular system was fully fluidized at 14.85g 50 Hz with Nl ≤ 4. The velocity distributions at horizontal and vertical direction at different height were measured. The distributions were nearly-Gaussian far from sample bottom and non-Gaussian near sample bottom. Granular temperature profiles were calculated from the velocity distributions. The density and temperature profile were fit to a hydrodynamic theory. The theory agreed with experiments very well. A temperature inversion near top was also observed and explained by additional transport coefficient from granular hydrodynamics. The third study was the preliminary density measurement of invading phase profile in a two-phase flow in porous media. The purpose of this study was to test an invasion percolation with gradient (IPG) theory in two-phase flow of porous media. Two phases are dodecane and water doped with CuSO4. The porous medium was packed glass beads. The front tail width sigma and front width of invading phase were

  18. PFGSE-NMR study of the self-diffusion of sucrose fatty acid monoesters in water.

    PubMed

    Molinier, Valérie; Fenet, Bernard; Fitremann, Juliette; Bouchu, Alain; Queneau, Yves

    2005-06-01

    The micellization of pure monosubstituted sucrose fatty acid esters in water, namely sucrose octanoate, sucrose decanoate, sucrose laurate, sucrose dodec-5-cis-enoate, sucrose myristate, and sucrose palmitate, has been investigated by means of two NMR methods, pulsed field gradient spin-echo NMR (PFGSE-NMR), giving access to the self-diffusion coefficients of free molecules and micelles in solution, and the ERETIC method (electronic reference to access in vivo concentrations) for the measurement of concentrations by external calibration of a synthetic NMR signal. The early micellar regions and, when possible, the premicellar regions were investigated. By this method, we obtained the hydrodynamic radii of micelles, displaying a linear progression in relation to the chain length and an accurate determination of critical micellar concentration (CMC) for each sucrose ester. The effect of the regiochemistry of fatty chain grafting has been investigated, showing special behavior for 1'-O-sucrose palmitate.

  19. Structural studies of PCU-hydrazones: NMR spectroscopy, X-ray diffractions, and DFT calculations

    NASA Astrophysics Data System (ADS)

    Veljković, Jelena; Šekutor, Marina; Molčanov, Krešimir; Lo, Rabindranath; Ganguly, Bishwajit; Mlinarić-Majerski, Kata

    2011-06-01

    In this article we present a detailed structural investigation for the configurational isomers of PCU-hydrazones. The structural characterization of these hydrazones was performed using NMR spectroscopy, X-ray diffraction analysis and theoretical calculations. The single crystal X-ray structures of PCU-hydrazones 6B and 6C have been solved and used to conclusively confirm the characterization obtained via NMR spectra of a particular isomer. Nuclear magnetic shielding values calculated for 6A-C using DFT calculations were correlated with the experimentally determined chemical shifts. The computed results were found to be in good agreement with the observed 13C NMR values. The computed NMR results helped to ascertain the isomers of PCU-hydrazones 4A-C.

  20. Compartmentation of Nucleotides in Corn Root Tips Studied by 31P-NMR and HPLC 1

    PubMed Central

    Hooks, Mark A.; Clark, Robert A.; Nieman, Richard H.; Roberts, Justin K. M.

    1989-01-01

    Corn (Zea mays L.) root tips were subjected to different conditions so that nucleotide levels varied over a wide range. Levels of nucleotides in corn root tips were measured using 31P nuclear magnetic resonance (NMR) spectroscopy and high performance liquid chromatography. Results indicate: (a) Similar amounts of NTP and sugar nucleotides were observed by in vivo NMR and in extracts. In contrast, a significant amount of NDP observed in root tip extracts was not detected by in vivo NMR. Thus, for a given sample, [NTP]/[NDP] ratios determined in vivo by 31P-NMR are always higher than ratios observed in extracts, deviating by ∼4-fold at the highest ratios. The NMR-invisible pool of NDP appeared quite metabolically inert, barely changing in size as total cell NDP changed. We conclude that NDP in corn root tips is compartmented with respect to NMR visibility, and that it is the NMR-visible pool which responds dynamically to metabolic state. The NMR-invisible NDP could either be immobilized (and so have broad, undetectable NMR signals), or be complexed with species that cause the chemical shift of NDP to change (so it does not contribute to the NMR signal of free NDP), or both. (b) 31P-NMR cannot distinguish between bases (A, U, C, and G) of nucleotides. HPLC analysis of root tip extracts showed that the relative amount of each base in the NTP and NDP pools was quite constant in the different samples. (c) In extracts, for each of the nonadenylate nucleotides, [NTP]/[NDP] was linearly proportional to [ATP]/[ADP], indicating near equilibrium in the nucleoside diphosphokinase (NDPK) reaction. However, the apparent equilibrium constants for the phosphorylation of GDP and UDP by ATP were significantly lower than 1, the true equilibrium constant for the NDPK reaction. Thus, for a given sample, [ATP]/[ADP] ∼ [CTP]/[CDP] > [UTP]/[UDP] > [GTP]/[GDP]. This result suggests that the different NDPs in corn root tips do not have equal access to NDPK. PMID:16666649

  1. Intermediate valence behavior of Yb2Ni12P7 studied by using 31P NMR

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Sugiura, K.; Ueda, K.; Mito, T.; Kohara, T.; Satoh, R.; Tsuchiya, K.; Nakano, T.; Takeda, N.

    2013-08-01

    The Yb-based heavy-fermion compound Yb2Ni12P7 with a hexagonal Zr2Fe12P7-type crystal structure was investigated by using the 31P nuclear magnetic resonance (NMR) technique. The complicated NMR line changes its shape gradually with decreasing temperature, implying the presence of some Knight shift components. The temperature dependences of the Knight shift and the nuclear spin-lattice relaxation rate 1/ T 1 suggest the delocalization of 4 f electrons.

  2. Organic matter stabilization in Cryosols of Northern Alaska - a combined NMR and NanoSIMS study

    NASA Astrophysics Data System (ADS)

    Mueller, C. W.; Loeppmann, S.; Hoeschen, C.; Kao-Kniffin, J.; Bockheim, J.

    2012-04-01

    Various studies predict altered organic matter (OM) dynamics in arctic soils due to climatic change. While bulk soils react slowly to changing climate, the study of soil organic matter (SOM) fractions may offer a more detailed picture of the dynamics of differently preserved SOM pools in climate sensitive arctic regions. Due to cryoturbation, especially permafrost affected soils exhibit a structurally very heterogeneous matrix across a wide range of spatial and temporal scales. However, processes controlling the stabilization and utilization of SOM happen at submicron scales. In order to combine chemical information of isolated SOM fractions and their possible role in the micro-scale architecture of Cryosols, we combined NMR spectroscopy with scanning electron microscopy (SEM) and nano-scale secondary ion mass spectrometry (NanoSIMS). Approximately 50-75% of Alaska's Arctic Coastal Plain is covered with thaw lakes and drained thaw lakes that follow a 5,000 yr cycle of development (between creation and final drainage), thus forming a natural soil chronosequence. The drained thaw lakes offer the possibility to study SOM dynamics affected by permafrost processes over millennial timescales. In April 2010 we sampled 16 soil cores (including the active and permanent layer) reaching from young drained lakes (0-50 years since drainage) to ancient drained lakes (3000-5500 years since drainage). Air dried soil samples from soil horizons of the active and permanent layer were subjected to density fractionation in order to differentiate particulate OM and mineral associated OM. The chemical composition of the SOM fractions was analyzed by 13C CPMAS NMR spectroscopy. From some soil cores, subsamples were taken and embedded in epoxy resin for further in-situ microscopic and spectrometric analyses. The NanoSIMS technology allows the simultaneous analysis of e.g. 12C-, 13C-, 12C14N-, 12C15N- and 28Si- with high sensitivity and lateral resolution. This enables the analysis of

  3. NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors

    PubMed Central

    2015-01-01

    Ionic liquids are emerging as promising new electrolytes for supercapacitors. While their higher operating voltages allow the storage of more energy than organic electrolytes, they cannot currently compete in terms of power performance. More fundamental studies of the mechanism and dynamics of charge storage are required to facilitate the development and application of these materials. Here we demonstrate the application of nuclear magnetic resonance spectroscopy to study the structure and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes place by adsorption of counterions and desorption of co-ions from the pores. We find that adsorption and desorption of anions surprisingly plays a more dominant role than that of the cations. Having elucidated the charging mechanism, we go on to study the factors that affect the rate of ionic diffusion in the carbon micropores in an effort to understand supercapacitor charging dynamics. We show that the line shape of the resonance arising from adsorbed ions is a sensitive probe of their effective diffusion rate, which is found to depend on the ionic liquid studied, as well as the presence of any solvent additives. Taken as whole, our NMR measurements allow us to rationalize the power performances of different electrolytes in supercapacitors. PMID:25973552

  4. A natural and readily available crowding agent: NMR studies of proteins in hen egg white.

    PubMed

    Martorell, Gabriel; Adrover, Miquel; Kelly, Geoff; Temussi, Piero Andrea; Pastore, Annalisa

    2011-05-01

    In vitro studies of biological macromolecules are usually performed in dilute, buffered solutions containing one or just a few different biological macromolecules. Under these conditions, the interactions among molecules are diffusion limited. On the contrary, in living systems, macromolecules of a given type are surrounded by many others, at very high total concentrations. In the last few years, there has been an increasing effort to study biological macromolecules directly in natural crowded environments, as in intact bacterial cells or by mimicking natural crowding by adding proteins, polysaccharides, or even synthetic polymers. Here, we propose the use of hen egg white (HEW) as a simple natural medium, with all features of the media of crowded cells, that could be used by any researcher without difficulty and inexpensively. We present a study of the stability and dynamics behavior of model proteins in HEW, chosen as a prototypical, readily accessible natural medium that can mimic cytosol. We show that two typical globular proteins, dissolved in HEW, give NMR spectra very similar to those obtained in dilute buffers, although dynamic parameters are clearly affected by the crowded medium. The thermal stability of one of these proteins, measured in a range comprising both heat and cold denaturation, is also similar to that in buffer. Our data open new possibilities to the study of proteins in natural crowded media. Copyright © 2010 Wiley-Liss, Inc.

  5. NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors.

    PubMed

    Forse, Alexander C; Griffin, John M; Merlet, Céline; Bayley, Paul M; Wang, Hao; Simon, Patrice; Grey, Clare P

    2015-06-10

    Ionic liquids are emerging as promising new electrolytes for supercapacitors. While their higher operating voltages allow the storage of more energy than organic electrolytes, they cannot currently compete in terms of power performance. More fundamental studies of the mechanism and dynamics of charge storage are required to facilitate the development and application of these materials. Here we demonstrate the application of nuclear magnetic resonance spectroscopy to study the structure and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes place by adsorption of counterions and desorption of co-ions from the pores. We find that adsorption and desorption of anions surprisingly plays a more dominant role than that of the cations. Having elucidated the charging mechanism, we go on to study the factors that affect the rate of ionic diffusion in the carbon micropores in an effort to understand supercapacitor charging dynamics. We show that the line shape of the resonance arising from adsorbed ions is a sensitive probe of their effective diffusion rate, which is found to depend on the ionic liquid studied, as well as the presence of any solvent additives. Taken as whole, our NMR measurements allow us to rationalize the power performances of different electrolytes in supercapacitors.

  6. NMR study of the conformation of the 2-aminopurine: Cytosine mismatch in DNA

    SciTech Connect

    Fagan, P.A.; Wemmer, D.E. |; Goodman, M.F.

    1996-04-02

    DNA polymerase makes errors by misincorporating natural DNA bases and base analogs. Because of the wide variety of possible mismatches and the varying efficiency with which they are repaired, structural studies are necessary to understand in detail how these mispairs differ and can be distinguished from standard Watson-Crick base pairs. 2-Aminopurine (AP) is a highly mutagenic base analog. The objective of this study was to determine the geometry of the AP{center_dot}C mispair in DNA at neutral pH. Although several studies have focused on the AP{center_dot} mispair in DNA, there is not as of yet consensus on its structure. At least four models have been proposed for this mispair. Through the use of NMR spectroscopy with selective {sup 15}N-labeling of exocyclic amino nitrogens on bases of interest, we are able to resolve ambiguities in previous studies. We find here that, in two different DNA sequences, the AP{center_dot}C mispair at neutral and high pH is in a wobble geometry. The structure and stability of this base mispair is dependent upon the local base sequence. 48 refs., 4 figs., 1 tab.

  7. Interactions between dendrimers and ionic liquids revealed by pulsed field gradient and nuclear Overhauser effect NMR studies.

    PubMed

    Zhao, Libo; Li, Cai; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen; Cheng, Yiyun

    2012-06-21

    The host-guest interactions of cationic and anionic poly(amidoamine) (PAMAM) dendrimers with three ionic liquids including 1-butyl-3-methylimidazolium 2-(2-methoxyethoxy)ethyl sulfate ([BMIM][MDEGSO(4)]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][TFSI]), and trihexyltetradecylphosphonium bis((trifluoromethyl)sulfonyl)imide ([THTDP][TFSI]) were investigated by several NMR techniques such as (1)H and (19)F NMR, pulsed field gradient (PFG) NMR, and 2D nuclear Overhauser enhancement spectroscopy (NOESY). Anionic PAMAM dendrimer interacts with the ionic liquids via ionic interactions. However, almost no interaction is observed between cationic PAMAM dendrimer and the ionic liquids without pH adjustment. Besides, no inclusion formation between the PAMAM dendrimers and the ionic liquids is observed on the basis of NOE NMR studies. The interactions between dendrimers and ionic liquids are very different from those between dendrimers and surfactants or amphiphilic drugs. The results obtained from PFG and NOE studies provide new insights into dendrimer-based host-guest systems.

  8. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR.

    PubMed

    Abdine, Alaa; Verhoeven, Michiel A; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75kDa pentameric alpha-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Domains in Binary SOPC/POPE Lipid Mixtures Studied by Pulsed Field Gradient 1H MAS NMR

    PubMed Central

    Polozov, Ivan V.; Gawrisch, Klaus

    2004-01-01

    We studied domain formation in mixtures of the monounsaturated lipids SOPC and POPE as a function of temperature and composition by NMR. Magic angle spinning at kHz frequencies restored resolution of 1H NMR lipid resonances in the fluid phase, whereas the linewidth of gel-phase lipids remained rather broad and spinning frequency dependent. In regions of fluid- and gel-phase coexistence, spectra are a superposition of resonances from fluid and gel domains, as indicated by the existence of isosbestic points. Quantitative determination of the amount of lipid in the coexisting phases is straightforward and permitted construction of a binary phase diagram. Lateral rates of lipid diffusion were determined by 1H MAS NMR with pulsed field gradients. At the onset of the phase transition near 25°C apparent diffusion rates became diffusion time dependent, indicating that lipid movement is obstructed by the formation of gel-phase domains. A percolation threshold at which diffusion of fluid-phase lipid becomes confined to micrometer-size domains was observed when ∼40% of total lipid had entered the gel phase. The results indicate that common phosphatidylethanolamines may trigger domain formation in membranes within a physiologically relevant temperature range. This novel NMR approach may aid the study of lipid rafts. PMID:15345553

  10. Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy, a new approach to study humic material?

    NASA Astrophysics Data System (ADS)

    Knicker, Heike; Lange, Sascha; van Rossum, Barth; Oschkinat, Hartmut

    2016-04-01

    Compared to solution NMR spectroscopy, solid-state NMR spectra suffer from broad resonance lines and low resolution. This could be overcome by the use of 2-dimenstional solid-state NMR pulse sequences. Until recently, this approach has been unfeasible as a routine tool in soil chemistry, mainly because of the low NMR sensitivity of the respective samples. A possibility to circumvent those sensitivity problems represents high-field Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy (Barnes et al., 2008), allowing considerable signal enhancements (Akbey et al., 2010). This is achieved by a microwave-driven transfer of polarization from a paramagnetic center to nuclear spins. Application of DNP to MAS spectra of biological systems (frozen solutions) showed enhancements of the factor 40 to 50 (Hall et al., 1997). Enhancements of this magnitude, thus may enable the use of at least some of the 2D solid-state NMR techniques that are presently already applied for pure proteins but are difficult to apply to soil peptides in their complex matrix. After adjusting the required acquisition parameters to the system "soil organic matter", lower but still promising enhancement factors were achieved. Additional optimization was performed and allowed the acquisition of 2D 13C and 15N solid-state NMR spectra of humified 13C and 15N enriched plant residues. Within the present contribution, the first solid-state DNP NMR spectra of humic material are presented. Those data demonstrate the great potential of this approach which certainly opens new doors for a better understanding of biochemical processes in soils, sediments and water. Akbey, Ü., Franks, W.T., Linden, A., Lange, S., Griffin, R.G., van Rossum, B.-J., Oschkinat, H., 2010. Dynamic nuclear polarization of deuterated proteins. Angewandte Chemie International Edition 49, 7803-7806. Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.N., Joo, C.G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Herzfeld, J

  11. Plasma and Serum Metabolite Association Networks: Comparability within and between Studies Using NMR and MS Profiling.

    PubMed

    Suarez-Diez, Maria; Adam, Jonathan; Adamski, Jerzy; Chasapi, Styliani A; Luchinat, Claudio; Peters, Annette; Prehn, Cornelia; Santucci, Claudio; Spyridonidis, Alexandros; Spyroulias, Georgios A; Tenori, Leonardo; Wang-Sattler, Rui; Saccenti, Edoardo

    2017-07-07

    Blood is one of the most used biofluids in metabolomics studies, and the serum and plasma fractions are routinely used as a proxy for blood itself. Here we investigated the association networks of an array of 29 metabolites identified and quantified via NMR in the plasma and serum samples of two cohorts of ∼1000 healthy blood donors each. A second study of 377 individuals was used to extract plasma and serum samples from the same individual on which a set of 122 metabolites were detected and quantified using FIA-MS/MS. Four different inference algorithms (ARANCE, CLR, CORR, and PCLRC) were used to obtain consensus networks. The plasma and serum networks obtained from different studies showed different topological properties with the serum network being more connected than the plasma network. On a global level, metabolite association networks from plasma and serum fractions obtained from the same blood sample of healthy people show similar topologies, and at a local level, some differences arise like in the case of amino acids.

  12. Interactions of saturated diacylglycerols with phosphatidylcholine bilayers: A sup 2 H NMR study

    SciTech Connect

    de Boeck, H.; Zidovetzki, R. )

    1992-01-21

    The interactions of a series of saturated diacylglycerols (DAGs) with fatty acid side chain lengths of 6-14 carbons with multilamellar phospholipid bilayers consisting either of dipalmitoylphosphatidylcholine (DPPC) or of a mixture of DPPC and bovine liver phosphatidylcholine (BL-PC) extracts were studied by {sup 2}H NMR spectrometry. The authors found that the perturbation induced by the DAGs into the bilayer structure strongly depends on the length of the DAG fatty acid side chain. Shorter chain 1,2-sn-dihexanoylglycerol and, to a larger degree, 1,2-sn-dioctanoylglycerol (diC{sub 8}) induce transverse perturbation of the bilayer structure: the order parameters of the phospholipid side chains are increased by the intercalating DAG molecules in the region adjacent to the phospholipid headgroups and decreased toward the terminal methyls, corresponding to the bilayer interior. Each of the DAGs studied induces a decrease in the area per phospholipid molecule, and a corresponding increase in the lateral surface pressure of the bilayers. Since numerous biochemical studies consistently report that diC{sub 8} is the most effective of saturated DAGs in activating protein kinase C, they may conclude that the activation of this enzyme is associated with a transverse perturbation of the lipid bilayer structure and a decreased ordering in the interior of the bilayer membrane, and is less affected by the lateral phase separation of the lipids into regions of different fluidities, as induced by the longer chain DAGs.

  13. Characterization of a new rat urinary metabolite of piperine by LC/NMR/MS studies.

    PubMed

    Bajad, Sunil; Coumar, Mohane; Khajuria, Ravi; Suri, Om P; Bedi, Kasturi L

    2003-08-01

    Potential of piperine, an active alkaloid of black and long peppers, to increase the bioavailability of drugs in humans is of great clinical significance owing to its omnipresence in food. In an attempt to further study the reported differences in its metabolism in rats and humans, a new major urinary metabolite was detected in rat urine and plasma using HPLC. The metabolite was partially purified using reverse phase column chromatography on Sephadex((R))-LH 20 and characterized as 5-(3, 4-methylenedioxy phenyl)-2E,4E-pentadienoic acid-N-(3-yl propionic acid)-amide with the help of LC/NMR/positive ESI-MS studies. Complete mass fragmentation pattern could be assigned with MS/MS studies. The metabolite has a unique structure compared to the previously reported metabolites in that it retains methylenedioxy ring and conjugated double bonds while the piperidine ring is modified to form propionic acid group. Mechanism of formation of the metabolite by oxidation and cleavage of piperidine ring is proposed. Kidney appears to be the major excretion route for piperine metabolites in rats as no metabolite could be detected in feces.

  14. Protein NMR Studies of substrate binding to human blood group A and B glycosyltransferases.

    PubMed

    Peters, Thomas; Grimm, Lena Lisbeth; Weissbach, Sophie; Flügge, Friedemann; Begemann, Nora; Palcic, Monica

    2017-03-03

    Donor and acceptor substrate binding to human blood group A and B glycosyltransferases (GTA, GTB) has been studied by a variety of protein NMR experiments. Prior crystallographic studies have shown these enzymes to adopt an open conformation in the absence of substrates. Binding of either the donor substrate UDP-Gal, or of UDP induces a semi-closed conformation. In the presence of both, donor- and acceptor substrates, the enzymes shift towards a closed conformation with ordering of an internal loop and the C-terminal residues, which then completely cover the donor-binding pocket. Chemical shift titrations of uniformly 2H,15N labeled GTA or GTB with UDP affected about 20% of all cross peaks in 1H,15N-TROSY-HSQC spectra reflecting substantial plasticity of the enzymes. On the other hand, it is this conformational flexibility that impedes NH backbone assignments. Chemical shift perturbation experiments using 1-13C-methyl Ile labeled samples revealed two Ile residues, Ile123 at the bottom of the UDP binding pocket, and Ile192 as part of the internal loop that were significantly disturbed upon stepwise addition of UDP and H-disaccharide, also revealing long-range perturbations. Finally, methyl TROSY based relaxation dispersion experiments do not reveal s to ms time scale motions. Although this study reveals substantial conformational plasticity of GTA and GTB it remains enigmatic how binding of substrates shifts the enzymes into catalytically competent states.

  15. Synthesis and proton-NMR studies of oligonucleotides containing an apurinic (AP) site

    SciTech Connect

    Raap, J.; Dreef, C.E.; van der Marel, G.A.; van Boom, J.H.; Hilbers, C.W. )

    1987-10-01

    In order to elucidate the conformational properties of base-deleted oligodeoxyribonucleotides, the molecules d-CpS(pCpG)n (n = 1,2; S = sugar) were synthesized by the phosphotriester method and characterized by 1H-NMR spectroscopy. Complete assignment of all non-exchangeable proton resonances of both compounds was obtained by 1D- and 2D-NMR techniques. In combination with computer simulation, these spectra yielded proton-proton and proton-phosphorus coupling constants of high accuracy. These data provide valuable information about the sugar and the backbone conformation. It appears that d-Cp1Sp2Cp3G4 does not form a duplex under any of the conditions studied. On the contrary, the base-deleted hexamer d-Cp1Sp2Cp3Gp4Cp5G6 occurs as a right-handed' staggered' DNA duplex at 280 K: the core of this duplex is formed by the residues C(3)-G(6); two 'dangling' residues C(1) and S(2) are located at the two 5'-ends of the duplex. The assignment of the corresponding imino proton resonances for (d-CpS(pCpG)2)2 was based on their thermal behavior: the line broadening of these resonances was studied as a function of temperature. The chemical shift and the number of imino proton resonances accord well with the number and type of Watson-Crick base pairs which can be formed in the staggered duplex described above. Thermodynamic parameters of duplex formation were obtained from an analysis of the chemical shift versus temperature profiles of aromatic base and H-1' protons. It is suggested that the cytosine ring of C(1) stacks, at least part of the time, with the guanine ring on the nucleotide residue, G(6), situated in the complementary strand. The binding of Lys-Trp-Lys to (d-CpS(pCpG)2)2 as well as to (d-CpGpCpG)1 was investigated.

  16. Compositional differences among Chinese soy sauce types studied by (13)C NMR spectroscopy coupled with multivariate statistical analysis.

    PubMed

    Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili

    2016-09-01

    Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. NMR study of oligonucleotides containing base pair mismatches and a human growth hormone peptide for the determination of solution structures

    SciTech Connect

    Roongta, V.A.

    1989-01-01

    Formation of unusual basepairs in DNA for random mutations in DNA was proposed in the sixties. These mismatches arise due to errors in replication, and from deamination of the 5-methylcytosine. The author's interest in studying mismatches and other oligonucleotides has been two fold. One is related to {sup 31}P chemical shifts and the backbone structure of oligonucleotides. He wanted to find out the significance of the dispersion of {sup 31}p chemical shifts in oligonucleotides. He wished to address whether this dispersion in {sup 31}P chemical shifts is related to global structural parameters of oligonucleotides like helix twist and whether he can prove the relationship between {sup 31}P chemical shifts and the backbone torsional angles epsilon and zeta. How does a mismatch affect {sup 31}P chemical shifts and the backbone torsional angle The second interest is related to solving the three dimensional structure of these biopolymers by using NMR data (NOESY distances) and computer simulations. His major study of these mismatches has been in the assignments of the protons resonances and the phosphorus resonances by 2D NMR. He has also tried to answer the question about the relationships between {sup 31}P chemical shifts and global parameters for DNA such as the helix twist. He has made substantial progress in determination of J(H3{prime}-P) coupling constants by 2D NMR and also in determining the relationship between the SIP chemical shifts and the backbone torsional angles by using the mismatch dodecamer sequences and the tetradecamer sequences. The 2D NMR data for the GG and GT mismatch have been used to determine three dimensional structures by using distance restrained molecular dynamics. The second project involved studying a 28 residue synthetic peptide by NMR.

  18. Sum frequency generation and solid-state NMR study of the structure, orientation, and dynamics of polystyrene-adsorbed peptides

    PubMed Central

    Weidner, Tobias; Breen, Nicholas F.; Li, Kun; Drobny, Gary P.; Castner, David G.

    2010-01-01

    The power of combining sum frequency generation (SFG) vibrational spectroscopy and solid-state nuclear magnetic resonance (ssNMR) spectroscopy to quantify, with site specificity and atomic resolution, the orientation and dynamics of side chains in synthetic model peptides adsorbed onto polystyrene (PS) surfaces is demonstrated in this study. Although isotopic labeling has long been used in ssNMR studies to site-specifically probe the structure and dynamics of biomolecules, the potential of SFG to probe side chain orientation in isotopically labeled surface-adsorbed peptides and proteins remains largely unexplored. The 14 amino acid leucine-lysine peptide studied in this work is known to form an α-helical secondary structure at liquid-solid interfaces. Selective, individual deuteration of the isopropyl group in each leucine residue was used to probe the orientation and dynamics of each individual leucine side chain of LKα14 adsorbed onto PS. The selective isotopic labeling methods allowed SFG analysis to determine the orientations of individual side chains in adsorbed peptides. Side chain dynamics were obtained by fitting the deuterium ssNMR line shape to specific motional models. Through the combined use of SFG and ssNMR, the dynamic trends observed for individual side chains by ssNMR have been correlated with side chain orientation relative to the PS surface as determined by SFG. This combination provides a more complete and quantitative picture of the structure, orientation, and dynamics of these surface-adsorbed peptides than could be obtained if either technique were used separately. PMID:20628016

  19. NMR study of the solution conformation of rat atrial natriuretic factor 7-23 in sodium dodecyl sulfate micelles

    SciTech Connect

    Olejniczak, E.T.; Gampe, R.T. Jr.; Rockway, T.W.; Fesik, S.W.

    1988-09-06

    The conformation of the cyclic portion (7-23) of naturally occurring rat atrial natriuretic factor, ANF(1-28), has been examined in sodium dodecyl sulfate (SDS) micelles using high-resolution NMR techniques. Evidence is presented which shows that ANF(7-23) has several regions of definable structure in SDS micelles which were not observed in earlier studies in bulk solvents. The /sup 1/H NMR resonances of ANF(7-23) in SDS micelles were assigned using sequential assignment techniques, and the conformational properties were analyzed primarily from proton-proton distances obtained from the quantitative analysis of two-dimensional nuclear Overhauser effect spectra. Three-dimensional structures consistent with the NMR data were generated by using distance geometry and constrained minimization/dynamics. Several similar but not identical structures were found which adequately satisfied the NMR constraints. Although none of the structures adopted a standard secondary structure, the conformations of three different sections of the peptide, 8-13, 14-17, and 18-21, were nearly identical in all of the predicted structures when individually superimposed.

  20. Application of (1)h NMR profiling to assess seed metabolomic diversity. A case study on a soybean era population.

    PubMed

    Harrigan, George G; Skogerson, Kirsten; MacIsaac, Susan; Bickel, Anna; Perez, Tim; Li, Xin

    2015-05-13

    (1)H NMR spectroscopy offers advantages in metabolite quantitation and platform robustness when applied in food metabolomics studies. This paper provides a (1)H NMR-based assessment of seed metabolomic diversity in conventional and glyphosate-resistant genetically modified (GM) soybean from a genetic lineage representing ∼35 years of breeding and differing yield potential. (1)H NMR profiling of harvested seed allowed quantitation of 27 metabolites, including free amino acids, sugars, and organic acids, as well as choline, O-acetylcholine, dimethylamine, trigonelline, and p-cresol. Data were analyzed by canonical discriminant analysis (CDA) and principal variance component analysis (PVCA). Results demonstrated that (1)H NMR spectroscopy was effective in highlighting variation in metabolite levels in the genetically diverse sample set presented. The results also confirmed that metabolite variability is influenced by selective breeding and environment, but not genetic modification. Therefore, metabolite variability is an integral part of crop improvement that has occurred for decades and is associated with a history of safe use.