Science.gov

Sample records for oxygen-containing functional groups

  1. Effects of Oxygen-Containing Functional Groups on Supercapacitor Performance

    SciTech Connect

    Kerisit, Sebastien N.; Schwenzer, Birgit; Vijayakumar, M.

    2014-07-03

    Molecular dynamics (MD) simulations of the interface between graphene and the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIM OTf) were carried out to gain molecular-level insights into the performance of graphene-based supercapacitors and, in particular, determine the effects of the presence of oxygen-containing defects at the graphene surface on their integral capacitance. The MD simulations predict that increasing the surface coverage of hydroxyl groups negatively affects the integral capacitance, whereas the effect of the presence of epoxy groups is much less significant. The calculated variations in capacitance are found to be directly correlated to the interfacial structure. Indeed, hydrogen bonding between hydroxyl groups and SO3 anion moieties prevents BMIM+ and OTf- molecules from interacting favorably in the dense interfacial layer and restrains the orientation and mobility of OTf- ions, thereby reducing the permittivity of the ionic liquid at the interface. The results of the molecular simulations can facilitate the rational design of electrode materials for supercapacitors.

  2. Redox-Active Oxygen-Containing Functional Groups in Activated Carbon Facilitate Microbial Reduction of Ferrihydrite.

    PubMed

    Wu, Song; Fang, Guodong; Wang, Yujun; Zheng, Yue; Wang, Chao; Zhao, Feng; Jaisi, Deb P; Zhou, Dongmei

    2017-09-05

    Carbonaceous materials are commonly used in agronomic and environmental applications primarily as geosorbents, but their redox properties that may affect biogeochemical reactions are rarely documented. Herein, the role of activated carbon (AC) mediating microbial reduction of ferrihydrite is studied. Our batch experiment results show that AC facilitated the reduction of ferrihydrite by Shewanella oneidensis MR-1, but the pretreatment of AC with HNO3 further increased the rate of reduction. The redox-active oxygen-containing functional groups in AC were found to be responsible for the enhancement of the microbial reduction of ferrihydrite. This conclusion was supported by the electrochemical evidence that showed that the electron exchange capacity (EEC) of AC was facilitated due to the presence of quinone/hydroquinone groups and strongly positively correlated with the content of C═O groups. Moreover, the coprecipitation of vivianite and siderite was found in the products in the presence of AC, but siderite only was present in the absence of AC. The proper identification of potential functional groups in AC-mediating electron transfer during microbial reduction of ferrihydrite provides insights into the mechanism of reaction and potential roles carbonaceous materials may play in biogeochemical redox processes and, consequently, the fate of contaminants in the environment.

  3. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials

    PubMed Central

    Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite’s chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface. PMID:28301544

  4. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    PubMed

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  5. Effect of Oxygen-containing Functional Groups on Protein Stability in Ionic Liquid Solutions

    NASA Technical Reports Server (NTRS)

    Turner, Megan B.; Holbrey, John D.; Spear, Scott K.; Pusey, Marc L.; Rogers, Robin D.

    2004-01-01

    The ability of functionalized ionic liquids (ILs) to provide an environment of increased stability for biomolecules has been studied. Serum albumin is an inexpensive, widely available protein that contributes to the overall colloid osmotic blood pressure within the vascular system. Albumin is used in the present study as a marker of biomolecular stability in the presence of various ILs in a range of concentrations. The incorporation of hydroxyl functionality into the methylimidazolium-based cation leads to increased protein stability detected by fluorescence spectroscopy and circular dichroic (CD) spectrometry.

  6. Effect of Oxygen-containing Functional Groups on Protein Stability in Ionic Liquid Solutions

    NASA Technical Reports Server (NTRS)

    Turner, Megan B.; Holbrey, John D.; Spear, Scott K.; Pusey, Marc L.; Rogers, Robin D.

    2004-01-01

    The ability of functionalized ionic liquids (ILs) to provide an environment of increased stability for biomolecules has been studied. Serum albumin is an inexpensive, widely available protein that contributes to the overall colloid osmotic blood pressure within the vascular system. Albumin is used in the present study as a marker of biomolecular stability in the presence of various ILs in a range of concentrations. The incorporation of hydroxyl functionality into the methylimidazolium-based cation leads to increased protein stability detected by fluorescence spectroscopy and circular dichroic (CD) spectrometry.

  7. Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment.

    PubMed

    Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen

    2015-01-01

    To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability.

  8. Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment

    PubMed Central

    Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen

    2015-01-01

    To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability. PMID:26257980

  9. The influence of oxygen-containing functional groups on the dispersion of single-walled carbon nanotubes in amide solvents

    NASA Astrophysics Data System (ADS)

    Brandão, S. D. F.; Andrada, D.; Mesquita, A. F.; Santos, A. P.; Gorgulho, H. F.; Paniago, R.; Pimenta, M. A.; Fantini, C.; Furtado, C. A.

    2010-08-01

    Surface composition plays an important role in carbon nanotube dispersibility in different environments. Indeed, it determines the choice of dispersion medium. In this paper the effect of oxidation on the dispersion of HiPCO single-walled carbon nanotubes (SWNTs) in N-methyl-pyrrolidinone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA), N-dodecyl-pyrrolidinone (N12P) and cyclohexyl-pyrrolidinone (CHP) was systematically studied. During the oxidation process, similar amounts of carboxylic acid and phenolic groups were introduced to mostly already existing defects. For each solvent the dispersion limits and the absorption coefficients were estimated by optical absorption analysis over a range of SWNT concentrations. The presence of acid oxygenated groups increased SWNT dispersibility in NMP, DMF and DMA, but decreased in N12P and CHP. The absorption coefficients, however, decreased for all solvents after oxidation, reflecting the weakening of the effective transition dipole of the π-π transition with even limited extension functionalization and solvent interaction. The analysis of the results in terms of Hansen and Flory-Huggins solubility parameters evidenced the influence of dipolar interactions and hydrogen bonding on the dispersibility of oxidized SWNTs.

  10. The influence of oxygen-containing functional groups on the dispersion of single-walled carbon nanotubes in amide solvents.

    PubMed

    Brandão, S D F; Andrada, D; Mesquita, A F; Santos, A P; Gorgulho, H F; Paniago, R; Pimenta, M A; Fantini, C; Furtado, C A

    2010-08-25

    Surface composition plays an important role in carbon nanotube dispersibility in different environments. Indeed, it determines the choice of dispersion medium. In this paper the effect of oxidation on the dispersion of HiPCO single-walled carbon nanotubes (SWNTs) in N-methyl-pyrrolidinone (NMP), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), N-dodecyl-pyrrolidinone (N12P) and cyclohexyl-pyrrolidinone (CHP) was systematically studied. During the oxidation process, similar amounts of carboxylic acid and phenolic groups were introduced to mostly already existing defects. For each solvent the dispersion limits and the absorption coefficients were estimated by optical absorption analysis over a range of SWNT concentrations. The presence of acid oxygenated groups increased SWNT dispersibility in NMP, DMF and DMA, but decreased in N12P and CHP. The absorption coefficients, however, decreased for all solvents after oxidation, reflecting the weakening of the effective transition dipole of the π-π transition with even limited extension functionalization and solvent interaction. The analysis of the results in terms of Hansen and Flory-Huggins solubility parameters evidenced the influence of dipolar interactions and hydrogen bonding on the dispersibility of oxidized SWNTs.

  11. Odorants with Multiple Oxygen-Containing Functional Groups and Other Odorants with High Water Solubility Preferentially Activate Posterior Olfactory Bulb Glomeruli

    PubMed Central

    Johnson, Brett A.; Arguello, Spart; Leon, Michael

    2008-01-01

    In past studies in which we mapped 2-deoxyglucose uptake evoked by systematically different odorant chemicals across the entire rat olfactory bulb, glomerular responses could be related to each odorant's particular oxygen-containing functional group. In the present study, we tested whether aliphatic odorants containing two such functional groups (esters, ketones, acids, alcohols, and ethers) would stimulate the combination of glomerular regions that are associated with each of the functional groups separately, or whether they would evoke unique responses in different regions of the bulb. We found that these very highly water-soluble molecules rarely evoked activity in the regions responding to the individual functional groups; instead, they activated posterior glomeruli located about halfway between the dorsal and ventral extremes in both the lateral and the medial aspects of the bulb. Additional highly water-soluble odorants, including very small molecules with single oxygenic groups, also strongly stimulated these posterior regions, resulting in a statistically significant correlation between posterior 2-deoxyglucose uptake and molecular properties associated with water solubility. By showing that highly water-soluble odorants stimulate a part of the bulb associated with peripheral and ventral regions of the epithelium, our results challenge a prevalent notion that such odorants would activate class I odorant receptors located in zone 1 of the olfactory epithelium, which projects to the dorsal aspect of the bulb. PMID:17366613

  12. Role of oxygen-containing functional groups in forest fire-generated and pyrolytic chars for immobilization of copper and nickel.

    PubMed

    Esfandbod, Maryam; Merritt, Christopher R; Rashti, Mehran Rezaei; Singh, Balwant; Boyd, Sue E; Srivastava, Prashant; Brown, Christopher L; Butler, Orpheus M; Kookana, Rai S; Chen, Chengrong

    2017-01-01

    Char as a carbon-rich material, can be produced under pyrolytic conditions, wildfires or prescribed burn offs for fire management. The objective of this study was to elucidate mechanistic interactions of copper (Cu(2+)) and nickel (Ni(2+)) with different chars produced by pyrolysis (green waste, GW; blue-Mallee, BM) and forest fires (fresh-burnt by prescribed fire, FC; aged char produced by wild fire, AC). The pyrolytic chars were more effective sorbents of Cu(2+) (∼11 times) and Ni(2+) (∼5 times) compared with the forest fire chars. Both cross-polarization (CPMAS-NMR) and Bloch decay (BDMAS-NMR) (13)C NMR spectroscopies showed that forest fire chars have higher woody components (aromatic functional groups) and lower polar groups (e.g. O-alkyl C) compared with the pyrolytic chars. The polarity index was greater in the pyrolytic chars (0.99-1.34) than in the fire-generated chars (0.98-1.15), while aromaticity was lower in the former than in the latter. Fourier transform infrared (FTIR) and Raman spectroscopies indicated the binding of carbonate and phosphate with both Cu(2+) and Ni(2+) in all chars, but with a greater extent in pyrolytic than forest fire-generated chars. These findings have demonstrated the key role of char's oxygen-containing functional groups in determining their sorption capacity for the Cu(2+) and Ni(2+) in contaminated lands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase.

    PubMed

    Bohli, Thouraya; Ouederni, Abdelmottaleb

    2016-08-01

    Recently, modification of surface structure of activated carbons in order to improve their adsorption performance toward especial pollutants has gained great interest. Oxygen-containing functional groups have been devoted as the main responsible for heavy metal binding on the activated carbon surface; their introduction or enhancement needs specific modification and impregnation methods. In the present work, olive stones activated carbon (COSAC) undergoes surface modifications in gaseous phase using ozone (O3) and in liquid phase using nitric acid (HNO3). The activated carbon samples were characterized using N2 adsorption-desorption isotherm, SEM, pHpzc, FTIR, and Boehm titration. The activated carbon parent (COSAC) has a high surface area of 1194 m(2)/g and shows a predominantly microporous structure. Oxidation treatments with nitric acid and ozone show a decrease in both specific surface area and micropore volumes, whereas these acidic treatments have led to a fixation of high amount of surface oxygen functional groups, thus making the carbon surface more hydrophilic. Activated carbon samples were used as an adsorbent matrix for the removal of Co(II), Ni(II), and Cu(II) heavy metal ions from aqueous solutions. Adsorption isotherms were obtained at 30 °C, and the data are well fitted to the Redlich-Peterson and Langmuir equation. Results show that oxidized COSACs, especially COSAC(HNO3), are capable to remove more Co(II), Cu(II), and Ni(II) from aqueous solution. Nitric acid-oxidized olive stones activated carbon was tested in its ability to remove metal ions from binary systems and results show an important maximum adsorbed amount as compared to single systems.

  14. Effects of pore sizes and oxygen-containing functional groups on desulfurization activity of Fe/NAC prepared by ultrasonic-assisted impregnation

    NASA Astrophysics Data System (ADS)

    Shu, Song; Guo, Jia-Xiu; Liu, Xiao-Li; Wang, Xue-Jiao; Yin, Hua-Qiang; Luo, De-Ming

    2016-01-01

    A series of Fe-loaded activated carbons treated by HNO3 (Fe/NAC) were prepared by incipient impregnation method with or without ultrasonic assistance and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy with energy disperse spectroscope (SEM-EDS), transmission electron microscopy (TEM) and N2 adsorption/desorption. The desulfurization activities were evaluated at a fixed bed reactor under a mixed gas simulated from flue gas. The results showed that desulfurization activity from excellent to poor is as follows: Fe/NAC-60 > Fe/NAC-80 > Fe/NAC-30 > Fe/NAC-15 > Fe/NAC-0 > Fe/NAC-100 > NAC. Fe/NAC-60 exhibits the best desulfurization activity and has breakthrough sulfur capacity of 319 mg/g and breakthrough time of 540 min. The introduction of ultrasonic oscillation does not change the form of Fe oxides on activated carbon but can change the dispersion and relative contents of Fe3O4. The types of oxygen-containing functional groups have no obvious change for all samples but the texture properties show some differences when they are oscillated for different times. The fresh Fe/NAC-60 has a surface area of 1045 m2/g and total pore volume of 0.961 cm3/g with micropore volume of 0.437 cm3/g and is larger than Fe/NAC-0 (823 m2/g, 0.733 and 0.342 cm3/g). After desulfurization, surface area and pore volume of all samples decrease significantly, and those of the exhausted Fe/NAC-60 decrease to 233 m2/g and 0.481 cm3/g, indicating that some byproducts deposit on surface to cover pores. Pore size distribution influences SO2 adsorption, and fresh Fe/NAC-60 has more pore widths centralized at about 0.7 nm and 1.0⿿2.0 nm and corresponds to an excellent desulfurization activity, showing that micropore is conducive to the removal of SO2.

  15. Municipal sludge-derived carbon anode with nitrogen- and oxygen-containing functional groups for high-performance microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoxiao; Feng, Chunhua; Zhou, Weijia; Yu, Hui

    2016-03-01

    The demand for efficient and cost-effective anode materials in microbial fuel cells (MFCs) provides the impetus to use carbon derived from solid waste to support bacterial growth and proliferation. Here we show that the municipal sludge-derived carbon (SC) with a porous structure and abundant surface functional groups is effective in improving performance of MFCs. The SC is coated on the 3-D graphite felt (GF) surface by pyrrole electropolymerization in order to increase the surface cites that are interacted with bacteria, resulting in the formation of PPy/SC-modified GF anode. The scanning electron microscopy analysis indicates that the PPy/SC-modified GF can substantially increase anode surface area. The X-ray photoelectron spectroscopy (XPS) results suggest that the PPy/SC-modified GF anode possesses higher surface N/C ratio and higher relative contents of Odbnd C-NH2 and Odbnd C-O functional groups than other counterpart anodes. These characteristics are essential for increasing bacterial attachment to the anode surface, electron-transfer rate and thus anode performance and power performance. The maximum power density resulting from the PPy/SC-modified GF anode was 568.5 mW m-2 (13.6 W m-3) increased by 1.9, 2.7 and 3.5 times as compared to the PPy/AC-modified GF anode, the PPy alone-modified GF anode and the unmodified GF anode, respectively.

  16. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups.

    PubMed

    Fang, Qile; Chen, Baoliang; Lin, Yajie; Guan, Yuntai

    2014-01-01

    The pH-dependent adsorption of perchlorate (ClO4(-)) by wood-derived biochars produced at 200-700 °C (referred as FB200-FB700) was investigated to probe the anion retention mechanisms of biochars and to identify the interactions of water and biochar. ClO4(-) adsorption was controlled by the surface polarities and structural compositions of the organic components of biochars, rather than their inorganic mineral components. FB500-FB700 biochars with low polarity and high aromaticity displayed a superior ClO4(-) adsorption capacity, but which was affected by solution pH. Besides electrostatic interaction, hydrogen bonding to oxygen-containing groups on biochars was proposed the dominant force for perchlorate adsorption, which led to the maximum adsorption occurring near pHIEP, where surface charge equals zero. The dissociation of these surface oxygen-containing groups was monitored by zeta potential curves, which indicated that the H-bonds donors on biochar surface for ClO4(-) binding were changed from -COOH (ClO4(-)···HOOC-) and -OH (ClO4(-)···HO-) to -OH alone with an increase in pH. The H-bond force was strengthened by the condensed aromatic surfaces, since high temperature biochars provided a hydrophobic microenvironment to accommodate weakly hydrated perchlorate and facilitated the H-bonds for ClO4(-) binding to functional groups by the large π subunit of their aromatic substrate. Lastly, the batch and column tests of ClO4(-) adsorption showed that biochars like FB700 are effective adsorbents for anion pollutant removal via H-bonding interaction.

  17. New Group-Contribution Approach to Thermochemical Properties of Organic Compounds: Hydrocarbons and Oxygen-Containing Compounds

    NASA Astrophysics Data System (ADS)

    Verevkin, S. P.; Emel'yanenko, V. N.; Diky, V.; Muzny, C. D.; Chirico, R. D.; Frenkel, M.

    2013-09-01

    A new group-contribution approach involving systematic corrections for 1,4-non-bonded carbon-carbon and carbon-oxygen interactions has been proposed. Limits of the applicability of the method, associated with the highly branched structures, were established. Experimental data for enthalpies of formation in the liquid phase, enthalpies of vaporization, and enthalpies of formation in the gas phase for alkanes, alkenes, alkynes, alkylbenzenes, alkanols, ethers, ketones and aldehydes, carboxylic acids, esters, and carbonates were collected and critically evaluated through dynamic data evaluation as implemented in the NIST ThermoData Engine. An automatic procedure for molecular structure "decomposition" was developed, and algorithms for the assessment of expanded uncertainties for the predicted property values were implemented. The combination of these software tools allows for ongoing improvements of the group-contribution parameter set as new experimental data become available. Fifty-two group-contribution parameters and their variances were evaluated for the proposed schema. Based on comparison of critically evaluated and predicted data for all classes of compounds studied, the performance of the new group formulation and associated parameters is superior to that originally suggested by Benson and the update by Cohen without an increase in the number of required parameters.

  18. Oxygen-containing functionalities on the surface of multi-walled carbon nanotubes quantitatively determined by fluorescent labeling

    NASA Astrophysics Data System (ADS)

    Dementev, Nikolay; Ronca, Richard; Borguet, Eric

    2012-10-01

    Control over the type and concentration of functional groups on carbon nanotubes (CNTs) require the use of reliable and sensitive analytical methods to detect, identify and quantify the functionalities on the material. Here we report the results of the selective quantification of aldehyde (together with ketone), carboxylic, and alcohol groups on arc-produced multiwalled carbon nanotubes (MWCNTs) using fluorescent labeling of surface species (FLOSS), combined with surface area and thermogravimetric analysis. The high sensitivity of the fluorescence spectroscopy combined with the selectivity of the chemistry of covalent attachment, allowed us to determine that as-produced MWCNTs contain ∼1.1 at.% carboxylic groups, ∼2.0 at.% aldehydes (and ketones) and <2.0 at.% hydroxyls. Surprisingly, and contrary to the behavior of single walled carbon nanotubes, these concentrations do not appear to increase for acid purified MWCNTs but rather decrease to 0.4 at.% for carboxylic groups; 1.6 at.% for aldehydes (and ketones) and <3.0 at.%, for hydroxyls. Possible explanations for the observation that the acid purified MWCNTs have a lower level of the functionalities compared to the as-produced material are discussed.

  19. Oxygen-containing fragments in natural products.

    PubMed

    Titarenko, Zoya; Vasilevich, Natalya; Zernov, Vladimir; Kirpichenok, Michael; Genis, Dmitry

    2013-02-01

    An analysis of the chemical environment of the oxygen atoms in the DNP database compared to the CMC and SCD databases was performed. Some structural clusters were identified which are predominant among the natural products and can be considered as distinctive features of NPs. Fifty-three oxygen-containing structural fragments that are distinctive for the DNP (distinctive set of fragments DSF) in comparison with the SCD have been identified. A new descriptor Mc was introduced for describing the ratio of atoms involved in the DSF to the total number of heavy atoms. A significant difference in the Mc values among the reference databases allowed the use of a specific cluster of the DSF as a tool for performing similarity searches for oxygen-containing NP molecules, or for evaluation or comparison of databases according to their NP-likeness. An example illustrating that the suggested approach could allow not only estimating the NP-likeness, but also serve as a tool for designing new NP-like compounds is provided. The suggested approach for NP-likeness evaluation moves away from the traditional ideas of scaffolds, cycles, linkers and substituents.

  20. Oxygen-containing fragments in natural products

    NASA Astrophysics Data System (ADS)

    Titarenko, Zoya; Vasilevich, Natalya; Zernov, Vladimir; Kirpichenok, Michael; Genis, Dmitry

    2013-02-01

    An analysis of the chemical environment of the oxygen atoms in the DNP database compared to the CMC and SCD databases was performed. Some structural clusters were identified which are predominant among the natural products and can be considered as distinctive features of NPs. Fifty-three oxygen-containing structural fragments that are distinctive for the DNP (distinctive set of fragments DSF) in comparison with the SCD have been identified. A new descriptor Mc was introduced for describing the ratio of atoms involved in the DSF to the total number of heavy atoms. A significant difference in the Mc values among the reference databases allowed the use of a specific cluster of the DSF as a tool for performing similarity searches for oxygen-containing NP molecules, or for evaluation or comparison of databases according to their NP-likeness. An example illustrating that the suggested approach could allow not only estimating the NP-likeness, but also serve as a tool for designing new NP-like compounds is provided. The suggested approach for NP-likeness evaluation moves away from the traditional ideas of scaffolds, cycles, linkers and substituents.

  1. Stereochemistry of silicon in oxygen-containing compounds

    NASA Astrophysics Data System (ADS)

    Serezhkin, V. N.; Urusov, V. S.

    2017-01-01

    Specific stereochemical features of silicon in oxygen-containing compounds, including hybrid silicates with all oxygen atoms of SiOn groups (n = 4, 5, or 6) entering into the composition of organic anions or molecules, are described by characteristics of Voronoi—Dirichlet polyhedra. It is found that in rutile-like stishovite and post-stishovite phases with the structures similar to those of CaCl2, α-PbO2, or pyrite FeS2, the volume of Voronoi—Dirichlet polyhedra of silicon and oxygen atoms decreases linearly with pressure increasing to 268 GPa. Based on these results, the possibility of formation of new post-stishovite phases is shown, namely, the fluorite-like structure (transition predicted at 400 GPa) and a body-centered cubic lattice with statistical arrangement of silicon and oxygen atoms ( 900 GPa).

  2. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries

    SciTech Connect

    Estevez, Luis; Reed, David; Nie, Zimin; Schwarz, Ashleigh M.; Nandasiri, Manjula I.; Kizewski, James P.; Wang, Wei; Thomsen, Edwin; Liu, Jun; Zhang, Ji-Guang; Sprenkle, Vincent; Li, Bin

    2016-05-17

    We decorated the surfaces of graphite felts with some oxygen-containing functional groups, such as C-OH, O=C and HO-C=O. And the mole ratios and amounts of these functional groups were effectively adjusted on the graphite surface by a particular method. The catalytic effects of amounts and mole ratio of different kinds of functional groups on VRB electrode performances were investigated in detail.

  3. Renormalization group functional equations

    SciTech Connect

    Curtright, Thomas L.; Zachos, Cosmas K.

    2011-03-15

    Functional conjugation methods are used to analyze the global structure of various renormalization group trajectories and to gain insight into the interplay between continuous and discrete rescaling. With minimal assumptions, the methods produce continuous flows from step-scaling {sigma} functions and lead to exact functional relations for the local flow {beta} functions, whose solutions may have novel, exotic features, including multiple branches. As a result, fixed points of {sigma} are sometimes not true fixed points under continuous changes in scale and zeroes of {beta} do not necessarily signal fixed points of the flow but instead may only indicate turning points of the trajectories.

  4. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  5. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  6. Functional group analysis

    SciTech Connect

    Smith, W.T. Jr.; Patterson, J.M.

    1986-04-01

    Analytical methods for functional group analysis are reviewed. Literature reviewed is from the period of December 1983 through November 1985 and presents methods for determining the following compounds: acids, acid halides, active hydrogen, alcohols, aldehydes, ketones, amides, amines, amino acids, anhydrides, aromatic hydrocarbons, azo compounds, carbohydrates, chloramines, esters, ethers, halogen compounds, hydrazines, isothiocyanates, nitro compounds, nitroso compounds, organometallic compounds, oxiranes, peroxides, phenols, phosphorus compounds, quinones, silicon compounds, sulfates, sulfonyl chlorides, thioamides, thiols, and thiosemicarbazones. 150 references.

  7. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    PubMed

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.

  8. Preparation of oxygen-containing organic products from bed-oxidized brown coal by ozonation

    SciTech Connect

    Semenova, S.A.; Patrakov, Y.F.; Batina, M.V.

    2009-01-15

    The possibility of modifying the functional composition of humic acids by gas-phase ozonation of bed-oxidized brown coal was examined. About 90% of the organic matter of brown coal was converted to low-molecular weight soluble oxygen-containing products by stepwise liquid-phase ozonation (in chloroform and acetic acid).

  9. Cluster functional renormalization group

    NASA Astrophysics Data System (ADS)

    Reuther, Johannes; Thomale, Ronny

    2014-01-01

    Functional renormalization group (FRG) has become a diverse and powerful tool to derive effective low-energy scattering vertices of interacting many-body systems. Starting from a free expansion point of the action, the flow of the RG parameter Λ allows us to trace the evolution of the effective one- and two-particle vertices towards low energies by taking into account the vertex corrections between all parquet channels in an unbiased fashion. In this work, we generalize the expansion point at which the diagrammatic resummation procedure is initiated from a free UV limit to a cluster product state. We formulate a cluster FRG scheme where the noninteracting building blocks (i.e., decoupled spin clusters) are treated exactly, and the intercluster couplings are addressed via RG. As a benchmark study, we apply our cluster FRG scheme to the spin-1/2 bilayer Heisenberg model (BHM) on a square lattice where the neighboring sites in the two layers form the individual two-site clusters. Comparing with existing numerical evidence for the BHM, we obtain reasonable findings for the spin susceptibility, the spin-triplet excitation energy, and quasiparticle weight even in coupling regimes close to antiferromagnetic order. The concept of cluster FRG promises applications to a large class of interacting electron systems.

  10. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1980-01-01

    Discusses analytical methods selected from current research articles. Groups information by topics of general interest, including acids, aldehydes and ketones, nitro compounds, phenols, and thiols. Cites 97 references. (CS)

  11. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1980-01-01

    Discusses analytical methods selected from current research articles. Groups information by topics of general interest, including acids, aldehydes and ketones, nitro compounds, phenols, and thiols. Cites 97 references. (CS)

  12. Diffusion of implanted sodium in oxygen-containing silicon

    SciTech Connect

    Korol', V. M. Vedenyapin, S. A.; Zastavnoi, A. V.; Ovchinnikov, V.

    2008-09-15

    The effect of oxygen on diffusion of sodium implanted into silicon is studied for the first time in the temperature range from 500 to 850{sup o}C. A high-resistivity p-Si ({rho} > 1 k{omega} cm) grown by the Czochralski method in a magnetic field (mCz) with the oxygen concentration {approx}3 x 10{sup 17} cm{sup -3} was used. For comparison, we used silicon grown by the crucibleless floating zone method (fz). Temperature dependences of the effective diffusion coefficient of sodium in the mCz-Si and fz-Si crystals were determined and written as D{sub mCz}[cm{sup 2}/s] = 1.12exp(-1.64 eV/kT) cm{sup 2}/s and D{sub fz}[cm{sup 2}/s] = 0.024exp(-1.29 eV/kT) cm{sup 2}/s, respectively. It is assumed that larger values of diffusion parameters in oxygen-containing silicon are caused by formation of complex aggregates that contain sodium and oxygen atoms.

  13. Investigation of oxygen functional groups in low rank coal

    SciTech Connect

    Hagaman, E.W.; Lee, S.K.

    1993-07-01

    The distribution of the organic oxygen content of coals among the principal oxygen containing functional groups typically is determined by a combination of chemical and spectroscopic methods (1,2) and results in a classification scheme such as % carboxyl, % hydroxyl, % carbonyl, and % ether. A notable subdivision in this classification scheme is the differentiation of phenols in a coal on the basis of their ortho-substitution pattern (3). Apart from this distinction, the further classification of oxygen into functional group subsets is virtually nonexistent. This paper presents initial experiments that indicate a fuller characterization of oxygen distribution in low rank coal is possible. The experimental approach couples selective chemical perturbation and solid state NMR analysis of the material, specifically, the fluorination of Argonne Premium Coal {number_sign}8, North Dakota lignite, and spectroscopic examination by high resolution solid state {sup 19}F NMR (4). The fluorination reagent is diethylaminosulfur trifluoride (DAST), (Et){sub 2}NSF{sub 3}, which promotes a rich slate of oxygen functional group interconversions that introduce fluorine into the coal matrix (5). The virtual absence of this element in coals make {sup 19}F an attractive NMR nuclei for this application (6). The present experiments use direct detection of the {sup 19}F nucleus under conditions of proton ({sup 1}H) heteronuclear dipolar decoupling and magic angle spinning (MAS). The ca 300 ppm range of {sup 19}F chemical shifts in common carbon-fluorine bonding configurations and high {sup 19}F nuclear sensitivity permit the identification of unique and chemically dilute functional groups in the coal milieu. The unique detection of aromatic and aliphatic carboxylic acids and primary and secondary alcohols provide examples of the exquisite functional group detail that is revealed by this combination of techniques.

  14. Learning the Functional Groups: Keys to Success.

    ERIC Educational Resources Information Center

    Byrd, Shannon; Hildreth, David P.

    2001-01-01

    Points out the difficulties students have when they are expected to learn functional groups, which are frameworks for chemical and physical properties of molecules. Presents a classification key for functional groups categorized by 10 common functional groups. (YDS)

  15. Methods for separating oxygen from oxygen-containing gases

    DOEpatents

    Mackay, Richard; Schwartz, Michael; Sammells, Anthony F.

    2000-01-01

    This invention provides mixed conducting metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes. The materials of this invention have the general formula: A.sub.x A'.sub.x A".sub.2-(x+x') B.sub.y B'.sub.y B".sub.2-(y+y') O.sub.5+z ; where x and x' are greater than 0; y and y' are greater than 0; x+x' is less than or equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the f block lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides or Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements. The invention also provides methods for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula. Examples of the materials used for the preparation of the membrane include A.sub.x Sr.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z, where x is about 0.3 to about 0.5, x' is about 1.5 to about 1.7, y is 0.6, y' is between about 1.0 and 1.4 and B is Ga or Al.

  16. Vapor Pressures and Thermodynamics of Oxygen-Containing Polycyclic Aromatic Hydrocarbons Measured Using Knudsen Effusion

    PubMed Central

    Goldfarb, Jillian L.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives (OPAHs) are ubiquitous environmental pollutants resulting from the incomplete combustion of coal and fossil fuels. Their vapor pressures are key thermodynamic data essential for modeling fate and transport within the environment. The present study involved nine PAHs containing oxygen heteroatoms, including aldehyde, carboxyl and nitro groups, specifically: 2-nitrofluorene; 9-fluorenecarboxylic acid; 2-fluorenecarboxaldehyde; 2-anthracenecarboxylic acid; 9-anthracenecarboxylic acid; 9-anthraldehyde; 1-nitropyrene; 1-pyrenecarboxaldehyde and 1-bromo-2-naphthoic acid. The vapor pressures of these compounds, with molecular weights ranging from 194 to 251 grams per mole, were measured using the isothermal Knudsen effusion technique in the temperature range of 329 to 421. The corresponding enthalpies of sublimation, calculated via the Clausius-Clapeyron equation, are compared to parent, non-oxygenated PAH compound data to determine the effect of the addition of these oxygen-containing heteroatoms. As expected, the addition of –CHO,–COOH, and –NO2 groups onto these PAHs increases the enthalpy of sublimation and decreases the vapor pressure as compared to the parent PAH; the position of substitution also plays a significant role in determining the vapor pressure of these OPAHs. PMID:18220445

  17. A Functional Analytic Approach to Group Psychotherapy

    ERIC Educational Resources Information Center

    Vandenberghe, Luc

    2009-01-01

    This article provides a particular view on the use of Functional Analytical Psychotherapy (FAP) in a group therapy format. This view is based on the author's experiences as a supervisor of Functional Analytical Psychotherapy Groups, including groups for women with depression and groups for chronic pain patients. The contexts in which this approach…

  18. Comparatively studying the ultrasound present in a mild two-stage approach on the content of functional groups in modified MWCNT

    NASA Astrophysics Data System (ADS)

    Tian, Run; Liang, Shaolei; Li, Guangfen; Zhang, Yanxia; Shi, Le

    2016-04-01

    A two-stage approach assisted with ultrasound for oxidation of multiwalled carbon nanotubes (MWCNT) with ultra-high content of functional groups was utilized. The effect of ultrasound on the content of functional groups of the modified MWCNTs from different stages was analyzed by FE-SEM, HR-TEM, FTIR, Raman, TGA, XPS and triple double-backward titration method. The results confirm that more oxygen-containing functional groups were grafted on MWCNT with little damage to the structure integrity of nanotubes. The particle size distribution and the dispersion photography of MWCNTs in water and in ethanol further show a better dispersion of modified MWCNTs in polar solvent.

  19. Relating Functional Groups to the Periodic Table

    ERIC Educational Resources Information Center

    Struyf, Jef

    2009-01-01

    An introduction to organic chemistry functional groups and their ionic variants is presented. Functional groups are ordered by the position of their specific (hetero) atom in the periodic table. Lewis structures are compared with their corresponding condensed formulas. (Contains 5 tables.)

  20. Relating Functional Groups to the Periodic Table

    ERIC Educational Resources Information Center

    Struyf, Jef

    2009-01-01

    An introduction to organic chemistry functional groups and their ionic variants is presented. Functional groups are ordered by the position of their specific (hetero) atom in the periodic table. Lewis structures are compared with their corresponding condensed formulas. (Contains 5 tables.)

  1. Learning the Functional Groups: Keys to Success

    NASA Astrophysics Data System (ADS)

    Byrd, Shannon; Hildreth, David P.

    2001-10-01

    Teaching functional groups to high school and college chemistry students is often accomplished by having students memorize the functional groups from a table. Using this approach, students typically forget what they have memorized shortly after the examination and fail to transfer the memorized material to other topics in chemistry such as nomenclature, VSEPR theory, and chemical reactions. This method is frustrating for both the teacher and the students. To facilitate the learning of functional groups and to avoid a strictly memorization approach, we developed a classification key based on discernible characteristics that students can identify and consequently key out. This key can be used by the teacher in a variety of ways: as an introduction, a review, or a homework assignment. The functional group classification key is well received by students and provides an engaging alternative for teachers to use when introducing functional groups to their classes.

  2. Silsesquioxane nanoparticles with reactive internal functional groups

    NASA Astrophysics Data System (ADS)

    Brozek, Eric M.; Washton, Nancy M.; Mueller, Karl T.; Zharov, Ilya

    2017-02-01

    A series of silsesquioxane nanoparticles containing reactive internal organic functionalities throughout the entire particle body have been synthesized using a surfactant-free method with organosilanes as the sole precursors and a base catalyst. The organic functional groups incorporated are vinyl, allyl, mercapto, cyanoethyl, and cyanopropyl groups. The sizes and morphologies of the particles were characterized using SEM and nitrogen adsorption, while the compositions were confirmed using TGA, FT-IR, solid state NMR, and elemental analysis. The accessibility and reactivity of the functional groups inside the particles were demonstrated by performing bromination and reduction reactions in the interior of the particles.

  3. Functionalized carbon nanotubes containing isocyanate groups

    NASA Astrophysics Data System (ADS)

    Zhao, Chungui; Ji, Lijun; Liu, Huiju; Hu, Guangjun; Zhang, Shimin; Yang, Mingshu; Yang, Zhenzhong

    2004-12-01

    Functionalized carbon nanotubes containing isocyanate groups can extend the nanotube chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized carbon nanotubes containing highly reactive isocyanate groups on its surface via the reaction between toluene 2,4-diisocyanate and carboxylated carbon nanotubes. Fourier-transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that reactive isocyanate groups were covalently attached to carbon nanotubes. The content of isocyanate groups were determined by chemical titration and thermogravimetric analysis (TGA).

  4. Functionalized carbon nanotubes containing isocyanate groups

    SciTech Connect

    Zhao Chungui; Ji Lijun; Liu Huiju; Hu Guangjun; Zhang Shimin; Yang Mingshu . E-mail: yms@iccas.ac.cn; Yang Zhenzhong . E-mail: yangzz@iccas.ac.cn

    2004-12-01

    Functionalized carbon nanotubes containing isocyanate groups can extend the nanotube chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized carbon nanotubes containing highly reactive isocyanate groups on its surface via the reaction between toluene 2,4-diisocyanate and carboxylated carbon nanotubes. Fourier-transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that reactive isocyanate groups were covalently attached to carbon nanotubes. The content of isocyanate groups were determined by chemical titration and thermogravimetric analysis (TGA)

  5. Photochromic mechanism in oxygen-containing yttrium hydride thin films: An optical perspective

    NASA Astrophysics Data System (ADS)

    Montero, J.; Martinsen, F. A.; García-Tecedor, M.; Karazhanov, S. Zh.; Maestre, D.; Hauback, B.; Marstein, E. S.

    2017-05-01

    Oxygen-containing yttrium hydride thin films exhibit photochromic behavior: Transparent thin films reversibly switch from a transparent state to a photodarkened state after being illuminated with UV or blue light. From optical spectrophotometry and ellipsometry measurements of the transparent state and photodarkened state, it is concluded that the photochromic effect can be explained by the gradual growth, under illumination, of metallic domains within the initial wide-band-gap semiconducting lattice. This conclusion is supported by Raman measurements.

  6. Group entropies, correlation laws, and zeta functions

    NASA Astrophysics Data System (ADS)

    Tempesta, Piergiulio

    2011-08-01

    The notion of group entropy is proposed. It enables the unification and generaliztion of many different definitions of entropy known in the literature, such as those of Boltzmann-Gibbs, Tsallis, Abe, and Kaniadakis. Other entropic functionals are introduced, related to nontrivial correlation laws characterizing universality classes of systems out of equilibrium when the dynamics is weakly chaotic. The associated thermostatistics are discussed. The mathematical structure underlying our construction is that of formal group theory, which provides the general structure of the correlations among particles and dictates the associated entropic functionals. As an example of application, the role of group entropies in information theory is illustrated and generalizations of the Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.

  7. Identifying copepod functional groups from species functional traits

    PubMed Central

    Benedetti, Fabio; Gasparini, Stéphane; Ayata, Sakina-Dorothée

    2016-01-01

    We gathered information on the functional traits of the most representative copepod species in the Mediterranean Sea. Our database includes 191 species described by 7 traits encompassing diverse ecological functions: minimal and maximal body length, trophic group, feeding type, spawning strategy, diel vertical migration and vertical habitat. Cluster analysis in the functional trait space revealed that Mediterranean copepods can be separated into groups with distinct ecological roles. PMID:26811565

  8. Functional Group Chemistry (by James R. Hanson)

    NASA Astrophysics Data System (ADS)

    Karty, Joel M.

    2002-06-01

    Given its density and brevity and the apparent requirement of previous organic chemistry knowledge, Functional Group Chemistry is inappropriate as a stand-alone text for first-year organic students. It is also difficult to imagine using it as a supplement to a traditional textbook, since the textbook would presumably provide the same material in greater depth and with better clarity. The end-of-chapter problems in Functional Group Chemistry, however, would provide excellent exam and supplemental homework questions, and would be appropriate given the greater emphasis on reaction mechanisms in the traditional textbook. Perhaps the best use for Functional Group Chemistry, then, is for students returning after having had a year of organic chemistry, either for a quick reference, or for an in-depth review in studying for a standardized exam.

  9. Functional Groups in the Avian Auditory System

    PubMed Central

    Woolley, Sarah M. N.; Gill, Patrick R.; Fremouw, Thane; Theunissen, Frédéric E.

    2009-01-01

    Auditory perception depends on the coding and organization of the information-bearing acoustic features of sounds by auditory neurons. We report here that auditory neurons can be classified into functional groups each of which plays a specific role in extracting distinct complex sound features. We recorded the electrophysiological responses of single auditory neurons in the songbird midbrain and forebrain to conspecific song, measured their tuning by calculating spectrotemporal receptive fields (STRFs) and classified them using multiple cluster analysis methods. Based on STRF shape, cells clustered into functional groups that divided the space of acoustical features into regions that represent cues for the fundamental acoustic percepts of pitch, timbre and rhythm. Four major groups were found in the midbrain and five major groups were found in the forebrain. Comparing STRFs in midbrain and forebrain neurons suggested that both inheritance and emergence of tuning properties occur as information ascends the auditory processing stream. PMID:19261874

  10. Introduction to the nonequilibrium functional renormalization group

    NASA Astrophysics Data System (ADS)

    Berges, J.; Mesterházy, D.

    2012-07-01

    In these lectures we introduce the functional renormalization group out of equilibrium. While in thermal equilibrium typically a Euclidean formulation is adequate, nonequilibrium properties require real-time descriptions. For quantum systems specified by a given density matrix at initial time, a generating functional for real-time correlation functions can be written down using the Schwinger-Keldysh closed time path. This can be used to construct a nonequilibrium functional renormalization group along similar lines as for Euclidean field theories in thermal equilibrium. Important differences include the absence of a fluctuation-dissipation relation for general out-of-equilibrium situations. The nonequilibrium renormalization group takes on a particularly simple form at a fixed point, where the corresponding scale-invariant system becomes independent of the details of the initial density matrix. We discuss some basic examples, for which we derive a hierarchy of fixed point solutions with increasing complexity from vacuum and thermal equilibrium to nonequilibrium. The latter solutions are then associated to the phenomenon of turbulence in quantum field theory.

  11. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State 17O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds

    PubMed Central

    Rorick, Amber; Michael, Matthew A.; Yang, Liu; Zhang, Yong

    2015-01-01

    Oxygen is an important element in most biologically significant molecules and experimental solid-state 17O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state 17O NMR chemical shift tensor properties are still challenging in many cases and in particular each of the prior computational work is basically limited to one type of oxygen-containing systems. This work provides the first systematic study of the effects of geometry refinement, method and basis sets for metal and non-metal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups, X= H, C, N, P, and metal. The experimental range studied is of 1455 ppm, a major part of the reported 17O NMR chemical shifts in organic and organometallic compounds. A number of computational factors towards relatively general and accurate predictions of 17O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied various kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient R2 of 0.9880 and mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and R2 of 0.9926 for all shift tensor properties. These results shall facilitate future computational studies of 17O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help refinement and determination of active-site structures of some oxygen-containing substrate bound proteins. PMID:26274812

  12. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds.

    PubMed

    Rorick, Amber; Michael, Matthew A; Yang, Liu; Zhang, Yong

    2015-09-03

    Oxygen is an important element in most biologically significant molecules, and experimental solid-state (17)O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state (17)O NMR chemical shift tensor properties are still challenging in many cases, and in particular, each of the prior computational works is basically limited to one type of oxygen-containing system. This work provides the first systematic study of the effects of geometry refinement, method, and basis sets for metal and nonmetal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups (X = H, C, N, P, and metal). The experimental range studied is of 1455 ppm, a major part of the reported (17)O NMR chemical shifts in organic and organometallic compounds. A number of computational factors toward relatively general and accurate predictions of (17)O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient (R(2)) value of 0.9880 and a mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and an R(2) value of 0.9926 for all shift-tensor properties. These results shall facilitate future computational studies of (17)O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help the refinement and determination of active-site structures of some oxygen-containing substrate-bound proteins.

  13. The Circular Velocity Function of Group Galaxies

    NASA Astrophysics Data System (ADS)

    Abramson, Louis E.; Williams, Rik J.; Benson, Andrew J.; Kollmeier, Juna A.; Mulchaey, John S.

    2014-09-01

    A robust prediction of ΛCDM cosmology is the halo circular velocity function (CVF), a dynamical cousin of the halo mass function. The correspondence between theoretical and observed CVFs is uncertain, however: cluster galaxies are reported to exhibit a power-law CVF consistent with N-body simulations, but that of the field is distinctly Schechter-like, flattened compared to ΛCDM expectations at circular velocities v c <~ 200 km s-1. Groups offer a powerful probe of the role environment plays in this discrepancy as they bridge the field and clusters. Here, we construct the CVF for a large, mass- and multiplicity-complete sample of group galaxies from the Sloan Digital Sky Survey. Using independent photometric v c estimators, we find no transition from field to ΛCDM-shaped CVF above v c = 50 km s-1 as a function of group halo mass. All groups with 12.4 <~ log M halo/M ⊙ <~ 15.1 (Local Group analogs to rich clusters) display similar Schechter-like CVFs marginally suppressed at low v c compared to that of the field. Conversely, some agreement with N-body results emerges for samples saturated with late-type galaxies, with isolated late-types displaying a CVF similar in shape to ΛCDM predictions. We conclude that the flattening of the low-v c slope in groups is due to their depressed late-type fractions—environment affecting the CVF only to the extent that it correlates with this quantity—and that previous cluster analyses may suffer from interloper contamination. These results serve as useful benchmarks for cosmological simulations of galaxy formation.

  14. The circular velocity function of group galaxies

    SciTech Connect

    Abramson, Louis E.; Williams, Rik J.; Benson, Andrew J.; Kollmeier, Juna A.; Mulchaey, John S.

    2014-09-20

    A robust prediction of ΛCDM cosmology is the halo circular velocity function (CVF), a dynamical cousin of the halo mass function. The correspondence between theoretical and observed CVFs is uncertain, however: cluster galaxies are reported to exhibit a power-law CVF consistent with N-body simulations, but that of the field is distinctly Schechter-like, flattened compared to ΛCDM expectations at circular velocities v {sub c} ≲ 200 km s{sup –1}. Groups offer a powerful probe of the role environment plays in this discrepancy as they bridge the field and clusters. Here, we construct the CVF for a large, mass- and multiplicity-complete sample of group galaxies from the Sloan Digital Sky Survey. Using independent photometric v {sub c} estimators, we find no transition from field to ΛCDM-shaped CVF above v {sub c} = 50 km s{sup –1} as a function of group halo mass. All groups with 12.4 ≲ log M {sub halo}/M {sub ☉} ≲ 15.1 (Local Group analogs to rich clusters) display similar Schechter-like CVFs marginally suppressed at low v {sub c} compared to that of the field. Conversely, some agreement with N-body results emerges for samples saturated with late-type galaxies, with isolated late-types displaying a CVF similar in shape to ΛCDM predictions. We conclude that the flattening of the low-v {sub c} slope in groups is due to their depressed late-type fractions—environment affecting the CVF only to the extent that it correlates with this quantity—and that previous cluster analyses may suffer from interloper contamination. These results serve as useful benchmarks for cosmological simulations of galaxy formation.

  15. Iron- and indium-catalyzed reactions toward nitrogen- and oxygen-containing saturated heterocycles.

    PubMed

    Cornil, Johan; Gonnard, Laurine; Bensoussan, Charlélie; Serra-Muns, Anna; Gnamm, Christian; Commandeur, Claude; Commandeur, Malgorzata; Reymond, Sébastien; Guérinot, Amandine; Cossy, Janine

    2015-03-17

    A myriad of natural and/or biologically active products include nitrogen- and oxygen-containing saturated heterocycles, which are thus considered as attractive scaffolds in the drug discovery process. As a consequence, a wide range of reactions has been developed for the construction of these frameworks, much effort being specially devoted to the formation of substituted tetrahydropyrans and piperidines. Among the existing methods to form these heterocycles, the metal-catalyzed heterocyclization of amino- or hydroxy-allylic alcohol derivatives has emerged as a powerful and stereoselective strategy that is particularly interesting in terms of both atom-economy and ecocompatibility. For a long time, palladium catalysts have widely dominated this area either in Tsuji-Trost reactions [Pd(0)] or in an electrophilic activation process [Pd(II)]. More recently, gold-catalyzed formation of saturated N- and O-heterocycles has received growing attention because it generally exhibits high efficiency and diastereoselectivity. Despite their demonstrated utility, Pd- and Au-complexes suffer from high costs, toxicity, and limited natural abundance, which can be barriers to their widespread use in industrial processes. Thus, the replacement of precious metals with less expensive and more environmentally benign catalysts has become a challenging issue for organic chemists. In 2010, our group took advantage of the ability of the low-toxicity and inexpensive FeCl3 in activating allylic or benzylic alcohols to develop iron-catalyzed N- and O-heterocylizations. We first focused on N-heterocycles, and a variety of 2,6-disubstituted piperidines as well as pyrrolidines were synthesized in a highly diastereoselective fashion in favor of the cis-compounds. The reaction was further extended to the construction of substituted tetrahydropyrans. Besides triggering the formation of heterocycles, the iron salts were shown to induce a thermodynamic epimerization, which is the key to reach the high

  16. Antibiotic inhibition of group I ribozyme function.

    PubMed

    von Ahsen, U; Davies, J; Schroeder, R

    1991-09-26

    The discovery of catalytically active RNA has provided the basis for the evolutionary concept of an RNA world. It has been proposed that during evolution the functions of ancient catalytic RNA were modulated by low molecular weight effectors, related to antibiotics, present in the primordial soup. Antibiotics and RNA may have coevolved in the formation of the modern ribosome. Here we report that a set of aminoglycoside antibiotics, which are known to interact with the decoding region of the 16S ribosomal RNA of Escherichia coli, inhibit the second step of splicing of the T4 phage-derived td intron. Thus catalytic RNA seems to interact not only with a mononucleotide and an amino acid, but also with another class of biomolecules, the sugars. Splicing of other group I introns but not group II introns was inhibited. The similarity in affinity and specificity of these antibiotics for group I introns and rRNAs may result from recognition of evolutionarily conserved structures.

  17. Graphene Oxide Catalyzed C-H Bond Activation: The Importance Oxygen Functional Groups for Biaryl Construction

    SciTech Connect

    Gao, Yongjun; Tang, Pei; Zhou, Hu; Zhang, Wei; Yang, Hanjun; Yan, Ning; Hu, Gang; Mei, Donghai; Wang, Jianguo; Ma, Ding

    2016-02-24

    A heterogeneous, inexpensive and environment-friendly carbon catalytic system was developed for the C-H bond arylation of benzene resulting in the subsequent formation of biaryl compounds. The oxygen-containing groups on these graphene oxide sheets play an essential role in the observed catalytic activity. The catalytic results of model compounds and DFT calculations show that these functional groups promote this reaction by stabilization and activation of K ions at the same time of facilitating the leaving of I. And further mechanisms studies show that it is the charge induced capabilities of oxygen groups connected to specific carbon skeleton together with the giant π-reaction platform provided by the π-domain of graphene that played the vital roles in the observed excellent catalytic activity. D. Mei acknowledges the support from the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory.

  18. Transition metal carbides, nitrides and borides, and their oxygen containing analogs useful as water gas shift catalysts

    DOEpatents

    Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory

    2003-09-23

    Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.

  19. Functional renormalization group in Floquet space

    NASA Astrophysics Data System (ADS)

    Eissing, Anna Katharina; Meden, Volker; Kennes, Dante Marvin

    2016-12-01

    We present an extension of the functional renormalization group to Floquet space, which enables us to treat the long time behavior of interacting time periodically driven quantum dots. It is one of its strength that the method is neither bound to small driving amplitudes nor to small driving frequencies, i.e., very general time periodic signals can be considered. It is applied to the interacting resonant level model, a prototype model of a spinless, fermionic quantum dot. The renormalization in several setups with different combinations of time periodic parameters is studied, where the numerical results are complemented by analytic expressions for the renormalization in the limit of small driving amplitude. We show how the driving frequency acts as an infrared cutoff of the underlying renormalization group flow which manifests in novel power laws. We utilize the tunability of the effective reservoir distribution function in a periodically driven onsite energy setup to show how its shape is directly reflected in the renormalization group flow. This allows us to flexibly tune the power-law renormalization generically encountered in quantum dot structures. Finally, an in-phase quantum pump as well as a single parameter pump are investigated in the whole regime of driving frequency, demonstrating that the new power law in the driving frequency is reflected in the mean current of the latter.

  20. Interactions Between Odorant Functional Group and Hydrocarbon Structure Influence Activity in Glomerular Response Modules in the Rat Olfactory Bulb

    PubMed Central

    Johnson, Brett A.; Farahbod, Haleh; Leon, Michael

    2008-01-01

    To investigate the effect of odorant hydrocarbon structure on spatial representations in the olfactory bulb systematically, we exposed rats to odorant chemicals possessing one of four different oxygen-containing functional groups on one of five different hydrocarbon backbones. We also used several hydrocarbon odorants lacking other functional groups. Hydrocarbon structural categories included straight-chained, branched, double-bonded, alicyclic, and aromatic features. Activity throughout the entire glomerular layer was measured as uptake of [14C]2-deoxyglucose and was mapped into anatomically standardized data matrices for statistical comparisons across different animals. Patterns evoked by straight-chained aliphatic odorants confirmed an association of activity in particular glomerular response modules with particular functional groups. However, the amount of activity in these same modules also was affected significantly by differences in hydrocarbon structure. Thus, the molecular features recognized by receptors projecting to these response modules appear to involve both functional group and hydrocarbon structural elements. In addition, particular benzyl and cyclohexyl odorants evoked activity in dorsal modules previously associated with the ketone functional group, which represents an exception to the rule of one feature per response module that had emerged from our previous studies. These dorsal modules also responded to nitrogen-containing aromatic compounds involving pyridine and pyrazine rings. The unexpected overlap in modular responses to ketones and odorants seemingly unrelated to ketones may reflect some covert shared molecular feature, the existence of odorant sensory neurons with multiple specificities, or a mosaic of sensory neuron projections to these particular modules. PMID:15678471

  1. Computational investigation of reactive to nonreactive capture of carbon dioxide by oxygen-containing Lewis bases.

    PubMed

    Teague, Craig M; Dai, Sheng; Jiang, De-en

    2010-11-04

    Recent work has shown that room temperature ionic liquid systems reactively absorb CO(2) and offer distinct advantages over current CO(2) capture technologies. Here we computationally evaluated CO(2) interaction energies with a series of oxygen-containing Lewis base anions (including cyclohexanolate and phenolate and their respective derivatives). Our results show that the interaction energy can be tuned across a range from reactive to nonreactive (or physical) interactions. We evaluated different levels of theory as well as possible corrections to the interaction energy, and we explained our calculated trends on the basis of properties of the individual anions. We found that the interaction energy between CO(2) and the Lewis bases examined here correlates most strongly with the atomic charge on the oxygen atom. This insight provides a useful handle to tune the anion-CO(2) interaction energy for future experimental and computational studies of novel CO(2) capture systems.

  2. The formation of oxygen-containing organic molecules in the Orion compact ridge

    NASA Technical Reports Server (NTRS)

    Millar, T. J.; Herbst, Eric; Charnley, S. B.

    1991-01-01

    Following a suggestion of Blake et al. (1987), an attempt was made to account for the unusually large abundances of selected oxygen-containing organic molecules in the so-called 'compact ridge' source directed toward Orion KL by a gas-phase chemical model in which large amounts of water are injected into the source from the IRc2 outflow. Although quantitative model results show that the calculated abundances of methanol, methyl formate, and dimethyl ether can be enhanced relative to their values in the absence of water injection, the enhancements fall far short of explaining the very large observed abundances of these species. Models in which methanol is injected rather than water are more successful, although the source of the methanol is unclear.

  3. Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels

    DOEpatents

    Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

    2013-04-30

    A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

  4. Computational study of sheath structure in oxygen containing plasmas at medium pressures

    NASA Astrophysics Data System (ADS)

    Hrach, Rudolf; Novak, Stanislav; Ibehej, Tomas; Hrachova, Vera

    2016-09-01

    Plasma mixtures containing active species are used in many plasma-assisted material treatment technologies. The analysis of such systems is rather difficult, as both physical and chemical processes affect plasma properties. A combination of experimental and computational approaches is the best suited, especially at higher pressures and/or in chemically active plasmas. The first part of our study of argon-oxygen mixtures was based on experimental results obtained in the positive column of DC glow discharge. The plasma was analysed by the macroscopic kinetic approach which is based on the set of chemical reactions in the discharge. The result of this model is a time evolution of the number densities of each species. In the second part of contribution the detailed analysis of processes taking place during the interaction of oxygen containing plasma with immersed substrates was performed, the results of the first model being the input parameters. The used method was the particle simulation technique applied to multicomponent plasma. The sheath structure and fluxes of charged particles to substrates were analysed in the dependence on plasma pressure, plasma composition and surface geometry.

  5. Flotation properties of some oxygen-containing compounds of the acyclic series

    SciTech Connect

    Shreider, E.M.; Para, S.F.; Galanov, M.E.; Trachik, T.L.; Lagutina, L.V.

    1981-01-01

    In the monatomic alcohols series, maximum flotation activity is reached at 6 to 8 carbon atoms in the radical. It was decided to investigate the reagent properties of some other substances containing hydroxyl radicals which have not previously been considered. Oxygen-containing compounds in the acyclic series were examined, including alcohols: I - ethanol, ethylene-glycol, glycerol, pentaerythrytol, D-mannitol; II - dulcitol, D-sorbitol, D-mannitol, xylitol; glycols - monoethyleneglycol, diethyleneglycol, triethyleneglycol, polyethyleneglycol; and ethanolamines - ethanolamine, triethanolamine. The flotation properties of the reagents were determined in a Mekhanobr laboratory flotation machine with a chamber volume of 1.5 liter and an impeller speed of 1800 rpm. The materials tested were the <1 mm size fractions from run-of-plant charge and slurry from the radial thickeners. The samples were first dried and averaged. The pulp density was 200 g/l. The reagent conditions were kept constant throughout (50% of the total added at the start of a test, 25% after 2 min and 25% after 4 min from the start). The reagent additions were 1.0 to 1.4 kg/ton. All of these compounds had a very weak flotation activity.

  6. Oxygen-containing subunits in sulfur-rich non-polar macromolecules

    NASA Astrophysics Data System (ADS)

    Jenisch-Anton, A.; Adam, P.; Schaeffer, P.; Albrecht, P.

    1999-04-01

    Substantial amounts of alcohols occur in the desulfurization products of sulfur-rich nonpolar macromolecular fractions (NPMF) isolated from two crude oils and a sediment extract. These macromolecularly bound oxygenated compounds have been investigated in detail. Released straight chain components may have a hydroxy functionality at any position of the carbon skeleton and without any isomer predominance. Furthermore, the carbon-number distributions are very similar for the different alcohol isomers in each case and resemble those of the aliphatic hydrocarbons released by desulfurization. Thus, released hydrocarbons and alcohols likely originate from common functionalized precursors, most probably from polyunsaturated lipids of biological origin. Furthermore, they may derive from polyunsaturated components formed by elimination reactions on functionalized precursors which incorporated oxygen in free or already bound form at an early stage of diagenesis. The presence of hydroxyl functionalities at every position in the carbon skeleton suggests that double bond isomerization probably occurred in linear components prior to oxygen incorporation. Similarly, 2-hydroxy stanols released by desulfurization most likely result from oxygen uptake into Δ 2-sterenes during diagenesis. The presence of mid-chain hydroxylated phytanols in the degradation products with OH-group mainly at the tertiary positions indicates that they result (at least partially) from oxygen incorporation into unsaturated phytane skeletons. Additional functionalities in the oxygenated substances, such as double bonds, aldehydes or allylic alcohols, may have served as substrates for reactions with sulfur species, resulting in sulfur-rich cross-linked macromolecular structures. The type of oxygen groups present in the macromolecules could be partially assigned by sequential chemical degradation experiments. The results indicate that free OH-functions are not abundant. Part of the oxygen is present as

  7. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds

    SciTech Connect

    Wang, Huamin; Male, Jonathan L.; Wang, Yong

    2013-05-01

    There is considerable world-wide interest in discovering renewable sources of energy that can substitute for fossil fuels. Lignocellulosic biomass, which is the most abundant and inexpensive renewable feedstock on the planet, has a great potential for sustainable production of fuels, chemicals, and carbon-based materials. Fast pyrolysis integrated with hydrotreating is one of the simplest, most cost-effective and most efficient processes to convert lignocellulosic biomass to liquid hydrocarbon fuels for transportation, which has attracted significant attention in recent decades. However, effective hydrotreating of pyrolysis bio-oil presents a daunting challenge to the commercialization of biomass conversion via pyrolysis-hydrotreating. Specifically, development of active, selective, and stable hydrotreating catalysts is the bottleneck due to the poor quality of pyrolysis bio-oil feedstock (high oxygen content, molecular complexity, coking propensity, and corrosiveness). Significant research has been conducted to address the practical issues and provide the fundamental understanding of the hydrotreating/hydrodeoxygenation (HDO) of bio-oils and their oxygen-containing model compounds, including phenolics, furans, and carboxylic acids. A wide range of catalysts have been studied, including conventional Mo-based sulfide catalysts and noble metal catalysts, with the latter being the primary focus of the recent research because of their excellent catalytic performances and no requirement of environmentally unfriendly sulfur. The reaction mechanisms of HDO of model compounds on noble metal catalysts as well as their efficacy for hydrotreating or stabilization of bio-oil have been recently reported. This review provides a survey of the relevant literatures of recent 10 years about the advances in the understanding of the HDO chemistry of bio-oils and their model compounds mainly on noble metal catalysts.

  8. Electron scattering cross sections for the modelling of oxygen-containing plasmas

    NASA Astrophysics Data System (ADS)

    Lemos Alves, Luís; Coche, Philippe; Ridenti, Marco Antonio; Guerra, Vasco

    2016-05-01

    This work proposes a set of electron scattering cross sections for molecular and atomic oxygen, with interest for the modelling of oxygen-containing plasmas. These cross sections, compiled for kinetic energies up to 1 keV, are part of the IST-LISBON database with LXCat, being used as input data to the LoKI (LisbOn KInetics) numerical code. The cross sections for ground-state molecular oxygen describe elastic and inelastic collision mechanisms, the latter including rotational excitations/de-excitations (treated using either a discrete or a continuous approach), vibrational and electronic excitations (including dissociation), dissociative attachment and ionisation. This set yields calculated swarm parameters that reproduce measurements within 5-20% (transport parameters) and within a factor of 2 difference (Townsend coefficients), for reduced electric fields in the range 10-3-103 Td. The cross sections describing the kinetics of atomic oxygen by electron-impact comprise elastic mechanisms, electronic excitation and ionisation from O(3P) ground-state, dissociation of O2(X,a,b) (including dissociative ionisation and attachment) and of O3, and detachment. These cross sections are indirectly validated, together with other elementary data for oxygen, by comparing the densities of O((4S0)3p 5P) obtained from the self-consistent modelling and from calibrated optical emission spectroscopy diagnostics of microwave-sustained micro-plasmas in dry air (80% N2: 20% O2), produced using a surface-wave excitation (2.45 GHz frequency) within a small radius capillary (R = 345 μm) at low pressure (p = 300 Pa). The calculated densities are in good qualitative agreement with measurements, overestimating them by a factor ˜1.5. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  9. Electron scattering cross sections for the modelling of oxygen-containing plasmas*

    NASA Astrophysics Data System (ADS)

    Alves, Luís Lemos; Coche, Philippe; Ridenti, Marco Antonio; Guerra, Vasco

    2016-06-01

    This work proposes a set of electron scattering cross sections for molecular and atomic oxygen, with interest for the modelling of oxygen-containing plasmas. These cross sections, compiled for kinetic energies up to 1 keV, are part of the IST-LISBON database with LXCat, being used as input data to the LoKI (LisbOn KInetics) numerical code. The cross sections for ground-state molecular oxygen describe elastic and inelastic collision mechanisms, the latter including rotational excitations/de-excitations (treated using either a discrete or a continuous approach), vibrational and electronic excitations (including dissociation), dissociative attachment and ionisation. This set yields calculated swarm parameters that reproduce measurements within 5-20% (transport parameters) and within a factor of 2 difference (Townsend coefficients), for reduced electric fields in the range 10-3-103 Td. The cross sections describing the kinetics of atomic oxygen by electron-impact comprise elastic mechanisms, electronic excitation and ionisation from O(3P) ground-state, dissociation of O2(X,a,b) (including dissociative ionisation and attachment) and of O3, and detachment. These cross sections are indirectly validated, together with other elementary data for oxygen, by comparing the densities of O((4S0)3 p 5P) obtained from the self-consistent modelling and from calibrated optical emission spectroscopy diagnostics of microwave-sustained micro-plasmas in dry air (80% N2: 20% O2), produced using a surface-wave excitation (2.45 GHz frequency) within a small radius capillary ( R = 345 μm) at low pressure ( p = 300 Pa). The calculated densities are in good qualitative agreement with measurements, overestimating them by a factor ˜1.5.

  10. Dramatically enhancing the yield of carbon nanotubes by simply adding oxygen-containing molecules in solid-state synthesis.

    PubMed

    Ruan, Zhijun; Zhang, Yufan; Tu, Jin; Qin, Jingui; Li, Qianqian; Li, Zhen

    2016-02-18

    By adding just a small amount of commercially available oxygen-containing molecules (OCMs), organometallic precursors could be easily converted to CNTs with high yield and high quality through the solid-state pyrolysis (SSP) process, although only nanospheres were obtained under the same conditions without the presence of OCMs, providing a convenient approach for the preparation of CNTs.

  11. Modifications of chemical functional groups of Pandanus amaryllifolius Roxb and its effect towards biosorption of heavy metals

    SciTech Connect

    Abdullah, Mohd Zamri Ismail, Siti Salwa

    2015-07-22

    The utilization of non-living biomass as an alternative biosorbent for heavy metal removal has gain a tremendous consideration through the years. Pandanus amaryllifolius Roxb or pandan leaves, which is widely used as food additives in the South East Asia region, has been selected for its viability in the said effort due to the presence of chemical functional groups on its cellular network that enables the sorption to occur. In order to elucidate the possible mechanisms participated during the heavy metal removal process, the biosorbent undergone a series of modification techniques to alter the chemical functional groups present on its constituent. From the outcome of the chemically-modified biosorbent being subjected to the contact with metal cations, nitrogen- and oxygen-containing groups present on the biosorbent are believed to be responsible for the metal uptake to occur through complexation mechanism. Modifying amine groups causes 14% reduction of Cu(II) uptake, whereas removing protein element increases the uptake to 26% as compared to the unmodified biosorbent. Also, scanning electron micrographs further suggested that the adsorption mechanism could perform in parallel, as attributed to the evidence of porous structure throughout the biosorbent fibrous nature.

  12. Modifications of chemical functional groups of Pandanus amaryllifolius Roxb and its effect towards biosorption of heavy metals

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd. Zamri; Ismail, Siti Salwa

    2015-07-01

    The utilization of non-living biomass as an alternative biosorbent for heavy metal removal has gain a tremendous consideration through the years. Pandanus amaryllifolius Roxb or pandan leaves, which is widely used as food additives in the South East Asia region, has been selected for its viability in the said effort due to the presence of chemical functional groups on its cellular network that enables the sorption to occur. In order to elucidate the possible mechanisms participated during the heavy metal removal process, the biosorbent undergone a series of modification techniques to alter the chemical functional groups present on its constituent. From the outcome of the chemically-modified biosorbent being subjected to the contact with metal cations, nitrogen- and oxygen-containing groups present on the biosorbent are believed to be responsible for the metal uptake to occur through complexation mechanism. Modifying amine groups causes 14% reduction of Cu(II) uptake, whereas removing protein element increases the uptake to 26% as compared to the unmodified biosorbent. Also, scanning electron micrographs further suggested that the adsorption mechanism could perform in parallel, as attributed to the evidence of porous structure throughout the biosorbent fibrous nature.

  13. Functional group diversity increases with modularity in complex food webs.

    PubMed

    Montoya, D; Yallop, M L; Memmott, J

    2015-06-10

    Biodiversity increases the ability of ecosystems to provide multiple functions. Most studies report a positive relationship between species richness and the number of ecosystem functions. However, it is not known whether the number of functional groups is related to the structure of the underlying species interaction network. Here we present food web data from 115 salt marsh islands and show that network structure is associated with the number of functional groups present. Functional group diversity is heterogeneously distributed across spatial scales, with some islands hosting more functional groups than others. Functional groups form modules within the community so that food webs with more modular architectures have more functional group diversity. Further, in communities with different interaction types, modularity can be seen as the multifunctional equivalent of trophic complementarity. Collectively, these findings reveal spatial heterogeneity in the number of functional groups that emerges from patterns in the structure of the food web.

  14. Functional group diversity increases with modularity in complex food webs

    PubMed Central

    Montoya, D.; Yallop, M.L.; Memmott, J.

    2015-01-01

    Biodiversity increases the ability of ecosystems to provide multiple functions. Most studies report a positive relationship between species richness and the number of ecosystem functions. However, it is not known whether the number of functional groups is related to the structure of the underlying species interaction network. Here we present food web data from 115 salt marsh islands and show that network structure is associated with the number of functional groups present. Functional group diversity is heterogeneously distributed across spatial scales, with some islands hosting more functional groups than others. Functional groups form modules within the community so that food webs with more modular architectures have more functional group diversity. Further, in communities with different interaction types, modularity can be seen as the multifunctional equivalent of trophic complementarity. Collectively, these findings reveal spatial heterogeneity in the number of functional groups that emerges from patterns in the structure of the food web. PMID:26059871

  15. STM investigation of carbon nanotubes completely covered with functional groups

    NASA Astrophysics Data System (ADS)

    Koos, Antal A.; Horvath, Zsolt Endre; Osvath, Zoltan; Tapaszto, Levente; Niesz, Krisztián; Konya, Zoltan; Kiricsi, Imre; Grobert, Nicole; Ruehle, Manfred; Biro, Laszlo P.

    2003-04-01

    The functionalization of carbon nanotubes (CNTs) is important both for composite - to improve load transfer between CNTs and matrix - and nanoelectronic applications - to interlink individual nanotubes in a network. Oposite to earlier results, complete coverage of CNT surface with functional groups was achieved. The distribution of functional groups on the nanotube surface was investigated using STM and TEM. The influence of functional groups on the electron density of states of the nanotubes was studied with scanning tunneling spectroscopy (STS).

  16. Functional Renormalization Group Approach to the Sine-Gordon Model

    SciTech Connect

    Nagy, S.; Sailer, K.; Nandori, I.; Polonyi, J.

    2009-06-19

    The renormalization group flow is presented for the two-dimensional sine-Gordon model within the framework of the functional renormalization group method by including the wave-function renormalization constant. The Kosterlitz-Thouless-Berezinski type phase structure is recovered as the interpolating scaling law between two competing IR attractive area of the global renormalization group flow.

  17. Preparation for Group Therapy: The Effects of Preparer and Modality on Group Process and Individual Functioning.

    ERIC Educational Resources Information Center

    Bowman, Vicki E.; DeLucia, Janice L.

    1993-01-01

    Examined effects of preparer (leader versus other personnel) and modality (group versus individual) on expectations about therapy, anxiety, group and individual functioning, and leader functioning in group therapy preparation program. Findings from 32 graduate students revealed that preparation can have positive effect on clients' beliefs,…

  18. Replicating Small Group Research Using the Functional Theory.

    ERIC Educational Resources Information Center

    Cragan, John F.; Wright, David W.

    A replication study tested functional theory utilizing untrained full-fledged groups. One hundred forty undergraduate students who were enrolled in a small group communication course at a large midwestern university participated in small group discussions analyzing a plagiarism case used in an original study by R. Y. Hirokawa. Results indicated…

  19. Functional Analytic Psychotherapy for Interpersonal Process Groups: A Behavioral Application

    ERIC Educational Resources Information Center

    Hoekstra, Renee

    2008-01-01

    This paper is an adaptation of Kohlenberg and Tsai's work, Functional Analytical Psychotherapy (1991), or FAP, to group psychotherapy. This author applied a behavioral rationale for interpersonal process groups by illustrating key points with a hypothetical client. Suggestions are also provided for starting groups, identifying goals, educating…

  20. Functional renormalization group approach to the Kraichnan model.

    PubMed

    Pagani, Carlo

    2015-09-01

    We study the anomalous scaling of the structure functions of a scalar field advected by a random Gaussian velocity field, the Kraichnan model, by means of functional renormalization group techniques. We analyze the symmetries of the model and derive the leading correction to the structure functions considering the renormalization of composite operators and applying the operator product expansion.

  1. Differential Item Functioning Detection across Two Methods of Defining Group Comparisons: Pairwise and Composite Group Comparisons

    ERIC Educational Resources Information Center

    Sari, Halil Ibrahim; Huggins, Anne Corinne

    2015-01-01

    This study compares two methods of defining groups for the detection of differential item functioning (DIF): (a) pairwise comparisons and (b) composite group comparisons. We aim to emphasize and empirically support the notion that the choice of pairwise versus composite group definitions in DIF is a reflection of how one defines fairness in DIF…

  2. Differential Item Functioning Detection across Two Methods of Defining Group Comparisons: Pairwise and Composite Group Comparisons

    ERIC Educational Resources Information Center

    Sari, Halil Ibrahim; Huggins, Anne Corinne

    2015-01-01

    This study compares two methods of defining groups for the detection of differential item functioning (DIF): (a) pairwise comparisons and (b) composite group comparisons. We aim to emphasize and empirically support the notion that the choice of pairwise versus composite group definitions in DIF is a reflection of how one defines fairness in DIF…

  3. Influence of Functional Groups on the Viscosity of Organic Aerosol.

    PubMed

    Rothfuss, Nicholas E; Petters, Markus D

    2017-01-03

    Organic aerosols can exist in highly viscous or glassy phase states. A viscosity database for organic compounds with atmospherically relevant functional groups is compiled and analyzed to quantify the influence of number and location of functional groups on viscosity. For weakly functionalized compounds the trend in viscosity sensitivity to functional group addition is carboxylic acid (COOH) ≈ hydroxyl (OH) > nitrate (ONO2) > carbonyl (CO) ≈ ester (COO) > methylene (CH2). Sensitivities to group addition increase with greater levels of prior functionalization and decreasing temperature. For carboxylic acids a sharp increase in sensitivity is likely present already at the second addition at room temperature. Ring structures increase viscosity relative to linear structures. Sensitivities are correlated with analogously derived sensitivities of vapor pressure reduction. This may be exploited in the future to predict viscosity in numerical models by piggybacking on schemes that track the evolution of organic aerosol volatility with age.

  4. Experimental study of the thermal stability of materials in high temperature oxygen-containing media

    NASA Technical Reports Server (NTRS)

    Abaltusov, Y. Y.; Bagramyan, A. R.; Grishin, A. M.; Yukhvid, V. I.

    1986-01-01

    An experimental study is made of the interaction of several materials with a high temperature medium containing oxygen. The temperature of the surface was measured as a function of time. It is found that the higher the velocity of mass removal from the surface, the more effective is the material from the viewpoint of heat resistance.

  5. N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Shin-Ming; Yang, Shin-Yi; Wang, Yu-Sheng; Tsai, Hsiu-Ping; Tien, Hsi-Wen; Hsiao, Sheng-Tsung; Liao, Wei-Hao; Chang, Chien-Liang; Ma, Chen-Chi M.; Hu, Chi-Chang

    2015-03-01

    Nitrogen-doped reduced graphene oxide (N-rGO) has been synthesized using a simple, efficient method combining instant thermal exfoliation and covalent bond transformation from a melamine-graphene oxide mixture. The capacitive performance of N-rGO has been tested in both aqueous (0.5 M H2SO4) and organic (1 M tetraethyl-ammonium tetrafluoroborate (TEABF4) in propylene carbonate (PC)) electrolytes, which are compared with those obtained from thermal-reduced graphene oxide (T-rGO) and chemical-reduced graphene oxide (C-rGO). The contributions of scan-rate-independent (double-layer-like) and scan-rate-dependent (pseudo-capacitance-like) capacitance of all reduced graphene oxides in both aqueous and organic electrolytes were evaluated and compared. The results show that relatively rich oxygen-containing functional groups on C-rGO form significant ion-diffusion barrier, resulting in worse electrochemical responses in organic electrolyte. By contrast, the N-doped structures, large surface area, and lower density of oxygen-containing groups make N-rGO become a promising electrode material for organic electric double-layer capacitors (EDLCs). The capacitance rate-retention of N-rGO reaches 71.1% in 1 M TEABF4/PC electrolyte when the scan rate is elevated to 200 mVs-1, demonstrating that N-rGO improves the relatively low-power drawback of EDLCs in organic electrolytes. The specific energy and power of a symmetric N-rGO cell in the organic electrolyte reach 25 Wh kg-1 and 10 kW kg-1, respectively.

  6. Oxidation and microstrucure of V-Cr-Ti alloys exposed to oxygen-containing environments

    SciTech Connect

    Natesan, K.; Uz, M.; Ulie, T.

    1997-08-01

    The objectives of this task are to (a) evaluate the oxygen uptake of several V-Cr-Ti alloys as a function of temperature and oxygen partial pressure in the exposure environment, (b) examine the microstructural characteristics of oxide scales and oxygen trapped at the grain boundaries in the substrate alloys, and (c) evaluate the influence of alloy composition on oxygen uptake and develop correlation(s) between alloy composition, exposure environment, and temperature.

  7. Analysis of Functional Groups by Solubility and Infrared Analysis.

    ERIC Educational Resources Information Center

    Turek, William N.

    1984-01-01

    An experiment which introduces students to infrared spectroscopy and the solubility behavior of various organic compounds is described. The experiment also serves to integrate some of the basic chemical reactions of functional groups with their spectral properties. (JN)

  8. The luminosity function of galaxies in compact groups

    NASA Technical Reports Server (NTRS)

    Ribeiro, A. L. B.; De Carvalho, R. R.; Zepf, S. E.

    1994-01-01

    We use counts of faint galaxies in the regions of compact groups to extend the study of the luminosity function of galaxies in compact groups to absolute magnitudes as faint as M(sub B) = -14.5 + 5 log h. We find a slope of the faint end of the luminosity function of approximately alpha = -0.8, with a formal uncertainty of 0.15. This slope is not significantly different from that found for galaxies in other environments. Our results do not support previous suggestions of a dramatic underabundance of intrinsically faint galaxies in compact groups, which were based on extrapolations from fits at brighter magnitudes. The normal faint-end slope of the luminosity function in compact groups is in agreement with previous evidence that most galaxies in compact groups have not been dramatically affected by recent merging.

  9. Functional Grouping in Residential Homes for People with Intellectual Disabilities.

    ERIC Educational Resources Information Center

    Mansell, Jim; Beadle-Brown, Julie; Macdonald, Susan; Ashman, Bev

    2003-01-01

    The effects of functional grouping of 303 people with intellectual disabilities on care practices in English group homes were investigated. Residents who were non-ambulant were rated as receiving care with less interpersonal warmth and residents with severe challenging behavior were rated as receiving care with less interpersonal warmth and…

  10. Functional group-selective adsorption using scanning tunneling microscopy.

    PubMed

    Min, Young Hwan; Park, Eun Hee; Kim, Do Hwan; Kim, Sehun

    2012-04-24

    In this study, we selectively enhanced two types of adsorption of 3-mercaptoisobutyric acid on a Ge(100) surface by using the tunneling electrons from an STM and the catalytic effect of an STM tip. 3-Mercaptoisobutyric acid has two functional groups: a carboxylic acid group at one end of the molecule and a thiol group at the other end. It was found that the adsorption occurring through the carboxylic acid group was selectively enhanced by the application of electrons tunneling between an STM tip and the surface. Using this enhancement, it was possible to make thiol group-terminated surfaces at any desired location. In addition, via the use of a tungsten STM tip coated with a tungsten oxide (WO(3)) layer, we selectively catalyzed the adsorption through the thiol group. Using this catalysis, it was possible to generate carboxylic acid group-terminated surfaces at any desired location. This functional group-selective adsorption using STM could be applied in positive lithographic methods to produce semiconductor substrates terminated by desired functional groups.

  11. Background field functional renormalization group for absorbing state phase transitions.

    PubMed

    Buchhold, Michael; Diehl, Sebastian

    2016-07-01

    We present a functional renormalization group approach for the active to inactive phase transition in directed percolation-type systems, in which the transition is approached from the active, finite density phase. By expanding the effective potential for the density field around its minimum, we obtain a background field action functional, which serves as a starting point for the functional renormalization group approach. Due to the presence of the background field, the corresponding nonperturbative flow equations yield remarkably good estimates for the critical exponents of the directed percolation universality class, even in low dimensions.

  12. Invariant Markov processes on compact groups and correlation functions

    NASA Astrophysics Data System (ADS)

    Zimpel, Zbigniew

    1990-04-01

    Random processes governing the time evolution of probability distributions of many physical systems can be described by continuous homogeneous Markov processes taking values from compact groups. Assuming the transition probability function of the process to be invariant in the sense that Pt( x, B) = Pt( e, x-1B) with e being the neutral element of the group, the harmonic analysis (Weyl theory) is applied to study the properties of the Markov semi-group. The infinitesimal operator and generating functional are decomposed using the Levy-Khinchin formula. Under some auxiliary assumptions the components of this decomposition are interpreted as generators of a one parameter subgroup, Brownian motion and a jump process. The formalism is illustrated for several models of processes taking values from compact Lie groups. The properties of the correlation functions of time dependent random variables are investigated.

  13. Along the Ta Diffusion Path Through a Boron and Oxygen Containing Tri-layer Structure

    NASA Astrophysics Data System (ADS)

    Ying, Ji-Feng; Ji, Rong; Wang, Chen Chen; Ter Lim, Sze; Xie, Huiqing; Gerard, Ernult F.

    2014-08-01

    Diffusion and migration of elements are commonly observed in the fabrication of multilayer thin-film devices, including those of STT-RAM. The CoFeB/MgO/CoFeB tri-layer thin-film stack has been widely used in the design of STT-RAM devices as the functional magnetic-tunnel-junction (MTJ) structure. Such issues faced in the fabrication of these devices have been extensively researched from the stand point of engineering the materials property and structure to achieve the best MTJ performance. In this work, we conducted a detailed examination of the chemical-state change of the Ta and B in a CoFeB/MgO/CoFeB/Ta film stack by using x-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry. We showed that the chemical-state change of Ta and B is a result of the Ta diffusion phenomena through the CoFeB/MgO/CoFeB tri-layer structure. In particular, we report the evidences of the formation of TaB x O y compound at some considerable depth away from the Ta layer. Also of value to XPS spectroscopy, the Ta binding energy for such TaB x O y compound is reported for the first time.

  14. Multipole model for the electron group functions method.

    PubMed

    Tchougréeff, A L; Tokmachev, A M; Dronskowski, R

    2009-10-22

    Electron groups provide a natural way to introduce local concepts into quantum chemistry, and the wave functions based on the group products can be considered as a framework for constructing efficient computational methods in terms of "observable" parts of molecular systems. The elements of the group wave functions (electronic structure variables) can be optimized by requiring the number of operations proportional to the size of the molecule. This directly leads to computational methods linearly scaling for large molecular systems. In the present work we consider a particular case of such a wave function implemented for the semiempirical NDDO Hamiltonian. The electron groups are expressed in terms of optimized atomic (hybrid) orbitals with chemical bonds described by geminals and the delocalized groups described by Slater determinants (with or without spin restriction). This scheme is very fast by itself but its speed is considerably limited by the computations of the interatomic Coulomb interactions. Here we develop a consistent method based on group functions which uses the multipole scheme for interatomic interactions. The explicit usage of the atomic multipoles makes the method extremely fast, although the numerical efficiency is largely achieved due to the local character of the electron groups involved. We discuss numerical characteristics of the new method as well as its possible parametrization. We apply this method to study dodecahedral water clusters with hydrogen fluoride substitution and base the analysis on the exhaustive calculation of all symmetry-independent hydrogen-bond networks.

  15. Implement the medical group revenue function. Create competitive advantage.

    PubMed

    Colucci, C

    1998-01-01

    This article shows medical groups how they can employ new financial management and information technology techniques to safeguard their revenue and income streams. These managerial techniques stem from the application of the medical group revenue function, which is defined herein. This article also describes how the medical group revenue function can be used to create value by employing a database and a decision support system. Finally, the article describes how the decision support system can be used to create competitive advantage. Through the wise use of internally generated information, medical groups can negotiate better contract terms, improve their operations, cut their costs, embark on capital investment programs and improve market share. As medical groups gain market power by improving in these areas, they will be more attractive to potential strategic allies, payers and investment bankers.

  16. Detection of rare functional variants using group ISIS.

    PubMed

    Niu, Yue S; Hao, Ning; An, Lingling

    2011-11-29

    Genome-wide association studies have been firmly established in investigations of the associations between common genetic variants and complex traits or diseases. However, a large portion of complex traits and diseases cannot be explained well by common variants. Detecting rare functional variants becomes a trend and a necessity. Because rare variants have such a small minor allele frequency (e.g., <0.05), detecting functional rare variants is challenging. Group iterative sure independence screening (ISIS), a fast group selection tool, was developed to select important genes and the single-nucleotide polymorphisms within. The performance of the group ISIS and group penalization methods is compared for detecting important genes in the Genetic Analysis Workshop 17 data. The results suggest that the group ISIS is an efficient tool to discover genes and single-nucleotide polymorphisms associated to phenotypes.

  17. Optical behaviour of functional groups of graphene oxide

    NASA Astrophysics Data System (ADS)

    Narayanam, Pavan K.; Sankaran, K.

    2016-10-01

    Optical properties of graphene oxide (GO) dispersed in aqueous medium with aging and pH variations were investigated along with concurrent changes of oxygen functional groups of GO. Freshly prepared GO exhibit strong excitation wavelength dependent luminescence, which gets gradually nullified with aging due to the drastic reduction in fraction of polar hydroxyl groups. Fourier transform infrared studies indicated that functional groups of GO undergo spontaneous modification with aging in aqueous medium, resulting in suppression of epoxide groups and enriched adsorption of water molecules. When the pH of GO dispersed in aqueous medium was varied, unique transformations of functional groups take place causing major disruption to the sp2 hybridised carbon domains of GO. Concurrent changes in luminescence of GO infer that the broad emission from freshly prepared GO has large contribution from disorder induced localised states due to hydroxyl, epoxide, carboxyl groups and changes in relative fractions of these groups with aging and pH variations of GO dispersions strongly influence the intensity as well as emission wavelength region of GO. Especially emission features of GO are strongly influenced by the presence, fraction and transformations of epoxide and hydroxyl groups of GO.

  18. Electronic Absorption Spectra and Phosphorescence of Oxygen-Containing Molybdenum(IV) Complexes.

    PubMed

    Isovitsch, Ralph A.; Beadle, A. Scott; Fronczek, Frank R.; Maverick, Andrew W.

    1998-08-24

    Electronic absorption and emission spectra are reported for salts of two oxomolybdenum(IV) cations, [MoOCl(CN-t-Bu)(4)](+) and [MoOCl(Ph(2)PCH(2)CH(2)PPh(2))(2)](+), and for the new Mo(IV) complex [trans-Mo(OCH(3))(2)(CN-t-Bu)(4)](2+). All three ions show absorption bands (lambda(max,abs) 550-570 nm; epsilon 45-120 M(-)(1) cm(-)(1)) attributable to the (1)A(1)[(d(xy)())(2)] --> (1)E[(d(xy)())(1)(d(xz)()(,)(yz)())(1)] (C(4)(v)()) transition, and the last two show weak shoulders in the 700-750 nm range due to the analogous spin-forbidden ((1)A(1) --> (3)E) transition. Phosphorescence (lambda(max,em) 850-960 nm) occurs in the solid state for all three compounds at both room temperature and 77 K, and for [MoOCl(CN-t-Bu)(4)](+) in CH(2)Cl(2) at room temperature. These are the first phosphorescences recorded for molybdenum(IV) complexes. [MoOCl(CN-t-Bu)(4)](BPh(4)) precipitates quickly if NaBPh(4) is added to the Mo(IV) solution prepared from MoCl(5) and tert-butyl isocyanide in CH(3)OH. However, if NaPF(6) is used instead, [trans-Mo(OCH(3))(2)(CN-t-Bu)(4)](PF(6))(2) (formed by reaction of [MoOCl(CN-t-Bu)(4)](+) with methanol) crystallizes over a period of ca. 24 h. The crystal structure of [trans-Mo(OCH(3))(2)(CN-t-Bu)(4)](PF(6))(2) has been determined: C(22)H(42)F(12)MoN(4)O(2)P(2), monoclinic; space group P2(1)/c; a = 9.1538(8) Å, b = 15.709(2) Å, c = 13.456(2) Å; beta = 103.31(1) degrees; Z = 2; R(F) = 0.063, R(w)(F) = 0.056 for 2719 reflections with I > sigma(I).

  19. Extraordinary properties of functional integrals and groups of diffeomorphisms

    NASA Astrophysics Data System (ADS)

    Belokurov, V. V.; Shavgulidze, E. T.

    2017-03-01

    A review of the work of the authors is presented, in which corollaries of the quasi-invariance of functional integrals on the Wiener measure with respect to the action of a group of diffeomorphisms are studied, and the behavior of functional integrals with nonlinear nonlocal change of variables of integration is investigated as well. Using these substitutions, the functional integrals over discontinuous paths can be determined. The simplest models of the (Euclidean) quantum field theory are offered, in which the presence of hidden internal symmetries or the allowance for discontinuous paths in functional integrals leads to a number of paradoxical properties contradicting the conventional view.

  20. The functional domain grouping of microtubule associated proteins

    PubMed Central

    Deane, Charlotte M; Wakefield, James G

    2008-01-01

    Microtubules (MTs), which play crucial roles in normal cell function, are regulated by MT associated proteins (MAPs). Using a combinatorial approach that includes biochemistry, proteomics and bioinformatics, we have recently identified 270 putative MAPs from Drosophila embryos and characterized some of those required for correct progression through mitosis. Here we identify functional groups of these MAPs using a reciprocal hits sequence alignment technique and assign InterPro functional domains to 28 previously uncharacterized proteins. This approach gives insight into the potential functions of MAPs and how their roles may affect MTs. PMID:19704789

  1. Single or functionalized fullerenes interacting with heme group

    SciTech Connect

    Costa, Wallison Chaves; Diniz, Eduardo Moraes

    2014-09-15

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groups (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.

  2. Solving renormalization group equations with the Lambert W function

    NASA Astrophysics Data System (ADS)

    Sonoda, H.

    2013-04-01

    It has been known for some time that 2-loop renormalization group equations of a dimensionless parameter can be solved in a closed form in terms of the Lambert W function. We apply the method to a generic theory with a Gaussian fixed point to construct renormalization group invariant physical parameters such as a coupling constant and a physical squared mass. As a further application, we speculate a possible exact effective potential for the O(N) linear sigma model in four dimensions.

  3. From infinite to two dimensions through the functional renormalization group.

    PubMed

    Taranto, C; Andergassen, S; Bauer, J; Held, K; Katanin, A; Metzner, W; Rohringer, G; Toschi, A

    2014-05-16

    We present a novel scheme for an unbiased, nonperturbative treatment of strongly correlated fermions. The proposed approach combines two of the most successful many-body methods, the dynamical mean field theory and the functional renormalization group. Physically, this allows for a systematic inclusion of nonlocal correlations via the functional renormalization group flow equations, after the local correlations are taken into account nonperturbatively by the dynamical mean field theory. To demonstrate the feasibility of the approach, we present numerical results for the two-dimensional Hubbard model at half filling.

  4. Ultralightweight oxygen container

    NASA Astrophysics Data System (ADS)

    Aleck, B.

    1983-11-01

    The replacement of a cylindrical aluminum liner overwrapped with fiberglass filaments and prestressed by yielding the liner under sizing pressure by a higher strength to weight ratio steel liner cryoworked stainless steel overwrapped with a higher strength to weight ratio filament (Kevlar 49) is discussed. The heavyweight ends of the aluminum liner were to be replaced by thin walled domes, which required multiple helix angle wraps for support, instead of the single, kite string wrap from pole to pole of the aluminum overwrapped design when the use of cold swaging of tube ends to form bosses, demonstrated on subscale development efforts, was not achieved full scale a method of making the 4 in. diam. stainless steel liner with a single boss and no welds in a 0.020 in. thick wall from a 0.050 in. thick, 13 in. diam. disk was selected. The demonstration vessel failed by leakage during prestressing because embedded oxides formed flaws in the boss region. Such flaws have been avoided by proper temperature control during hot spinning. Hence, a new design was developed that weighs half as much as its recently developed predecessor.

  5. Species, functional groups, and thresholds in ecological resilience

    USGS Publications Warehouse

    Sundstrom, Shana M.; Allen, Craig R.; Barichievy, Chris

    2012-01-01

    The cross-scale resilience model states that ecological resilience is generated in part from the distribution of functions within and across scales in a system. Resilience is a measure of a system's ability to remain organized around a particular set of mutually reinforcing processes and structures, known as a regime. We define scale as the geographic extent over which a process operates and the frequency with which a process occurs. Species can be categorized into functional groups that are a link between ecosystem processes and structures and ecological resilience. We applied the cross-scale resilience model to avian species in a grassland ecosystem. A species’ morphology is shaped in part by its interaction with ecological structure and pattern, so animal body mass reflects the spatial and temporal distribution of resources. We used the log-transformed rank-ordered body masses of breeding birds associated with grasslands to identify aggregations and discontinuities in the distribution of those body masses. We assessed cross-scale resilience on the basis of 3 metrics: overall number of functional groups, number of functional groups within an aggregation, and the redundancy of functional groups across aggregations. We assessed how the loss of threatened species would affect cross-scale resilience by removing threatened species from the data set and recalculating values of the 3 metrics. We also determined whether more function was retained than expected after the loss of threatened species by comparing observed loss with simulated random loss in a Monte Carlo process. The observed distribution of function compared with the random simulated loss of function indicated that more functionality in the observed data set was retained than expected. On the basis of our results, we believe an ecosystem with a full complement of species can sustain considerable species losses without affecting the distribution of functions within and across aggregations, although

  6. Relative energies, structures, vibrational frequencies, and electronic spectra of pyrylium cation, an oxygen-containing carbocyclic ring isoelectronic with benzene, and its isomers

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2013-11-01

    We have studied relative energies, structures, rotational, vibrational, and electronic spectra of the pyrylium cation, an oxygen-containing six-membered carbocyclic ring, and its six isomers, using ab initio quantum chemical methods. Isoelectronic with benzene, the pyrylium cation has a benzenoid structure and is the global minimum on the singlet potential energy surface of C5H5O+. The second lowest energy isomer, the furfuryl cation, has a five membered backbone akin to a sugar, and is only 16 kcal mol-1 above the global minimum computed using coupled cluster theory with singles, doubles, and perturbative triple excitations (CCSD(T)) with the correlation consistent cc-pVTZ basis set. Other isomers are 25, 26, 37, 60, and 65 kcal mol-1 above the global minimum, respectively, at the same level of theory. Lower level methods such as density functional theory (B3LYP) and second order Møller-Plesset perturbation theory performed well when tested against the CCSD(T) results. The pyrylium and furfuryl cations, although separated by only 16 kcal mol-1, are not easily interconverted, as multiple bonds must be broken and formed, and the existence of more than one transition state is likely. Additionally, we have also investigated the asymptotes for the barrierless ion-molecule association of molecules known to exist in the interstellar medium that may lead to formation of the pyrylium cation.

  7. Psychosocial functioning of two groups of morbidly obese patients.

    PubMed

    Rosen, L W; Aniskiewicz, A S

    1983-01-01

    Fourteen morbidly obese women who were candidates for intestinal bypass surgery were compared in terms of psychosocial functioning and dietary behavior to 14 morbidly obese women who elected not to undergo the bypass procedure. Each patient underwent a psychiatric evaluation which included a developmental and dietary history, a mental status exam, and the administration of the MMPI. Diagnoses were based on the DSM-III multi-axial system. There was no difference between the bypass group and the non-bypass group on the Axis I diagnoses, however the bypass group did have a significantly higher frequency of Axis II diagnoses. The bypass group demonstrated significantly higher levels of psychosocial stressors (Axis IV) and lower levels of adaptive functioning (Axis V) when compared to the non-bypass group. The bypass patients also had a significantly higher frequency of past suicide attempts. On the MMPI, the bypass group had significantly higher elevations on scales 2 (depression), 4 (psychopathic deviate), 6 (paranoia), and 0 (social introversion). There were no significant differences between the groups in terms of dietary history and behavior, except that significantly fewer bypass patients could place a numerical estimate on their daily energy intake. These results were discussed in terms of their implications for the assessment and treatment of morbidly obese patients.

  8. Victimization in the Peer Group and Children's Academic Functioning

    ERIC Educational Resources Information Center

    Schwartz, David; Gorman, Andrea Hopmeyer; Nakamoto, Jonathan; Toblin, Robin L.

    2005-01-01

    This short-term longitudinal investigation focused on associations between victimization in the peer group and academic functioning over a 1-year period. The authors used a multi-informant approach to assess peer victimization, symptoms of depression, and academic outcomes for 199 elementary school children (average age of 9.0 years; 105 boys, 94…

  9. Chapter 8. Resident Group Influences on Team Functioning

    ERIC Educational Resources Information Center

    Burford, Gale E.; Fulcher, Leon C.

    2006-01-01

    Research has documented important interplays between the diagnostic characteristics of residents in group care centers and the functioning of staff teams responsible for the delivery of services. Factors that impact on the quality of working life satisfactions and frustrations are variable over time and may originate from within the team, the…

  10. The Formation of Oxygen-Containing Molecules in Liquid Water Environments on the Surface of Titan (Invited)

    NASA Astrophysics Data System (ADS)

    Neish, C.

    2010-12-01

    Saturn’s moon Titan represents a unique locale for studying prebiotic chemistry. Reactions occurring in its thick nitrogen - methane atmosphere produce a wide variety of organic molecules. Observations by the Voyager spacecraft found evidence for six gas-phase hydrocarbons and three nitriles, along with an enveloping haze layer shrouding the surface of the moon (Hanel et al., 1981; Kunde et al., 1981; Maguire et al., 1981). More recently, the INMS instrument on the Cassini spacecraft has found evidence for organic molecules up to its mass limit of 100 Da at altitudes as high as 1200 km (Waite et al., 2005; Vuitton et al. 2007). Laboratory experiments that simulate the reactions occurring in Titan’s atmosphere produce many of the same organic molecules observed by Voyager and Cassini, along with organic precipitates known as tholins. Tholins have the general formula CxHyNz and are spectrally similar to Titan’s haze (Khare et al., 1984). Though interesting from the point of view of organic chemistry, the molecules found in Titan’s atmosphere stop short of addressing questions related to the origins of life. Oxygen - a key element for most known biological molecules - is generally lacking in Titan’s atmosphere. The most abundant oxygenated molecule, CO, is present at only ~50 ppm (de Kok et al., 2007). However, if Titan’s atmospheric organic molecules mix with water found in cryovolcanic lavas or impact melts, they may react to produce oxygen-containing, prebiotic species. In this paper, I will show that reactions between Titan tholins and low temperature aqueous solutions produce a wide variety of oxygen-containing species. These reactions display first-order kinetic behaviour with half-lives between 0.4 to 7 days at 273 K (in water) and between 0.3 and 14 days at 253 K (in 13 wt. % ammonia-water). Tholin hydrolysis is thus very fast compared to the freezing timescales of impact melts and volcanic sites on Titan, which take hundreds to thousands of years

  11. Functional grouping in residential homes for people with intellectual disabilities.

    PubMed

    Mansell, Jim; Beadle-Brown, Julie; Macdonald, Susan; Ashman, Bev

    2003-01-01

    The effects of functional grouping of people with intellectual disabilities on care practices in small residential homes in the community were investigated. A group comparison and a matched-pairs comparison were carried out in settings where less than or more than 75% residents were non-verbal, non-ambulant, had severe challenging behaviour, severe social impairment or were verbal and ambulant. Further analysis, focused on those with challenging behaviour was carried out using ordinal regression. In the group-comparison study, no significant differences were found for three of the five groups. Residents who were non-ambulant were rated as receiving care with less interpersonal warmth in grouped settings; residents with severe challenging behaviour were rated as receiving less good care practices in four respects (interpersonal warmth, assistance from staff, level of speech and staff teamwork) in grouped settings. The matched-pairs comparison found significant differences only for people with challenging behaviour, where grouped settings achieved less good results in terms of interpersonal warmth and staff teamwork. Higher adaptive behaviour and mixed settings were predictive of better care practices on 13 of 14 items of the Active Support Measure (ASM), with some setting variables also predictive for some items. Care practices only appear to vary for people with challenging behaviour, where grouped settings appear to offer less good results in some respects.

  12. Linking functional group richness and ecosystem functions of dung beetles: an experimental quantification.

    PubMed

    Milotić, Tanja; Quidé, Stijn; Van Loo, Thomas; Hoffmann, Maurice

    2017-01-01

    Dung beetles form an insect group that fulfils important functions in terrestrial ecosystems throughout the world. These include nutrient cycling through dung removal, soil bioturbation, plant growth, secondary seed dispersal and parasite control. We conducted field experiments at two sites in the northern hemisphere temperate region in which dung removal and secondary seed dispersal were assessed. Dung beetles were classified in three functional groups, depending on their size and dung manipulation method: dwellers, large and small tunnelers. Other soil inhabiting fauna were included as a fourth functional group. Dung removal and seed dispersal by each individual functional group and combinations thereof were estimated in exclusion experiments using different dung types. Dwellers were the most diverse and abundant group, but tunnelers were dominant in terms of biomass. All dung beetle functional groups had a clear preference for fresh dung. The ecosystem services in dung removal and secondary seed dispersal provided by dung beetles were significant and differed between functional groups. Although in absolute numbers more dwellers were found, large tunnelers were disproportionally important for dung burial and seed removal. In the absence of dung beetles, other soil inhabiting fauna, such as earthworms, partly took over the dung decomposing role of dung beetles while most dung was processed when all native functional groups were present. Our results, therefore, emphasize the need to conserve functionally complete dung ecosystems to maintain full ecosystem functioning.

  13. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia

    PubMed Central

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-01-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ∼1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10−11) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10−4), excitability (P=9.0 × 10−4) and cell adhesion and trans-synaptic signaling (P=2.4 × 10−3). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia. PMID:21931320

  14. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia.

    PubMed

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-10-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ~1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10(-11)) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10(-4)), excitability (P=9.0 × 10(-4)) and cell adhesion and trans-synaptic signaling (P=2.4 × 10(-3)). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia.

  15. Effects of oxygen-containing terpenes as skin permeation enhancers on the lipoidal pathways of human epidermal membrane.

    PubMed

    Chantasart, Doungdaw; Pongjanyakul, Thaned; Higuchi, William I; Li, S Kevin

    2009-10-01

    The present study investigated the effects of oxygen-containing terpenes as skin permeation enhancers on the lipoidal pathways of human epidermal membrane (HEM). The enhancement (E(HEM)) effects of menthol, thymol, carvacrol, menthone, and cineole on the transport of a probe permeant, corticosterone, across HEM were determined. It was found that the enhancer potencies of menthol, thymol, carvacrol, and menthone were essentially the same and higher than that of cineole based on their aqueous concentration in the diffusion cell chamber at E(HEM) = 4. Thymol and carvacrol also had the same E(HEM) = 10 concentration further supporting that they had the same enhancer potency based on the aqueous concentration. The uptake amounts of terpene into the HEM stratum corneum (SC) intercellular lipid under the same conditions indicate that the intrinsic potencies of the studied terpenes are the same based on their concentration in the SC and similar to those of n-alkanol and n-alkylphenyl alcohol. Moreover, they are all better enhancers compared to branched-chain alkanol. The approximately same uptake enhancement of beta-estradiol induced by the studied terpenes and alcohols at E(HEM) conditions into the SC intercellular lipids suggests that the mechanism of enhancement action for the terpenes and those of alcohols are essentially the same.

  16. Electron ranaway and ion-ion plasma formation in afterglow low-pressure plasma of oxygen-containing gas mixtures

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Kosykh, Nikolay; Gutsev, Sergey

    2012-10-01

    Experimental investigation of temporal evolution of charged plasma species in afterglow plasma of oxygen-containing mixtures have been investigated. The probe VAC and the time dependence of the saturation positive and negative particles currents to a probe in a fixed bias voltage were performed. The decay of afterglow low-pressure electronegative gas plasmas take place in two distinct stages (the electron-ion stage, and the ion-ion stage) as it was shown in [1] for pure oxygen. In the first stage, the negative ions are locked within a discharge volume and plasma is depleted of electrons and positive ions. The electron density decay is faster, than exponential, and practically all electrons leave plasma volume during finite time followed by the ion--ion (electron-free) plasma formation. The decay of the ion-ion plasma depends on the presence of detachment. With a large content of electronegative gas (oxygen) in a mixture, when there is a ``detachment particles,'' a small fraction of the electrons appearing as a result of the detachment continue to hold all negative ions in the discharge volume. In this case, the densities of all charged plasma components decay according to the same exponential law with a characteristic detachment time. At a low oxygen content in the gas mixture there is no detachment and plasma decays by an ion--ion ambipolar diffusion mechanism.[4pt][1]. S.A.Gutsev, A.A.Kudryavtsev, V.A.Romanenko. Tech.Phys. 40, 1131, (1995).

  17. [Identification of the functional groups of yeast thiamine pyrophosphokinase].

    PubMed

    Voskoboev, A I; Grinevich, V P

    1978-10-01

    The content of free sulfhydril groups in yeast thiamine pyrophosphokinase (EC 2.7.6.2) was studied. Their blocking was found not to affect considerably the enzyme activity. N-bromsuccinimide developes the inhibitory effect only if taken in excessive concentrations, which indicates that tryptophane has no key position for the enzyme-substrate complex formation. On account of high speed of photoinactivation with Rose bengale and methilene blue, sigmoid dependence of activity loss on pH under irradiation, characteristic narrowing of the modified enzyme absorption spectrum, it is suggested that imidazole residue of the histidine is one of the functional groups of thiamine pyrophosphokinase.

  18. Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis.

    PubMed

    Liu, Shizhen; Li, Degang; Sun, Hongqi; Ang, Ha Ming; Tadé, Moses O; Wang, Shaobin

    2016-04-15

    Metal-free semiconductors offer a new opportunity for environmental photocatalysis toward a potential breakthrough in high photo efficiency with complete prevention of metal leaching. In this study, graphitic carbon nitride (GCN) modified by oxygen functional groups was synthesized by a hydrothermal treatment of pristine GCN at different temperatures with H2O2. Insights into the emerging characteristics of the modified GCN in photocatalysis were obtained by determining the optical properties, band structure, electrochemical activity and pollutant degradation efficiency. It was found that the introduction of GCN with oxygen functional groups can enhance light absorption and accelerate electron transfer so as to improve the photocatalytic reaction efficiency. The photoinduced reactive radicals and the associated photodegradation were investigated by in situ electron paramagnetic resonance (EPR). The reactive radicals, O2(-) and OH, were responsible for organic degradation.

  19. Functional group dependent dissociative electron attachment to simple organic molecules

    NASA Astrophysics Data System (ADS)

    Prabhudesai, Vaibhav S.; Nandi, Dhananjay; Kelkar, Aditya H.; Krishnakumar, E.

    2008-04-01

    Dissociative electron attachment (DEA) cross sections for simple organic molecules, namely, acetic acid, propanoic acid, methanol, ethanol, and n-propyl amine are measured in a crossed beam experiment. We find that the H- ion formation is the dominant channel of DEA for these molecules and takes place at relatively higher energies (>4eV) through the core excited resonances. Comparison of the cross sections of the H- channel from these molecules with those from NH3, H2O, and CH4 shows the presence of functional group dependence in the DEA process. We analyze this new phenomenon in the context of the results reported on other organic molecules. This discovery of functional group dependence has important implications such as control in electron induced chemistry and understanding radiation induced damage in biological systems.

  20. Model parameters for representative wetland plant functional groups

    USGS Publications Warehouse

    Williams, Amber S.; Kiniry, James R.; Mushet, David M.; Smith, Loren M.; McMurry, Scott T.; Attebury, Kelly; Lang, Megan; McCarty, Gregory W.; Shaffer, Jill A.; Effland, William R.; Johnson, Mari-Vaughn V.

    2017-01-01

    Wetlands provide a wide variety of ecosystem services including water quality remediation, biodiversity refugia, groundwater recharge, and floodwater storage. Realistic estimation of ecosystem service benefits associated with wetlands requires reasonable simulation of the hydrology of each site and realistic simulation of the upland and wetland plant growth cycles. Objectives of this study were to quantify leaf area index (LAI), light extinction coefficient (k), and plant nitrogen (N), phosphorus (P), and potassium (K) concentrations in natural stands of representative plant species for some major plant functional groups in the United States. Functional groups in this study were based on these parameters and plant growth types to enable process-based modeling. We collected data at four locations representing some of the main wetland regions of the United States. At each site, we collected on-the-ground measurements of fraction of light intercepted, LAI, and dry matter within the 2013–2015 growing seasons. Maximum LAI and k variables showed noticeable variations among sites and years, while overall averages and functional group averages give useful estimates for multisite simulation modeling. Variation within each species gives an indication of what can be expected in such natural ecosystems. For P and K, the concentrations from highest to lowest were spikerush (Eleocharis macrostachya), reed canary grass (Phalaris arundinacea), smartweed (Polygonum spp.), cattail (Typha spp.), and hardstem bulrush (Schoenoplectus acutus). Spikerush had the highest N concentration, followed by smartweed, bulrush, reed canary grass, and then cattail. These parameters will be useful for the actual wetland species measured and for the wetland plant functional groups they represent. These parameters and the associated process-based models offer promise as valuable tools for evaluating environmental benefits of wetlands and for evaluating impacts of various agronomic practices in

  1. Correlation functions for pairs and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Kalinkov, M.; Kuneva, I.

    1990-01-01

    There are many studies on the correlation functions of galaxies, of clusters of galaxies, even of superclusters (e.g., Groth and Peebles 1977; Davies and Peebles 1983; Kalinkov and Kuneva 1985, 1986; Bahcall 1988 and references therein) but not so many on pairs and groups of galaxies. Results of the calculations of two-point correlation fuctions for some catalogs of pairs and groups of galaxies are given. It is assumed that the distances to pairs and groups of galaxies are given by their mean redshifts according to R = sigma (sup n, sub i-1) V sub i/nH (sub 0), where n is the number of galaxies in the system and H sub 0 = 100 km s(exp -1) Mpc(exp -1).

  2. The numerically optimized regulator and the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Márián, I. G.; Jentschura, U. D.; Nándori, I.

    2014-05-01

    We aim to optimize the functional form of the compactly supported smooth (CSS) regulator within the functional renormalization group (RG), in the framework of bosonized two-dimensional quantum electrodynamics (QED2) and of the three-dimensional O(N = 1) scalar field theory in the local potential approximation (LPA). The principle of minimal sensitivity (PMS) is used for the optimization of the CSS regulator, recovering all the major types of regulators in appropriate limits. Within the investigated class of functional forms, a thorough investigation of the CSS regulator, optimized with two different normalizations within the PMS method, confirms that the functional form of a regulator first proposed by Litim is optimal within the LPA. However, Litim’s exact form leads to a kink in the regulator function. A form of the CSS regulator, numerically close to Litim’s limit while maintaining infinite differentiability, remains compatible with the gradient expansion to all orders. A smooth analytic behavior of the regulator is ensured by a small, but finite value of the exponential fall-off parameter in the CSS regulator. Consequently, a compactly supported regulator, in a parameter regime close to Litim’s optimized form, but regularized with an exponential factor, appears to have favorable properties and could be used to address the scheme dependence of the functional RG, at least within the approximations employed in the studies reported here.

  3. Keldysh functional renormalization group for electronic properties of graphene

    NASA Astrophysics Data System (ADS)

    Fräßdorf, Christian; Mosig, Johannes E. M.

    2017-03-01

    We construct a nonperturbative nonequilibrium theory for graphene electrons interacting via the instantaneous Coulomb interaction by combining the functional renormalization group method with the nonequilibrium Keldysh formalism. The Coulomb interaction is partially bosonized in the forward scattering channel resulting in a coupled Fermi-Bose theory. Quantum kinetic equations for the Dirac fermions and the Hubbard-Stratonovich boson are derived in Keldysh basis, together with the exact flow equation for the effective action and the hierarchy of one-particle irreducible vertex functions, taking into account a possible nonzero expectation value of the bosonic field. Eventually, the system of equations is solved approximately under thermal equilibrium conditions at finite temperature, providing results for the renormalized Fermi velocity and the static dielectric function, which extends the zero-temperature results of Bauer et al., Phys. Rev. B 92, 121409 (2015), 10.1103/PhysRevB.92.121409.

  4. Functional renormalization group for the U (1 )-T56 tensorial group field theory with closure constraint

    NASA Astrophysics Data System (ADS)

    Lahoche, Vincent; Ousmane Samary, Dine

    2017-02-01

    This paper is focused on the functional renormalization group applied to the T56 tensor model on the Abelian group U (1 ) with closure constraint. For the first time, we derive the flow equations for the couplings and mass parameters in a suitable truncation around the marginal interactions with respect to the perturbative power counting. For the second time, we study the behavior around the Gaussian fixed point, and show that the theory is nonasymptotically free. Finally, we discuss the UV completion of the theory. We show the existence of several nontrivial fixed points, study the behavior of the renormalization group flow around them, and point out evidence in favor of an asymptotically safe theory.

  5. Parent, Alkylated, and Sulfur/Oxygen-Containing Polycyclic Aromatic Hydrocarbons in Mainstream Smoke from 13 Brands of Chinese Cigarettes.

    PubMed

    Gao, Bo; Du, Xueqing; Wang, Xinming; Tang, Jianhui; Ding, Xiang; Zhang, Yanli; Bi, Xinhui; Zhang, Gan

    2015-08-04

    China has the world's largest population of smokers with serious health consequences, yet we know a very limited spectrum of hazardous chemicals in cigarette smoke even for carcinogenic polycyclic aromatic hydrocarbons (PAHs). Here, we chose 13 popular cigarette brands sold in China markets, collected particulate matters in mainstream smoke using filter pads and an automatic smoking machine, and analyzed 56 PAHs, including 31 parent, 18 alkylated, and 7 sulfur/oxygen-containing PAHs (S/O PAHs). The 56 PAHs in mainstream smoke totaled from 244.2 ± 28.5 to 10254.8 ± 481.5 ng cig(-1); parent, alkylated, and S/O PAHs shared 16-23%, 64-74%, and 6-18%, respectively. Benzo[a]pyrene (BaP) ranged 1.1-41.6 ng cig(-1), while BaP equivalent concentrations (BaPeq) ranged 3.6-120.2 ng cig(-1), but contributions to BaPeq by individual carcinogenic PAH species varied with cigarette brands. When these cigarette smoke source profiles were pooled together with those of other combustion ones available in the literature, we found that widely used diagnostic ratios of parent PAHs failed to distinguish cigarette smoke from other combustion sources, except that the ratio indeno[1,2,3-cd]pyrene/(indeno[1,2,3-cd]pyrene + benzo[g,h,i]perylene) can largely separate cigarette smoke from vehicular emissions and that the ratio of Retene/(Retene + chrysene) can further discriminate cigarette smoke from coal combustion when alkylated PAHs are involved.

  6. Functional group diversity of bee pollinators increases crop yield

    PubMed Central

    Hoehn, Patrick; Tscharntke, Teja; Tylianakis, Jason M; Steffan-Dewenter, Ingolf

    2008-01-01

    Niche complementarity is a commonly invoked mechanism underlying the positive relationship between biodiversity and ecosystem functioning, but little empirical evidence exists for complementarity among pollinator species. This study related differences in three functional traits of pollinating bees (flower height preference, daily time of flower visitation and within-flower behaviour) to the seed set of the obligate cross-pollinated pumpkin Cucurbita moschata Duch. ex Poir. across a land-use intensity gradient from tropical rainforest and agroforests to grassland in Indonesia. Bee richness and abundance changed with habitat variables and we used this natural variation to test whether complementary resource use by the diverse pollinator community enhanced final yield. We found that pollinator diversity, but not abundance, was positively related to seed set of pumpkins. Bees showed species-specific spatial and temporal variation in flower visitation traits and within-flower behaviour, allowing for classification into functional guilds. Diversity of functional groups explained even more of the variance in seed set (r2=45%) than did species richness (r2=32%) highlighting the role of functional complementarity. Even though we do not provide experimental, but rather correlative evidence, we can link spatial and temporal complementarity in highly diverse pollinator communities to pollination success in the field, leading to enhanced crop yield without any managed honeybees. PMID:18595841

  7. Characterization of Sea Lettuce Surface Functional Groups by Potentiometric Titrations

    NASA Astrophysics Data System (ADS)

    Ebling, A. M.; Schijf, J.

    2008-12-01

    In pursuit of our ultimate goal to better understand the prodigious capacity of the marine macroalga Ulva lactuca (sea lettuce) for adsorbing a broad range of dissolved trace metals from seawater, we performed an initial characterization of its surface functional groups. Specifically, the number of distinct functional groups as well as their individual bulk concentrations and acid dissociation constants (pKas) were determined by potentiometric titrations in NaCl solutions of various ionic strengths (I = 0.01-5.0 M), under inert nitrogen atmosphere at 25°C. Depending on the ionic strength, Ulva samples were manually titrated down to pH 2 or 3 with 1 N HCl and then up to pH 10 with 1 N NaOH in steps of 0.1-0.2 units, continuously monitoring pH with a glass combination electrode. Titrations of a dehydrated Ulva standard reference material (BCR-279) were compared with fresh Ulva tissue cultured in our laboratory. A titration in filtered natural seawater was also compared with one in an NaCl solution of equal ionic strength. Equilibrium constants for the ionization of water in NaCl solutions as a function of ionic strength were obtained from the literature. Fits to the titration data ([H]T vs. pH) were performed with the FITEQL4.0 computer code using non-electrostatic 3-, 4-, and 5-site models, either by fixing ionic strength at its experimental value or by allowing it to be extrapolated to zero, while considering all functional group pKas and bulk concentrations as adjustable parameters. Since pKas and bulk concentrations were found to be strongly correlated, the latter were also fixed in some cases to further constrain the pKas. Whereas these calculations are currently ongoing, preliminary results point to three, possibly four, functional groups with pKas of about 4.1, 6.3, and 9.5 at I = 0. Bulk concentrations of the three groups are very similar, about 5-6×10-4 mol/g based on dry weight, which suggests that all are homogeneously distributed over the surface and

  8. Pelagic functional group modeling: Progress, challenges and prospects

    NASA Astrophysics Data System (ADS)

    Hood, Raleigh R.; Laws, Edward A.; Armstrong, Robert A.; Bates, Nicholas R.; Brown, Christopher W.; Carlson, Craig A.; Chai, Fei; Doney, Scott C.; Falkowski, Paul G.; Feely, Richard A.; Friedrichs, Marjorie A. M.; Landry, Michael R.; Keith Moore, J.; Nelson, David M.; Richardson, Tammi L.; Salihoglu, Baris; Schartau, Markus; Toole, Dierdre A.; Wiggert, Jerry D.

    2006-03-01

    In this paper, we review the state of the art and major challenges in current efforts to incorporate biogeochemical functional groups into models that can be applied on basin-wide and global scales, with an emphasis on models that might ultimately be used to predict how biogeochemical cycles in the ocean will respond to global warming. We define the term "biogeochemical functional group" to refer to groups of organisms that mediate specific chemical reactions in the ocean. Thus, according to this definition, "functional groups" have no phylogenetic meaning—these are composed of many different species with common biogeochemical functions. Substantial progress has been made in the last decade toward quantifying the rates of these various functions and understanding the factors that control them. For some of these groups, we have developed fairly sophisticated models that incorporate this understanding, e.g. for diazotrophs (e.g. Trichodesmium), silica producers (diatoms) and calcifiers (e.g. coccolithophorids and specifically Emiliania huxleyi). However, current representations of nitrogen fixation and calcification are incomplete, i.e., based primarily upon models of Trichodesmium and E. huxleyi, respectively, and many important functional groups have not yet been considered in open-ocean biogeochemical models. Progress has been made over the last decade in efforts to simulate dimethylsulfide (DMS) production and cycling (i.e., by dinoflagellates and prymnesiophytes) and denitrification, but these efforts are still in their infancy, and many significant problems remain. One obvious gap is that virtually all functional group modeling efforts have focused on autotrophic microbes, while higher trophic levels have been completely ignored. It appears that in some cases (e.g., calcification), incorporating higher trophic levels may be essential not only for representing a particular biogeochemical reaction, but also for modeling export. Another serious problem is our

  9. [Functional feeding groups of macroinvertebrates in Gaira river, Colombia].

    PubMed

    Rodríguez-Barrios, Javier; Ospina-Tórres, Rodulfo; Turizo-Correa, Rodrigo

    2011-12-01

    Tropical rivers are frequently described on their biodiversity but few studies have considered the ecological value of this richness in their food webs. We determined the trophic structure of aquatic macroinvertebrate communities (expressed in the richness and abundance of taxa and biomass proportions of different functional feeding groups) at the level of the river, stretch and microhabitats (functional units - UFs). We evaluated the spatial and temporal variation of these descriptors during wet and dry events, and selected three sites associated with different altitudinal belts. We reported 109 taxa, with 11167 individuals who contributed 107.11g of biomass. Density of macroinvertebrates was favored with increasing height, and biomass showed the opposite pattern (K-W = 10.1, d.f. = 1, p < 0.05), due to the addition of large crustaceans (Macrobrachium), and the taxa diversity was higher in the middle stretch of the river (H'=3.16). The Gaira stream runs through a mid-sized river basin, for this reason we found mainly bedrock (epilithon = 50.5%), gravel and sand (43.7%). The functional unit with more habitat and food resources that contains a higher abundance of leaf litter macroinvertebrates was foliage followed by epilithon, fine sediment and gravel-sand (K-W = 25.3, d.f. = 3, p < 0.05). The biomass values of these organisms were higher in leaves followed by gravel-sands, epilithon and sediment (K-W = 15.3, d.f. = 3, p < 0.05). Autochthonous biomass input by different functional feeding groups can be considered very low, but they define the functionality of the stream, being represented almost exclusively by shredders (Macrobrachium, 73%), present only in the lower reaches, followed by shredder Leptonema with 15%, located mostly in the upper reaches and predatory stoneflies of the genus Anacroneuria to 6.56%, which dominated in the middle stretch of stream. Excluding Macrobrachium from the analysis, there was dominance of Anacroneuria in the lower reaches

  10. Finding sequence motifs in groups of functionally related proteins.

    PubMed

    Smith, H O; Annau, T M; Chandrasegaran, S

    1990-01-01

    We have developed a method for rapidly finding patterns of conserved amino acid residues (motifs) in groups of functionally related proteins. All 3-amino acid patterns in a group of proteins of the type aa1 d1 aa2 d2 aa3, where d1 and d2 are distances that can be varied in a range up to 24 residues, are accumulated into an array. Segments of the proteins containing those patterns that occur most frequently are aligned on each other by a scoring method that obtains an average relatedness value for all the amino acids in each column of the aligned sequence block based on the Dayhoff relatedness odds matrix. The automated method successfully finds and displays nearly all of the sequence motifs that have been previously reported to occur in 33 reverse transcriptases, 18 DNA integrases, and 30 DNA methyltransferases.

  11. Organized thiol functional groups in mesoporous core shell colloids

    SciTech Connect

    Marchena, Martin H.; Granada, Mara; Bordoni, Andrea V.; Joselevich, Maria; Troiani, Horacio; Williams, Federico J.; Wolosiuk, Alejandro

    2012-03-15

    The co-condensation in situ of tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS) using cetyltrimethylammonium bromide (CTAB) as a template results in the synthesis of multilayered mesoporous structured SiO{sub 2} colloids with 'onion-like' chemical environments. Thiol groups were anchored to an inner selected SiO{sub 2} porous layer in a bilayered core shell particle producing different chemical regions inside the colloidal layered structure. X-Ray Photoelectron Spectroscopy (XPS) shows a preferential anchoring of the -SH groups in the double layer shell system, while porosimetry and simple chemical modifications confirm that pores are accessible. We can envision the synthesis of interesting colloidal objects with defined chemical environments with highly controlled properties. - Graphical abstract: Mesoporous core shell SiO{sub 2} colloids with organized thiol groups. Highlights: Black-Right-Pointing-Pointer Double shell mesoporous silica colloids templated with CTAB. Black-Right-Pointing-Pointer Sequential deposition of mesoporous SiO{sub 2} layers with different chemistries. Black-Right-Pointing-Pointer XPS shows the selective functionalization of mesoporous layers with thiol groups.

  12. Functional renormalization group study of nuclear and neutron matter

    SciTech Connect

    Drews, Matthias; Weise, Wolfram

    2016-01-22

    A chiral model based on nucleons interacting via boson exchange is investigated. Fluctuation effects are included consistently beyond the mean-field approximation in the framework of the functional renormalization group. The liquid-gas phase transition of symmetric nuclear matter is studied in detail. No sign of a chiral restoration transition is found up to temperatures of about 100 MeV and densities of at least three times the density of normal nuclear matter. Moreover, the model is extended to asymmetric nuclear matter and the constraints from neutron star observations are discussed.

  13. Cockayne Syndrome Group B Cellular and Biochemical Functions

    PubMed Central

    Licht, Cecilie Löe; Stevnsner, Tinna; Bohr, Vilhelm A.

    2003-01-01

    The devastating genetic disorder Cockayne syndrome (CS) arises from mutations in the CSA and CSB genes. CS is characterized by progressive multisystem degeneration and is classified as a segmental premature-aging syndrome. The CS complementation group B (CSB) protein is at the interface of transcription and DNA repair and is involved in transcription-coupled and global genome–DNA repair, as well as in general transcription. Recent structure-function studies indicate a process-dependent variation in the molecular mechanism employed by CSB and provide a starting ground for a description of the mechanisms and their interplay. PMID:14639525

  14. Catalytic conversion of aliphatic alcohols on carbon nanomaterials: The roles of structure and surface functional groups

    NASA Astrophysics Data System (ADS)

    Tveritinova, E. A.; Zhitnev, Yu. N.; Chernyak, S. A.; Arkhipova, E. A.; Savilov, S. V.; Lunin, V. V.

    2017-03-01

    Carbon nanomaterials with the structure of graphene and different compositions of the surface groups are used as catalysts for the conversion of C2-C4 aliphatic alcohols. The conversions of ethanol, propanol- 1, propanol-2, butanol-1, butanol-2, and tert-butanol on carbon nanotubes, nanoflakes, and nanoflakes doped with nitrogen are investigated. Oxidized and nonoxidized multiwalled carbon nanotubes, nanoflakes, and nanoflakes doped with nitrogen are synthesized. X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning and transmission electronic microscopies, Brunauer-Emmett-Teller method, derivatographic analyses, and the pulsed microcatalytic method are used to characterize comprehensively the prepared catalysts. It was established that all of the investigated carbon nanomaterials (with the exception of nondoped carbon nanoflakes) are bifunctional catalysts for the conversion of aliphatic alcohols, and promote dehydration reactions with the formation of olefins and dehydrogenation reactions with the formation of aldehydes or ketones. Nanoflakes doped with nitrogen are inert with respect to secondary alcohols and tert-butanol. The role of oxygen-containing and nitrogen-containing surface groups, and of the geometrical structure of the carbon matrix of graphene nanocarbon materials in the catalytic conversion of aliphatic alcohols, is revealed. Characteristics of the conversion of aliphatic alcohols that are associated with their structure are identified.

  15. FTIR Analysis of Functional Groups in Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Shokri, S. M.; McKenzie, G.; Dransfield, T. J.

    2012-12-01

    Secondary organic aerosols (SOA) are suspensions of particulate matter composed of compounds formed from chemical reactions of organic species in the atmosphere. Atmospheric particulate matter can have impacts on climate, the environment and human health. Standardized techniques to analyze the characteristics and composition of complex secondary organic aerosols are necessary to further investigate the formation of SOA and provide a better understanding of the reaction pathways of organic species in the atmosphere. While Aerosol Mass Spectrometry (AMS) can provide detailed information about the elemental composition of a sample, it reveals little about the chemical moieties which make up the particles. This work probes aerosol particles deposited on Teflon filters using FTIR, based on the protocols of Russell, et al. (Journal of Geophysical Research - Atmospheres, 114, 2009) and the spectral fitting algorithm of Takahama, et al (submitted, 2012). To validate the necessary calibration curves for the analysis of complex samples, primary aerosols of key compounds (e.g., citric acid, ammonium sulfate, sodium benzoate) were generated, and the accumulated masses of the aerosol samples were related to their IR absorption intensity. These validated calibration curves were then used to classify and quantify functional groups in SOA samples generated in chamber studies by MIT's Kroll group. The fitting algorithm currently quantifies the following functionalities: alcohols, alkanes, alkenes, amines, aromatics, carbonyls and carboxylic acids.

  16. Antioxidant activity and functional group analysis of Evolvulus alsinoides.

    PubMed

    Gomathi, Duraisamy; Ravikumar, Ganesan; Kalaiselvi, Manokaran; Devaki, Kanakasabapathi; Uma, Chandrasekar

    2014-11-01

    AMany oxidative stress-related diseases occur as a result of the accumulation of free radicals in the body. Free radicals are generated by various endogenous systems, exposure to different physiochemical conditions, or pathological states. A balance between free radicals and antioxidants is necessary for appropriate physiological function. A lot of studies are going on worldwide directed towards finding natural antioxidants of plant origin. FTIR spectroscopy is used to develop a rapid and effective analytical method for studying the main constituents in medicinal plants. The chemical constituents in the plants were identified and monitored for their medicinal properties. The aim of this study was to evaluate the in vitro antioxidant activities and FTIR spectroscopic analysis of the ethanolic extract of Evolvulus alsinoides. Free radical scavenging activity of ethanolic extract of the whole plant of E. alsinoides was evaluated by in vitro methods, including total antioxidant assay (FRAP method) and hydrogen peroxide scavenging activity using ascorbic acid as a standard. The degree of lipid peroxidation was examined by estimating the thiobarbituric acid reactive substances (TBARS) using standard methods and the functional groups were analyzed using FTIR spectroscopy. The IR spectrum in the mid-infrared region 4 000-400 cm(-1) was used for discriminatio and to identify various functional groups present in E. alsinoides. The findings indicated the presence of amino acids, amides, amines, carboxylic acids, carbonyl compounds, organic hydrocarbons, and halogens in the ethanolic extract of E. alsinoides, and the antioxidant activities were significantly increased, when compared with the standard antioxidant ascorbic acid, in a dose-dependent manner. The findings indicated promising antioxidant activity of the crude extract of E. alsinoides, and needs further exploration for their potential effective use. Copyright © 2014 China Pharmaceutical University. Published by

  17. Correlation functions from a unified variational principle: Trial Lie groups

    SciTech Connect

    Balian, R.; Vénéroni, M.

    2015-11-15

    Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill

  18. Nutrient resorption patterns of plant functional groups in a tropical savanna: variation and functional significance.

    PubMed

    Ratnam, Jayashree; Sankaran, Mahesh; Hanan, Niall P; Grant, Rina C; Zambatis, Nick

    2008-08-01

    Green and senesced leaf nitrogen (N) and phosphorus (P) concentrations of different plant functional groups in savanna communities of Kruger National Park, South Africa were analyzed to determine if nutrient resorption was regulated by plant nutritional status and foliar N:P ratios. The N and P concentrations in green leaves and the N concentrations in senesced leaves differed significantly between the dominant plant functional groups in these savannas: fine-leaved trees, broad-leaved trees and grasses. However, all three functional groups reduced P to comparable and very low levels in senesced leaves, suggesting that P was tightly conserved in this tropical semi-arid savanna ecosystem. Across all functional groups, there was evidence for nutritional control of resorption in this system, with both N and P resorption efficiencies decreasing as green leaf nutrient concentrations increased. However, specific patterns of resorption and the functional relationships between nutrient concentrations in green and senesced leaves varied by nutrient and plant functional group. Functional relationships between N concentrations in green and senesced leaves were indistinguishable between the dominant groups, suggesting that variation in N resorption efficiency was largely the result of inter-life form differences in green leaf N concentrations. In contrast, observed differences in P resorption efficiencies between life forms appear to be the result of both differences in green leaf P concentrations as well as inherent differences between life forms in the fraction of green leaf P resorbed from senescing leaves. Our results indicate that foliar N:P ratios are poor predictors of resorption efficiency in this ecosystem, in contrast to N and P resorption proficiencies, which are more responsive to foliar N:P ratios.

  19. Functional and phenotypic heterogeneity of group 3 innate lymphoid cells.

    PubMed

    Melo-Gonzalez, Felipe; Hepworth, Matthew R

    2017-03-01

    Group 3 innate lymphoid cells (ILC3), defined by expression of the transcription factor retinoid-related orphan receptor γt, play key roles in the regulation of inflammation and immunity in the gastrointestinal tract and associated lymphoid tissues. ILC3 consist largely of two major subsets, NCR(+) ILC3 and LTi-like ILC3, but also demonstrate significant plasticity and heterogeneity. Recent advances have begun to dissect the relationship between ILC3 subsets and to define distinct functional states within the intestinal tissue microenvironment. In this review we discuss the ever-expanding roles of ILC3 in the context of intestinal homeostasis, infection and inflammation - with a focus on comparing and contrasting the relative contributions of ILC3 subsets. © 2016 The Authors. Immunology published by John Wiley & Sons Ltd.

  20. Configuration analysis of three chiral polypyridines functionalized with pinene groups

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Peng; Qi, Xiao-Wei; Zhang, Da-Shuai; Zhu, Lin-Hua; Wang, Xiang-Hui; Shi, Zai-Feng; Lin, Qiang

    2017-08-01

    Three polypyridines functionalized with pinene groups, (-)-'dipineno'-[4,5:4″,5″]-fused 2,2‧:6‧,2″-terpyridine ((-)-1), (-)-1,3-di-(2-(4,5-pinene)pyridyl)benzene ((-)-2) and (-)-4,5-pinene-6‧-phenyl-2,2‧-bipyridine ((-)-3) were synthesized, and their structures were characterized by single crystal X-ray diffraction and electronic circular dichroism (ECD) spectra. Although a small difference is exhibited for their molecular structures, a twisting configuration is observed for (-)-2 with a larger dihedral angle between aromatic planes relative to (-)-1 and (-)-3. Correspondingly, compound (-)-2 exhibits a shorter wavelength of low-energy absorption due to a lower planarity, while all compounds (-)-1, (-)-2 and (-)-3 show similar Cotton effects of ECD spectra.

  1. Functional Group Analysis of Biomass Burning Particles Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Horrell, K.; Lau, A.; Bond, T.; Iraci, L. T.

    2008-12-01

    Biomass burning is a significant source of particulate organic carbon in the atmosphere. These particles affect the energy balance of the atmosphere directly by absorbing and scattering solar radiation, and indirectly through their ability to act as cloud condensation nuclei (CCN). The chemical composition of biomass burning particles influences their ability to act as CCN, thus understanding the chemistry of these particles is required for understanding their effects on climate and air quality. As climate change influences the frequency and severity of boreal forest fires, the influence of biomass burning aerosols on the atmosphere may become significantly greater. Only a small portion of the organic carbon (OC) fraction of these particles has been identified at the molecular level, although several studies have explored the general chemical classes found in biomass burning smoke. To complement those studies and provide additional information about the reactive functional groups present, we are developing a method for polarity-based separation of compound classes found in the OC fraction, followed by infrared (IR) spectroscopic analysis of each polarity fraction. It is our goal to find a simple, relatively low-tech method which will provide a moderate chemical understanding of the entire suite of compounds present in the OC fraction of biomass burning particles. Here we present preliminary results from pine and oak samples representative of Midwestern United States forests burned at several different temperatures. Wood type and combustion temperature are both seen to affect the composition of the particles. The latter seems to affect relative contributions of certain functional groups, while oak demonstrates at least one additional chemical class of compounds, particularly at lower burning temperatures, where gradual solid-gas phase reactions can produce relatively large amounts of incompletely oxidized products.

  2. Plant Functional Group Composition Modifies the Effects of Precipitation Change on Grassland Ecosystem Function

    PubMed Central

    Fry, Ellen L.; Manning, Pete; Allen, David G. P.; Hurst, Alex; Everwand, Georg; Rimmler, Martin; Power, Sally A.

    2013-01-01

    Temperate grassland ecosystems face a future of precipitation change, which can alter community composition and ecosystem functions through reduced soil moisture and waterlogging. There is evidence that functionally diverse plant communities contain a wider range of water use and resource capture strategies, resulting in greater resistance of ecosystem function to precipitation change. To investigate this interaction between composition and precipitation change we performed a field experiment for three years in successional grassland in southern England. This consisted of two treatments. The first, precipitation change, simulated end of century predictions, and consisted of a summer drought phase alongside winter rainfall addition. The second, functional group identity, divided the plant community into three groups based on their functional traits- broadly described as perennials, caespitose grasses and annuals- and removed these groups in a factorial design. Ecosystem functions related to C, N and water cycling were measured regularly. Effects of functional groupidentity were apparent, with the dominant trend being that process rates were higher under control conditions where a range of perennial species were present. E.g. litter decomposition rates were significantly higher in plots containing several perennial species, the group with the highest average leaf N content. Process rates were also very strongly affected by the precipitation change treatmentwhen perennial plant species were dominant, but not where the community contained a high abundance of annual species and caespitose grasses. This contrasting response could be attributable to differing rooting patterns (shallower structures under annual plants, and deeper roots under perennials) and faster nutrient uptake in annuals compared to perennials. Our results indicate that precipitation change will have a smaller effect on key process rates in grasslandscontaining a range of perennial and annual species

  3. Plant functional group composition modifies the effects of precipitation change on grassland ecosystem function.

    PubMed

    Fry, Ellen L; Manning, Pete; Allen, David G P; Hurst, Alex; Everwand, Georg; Rimmler, Martin; Power, Sally A

    2013-01-01

    Temperate grassland ecosystems face a future of precipitation change, which can alter community composition and ecosystem functions through reduced soil moisture and waterlogging. There is evidence that functionally diverse plant communities contain a wider range of water use and resource capture strategies, resulting in greater resistance of ecosystem function to precipitation change. To investigate this interaction between composition and precipitation change we performed a field experiment for three years in successional grassland in southern England. This consisted of two treatments. The first, precipitation change, simulated end of century predictions, and consisted of a summer drought phase alongside winter rainfall addition. The second, functional group identity, divided the plant community into three groups based on their functional traits- broadly described as perennials, caespitose grasses and annuals- and removed these groups in a factorial design. Ecosystem functions related to C, N and water cycling were measured regularly. Effects of functional groupidentity were apparent, with the dominant trend being that process rates were higher under control conditions where a range of perennial species were present. E.g. litter decomposition rates were significantly higher in plots containing several perennial species, the group with the highest average leaf N content. Process rates were also very strongly affected by the precipitation change treatmentwhen perennial plant species were dominant, but not where the community contained a high abundance of annual species and caespitose grasses. This contrasting response could be attributable to differing rooting patterns (shallower structures under annual plants, and deeper roots under perennials) and faster nutrient uptake in annuals compared to perennials. Our results indicate that precipitation change will have a smaller effect on key process rates in grasslandscontaining a range of perennial and annual species

  4. Functional renormalization group studies of nuclear and neutron matter

    NASA Astrophysics Data System (ADS)

    Drews, Matthias; Weise, Wolfram

    2017-03-01

    Functional renormalization group (FRG) methods applied to calculations of isospin-symmetric and asymmetric nuclear matter as well as neutron matter are reviewed. The approach is based on a chiral Lagrangian expressed in terms of nucleon and meson degrees of freedom as appropriate for the hadronic phase of QCD with spontaneously broken chiral symmetry. Fluctuations beyond mean-field approximation are treated solving Wetterich's FRG flow equations. Nuclear thermodynamics and the nuclear liquid-gas phase transition are investigated in detail, both in symmetric matter and as a function of the proton fraction in asymmetric matter. The equations of state at zero temperature of symmetric nuclear matter and pure neutron matter are found to be in good agreement with advanced ab-initio many-body computations. Contacts with perturbative many-body approaches (in-medium chiral perturbation theory) are discussed. As an interesting test case, the density dependence of the pion mass in the medium is investigated. The question of chiral symmetry restoration in nuclear and neutron matter is addressed. A stabilization of the phase with spontaneously broken chiral symmetry is found to persist up to high baryon densities once fluctuations beyond mean-field are included. Neutron star matter including beta equilibrium is discussed under the aspect of the constraints imposed by the existence of two-solar-mass neutron stars.

  5. Pd(II)-Catalyzed C–H Functionalizations Directed by Distal Weakly Coordinating Functional Groups

    PubMed Central

    Li, Gang; Wan, Li; Zhang, Guofu; Leow, Dasheng; Spangler, Jillian

    2015-01-01

    Ortho-C(sp2)–H olefination and acetoxylation of broadly useful synthetic building blocks phenylacetyl Weinreb amides, esters, and ketones are developed without installing an additional directing group. The interplay between the distal weak coordination and the ligand-acceleration is crucial for these reactions to proceed under mild conditions. The tolerance of longer distance between the target C–H bonds and the directing functional groups also allows for the functionalizations of more distal C–H bonds in hydrocinnamoyl ketones, Weinreb amides and biphenyl Weinreb amides. Mechanistically, the coordination of these carbonyl groups and the bisdentate amino acid ligand with Pd(II) centers provides further evidence for our early hypothesis that the carbonyl groups of the potassium carboxylate is responsible for the directed C–H activation of carboxylic acids. PMID:25768039

  6. EFFECT OF FUNCTIONAL GROUP CONFORMATION ON THE INFRARED SPECTRA OF SOME GEM DIFUNCTIONAL PHENYLETHYLENE DERIVATIVES,

    DTIC Science & Technology

    each functional group . The two bands for similar functional groups have been ascribed to S-cis- and S-trans- conformations of the carbonyl groups with...Except for the benzalmalononitriles, two functional group stretching vibrations occur in the infrared (i.r.) spectra of the beta,beta-difunctional...styrenes with similar functional groups . For geometrically homogeneous compounds with dissimilar functional groups only one absorption band occurs for

  7. Observations of Adolescent Peer Group Interactions as a Function of Within- and Between-Group Centrality Status

    ERIC Educational Resources Information Center

    Ellis, Wendy E.; Dumas, Tara M.; Mahdy, Jasmine C.; Wolfe, David A.

    2012-01-01

    Observations of adolescent (n = 258; M age = 15.45) peer group triads (n = 86) were analyzed to identify conversation and interaction styles as a function of within-group and between-group centrality status. Group members' discussions about hypothetical dilemmas were coded for agreements, disagreements, commands, and opinions. Interactions during…

  8. Observations of Adolescent Peer Group Interactions as a Function of Within- and Between-Group Centrality Status

    ERIC Educational Resources Information Center

    Ellis, Wendy E.; Dumas, Tara M.; Mahdy, Jasmine C.; Wolfe, David A.

    2012-01-01

    Observations of adolescent (n = 258; M age = 15.45) peer group triads (n = 86) were analyzed to identify conversation and interaction styles as a function of within-group and between-group centrality status. Group members' discussions about hypothetical dilemmas were coded for agreements, disagreements, commands, and opinions. Interactions during…

  9. Enantioselective Synthesis of Chiral Oxygen-Containing Heterocycles Using Copper-Catalyzed Aryl C-O Coupling Reactions via Asymmetric Desymmetrization.

    PubMed

    Zhang, Yong; Wang, Qiuyan; Wang, Ting; He, Huan; Yang, Wenqiang; Zhang, Xinhao; Cai, Qian

    2017-02-03

    An enantioselective desymmetric aryl C-O coupling reaction was demonstrated under the catalysis of CuI and a chiral cyclic diamine ligand. A series of chiral oxygen-containing heterocyclic units such as 2,3-dihydrobenzofurans, chromans, and 1,4-benzodioxanes with tertiary or quaternary stereocarbon centers were synthesized with this method. DFT calculations were also carried out for a better understanding of the model for enantiocontrol.

  10. Changes in Bird Functional Diversity across Multiple Land Uses: Interpretations of Functional Redundancy Depend on Functional Group Identity

    PubMed Central

    Luck, Gary W.; Carter, Andrew; Smallbone, Lisa

    2013-01-01

    Examinations of the impact of land-use change on functional diversity link changes in ecological community structure driven by land modification with the consequences for ecosystem function. Yet, most studies have been small-scale, experimental analyses and primarily focussed on plants. There is a lack of research on fauna communities and at large-scales across multiple land uses. We assessed changes in the functional diversity of bird communities across 24 land uses aligned along an intensification gradient. We tested the hypothesis that functional diversity is higher in less intensively used landscapes, documented changes in diversity using four diversity metrics, and examined how functional diversity varied with species richness to identify levels of functional redundancy. Functional diversity, measured using a dendogram-based metric, increased from high to low intensity land uses, but observed values did not differ significantly from randomly-generated expected values. Values for functional evenness and functional divergence did not vary consistently with land-use intensification, although higher than expected values were mostly recorded in high intensity land uses. A total of 16 land uses had lower than expected values for functional dispersion and these were mostly low intensity native vegetation sites. Relations between functional diversity and bird species richness yielded strikingly different patterns for the entire bird community vs. particular functional groups. For all birds and insectivores, functional evenness, divergence and dispersion showed a linear decline with increasing species richness suggesting substantial functional redundancy across communities. However, for nectarivores, frugivores and carnivores, there was a significant hump-shaped or non-significant positive linear relationship between these functional measures and species richness indicating less redundancy. Hump-shaped relationships signify that the most functionally diverse

  11. Changes in bird functional diversity across multiple land uses: interpretations of functional redundancy depend on functional group identity.

    PubMed

    Luck, Gary W; Carter, Andrew; Smallbone, Lisa

    2013-01-01

    Examinations of the impact of land-use change on functional diversity link changes in ecological community structure driven by land modification with the consequences for ecosystem function. Yet, most studies have been small-scale, experimental analyses and primarily focussed on plants. There is a lack of research on fauna communities and at large-scales across multiple land uses. We assessed changes in the functional diversity of bird communities across 24 land uses aligned along an intensification gradient. We tested the hypothesis that functional diversity is higher in less intensively used landscapes, documented changes in diversity using four diversity metrics, and examined how functional diversity varied with species richness to identify levels of functional redundancy. Functional diversity, measured using a dendogram-based metric, increased from high to low intensity land uses, but observed values did not differ significantly from randomly-generated expected values. Values for functional evenness and functional divergence did not vary consistently with land-use intensification, although higher than expected values were mostly recorded in high intensity land uses. A total of 16 land uses had lower than expected values for functional dispersion and these were mostly low intensity native vegetation sites. Relations between functional diversity and bird species richness yielded strikingly different patterns for the entire bird community vs. particular functional groups. For all birds and insectivores, functional evenness, divergence and dispersion showed a linear decline with increasing species richness suggesting substantial functional redundancy across communities. However, for nectarivores, frugivores and carnivores, there was a significant hump-shaped or non-significant positive linear relationship between these functional measures and species richness indicating less redundancy. Hump-shaped relationships signify that the most functionally diverse

  12. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest.

    PubMed

    Slade, Eleanor M; Mann, Darren J; Villanueva, Jerome F; Lewis, Owen T

    2007-11-01

    Much of the literature on the relationship between species richness or functional group richness and measures of ecosystem function focuses on a restricted set of ecosystem function measures and taxonomic groups. Few such studies have been carried out under realistic levels of diversity in the field, particularly in high diversity ecosystems such as tropical forests. We used exclusion experiments to study the effects of dung beetle functional group richness and composition on two interlinked and functionally important ecological processes, dung removal and secondary seed dispersal, in evergreen tropical forest in Sabah, Malaysian Borneo. Overall, both dung and seed removal increased with dung beetle functional group richness. However, levels of ecosystem functioning were idiosyncratic depending on the identity of the functional groups present, indicating an important role for functional group composition. There was no evidence for interference or competition among functional groups. We found strong evidence for overyielding and transgressive overyielding, suggesting complementarity or facilitation among functional groups. Not all mixtures showed transgressive overyielding, so that complementarity was restricted to particular functional group combinations. Beetles in a single functional group (large nocturnal tunnellers) had a disproportionate influence on measures of ecosystem function: in their absence dung removal is reduced by approximately 75%. However, a full complement of functional groups is required to maximize ecosystem functioning. This study highlights the importance of both functional group identity and species composition in determining the ecosystem consequences of extinctions or altered patterns in the relative abundance of species.

  13. Functional movement screen scores in a group of running athletes.

    PubMed

    Loudon, Janice K; Parkerson-Mitchell, Amy J; Hildebrand, Laurie D; Teague, Connie

    2014-04-01

    The purpose of this study was to determine the mean values of the functional movement screen (FMS) in a group of long-distance runners. The secondary aims were to investigate whether the FMS performance differed between sexes and between young and older runners. Forty-three runners, 16 women (mean age = 33.5 years, height = 165.2 cm, weight = 56.3 kg, and body mass index [BMI] = 20.6) and 27 men (mean age = 39.3 years, height = 177.6 cm, weight = 75.8 kg, and BMI = 24.2) performed the FMS. All the runners were injury-free and ran >30 km·wk. Independent t-tests were performed on the composite scores to examine the differences between men and women and also between young (<40 years) and older runners (>40 years). Contingency tables (2 × 2) were developed for each of the 7 screening tests to further look at the differences in groups for each single test. The χ values were calculated to determine significant differences. Statistical significance was set at p ≤ 0.05. There was no significant difference in the composite score between women and men. There were significant differences between the sexes in the push-up and straight leg test scores, with the women scoring better on each test. A significant difference was found in the composite scores between younger and older runners (p < 0.000). Additional score differences were found for the squat, hurdle step, and in-line lunge tests with the younger runners scoring better. This study provided mean values for the FMS in a cohort of long-distance runners. These values can be used as a reference for comparing FMST scores in other runners who are screened with this tool.

  14. Highly adaptive tests for group differences in brain functional connectivity.

    PubMed

    Kim, Junghi; Pan, Wei

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) and other technologies have been offering evidence and insights showing that altered brain functional networks are associated with neurological illnesses such as Alzheimer's disease. Exploring brain networks of clinical populations compared to those of controls would be a key inquiry to reveal underlying neurological processes related to such illnesses. For such a purpose, group-level inference is a necessary first step in order to establish whether there are any genuinely disrupted brain subnetworks. Such an analysis is also challenging due to the high dimensionality of the parameters in a network model and high noise levels in neuroimaging data. We are still in the early stage of method development as highlighted by Varoquaux and Craddock (2013) that "there is currently no unique solution, but a spectrum of related methods and analytical strategies" to learn and compare brain connectivity. In practice the important issue of how to choose several critical parameters in estimating a network, such as what association measure to use and what is the sparsity of the estimated network, has not been carefully addressed, largely because the answers are unknown yet. For example, even though the choice of tuning parameters in model estimation has been extensively discussed in the literature, as to be shown here, an optimal choice of a parameter for network estimation may not be optimal in the current context of hypothesis testing. Arbitrarily choosing or mis-specifying such parameters may lead to extremely low-powered tests. Here we develop highly adaptive tests to detect group differences in brain connectivity while accounting for unknown optimal choices of some tuning parameters. The proposed tests combine statistical evidence against a null hypothesis from multiple sources across a range of plausible tuning parameter values reflecting uncertainty with the unknown truth. These highly adaptive tests are not only

  15. Highly adaptive tests for group differences in brain functional connectivity

    PubMed Central

    Kim, Junghi; Pan, Wei

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) and other technologies have been offering evidence and insights showing that altered brain functional networks are associated with neurological illnesses such as Alzheimer's disease. Exploring brain networks of clinical populations compared to those of controls would be a key inquiry to reveal underlying neurological processes related to such illnesses. For such a purpose, group-level inference is a necessary first step in order to establish whether there are any genuinely disrupted brain subnetworks. Such an analysis is also challenging due to the high dimensionality of the parameters in a network model and high noise levels in neuroimaging data. We are still in the early stage of method development as highlighted by Varoquaux and Craddock (2013) that “there is currently no unique solution, but a spectrum of related methods and analytical strategies” to learn and compare brain connectivity. In practice the important issue of how to choose several critical parameters in estimating a network, such as what association measure to use and what is the sparsity of the estimated network, has not been carefully addressed, largely because the answers are unknown yet. For example, even though the choice of tuning parameters in model estimation has been extensively discussed in the literature, as to be shown here, an optimal choice of a parameter for network estimation may not be optimal in the current context of hypothesis testing. Arbitrarily choosing or mis-specifying such parameters may lead to extremely low-powered tests. Here we develop highly adaptive tests to detect group differences in brain connectivity while accounting for unknown optimal choices of some tuning parameters. The proposed tests combine statistical evidence against a null hypothesis from multiple sources across a range of plausible tuning parameter values reflecting uncertainty with the unknown truth. These highly adaptive tests are not

  16. Meson spectral functions at finite temperature and isospin density with the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Wang, Ziyue; Zhuang, Pengfei

    2017-07-01

    The pion superfluid and the corresponding Goldstone and soft modes are investigated in a two-flavor quark-meson model with a functional renormalization group. By solving the flow equations for the effective potential and the meson two-point functions at finite temperature and isospin density, the critical temperature for the superfluid increases sizeably in comparison with solving the flow equation for the potential only. The spectral function for the soft mode shows clearly a transition from meson gas to quark gas with increasing temperature and a crossover from Bose-Einstein condensation to Bardeen-Cooper-Schrieffer pairing of quarks with increasing isospin density.

  17. High-performance functional Renormalization Group calculations for interacting fermions

    NASA Astrophysics Data System (ADS)

    Lichtenstein, J.; Sánchez de la Peña, D.; Rohe, D.; Di Napoli, E.; Honerkamp, C.; Maier, S. A.

    2017-04-01

    We derive a novel computational scheme for functional Renormalization Group (fRG) calculations for interacting fermions on 2D lattices. The scheme is based on the exchange parametrization fRG for the two-fermion interaction, with additional insertions of truncated partitions of unity. These insertions decouple the fermionic propagators from the exchange propagators and lead to a separation of the underlying equations. We demonstrate that this separation is numerically advantageous and may pave the way for refined, large-scale computational investigations even in the case of complex multiband systems. Furthermore, on the basis of speedup data gained from our implementation, it is shown that this new variant facilitates efficient calculations on a large number of multi-core CPUs. We apply the scheme to the t ,t‧ Hubbard model on a square lattice to analyze the convergence of the results with the bond length of the truncation of the partition of unity. In most parameter areas, a fast convergence can be observed. Finally, we compare to previous results in order to relate our approach to other fRG studies.

  18. Functional performance testing in participants with functional ankle instability and in a healthy control group.

    PubMed

    Buchanan, Amanda S; Docherty, Carrie L; Schrader, John

    2008-01-01

    Functional ankle instability (FAI) affects a large part of the population. Inconsistent findings have been reported regarding the existence of functional performance deficits in individuals with FAI. To examine functional performance in participants with FAI compared with participants in a control group during 2 hopping tests. Case-control study. Athletic training research laboratory. There were 40 college-aged individuals who participated in our study: 20 with FAI and 20 without FAI. We defined FAI as history of an ankle sprain and residual episodes of "giving way." Participants completed 2 functional performance tests (FPTs): the single-limb hopping and the single-limb hurdle tests. Time to complete each test was recorded. Following each FPT, participants were asked if their ankles felt unstable during the test. We found no difference between participants in the FAI and control groups for the hopping or hurdle tests (P > .05). When asked if their ankles felt unstable during the FPTs, approximately half of the participants in the FAI group and none of the participants in the control group reported a feeling of instability. Subsequently, a secondary analysis of variance was calculated with participants grouped into 3 categories: control participants, FAI participants reporting instability symptoms during FPT (FAI-S), and FAI participants not reporting instability symptoms during FPT (FAI-NS). Results revealed a difference among the 3 groups for the single-limb hopping test (P < .01). Post hoc analysis revealed a difference between the FAI-S participants and both the control and the FAI-NS participants. No difference was identified for the single-limb hurdle test (P = .41). The FAI-S participants had performance deficits during the single-limb hopping test. Therefore, clinicians could use this simple hopping test as an additional method to determine the presence of FAI.

  19. Functional trait responses to grazing are mediated by soil moisture and plant functional group identity

    PubMed Central

    Zheng, Shuxia; Li, Wenhuai; Lan, Zhichun; Ren, Haiyan; Wang, Kaibo

    2015-01-01

    Abundant evidence has shown that grazing alters plant functional traits, community structure and ecosystem functioning of grasslands. Few studies, however, have tested how plant responses to grazing are mediated by resource availability and plant functional group identity. We examined the effects of grazing on functional traits across a broad range of species along a soil moisture gradient in Inner Mongolia grassland. Our results showed that trait syndromes of plant size (individual biomass) and shoot growth (leaf N content and leaf density) distinguished plant species responses to grazing. The effects of grazing on functional traits were mediated by soil moisture and dependent on functional group identity. For most species, grazing decreased plant height but increased leaf N and specific leaf area (SLA) along the moisture gradient. Grazing enhanced the community-weighted attributes (leaf NCWM and SLACWM), which were triggered mainly by the positive trait responses of annuals and biennials and perennial grasses, and increased relative abundance of perennial forbs. Our results suggest that grazing-induced species turnover and increased intraspecific trait variability are two drivers for the observed changes in community weighted attributes. The dominant perennial bunchgrasses exhibited mixed tolerance–resistance strategies to grazing and mixed acquisitive–conservative strategies in resource utilization. PMID:26655858

  20. Functional trait responses to grazing are mediated by soil moisture and plant functional group identity.

    PubMed

    Zheng, Shuxia; Li, Wenhuai; Lan, Zhichun; Ren, Haiyan; Wang, Kaibo

    2015-12-11

    Abundant evidence has shown that grazing alters plant functional traits, community structure and ecosystem functioning of grasslands. Few studies, however, have tested how plant responses to grazing are mediated by resource availability and plant functional group identity. We examined the effects of grazing on functional traits across a broad range of species along a soil moisture gradient in Inner Mongolia grassland. Our results showed that trait syndromes of plant size (individual biomass) and shoot growth (leaf N content and leaf density) distinguished plant species responses to grazing. The effects of grazing on functional traits were mediated by soil moisture and dependent on functional group identity. For most species, grazing decreased plant height but increased leaf N and specific leaf area (SLA) along the moisture gradient. Grazing enhanced the community-weighted attributes (leaf NCWM and SLACWM), which were triggered mainly by the positive trait responses of annuals and biennials and perennial grasses, and increased relative abundance of perennial forbs. Our results suggest that grazing-induced species turnover and increased intraspecific trait variability are two drivers for the observed changes in community weighted attributes. The dominant perennial bunchgrasses exhibited mixed tolerance-resistance strategies to grazing and mixed acquisitive-conservative strategies in resource utilization.

  1. A conceptual basis to encode and detect organic functional groups in XML.

    PubMed

    Sankar, Punnaivanam; Krief, Alain; Vijayasarathi, Durairaj

    2013-06-01

    A conceptual basis to define and detect organic functional groups is developed. The basic model of a functional group is termed as a primary functional group and is characterized by a group center composed of one or more group center atoms bonded to terminal atoms and skeletal carbon atoms. The generic group center patterns are identified from the structures of known functional groups. Accordingly, a chemical ontology 'Font' is developed to organize the existing functional groups as well as the new ones to be defined by the chemists. The basic model is extended to accommodate various combinations of primary functional groups as functional group assemblies. A concept of skeletal group is proposed to define the characteristic groups composed of only carbon atoms to be regarded as equivalent to functional groups. The combination of primary functional groups with skeletal groups is categorized as skeletal group assembly. In order to make the model suitable for reaction modeling purpose, a Graphical User Interface (GUI) is developed to define the functional groups and to encode in XML format appropriate to detect them in chemical structures. The system is capable of detecting multiple instances of primary functional groups as well as the overlapping poly-functional groups as the respective assemblies. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. 14 CFR Section 11 - Functional Classification-Operating Expenses of Group II and Group III Air Carriers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Functional Classification-Operating... ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 11 Functional Classification—Operating Expenses of Group II and Group III Air Carriers 5100Flying Operations....

  3. Ecosystem functions and densities of contributing functional groups respond in a different way to chemical stress.

    PubMed

    De Laender, Frederik; Taub, Frieda B; Janssen, Colin R

    2011-12-01

    Understanding whether and to what extent ecosystem functions respond to chemicals is a major challenge in environmental toxicology. The available data gathered by ecosystem-level experiments (micro- and mesocosms) often describe the responses of taxa densities to stress. However, whether these responses are proportional to the responses of associated ecosystem functions to stress is unclear. By combining a carbon budget modeling technique with data from a standardized microcosm experiment with a known community composition, we quantified three ecosystem functions (net primary production [NPP], net mesozooplankton production [NZP], and net bacterial production [NBP]) at three Cu concentrations, with a control. Changes of these ecosystem functions with increasing chemical concentrations were not always proportional to the Cu effects on the densities of the contributing functional groups. For example, Cu treatments decreased mesozooplankton density by 100-fold and increased phytoplankton density 10- to 100-fold while increasing NZP and leaving NPP unaltered. However, in contrast, Cu affected microzooplankton and the associated function (NBP) in a comparable way. We illustrate that differences in the response of phytoplankton/mesozooplankton densities and the associated ecosystem functions to stress occur because functional rates (e.g., photosynthesis rates/ingestion rates) vary among Cu treatments and in time. These variations could be explained by food web ecology but not by direct Cu effects, indicating that ecology may be a useful basis for understanding environmental effects of stressors.

  4. Polymer containing functional end groups is base for new polymers

    NASA Technical Reports Server (NTRS)

    Hirshfield, S. M.

    1971-01-01

    Butadiene is polymerized with lithium-p-lithiophenoxide to produce linear polymer containing oxy-lithium group at one end and active carbon-lithium group at other end. Living polymers represent new approach to preparation of difunctional polymers in which structural features, molecular weight, type and number of end groups are controlled.

  5. Plant species and functional group combinations affect green roof ecosystem functions.

    PubMed

    Lundholm, Jeremy; Macivor, J Scott; Macdougall, Zachary; Ranalli, Melissa

    2010-03-12

    Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green

  6. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  7. Effects of benthos on sediment transport: difficulties with functional grouping

    NASA Astrophysics Data System (ADS)

    Jumars, P. A.; Nowell, A. R. M.

    No consistent functional grouping of organisms as stabilizers vs destabilizers, respectively decreasing or enhancing erodibility, is possible. Benthic organisms can affect erodibility in particular—and sediment transport in general—via alternation (1) of fluid momentum impinging on the bed, (2) of particle exposure to the flow, (3) of adhesion between particles, and (4) of particle momentum. The net effects of a species or individual on erosion and deposition thresholds or on transport rates are not in general predictable from extant data. Furthermore, they depend upon the context of flow conditions, bed configuration, and community composition into which the organism is set. Separation of organism effects into these four categories does, however, allow their explicit incorporation into DuBoys-type and stochastic sediment dynamic models already in use and thus permits the specification of parameters whose measurement will enhance predictability of sediment transport modes and rates in natural, organism-influenced, marine settings. If the variable of prime concern is the total amount of sediment transported, rather than the frequency of transport events or the spatial pattern of erosion and eposition, and if most transport occurs in rare but intense bouts (e.g., winter storms on boreal continental shelves), then it may be possible to ignore organism effects without major sacrifices in accuracy or precision. Under high transport rates, suspended load effects override organism-produced bottom roughness, abrasion removes adhesives from transporting grains, and transport rates (normalized per unit width of the channel or bed) exceed feeding and pelletization rates. Moreover, at high rates most material transports as suspended load, effectively out of reach of the benthos. The transport rates at which organism effects are overridden, however, remain to be determined. For lower transport rates, foraging theory promises to provide insights into organism effects.

  8. Students' Perceptions of Classroom Group Work as a Function of Group Member Selection

    ERIC Educational Resources Information Center

    Myers, Scott A.

    2012-01-01

    The purpose of this assessment was to examine whether differences exist between students who self-select their classroom work group members and students who are randomly assigned to their classroom work groups in terms of their use of organizational citizenship behaviors with their work group members; their commitment to, trust in, and relational…

  9. Students' Perceptions of Classroom Group Work as a Function of Group Member Selection

    ERIC Educational Resources Information Center

    Myers, Scott A.

    2012-01-01

    The purpose of this assessment was to examine whether differences exist between students who self-select their classroom work group members and students who are randomly assigned to their classroom work groups in terms of their use of organizational citizenship behaviors with their work group members; their commitment to, trust in, and relational…

  10. Perceptions of learning as a function of seminar group factors.

    PubMed

    Jaarsma, A Debbie C; de Grave, Willem S; Muijtjens, Arno M M; Scherpbier, Albert J J A; van Beukelen, Peter

    2008-12-01

    Small-group learning is advocated for enhancing higher-order thinking and the development of skills and attitudes. Teacher performance, group interaction and the quality of assignments have been shown to affect small-group learning in hybrid and problem-based curricula. This study aimed to examine the perceptions of student groups as to how teacher performance, group interaction and the quality of assignments are related to one another and to learning effects in seminars of 15-30 students in a hybrid curriculum. We constructed a 28-item questionnaire and administered it to 639 students attending 32 seminars in Years 1-4 of an undergraduate veterinary curriculum. We performed factor analysis and reliability analysis of the questionnaire. We used correlation and regression analyses to explore the interactions of the four-factor model, with teacher performance, group interaction and quality of assignments as independent variables and the perceived learning effect of the seminars as the dependent variable. The response rate was 99%. Teacher performance (beta = 0.78) and group interaction (- 0.28) significantly influenced the perceived learning effect. The total effect of the quality of assignments (through effects on teacher performance and group interaction) was 0.47. The strong relationship between teacher performance and learning effect suggests that students rely strongly on their teachers. The negative effect of group interaction may reflect poor alignment of teaching and assessment and poor organisation of group processes. This should be further examined. Comparative studies on seminars are also recommended.

  11. Prediction of functional sites in proteins using conserved functional group analysis.

    PubMed

    Innis, C Axel; Anand, A Prem; Sowdhamini, R

    2004-04-02

    A detailed knowledge of a protein's functional site is an absolute prerequisite for understanding its mode of action at the molecular level. However, the rapid pace at which sequence and structural information is being accumulated for proteins greatly exceeds our ability to determine their biochemical roles experimentally. As a result, computational methods are required which allow for the efficient processing of the evolutionary information contained in this wealth of data, in particular that related to the nature and location of functionally important sites and residues. The method presented here, referred to as conserved functional group (CFG) analysis, relies on a simplified representation of the chemical groups found in amino acid side-chains to identify functional sites from a single protein structure and a number of its sequence homologues. We show that CFG analysis can fully or partially predict the location of functional sites in approximately 96% of the 470 cases tested and that, unlike other methods available, it is able to tolerate wide variations in sequence identity. In addition, we discuss its potential in a structural genomics context, where automation, scalability and efficiency are critical, and an increasing number of protein structures are determined with no prior knowledge of function. This is exemplified by our analysis of the hypothetical protein Ydde_Ecoli, whose structure was recently solved by members of the North East Structural Genomics consortium. Although the proposed active site for this protein needs to be validated experimentally, this example illustrates the scope of CFG analysis as a general tool for the identification of residues likely to play an important role in a protein's biochemical function. Thus, our method offers a convenient solution to rapidly and automatically process the vast amounts of data that are beginning to emerge from structural genomics projects.

  12. Application of macrobenthos functional groups to estimate the ecosystem health in a semi-enclosed bay.

    PubMed

    Peng, Shitao; Zhou, Ran; Qin, Xuebo; Shi, Honghua; Ding, Dewen

    2013-09-15

    In this study, the functional group concept was first applied to evaluate the ecosystem health of Bohai Bay. Macrobenthos functional groups were defined according to feeding types and divided into five groups: a carnivorous group (CA), omnivorous group (OM), planktivorous group (PL), herbivorous group (HE), and detritivorous group (DE). Groups CA, DE, OM, and PL were identified, but the HE group was absent from Bohai Bay. Group DE was dominant during the study periods. The ecosystem health was assessed using a functional group evenness index. The functional group evenness values of most sampling stations were less than 0.40, indicating that the ecosystem health was deteriorated in Bohai Bay. Such deterioration could be attributed to land reclamation, industrial and sewage effluents, oil pollution, and hypersaline water discharge. This study demonstrates that the functional group concept can be applied to ecosystem health assessment in a semi-enclosed bay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Perceptual Visual Grouping under Inattention: Electrophysiological Functional Imaging

    ERIC Educational Resources Information Center

    Razpurker-Apfeld, Irene; Pratt, Hillel

    2008-01-01

    Two types of perceptual visual grouping, differing in complexity of shape formation, were examined under inattention. Fourteen participants performed a similarity judgment task concerning two successive briefly presented central targets surrounded by task-irrelevant simple and complex grouping patterns. Event-related potentials (ERPs) were…

  14. Moral Judgment as a Function of Peer Group Interaction

    ERIC Educational Resources Information Center

    Maitland, Karen A.; Goldman, Jacquelin R.

    1974-01-01

    This article presents an investigation into the effects of peer group interaction on moral judgment among 36 male and female eleventh and twelfth graders. The results indicate greater social conflict and pressure in a group discussion induces greater change in the level of moral judgment. (DE)

  15. Moral Judgment as a Function of Peer Group Interaction

    ERIC Educational Resources Information Center

    Maitland, Karen A.; Goldman, Jacquelin R.

    1974-01-01

    This article presents an investigation into the effects of peer group interaction on moral judgment among 36 male and female eleventh and twelfth graders. The results indicate greater social conflict and pressure in a group discussion induces greater change in the level of moral judgment. (DE)

  16. Versatile Two-Step Functionalization of Nanocarbons: Grafting of Propargylic Groups and Click Post-Functionalization.

    PubMed

    Desmecht, Antonin; Hermans, Sophie; Riant, Olivier

    2017-04-01

    Chemical functionalization of nanocarbons is essential for further applications in various fields. We developed a facile, inexpensive, and gram-scale one-pot route towards alkynyl-functionalized nanocarbons. Nucleophilic addition/propargylic capture places alkyne moieties at the surface of carbon nanotubes (CNTs) and graphene. Thermogravimetric analysis coupled with mass spectrometry and Raman analysis confirmed the efficiency of this process. Conductivity measurements demonstrated the maintenance of the CNT electrical properties. The attached alkynyl moieties were reacted with various azide derivatives through the click-Huisgen [3+2] cycloaddition and characterized with XPS. The efficient addition of those derivatives enables the application of our finding in various fields. This route is a reliable and convenient alternative to the known diazonium functionalization and oxidation-esterification reactions to graft alkyne groups.

  17. Versatile Two‐Step Functionalization of Nanocarbons: Grafting of Propargylic Groups and Click Post‐Functionalization

    PubMed Central

    Desmecht, Antonin

    2017-01-01

    Abstract Chemical functionalization of nanocarbons is essential for further applications in various fields. We developed a facile, inexpensive, and gram‐scale one‐pot route towards alkynyl‐functionalized nanocarbons. Nucleophilic addition/propargylic capture places alkyne moieties at the surface of carbon nanotubes (CNTs) and graphene. Thermogravimetric analysis coupled with mass spectrometry and Raman analysis confirmed the efficiency of this process. Conductivity measurements demonstrated the maintenance of the CNT electrical properties. The attached alkynyl moieties were reacted with various azide derivatives through the click‐Huisgen [3+2] cycloaddition and characterized with XPS. The efficient addition of those derivatives enables the application of our finding in various fields. This route is a reliable and convenient alternative to the known diazonium functionalization and oxidation‐esterification reactions to graft alkyne groups. PMID:28413757

  18. Hydrolysis of organonitrate functional groups in aerosol particles

    SciTech Connect

    Liu, Shang; Shilling, John E.; Song, Chen; Hiranuma, Naruki; Zaveri, Rahul A.; Russell, Lynn M.

    2012-10-19

    Organonitrate (ON) groups are important substituents in secondary organic aerosols. Model simulations and laboratory studies indicate a large fraction of ON groups in aerosol particles, but much lower quantities are observed in the atmosphere. Hydrolysis of ON groups in aerosol particles has been proposed recently. To test this hypothesis, we simulated formation of ON molecules in a reaction chamber under a wide range of relative humidity (0% to 90%). The mass fraction of ON groups (5% to 20% for high-NOx experiments) consistently decreased with increasing relative humidity, which was best explained by hydrolysis of ON groups at a rate of 4 day-1 (lifetime of 6 hours) for reactions under relative humidity greater than 20%. In addition, we found that secondary nitrogen-containing molecules absorb light, with greater absorption under dry and high-NOx conditions. This work provides the first evidence for particle-phase hydrolysis of ON groups, a process that could substantially reduce ON group concentration in the atmosphere.

  19. Dominant Functional Group Effects on the Invasion Resistance at Different Resource Levels

    PubMed Central

    Wang, Jiang; Ge, Yuan; Zhang, Chong B.; Bai, Yi; Du, Zhao K.

    2013-01-01

    Background Functional group composition may affect invasion in two ways the effect of abundance, i.e. dominance of functional group; and the effect of traits, i.e. identity of functional groups. However, few studies have focused on the role of abundance of functional group on invasion resistance. Moreover, how resource availability influences the role of the dominant functional group in invasion resistance is even less understood. Methodology/Principal Findings In this experiment, we established experimental pots using four different functional groups (annual grass, perennial grass, deciduous shrub or arbor and evergreen shrub or arbor), and the dominant functional group was manipulated. These experimental pots were respectively constructed at different soil nitrogen levels (control and fertilized). After one year of growth, we added seeds of 20 different species (five species per functional group) to the experimental pots. Fertilization significantly increased the overall invasion success, while dominant functional group had little effect on overall invasion success. When invaders were grouped into functional groups, invaders generally had lower success in pots dominated by the same functional group in the control pots. However, individual invaders of the same functional group exhibited different invasion patterns. Fertilization generally increased success of invaders in pots dominated by the same than by another functional group. However, fertilization led to great differences for individual invaders. Conclusions/Significance The results showed that the dominant functional group, independent of functional group identity, had a significant effect on the composition of invaders. We suggest that the limiting similarity hypothesis may be applicable at the functional group level, and limiting similarity may have a limited role for individual invaders as shown by the inconsistent effects of dominant functional group and fertilization. PMID:24167565

  20. Dominant functional group effects on the invasion resistance at different resource levels.

    PubMed

    Wang, Jiang; Ge, Yuan; Zhang, Chong B; Bai, Yi; Du, Zhao K

    2013-01-01

    Functional group composition may affect invasion in two ways the effect of abundance, i.e. dominance of functional group; and the effect of traits, i.e. identity of functional groups. However, few studies have focused on the role of abundance of functional group on invasion resistance. Moreover, how resource availability influences the role of the dominant functional group in invasion resistance is even less understood. In this experiment, we established experimental pots using four different functional groups (annual grass, perennial grass, deciduous shrub or arbor and evergreen shrub or arbor), and the dominant functional group was manipulated. These experimental pots were respectively constructed at different soil nitrogen levels (control and fertilized). After one year of growth, we added seeds of 20 different species (five species per functional group) to the experimental pots. Fertilization significantly increased the overall invasion success, while dominant functional group had little effect on overall invasion success. When invaders were grouped into functional groups, invaders generally had lower success in pots dominated by the same functional group in the control pots. However, individual invaders of the same functional group exhibited different invasion patterns. Fertilization generally increased success of invaders in pots dominated by the same than by another functional group. However, fertilization led to great differences for individual invaders. The results showed that the dominant functional group, independent of functional group identity, had a significant effect on the composition of invaders. We suggest that the limiting similarity hypothesis may be applicable at the functional group level, and limiting similarity may have a limited role for individual invaders as shown by the inconsistent effects of dominant functional group and fertilization.

  1. Effects of spatial grouping on the functional response of predators

    USGS Publications Warehouse

    Cosner, C.; DeAngelis, D.L.; Ault, J.S.; Olson, D.B.

    1999-01-01

    A unified mechanistic approach is given for the derivation of various forms of functional response in predator-prey models. The derivation is based on the principle-of-mass action but with the crucial refinement that the nature of the spatial distribution of predators and/or opportunities for predation are taken into account in an implicit way. If the predators are assumed to have a homogeneous spatial distribution, then the derived functional response is prey-dependent. If the predators are assumed to form a dense colony or school in a single (possibly moving) location, or if the region where predators can encounter prey is assumed to be of limited size, then the functional response depends on both predator and prey densities in a manner that reflects feeding interference between predators. Depending on the specific assumptions, the resulting functional response may be of Beddington-DeAngelis type, of Hassell-Varley type, or ratio-dependent.

  2. Nonequilibrium functional renormalization group for interacting quantum systems.

    PubMed

    Jakobs, Severin G; Meden, Volker; Schoeller, Herbert

    2007-10-12

    We propose a nonequilibrium version of functional renormalization within the Keldysh formalism by introducing a complex-valued flow parameter in the Fermi or Bose functions of each reservoir. Our cutoff scheme provides a unified approach to equilibrium and nonequilibrium situations. We apply it to nonequilibrium transport through an interacting quantum wire coupled to two reservoirs and show that the nonequilibrium occupation induces new power law exponents for the conductance.

  3. Multicultural-Multilingual Group Sessions: Development of Functional Communication

    ERIC Educational Resources Information Center

    Larroude, Bettina

    2004-01-01

    Group therapy with multilingual, multicultural populations is a challenging and unexplored area that is beginning to be addressed because of the growing population of multilingual, multicultural children. In this article, the importance of working with children from different cultural backgrounds, and current research on bilingualism are reviewed.…

  4. Cyclic Hardening Behaviors and Reduction in Fatigue Life of Type 316LN Austenitic Stainless Steel in 310 deg. C Low Oxygen-Containing Water

    SciTech Connect

    Hyunchul Cho; Byoung Koo Kim; Changheuil Jang; In Sup Kim; Seung Mo Hong

    2006-07-01

    Low cycle fatigue tests were conducted to investigate the cyclic behavior and the fatigue life of type 316LN stainless steel (SS) at various strain rates in 310 deg. C low oxygen-containing water. The strain rates were 0.008, 0.04, and 0.4%/s, and the applied strain amplitude was varied from 0.4 to 1.0%. The dissolved oxygen concentration of the test water was maintained below 1 ppb. The test material in 310 deg. C low oxygen-containing water experienced a primary hardening, followed by a softening. From our data, we confirm the occurrence of the dynamic strain aging (DSA), and finally it can be considered that the primary hardening was brought about by the DSA. The secondary hardening was observed distinctly for 0.4%/s and 0.4%. The improvement of fatigue resistance and the secondary hardening occurred under the same loading condition. Therefore, the improvement of fatigue resistance may be related to the occurrence of the secondary hardening. When the secondary hardening occurs, intense slip bands are replaced by the corduroy structure. The corduroy structure can induce retardation of crack initiation, and ultimately the fatigue resistance is improved. Comparative study between the fatigue life generated in the current study and some prediction models was performed to evaluate the reliability of our data. (authors)

  5. [The gas chromatographic determination of sulfur- and oxygen-containing organic compounds released into the air of cellulose sulfate works].

    PubMed

    Taranenko, N A; Dorogova, V B

    1992-01-01

    The article presents data on the design of sensitive, selective, useful in group analysis method to detect dimethylsulphide, dimethyldisulphide, acetic, propionic, butyric and valeric acids, methyl alcohol and phenol by means of gas chromatography in the air of cellulose sulphate production working zone. The methods were tested in examining the work conditions in Bratsk found-lavage shops.

  6. Aldehyde Recognition and Discrimination by Mammalian Odorant Receptors via Functional Group-Specific Hydration Chemistry

    DTIC Science & Technology

    2015-09-02

    distribution is unlimited. Aldehyde Recognition and Discrimination by Mammalian Odorant Receptors via Functional Group-Specific Hydration Chemistry The...Recognition and Discrimination by Mammalian Odorant Receptors via Functional Group-Specific Hydration Chemistry Report Title The mammalian odorant receptors...octanal. Aldehyde Recognition and Discrimination by Mammalian Odorant Receptors via Functional Group-Specific Hydration Chemistry Approved for public

  7. Reactivity of End-functionalized Polymers Containing Diels-Alder Functional Groups

    NASA Astrophysics Data System (ADS)

    Meng, Yuan; Zhang, Yuan; Anthamatten, Mitchell

    2013-03-01

    Incorporation of reversible covalent bond into macromolecular systems has proven useful in engineering novel responsive architectures, and Diels-Alder bonding in this context is now well established. However, efficient synthesis of end-functionalized polymers is a major obstacle hindering further development of responsive and modular polymer architectures. In this current research, two immiscible polymers, poly(methyl methacrylate) (PMMA) and poly(benzyl methacrylate) (PBzMA) with controlled molecular weight, bearing terminal furan-maleimide groups, are prepared via Reversible Addition-Fragmentation chain transfer (RAFT) polymerization. The reactivity of such end-functionalized polymers is explored to expose the relationship between chain composition and their ability to undergo modular cross-coupling to form monodisperse block copolymers. To elucidate how reaction conditions affect the efficiency of the Diels-Alder reaction, Hydrogen Nuclear Magnetic Resonance (H-NMR) and Size Exclusion Chromatography (SEC) techniques are actively applied. Experimental results will be interpreted on the basis of dissimilarity between interaction energies of polymer segments and the concentration of reactive groups.

  8. Quantum groups and functional relations for lower rank

    NASA Astrophysics Data System (ADS)

    Nirov, Kh. S.; Razumov, A. V.

    2017-02-01

    A detailed construction of the universal integrability objects related to the integrable systems associated with the quantum loop algebra Uq(L(sl2)) is given. The full proof of the functional relations in the form independent of the representation of the quantum loop algebra on the quantum space is presented. The case of the general gradation and general twisting is treated. The specialization of the universal functional relations to the case when the quantum space is the state space of a discrete spin chain is described. This is a digression of the corresponding consideration for the case of the quantum loop algebra Uq(L(sl3)) with an extension to the higher spin case.

  9. Direct mechanochemical cleavage of functional groups from graphene

    NASA Astrophysics Data System (ADS)

    Felts, Jonathan R.; Oyer, Andrew J.; Hernández, Sandra C.; Whitener, Keith E., Jr.; Robinson, Jeremy T.; Walton, Scott G.; Sheehan, Paul E.

    2015-03-01

    Mechanical stress can drive chemical reactions and is unique in that the reaction product can depend on both the magnitude and the direction of the applied force. Indeed, this directionality can drive chemical reactions impossible through conventional means. However, unlike heat- or pressure-driven reactions, mechanical stress is rarely applied isometrically, obscuring how mechanical inputs relate to the force applied to the bond. Here we report an atomic force microscope technique that can measure mechanically induced bond scission on graphene in real time with sensitivity to atomic-scale interactions. Quantitative measurements of the stress-driven reaction dynamics show that the reaction rate depends both on the bond being broken and on the tip material. Oxygen cleaves from graphene more readily than fluorine, which in turn cleaves more readily than hydrogen. The technique may be extended to study the mechanochemistry of any arbitrary combination of tip material, chemical group and substrate.

  10. Influence of substituents and functional groups on the surface composition of ionic liquids.

    PubMed

    Kolbeck, Claudia; Niedermaier, Inga; Deyko, Alexey; Lovelock, Kevin R J; Taccardi, Nicola; Wei, Wei; Wasserscheid, Peter; Maier, Florian; Steinrück, Hans-Peter

    2014-04-01

    We have performed a systematic study addressing the surface behavior of a variety of functionalized and non-functionalized ionic liquids (ILs). From angle-resolved X-ray photoelectron spectroscopy, detailed conclusions on the surface enrichment of the functional groups and the molecular orientation of the cations and anions is derived. The systems include imidazolium-based ILs methylated at the C2 position, a phenyl-functionalized IL, an alkoxysilane-functionalized IL, halo-functionalized ILs, thioether-functionalized ILs, and amine-functionalized ILs. The results are compared with the results for corresponding non-functionalized ILs where available. Generally, enrichment of the functional group at the surface is only observed for systems that have very weak interaction between the functional group and the ionic head groups.

  11. Polymerization of 1,3-Dienes with Functional Groups. 4.

    NASA Astrophysics Data System (ADS)

    Takenaka, Katsuhiko; Shibata, Natsuyo; Tsuchida, Shinsuke; Takeshita, Hiroki; Miya, Masamitsu; Shiomi, Tomoo

    Anionic polymerization of N,N-diethyl-2-methylene-3-butenamide (DEA), which is a 1,3-butadiene derivative containing a diethylamide function, was carried out in tetrahydrofurane (THF) under various conditions. When DEA was polymerized in THF at -78°C using potassium naphthalenide (K-Naph) or diphenylmethylpotassium (DPMK) as an initiator, a polymer of predictable molecular weight with a narrow molecular weight distribution was obtained. However, the rate of polymerization was extremely slow to reach 80% conversion after 720 h. When the polymerization temperature was raised to 20°C, a low molecular weight oligomer with a broad molecular weight distribution was obtained because of a chain transfer reaction. On the other hand, no such side reaction occurred even at 20°C, when polymerization was carried out in the presence of LiCl. Also, the chain transfer reaction did not occur in lithium naphthalenide (Li-Naph) initiated polymerization. The microstructure of the polymer prepared using a potassium counter cation was a 1 : 1 mixture of 1,4-E and 1,2- structures. In the case of Li-Naph or DPMK/LiCl systems, the microstructure was a complicated mixture of 1,4-E, 1,4-Z, and 1,2-structures.

  12. The messenger matters: Pollinator functional group influences mating system dynamics.

    PubMed

    Weber, Jennifer J

    2017-08-01

    The incredible diversity of plant mating systems has fuelled research in evolutionary biology for over a century. Currently, there is broad concern about the impact of rapidly changing pollinator communities on plant populations. Very few studies, however, examine patterns and mechanisms associated with multiple paternity from cross-pollen loads. Often, foraging pollinators collect a mixed pollen load that may result in the deposition of pollen from different sires to receptive stigmas. Coincident deposition of self- and cross-pollen leads to interesting mating system dynamics and has been investigated in numerous species. But, mixed pollen loads often consist of a diversity of cross-pollen and result in multiple sires of seeds within a fruit. In this issue of Molecular Ecology, Rhodes, Fant, and Skogen () examine how pollinator identity and spatial isolation influence multiple paternity within fruits of a self-incompatible evening primrose. The authors demonstrate that pollen pool diversity varies between two pollinator types, hawkmoths and diurnal solitary bees. Further, progeny from more isolated plants were less likely to have multiple sires regardless of the pollinator type. Moving forward, studies of mating system dynamics should consider the implications of multiple paternity and move beyond the self- and cross-pollination paradigm. Rhodes et al. () demonstrate the importance of understanding the roles that functionally diverse pollinators play in mating system dynamics. © 2017 John Wiley & Sons Ltd.

  13. Critical effect of dependency groups on the function of networks.

    PubMed

    Parshani, Roni; Buldyrev, Sergey V; Havlin, Shlomo

    2011-01-18

    Current network models assume one type of links to define the relations between the network entities. However, many real networks can only be correctly described using two different types of relations. Connectivity links that enable the nodes to function cooperatively as a network and dependency links that bind the failure of one network element to the failure of other network elements. Here we present an analytical framework for studying the robustness of networks that include both connectivity and dependency links. We show that a synergy exists between the failure of connectivity and dependency links that leads to an iterative process of cascading failures that has a devastating effect on the network stability. We present exact analytical results for the dramatic change in the network behavior when introducing dependency links. For a high density of dependency links, the network disintegrates in a form of a first-order phase transition, whereas for a low density of dependency links, the network disintegrates in a second-order transition. Moreover, opposed to networks containing only connectivity links where a broader degree distribution results in a more robust network, when both types of links are present a broad degree distribution leads to higher vulnerability.

  14. Critical effect of dependency groups on the function of networks

    PubMed Central

    Parshani, Roni; Buldyrev, Sergey V.; Havlin, Shlomo

    2011-01-01

    Current network models assume one type of links to define the relations between the network entities. However, many real networks can only be correctly described using two different types of relations. Connectivity links that enable the nodes to function cooperatively as a network and dependency links that bind the failure of one network element to the failure of other network elements. Here we present an analytical framework for studying the robustness of networks that include both connectivity and dependency links. We show that a synergy exists between the failure of connectivity and dependency links that leads to an iterative process of cascading failures that has a devastating effect on the network stability. We present exact analytical results for the dramatic change in the network behavior when introducing dependency links. For a high density of dependency links, the network disintegrates in a form of a first-order phase transition, whereas for a low density of dependency links, the network disintegrates in a second-order transition. Moreover, opposed to networks containing only connectivity links where a broader degree distribution results in a more robust network, when both types of links are present a broad degree distribution leads to higher vulnerability. PMID:21191103

  15. METALLICITY DISTRIBUTION FUNCTIONS OF FOUR LOCAL GROUP DWARF GALAXIES

    SciTech Connect

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J. E-mail: holtz@nmsu.edu

    2015-06-15

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color–color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color–color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%–50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution.

  16. Quantitative evaluation of interaction force between functional groups in protein and polymer brush surfaces.

    PubMed

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2014-03-18

    To understand interactions between polymer surfaces and different functional groups in proteins, interaction forces were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Various polymer brush surfaces were systematically prepared by surface-initiated atom transfer radical polymerization as well-defined model surfaces to understand protein adsorption behavior. The polymer brush layers consisted of phosphorylcholine groups (zwitterionic/hydrophilic), trimethylammonium groups (cationic/hydrophilic), sulfonate groups (anionic/hydrophilic), hydroxyl groups (nonionic/hydrophilic), and n-butyl groups (nonionic/hydrophobic) in their side chains. The interaction forces between these polymer brush surfaces and different functional groups (carboxyl groups, amino groups, and methyl groups, which are typical functional groups existing in proteins) were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Furthermore, the amount of adsorbed protein on the polymer brush surfaces was quantified by surface plasmon resonance using albumin with a negative net charge and lysozyme with a positive net charge under physiological conditions. The amount of proteins adsorbed on the polymer brush surfaces corresponded to the interaction forces generated between the functional groups on the cantilever and the polymer brush surfaces. The weakest interaction force and least amount of protein adsorbed were observed in the case of the polymer brush surface with phosphorylcholine groups in the side chain. On the other hand, positive and negative surfaces generated strong forces against the oppositely charged functional groups. In addition, they showed significant adsorption with albumin and lysozyme, respectively. These results indicated that the interaction force at the functional group level might be

  17. Enhanced intersystem crossing rate in polymethine-like molecules: sulfur-containing squaraines versus oxygen-containing analogues.

    PubMed

    Peceli, Davorin; Hu, Honghua; Fishman, Dmitry A; Webster, Scott; Przhonska, Olga V; Kurdyukov, Vladimir V; Slominsky, Yurii L; Tolmachev, Alexey I; Kachkovski, Alexey D; Gerasov, Andrey O; Masunov, Artëm E; Hagan, David J; Van Stryland, Eric W

    2013-03-21

    Two different approaches to increase intersystem crossing rates in polymethine-like molecules are presented: traditional heavy-atom substitution and molecular levels engineering. Linear and nonlinear optical properties of a series of polymethine dyes with Br- and Se-atom substitution, and a series of new squaraine molecules, where one or two oxygen atoms in a squaraine bridge are replaced with sulfur atoms, are investigated. A consequence of the oxygen-to-sulfur substitution in squaraines is the inversion of their lowest-lying ππ* and nπ* states leading to a significant reduction of singlet-triplet energy difference and opening of an additional intersystem channel of relaxation. Experimental studies show that triplet quantum yields for polymethine dyes with heavy-atom substitutions are small (not more than 10%), while for sulfur-containing squaraines these values reach almost unity. Linear spectroscopic characterization includes absorption, fluorescence, quantum yield, anisotropy, and singlet oxygen generation measurements. Nonlinear characterization, performed by picosecond and femtosecond laser systems (pump-probe and Z-scan measurements), includes measurements of the triplet quantum yields, excited state absorption, two-photon absorption, and singlet and triplet state lifetimes. Experimental results are in agreement with density functional theory calculations allowing determination of the energy positions, spin-orbital coupling, and electronic configurations of the lowest electronic transitions.

  18. Red electroluminescence of ruthenium sensitizer functionalized by sulfonate anchoring groups.

    PubMed

    Shahroosvand, Hashem; Abbasi, Parisa; Mohajerani, Ezeddin; Janghouri, Mohammad

    2014-06-28

    We have synthesized five novel Ru(ii) phenanthroline complexes with an additional aryl sulfonate ligating substituent at the 5-position [Ru(L)(bpy)2](BF4)2 (1), [Ru(L)(bpy)(SCN)2] (2), [Ru(L)3](BF4)2 (3), [Ru(L)2(bpy)](BF4)2 (4) and [Ru(L)(BPhen)(SCN)2] (5) (where L = 6-one-[1,10]phenanthroline-5-ylamino)-3-hydroxynaphthalene 1-sulfonic, bpy = 2,2'-bipyridine, BPhen = 4,7-diphenyl-1,10-phenanthroline), as both photosensitizers for oxide semiconductor solar cells (DSSCs) and light emitting diodes (LEDs). The absorption and emission maxima of these complexes red shifted upon extending the conjugation of the phenanthroline ligand. Ru phenanthroline complexes exhibit broad metal to ligand charge transfer-centered electroluminescence (EL) with a maximum near 580 nm. Our results indicated that a particular structure (2) can be considered as both DSSC and OLED devices. The efficiency of the LED performance can be tuned by using a range of ligands. Device (2) has a luminance of 550 cd m(-2) and maximum efficiency of 0.9 cd A(-1) at 18 V, which are the highest values among the five devices. The turn-on voltage of this device is approximately 5 V. The role of auxiliary ligands in the photophysical properties of Ru complexes was investigated by DFT calculation. We have also studied photovoltaic properties of dye-sensitized nanocrystalline semiconductor solar cells based on Ru phenanthroline complexes and an iodine redox electrolyte. A solar energy to electricity conversion efficiency (η) of 0.67% was obtained for Ru complex (2) under standard AM 1.5 irradiation with a short-circuit photocurrent density (Jsc) of 2.46 mA cm(-2), an open-circuit photovoltage (Voc) of 0.6 V, and a fill factor (ff) of 40%, which are all among the highest values for ruthenium sulfonated anchoring groups reported so far. Monochromatic incident photon to current conversion efficiency was 23% at 475 nm. Photovoltaic studies clearly indicated dyes with two SCN substituents yielded a higher Jsc for the

  19. Metallicity Distribution Functions of Four Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J.

    2015-06-01

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color-color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color-color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%-50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is

  20. A Generalized Logistic Regression Procedure to Detect Differential Item Functioning among Multiple Groups

    ERIC Educational Resources Information Center

    Magis, David; Raiche, Gilles; Beland, Sebastien; Gerard, Paul

    2011-01-01

    We present an extension of the logistic regression procedure to identify dichotomous differential item functioning (DIF) in the presence of more than two groups of respondents. Starting from the usual framework of a single focal group, we propose a general approach to estimate the item response functions in each group and to test for the presence…

  1. Use of the Nosyl Group as a Functional Protecting Group in Applications of a Michael/Smiles Tandem Process.

    PubMed

    Coulibali, Siomenan; Godou, Timothé; Canesi, Sylvain

    2016-09-02

    Concise preparations of elaborated polycyclic and heterocyclic systems present in natural products were obtained using the nosyl group as a functional protecting group not only to mask the reactivity of a sensitive moiety but also to provide a structure desired in the final target. The group is transferred to the substrate during deprotection through a novel extension of the Truce-Smiles rearrangement in tandem with a 1,4-addition. This strategy provides access to a ring system laden with valuable functionalities for subsequent manipulations and can serve as a versatile building block for the construction of more complex molecular architectures such as indoles in a manner compatible with the concepts of green chemistry and atom economy.

  2. Soft and Bio Nanomaterials Group at Brookhaven’s Center for Functional Nanomaterials

    SciTech Connect

    Gang, Oleg

    2016-12-07

    Group leader Oleg Gang talks about the methods his group develops to direct the self-assembly of nanoscale systems from organic and inorganic components into functional materials with desired properties.

  3. Soft and Bio Nanomaterials Group at Brookhaven’s Center for Functional Nanomaterials

    ScienceCinema

    Gang, Oleg

    2016-12-14

    Group leader Oleg Gang talks about the methods his group develops to direct the self-assembly of nanoscale systems from organic and inorganic components into functional materials with desired properties.

  4. Synthesis of Highly Functionalized Triarylbismuthines by Functional Group Manipulation and Use in Palladium- and Copper-Catalyzed Arylation Reactions.

    PubMed

    Hébert, Martin; Petiot, Pauline; Benoit, Emeline; Dansereau, Julien; Ahmad, Tabinda; Le Roch, Adrien; Ottenwaelder, Xavier; Gagnon, Alexandre

    2016-07-01

    Organobismuthines are an attractive class of organometallic reagents that can be accessed from inexpensive and nontoxic bismuth salts. Triarylbismuthines are particularly interesting due to their air and moisture stability and high functional group tolerance. We report herein a detailed study on the preparation of highly functionalized triarylbismuth reagents by triple functional group manipulation and their use in palladium- and copper-catalyzed C-, N-, and O-arylation reactions.

  5. Developing the group mind through functional subgrouping: linking systems-centered training (SCT) and interpersonal neurobiology.

    PubMed

    Gantt, Susan P; Agazarian, Yvonne M

    2010-10-01

    This article introduces the systems-centered concept of the "group mind" by linking systems-centered thinking and interpersonal neurobiology, building on Siegel's definition of mind as the process of regulating the flow of energy and information. Functional subgrouping, the systems-centered group method for resolving conflicts, discriminates and integrates the flow of energy and information within and between group members, subgroups, and the group-as-a-whole, thus potentiating survival, development, and transformation. This article uses the interpersonal neurobiological framework to discuss functional subgrouping as a tool for developing the group mind: considering how functional subgrouping facilitates emotional regulation, creates a secure relational context, and potentiates neural integration.

  6. A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts.

    PubMed

    Asakura, Yukari; Barkan, Alice

    2007-12-01

    The CRM domain is a recently recognized RNA binding domain found in three group II intron splicing factors in chloroplasts, in a bacterial protein that associates with ribosome precursors, and in a family of uncharacterized proteins in plants. To elucidate the functional repertoire of proteins with CRM domains, we studied CFM2 (for CRM Family Member 2), which harbors four CRM domains. RNA coimmunoprecipitation assays showed that CFM2 in maize (Zea mays) chloroplasts is associated with the group I intron in pre-trnL-UAA and group II introns in the ndhA and ycf3 pre-mRNAs. T-DNA insertions in the Arabidopsis thaliana ortholog condition a defective-seed phenotype (strong allele) or chlorophyll-deficient seedlings with impaired splicing of the trnL group I intron and the ndhA, ycf3-int1, and clpP-int2 group II introns (weak alleles). CFM2 and two previously described CRM proteins are bound simultaneously to the ndhA and ycf3-int1 introns and act in a nonredundant fashion to promote their splicing. With these findings, CRM domain proteins are implicated in the activities of three classes of catalytic RNA: group I introns, group II introns, and 23S rRNA.

  7. Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?

    NASA Technical Reports Server (NTRS)

    Foster, Tammy E.; Brooks, J. Renee; Quincy, Charles (Technical Monitor)

    2002-01-01

    The functional grouping hypothesis, which suggests that complexity in function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained FL scrub function in terms of carbon, water and nitrogen dynamics. The suite of physiologic parameters measured to determine function included both instantaneous gas exchange measurements obtained from photosynthetic light response curves and integrated measures of function. Using cluster analysis, five distinct physiologically-based functional groups were identified. Using non-parametric multivariate analyses, it was determined that these five groupings were not altered by plot differences or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed. The physiological groupings also remained robust between the two years 1999 and 2000. In order for these groupings to be of use for scaling ecosystem processes, there needs to be an easy-to-measure morphological indicator of function. Life form classifications were able to depict the physiological groupings more adequately than either specific leaf area or leaf thickness. THe ability of life forms to depict the groupings was improved by separating the parasitic Ximenia americana from the shrub category.

  8. Building functional groups of marine benthic macroinvertebrates on the basis of general community assembly mechanisms

    NASA Astrophysics Data System (ADS)

    Alexandridis, Nikolaos; Bacher, Cédric; Desroy, Nicolas; Jean, Fred

    2017-03-01

    The accurate reproduction of the spatial and temporal dynamics of marine benthic biodiversity requires the development of mechanistic models, based on the processes that shape macroinvertebrate communities. The modelled entities should, accordingly, be able to adequately represent the many functional roles that are performed by benthic organisms. With this goal in mind, we applied the emergent group hypothesis (EGH), which assumes functional equivalence within and functional divergence between groups of species. The first step of the grouping involved the selection of 14 biological traits that describe the role of benthic macroinvertebrates in 7 important community assembly mechanisms. A matrix of trait values for the 240 species that occurred in the Rance estuary (Brittany, France) in 1995 formed the basis for a hierarchical classification that generated 20 functional groups, each with its own trait values. The functional groups were first evaluated based on their ability to represent observed patterns of biodiversity. The two main assumptions of the EGH were then tested, by assessing the preservation of niche attributes among the groups and the neutrality of functional differences within them. The generally positive results give us confidence in the ability of the grouping to recreate functional diversity in the Rance estuary. A first look at the emergent groups provides insights into the potential role of community assembly mechanisms in shaping biodiversity patterns. Our next steps include the derivation of general rules of interaction and their incorporation, along with the functional groups, into mechanistic models of benthic biodiversity.

  9. [Response of Phytoplankton Functional Groups to Eutrophication in Summer at Xiaoguan Reservoir].

    PubMed

    Li, Lei; Li, Qiu-hua; Jiao, Shu-lin; Li, Yue; Xiao, Jing; Deng, Long; Sun, Rong-guo; Gao, Yong-chun; Luo, Lan

    2015-12-01

    Hydrology and Water Resources Bureau of Guizhou Province, Guiyang 550002, China) Abstract: In order to explore the distribution characteristics of phytoplankton functional groups, eutrophication characteristics and response of phytoplankton functional groups to eutrophication in Xiaoguan Reservoir, phytoplankton and water samples were taken once a week from 25th July 2014 to 27th September 2014. The results showed that there were 22 phytoplankton functional groups, groups S1, D, J, B, G, MP, L₀, SN, X1, Y, Xph, F, T and W1 were comparatively common functional groups, Wherein, S1, D and J were the dominant functional groups. Weekly dynamics of phytoplankton functional groups were: S1-->S1-->S1-->S1-->S1--S1-->S1-->J/D/S1-->Sl1- >/1D. group Sl1dominated over other groups, the cell abundance of S1 appeared two peaks at week 5 and week 7 respectively, but there was a slump at week 8, and rose again at last, compared to two peaks before, the cell abundance had dropped from 10⁸cells · L⁻¹ to 10⁷cells · L⁻¹ Water flush caused by discharge gate opening artificially was the main reason. Based on the three methods of eutrophication evaluation, the water was in moderately eutrophic and eutrophic states in Xiaoguan Reservoir in the summer of 2014. Multivariate analysis (RDA) indicated transparency was the main factor affecting the distribution of phytoplankton functional groups, and nutrients were no longer the limiting factor. The study suggested that phytoplankton functional groups could make a good response to eutrophication: groups S1 and J adapted to the turbid eutrophic water bodies, D adapted to shallow turbid waters and was sensitive to nutrient depletion. Also, common functional groups like G, X1, WW1 F etc. mostly adapted to eutrophic water bodies.

  10. Structure and function studies on enzymes with a catalytic carboxyl group(s): from ribonuclease T1 to carboxyl peptidases

    PubMed Central

    TAKAHASHI, Kenji

    2013-01-01

    A group of enzymes, mostly hydrolases or certain transferases, utilize one or a few side-chain carboxyl groups of Asp and/or Glu as part of the catalytic machinery at their active sites. This review follows mainly the trail of studies performed by the author and his colleagues on the structure and function of such enzymes, starting from ribonuclease T1, then extending to three major types of carboxyl peptidases including aspartic peptidases, glutamic peptidases and serine-carboxyl peptidases. PMID:23759941

  11. A comparative study of six different inpatient groups with respect to their basic assumption functioning.

    PubMed

    Karterud, S

    1989-07-01

    Seventy-five group therapy sessions of six different inpatient team groups in one short-term, one intermediate term, and one long-term psychiatric ward were studied with Group Focal Conflict Analysis and the Group Emotionality Rating System. The majority of the group sessions (41) functioned as fight-flight groups, twenty-four sessions functioned at a "pseudogroup" level, and ten sessions were dependency groups. The differences between the fight-flight groups and the dependency group on the variables aggression and dependency were highly significant statistically. A mixture of fight-flight groups and pseudogroups were found in the short-term ward with emergency obligations. The author discusses the assets and shortcomings of fight-flight and dependency cultures within psychiatric wards.

  12. Macroevolutionary trends of atomic composition and related functional group proportion in eukaryotic and prokaryotic proteins.

    PubMed

    Zhang, Yu-Juan; Yang, Chun-Lin; Hao, You-Jin; Li, Ying; Chen, Bin; Wen, Jian-Fan

    2014-01-25

    To fully explore the trends of atomic composition during the macroevolution from prokaryote to eukaryote, five atoms (oxygen, sulfur, nitrogen, carbon, hydrogen) and related functional groups in prokaryotic and eukaryotic proteins were surveyed and compared. Genome-wide analysis showed that eukaryotic proteins have more oxygen, sulfur and nitrogen atoms than prokaryotes do. Clusters of Orthologous Groups (COG) analysis revealed that oxygen, sulfur, carbon and hydrogen frequencies are higher in eukaryotic proteins than in their prokaryotic orthologs. Furthermore, functional group analysis demonstrated that eukaryotic proteins tend to have higher proportions of sulfhydryl, hydroxyl and acylamino, but lower of sulfide and carboxyl. Taken together, an apparent trend of increase was observed for oxygen and sulfur atoms in the macroevolution; the variation of oxygen and sulfur compositions and their related functional groups in macroevolution made eukaryotic proteins carry more useful functional groups. These results will be helpful for better understanding the functional significances of atomic composition evolution.

  13. On the relationship between group functioning and study success in problem-based learning.

    PubMed

    Nieminen, Juha; Sauri, Pekka; Lonka, Kirsti

    2006-01-01

    In problem-based learning (PBL), discussion in the tutorial group plays a central role in stimulating student learning. Problems are the principal input for stimulating discussion. The quality of discussion is assumed to influence student learning and, in the end, study success. To investigate the relationships between aspects of group functioning and study success. First-year medical students (n = 116), forming 12 PBL groups, completed a 21-item questionnaire on various aspects of a PBL session. At the end of the unit, a course examination was administered. Scales were constructed and reliability analyses conducted. Group functioning and case quality were strongly correlated with students' grades in a course examination. Further, students' perceptions of group functioning, case quality and the quality of their own contribution were linked strongly with each other. Group functioning, case quality and study success are associated with each other in PBL. The interaction between these aspects of PBL in promoting learning calls for further investigation.

  14. Biogeographical boundaries, functional group structure and diversity of Rocky Shore communities along the Argentinean coast.

    PubMed

    Wieters, Evie A; McQuaid, Christopher; Palomo, Gabriela; Pappalardo, Paula; Navarrete, Sergio A

    2012-01-01

    We investigate the extent to which functional structure and spatial variability of intertidal communities coincide with major biogeographical boundaries, areas where extensive compositional changes in the biota are observed over a limited geographic extension. We then investigate whether spatial variation in the biomass of functional groups, over geographic (10's km) and local (10's m) scales, could be associated to species diversity within and among these groups. Functional community structure expressed as abundance (density, cover and biomass) and composition of major functional groups was quantified through field surveys at 20 rocky intertidal shores spanning six degrees of latitude along the southwest Atlantic coast of Argentina and extending across the boundaries between the Argentinean and Magellanic Provinces. Patterns of abundance of individual functional groups were not uniformly matched with biogeographical regions. Only ephemeral algae showed an abrupt geographical discontinuity coincident with changes in biogeographic boundaries, and this was limited to the mid intertidal zone. We identified 3-4 main 'groups' of sites in terms of the total and relative abundance of the major functional groups, but these did not coincide with biogeographical boundaries, nor did they follow latitudinal arrangement. Thus, processes that determine the functional structure of these intertidal communities are insensitive to biogeographical boundaries. Over both geographical and local spatial scales, and for most functional groups and tidal levels, increases in species richness within the functional group was significantly associated to increased total biomass and reduced spatial variability of the group. These results suggest that species belonging to the same functional group are sufficiently uncorrelated over space (i.e. metres and site-to-site ) to stabilize patterns of biomass variability and, in this manner, provide a buffer, or "insurance", against spatial variability

  15. Social Disinterest Attitudes and Group Cognitive-Behavioral Social Skills Training for Functional Disability in Schizophrenia

    PubMed Central

    Granholm, Eric; Ben-Zeev, Dror; Link, Peter C.

    2009-01-01

    The majority of clinical trials of cognitive-behavioral therapy (CBT) for schizophrenia have used individual therapy to target positive symptoms. Promising results have been found, however, for group CBT interventions and other treatment targets like psychosocial functioning. CBT for functioning in schizophrenia is based on a cognitive model of functional outcome in schizophrenia that incorporates dysfunctional attitudes (eg, social disinterest, defeatist performance beliefs) as mediators between neurocognitive impairment and functional outcome. In this report, 18 clinical trials of CBT for schizophrenia that included measures of psychosocial functioning were reviewed, and two-thirds showed improvements in functioning in CBT. The cognitive model of functional outcome was also tested by examining the relationship between social disinterest attitudes and functional outcome in 79 people with schizophrenia randomized to either group cognitive-behavioral social skills training or a goal-focused supportive contact intervention. Consistent with the cognitive model, lower social disinterest attitudes at baseline and greater reduction in social disinterest during group therapy predicted better functional outcome at end of treatment for both groups. However, the groups did not differ significantly with regard to overall change in social disinterest attitudes during treatment, suggesting that nonspecific social interactions during group therapy can lead to changes in social disinterest, regardless of whether these attitudes are directly targeted by cognitive therapy interventions. PMID:19628761

  16. 14 CFR Section 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Functional Classification-Operating... REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 10 Functional Classification—Operating Expenses of Group I Air Carriers 5100Flying Operations. (a) This function shall...

  17. Biogeographical Boundaries, Functional Group Structure and Diversity of Rocky Shore Communities along the Argentinean Coast

    PubMed Central

    Wieters, Evie A.; McQuaid, Christopher; Palomo, Gabriela; Pappalardo, Paula; Navarrete, Sergio A.

    2012-01-01

    We investigate the extent to which functional structure and spatial variability of intertidal communities coincide with major biogeographical boundaries, areas where extensive compositional changes in the biota are observed over a limited geographic extension. We then investigate whether spatial variation in the biomass of functional groups, over geographic (10′s km) and local (10′s m) scales, could be associated to species diversity within and among these groups. Functional community structure expressed as abundance (density, cover and biomass) and composition of major functional groups was quantified through field surveys at 20 rocky intertidal shores spanning six degrees of latitude along the southwest Atlantic coast of Argentina and extending across the boundaries between the Argentinean and Magellanic Provinces. Patterns of abundance of individual functional groups were not uniformly matched with biogeographical regions. Only ephemeral algae showed an abrupt geographical discontinuity coincident with changes in biogeographic boundaries, and this was limited to the mid intertidal zone. We identified 3–4 main ‘groups’ of sites in terms of the total and relative abundance of the major functional groups, but these did not coincide with biogeographical boundaries, nor did they follow latitudinal arrangement. Thus, processes that determine the functional structure of these intertidal communities are insensitive to biogeographical boundaries. Over both geographical and local spatial scales, and for most functional groups and tidal levels, increases in species richness within the functional group was significantly associated to increased total biomass and reduced spatial variability of the group. These results suggest that species belonging to the same functional group are sufficiently uncorrelated over space (i.e. metres and site-to-site ) to stabilize patterns of biomass variability and, in this manner, provide a buffer, or “insurance”, against spatial

  18. Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir.

    PubMed

    Xiao, Li-Juan; Wang, Tian; Hu, Ren; Han, Bo-Ping; Wang, Sheng; Qian, Xin; Padisák, Judit

    2011-10-15

    Liuxihe reservoir is a deep, monomictic, oligo-mesotrophic canyon-reservoir in the subtropical monsoon climate region of southern China. Phytoplankton functional groups in the reservoir were investigated and a comparison made between the succession observed in 2008, an exceptionally wet year, and 2009, an average year. The reservoir shows strong annual fluctuations in water level caused by monsoon rains and artificial drawdown. Altogether 28 functional groups of phytoplankton were identified, including 79 genera. Twelve of the groups were analyzed in detail using redundancy analysis. Because of the oligo-mesotrophic and P-limited condition of the reservoir, the dominant functional groups were those tolerant of nutrient (phosphorus) deficiency. The predominant functional groups in the succession process were Groups A (Cyclotella with greatest axial linear dimension<10 μm), B (Cyclotella with greatest axial linear dimension>10 μm), LO (Peridinium), LM (Ceratium and Microcystis), E (Dinobryon and Mallomonas), F (Botryococcus), X1 (Ankistrodesmus, Ankyra, Chlorella and Monoraphidium) and X2 (Chlamydomonas and Chroomonas). The development of groups A, B and LO was remarkably seasonal. Group A was dominant during stratification, when characteristic small size and high surface/volume ratio morphology conferred an advantage. Group LO was dominant during dry stratification, when motility was advantageous. Group B plankton exhibited a high relative biomass during periods of reduced euphotic depth and isothermy. Groups LM, E, F, X1 and X2 occasionally exhibited high relative biomasses attributable to specific environmental events (e.g. drawdown, changes in zooplankton community). A greater diversity of phytoplankton functional groups was apparent during isothermy. This study underscores the usefulness of functional algal groups in studying succession in subtropical impoundments, in which phytoplankton succession can be significantly affected by external factors such as

  19. Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng-Bai; Tai, Li; Zhang, Da-Ming; Jiang, Yong

    2017-02-01

    Siloxane @ poly (methylacrylic acid) core-shell microparticles with functional groups were prepared by a facile hydrolysis-condensation method in this work. Three different silane coupling agents 3-methacryloxypropyltrimethoxysilane (MPS), 3-triethoxysilylpropylamine (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS) were added along with tetraethoxysilane (TEOS) into the polymethylacrylic acid (PMAA) microparticle ethanol dispersion to form the Si@PMAA core-shell microparticles with different functional groups. The core-shell structure and the surface special functional groups of the resulting microparticles were measured by transmission electron microscopy and FTIR. The sizes of these core-shell microparticles were about 350-400 nm. The corresponding preparation conditions and mechanism were discussed in detail. This hydrolysis-condensation method also could be used to functionalize other microparticles which contain active groups on the surface. Meanwhile, the Si@PMAA core-shell microparticles with carbon-carbon double bonds and amino groups have further been applied to prepare hydrophobic coatings.

  20. Variation of phytoplankton functional groups modulated by hydraulic controls in Hongze Lake, China.

    PubMed

    Tian, Chang; Pei, Haiyan; Hu, Wenrong; Hao, Daping; Doblin, Martina A; Ren, Ying; Wei, Jielin; Feng, Yawei

    2015-11-01

    Hongze Lake is a large, shallow, polymictic, eutrophic lake in the eastern China. Phytoplankton functional groups in this lake were investigated from March 2011 to February 2013, and a comparison was made between the eastern, western, and northern regions. The lake shows strong fluctuations in water level caused by monsoon rains and regular hydraulic controls. By application of the phytoplankton functional group approach, this study aims to investigate the spatial and temporal dynamics and analyze their influencing factors. Altogether, 18 functional groups of phytoplankton were identified, encompassing 187 species. In order to seek the best variable describing the phytoplankton functional group distribution, 14 of the groups were analyzed in detail using redundancy analysis. Due to the turbid condition of the lake, the dominant functional groups were those tolerant of low light. The predominant functional groups in the annual succession were D (Cyclotella spp. and Synedra acus), T (Planctonema lauterbornii), P (Fragilaria crotonensis), X1 (Chlorella vulgaris and Chlorella pyrenoidosa), C (Cyclotella meneghiniana and Cyclotella ocellata), and Y (Cryptomonas erosa). An opposite relationship between water level and the biomass of predominant groups was observed in the present study. Water level fluctuations, caused by monsoonal climate and artificial drawdown, were significant factors influencing phytoplankton succession in Hongze Lake, since they alter the hydrological conditions and influence light and nutrient availability. The clearly demonstrated factors, which significantly influence phytoplankton dynamics in Hongze Lake, will help government manage the large shallow lakes with frequent water level fluctuations.

  1. Redundancy and response diversity of functional groups: implications for the resilience of coral reefs.

    PubMed

    Nyström, Magnus

    2006-02-01

    To improve coral reef management, a deeper understanding of biodiversity across scales in the context of functional groups is required. The focus of this paper is on the role of diversity within functional groups in securing important ecosystem processes that contribute to the resilience of coral-dominated reef states. Two important components of species biodiversity that confer ecosystem resilience are analyzed: redundancy and the diversity of responses within functional groups to change. Three critical functional groups are used to illustrate the interaction between these two components and their role in coral reef resilience: zooxanthellae (symbiotic micro algae in reef-building corals), reef-building corals, and herbivores. The paper further examines the consequences of undermining functional redundancy and response diversity and addresses strategies to secure ecological processes that are critical for coral reef resilience.

  2. Effects of Functional Groups in Redox-Active Organic Molecules: A High-Throughput Screening Approach

    DOE PAGES

    Pelzer, Kenley M.; Cheng, Lei; Curtiss, Larry A.

    2016-12-08

    Nonaqueous redox flow batteries have attracted recent attention with their potential for high electrochemical storage capacity, with organic electrolytes serving as solvents with a wide electrochemical stability window. Organic molecules can also serve as electroactive species, where molecules with low reduction potentials or high oxidation potentials can provide substantial chemical energy. To identify promising electrolytes in a vast chemical space, high-throughput screening (HTS) of candidate molecules plays an important role, where HTS is used to calculate properties of thousands of molecules and identify a few organic molecules worthy of further attention in battery research. Here, in this work, we presentmore » reduction and oxidation potentials obtained from HTS of 4178 molecules. The molecules are composed of base groups of five- or six-membered rings with one or two functional groups attached, with the set of possible functional groups including both electron-withdrawing and electron-donating groups. In addition to observing the trends in potentials that result from differences in organic base groups and functional groups, we analyze the effects of molecular characteristics such as multiple bonds, Hammett parameters, and functional group position. In conclusion, this work provides useful guidance in determining how the identities of the base groups and functional groups are correlated with desirable reduction and oxidation potentials.« less

  3. Effects of Functional Groups in Redox-Active Organic Molecules: A High-Throughput Screening Approach

    SciTech Connect

    Pelzer, Kenley M.; Cheng, Lei; Curtiss, Larry A.

    2016-12-08

    Nonaqueous redox flow batteries have attracted recent attention with their potential for high electrochemical storage capacity, with organic electrolytes serving as solvents with a wide electrochemical stability window. Organic molecules can also serve as electroactive species, where molecules with low reduction potentials or high oxidation potentials can provide substantial chemical energy. To identify promising electrolytes in a vast chemical space, high-throughput screening (HTS) of candidate molecules plays an important role, where HTS is used to calculate properties of thousands of molecules and identify a few organic molecules worthy of further attention in battery research. Here, in this work, we present reduction and oxidation potentials obtained from HTS of 4178 molecules. The molecules are composed of base groups of five- or six-membered rings with one or two functional groups attached, with the set of possible functional groups including both electron-withdrawing and electron-donating groups. In addition to observing the trends in potentials that result from differences in organic base groups and functional groups, we analyze the effects of molecular characteristics such as multiple bonds, Hammett parameters, and functional group position. In conclusion, this work provides useful guidance in determining how the identities of the base groups and functional groups are correlated with desirable reduction and oxidation potentials.

  4. Functional group diversity is key to Southern Ocean benthic carbon pathways.

    PubMed

    Barnes, David K A; Sands, Chester J

    2017-01-01

    High latitude benthos are globally important in terms of accumulation and storage of ocean carbon, and the feedback this is likely to have on regional warming. Understanding this ecosystem service is important but difficult because of complex taxonomic diversity, history and geography of benthic biomass. Using South Georgia as a model location (where the history and geography of benthic biology is relatively well studied) we investigated whether the composition of functional groups were critical to benthic accumulation, immobilization and burial pathway to sequestration-and also aid their study through simplification of identification. We reclassified [1], [2]) morphotype and carbon mass data to 13 functional groups, for each sample of 32 sites around the South Georgia continental shelf. We investigated the influence on carbon accumulation, immobilization and sequestration estimate by multiple factors including the compositions of functional groups. Functional groups showed high diversity within and between sites, and within and between habitat types. Carbon storage was not linked to a functional group in particular but accumulation and immobilization increased with the number of functional groups present and the presence of hard substrata. Functional groups were also important to carbon burial rate, which increased with the presence of mixed (hard and soft substrata). Functional groups showed high surrogacy for taxonomic composition and were useful for examining contrasting habitat categorization. Functional groups not only aid marine carbon storage investigation by reducing time and the need for team size and speciality, but also important to benthic carbon pathways per se. There is a distinct geography to seabed carbon storage; seabed boulder-fields are hotspots of carbon accumulation and immobilization, whilst the interface between such boulder-fields and sediments are key places for burial and sequestration.

  5. A first principle study of graphene functionalized with hydroxyl, nitrile, or methyl groups

    NASA Astrophysics Data System (ADS)

    Barhoumi, M.; Rocca, D.; Said, M.; Lebègue, S.

    2017-01-01

    By means of ab initio calculations, we study the functionalization of graphene by different chemical groups such as hydroxyl, nitrile, or methyl. Two extreme cases of functionalization are considered: a single group on a supercell of graphene and a sheet of graphene fully functionalized. Once the equilibrium geometry is obtained by density functional theory, we found that the systems are metallic when a single group is attached to the sheet of graphene. With the exception of the nitrile functionalized boat configuration, a large bandgap is obtained at full coverage. Specifically, by using the GW approximation, our calculated bandgaps are direct and range between 5.0 and 5.5 eV for different configurations of hydroxyl functionalized graphene. An indirect GW bandgap of 6.50 eV was found in nitrile functionalized graphene while the methyl group functionalization leads to a direct bandgap with a value of 4.50 eV. Since in the two limiting cases of minimal and full coverage, the electronic structure changes drastically from a metal to a wide bandgap semiconductor, a series of intermediate states might be expected by tuning the amount of functionalization with these different groups.

  6. a Renormalization Group Calculation of the Velocity - and Density-Density Correlation Functions.

    NASA Astrophysics Data System (ADS)

    Cowan, Mark Timothy

    The velocity-velocity correlation function of a free field theory is obtained. The renormalization group, along with a 4-varepsilon expansion, is then used to find the leading order behavior of the velocity-velocity correlation function for an interacting field theory in the high temperature phase near the critical point. The details of the calculation of the density-density correlation function for Hedgehogs, in the context of a free field theory, is presented next. Finally the renormalization group, along with a 4-varepsilon expansion, is used to find the leading order behavior of the density-density correlation function for Hedgehogs in an interacting field theory near the critical point.

  7. Evaluation of group A1B erythrocytes converted to type as group O: studies of markers of function and compatibility

    PubMed Central

    Gao, Hong-Wei; Zhuo, Hai-Long; Zhang, Xue; Ji, Shou-Ping; Tan, Ying-Xia; Li, Su-Bo; Jia, Yan-Jun; Xu, Hua; Wu, Qing-Fa; Yun, Zhi-Min; Luo, Qun; Gong, Feng

    2016-01-01

    Background Enzymatic conversion of blood group A1B red blood cells (RBC) to group O RBC (ECO) was achieved by combined treatment with α-galactosidase and α-N-acetylgalactosaminidase. The aim of this study was to evaluate the function and safety of these A1B-ECO RBC in vitro. Materials and methods A 20% packed volume of A1B RBC was treated with enzymes in 250 mM glycine buffer, pH 6.8. The efficiency of the conversion of A and B antigen was evaluated by traditional typing in test tubes, gel column agglutination technology and fluorescence-activated cell sorting (FACS) analysis. The physiological and metabolic parameters of native and ECO RBC were compared, including osmotic fragility, erythrocyte deformation index, levels of 2,3-diphosphoglycerate, ATP, methaemoglobin, free Na+, and free K+. The morphology of native and ECO RBC was observed by scanning electron microscopy. Residual α-galactosidase or α-N-acetylgalactosaminidase in A1B-ECO RBC was detected by double-antibody sandwich ELISA method. Manual cross-matching was applied to ensure blood compatibility. Results The RBC agglutination tests and FACS results showed that A1B RBC were efficiently converted to O RBC. Functional analysis suggested that the conversion process had little impact on the physiological and metabolic parameters of the RBC. The residual amounts of either α-galactosidase or α-N-acetylgalactosaminidase in the A1B-ECO RBC were less than 10 ng/mL of packed RBC. About 18% of group B and 55% of group O sera reacted with the A1B-ECO RBC in a sensitive gel column cross-matching test. Discussion The conversion process does not appear to affect the morphological, physiological or metabolic parameters of A1B-ECO RBC. However, the A1B-ECO RBC still reacted with some antigens. More research on group O and B sera, which may partly reflect the complexity of group A1 the safety of A1B-ECO RBC is necessary before the application of these RBC in clinical transfusion. PMID:26509826

  8. [Effect of obesity on pulmonary function in asthmatic children of different age groups].

    PubMed

    Xu, Xiao-Wen; Huang, Ying; Wang, Jian; Zhang, Xue-Li; Liang, Fan-Mei; Luo, Rong

    2017-05-01

    To study the effect of obesity on pulmonary function in newly diagnosed asthmatic children of different age groups. Two hundred and ninety-four children with newly diagnosed asthma were classified into preschool-age (<6 years) and school-age (6 to 12.5 years) groups. They were then classified into obese, overweight, and normal-weight subgroups based on their body mass index (BMI). All the children underwent pulmonary function tests, including large airway function tests [forced vital capacity (FVC%) and forced expiratory volume in one second (FEV1%)] and small airway function tests [maximal expiratory flow at 25% of vital capacity (MEF25%), maximal expiratory flow at 50% of vital capacity (MEF50%), and maximal expiratory flow at 75% of vital capacity (MEF75%)]. The school-age group showed lower FEV1%, MEF25%, and MEF50% than the preschool-age group (P<0.05) after adjustment for sex and BMI. The normal-weight children in the school-age group had lower FEV1%, MEF25%, and MEF50% compared with their counterparts in the preschool-age group (P<0.05). The overweight children in the school-age group showed lower FVC% and MEF50% than those in the preschool-age group. However, all the pulmonary function parameters showed no significant differences between the obese children in the preschool-age and school-age groups. In the preschool-age group, FVC%, FEV1%, and MEF75% of the obese children were lower than those of the normal-weight children. In the school-age group, only FVC% and FEV1% showed differences between the obese and normal-weight children (P<0.05). The effect of obesity on the pulmonary function varies with age in children with asthma, and the effect is more obvious in those of preschool age.

  9. Multiple-Group Noncompensatory Differential Item Functioning in Raju's Differential Functioning of Items and Tests

    ERIC Educational Resources Information Center

    Oshima, T. C.; Wright, Keith; White, Nick

    2015-01-01

    Raju, van der Linden, and Fleer (1995) introduced a framework for differential functioning of items and tests (DFIT) for unidimensional dichotomous models. Since then, DFIT has been shown to be a quite versatile framework as it can handle polytomous as well as multidimensional models both at the item and test levels. However, DFIT is still limited…

  10. Multiple-Group Noncompensatory Differential Item Functioning in Raju's Differential Functioning of Items and Tests

    ERIC Educational Resources Information Center

    Oshima, T. C.; Wright, Keith; White, Nick

    2015-01-01

    Raju, van der Linden, and Fleer (1995) introduced a framework for differential functioning of items and tests (DFIT) for unidimensional dichotomous models. Since then, DFIT has been shown to be a quite versatile framework as it can handle polytomous as well as multidimensional models both at the item and test levels. However, DFIT is still limited…

  11. Controlling surface functionality through generation of thiol groups in a self-assembled monolayer.

    SciTech Connect

    Lud, S. Q.; Neppl, S.; Richter, G.; Bruno, P.; Gruen, D. M.; Jordan, R.; Feulner, P.; Stutzmann, M.; Garrido, J. A.; Materials Science Division; Technische Univ. Munchen

    2010-01-01

    A lithographic method to generate reactive thiol groups on functionalized synthetic diamond for biosensor and molecular electronic applications is developed. We demonstrate that ultrananocrystalline diamond (UNCD) thin films covalently functionalized with surface-generated thiol groups allow controlled thiol-disulfide exchange surface hybridization processes. The generation of the thiol functional head groups was obtained by irradiating phenylsulfonic acid (PSA) monolayers on UNCD surfaces. The conversion of the functional headgroup of the self-assembled monolayer was verified by using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and fluorescence microscopy. Our findings indicate the selective generation of reactive thiol surface groups. Furthermore, we demonstrate the grafting of yeast cytochrome c to the thiol-modified diamond surface and the electron transfer between protein and electrode.

  12. Illustrating the Use of Nonparametric Regression To Assess Differential Item and Bundle Functioning among Multiple Groups.

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Bolt, Daniel M.

    2001-01-01

    Presents an overview of nonparametric regression as it allies to differential item functioning analysis and then provides three examples to illustrate how nonparametric regression can be applied to multilingual, multicultural data to study group differences. (SLD)

  13. Hygroscopicity of organic compounds as a function of carbon chain length, carboxyl, hydroperoxy, and carbonyl functional groups

    DOE PAGES

    Petters, Sarah Suda; Pagonis, Demetrios; Claflin, Megan Suzanne; ...

    2017-06-16

    The albedo and microphysical properties of clouds are controlled in part by the hygroscopicity of particles serving as cloud condensation nuclei (CCN). Hygroscopicity of complex organic mixtures in the atmosphere varies widely and remains challenging to predict. Here we present new measurements characterizing the CCN activity of pure compounds in which carbon chain length and the number of hydroperoxy, carboxyl, and carbonyl functional groups were systematically varied to establish the contributions of these groups to organic aerosol apparent hygroscopicity. Apparent hygroscopicity decreased with carbon chain length and increased with polar functional groups in the order carboxyl > hydroperoxy > carbonyl.more » Activation diameters at different supersaturations deviated from the -3/2 slope in log-log space predicted by Köhler theory, suggesting that water solubility limits CCN activity of particles composed of weakly functionalized organic compounds. Results are compared to a functional group contribution model that predicts CCN activity of organic compounds. The model performed well for most compounds but under-predicted the CCN activity of hydroperoxy groups. New best-fit hydroperoxy group/water interaction parameters were derived from the available CCN data. Lastly, these results may help improve estimates of the CCN activity of ambient organic aerosols from composition data.« less

  14. On the detection of functionally coherent groups of protein domains with an extension to protein annotation

    PubMed Central

    McLaughlin, William A; Chen, Ken; Hou, Tingjun; Wang, Wei

    2007-01-01

    Background Protein domains coordinate to perform multifaceted cellular functions, and domain combinations serve as the functional building blocks of the cell. The available methods to identify functional domain combinations are limited in their scope, e.g. to the identification of combinations falling within individual proteins or within specific regions in a translated genome. Further effort is needed to identify groups of domains that span across two or more proteins and are linked by a cooperative function. Such functional domain combinations can be useful for protein annotation. Results Using a new computational method, we have identified 114 groups of domains, referred to as domain assembly units (DASSEM units), in the proteome of budding yeast Saccharomyces cerevisiae. The units participate in many important cellular processes such as transcription regulation, translation initiation, and mRNA splicing. Within the units the domains were found to function in a cooperative manner; and each domain contributed to a different aspect of the unit's overall function. The member domains of DASSEM units were found to be significantly enriched among proteins contained in transcription modules, defined as genes sharing similar expression profiles and presumably similar functions. The observation further confirmed the functional coherence of DASSEM units. The functional linkages of units were found in both functionally characterized and uncharacterized proteins, which enabled the assessment of protein function based on domain composition. Conclusion A new computational method was developed to identify groups of domains that are linked by a common function in the proteome of Saccharomyces cerevisiae. These groups can either lie within individual proteins or span across different proteins. We propose that the functional linkages among the domains within the DASSEM units can be used as a non-homology based tool to annotate uncharacterized proteins. PMID:17937820

  15. Functional group placement in protein binding sites: a comparison of GRID and MCSS

    NASA Astrophysics Data System (ADS)

    Bitetti-Putzer, Ryan; Joseph-McCarthy, Diane; Hogle, James M.; Karplus, Martin

    2001-10-01

    One approach to combinatorial ligand design begins by determining optimal locations (i.e., local potential energy minima) for functional groups in the binding site of a target macromolecule. MCSS and GRID are two methods, based on significantly different algorithms, which are used for this purpose. A comparison of the two methods for the same functional groups is reported. Calculations were performed for nonpolar and polar functional groups in the internal hydrophobic pocket of the poliovirus capsid protein, and on the binding surface of the src SH3 domain. The two approaches are shown to agree qualitatively; i.e., the global characteristics of the functional group maps generated by MCSS and GRID are similar. However, there are significant differences in the relative interaction energies of the two sets of minima, a consequence of the different functional form used to evaluate polar interactions (electrostatics and hydrogen bonding) in the two methods. The single sphere representation used by GRID affords only positional information, supplemented by the identification of hydrogen bonding interactions. By contrast, the multi-atom representation of most MCSS groups yields in both positional and orientational information. The two methods are most similar for small functional groups, while for larger functional groups MCSS yields results consistent with GRID but superior in detail. These results are in accord with the somewhat different purposes for which the two methods were developed. GRID has been used mainly to introduce functionalities at specific positions in lead compounds, in which case the orientation is predetermined by the structure of the latter. The orientational information provided by MCSS is important for its use in the de novo design of large, multi-functional ligands, as well as for improving lead compounds.

  16. The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls.

    PubMed

    Zhou, Youping; Stuart-Williams, Hilary; Farquhar, Graham D; Hocart, Charles H

    2010-06-01

    Qualitative and quantitative understanding of the chemical linkages between the three major biochemical components (cellulose, hemicellulose and lignin) of plant cell walls is crucial to the understanding of cell wall structure. Although there is convincing evidence for chemical bonds between hemicellulose and lignin and the absence of chemical bonds between hemicellulose and cellulose, there is no conclusive evidence for the presence of covalent bonds between cellulose and lignin. This is caused by the lack of selectivity of current GC/MS-, NMR- and IR-based methods for lignin characterisation as none of these techniques directly targets the possible ester and ether linkages between lignin and cellulose. We modified the widely-accepted "standard" three-step extraction method for isolating cellulose from plants by changing the order of the steps for hemicellulose and lignin removal (solubilisation with concentrated NaOH and oxidation with acetic acid-containing NaClO(2), respectively) so that cellulose and lignin could be isolated with the possible chemical bonds between them intact. These linkages were then cleaved with NaClO(2) reagent in aqueous media of contrasting (18)O/(16)O ratios. We produced cellulose with higher purity (a lower level of residual hemicellulose and no detectable lignin) than that produced by the "standard" method. Oxidative artefacts may potentially be introduced at the lignin removal stage; but testing showed this to be minimal. Cellulose samples isolated from processing plant-derived cellulose-lignin mixtures in media of contrasting (18)O/(16)O ratios were compared to provide the first quantitative evidence for the presence of oxygen-containing ester and ether bonds between cellulose and lignin in Zea mays leaves. However, no conclusive evidence for the presence or lack of similar bonds in Araucaria cunninghamii wood was obtained. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. A Functional Group Approach for Prediction of APPI Response of Organic Synthetic Targets

    NASA Astrophysics Data System (ADS)

    Zhurov, Konstantin O.; Menin, Laure; Di Franco, Thomas; Tsybin, Yury O.

    2015-07-01

    Atmospheric pressure photoionization (APPI) is a technique of choice for ionization of non-polar molecules in mass spectrometry (MS). Reported APPI-based studies tend to focus on a selected compound class, which may contain a variety of functional groups. These studies demonstrate that APPI response frequently differs substantially, indicating a certain dependence on the functional group present. Although this dependence could be employed for APPI response prediction, its systematic use is currently absent. Here, we apply APPI MS to a judiciously-compiled set of 63 compounds containing a number of diverse functional groups commonly utilized in synthesis, reactive functional groups, as well as those containing boron and silicon. Based on the outcome of APPI MS of these compounds, we propose and evaluate a simple guideline to estimate the APPI response for a novel compound, the key properties of which have not been characterized in the gas phase. Briefly, we first identify key functional groups in the compound and gather knowledge on the known ionization energies from the smallest analogues containing said functional groups. We then consider local inductive and resonance effects on said ionization energies for the compounds of interest to estimate the APPI response. Finally, application of APPI MS to compounds of interest considered herein demonstrated extended upper mass ionization limit of 3.5 kDa for non-polymeric compounds.

  18. Functional groups of marine ciliated protozoa and their relationships to water quality.

    PubMed

    Jiang, Yong; Xu, Henglong; Hu, Xiaozhong; Warren, Alan; Song, Weibo

    2013-08-01

    Ciliated protozoa (ciliates) play important ecological roles in coastal waters, especially regarding their interaction with environmental parameters. In order to increase our knowledge and understanding on the functional structure of ciliate communities and their relationships to environmental conditions in marine ecosystems, a 12-month study was carried out in a semi-enclosed bay in northern China. Samples were collected biweekly at five sampling stations with differing levels of pollution/eutrophication, giving a total of 120 samples. Thirteen functional groups of ciliates (A-M) were defined based on their specific spatio-temporal distribution and relationships to physico-chemical parameters. Six of these groups (H-M) were the primary contributors to the ciliate communities in the polluted/eutrophic areas, whereas the other seven groups (A-G) dominated the communities in less polluted areas. Six groups (A, D, G, H, I and K) dominated during the warm seasons (summer and autumn), with the other seven (B, C, E, F, J, L and M) dominating in the cold seasons (spring and winter). Of these, groups B (mainly aloricate ciliates), I (aloricate ciliates) and L (mainly loricate tintinnids) were the primary contributors to the communities. It was also shown that aloricate ciliates and tintinnids represented different roles in structuring and functioning of the communities. The results suggest that the ciliate communities may be constructed by several functional groups in response to the environmental conditions. Thus, we conclude that these functional groups might be potentially useful bioindicators for bioassessment and conservation in marine habitats.

  19. The electrokinetic characterization of gold nanoparticles, functionalized with cationic functional groups, and its' interaction with DNA.

    PubMed

    Lazarus, Geraldine Genevive; Revaprasadu, Neerish; López-Viota, Julián; Singh, Moganavelli

    2014-09-01

    Gold nanoparticles have attracted strong biomedical interest for drug delivery due to their low toxic nature, surface plasmon resonance and capability of increasing the stability of the payload. However, gene transfection represents another important biological application. Considering that cellular barriers keep enclosed their secret to deliver genes using nanoparticles, an important step can be achieved by studying the functionalization of nanoparticles with DNA. In the present contribution the synthesis of nanoparticles consisting of a gold core coated with one or more layers of amino acid (l-lysine), and cationic polyelectrolytes (poly-ethyleneimine and poly-l-lysine) is reported. All nanoparticles were subjected to dynamic light scattering, electrophoretic mobility measurements, UV-vis optical spectrophotometry analysis and transmission electron microscopy imaging. In addition, the adsorption of DNA plasmid (pSGS) with linear and supercoiled configurations was studied for those gold nanoparticles under the most suitable surface modifications. Preliminary results showed that the gold nanoparticles functionalized with poly-ethyleneimine and poly-l-lysine, respectively, and bound to linear DNA configurations, present in absolute value a higher electrophoretic mobility irrespective of the pH of the media, compared to the supercoiled and nicked configuration. The findings from this study suggest that poly-ethyleneimine and poly-l-lysine functionalized gold nanoparticles are biocompatible and may be promising in the chemical design and future optimization of nanostructures for biomedical applications such as gene and drug delivery.

  20. Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?

    NASA Technical Reports Server (NTRS)

    Foster, Tammy E.; Brooks, J. Renee

    2004-01-01

    The functional grouping hypothesis, which suggests that complexity in ecosystem function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained Florida scrub regulate exchange of carbon and water with the atmosphere as indicated by both instantaneous gas exchange measurements and integrated measures of function (%N, delta C-13, delta N-15, C-N ratio). Using cluster analysis, five distinct physiologically-based functional groups were identified in the fire maintained scrub. These functional groups were tested to determine if they were robust spatially, temporally, and with management regime. Analysis of Similarities (ANOSIM), a non-parametric multivariate analysis, indicated that these five physiologically-based groupings were not altered by plot differences (R = -0.115, p = 0.893) or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed (R = 0.018, p = 0.349). The physiological groupings also remained robust between the two climatically different years 1999 and 2000 (R = -0.027, p = 0.725). Easy-to-measure morphological characteristics indicating functional groups would be more practical for scaling and modeling ecosystem processes than detailed gas-exchange measurements, therefore we tested a variety of morphological characteristics as functional indicators. A combination of non-parametric multivariate techniques (Hierarchical cluster analysis, non-metric Multi-Dimensional Scaling, and ANOSIM) were used to compare the ability of life form, leaf thickness, and specific leaf area classifications to identify the physiologically-based functional groups. Life form classifications (ANOSIM; R = 0.629, p 0.001) were able to depict the physiological groupings more adequately than either specific leaf area (ANOSIM; R = 0.426, p = 0.001) or leaf thickness (ANOSIM; R 0.344, p 0.001). The ability of

  1. The Use of Language Functions in Mathematical Group Games. Teacher Insights.

    ERIC Educational Resources Information Center

    Black, Carolyn; Huerta, Maria G.

    1994-01-01

    Six group games were introduced into a second-grade bilingual classroom. Children's talk during each game was classified using a modification of Dyson's five language functions (representational, directive, heuristic, personal, and interactional). Group games provided many communication opportunities. Some children tried new communication styles.…

  2. Identification of Differential Item Functioning in Multiple-Group Settings: A Multivariate Outlier Detection Approach

    ERIC Educational Resources Information Center

    Magis, David; De Boeck, Paul

    2011-01-01

    We focus on the identification of differential item functioning (DIF) when more than two groups of examinees are considered. We propose to consider items as elements of a multivariate space, where DIF items are outlying elements. Following this approach, the situation of multiple groups is a quite natural case. A robust statistics technique is…

  3. Characteristics of Interactional Management Functions in Group Oral by Japanese Learners of English

    ERIC Educational Resources Information Center

    Negishi, Junko

    2010-01-01

    This study attempted to investigate the characteristics of interaction dynamics in a group oral interaction carried out by Japanese learners of English. The relationship between the participants' language development and interactional management functions (IMFs) was also explored. Oral performance tests in a paired or a small group have recently…

  4. Identification of Differential Item Functioning in Multiple-Group Settings: A Multivariate Outlier Detection Approach

    ERIC Educational Resources Information Center

    Magis, David; De Boeck, Paul

    2011-01-01

    We focus on the identification of differential item functioning (DIF) when more than two groups of examinees are considered. We propose to consider items as elements of a multivariate space, where DIF items are outlying elements. Following this approach, the situation of multiple groups is a quite natural case. A robust statistics technique is…

  5. Restoration using Azolla imbricata increases nitrogen functional bacterial groups and genes in soil.

    PubMed

    Lu, Xiao-Ming; Lu, Peng-Zhen; Yang, Ke

    2017-05-01

    Microbial groups are major factors that influence soil function. Currently, there is a lack of studies on microbial functional groups. Although soil microorganisms play an important role in the nitrogen cycle, systematic studies of the effects of environmental factors on microbial populations in relation to key metabolic processes in the nitrogen cycle are seldom reported. In this study, we conducted a systematic analysis of the changes in nitrogen functional groups in mandarin orange garden soil treated with Azolla imbricata. The structures of the major functional bacterial groups and the functional gene abundances involved in key processes of the soil nitrogen cycle were analyzed using high-throughput sequencing (HTS) and quantitative real-time PCR, respectively. The results indicated that returning A. imbricata had an important influence on the composition of soil nitrogen functional bacterial communities. Treatment with A. imbricata increased the diversity of the nitrogen functional bacteria. The abundances of nitrogen functional genes were significantly higher in the treated soil compared with the control soil. Both the diversity of the major nitrogen functional bacteria (nifH bacteria, nirK bacteria, and narG bacteria) and the abundances of nitrogen functional genes in the soil showed significant positive correlations with the soil pH, the organic carbon content, available nitrogen, available phosphorus, and NH4(+)-N and NO3(-)-N contents. Treatment with 12.5 kg fresh A. imbricata per mandarin orange tree was effective to improve the quality of the mandarin orange garden soil. This study analyzed the mechanism of the changes in functional bacterial groups and genes involved in key metabolic processes of the nitrogen cycle in soil treated by A. imbricata.

  6. Plant parameters for plant functional groups of western rangelands to enable process-based simulation modeling

    USDA-ARS?s Scientific Manuscript database

    Regional environmental assessments with process-based models require realistic estimates of plant parameters for the primary plant functional groups in the region. “Functional group” in this context is an operational term, based on similarities in plant type and in plant parameter values. Likewise...

  7. Loop expansion of the average effective action in the functional renormalization group approach

    NASA Astrophysics Data System (ADS)

    Lavrov, Peter M.; Merzlikin, Boris S.

    2015-10-01

    We formulate a perturbation expansion for the effective action in a new approach to the functional renormalization group method based on the concept of composite fields for regulator functions being their most essential ingredients. We demonstrate explicitly the principal difference between the properties of effective actions in these two approaches existing already on the one-loop level in a simple gauge model.

  8. New method of the functional renormalization group approach for Yang-Mills fields

    NASA Astrophysics Data System (ADS)

    Lavrov, P. M.; Shapiro, I. L.

    2014-12-01

    We propose a new formulation of the functional renormalization group (FRG) approach, based on the use of regulator functions as composite operators. In this case one can provide (in contrast with standard approach) on-shell gauge-invariance for the effective average action.

  9. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

    SciTech Connect

    Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.; Blanton, Michael R.; Warren, Michael S.; Abazajian, Kevork; Scranton, Ryan; Hogg, David W.; Scoccimarro, Roman; Bahcall, Neta A.; Brinkmann, J.; Gott, J.Richard, III; Kleinman, S.J.; Krzesinski, J.; Lee, Brian C.; Miller, Christopher J.; Nitta, Atsuko; Schneider, Donald P.; Tucker, Douglas L.; Zehavi, Idit; /CCPP, New York /Chicago U., Astron. Astrophys. Ctr. /Ohio State U., Dept. Astron. /Los Alamos /Pittsburgh U. /Princeton U. /Subaru Telescope /Apache Point Observ. /Mt. Suhora Observ., Cracow /LBL, Berkeley /Cerro-Tololo InterAmerican Obs. /Penn State U., Astron. Astrophys. /Fermilab /Arizona U., Astron. Dept. - Steward Observ. /Case Western Reserve U.

    2006-01-01

    We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups with ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.

  10. Lung function decline rates according to GOLD group in patients with chronic obstructive pulmonary disease

    PubMed Central

    Kim, Joohae; Yoon, Ho Il; Oh, Yeon-Mok; Lim, Seong Yong; Lee, Ji-Hyun; Kim, Tae-Hyung; Lee, Sang Yeub; Lee, Jin Hwa; Lee, Sang-Do; Lee, Chang-Hoon

    2015-01-01

    Background Since the Global Initiative for Chronic Obstructive Lung Disease (GOLD) groups A–D were introduced, the lung function changes according to group have been evaluated rarely. Objective We investigated the rate of decline in annual lung function in patients categorized according to the 2014 GOLD guidelines. Methods Patients with COPD included in the Korean Obstructive Lung Disease (KOLD) prospective study, who underwent yearly postbronchodilator spirometry at least three times, were included. The main outcome was the annual decline in postbronchodilator forced expiratory volume in 1 second (FEV1), which was analyzed by random-slope and random-intercept mixed linear regression. Results A total 175 participants were included. No significant postbronchodilator FEV1 decline was observed between the groups (−34.4±7.9 [group A]; −26.2±9.4 [group B]; −22.7±16.0 [group C]; and −24.0±8.7 mL/year [group D]) (P=0.79). The group with less symptoms (−32.3±7.2 vs −25.0±6.5 mL/year) (P=0.44) and the low risk group (−31.0±6.1 vs −23.6±7.7 mL/year) (P=0.44) at baseline showed a more rapid decline in the postbronchodilator FEV1, but the trends were not statistically significant. However, GOLD stages classified by FEV1 were significantly related to the annual lung function decline. Conclusion There was no significant difference in lung function decline rates according to the GOLD groups. Prior classification using postbronchodilator FEV1 predicts decline in lung function better than does the new classification. PMID:26379432

  11. The dual roles of functional groups in the photoluminescence of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Shujun; Cole, Ivan S.; Zhao, Dongyuan; Li, Qin

    2016-03-01

    The photoluminescent properties of graphene nanoparticle (named graphene quantum dots) have attracted significant research attention in recent years owing to their profound application potential. However, the photoluminescence (PL) origin of this class of nanocarbons is still unclear. In this paper, combining direct experimental evidence enabled by a facile size-tunable oxygenated graphene quantum dots (GQDs) synthesis method and theoretical calculations, the roles of the aromatic core, functional groups and disordered structures (i.e. defects and sp3 carbon) in the PL of oxygenated GQDs are elucidated in detail. In particular, we found that the functional groups on GQDs play dual roles in the overall emission: (1) they enable π* --> n and σ* --> n transitions, resulting in a molecular type of PL, spectrally invariable with change of particle size or excitation energy; (2) similar to defects and sp3 carbon, functional groups also induce structural deformation to the aromatic core, leading to mid-gap states or, in other words, energy traps, causing π* --> mid-gap states --> π transitions. Therefore, functional groups contribute to both the blue edge and the red shoulder of GQDs' PL spectra. The new insights on the role of functional groups in PL of fluorescent nanocarbons will enable better designs of this new class of materials.The photoluminescent properties of graphene nanoparticle (named graphene quantum dots) have attracted significant research attention in recent years owing to their profound application potential. However, the photoluminescence (PL) origin of this class of nanocarbons is still unclear. In this paper, combining direct experimental evidence enabled by a facile size-tunable oxygenated graphene quantum dots (GQDs) synthesis method and theoretical calculations, the roles of the aromatic core, functional groups and disordered structures (i.e. defects and sp3 carbon) in the PL of oxygenated GQDs are elucidated in detail. In particular, we found

  12. Clickable SBA-15 to screen functional groups for adsorption of antibiotics.

    PubMed

    Gao, Jinsuo; Zhang, Xueying; Xu, Shutao; Liu, Jian; Tan, Feng; Li, Xinyong; Qu, Zhenping; Zhang, Yaobin; Quan, Xie

    2014-03-01

    Pharmaceutical antibiotics, as emerging contaminants, are usually composed of several functional groups that endow them with the ability to interact with adsorbents through different interactions. This makes the preparation of adsorbents tedious and time-consuming to screen appropriate functionalized materials. Herein, we describe the synthesis of clickable SBA-15 and demonstrate its feasibility as a screening material for the adsorption of antibiotics based on similar adsorption trends on materials with similar functional groups obtained by a click reaction and cocondensation/grafting methods.

  13. The Role of Reactive Functional Groups in Adhesive Bonding at the Aramid-Epoxy Interface.

    DTIC Science & Technology

    1986-09-15

    sta end ZIP CeO . 800 North Quincy Street i-q ?AiI 3 Arlington, VA 22217 " ae’Iv o. ’to. 6 -o. !The Role of Reactive Functional . . . 1 12. onsRonfaI...Unclassified SICUMI VY’V Ct.ASSiiICATyO OP ’T-S PAGE I Cont ... 11. The Role of Reactive Functional Groups in Adhesive Bonding at the Aramid-Epoxy...T-1 ROLE OF REACTIVE FUNCTIONAL GROUPS IN ADHESIVI 3ODI;G AT THE ARA fID-EPOXY INTIFA> BY L.S. PENN, T.J. BYERLEY, AND T.K. LIAO 1IDWEST RESEARCR

  14. The impact of functional group on the electronic structure of coordination center

    NASA Astrophysics Data System (ADS)

    Hooshmand Gharehbagh, Zahra; L, Duy; Rahman, Talat S.

    While 9, 10 dicyano-anthracene (DCA) forms a coordination network on Cu(111) surface with Cu adatom coordinated by three DCA molecules, its isomers, 9,10-diisocyano-anthracene forms, surprisingly, molecular rows on the same surface. To understand the impact of functional groups on the electronic structure of the coordination center, we have carried out density functional theory based calculations of the electronic structure of a set of naphthalene molecules with different functional groups (N, CN, NC, NH2, COH, COOH) adsorbed on Cu(111), with and without a Cu adatom. Our results show that while the interaction between the naphthalene backbone and the Cu(111) surface is dominated by van der Waals (vdW) forces, in all cases considered the functional group forms a covalent bond with the Cu (ad)atom (on) of the surface. The calculated differential charge redistribution shows that the strongest covalent bond is formed by the NC group, which differs remarkably from that formed by the CN group, while the vdW interaction is very similar in both cases. These results provide insights into the different surface coordination behavior of molecules with above-mentioned functional groups. Work support in part by NSF Grant CHE-1310327.

  15. Classifying proteins into functional groups based on all-versus-all BLAST of 10 million proteins.

    PubMed

    Kolker, Natali; Higdon, Roger; Broomall, William; Stanberry, Larissa; Welch, Dean; Lu, Wei; Haynes, Winston; Barga, Roger; Kolker, Eugene

    2011-01-01

    To address the monumental challenge of assigning function to millions of sequenced proteins, we completed the first of a kind all-versus-all sequence alignments using BLAST for 9.9 million proteins in the UniRef100 database. Microsoft Windows Azure produced over 3 billion filtered records in 6 days using 475 eight-core virtual machines. Protein classification into functional groups was then performed using Hive and custom jars implemented on top of Apache Hadoop utilizing the MapReduce paradigm. First, using the Clusters of Orthologous Genes (COG) database, a length normalized bit score (LNBS) was determined to be the best similarity measure for classification of proteins. LNBS achieved sensitivity and specificity of 98% each. Second, out of 5.1 million bacterial proteins, about two-thirds were assigned to significantly extended COG groups, encompassing 30 times more assigned proteins. Third, the remaining proteins were classified into protein functional groups using an innovative implementation of a single-linkage algorithm on an in-house Hadoop compute cluster. This implementation significantly reduces the run time for nonindexed queries and optimizes efficient clustering on a large scale. The performance was also verified on Amazon Elastic MapReduce. This clustering assigned nearly 2 million proteins to approximately half a million different functional groups. A similar approach was applied to classify 2.8 million eukaryotic sequences resulting in over 1 million proteins being assign to existing KOG groups and the remainder clustered into 100,000 functional groups.

  16. Functional specialization and generalization for grouping of stimuli based on colour and motion

    PubMed Central

    Zeki, Semir; Stutters, Jonathan

    2013-01-01

    This study was undertaken to learn whether the principle of functional specialization that is evident at the level of the prestriate visual cortex extends to areas that are involved in grouping visual stimuli according to attribute, and specifically according to colour and motion. Subjects viewed, in an fMRI scanner, visual stimuli composed of moving dots, which could be either coloured or achromatic; in some stimuli the moving coloured dots were randomly distributed or moved in random directions; in others, some of the moving dots were grouped together according to colour or to direction of motion, with the number of groupings varying from 1 to 3. Increased activation was observed in area V4 in response to colour grouping and in V5 in response to motion grouping while both groupings led to activity in separate though contiguous compartments within the intraparietal cortex. The activity in all the above areas was parametrically related to the number of groupings, as was the prominent activity in Crus I of the cerebellum where the activity resulting from the two types of grouping overlapped. This suggests (a) that, the specialized visual areas of the prestriate cortex have functions beyond the processing of visual signals according to attribute, namely that of grouping signals according to colour (V4) or motion (V5); (b) that the functional separation evident in visual cortical areas devoted to motion and colour, respectively, is maintained at the level of parietal cortex, at least as far as grouping according to attribute is concerned; and (c) that, by contrast, this grouping-related functional segregation is not maintained at the level of the cerebellum. PMID:23415950

  17. Functional specialization and generalization for grouping of stimuli based on colour and motion.

    PubMed

    Zeki, Semir; Stutters, Jonathan

    2013-06-01

    This study was undertaken to learn whether the principle of functional specialization that is evident at the level of the prestriate visual cortex extends to areas that are involved in grouping visual stimuli according to attribute, and specifically according to colour and motion. Subjects viewed, in an fMRI scanner, visual stimuli composed of moving dots, which could be either coloured or achromatic; in some stimuli the moving coloured dots were randomly distributed or moved in random directions; in others, some of the moving dots were grouped together according to colour or to direction of motion, with the number of groupings varying from 1 to 3. Increased activation was observed in area V4 in response to colour grouping and in V5 in response to motion grouping while both groupings led to activity in separate though contiguous compartments within the intraparietal cortex. The activity in all the above areas was parametrically related to the number of groupings, as was the prominent activity in Crus I of the cerebellum where the activity resulting from the two types of grouping overlapped. This suggests (a) that, the specialized visual areas of the prestriate cortex have functions beyond the processing of visual signals according to attribute, namely that of grouping signals according to colour (V4) or motion (V5); (b) that the functional separation evident in visual cortical areas devoted to motion and colour, respectively, is maintained at the level of parietal cortex, at least as far as grouping according to attribute is concerned; and (c) that, by contrast, this grouping-related functional segregation is not maintained at the level of the cerebellum. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Arrival order among native plant functional groups does not affect invasibility of constructed dune communities.

    PubMed

    Mason, T J; French, K; Jolley, D

    2013-10-01

    Different arrival order scenarios of native functional groups to a site may influence both resource use during development and final community structure. Arrival order may then indirectly influence community resistance to invasion. We present a mesocosm experiment of constructed coastal dune communities that monitored biotic and abiotic responses to different arrival orders of native functional groups. Constructed communities were compared with unplanted mesocosms. We then simulated a single invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata), a dominant exotic shrub of coastal communities. We evaluated the hypothesis that plantings with simultaneous representation of grass, herb and shrub functional groups at the beginning of the experiment would more completely sequester resources and limit invasion than staggered plantings. Staggered plantings in turn would offer greater resource use and invasion resistance than unplanted mesocosms. Contrary to our expectations, there were few effects of arrival order on abiotic variables for the duration of the experiment and arrival order was unimportant in final community invasibility. All planted mesocosms supported significantly more invader germinants and significantly less invader abundance than unplanted mesocosms. Native functional group plantings may have a nurse effect during the invader germination and establishment phase and a competitive function during the invader juvenile and adult phase. Arrival order per se did not affect resource use and community invasibility in our mesocosm experiment. While grass, herb and shrub functional group plantings will not prevent invasion success in restored communities, they may limit final invader biomass.

  19. Capillary-wave models and the effective-average-action scheme of functional renormalization group.

    PubMed

    Jakubczyk, P

    2011-08-01

    We reexamine the functional renormalization-group theory of wetting transitions. As a starting point of the analysis we apply an exact equation describing renormalization group flow of the generating functional for irreducible vertex functions. We show how the standard nonlinear renormalization group theory of wetting transitions can be recovered by a very simple truncation of the exact flow equation. The derivation makes all the involved approximations transparent and demonstrates the applicability of the approach in any spatial dimension d≥2. Exploiting the nonuniqueness of the renormalization-group cutoff scheme, we find, however, that the capillary parameter ω is a scheme-dependent quantity below d=3. For d=3 the parameter ω is perfectly robust against scheme variation.

  20. Differential symptomatology and functioning in borderline personality disorder across age groups.

    PubMed

    Frías, Álvaro; Palma, Carol; Solves, Laia; Martínez, Bárbara; Salvador, Ana

    2017-09-28

    There is increasing research aimed at addressing whether patients with borderline personality disorder (BPD) may exhibit variations in symptomatology and functioning according to their chronological age. The current study consisted of 169 outpatients diagnosed with BPD, who were divided into four age groups as follows: 16-25 years (n = 41), 26-35 years (n = 43), 36-45 years (n = 45), and 46 and more years (n = 40). Age groups were compared for symptomatology, normal personality traits, psychiatric comorbidities, functioning, and treatment-related features. The younger group had significantly higher levels of physical/verbal aggression and suicide attempts relative to the older group. Conversely, the older group had significantly greater severity of somatization, depression, and anxiety symptoms. In addition, the older group showed significantly greater functional impairment overall and across physical/psychological domains, specifically when compared to the younger group. Overall, these findings may suggest that age-related symptoms should be considered when diagnosing BPD. Also, functional impairments should be the target interventions for older BPD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Group reminiscence therapy for cognitive and affective function of demented elderly in Taiwan.

    PubMed

    Wang, Jing-Jy

    2007-12-01

    Elderly people with cognitive impairments are often associated with depressed mood and are heavy consumers in both medical services and need in caregivers. Reminiscence is believed to be effective in improving the cognition and mood of demented people. This study tested the hypothesis that structured group reminiscence therapy can prevent the progression of cognitive impairment and enhance affective function in the cognitively impaired elderly. A randomized controlled trial (RCT) based on a two group pre- and post-test design was used. The experimental subjects underwent eight group sessions, one session per week. The measurements were performed using Mini-Mental State Examination (MMSE), Geriatric Depression Scale short form (GDS-SF), and Cornell Scale for Depression in Dementia (CSDD). The sample consisted of 102 subjects, with 51 in the experimental group and 51 in the control group. Results demonstrated that the intervention significantly affected cognitive function and affective function as measured by MMSE and CSDD (p = 0.015 and 0.026), indicating that the cognitive function of the experimental subjects increased and their depressive symptoms diminished following intervention. Participation in reminiscence activities can be a positive and valuable experience for demented older persons. Consequently, the development of a structured care program for elderly persons with cognitive impairment and the need for long-term care is essential. Thus, health providers in long-term care facilities should be trained in reminiscence group therapy, and to be able to deliver such a program to the targeted group.

  2. Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon.

    PubMed

    Foo, Guo Shiou; Sievers, Carsten

    2015-02-01

    The chemical oxidation of activated carbon by H2 O2 and H2 SO4 is investigated, structural and chemical modifications are characterized, and the materials are used as catalysts for the hydrolysis of cellulose. Treatment with H2 O2 enlarges the pore size and imparts functional groups such as phenols, lactones, and carboxylic acids. H2 SO4 treatment targets the edges of carbon sheets primarily, and this effect is more pronounced with a higher temperature. Adsorption isotherms demonstrate that the adsorption of oligomers on functionalized carbon is dominated by van der Waals forces. The materials treated chemically are active for the hydrolysis of cellulose despite the relative weakness of most of their acid sites. It is proposed that a synergistic effect between defect sites and functional groups enhances the activity by inducing a conformational change in the glucan chains if they are adsorbed at defect sites. This activates the glycosidic bonds for hydrolysis by in-plane functional groups.

  3. Resolving Microzooplankton Functional Groups In A Size-Structured Planktonic Model

    NASA Astrophysics Data System (ADS)

    Taniguchi, D.; Dutkiewicz, S.; Follows, M. J.; Jahn, O.; Menden-Deuer, S.

    2016-02-01

    Microzooplankton are important marine grazers, often consuming a large fraction of primary productivity. They consist of a great diversity of organisms with different behaviors, characteristics, and rates. This functional diversity, and its consequences, are not currently reflected in large-scale ocean ecological simulations. How should these organisms be represented, and what are the implications for their biogeography? We develop a size-structured, trait-based model to characterize a diversity of microzooplankton functional groups. We compile and examine size-based laboratory data on the traits, revealing some patterns with size and functional group that we interpret with mechanistic theory. Fitting the model to the data provides parameterizations of key rates and properties, which we employ in a numerical ocean model. The diversity of grazing preference, rates, and trophic strategies enables the coexistence of different functional groups of micro-grazers under various environmental conditions, and the model produces testable predictions of the biogeography.

  4. Tensor renormalization group: local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness.

    PubMed

    Güven, Can; Hinczewski, Michael; Berker, A Nihat

    2010-11-01

    The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature.

  5. Tensor renormalization group: Local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness

    NASA Astrophysics Data System (ADS)

    Güven, Can; Hinczewski, Michael; Berker, A. Nihat

    2011-03-01

    The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature. This research was supported by the Alexander von Humboldt Foundation, the Scientific and Technological Research Council of Turkey (TÜBITAK), and the Academy of Sciences of Turkey.

  6. Tensor renormalization group: Local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness

    NASA Astrophysics Data System (ADS)

    Güven, Can; Hinczewski, Michael; Berker, A. Nihat

    2010-11-01

    The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature.

  7. Thermodynamic laws of the oxygen solubility in liquid metals (Ni, Co, Fe, Mn, Cr) and the formation of oxygen-containing solutions in the alloys based on them

    NASA Astrophysics Data System (ADS)

    Paderin, S. N.; Shil'nikov, E. V.

    2015-12-01

    The solubility of oxygen in liquid Ni, Co, Fe, Mn, and Cr metals (Group IV in the periodic table) has been found for the first time. Linear dependences of the oxygen solubility on the standard Gibbs energy for the oxidation reaction of a liquid metal with gaseous oxygen are found. The revealed function of oxygen solubility is of scientific importance and allows one to develop a theory of oxygen solutions in liquid metals and liquid multicomponent metallic compositions and to calculate the energies of mixing of liquid metals with oxygen from Δ G MO ° for metal oxidation reactions with allowance for pseudoregular-solution model equations. Using the energies of mixing and metal compositions, we calculated the equilibrium oxygen concentrations in a metal molten pool at the end of oxidation stage of melting 08Kh18N10T steel in an arc furnace. This fact indicates practical importance of the found function of the oxygen solubility in metals.

  8. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles.

    PubMed

    Russell, Lynn M; Bahadur, Ranjit; Ziemann, Paul J

    2011-03-01

    Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA.

  9. REFLECTING TOGETHER: REFLECTIVE FUNCTIONING AS A FOCUS FOR DEEPENING GROUP SUPERVISION.

    PubMed

    Heffron, Mary Claire; Reynolds, Diane; Talbot, Bronwyn

    2016-11-01

    This article proposes how group reflective supervision, informed by the theory of reflective functioning, may provide a powerful method for developing reflective capacity of staff serving families, infants, and young children in multidisciplinary settings. An explanation of reflective functioning, related research, and its relevance to relational treatment and preventive intervention are discussed. Other approaches to reflective practice are referenced. We describe the necessary tension and encounters with distressing affect that mark reflective supervision groups using this focus. In addition, we identify areas of heightened difficulty in infant family work and describe how a group supervision process that enables use of self alongside perspectives of others may address these challenges while leading to increased reflective capacity among participants. Finally, we touch on relevant research on group supervision and parameters of size and focus, and highlight facilitation skills needed to create group safety and coherence. Areas for further study are proposed. © 2016 Michigan Association for Infant Mental Health.

  10. On the psychological function of flags and logos: Group identity symbols increase perceived entitativity.

    PubMed

    Callahan, Shannon P; Ledgerwood, Alison

    2016-04-01

    Group identity symbols such as flags and logos have been widely used across time and cultures, yet researchers know very little about the psychological functions that such symbols can serve. The present research tested the hypotheses that (a) simply having a symbol leads collections of individuals to seem more like real, unified groups, (b) this increased psychological realness leads groups to seem more threatening and effective to others, and (c) group members therefore strategically emphasize symbols when they want their group to appear unified and intimidating. In Studies 1a-1c, participants perceived various task groups as more entitative when they happened to have a symbol. In Study 2, symbols not only helped groups make up for lacking a physical characteristic associated with entitativity (physical similarity), but also led groups to seem more threatening. Study 3 examined the processes underlying this effect and found that group symbols increase entitativity by increasing perceived cohesiveness. Study 4 extended our results to show that symbols not only shape the impressions people form of novel groups, but also change people's existing impressions of more familiar and real-world social groups, making them seem more entitative and competent but also less warm. Finally, Studies 5a and 5b further expand our understanding of the psychological function of symbols by showing that group members strategically display symbols when they are motivated to convey an impression of their group as unified and threatening (vs. inclusive and cooperative). We discuss implications for understanding how group members navigate their social identities. (c) 2016 APA, all rights reserved).

  11. In-medium spectral functions of vector- and axial-vector mesons from the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Jung, Christopher; Rennecke, Fabian; Tripolt, Ralf-Arno; von Smekal, Lorenz; Wambach, Jochen

    2017-02-01

    In this work, we present the first results on vector- and axial-vector meson spectral functions as obtained by applying the nonperturbative functional renormalization group approach to an effective low-energy theory motivated by the gauged linear sigma model. By using a recently proposed analytic continuation method, we study the in-medium behavior of the spectral functions of the ρ and a1 mesons in different regimes of the phase diagram. In particular, we demonstrate explicitly how these spectral functions degenerate at high temperatures as well as at large chemical potentials, as a consequence of the restoration of chiral symmetry. In addition, we also compute the momentum dependence of the ρ and a1 spectral functions and discuss the various timelike and spacelike processes that can occur.

  12. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir.

    PubMed

    Becker, Vanessa; Caputo, Luciano; Ordóñez, Jaime; Marcé, Rafael; Armengol, Joan; Crossetti, Luciane O; Huszar, Vera L M

    2010-06-01

    The control of phytoplankton growth is mainly related to the availability of light and nutrients. Both may select phytoplankton species, but only if they occur in limiting amounts. During the last decade, the functional groups approach, based on the physiological, morphological and ecological attributes of the species, has proved to be a more efficient way to analyze seasonal changes in phytoplankton biomass. We analysed the dynamics of the phytoplankton functional groups sensu Reynolds, recognising the driving forces (light, mixing regime, and nutrients) in the Sau Reservoir, based on a one-year cycle (monthly surface-water sampling). The Sau Reservoir is a Mediterranean water-supply reservoir with a canyon-shaped basin and a clear and mixed epilimnion layer. The long stratification period and high light availability led to high phytoplankton biomass (110.8 fresh-weight mg L(-1)) in the epilimnion during summer. The reservoir showed P-limitation for phytoplankton growth in this period. All functional groups included one or more species (X2-Rhodomonas spp.; Y-Cryptomonas spp.; F-Oocystis lacustris; K-Aphanocapsa spp.) selected by resources, especially phosphorus. Species of Cryptomonas (group Y) dominated during the mixing period (winter season) in conditions of low light and relatively high availability of dissolved nutrients. Increases in water-column stability during spring stratification led to phytoplankton biomass increases due to the dominance of small flagellate functional groups (X2 and X3, chrysophyceans). The colonial chlorophycean O. lacustris (group F) peaked during the mid-summer stratification, when the mixed epilimnion was clearly depleted in nutrients, especially SRP. High temperature and increases in nutrient concentration during the end-summer and mid-autumn resulted in a decrease of green algae (group F) and increase of Aphanocapsa spp. (cyanobacteria, group K) and dinoflagellates (group L(o)). The study also revealed the important role of

  13. Modeling phytoplankton community in reservoirs. A comparison between taxonomic and functional groups-based models.

    PubMed

    Di Maggio, Jimena; Fernández, Carolina; Parodi, Elisa R; Diaz, M Soledad; Estrada, Vanina

    2016-01-01

    In this paper we address the formulation of two mechanistic water quality models that differ in the way the phytoplankton community is described. We carry out parameter estimation subject to differential-algebraic constraints and validation for each model and comparison between models performance. The first approach aggregates phytoplankton species based on their phylogenetic characteristics (Taxonomic group model) and the second one, on their morpho-functional properties following Reynolds' classification (Functional group model). The latter approach takes into account tolerance and sensitivity to environmental conditions. The constrained parameter estimation problems are formulated within an equation oriented framework, with a maximum likelihood objective function. The study site is Paso de las Piedras Reservoir (Argentina), which supplies water for consumption for 450,000 population. Numerical results show that phytoplankton morpho-functional groups more closely represent each species growth requirements within the group. Each model performance is quantitatively assessed by three diagnostic measures. Parameter estimation results for seasonal dynamics of the phytoplankton community and main biogeochemical variables for a one-year time horizon are presented and compared for both models, showing the functional group model enhanced performance. Finally, we explore increasing nutrient loading scenarios and predict their effect on phytoplankton dynamics throughout a one-year time horizon.

  14. Tuning of electronic properties and dynamical stability of graphene oxide with different functional groups

    NASA Astrophysics Data System (ADS)

    Dabhi, Shweta D.; Jha, Prafulla K.

    2017-09-01

    The structural, electronic and vibrational properties of graphene oxide (GO) with varying proportion of epoxy and hydroxyl functional groups have been studied using density functional theory. The functional groups and oxygen density have an obvious influence on the electronic and vibrational properties. The dependence of band gap on associated functional groups and oxygen density shows a possibility of tuning the band gap of graphene by varying the functional groups as well as oxidation level. The absorption of high oxygen content in graphene leads to the gap opening and resulting in a transition from semimetal to semiconductor. Phonon dispersion curves show no imaginary frequency or no softening of any phonon mode throughout the Brillouin zone which confirms the dynamical stability of all considered GO models. Different groups and different oxygen density result into the varying characteristics of phonon modes. The computed results show good agreement with the experimental observations. Our results present interesting possibilities for engineering the electronic properties of graphene and GO and impact the fabrication of new electronics.

  15. Local and Regional Determinants of an Uncommon Functional Group in Freshwater Lakes and Ponds

    PubMed Central

    McCann, Michael James

    2015-01-01

    A combination of local and regional factors and stochastic forces is expected to determine the occurrence of species and the structure of communities. However, in most cases, our understanding is incomplete, with large amounts of unexplained variation. Using functional groups rather than individual species may help explain the relationship between community composition and conditions. In this study, I used survey data from freshwater lakes and ponds to understand factors that determine the presence of the floating plant functional group in the northeast United States. Of the 176 water bodies surveyed, 104 (59.1%) did not contain any floating plant species. The occurrence of this functional group was largely determined by local abiotic conditions, which were spatially autocorrelated across the region. A model predicting the presence of the floating plant functional group performed similarly to the best species-specific models. Using a permutation test, I also found that the observed prevalence of floating plants is no different than expected by random assembly from a species pool of its size. These results suggest that the size of the species pool interacts with local conditions in determining the presence of a functional group. Nevertheless, a large amount of unexplained variation remains, attributable to either stochastic species occurrence or incomplete predictive models. The simple permutation approach in this study can be extended to test alternative models of community assembly. PMID:26121636

  16. The dual roles of functional groups in the photoluminescence of graphene quantum dots.

    PubMed

    Wang, Shujun; Cole, Ivan S; Zhao, Dongyuan; Li, Qin

    2016-04-14

    The photoluminescent properties of graphene nanoparticle (named graphene quantum dots) have attracted significant research attention in recent years owing to their profound application potential. However, the photoluminescence (PL) origin of this class of nanocarbons is still unclear. In this paper, combining direct experimental evidence enabled by a facile size-tunable oxygenated graphene quantum dots (GQDs) synthesis method and theoretical calculations, the roles of the aromatic core, functional groups and disordered structures (i.e. defects and sp(3) carbon) in the PL of oxygenated GQDs are elucidated in detail. In particular, we found that the functional groups on GQDs play dual roles in the overall emission: (1) they enable π* → n and σ* → n transitions, resulting in a molecular type of PL, spectrally invariable with change of particle size or excitation energy; (2) similar to defects and sp(3) carbon, functional groups also induce structural deformation to the aromatic core, leading to mid-gap states or, in other words, energy traps, causing π* → mid-gap states → π transitions. Therefore, functional groups contribute to both the blue edge and the red shoulder of GQDs' PL spectra. The new insights on the role of functional groups in PL of fluorescent nanocarbons will enable better designs of this new class of materials.

  17. Increasing the qualitative understanding of optimal functionality in older adults: a focus group based study.

    PubMed

    Algilani, Samal; Östlund-Lagerström, Lina; Schoultz, Ida; Brummer, Robert J; Kihlgren, Annica

    2016-03-23

    Decreased independence and loss of functional ability are issues regarded as inevitably connected to old age. This ageism may have negative influences on older adults' beliefs about aging, making it difficult for them to focus on their current ability to maintain a good health. It is therefore important to change focus towards promoting Optimal Functionality (OF). OF is a concept putting the older adult's perspective on health and function in focus, however, the concept is still under development. Hence, the aim was to extend the concept of optimal functionality in various groups of older adults. A qualitative study was conducted based on focus group discussions (FGD). In total 6 FGDs were performed, including 37 older adults from three different groups: group 1) senior athletes, group 2) free living older adults, group 3) older adults living in senior living homes. All data was transcribed verbatim and analyzed following the process of deductive content analysis. The principal outcome of the analysis was "to function as optimally as you possibly can", which was perceived as the core of the concept. Further, the concept of OF was described as multifactorial and several new factors could be added to the original model of OF. Additionally the findings of the study support that all three cornerstones comprising OF have to occur simultaneously in order for the older adult to function as optimal as possible. OF is a multifaceted and subjective concept, which should be individually defined by the older adult. This study further makes evident that older adults as a group are heterogeneous in terms of their preferences and views on health and should thus be approached as such in the health care setting. Therefore it is important to promote an individualized approach as a base when caring for older adults.

  18. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces.

    PubMed

    Liu, Jing; Cheney, Marcos A; Wu, Fan; Li, Meng

    2011-02-15

    A systematic theoretical study using density functional theory is performed to provide molecular-level understanding of the effects of chemical functional groups on mercury adsorption on carbonaceous surfaces. The zigzag and armchair edges were used in modeling the carbonaceous surfaces to simulate different adsorption sites. The edge atoms on the upper side of the models are unsaturated to simulate active sites. All calculations (optimizations, energies, and frequencies) were made at B3PW91 density functional theory level, using RCEP60VDZ basis set for mercury and 6-31G(d) pople basis set for other atoms. The results indicate that the embedding of halogen atom can increase the activity of its neighboring site which in turn increases the adsorption capacity of the carbonaceous surface for Hg(0). The adsorption belongs to chemisorptions, which is in good agreement with the experimental results. For the effects of oxygen functional groups, lactone, carbonyl and semiquinone favor Hg(0) adsorption because they increase the neighboring site's activity for mercury adsorption. On the contrary, phenol and carboxyl functional groups show a physisorption of Hg(0), and reduce Hg capture. This result can explain the seemingly conflicting experimental results reported in the literature concerning the influence of oxygen functional groups on mercury adsorption on carbonaceous surface.

  19. Slow-binding inhibitors of prolyl oligopeptidase with different functional groups at the P1 site.

    PubMed

    Venäläinen, Jarkko I; Juvonen, Risto O; Garcia-Horsman, J Arturo; Wallén, Erik A A; Christiaans, Johannes A M; Jarho, Elina M; Gynther, Jukka; Männistö, Pekka T

    2004-09-15

    POP (prolyl oligopeptidase) specifically hydrolyses a number of small proline-containing peptides at the carboxy end of the proline residue and POP inhibitors have been shown to have cognition-enhancing properties. It has been noted that certain functional groups at the P1 site of the inhibitor, which correspond to the substrate residue on the N-terminal side of the bond to be cleaved, increase the inhibitory potency. However, detailed mechanistic and kinetic analysis of the inhibition has not been studied. In the present study, we examined the effect of different functional groups at the P1 site of the parent inhibitor isophthalic acid bis-(L-prolylpyrrolidine) amide on the binding kinetics to POP. Addition of CHO, CN or COCH(2)OH groups to the P1 site increased the inhibitory potency by two orders of magnitude (K(i)=11.8-0.1 nM) and caused a clear slow-binding inhibition. The inhibitor containing a CHO group had the lowest association rate constant, k(on)=(2.43+/-0.12) x 10(5) M(-1) x s(-1), whereas the inhibitor with a CN group exhibited the fastest binding, k(on)=(12.0+/-0.08)x10(5) M(-1) x s(-1). In addition, the dissociation rate was found to be crucially dependent on the type of the functional group. Compounds with COCH(2)OH and CHO groups had much longer half-lives of dissociation (over 5 h) compared with the compound with the CN group (25 min), although the K(i) values of the compounds were relatively similar. A possibility to optimize the duration of inhibition by changing the functional group at the P1 site is important when planning therapeutically useful POP inhibitors.

  20. Glass transition of polystyrene (PS) studied by Raman spectroscopic investigation of its phenyl functional groups

    NASA Astrophysics Data System (ADS)

    Bertoldo Menezes, D.; Reyer, A.; Marletta, A.; Musso, M.

    2017-01-01

    In polymeric materials the glass transition (GT) is a well-known and very important relaxation process related to movements of functional groups in the polymeric chain. In this work, we show the potential of Raman spectroscopy for exploring the GT process in the polymer polystyrene. We collected Raman spectra during a step-by-step heating process of the sample, which allowed us to collect signatures of the GT process from peak parameters of specific vibrational modes, and to verify the GT temperature. Results of the latter were in accordance with published values obtained via other methods. We identified the aromatic ring vibrational modes of the phenyl functional groups to be those which, due to steric hindrance, suffer the largest influence during the GT process. This confirms that Raman spectroscopy can be used as a complementary technique to perform GT investigations in polymeric materials due to its sensitivity to small intermolecular changes affecting vibrational properties of relevant functional side groups.

  1. Wigner functions for noncommutative quantum mechanics: A group representation based construction

    SciTech Connect

    Chowdhury, S. Hasibul Hassan; Ali, S. Twareque

    2015-12-15

    This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group G{sub NC}, which is the three fold central extension of the Abelian group of ℝ{sup 4}. These representations have been exhaustively studied in earlier papers. The group G{sub NC} is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only.

  2. Wigner functions for noncommutative quantum mechanics: A group representation based construction

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. Hasibul Hassan; Ali, S. Twareque

    2015-12-01

    This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group GNC, which is the three fold central extension of the Abelian group of ℝ4. These representations have been exhaustively studied in earlier papers. The group GNC is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only.

  3. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands.

  4. Functional network organizations of two contrasting temperament groups in dimensions of novelty seeking and harm avoidance.

    PubMed

    Kyeong, Sunghyon; Kim, Eunjoo; Park, Hae-Jeong; Hwang, Dong-Uk

    2014-08-05

    Novelty seeking (NS) and harm avoidance (HA) are two major dimensions of temperament in Cloninger׳s neurobiological model of personality. Previous neurofunctional and biological studies on temperament dimensions of HA and NS suggested that the temperamental traits have significant correlations with cortical and subcortical brain regions. However, no study to date has investigated the functional network modular organization as a function of the temperament dimension. The temperament dimensions were originally proposed to be independent of one another. However, a meta-analysis based on 16 published articles found a significant negative correlation between HA and NS (Miettunen et al., 2008). Based on this negative correlation, the current study revealed the whole-brain connectivity modular architecture for two contrasting temperament groups. The k-means clustering algorithm, with the temperamental traits of HA and NS as an input, was applied to divide the 40 subjects into two temperament groups: 'high HA and low NS' versus 'low HA and high NS'. Using the graph theoretical framework, we found a functional segregation of whole brain network architectures derived from resting-state functional MRI. In the 'high HA and low NS' group, the regulatory brain regions, such as the prefrontal cortex (PFC), are clustered together with the limbic system. In the 'low HA and high NS' group, however, brain regions lying on the dopaminergic pathways, such as the PFC and basal ganglia, are partitioned together. These findings suggest that the neural basis of inhibited, passive, and inactive behaviors in the 'high HA and low NS' group was derived from the increased network associations between the PFC and limbic clusters. In addition, supporting evidence of topological differences between the two temperament groups was found by analyzing the functional connectivity density and gray matter volume, and by computing the relationships between the morphometry and function of the brain

  5. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.

    PubMed

    Deane, David C; Nicol, Jason M; Gehrig, Susan L; Harding, Claire; Aldridge, Kane T; Goodman, Abigail M; Brookes, Justin D

    2017-03-06

    Human use of water resources threatens environmental water supplies. If resource managers are to develop policies that avoid unacceptable ecological impacts, some means to predict ecosystem response to changes in water availability is necessary. This is difficult to achieve at spatial-scales relevant for water resource management because of the high natural variability in ecosystem hydrology and ecology. Water plant functional groups classify species with similar hydrological niche preferences together, allowing a qualitative means to generalise community responses to changes in hydrology. We tested the potential for functional groups in making quantitative prediction of water-plant-functional-group distributions across diverse wetland types over a large geographical extent. We sampled wetlands covering a broad range of hydrogeomorphic and salinity conditions in South Australia, collecting both hydrological and floristic data from 697 quadrats across 28 wetland hydrological gradients. We built hydrological-niche models for eight water plant functional groups using a range of candidate models combining different surface inundation metrics. We then tested the predictive performance of top-ranked individual and averaged models for each functional group. Cross validation showed models achieved acceptable predictive performance, with correct classification rates in the range 0.68 - 0.95. Model predictions can be made at any spatial scale that hydrological data are available and could be implemented in a geographical information system. We show the response of water plant functional groups to inundation is consistent enough across diverse wetland types to quantify the probability of hydrological impacts over regional spatial scales. This article is protected by copyright. All rights reserved.

  6. Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies

    PubMed Central

    Kober, Hedy; Barrett, Lisa Feldman; Joseph, Josh; Bliss-Moreau, Eliza; Lindquist, Kristen; Wager, Tor D.

    2009-01-01

    We performed an updated quantitative meta-analysis of 162 neuroimaging studies of emotion using a novel multi-level kernel-based approach, focusing on locating brain regions consistently activated in emotional tasks and their functional organization into distributed functional groups, independent of semantically defined emotion category labels (e.g., “anger,” “fear”). Such brain-based analyses are critical if our ways of labeling emotions are to be evaluated and revised based on consistency with brain data. Consistent activations were limited to specific cortical sub-regions, including multiple functional areas within medial, orbital, and inferior lateral frontal cortices. Consistent with a wealth of animal literature, multiple subcortical activations were identified, including amygdala, ventral striatum, thalamus, hypothalamus, and periaqueductal gray. We used multivariate parcellation and clustering techniques to identify groups of co-activated brain regions across studies. These analyses identified six distributed functional groups, including medial and lateral frontal groups, two posterior cortical groups, and paralimbic and core limbic/brainstem groups. These functional groups provide information on potential organization of brain regions into large-scale networks. Specific follow-up analyses focused on amygdala, periaqueductal gray (PAG), and hypothalamic (Hy) activations, and identified frontal cortical areas co-activated with these core limbic structures. While multiple areas of frontal cortex co-activated with amygdala sub-regions, a specific region of dorsomedial prefrontal cortex (dmPFC, Brodmann’s Area 9/32) was the only area co-activated with both PAG and Hy. Subsequent mediation analyses were consistent with a pathway from dmPFC through PAG to Hy. These results suggest that medial frontal areas are more closely associated with core limbic activation than their lateral counterparts, and that dmPFC may play a particularly important role in the

  7. Testing Group Differences in Brain Functional Connectivity: Using Correlations or Partial Correlations?

    PubMed Central

    Kim, Junghi; Wozniak, Jeffrey R.; Mueller, Bryon A.

    2015-01-01

    Abstract Resting-state functional magnetic resonance imaging allows one to study brain functional connectivity, partly motivated by evidence that patients with complex disorders, such as Alzheimer's disease, may have altered functional brain connectivity patterns as compared with healthy subjects. A functional connectivity network describes statistical associations of the neural activities among distinct and distant brain regions. Recently, there is a major interest in group-level functional network analysis; however, there is a relative lack of studies on statistical inference, such as significance testing for group comparisons. In particular, it is still debatable which statistic should be used to measure pairwise associations as the connectivity weights. Many functional connectivity studies have used either (full or marginal) correlations or partial correlations for pairwise associations. This article investigates the performance of using either correlations or partial correlations for testing group differences in brain connectivity, and how sparsity levels and topological structures of the connectivity would influence statistical power to detect group differences. Our results suggest that, in general, testing group differences in networks deviates from estimating networks. For example, high regularization in both covariance matrices and precision matrices may lead to higher statistical power; in particular, optimally selected regularization (e.g., by cross-validation or even at the true sparsity level) on the precision matrices with small estimation errors may have low power. Most importantly, and perhaps surprisingly, using either correlations or partial correlations may give very different testing results, depending on which of the covariance matrices and the precision matrices are sparse. Specifically, if the precision matrices are sparse, presumably and arguably a reasonable assumption, then using correlations often yields much higher powered and more

  8. Protection and deprotection approach for the introduction of functional groups into metal-organic frameworks.

    PubMed

    Yamada, Teppei; Kitagawa, Hiroshi

    2009-05-13

    A noncoordinating hydroxyl group was introduced into a metal-organic framework (MOF) by a procedure involving a protection, complexation, and deprotection (PCD) reaction sequence, and the crystal structure of a novel MOF, [Zn(dhybdc)(bpy)] x 4 DMF (1), was determined. 1 did not have an interpenetrated structure. The three-dimensional pores had large apertures. Results showed that the PCD method is a novel synthetic method for the introduction of various functional groups into MOFs.

  9. Characteristics and Changes in Health Status and Life Function among Female Elderly Participants of Group Exercise.

    PubMed

    Tsujimoto, Hiromi; Yamada, Kazuko; Morioka, Ikuharu

    2017-01-01

    The purpose of this study was to clarify the characteristics of female elderly participants of a group exercise organized by the participants themselves and the changes in their physical, mental, and social health, and life function. Findings of this study will be used for promoting effective preventive care. The subjects whose characteristics were analyzed were 394 participants and 757 nonparticipants of the group exercise. Those whose changes in health were analyzed were 52 participants and 114 nonparticipants. Locomotion Check and self-rated health score were used as indices of physical health. World Health Organization-Five well-being (S-WHO-5-J) index and self-rated life satisfaction level were used as indices of mental health. Satisfaction level of social activities was one of indices of social health. The Tokyo Metropolitan Institute of Gerontology Index of Competence was used as an index of life function. The health-examination data analyzed were Body Mass Index, waist circumference, blood pressure, lipid profiles, and HbA1c level. In the participant group, the proportions of those who lived alone, who were affluent, and who had no job were higher than those in the nonparticipant group. The indices of physical, mental and social health and life function were higher in the participant group. There was no significant difference in the 5-year trend of health-examination data between the two groups. There was no significant difference in the yearly change in the indices of physical health and life function. The S-WHO-5-J index, self-rated life satisfaction level, and satisfaction level of social activities were maintained or improved in the participant group. The results suggest the possible usefulness of the group exercise for maintaining the mental and social health of elderly women.

  10. Changes in intrinsic functional connectivity and group relevant salience: The case of sport rivalry.

    PubMed

    Moradi, Zargol; Mantini, Dante; Yankouskaya, Alla; Hewstone, Miles; Humphreys, Glyn W

    2017-08-14

    Studies have shown that attending to salient group relevant information could increase the BOLD activity across distributed neural networks. However, it is unclear how attending to group relevant information changes the functional connectivity across these networks. We investigated this issue combining resting states and task-based fMRI experiment. The task involved football fans learning associations between arbitrary geometric shapes and the badges of in-group, the rival and the neutral football teams. Upon learning, participants viewed different badge/shape pairs and their task was to judge whether the viewed pair was a match or a mismatch. For whole brain analyses increased activity was found in the IFG, DLPFC, AI, fusiform gyrus, precuneus and pSTS (all in the left hemisphere) for the rival over the in-group mismatch. Further, the ROI analyses revealed larger beta-values for the rival badge in the left pSTS, left AI and the left IFG. However, larger beta-values were found in the left pSTS and the left IFG (but not AI) for the in-group shape. The intrinsic functional connectivity analyses revealed that compare to the pre-task, post task functional connectivity was decreased between the left DLPFC and the left AI. In contrast, it was increased between the left IFG and the left AI and this was correlated with the difference in RT for the rival vs. in-group team. Our findings suggest that attending to group relevant information differentially affects the strength of functional coupling in attention networks and this can be explained by the saliency of the group relevant information. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A novel joint sparse partial correlation method for estimating group functional networks.

    PubMed

    Liang, Xiaoyun; Connelly, Alan; Calamante, Fernando

    2016-03-01

    Advances in graph theory have provided a powerful tool to characterize brain networks. In particular, functional networks at group-level have great appeal to gain further insight into complex brain function, and to assess changes across disease conditions. These group networks, however, often have two main limitations. First, they are popularly estimated by directly averaging individual networks that are compromised by confounding variations. Secondly, functional networks have been estimated mainly through Pearson cross-correlation, without taking into account the influence of other regions. In this study, we propose a sparse group partial correlation method for robust estimation of functional networks based on a joint graphical models approach. To circumvent the issue of choosing the optimal regularization parameters, a stability selection method is employed to extract networks. The proposed method is, therefore, denoted as JGMSS. By applying JGMSS across simulated datasets, the resulting networks show consistently higher accuracy and sensitivity than those estimated using an alternative approach (the elastic-net regularization with stability selection, ENSS). The robustness of the JGMSS is evidenced by the independence of the estimated networks to choices of the initial set of regularization parameters. The performance of JGMSS in estimating group networks is further demonstrated with in vivo fMRI data (ASL and BOLD), which show that JGMSS can more robustly estimate brain hub regions at group-level and can better control intersubject variability than it is achieved using ENSS.

  12. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    PubMed

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  13. Group I Metabotropic Glutamate Receptor Interacting Proteins: Fine-Tuning Receptor Functions in Health and Disease

    PubMed Central

    Kalinowska, Magdalena; Francesconi, Anna

    2016-01-01

    Group I metabotropic glutamate receptors mediate slow excitatory neurotransmission in the central nervous system and are critical to activity-dependent synaptic plasticity, a cellular substrate of learning and memory. Dysregulated receptor signaling is implicated in neuropsychiatric conditions ranging from neurodevelopmental to neurodegenerative disorders. Importantly, group I metabotropic glutamate receptor signaling functions can be modulated by interacting proteins that mediate receptor trafficking, expression and coupling efficiency to signaling effectors. These interactions afford cell- or pathway-specific modulation to fine-tune receptor function, thus representing a potential target for pharmacological interventions in pathological conditions. PMID:27296642

  14. Effects of surface functional groups on the formation of nanoparticle-protein corona

    NASA Astrophysics Data System (ADS)

    Podila, R.; Chen, R.; Ke, P. C.; Brown, J. M.; Rao, A. M.

    2012-12-01

    Herein, we examined the dependence of protein adsorption on the nanoparticle surface in the presence of functional groups. Our UV-visible spectrophotometry, transmission electron microscopy, infrared spectroscopy, and dynamic light scattering measurements evidently suggested that the functional groups play an important role in the formation of nanoparticle-protein corona. We found that uncoated and surfactant-free silver nanoparticles derived from a laser ablation process promoted a maximum protein (bovine serum albumin) coating due to increased changes in entropy. On the other hand, bovine serum albumin displayed a relatively lower affinity for electrostatically stabilized nanoparticles due to the constrained entropy changes.

  15. Multiconfiguration pair-density functional theory: barrier heights and main group and transition metal energetics.

    PubMed

    Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura

    2015-01-13

    Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.

  16. Chemoselective Reduction and Alkylation of Carbonyl Functions Using Phosphonium Salts as an in Situ Protecting Groups.

    PubMed

    Ohta, Reiya; Fujioka, Hiromichi

    2017-01-01

    Recent progress in the chemoselective reduction and alkylation of carbonyl functions using our in situ protection method is described. Methods that enable reversal or control of the reactivity of a carbonyl functional group are potentially useful. They open up new areas of synthetic organic chemistry and change the concept of retrosynthesis because they remove the need for complicated protection/deprotection sequences. In this account, we discuss the strategy and applications of our in situ protection method using phosphonium salts.

  17. A versatile route to polythiophenes with functional pendant groups using alkyne chemistry

    PubMed Central

    Yang, Li; Emanuelsson, Rikard; Bergquist, Jonas; Strømme, Maria; Sjödin, Martin

    2016-01-01

    A new versatile polythiophene building block, 3-(3,4-ethylenedioxythiophene)prop-1-yne (pyEDOT) (3), is prepared from glycidol in four steps in 28% overall yield. pyEDOT features an ethynyl group on its ethylenedioxy bridge, allowing further functionalization by alkyne chemistry. Its usefulness is demonstrated by a series of functionalized polythiophene derivatives that were obtained by pre- and post-electropolymerization transformations, provided by the synthetic ease of the Sonogashira coupling and click chemistry. PMID:28144339

  18. [Responses of ground arthropod functional groups to the enclosure of grazing grassland in desert steppe].

    PubMed

    Liu, Ren-tao; Li, Xue-bin; Xin, Ming; Ma, Lin; Liu, Kai

    2011-08-01

    With the support of the National Resources Monitoring Station in Yanchi County of Ningxia, an investigation was conducted on the ground arthropods, vegetations, and soil properties in the enclosed and un-enclosed grazing grassland in desert steppe. In the meantime, the functional groups of ground arthropods were classified according to their feeding habits. The ground arthropods in the desert steppe could be classified into four functional groups, i.e., predatory, phytophagous, saprophagous, and omnivorous, among which, predatory and phytophagous groups were dominant in quantity, and phytophagous and saprophagous groups were predominant in biomass, implying that the ground arthropod in desert steppe was mainly characterized by phytophagous arthropods. Enclosure increased the individual and group number of predatory, phytophagous, and omnivorous arthropods as well as the biomass of predatory and omnivorous arthropods, and enhanced the biodiversity of predatory and phytophagous arthropods, which was closely correlated with the vegetation recovery and soil environment improvement, and demonstrated that the enclosure of grazing grassland increased the diversity and complexity of ground arthropod functional groups in desert steppe. Nevertheless, the individual number and biomass of saprophagous arthropods decreased after the enclosure, reflecting the dependence of these arthropods on grazing grassland.

  19. Exercise training improves walking function in an African group of stroke survivors: a randomized controlled trial.

    PubMed

    Olawale, O A; Jaja, S I; Anigbogu, C N; Appiah-Kubi, K O; Jones-Okai, D

    2011-05-01

    To evaluate the effects of treadmill walking and overground walking exercise training on recovery of walking function in an African group of stroke survivors. Prospective, randomized controlled study. Outpatient stroke rehabilitation unit in a tertiary hospital. Sixty patients with chronic stroke (≥3 months). All subjects received individual outpatient conventional physiotherapy rehabilitation for 12 weeks. In addition, subjects in Group A (n = 20) received treadmill walking exercise training (TWET) while those in Group B (n = 20) received overground walking exercise training (OWET). Those in Group C (control) (n = 20) received conventional physiotherapy rehabilitation only. Outcome measures were (i) 10-metre walk time (10MWT) test and (ii) six-minute walk distance (6MWD) test. These were evaluated at entry into the study and at the end of every four weeks. Paired t-tests were used to evaluate the significance of the difference between pre-training and post-training scores on the two measures (P < 0.05). Subjects in the TWET group recorded 22.6 ± 1.5% decrease in 10MWT and 31.0 ± 4.3% increase in 6MWD; those in the OWET group made 26.8 ± 1.3% and 45.2 ± 4.6% improvement in 10MWT and 6MWD respectively. Subjects in the control group made 2.2 ± 0.7% and 2.9 ± 0.8% improvement in the two functions. These changes were significant for the TWET and OWET groups (P < 0.05). This study indicated that treadmill and overground walking exercise training programmes, combined with conventional rehabilitation, improved walking function in an African group of adult stroke survivors. Therefore, professionals who conduct stroke rehabilitation programmes should utilize exercise training to optimize patient outcomes.

  20. Immobilization of Candida antarctic lipase B on MWNTs modified by ionic liquids with different functional groups.

    PubMed

    Wan, Xiaomei; Xiang, Xinran; Tang, Susu; Yu, Dinghua; Huang, He; Hu, Yi

    2017-09-18

    Multiwalled carbon nanotubes (MWNTs) were modified by imidazole-based ionic liquids with different kinds of functional groups such as alkyl, carboxyl, amino and hydroxyl. The supports were used to immobilize Candida antarctic lipase B (CALB) and the influence of different functional groups of ionic liquids on enzymatic properties was investigated by the hydrolysis reaction of triacetin. The results revealed that the functionalization process did not destroy the structural integrity of MWNTs, and the enzymatic properities of CALB which immobilized on the MWNTs modified by ionic liquids with different kinds of functional groups were all improved. The hydroxyl functionalized ionic liquids which exhibited the best enzymatic properities was selected to investigate the effects of different carbon chain length on the enzymatic properties of immobilized CALB. Among them, CALB which immobilized on MWNTs modified by hydroxyl functionalized ionic liquid with suitable chain length (MWNTs-IL(8C)-OH-CALB) had the highest specific activity, with a specific activity of 18.11 times that of MWNTs-CALB. Furthermore, it also presented best thermal stability and reusability. The residual activity of MWNTs-IL(8C)-OH-CALB held over 64.01% of the initial activity after being incubated for 20min at 70°C, and the residual activity was 85.56% after 4 cycles of use. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Importance of Having Low-Density Functional Groups for Generating High-Performance Semiconducting Polymer Dots

    PubMed Central

    Zhang, Xuanjun; Yu, Jiangbo; Wu, Changfeng; Jin, Yuhui; Rong, Yu; Ye, Fangmao

    2012-01-01

    Semiconducting polymers with low-density side-chain carboxylic acid groups were synthesized to form stable, functionalized, and highly fluorescent polymer dots (Pdots). The influence of the molar fraction of hydrophilic side-chains on Pdot properties and performance was systematically investigated. Our results show that the density of side-chain carboxylic acid groups significantly affects Pdot stability, internal structure, fluorescence brightness, and nonspecific binding in cellular labeling. Fluorescence spectroscopy, single-particle imaging, and a dye-doping method were employed to investigate the fluorescence brightness and the internal structure of the Pdots. The results of these experiments indicate that semiconducting polymers with low density of side-chain functional groups can form stable, compact, and highly bright Pdots as compared to those with high density of hydrophilic side-chains. The functionalized polymer dots were conjugated to streptavidin (SA) by carbodiimide-catalyzed coupling and the Pdot-SA probes effectively and specifically labeled the cancer cell-surface marker Her2 in human breast cancer cells. The carboxylate-functionalized polymer could also be covalently modified with small functional molecules to generate Pdot probes for click chemistry-based bioorthogonal labeling. This study presents a promising approach for further developing functional Pdot probes for biological applications. PMID:22607220

  2. Lie group classification of the nonlinear generalized Kompaneets equations with two functional parameters

    NASA Astrophysics Data System (ADS)

    Kovalenko, S.; Patsiuk, O.

    2017-08-01

    We study the nonlinear generalized Kompaneets equations (GKEs) with two functional parameters. By using the Lie-Ovsiannikov algorithm, we carried out the group classification of the equations. It is shown that the kernel algebra of the full groups of the GKEs is the one-dimensional Lie algebra. We obtained nine non-equivalent (up to transformations from the equivalence group) nonlinear GKEs that allow wider invariance algebras than the kernel one. We found a number of exact solutions of those GKEs, which have the maximal symmetry properties.

  3. Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity.

    PubMed

    Zhang, Ximei; Johnston, Eric R; Barberán, Albert; Ren, Yi; Lü, Xiaotao; Han, Xingguo

    2017-10-01

    Anthropogenic environmental changes are accelerating the rate of biodiversity loss on Earth. Plant diversity loss is predicted to reduce soil microbial diversity primarily due to the decreased variety of carbon/energy resources. However, this intuitive hypothesis is supported by sparse empirical evidence, and most underlying mechanisms remain underexplored or obscure altogether. We constructed four diversity gradients (0-3) in a five-year plant functional group removal experiment in a steppe ecosystem in Inner Mongolia, China, and quantified microbial taxonomic and functional diversity with shotgun metagenome sequencing. The treatments had little effect on microbial taxonomic diversity, but were found to decrease functional gene diversity. However, the observed decrease in functional gene diversity was more attributable to a loss in plant productivity, rather than to the loss of any individual plant functional group per se. Reduced productivity limited fresh plant resources supplied to microorganisms, and thus, intensified the pressure of ecological filtering, favoring genes responsible for energy production/conversion, material transport/metabolism and amino acid recycling, and accordingly disfavored many genes with other functions. Furthermore, microbial respiration was correlated with the variation in functional composition but not taxonomic composition. Overall, the amount of carbon/energy resources driving microbial gene diversity was identified to be the critical linkage between above- and belowground communities, contrary to the traditional framework of linking plant clade/taxonomic diversity to microbial taxonomic diversity. © 2017 John Wiley & Sons Ltd.

  4. Review of Social Skills Training Groups for Youth with Asperger Syndrome and High Functioning Autism

    ERIC Educational Resources Information Center

    Cappadocia, M. Catherine; Weiss, Jonathan A.

    2011-01-01

    Although social skills deficits represent core symptoms of Asperger Syndrome and High Functioning Autism, there is limited research investigating the empirical validity of social skills interventions currently being used with these populations. This literature review compares three types of social skills training groups: traditional, cognitive…

  5. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    EPA Science Inventory

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  6. 14 CFR 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Functional Classification-Operating Expenses of Group I Air Carriers Section 10 Section Section 10 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR...

  7. Group-Specific Effects of Matching Subtest Contamination on the Identification of Differential Item Functioning

    ERIC Educational Resources Information Center

    Keiffer, Elizabeth Ann

    2011-01-01

    A differential item functioning (DIF) simulation study was conducted to explore the type and level of impact that contamination had on type I error and power rates in DIF analyses when the suspect item favored the same or opposite group as the DIF items in the matching subtest. Type I error and power rates were displayed separately for the…

  8. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil

    USDA-ARS?s Scientific Manuscript database

    Long-term effectiveness of biochar for heavy metal stabilization depends upon biochar’s sorptive property and recalcitrance in soil. To understand the role of carboxyl functional groups on heavy metal stabilization, cottonseed hull biochar and flax shive steam activated biochar having low O/C ratio...

  9. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    EPA Science Inventory

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  10. 43 CFR 1784.6 - Membership and functions of resource advisory councils and sub-groups.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Membership and functions of resource advisory councils and sub-groups. 1784.6 Section 1784.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) COOPERATIVE RELATIONS Advisory Committees §...

  11. 43 CFR 1784.6 - Membership and functions of resource advisory councils and sub-groups.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Membership and functions of resource advisory councils and sub-groups. 1784.6 Section 1784.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) COOPERATIVE RELATIONS Advisory Committees §...

  12. Unitary representations of three dimensional Lie groups revisited: A short tutorial via harmonic functions

    NASA Astrophysics Data System (ADS)

    Campoamor-Stursberg, R.; Rausch de Traubenberg, M.

    2017-04-01

    The representation theory of three dimensional real and complex Lie groups is reviewed from the perspective of harmonic functions defined over certain appropriate manifolds. An explicit construction of all unitary representations is given. The realisations obtained are shown to be related with each other by either natural operations as real forms or Inönü-Wigner contractions.

  13. A FUNCTIONAL GROUP CHARACTERIZATION OF ORGANIC PM 2.5 EXPOSURE: RESULTS FROM THE RIOPA STUDY

    EPA Science Inventory

    The functional group (FG) composition of urban residential outdoor, indoor, and personal fine particle (PM2.5) samples is presented and used to provide insights relevant to organic PM2.5 exposure. PM2.5 samples (48 h) were collected during the Rel...

  14. Detection of Differential Item Functioning for More than Two Groups: A Monte Carlo Comparison of Methods

    ERIC Educational Resources Information Center

    Finch, W. Holmes

    2016-01-01

    Differential item functioning (DIF) assessment is a crucial component in test construction, serving as the primary way in which instrument developers ensure that measures perform in the same way for multiple groups within the population. When such is not the case, scores may not accurately reflect the trait of interest for all individuals in the…

  15. Social Resources and Change in Functional Health: Comparing Three Age Groups

    ERIC Educational Resources Information Center

    Randall, G. Kevin; Martin, Peter; Bishop, Alex J.; Johnson, Mary Ann; Poon, Leonard W.

    2012-01-01

    This study examined the mediating and moderating role of social resources on the association between age and change in functional health for three age groups of older adults. Data were provided by those in their 60s, 80s, and 100s who participated in the first two phases of the Georgia Centenarian study. Analyses confirmed the study's hypothesis…

  16. Adults Living With Amyoplasia: Function, Psychosocial Aspects, and the Benefit of AMC Support Groups.

    PubMed

    Steen, Unni; Christensen, Elise; Samargian, Ani

    Little is known about how adults manage living with amyoplasia. Two studies concerning adults with amyoplasia were conducted; a cross-sectional study and a qualitative study. The aims were to describe body functions, activity and participation, and to explore psychosocial dimensions. This article also emphasizes the importance of Patient Support Groups as arenas for sharing experience and gaining knowledge.

  17. Detecting Differential Item Functioning Using the Rasch Model with Equivalent-Group Cross-Validation.

    ERIC Educational Resources Information Center

    Miao, Chang Y.; Kramer, Gene A.

    An approach to detecting differential item functioning using the Rasch model with equivalent-group cross-validation was investigated. College students taking the Dental Admission Test, were divided by gender (936 females and 1,537 males) into 2 different samples. Rasch analyses were performed on both samples. Data were recalibrated after…

  18. Chemkarta: A Card Game for Teaching Functional Groups in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Knudtson, Christopher A.

    2015-01-01

    Students in undergraduate organic chemistry courses are frequently overwhelmed by the volume and complexity of information they are expected to learn. To aid in students' learning of organic functional groups, a novel card game "ChemKarta" is reported that can serve as a useful alternative to flashcards. This pedagogy is a simple…

  19. Attraction to a Group as a Function of Attitude Similarity and Geographic Distance.

    ERIC Educational Resources Information Center

    Davis, John M.

    1984-01-01

    Investigated attraction toward a group as a function of attitude similarity and perceived geographic distance in students (N=60). Results showed that effects of attitude similarity were strongly significant and that distance had no signficant effect on attraction and limited effect on evaluations. (LLL)

  20. Class-Wide Function-Related Intervention Teams: Effects of Group Contingency Programs in Urban Classrooms

    ERIC Educational Resources Information Center

    Kamps, Debra; Wills, Howard P.; Heitzman-Powell, Linda; Laylin, Jeff; Szoke, Carolyn; Petrillo, Tai; Culey, Amy

    2011-01-01

    The purpose of the study was to determine the effectiveness of the Class-Wide Function-related Intervention Teams (CW-FIT) program, a group contingency intervention for whole classes, and for students with disruptive behaviors who are at risk for emotional/behavioral disorders (EBD). The CW-FIT program includes four elements designed from…

  1. Detecting Native Language Group Differences at the Subskills Level of Reading: A Differential Skill Functioning Approach

    ERIC Educational Resources Information Center

    Li, Hongli; Suen, Hoi K.

    2013-01-01

    Differential skill functioning (DSF) exists when examinees from different groups have different probabilities of successful performance in a certain subskill underlying the measured construct, given that they have the same ability on the overall construct. Using a DSF approach, this study examined the differences between two native language…

  2. Neuropsychological Functioning in Specific Learning Disorders--Reading, Writing and Mixed Groups

    ERIC Educational Resources Information Center

    Kohli, Adarsh; Kaur, Manreet; Mohanty, Manju; Malhotra, Savita

    2006-01-01

    Aim: The study compared the pattern of deficits, intelligence and neuropsychological functioning in subcategories of learning disorders. Methods: Forty-six children (16 with reading disorders, 11 with writing disorders and 19 with both reading and writing disorders--mixed group) in the age range of 7-14 years were assessed using the NIMHANS Index…

  3. Urinary Cortisol Circadian Rhythm in a Group of High-Functioning Children with Autism.

    ERIC Educational Resources Information Center

    Richdale, Amanda L.; Prior, Margot R.

    1992-01-01

    This study found no evidence for abnormal temporal placement of the basal urinary cortisol circadian rhythm in a group of 18 high-functioning children (ages 4-14) with autism. There was a tendency toward cortisol hypersecretion during the day, predominantly in autistic children who were integrated into the normal school system. (Author/JDD)

  4. Chemkarta: A Card Game for Teaching Functional Groups in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Knudtson, Christopher A.

    2015-01-01

    Students in undergraduate organic chemistry courses are frequently overwhelmed by the volume and complexity of information they are expected to learn. To aid in students' learning of organic functional groups, a novel card game "ChemKarta" is reported that can serve as a useful alternative to flashcards. This pedagogy is a simple…

  5. Group Social Skills Instruction for Adolescents with High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    White, Susan W.; Koenig, Kathleen; Scahill, Lawrence

    2010-01-01

    Given the increased recognition of autism spectrum disorders (ASD) and the chronic and pervasive nature of associated deficits, there is a pressing need for effective treatments. The feasibility and preliminary efficacy of a structured, group social skills training program for high-functioning youth with ASD was examined in this study. Fifteen…

  6. Age group analysis of psychological, physical and functional deterioration in patients hospitalized for pneumonia.

    PubMed

    Martín-Salvador, Adelina; Torres-Sánchez, Irene; Sáez-Roca, Germán; López-Torres, Isabel; Rodríguez-Alzueta, Elisabeth; Valenza, Marie Carmen

    2015-10-01

    Hospital admissions due to pneumonia range from 1.1 to 4 per 1,000 patients and this figure increases with age. Hospitalization causes a decline in functional status. Physical impairment impedes recovery and constitutes a higher risk of disability and mortality in elderly people. The objective of this study is to assess the impact of hospital stay in patients with pneumonia related with age. A total of 116 patients with pneumonia were included in this study, and divided into two age groups:<75 years (n=68) and ≥ 75 years (n=48). Respiratory function, physical function and psychological and emotional profile were evaluated. Pneumonia severity, nutritional status, independence and comorbidities were also assessed. Statistical analyses revealed significant differences between both age groups in pneumonia severity and comorbidities. Significant improvements between admission and discharge were found in lung function in both groups (p<0.05), while a significant decrease (p<0.05) in strength assessed by dynamometer was found in the ≥75 years group. Hospitalization leads to a significant physical impairment in patients admitted for pneumonia. This deterioration increases with age. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  7. Social Resources and Change in Functional Health: Comparing Three Age Groups

    ERIC Educational Resources Information Center

    Randall, G. Kevin; Martin, Peter; Bishop, Alex J.; Johnson, Mary Ann; Poon, Leonard W.

    2012-01-01

    This study examined the mediating and moderating role of social resources on the association between age and change in functional health for three age groups of older adults. Data were provided by those in their 60s, 80s, and 100s who participated in the first two phases of the Georgia Centenarian study. Analyses confirmed the study's hypothesis…

  8. A FUNCTIONAL GROUP CHARACTERIZATION OF ORGANIC PM 2.5 EXPOSURE: RESULTS FROM THE RIOPA STUDY

    EPA Science Inventory

    The functional group (FG) composition of urban residential outdoor, indoor, and personal fine particle (PM2.5) samples is presented and used to provide insights relevant to organic PM2.5 exposure. PM2.5 samples (48 h) were collected during the Rel...

  9. An Epistemological Inquiry into Organic Chemistry Education: Exploration of Undergraduate Students' Conceptual Understanding of Functional Groups

    ERIC Educational Resources Information Center

    Akkuzu, Nalan; Uyulgan, Melis Arzu

    2016-01-01

    This study sought to determine the levels of conceptual understanding of undergraduate students regarding organic compounds within different functional groups. A total of 60 students who were enrolled in the Department of Secondary Science and Mathematics Education of a Faculty of Education at a state university in Turkey and who had followed an…

  10. Group-Specific Effects of Matching Subtest Contamination on the Identification of Differential Item Functioning

    ERIC Educational Resources Information Center

    Keiffer, Elizabeth Ann

    2011-01-01

    A differential item functioning (DIF) simulation study was conducted to explore the type and level of impact that contamination had on type I error and power rates in DIF analyses when the suspect item favored the same or opposite group as the DIF items in the matching subtest. Type I error and power rates were displayed separately for the…

  11. Group Social Skills Instruction for Adolescents with High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    White, Susan W.; Koenig, Kathleen; Scahill, Lawrence

    2010-01-01

    Given the increased recognition of autism spectrum disorders (ASD) and the chronic and pervasive nature of associated deficits, there is a pressing need for effective treatments. The feasibility and preliminary efficacy of a structured, group social skills training program for high-functioning youth with ASD was examined in this study. Fifteen…

  12. Beta-WAIS Comparisons with Low Functioning Minority Group Offenders: A Cautionary Note.

    ERIC Educational Resources Information Center

    Hiltonsmith, Robert W.; And Others

    1982-01-01

    Investigated the utility of the Revised Beta as a screening device for low-functioning minority-group criminal offenders. Mean scores for this sample were correlated only mildly. This finding contradicts prior research and creates the need for caution in using the Beta as a screening device with this population. (Author)

  13. Detecting Native Language Group Differences at the Subskills Level of Reading: A Differential Skill Functioning Approach

    ERIC Educational Resources Information Center

    Li, Hongli; Suen, Hoi K.

    2013-01-01

    Differential skill functioning (DSF) exists when examinees from different groups have different probabilities of successful performance in a certain subskill underlying the measured construct, given that they have the same ability on the overall construct. Using a DSF approach, this study examined the differences between two native language…

  14. An Epistemological Inquiry into Organic Chemistry Education: Exploration of Undergraduate Students' Conceptual Understanding of Functional Groups

    ERIC Educational Resources Information Center

    Akkuzu, Nalan; Uyulgan, Melis Arzu

    2016-01-01

    This study sought to determine the levels of conceptual understanding of undergraduate students regarding organic compounds within different functional groups. A total of 60 students who were enrolled in the Department of Secondary Science and Mathematics Education of a Faculty of Education at a state university in Turkey and who had followed an…

  15. Review of Social Skills Training Groups for Youth with Asperger Syndrome and High Functioning Autism

    ERIC Educational Resources Information Center

    Cappadocia, M. Catherine; Weiss, Jonathan A.

    2011-01-01

    Although social skills deficits represent core symptoms of Asperger Syndrome and High Functioning Autism, there is limited research investigating the empirical validity of social skills interventions currently being used with these populations. This literature review compares three types of social skills training groups: traditional, cognitive…

  16. Assembly rules for functional groups of North American shrews: effects of geographic range and habitat partitioning

    Treesearch

    Timothy S. McCay; Matthew J. Lovallo; W. Mark Ford; Michael A. Menzel; Michael A. Menzel

    2004-01-01

    We examined the representation of shrew species within assemblages at 197 sites in the southern Appalachian Mountains, USA. Assemblages were classified according to representation of functional groups, including fossorial, small epigeal, and large epigeal. Average (9?SD) species richness was 2.99?1.0 and assemblages averaged 0.8 species in the fossorial and large...

  17. Class-Wide Function-Related Intervention Teams: Effects of Group Contingency Programs in Urban Classrooms

    ERIC Educational Resources Information Center

    Kamps, Debra; Wills, Howard P.; Heitzman-Powell, Linda; Laylin, Jeff; Szoke, Carolyn; Petrillo, Tai; Culey, Amy

    2011-01-01

    The purpose of the study was to determine the effectiveness of the Class-Wide Function-related Intervention Teams (CW-FIT) program, a group contingency intervention for whole classes, and for students with disruptive behaviors who are at risk for emotional/behavioral disorders (EBD). The CW-FIT program includes four elements designed from…

  18. Detection of Differential Item Functioning for More than Two Groups: A Monte Carlo Comparison of Methods

    ERIC Educational Resources Information Center

    Finch, W. Holmes

    2016-01-01

    Differential item functioning (DIF) assessment is a crucial component in test construction, serving as the primary way in which instrument developers ensure that measures perform in the same way for multiple groups within the population. When such is not the case, scores may not accurately reflect the trait of interest for all individuals in the…

  19. Urinary Cortisol Circadian Rhythm in a Group of High-Functioning Children with Autism.

    ERIC Educational Resources Information Center

    Richdale, Amanda L.; Prior, Margot R.

    1992-01-01

    This study found no evidence for abnormal temporal placement of the basal urinary cortisol circadian rhythm in a group of 18 high-functioning children (ages 4-14) with autism. There was a tendency toward cortisol hypersecretion during the day, predominantly in autistic children who were integrated into the normal school system. (Author/JDD)

  20. Organic functional group transformations in water at elevated temperature and pressure: Reversibility, reactivity, and mechanisms

    NASA Astrophysics Data System (ADS)

    Shipp, Jessie; Gould, Ian R.; Herckes, Pierre; Shock, Everett L.; Williams, Lynda B.; Hartnett, Hilairy E.

    2013-03-01

    Many transformation reactions involving hydrocarbons occur in the presence of H2O in hydrothermal systems and deep sedimentary systems. We investigate these reactions using laboratory-based organic chemistry experiments at high temperature and pressure (300 °C and 100 MPa). Organic functional group transformation reactions using model organic compounds based on cyclohexane with one or two methyl groups provided regio- and stereochemical markers that yield information about reversibility and reaction mechanisms. We found rapidly reversible interconversion between alkanes, alkenes, dienes, alcohols, ketones, and enones. The alkane-to-ketone reactions were not only completely reversible, but also exhibited such extensive reversibility that any of the functional groups along the reaction path (alcohol, ketone, and even the diene) could be used as the reactant and form all the other groups as products. There was also a propensity for these ring-based structures to dehydrogenate; presumably from the alkene, through a diene, to an aromatic ring. The product suites provide strong evidence that water behaved as a reactant and the various functional groups showed differing degrees of reactivity. Mechanistically-revealing products indicated reaction mechanisms that involve carbon-centered cation intermediates. This work therefore demonstrates that a wide range of organic compound types can be generated by abiotic reactions at hydrothermal conditions.

  1. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling.

    PubMed

    Eng, Alex Yong Sheng; Chua, Chun Kiang; Pumera, Martin

    2015-12-21

    Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively functionalize groups in GO, and quantification of each group is achieved by voltammetric analysis. This allows for the first time quantification of absolute amounts of each group, with a further advantage of distinguishing various carbonyl species: namely ortho- and para-quinones from aliphatic ketones. Intrinsic variations in the compositions of permanganate versus chlorate-oxidized GOs were thus observed. Principal differences include permanganate-GO exhibiting substantial quinonyl content, in comparison to chlorate-GO with the vast majority of its carbonyls as isolated ketones. The results confirm that carboxylic groups are rare in actuality, and are in fact entirely absent from chlorate-GO. These observations refine and advance our understanding of GO structure by addressing certain disparities in past models resulting from employment of different oxidation routes, with the vital implication that GO production methods cannot be used interchangeably in the manufacture of graphene-based devices.

  2. Increased acetyl group availability enhances contractile function of canine skeletal muscle during ischemia.

    PubMed Central

    Timmons, J A; Poucher, S M; Constantin-Teodosiu, D; Worrall, V; Macdonald, I A; Greenhaff, P L

    1996-01-01

    Skeletal muscle contractile function is impaired during acute ischemia such as that experienced by peripheral vascular disease patients. We therefore, examined the effects of dichloroacetate, which can alter resting metabolism, on canine gracilis muscle contractile function during constant flow ischemia. Pretreatment with dichloroacetate increased resting pyruvate dehydrogenase complex activity and resting acetylcarnitine concentration by approximately 4- and approximately 10-fold, respectively. After 20-min contraction the control group had demonstrated an approximately 40% reduction in isomeric tension whereas the dichloroacetate group had fatigued by approximately 25% (P < 0.05). Dichloroacetate resulted in less lactate accumulation (10.3 +/- 3.0 vs 58.9 +/- 10.5 mmol.kg-1 dry muscle [dm], P < 0.05) and phosphocreatine hydrolysis (15.6 +/- 6.3 vs 33.8 +/- 9.0 mmol.kg-1 dm, P < 0.05) during contraction. Acetylcarnitine concentration fell during contraction by 5.4 +/- 1.8 mmol.kg-1 dm in the dichloroacetate group but increased by 10.0 +/- 1.9 mmol.kg-1 dm in the control group. In conclusion, dichloroacetate enhanced contractile function during ischemia, independently of blood flow, such that it appears oxidative ATP regeneration is limited by pyruvate dehydrogenase complex activity and acetyl group availability. PMID:8609248

  3. Functional group analysis of natural organic colloids and clay association kinetics using C(1s) spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Schäfer, T.; Hertkorn, N.; Artinger, R.; Claret, F.; Bauer, A.

    2003-03-01

    The quantification of natural humic colloid functional group content and chemical association of humic substances with clay minerals exerts a crucial role in the colloid-borne mobility of actinides due to the functional group dependent strong interaction with multivalent metal ions. Functional group quantification in isolated fulvic acids of the Gorleben groundwater (Lower Saxony, NW Germany) by comparison of high resolution C(1s) NEXAFS spectra deconvolution with ^{13}C-NMR measurements showed good correlation (r^2> 0.9) and gives a potential quantification tool in complex natural groundwater Systems. Time resolved soft X-ray spectromicroscopy on dissolved organic carbon stabilized SWy-2 smectite colloids revealed an enrichment of carboxyl groups on broken edges (silanol/aluminol groups) at short contact times (1h). With longer contact times (7d, 6 months) the clay associated organic carbon increases and significantly higher aromatic content associated with basal surfaces were detected. The enhanced sorption of aromatic compounds can be related to an increase in mineral surface hydrophobicity and/or preferential sorption on charged siloxane surfaces.

  4. Quantification of protein group coherence and pathway assignment using functional association

    PubMed Central

    2011-01-01

    Background Genomics and proteomics experiments produce a large amount of data that are awaiting functional elucidation. An important step in analyzing such data is to identify functional units, which consist of proteins that play coherent roles to carry out the function. Importantly, functional coherence is not identical with functional similarity. For example, proteins in the same pathway may not share the same Gene Ontology (GO) terms, but they work in a coordinated fashion so that the aimed function can be performed. Thus, simply applying existing functional similarity measures might not be the best solution to identify functional units in omics data. Results We have designed two scores for quantifying the functional coherence by considering association of GO terms observed in two biological contexts, co-occurrences in protein annotations and co-mentions in literature in the PubMed database. The counted co-occurrences of GO terms were normalized in a similar fashion as the statistical amino acid contact potential is computed in the protein structure prediction field. We demonstrate that the developed scores can identify functionally coherent protein sets, i.e. proteins in the same pathways, co-localized proteins, and protein complexes, with statistically significant score values showing a better accuracy than existing functional similarity scores. The scores are also capable of detecting protein pairs that interact with each other. It is further shown that the functional coherence scores can accurately assign proteins to their respective pathways. Conclusion We have developed two scores which quantify the functional coherence of sets of proteins. The scores reflect the actual associations of GO terms observed either in protein annotations or in literature. It has been shown that they have the ability to accurately distinguish biologically relevant groups of proteins from random ones as well as a good discriminative power for detecting interacting pairs of

  5. A meta-analysis of functional group responses to forest recovery outside of the tropics.

    PubMed

    Spake, Rebecca; Ezard, Thomas H G; Martin, Philip A; Newton, Adrian C; Doncaster, C Patrick

    2015-12-01

    Both active and passive forest restoration schemes are used in degraded landscapes across the world to enhance biodiversity and ecosystem service provision. Restoration is increasingly also being implemented in biodiversity offset schemes as compensation for loss of natural habitat to anthropogenic development. This has raised concerns about the value of replacing old-growth forest with plantations, motivating research on biodiversity recovery as forest stands age. Functional diversity is now advocated as a key metric for restoration success, yet it has received little analytical attention to date. We conducted a meta-analysis of 90 studies that measured differences in species richness for functional groups of fungi, lichens, and beetles between old-growth control and planted or secondary treatment forests in temperate, boreal, and Mediterranean regions. We identified functional-group-specific relationships in the response of species richness to stand age after forest disturbance. Ectomycorrhizal fungi averaged 90 years for recovery to old-growth values (between 45 years and unrecoverable at 95% prediction limits), and epiphytic lichens took 180 years to reach 90% of old-growth values (between 140 years and never for recovery to old-growth values at 95% prediction limits). Non-saproxylic beetle richness, in contrast, decreased as stand age of broadleaved forests increased. The slow recovery by some functional groups essential to ecosystem functioning makes old-growth forest an effectively irreplaceable biodiversity resource that should be exempt from biodiversity offsetting initiatives.

  6. Health and role functioning: the use of focus groups in the development of an item bank

    PubMed Central

    Bjorner, Jakob B.

    2013-01-01

    Background Role functioning is an important part of health-related quality of life. However, assessment of role functioning is complicated by the wide definition of roles and by fluctuations in role participation across the life-span. The aim of this study is to explore variations in role functioning across the lifespan using qualitative approaches, to inform the development of a role functioning item bank and to pilot test sample items from the bank. Methods Eight focus groups were conducted with a convenience sample of 38 English-speaking adults recruited in Rhode Island. Participants were stratified by gender and four age groups. Focus groups were taped, transcribed, and analyzed for thematic content. Results Participants of all ages identified family roles as the most important. There was age variation in the importance of social life roles, with younger and older adults rating them as more important. Occupational roles were identified as important by younger and middle-aged participants. The potential of health problems to affect role participation was recognized. Participants found the sample items easy to understand, response options identical in meaning and preferred five response choices. Conclusions Participants identified key aspects of role functioning and provided insights on their perception of the impact of health on their role participation. These results will inform item bank generation. PMID:20047086

  7. Structural and functional evolution of the P2Y12-like receptor group

    PubMed Central

    Hermsdorf, Thomas; Engemaier, Eva; Engel, Kathrin; Liebscher, Ines; Thor, Doreen; Zierau, Klaas; Römpler, Holger; Schulz, Angela

    2007-01-01

    Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members. PMID:18404440

  8. A SPARSE REDUCED RANK FRAMEWORK FOR GROUP ANALYSIS OF FUNCTIONAL NEUROIMAGING DATA.

    PubMed

    Ahn, Mihye; Shen, Haipeng; Lin, Weili; Zhu, Hongtu

    2015-01-01

    In spatial-temporal neuroimaging studies, there is an evolving literature on the analysis of functional imaging data in order to learn the intrinsic functional connectivity patterns among different brain regions. However, there are only few efficient approaches for integrating functional connectivity pattern across subjects, while accounting for spatial-temporal functional variation across multiple groups of subjects. The objective of this paper is to develop a new sparse reduced rank (SRR) modeling framework for carrying out functional connectivity analysis across multiple groups of subjects in the frequency domain. Our new framework not only can extract both frequency and spatial factors across subjects, but also imposes sparse constraints on the frequency factors. It thus leads to the identification of important frequencies with high power spectra. In addition, we propose two novel adaptive criteria for automatic selection of sparsity level and model rank. Using simulated data, we demonstrate that SRR outperforms several existing methods. Finally, we apply SRR to detect group differences between controls and two subtypes of attention deficit hyperactivity disorder (ADHD) patients, through analyzing the ADHD-200 data.

  9. Localization and attempted quantification of various functional groups on pulpwood fibres

    NASA Astrophysics Data System (ADS)

    Klash, A.; Ncube, E.; Meincken, M.

    2009-04-01

    The distribution of different free chemical functional groups on wood and pulp fibres has been determined by means of atomic force microscopy (AFM) with chemically modified tips. Because these functional groups show a higher affinity to similar groups on the substrate surface during scanning, AFM images determined with an additional digital pulsed-force mode (DPFM) controller allow the distribution of the chemical components to be imaged and to a degree also to be quantified. The investigated tip coatings showed a different sensitivity towards the major chemical components present in wood fibres, determined on spin-coated films and on wood fibres. A clear distinction between cellulose and lignin was possible in both cases. This technique could therefore be used to differentiate between cellulose and lignin present on pulp fibre surfaces and confirm the successful removal of lignin by pulping.

  10. Multi-regulator functional renormalization group for many-fermion systems

    NASA Astrophysics Data System (ADS)

    Tanizaki, Yuya; Hatsuda, Tetsuo

    We propose a method of multi-regulator functional renormalization group (MR-FRG) which is a novel formulation of functional renormalization group with multiple infrared (IR) regulators. It is applied to a two-component fermionic system with an attractive contact interaction to study crossover phenomena between the Bardeen-Cooper-Schrieffer (BCS) phase and the Bose-Einstein condensation (BEC) phase. To control both the fermionic one-particle excitations and the bosonic collective excitations, IR regulators are introduced, one for the fermionic two-point function and another for the four-fermion vertex. It is shown that the Nozières-Schmitt-Rink (NSR) theory, which is successful to capture qualitative features of the BCS-BEC crossover, can be derived from MR-FRG. Some aspects of MR-FRG to go beyond the NSR theory are also discussed.

  11. Development of Acid Functional Groups and Lactones During the Thermal Degradation of Wood and Wood Components

    USGS Publications Warehouse

    Rutherford, David W.; Wershaw, Robert L.; Reeves, James B.

    2008-01-01

    Black carbon (pyrogenic materials including chars) in soils has been recognized as a substantial portion of soil organic matter, and has been shown to play a vital role in nutrient cycling; however, little is known concerning the properties of this material. Previous studies have largely been concerned with the creation of high-surface-area materials for use as sorbents. These materials have been manufactured at high temperature and have often been activated. Chars occurring in the environment can be formed over a wide range of temperature. Because it is extremely difficult to isolate black carbon once it has been incorporated in soils, chars produced in the laboratory under controlled conditions can be used to investigate the range of properties possible for natural chars. This report shows that charring conditions (temperature and time) have substantial impact on the acid functional group and lactone content of chars. Low temperatures (250?C) and long charring times (greater than 72 hours) produce chars with the highest acid functional group and lactone content. The charring of cellulose appears to be responsible for the creation of the acid functional group and lactones. The significance of this study is that low-temperature chars can have acid functional group contents comparable to humic materials (as high as 8.8 milliequivalents per gram). Acid functional group and lactone content decreases as charring temperature increases. The variation in formation conditions expected under natural fire conditions will result in a wide range of sorption properties for natural chars which are an important component of soil organic matter. By controlling the temperature and duration of charring, it is possible to tailor the sorption properties of chars, which may be used as soil amendments.

  12. The Dragonfly Nearby Galaxies Survey. III. The Luminosity Function of the M101 Group

    NASA Astrophysics Data System (ADS)

    Danieli, Shany; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2017-03-01

    We obtained follow-up HST observations of the seven low surface brightness galaxies discovered with the Dragonfly Telephoto Array in the field of the massive spiral galaxy M101. Out of the seven galaxies, only three were resolved into stars and are potentially associated with the M101 group at D = 7 Mpc. Based on HST ACS photometry in the broad F606W and F814W filters, we use a maximum likelihood algorithm to locate the Tip of the Red Giant Branch in galaxy color–magnitude diagrams. Distances are {6.38}-0.35+0.35,{6.87}-0.30+0.21 and {6.52}-0.27+0.25 {Mpc} and we confirm that they are members of the M101 group. Combining the three confirmed low-luminosity satellites with previous results for brighter group members, we find the M101 galaxy group to be a sparsely populated galaxy group consisting of seven group members, down to M V = ‑9.2 mag. We compare the M101 cumulative luminosity function to that of the Milky Way and M31. We find that they are remarkably similar; in fact, the cumulative luminosity function of the M101 group gets even flatter for fainter magnitudes, and we show that the M101 group might exhibit the two known small-scale flaws in the ΛCDM model, namely “the missing satellite” problem and the “too big to fail” problem. Kinematic measurements of M101's satellite galaxies are required to determine whether the “too big to fail” problem does in fact exist in the M101 group.

  13. Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks.

    PubMed

    Pilskog, Hanne Eik; Birkemoe, Tone; Framstad, Erik; Sverdrup-Thygeson, Anne

    2016-01-01

    One of the largest threats to biodiversity is land use change and habitat loss. Hollow oaks (Quercus spp. L.) are well-defined patches that are hotspots for biodiversity and red-listed species, but they are often rare and fragmented in the landscape. We investigated the effect of patch size, habitat quality, and isolation on functional groups and red-listed saproxylic beetles in hollow oaks (n = 40) in Norway. The groups were defined by host tree association, trophic grouping, and red-listed status. Habitat quality, represented by tree form was most important in explaining species richness for most groups. Patch size, represented by circumference and amount of dead branches, was most important in explaining abundance. Isolation, that is single oaks compared with oaks in groups, had a negative effect on the abundance of beetles feeding both on wood and fungi (xylomycethopagous), as well as on species associated with broadleaved trees (oak semi-specialists), but did not affect species richness. This indicates that at this scale and in this landscape, isolated oaks are as species rich and valuable for conservation as other oaks, although some functional groups may be more vulnerable to isolation than others. The red-listed species only responded to patch size, indicating that oaks with large circumference and many dead branches are especially important for red-listed species and for conservation.

  14. Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks

    PubMed Central

    Pilskog, Hanne Eik; Birkemoe, Tone; Framstad, Erik; Sverdrup-Thygeson, Anne

    2016-01-01

    One of the largest threats to biodiversity is land use change and habitat loss. Hollow oaks (Quercus spp. L.) are well-defined patches that are hotspots for biodiversity and red-listed species, but they are often rare and fragmented in the landscape. We investigated the effect of patch size, habitat quality, and isolation on functional groups and red-listed saproxylic beetles in hollow oaks (n = 40) in Norway. The groups were defined by host tree association, trophic grouping, and red-listed status. Habitat quality, represented by tree form was most important in explaining species richness for most groups. Patch size, represented by circumference and amount of dead branches, was most important in explaining abundance. Isolation, that is single oaks compared with oaks in groups, had a negative effect on the abundance of beetles feeding both on wood and fungi (xylomycethopagous), as well as on species associated with broadleaved trees (oak semi-specialists), but did not affect species richness. This indicates that at this scale and in this landscape, isolated oaks are as species rich and valuable for conservation as other oaks, although some functional groups may be more vulnerable to isolation than others. The red-listed species only responded to patch size, indicating that oaks with large circumference and many dead branches are especially important for red-listed species and for conservation. PMID:26945089

  15. Wetting properties of model interphases coated with defined organic functional groups

    NASA Astrophysics Data System (ADS)

    Woche, Susanne K.; Goebel, Marc-O.; Guggenberger, Georg; Tunega, Daniel; Bachmann, Joerg

    2013-04-01

    Surface properties of soil particles are of particular interest regarding transport of water and sorption of solutes, especially hazardous xenobiotic species. Wetting properties (e.g. determined by contact angle, CA), governed by the functional groups exposed, are crucial to understand sorption processes in water repellent soils as well as for the geometry of water films sustaining microbial processes on the pore scale. Natural soil particle surfaces are characterized by a wide variety of mineralogical and chemical compounds. Their composition is almost impossible to identify in full. Hence, in order to get a better understanding about surface properties, an option is the usage of defined model surfaces, whereas the created surface should be comparable to natural soil interphases. We exposed smooth glass surfaces to different silane compounds, resulting in a coating covalently bound to the surface and exhibiting defined organic functional groups towards the pore space. The wetting properties as evaluated by CA and the surface free energy (SFE), calculated according to the Acid-Base Theory, were found to be a function of the specific functional group. Specifically, the treated surfaces showed a large variation of CA and SFE as function of chain length and polarity of the organic functional group. The study of wetting properties was accompanied by XPS analysis for selective detection of chemical compounds of the interphase. As the reaction mechanism of the coating process is known, the resulting interphase structure can be modeled based on energetic considerations. A next step is to use same coatings for the defined modification of the pore surfaces of porous media to study transport and sorption processes in complex three phase systems.

  16. Matrix Intensification Alters Avian Functional Group Composition in Adjacent Rainforest Fragments

    PubMed Central

    Deikumah, Justus P.; McAlpine, Clive A.; Maron, Martine

    2013-01-01

    Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining. PMID:24058634

  17. Matrix intensification alters avian functional group composition in adjacent rainforest fragments.

    PubMed

    Deikumah, Justus P; McAlpine, Clive A; Maron, Martine

    2013-01-01

    Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining.

  18. Photochemical and antimicrobial properties of silver nanoparticle-encapsulated chitosan functionalized with photoactive groups.

    PubMed

    Mathew, Thomas V; Kuriakose, Sunny

    2013-10-01

    Chitosan was functionalized with 4-((E)-2-(3-hydroxynaphthalen-2-yl)diazen-1-yl)benzoic acid by the coupling of the hydroxyl functional groups of chitosan with carboxylic acid group of the dye by DCC coupling method. The silver nanoparticles were prepared by sol-gel method of nanoparticle synthesis. Silver nanoparticle-encapsulated functionalized chitosan was prepared by the phase transfer method. The products were characterized by FTIR, UV-Vis, fluorescence and NMR spectroscopic methods and by SEM and TEM analysis. The photochemical properties of silver nanoparticle-encapsulated chitosan functionalized with 4-((E)-2-(3-hydroxynaphthalen-2-yl)diazen-1-yl)benzoic acid was studied in detail. The light-fastening properties of the chromophoric system was enhanced when attached to chitosan, and it can be further improved by the encapsulation of silver nanoparticles. The antibacterial analysis of silver nanoparticle-encapsulated functionalized chitosan was carried out against Staphylococcus aureus and Escherichia coli and against fungal species such as Aspergillus flavus and Aspergillus terreus. This study showed that silver nanoparticles-encapsulated functionalized chitosan can be used for antibacterial and antifungal applications.

  19. Zooplankton functional groups on the continental shelf of the yellow sea

    NASA Astrophysics Data System (ADS)

    Sun, Song; Huo, Yuanzi; Yang, Bo

    2010-06-01

    Zooplankton plays a vital role in marine ecosystems. Variations in the zooplankton species composition, biomass, and secondary production will change the structure and function of the ecosystem. How to describe this process and make it easier to be modeled in the Yellow Sea ecosystem is the main purpose of this paper. The zooplankton functional groups approach, which is considered a good method of linking the structure of food webs and the energy flow in the ecosystems, is used to describe the main contributors of secondary produciton of the Yellow Sea ecosystem. The zooplankton can be classified into six functional groups: giant crustaceans, large copepods, small copepods, chaetognaths, medusae, and salps. The giant crustaceans, large copepods, and small copepods groups, which are the main food resources for fish, are defined depending on the size spectrum. Medusae and chaetognaths are the two gelatinous carnivorous groups, which compete with fish for food. The salps group, acting as passive filter-feeders, competes with other species feeding on phytoplankton, but their energy could not be efficiently transferred to higher trophic levels. From the viewpoint of biomass, which is the basis of the food web, and feeding activities, the contributions of each functional group to the ecosystem were evaluated; the seasonal variations, geographical distribution patterns, and species composition of each functional group were analyzed. The average zooplankton biomass was 2.1 g dry wt m -2 in spring, to which the giant crustaceans, large copepods, and small copepods contributed 19, 44, and 26%, respectively. High biomasses of the large copepods and small copepods were distributed at the coastal waters, while the giant crustaceans were mainly located at offshore area. In summer, the mean biomass was 3.1 g dry wt m -2, which was mostly contributed by the giant crustaceans (73%), and high biomasses of the giant crustaceans, large copepods, and small copepods were all distributed

  20. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups

    SciTech Connect

    Fifield, Leonard S.; Grate, Jay W.

    2010-06-01

    Fluorinated hydrogen-bond acidic groups are directly attached to the backbone of single walled carbon nanotubes (SWCNTs) without the introduction of intermediate electron donating surface groups. Hexafluoroalcohol functional groups are exceptionally strong hydrogen bond acids, and are added to the nanotube surface using the aryl diazonium approach to create hydrogen-bond acidic carbon nanotube (CNT) surfaces. These groups can promote strong hydrogen-bonding interactions with matrix materials in composites or with molecular species to be concentrated and sensed. In the latter case, this newly developed material is expected to find useful application in chemical sensors and in CNT-based preconcentrator devices for the detection of pesticides, chemical warfare agents and explosives.

  1. The effect of affective bibliotherapy on clients' functioning in group therapy.

    PubMed

    Shechtman, Zipora; Nir-Shfrir, Rivka

    2008-01-01

    Abstract The effect of affective group bibliotherapy (GB) was compared to affective group therapy (GT) on patients' functioning in therapy and their session impression. Three small groups totaling twenty-five in-patients in a hospital in Israel participated in the study. Clients concurrently participated in both group types, undergoing three sessions in each condition. In-therapy behaviors were assessed through the Client Behavior System (CBS; Hill & O'Brien, 1999). Results indicated that in the GB condition compared to the GT condition, clients showed less resistance, used simple responses less frequently, and expressed greater affective exploration. The Session Evaluation Questionnaire (SEQ; Stiles et al., 1994) was used to measure clients' impressions of the sessions. Results indicated that patients evaluated the two treatment conditions equally. Overall, the results support earlier findings, suggesting that affective bibliotherapy can be an effective method of treatment.

  2. Kelvin-probe force microscopy of the pH-dependent charge of functional groups

    NASA Astrophysics Data System (ADS)

    Stone, Alexander D. D.; Mesquida, Patrick

    2016-06-01

    Kelvin-probe Force Microscopy (KFM) is an established method to map surface potentials or surface charges at high, spatial resolution. However, KFM does not work in water, which restricts its applicability considerably, especially when considering common, functional chemical groups in biophysics such as amine or carboxy groups, whose charge depends on pH. Here, we demonstrate that the KFM signal of such groups taken in air after exposure to water correlates qualitatively with their expected charge in water for a wide range of pH values. The correlation was tested with microcontact-printed thiols exposing amine and carboxy groups. Furthermore, it was shown that collagen fibrils, as an example of a biological material, exhibit a particular, pH-sensitive surface charge pattern, which could be caused by the particular arrangement of ionizable residues on the collagen fibril surface.

  3. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling

    NASA Astrophysics Data System (ADS)

    Eng, Alex Yong Sheng; Chua, Chun Kiang; Pumera, Martin

    2015-11-01

    Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively functionalize groups in GO, and quantification of each group is achieved by voltammetric analysis. This allows for the first time quantification of absolute amounts of each group, with a further advantage of distinguishing various carbonyl species: namely ortho- and para-quinones from aliphatic ketones. Intrinsic variations in the compositions of permanganate versus chlorate-oxidized GOs were thus observed. Principal differences include permanganate-GO exhibiting substantial quinonyl content, in comparison to chlorate-GO with the vast majority of its carbonyls as isolated ketones. The results confirm that carboxylic groups are rare in actuality, and are in fact entirely absent from chlorate-GO. These observations refine and advance our understanding of GO structure by addressing certain disparities in past models resulting from employment of different oxidation routes, with the vital implication that GO production methods cannot be used interchangeably in the manufacture of graphene-based devices.Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively

  4. Quantity of Hydrophobic Functional CH-Groups - Decisive for Soil Water Repellency Caused by Digestate Amendment

    NASA Astrophysics Data System (ADS)

    Voelkner, Amrei; Holthusen, Dörthe; Ellerbrock, Ruth H.; Horn, Rainer

    2015-04-01

    Anaerobic digestates are used as organic fertilizers; however, they are suspected to interfere negatively with soils. To investigate the relevance of the anaerobic digestates composition on potential wettability and contact angle of the soil, we mixed in a laboratory experiment 30 m³ ha-1 of anaerobic digestates derived from mechanically pre-treated substrates from maize and sugar beet with a homogenized Cambic Luvisol. Fourier transform infrared-spectra and diffuse reflectance infrared Fourier transform-spectra of particle intact and finely ground soilanaerobic digestates-mixtures were analyzed to determine the quantities of hydrophobic functional groups in the soil-anaerobic digestates-mixtures that are used here as an indicator for the potential hydrophobicity. The anaerobic digestates application increased the amount of hydrophobic functional groups of the mixtures and reduced the wettability of the soil. However, for intact particle samples an up to threefold higher amount of hydrophobic groups was found as compared to the finely ground ones, indicating a dilution effect of mechanical grinding on the effectivity of the organic matter that is presumably located as a coating on mineral soil particles. For the particle intact samples, the intensity of hydrophobic functional groups bands denoting hydrophobic brickstones in organic matter is indicative for the actual wettability of the soil-anaerobic digestates-mixtures.

  5. Functional groups affect physical and biological properties of dextran-based hydrogels.

    PubMed

    Sun, Guoming; Shen, Yu-I; Ho, Chia Chi; Kusuma, Sravanti; Gerecht, Sharon

    2010-06-01

    Modification of dextran backbone allows the development of a hydrogel with specific characteristics. To enhance their functionality for tissue-engineered scaffolds, a series of dextran-based macromers was synthesized by incorporating various functional groups, including allyl isocyanate (Dex-AI), ethylamine (Dex-AE), chloroacetic acid (Dex-AC), or maleic-anhydride (Dex-AM) into dextrans. The dextran-based biodegradable hybrid hydrogels are developed by integrating polyethylene glycol diacrylate (PEGDA). To explore the effect of different derivatives on hydrogel properties, three different ratios of Dex/PEGDA are examined: low (20/80), medium (40/60), and high (60/40). Differences in physical and biological properties of the hydrogels are found, including swelling, degradation rate, mechanics, crosslinking density, biocompatibility (in vitro and in vivo), and vascular endothelial growth factor release. The results also indicate that the incorporation of amine groups into dextran gives rise to hydrogels with better biocompatible and release properties. We, therefore, conclude that the incorporation of different functional groups affects the fundamental properties of a dextran-based hydrogel network, and that amine groups are preferred to generate hydrogels for biomedical use.

  6. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries.

    PubMed

    Estevez, Luis; Reed, David; Nie, Zimin; Schwarz, Ashleigh M; Nandasiri, Manjula I; Kizewski, James P; Wang, Wei; Thomsen, Edwin; Liu, Jun; Zhang, Ji-Guang; Sprenkle, Vincent; Li, Bin

    2016-06-22

    A dual oxidative approach using O2 plasma followed by treatment with H2 O2 to impart oxygen functional groups onto the surface of a graphite felt electrode. When used as electrodes for an all-vanadium redox flow battery (VRB) system, the energy efficiency of the cell is enhanced by 8.2 % at a current density of 150 mA cm(-2) compared with one oxidized by thermal treatment in air. More importantly, by varying the oxidative techniques, the amount and type of oxygen groups was tailored and their effects were elucidated. It was found that O-C=O groups improve the cells performance whereas the C-O and C=O groups degrade it. The reason for the increased performance was found to be a reduction in the cell overpotential after functionalization of the graphite felt electrode. This work reveals a route for functionalizing carbon electrodes to improve the performance of VRB cells. This approach can lower the cost of VRB cells and pave the way for more commercially viable stationary energy storage systems that can be used for intermittent renewable energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry.

    PubMed

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF3/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L(-1). Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  8. GPU-based parallel group ICA for functional magnetic resonance data.

    PubMed

    Jing, Yanshan; Zeng, Weiming; Wang, Nizhuan; Ren, Tianlong; Shi, Yingchao; Yin, Jun; Xu, Qi

    2015-04-01

    The goal of our study is to develop a fast parallel implementation of group independent component analysis (ICA) for functional magnetic resonance imaging (fMRI) data using graphics processing units (GPU). Though ICA has become a standard method to identify brain functional connectivity of the fMRI data, it is computationally intensive, especially has a huge cost for the group data analysis. GPU with higher parallel computation power and lower cost are used for general purpose computing, which could contribute to fMRI data analysis significantly. In this study, a parallel group ICA (PGICA) on GPU, mainly consisting of GPU-based PCA using SVD and Infomax-ICA, is presented. In comparison to the serial group ICA, the proposed method demonstrated both significant speedup with 6-11 times and comparable accuracy of functional networks in our experiments. This proposed method is expected to perform the real-time post-processing for fMRI data analysis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Effects of functional group mass variance on vibrational properties and thermal transport in graphene

    DOE PAGES

    Lindsay, L.; Kuang, Y.

    2017-03-13

    Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. We present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first principles calculations. We also use graphane, a buckled graphene backbone with covalently bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen atoms to simulate the effect of mass variance from other functional groups. We find non-monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over from acoustic-dominated tomore » optic-dominated thermal transport behavior. We connect this cross-over to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection symmetry based scattering selection rule responsible for their large contributions in graphene. Our work demonstrates the potential for manipulation and engineering of thermal transport properties in two dimensional materials toward targeted applications.« less

  10. Nanomechanical characterization of chemical interaction between gold nanoparticles and chemical functional groups

    PubMed Central

    2012-01-01

    We report on how to quantify the binding affinity between a nanoparticle and chemical functional group using various experimental methods such as cantilever assay, PeakForce quantitative nanomechanical property mapping, and lateral force microscopy. For the immobilization of Au nanoparticles (AuNPs) onto a microscale silicon substrate, we have considered two different chemical functional molecules of amine and catecholamine (here, dopamine was used). It is found that catecholamine-modified surface is more effective for the functionalization of AuNPs onto the surface than the amine-modified surface, which has been shown from our various experiments. The dimensionless parameter (i.e., ratio of binding affinity) introduced in this work from such experiments is useful in quantitatively depicting such binding affinity, indicating that the binding affinity and stability between AuNPs and catecholamine is approximately 1.5 times stronger than that between amine and AuNPs. Our study sheds light on the experiment-based quantitative characterization of the binding affinity between nanomaterial and chemical groups, which will eventually provide an insight into how to effectively design the functional material using chemical groups. PMID:23113991

  11. First-principles study of the effect of functional groups on polyaniline backbone

    PubMed Central

    Chen, X. P.; Jiang, J. K.; Liang, Q. H.; Yang, N.; Ye, H. Y.; Cai, M.; Shen, L.; Yang, D. G.; Ren, T. L.

    2015-01-01

    We present a first-principles density functional theory study focused on how the chemical and electronic properties of polyaniline are adjusted by introducing suitable substituents on a polymer backbone. Analyses of the obtained energy barriers, reaction energies and minimum energy paths indicate that the chemical reactivity of the polyaniline derivatives is significantly enhanced by protonic acid doping of the substituted materials. Further study of the density of states at the Fermi level, band gap, HOMO and LUMO shows that both the unprotonated and protonated states of these polyanilines are altered to different degrees depending on the functional group. We also note that changes in both the chemical and electronic properties are very sensitive to the polarity and size of the functional group. It is worth noting that these changes do not substantially alter the inherent chemical and electronic properties of polyaniline. Our results demonstrate that introducing different functional groups on a polymer backbone is an effective approach to obtain tailored conductive polymers with desirable properties while retaining their intrinsic properties, such as conductivity. PMID:26584671

  12. Linking avian communities and avian influenza ecology in southern Africa using epidemiological functional groups

    PubMed Central

    2012-01-01

    The ecology of pathogens, and particularly their emergence in multi-host systems, is complex. New approaches are needed to reduce superficial complexities to a level that still allows scientists to analyse underlying and more fundamental processes. One promising approach for simplification is to use an epidemiological-function classification to describe ecological diversity in a way that relates directly to pathogen dynamics. In this article, we develop and apply the epidemiological functional group (EFG) concept to explore the relationships between wild bird communities and avian influenza virus (AIV) in three ecosystems in southern Africa. Using a two year dataset that combined bird counts and bimonthly sampling for AIV, we allocated each bird species to a set of EFGs that captured two overarching epidemiological functions: the capacity of species to maintain AIV in the system, and their potential to introduce the virus. Comparing AIV prevalence between EFGs suggested that the hypothesis that anseriforms (ducks) and charadriiforms (waders) drive AIV epidemiology cannot entirely explain the high prevalence observed in some EFGs. If anseriforms do play an important role in AIV dynamics in each of the three ecosystems, the role of other species in the local maintenance of AIV cannot be ruled out. The EFG concept thus helped us to identify gaps in knowledge and to highlight understudied bird groups that might play a role in AIV epidemiology. In general, the use of EFGs has potential for generating a range of valuable insights in epidemiology, just as functional group approaches have done in ecology. PMID:23101696

  13. Effects of functional group mass variance on vibrational properties and thermal transport in graphene

    NASA Astrophysics Data System (ADS)

    Lindsay, L.; Kuang, Y.

    2017-03-01

    Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. Here we present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first-principles calculations. We use graphane, a buckled graphene backbone with covalently bonded hydrogen atoms on both sides, as the base material and vary the mass of the hydrogen atoms to simulate the effect of mass variance from other functional groups. We find nonmonotonic behavior of κ with increasing mass of the functional group and an unusual crossover from acoustic-dominated to optic-dominated thermal transport behavior. We connect this crossover to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection-symmetry-based scattering selection rule responsible for their large contributions in graphene. This work demonstrates the potential for manipulation and engineering of thermal transport properties in two-dimensional materials toward targeted applications.

  14. Nanomechanical characterization of chemical interaction between gold nanoparticles and chemical functional groups

    NASA Astrophysics Data System (ADS)

    Lee, Gyudo; Lee, Hyungbeen; Nam, Kihwan; Han, Jae-Hee; Yang, Jaemoon; Lee, Sang Woo; Yoon, Dae Sung; Eom, Kilho; Kwon, Taeyun

    2012-10-01

    We report on how to quantify the binding affinity between a nanoparticle and chemical functional group using various experimental methods such as cantilever assay, PeakForce quantitative nanomechanical property mapping, and lateral force microscopy. For the immobilization of Au nanoparticles (AuNPs) onto a microscale silicon substrate, we have considered two different chemical functional molecules of amine and catecholamine (here, dopamine was used). It is found that catecholamine-modified surface is more effective for the functionalization of AuNPs onto the surface than the amine-modified surface, which has been shown from our various experiments. The dimensionless parameter (i.e., ratio of binding affinity) introduced in this work from such experiments is useful in quantitatively depicting such binding affinity, indicating that the binding affinity and stability between AuNPs and catecholamine is approximately 1.5 times stronger than that between amine and AuNPs. Our study sheds light on the experiment-based quantitative characterization of the binding affinity between nanomaterial and chemical groups, which will eventually provide an insight into how to effectively design the functional material using chemical groups.

  15. Visual target modulation of functional connectivity networks revealed by self-organizing group ICA.

    PubMed

    van de Ven, Vincent; Bledowski, Christoph; Prvulovic, David; Goebel, Rainer; Formisano, Elia; Di Salle, Francesco; Linden, David E J; Esposito, Fabrizio

    2008-12-01

    We applied a data-driven analysis based on self-organizing group independent component analysis (sogICA) to fMRI data from a three-stimulus visual oddball task. SogICA is particularly suited to the investigation of the underlying functional connectivity and does not rely on a predefined model of the experiment, which overcomes some of the limitations of hypothesis-driven analysis. Unlike most previous applications of ICA in functional imaging, our approach allows the analysis of the data at the group level, which is of particular interest in high order cognitive studies. SogICA is based on the hierarchical clustering of spatially similar independent components, derived from single subject decompositions. We identified four main clusters of components, centered on the posterior cingulate, bilateral insula, bilateral prefrontal cortex, and right posterior parietal and prefrontal cortex, consistently across all participants. Post hoc comparison of time courses revealed that insula, prefrontal cortex and right fronto-parietal components showed higher activity for targets than for distractors. Activation for distractors was higher in the posterior cingulate cortex, where deactivation was observed for targets. While our results conform to previous neuroimaging studies, they also complement conventional results by showing functional connectivity networks with unique contributions to the task that were consistent across subjects. SogICA can thus be used to probe functional networks of active cognitive tasks at the group-level and can provide additional insights to generate new hypotheses for further study. Copyright 2007 Wiley-Liss, Inc.

  16. Nanomechanical characterization of chemical interaction between gold nanoparticles and chemical functional groups.

    PubMed

    Lee, Gyudo; Lee, Hyungbeen; Nam, Kihwan; Han, Jae-Hee; Yang, Jaemoon; Lee, Sang Woo; Yoon, Dae Sung; Eom, Kilho; Kwon, Taeyun

    2012-10-31

    We report on how to quantify the binding affinity between a nanoparticle and chemical functional group using various experimental methods such as cantilever assay, PeakForce quantitative nanomechanical property mapping, and lateral force microscopy. For the immobilization of Au nanoparticles (AuNPs) onto a microscale silicon substrate, we have considered two different chemical functional molecules of amine and catecholamine (here, dopamine was used). It is found that catecholamine-modified surface is more effective for the functionalization of AuNPs onto the surface than the amine-modified surface, which has been shown from our various experiments. The dimensionless parameter (i.e., ratio of binding affinity) introduced in this work from such experiments is useful in quantitatively depicting such binding affinity, indicating that the binding affinity and stability between AuNPs and catecholamine is approximately 1.5 times stronger than that between amine and AuNPs. Our study sheds light on the experiment-based quantitative characterization of the binding affinity between nanomaterial and chemical groups, which will eventually provide an insight into how to effectively design the functional material using chemical groups.

  17. The central role of ketones in reversible and irreversible hydrothermal organic functional group transformations

    NASA Astrophysics Data System (ADS)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2012-12-01

    Studies of hydrothermal reactions involving organic compounds suggest complex, possibly reversible, reaction pathways that link functional groups from reduced alkanes all the way to oxidized carboxylic acids. Ketones represent a critical functional group because they occupy a central position in the reaction pathway, at the point where Csbnd C bond cleavage is required for the formation of the more oxidized carboxylic acids. The mechanisms for the critical bond cleavage reactions in ketones, and how they compete with other reactions are the focus of this experimental study. We studied a model ketone, dibenzylketone (DBK), in H2O at 300 °C and 70 MPa for up to 528 h. Product analysis was performed as a function of time at low DBK conversions to reveal the primary reaction pathways. Reversible interconversion between ketone, alcohol, alkene and alkane functional groups is observed in addition to formation of radical coupling products derived from irreversible Csbnd C and Csbnd H homolytic bond cleavage. The product distributions are time-dependent but the bond cleavage products dominate. The major products that accumulate at longer reaction times are toluene and larger, dehydrogenated structures that are initially formed by radical coupling. The hydrogen atoms generated by dehydrogenation of the coupling products are predominantly consumed in the formation of toluene. Even though bond cleavage products dominate, no carboxylic acids were observed on the timescale of the reactions under the chosen experimental conditions.

  18. Designing group sequential randomized clinical trials with time to event end points using a R function.

    PubMed

    Filleron, Thomas; Gal, Jocelyn; Kramar, Andrew

    2012-10-01

    A major and difficult task is the design of clinical trials with a time to event endpoint. In fact, it is necessary to compute the number of events and in a second step the required number of patients. Several commercial software packages are available for computing sample size in clinical trials with sequential designs and time to event endpoints, but there are a few R functions implemented. The purpose of this paper is to describe features and use of the R function. plansurvct.func, which is an add-on function to the package gsDesign which permits in one run of the program to calculate the number of events, and required sample size but also boundaries and corresponding p-values for a group sequential design. The use of the function plansurvct.func is illustrated by several examples and validated using East software. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Functional groups in the social behavior of a cichlid fish, the Oscar, Astronotus ocellatus.

    PubMed

    Beeching, S C

    1997-01-01

    Dummy conspecifics were presented to isolated adults of the cichlid fish Astronotus ocellatus to investigate the functional organization of cichlid social behavior. Body size and 15 dummy-elicited activities were recorded during 15 min sessions and analyzed by principal components analysis (PCA) to reveal their temporal organization. Five principal components explained almost 80% of the variation in dummy-elicited behavior, and these five factors define functional groups for Nest-oriented and attack modal action patterns are not mutually inhibitory during this time frame, and biting does not appear to function exclusively during an attack on a conspecific. Comparison with previous studies of New and Old World cichlids suggests evolutionary conservation of the functional organization of social behavior.

  20. Species, Guilds, and Functional Groups: Taxonomy and Behavior in Nematophagous Arthropods

    PubMed Central

    Walter, David Evans; Ikonen, Eeva K.

    1989-01-01

    Phylogenetic relationship is an indication of shared abilities, or at least of shared constraints, on morphology, physiology, and behavior; but is phylogenetic relationship a sufficient criterion for predicting ecological function? Ecologists have assumed that the function of invertebrates in soil systems can be predicted at a low level of taxonomic resolution, but our research indicates that critical functional parameters -- e.g., feeding behavior, developmental rate, and reproductive mode -- are rarely predictable above the generic level. Since morphology is more strongly conserved than behavior, feeding guilds or functional groups based on broad taxonomic relationship or untested assumptions about correlations between trophic morphology and feeding behavior have little meaning for nematophagous arthropods from grassland soils in Colorado. PMID:19287615

  1. A simple one-step modification of various materials for introducing effective multi-functional groups.

    PubMed

    Chen, Si; Li, Xin; Yang, Zhilu; Zhou, Shuo; Luo, Rifang; Maitz, Manfred F; Zhao, Yuancong; Wang, Jin; Xiong, Kaiqin; Huang, Nan

    2014-01-01

    Covalent immobilization of various biomolecules is a desired strategy for bio-multifunctional surface modification. Multi-functionalization of a material surface is considered to be the premise of immobilizing a variety of biomolecules. However, currently adopted methods, used to introduce proper reactive functional groups on material surfaces, mostly are hard to be carried out and frequently can only introduce insufficient functional groups. In this work, we successfully develop the films (GAHD films) prepared via the simple copolymerization of gallic acid (GA) and hexamethylenediamine (HD), which can be deposited on different kinds of material surfaces including metals, ceramics and polymers by a one-step dip-coating method. Moreover, these copolymerized GAHD films possess high concentration of multi-functional groups like carboxyl (COOH), primary amine (-NH2) and quinone groups on the surfaces. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) results prove either the occurrence of Michael addition reaction, Schiff base reaction in the film-forming process, or the existence of COOH, NH2 and quinone groups on the surfaces. The maximum contents of carboxyl and amine on the GAHD film are 24.9 nmol/cm(2) and 31.7 nmol/cm(2) respectively. After dynamical immersion for 30 days, slight swellings can be observed, which reveals that the GAHD films possess good stability. Moreover, Heparin (Hep), fibronectin (Fn) and laminin (Ln) are successfully immobilized on the GAHD film surfaces. The results of cell counting kit-8 (CCK-8) and rhodamine fluorescence photograph indicate that the 1:1.62 GAHD film has good cytocompatibility. Copyright © 2013. Published by Elsevier B.V.

  2. Wetland macroinvertebrates of Prentiss Bay, Lake Huron, Michigan: diversity and functional group composition

    USGS Publications Warehouse

    Merritt, R.W.; Benbow, M.E.; Hudson, P.L.

    2002-01-01

    The Great Lakes support many fish and waterbirds that depend directly or indirectly on coastal wetlands during some portion of their life cycle. It is known that macroinvertebrates make up an important part of wetland food webs and ecosystem function; however, our understanding of species distribution within and among wetlands has only recently received attention. We investigated the macroinvertebrates of a freshwater marsh (Prentiss Bay) in the Les Chenaux Island Area of Northern Lake Huron, Michigan. Macroinvertebrate taxa diversity and functional feeding group composition were compared between two habitats. A shallow depositional habitat with higher vegetation diversity and little wave action was compared to a deeper erosional habitat with fewer plant species and more wave action. A total of 83 taxa were collected over the summer of 1996, representing two phyla (Arthropoda and Mollusca) and five classes (Arachnida, Bivalvia, Malacostraca, Gastropoda and Insecta). A total of 79 genera were identified, with 92% being insects (39 families composed of at least 73 genera). Of the total, 42 insect genera were common to both habitats,while relatively fewer were collected exclusively from the erosional compared the depositional habitat. When habitats were pooled, predators comprised about 50% of the functional group taxa, while gathering collectors and shredders each were about 20%. Filtering collectors and scrapers each represented < 10%. When comparing habitats, there was a relatively higher percentage of predators and shredders in the depositional habitat, while all other functional groups were lower. These data suggest that vegetation diversity, depth and wave action affect taxa composition and functional group organization of the Prentiss Bay marsh.

  3. Perceived Access to Reinforcers as a Function of Alcohol Consumption Among One First Nations Group

    PubMed Central

    Spillane, Nichea S.; Smith, Gregory T.; Kahler, Christopher W.

    2014-01-01

    Background Spillane & Smith (2007) postulated that high levels of problem drinking in some First Nation (FN) communities resulted in part from the perception that there is low access to alternative reinforcers (e.g., jobs, friendships, family relationships, and financial security), that many alternative reinforcers are less contingent on sobriety, and that others are available regardless of drinking status for reserve-dwelling FN members. Methods This study examined perceptions of access to alternative reinforcers and the extent to which access varied as a function of drinking in 211 FN members living on one reserve in Canada, 138 middle-socioeconomic status Caucasians (MCC), and 98 low-socioeconomic status Caucasians (LCC). Results The FN group expected less access to employment, quality family and friend relationships, and financial security compared to the MCC group. After controlling for perceived access in general, gender, and age, the FN group reported that drinking would not cause a decrease in access to employment, family relationships, friendships, and finances as compared to the MCC group. The FN group did not differ from the LCC group in the degree to which they expected drinking to cost access to family relationships or finances, but the LCC group expected drinking to have less of an impact on access to jobs and friendships as compared to the FN group. Conclusions The results provide initial support for the Spillane and Smith theory of problem drinking among this one First Nation Group. The results suggest that increasing access to these reinforcers may reduce problematic drinking in this First Nation group. PMID:22823415

  4. Towards Measuring Brain Function on Groups of People in the Real World

    PubMed Central

    Gevins, Alan; Chan, Cynthia S.; Sam-Vargas, Lita

    2012-01-01

    In three studies, EEGs from three groups of participants were recorded during progressively more real world situations after drinking alcoholic beverages that brought breath alcohol contents near the limit for driving in California 30 minutes after drinking. A simple equation that measured neurophysiological effects of alcohol in the first group of 15 participants performing repetitive cognitive tasks was applied to a second group of 15 operating an automobile driving simulator, and to a third group of 10 ambulatory people recorded simultaneously during a cocktail party. The equation derived from the first group quantified alcohol’s effect by combining measures of higher frequency (beta) and lower frequency (theta) power into a single score. It produced an Area Under the Receiver Operator Characteristic Curve of .73 (p<.05; 67% sensitivity in recognizing alcohol and 87% specificity in recognizing placebo). Applying the same equation to the second group operating the driving simulator, AUC was .95, (p<.0001; 93% sensitivity and 73% specificity), while for the cocktail party group AUC was .87 (p<.01; 80% sensitivity and 80% specificity). EEG scores were significantly related to breath alcohol content in all studies. Some individuals differed markedly from the overall response evident in their respective groups. The feasibility of measuring the neurophysiological effect of a psychoactive substance from an entire group of ambulatory people at a cocktail party suggests that future studies may be able to fruitfully apply brain function measures derived under rigorously controlled laboratory conditions to assess drug effects on groups of people interacting in real world situations. PMID:22957099

  5. Functional characterization and phylogenetic analysis of acquired and intrinsic macrolide phosphotransferases in the Bacillus cereus group.

    PubMed

    Wang, Chao; Sui, Zhihai; Leclercq, Sébastien Olivier; Zhang, Gang; Zhao, Meilin; Chen, Weiqi; Feng, Jie

    2015-05-01

    The Bacillus cereus group is composed of Gram-positive spore-forming bacteria of clinical and ecological importance. More than 200 B. cereus group isolates have been sequenced. However, there are few reports of B. cereus group antibiotic resistance genes. This study identified two functional classes of macrolide phosphotransferases (Mphs) in the B. cereus group. Cluster A Mphs inactivate 14- and 15-membered macrolides while Cluster B Mphs inactivate 14-, 15- and 16-membered compounds. The genomic region surrounding the Cluster B Mph gene is related to various plasmid sequences, suggesting that this gene is an acquired resistance gene. In contrast, the Cluster A Mph gene is located in a chromosomal region conserved among all B. cereus group isolates, and data indicated that it was acquired early in the evolution of the group. Therefore, the Cluster A gene can be considered an intrinsic resistance gene. However, the gene itself is not present in all strains and our comparative genomics analyses showed that it is exchanged among strains of the B. cereus group by the mean of homologous recombination. These results provide an alternative mechanism to intrinsic resistance. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Social skills group training in high-functioning autism: A qualitative responder study.

    PubMed

    Choque Olsson, Nora; Rautio, Daniel; Asztalos, Jenny; Stoetzer, Ulrich; Bölte, Sven

    2016-11-01

    Systematic reviews show some evidence for the efficacy of group-based social skills group training in children and adolescents with autism spectrum disorder, but more rigorous research is needed to endorse generalizability. In addition, little is known about the perspectives of autistic individuals participating in social skills group training. Using a qualitative approach, the objective of this study was to examine experiences and opinions about social skills group training of children and adolescents with higher functioning autism spectrum disorder and their parents following participation in a manualized social skills group training ("KONTAKT"). Within an ongoing randomized controlled clinical trial (NCT01854346) and based on outcome data from the Social Responsiveness Scale, six high responders and five low-to-non-responders to social skills group training and one parent of each child (N = 22) were deep interviewed. Interestingly, both high responders and low-to-non-responders (and their parents) reported improvements in social communication and related skills (e.g. awareness of own difficulties, self-confidence, independence in everyday life) and overall treatment satisfaction, although more positive intervention experiences were expressed by responders. These findings highlight the added value of collecting verbal data in addition to quantitative data in a comprehensive evaluation of social skills group training. © The Author(s) 2016.

  7. Unification of [FeFe]-hydrogenases into three structural and functional groups

    SciTech Connect

    Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R.; Refai, Mohammed; Schut, Gerrit J.; King, Paul W.; Maness, Pin-Ching; Adams, Michael W. W.; Peters, John W.; Bothner, Brian; Boyd, Eric S.

    2016-05-27

    [FeFe]-hydrogenases (Hyd) are structurally diverse enzymes that catalyze the reversible oxidation of hydrogen (H2). Recent biochemical data demonstrate new functional roles for these enzymes, including those that function in electron bifurcation where an exergonic reaction is coupled with an endergonic reaction to drive the reversible oxidation/production of H2. To identify the structural determinants that underpin differences in enzyme functionality, a total of 714 homologous sequences of the catalytic subunit, HydA, were compiled. Bioinformatics approaches informed by biochemical data were then used to characterize differences in inferred quaternary structure, HydA active site protein environment, accessory iron-sulfur clusters in HydA, and regulatory proteins encoded in HydA gene neighborhoods. HydA homologs were clustered into one of three classification groups, Group 1 (G1), Group 2 (G2), and Group 3 (G3). G1 enzymes were predicted to be monomeric while those in G2 and G3 were predicted to be multimeric and include HydB, HydC (G2/G3) and HydD (G3) subunits. Variation in the HydA active site and accessory iron-sulfur clusters did not vary by group type. Group-specific regulatory genes were identified in the gene neighborhoods of both G2 and G3 Hyd. Analyses of purified G2 and G3 enzymes by mass spectrometry strongly suggests that they are post-translationally modified by phosphorylation. In conclusion, these results suggest that bifurcation capability is dictated primarily by the presence of both HydB and HydC in Hyd complexes, rather than by variation in HydA.

  8. Unification of [FeFe]-hydrogenases into three structural and functional groups

    DOE PAGES

    Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R.; ...

    2016-05-27

    [FeFe]-hydrogenases (Hyd) are structurally diverse enzymes that catalyze the reversible oxidation of hydrogen (H2). Recent biochemical data demonstrate new functional roles for these enzymes, including those that function in electron bifurcation where an exergonic reaction is coupled with an endergonic reaction to drive the reversible oxidation/production of H2. To identify the structural determinants that underpin differences in enzyme functionality, a total of 714 homologous sequences of the catalytic subunit, HydA, were compiled. Bioinformatics approaches informed by biochemical data were then used to characterize differences in inferred quaternary structure, HydA active site protein environment, accessory iron-sulfur clusters in HydA, and regulatorymore » proteins encoded in HydA gene neighborhoods. HydA homologs were clustered into one of three classification groups, Group 1 (G1), Group 2 (G2), and Group 3 (G3). G1 enzymes were predicted to be monomeric while those in G2 and G3 were predicted to be multimeric and include HydB, HydC (G2/G3) and HydD (G3) subunits. Variation in the HydA active site and accessory iron-sulfur clusters did not vary by group type. Group-specific regulatory genes were identified in the gene neighborhoods of both G2 and G3 Hyd. Analyses of purified G2 and G3 enzymes by mass spectrometry strongly suggests that they are post-translationally modified by phosphorylation. In conclusion, these results suggest that bifurcation capability is dictated primarily by the presence of both HydB and HydC in Hyd complexes, rather than by variation in HydA.« less

  9. Unification of [FeFe]-hydrogenases into three structural and functional groups

    SciTech Connect

    Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R.; Refai, Mohammed; Schut, Gerrit J.; King, Paul W.; Maness, Pin-Ching; Adams, Michael W. W.; Peters, John W.; Bothner, Brian; Boyd, Eric S.

    2016-05-27

    [FeFe]-hydrogenases (Hyd) are structurally diverse enzymes that catalyze the reversible oxidation of hydrogen (H2). Recent biochemical data demonstrate new functional roles for these enzymes, including those that function in electron bifurcation where an exergonic reaction is coupled with an endergonic reaction to drive the reversible oxidation/production of H2. To identify the structural determinants that underpin differences in enzyme functionality, a total of 714 homologous sequences of the catalytic subunit, HydA, were compiled. Bioinformatics approaches informed by biochemical data were then used to characterize differences in inferred quaternary structure, HydA active site protein environment, accessory iron-sulfur clusters in HydA, and regulatory proteins encoded in HydA gene neighborhoods. HydA homologs were clustered into one of three classification groups, Group 1 (G1), Group 2 (G2), and Group 3 (G3). G1 enzymes were predicted to be monomeric while those in G2 and G3 were predicted to be multimeric and include HydB, HydC (G2/G3) and HydD (G3) subunits. Variation in the HydA active site and accessory iron-sulfur clusters did not vary by group type. Group-specific regulatory genes were identified in the gene neighborhoods of both G2 and G3 Hyd. Analyses of purified G2 and G3 enzymes by mass spectrometry strongly suggests that they are post-translationally modified by phosphorylation. In conclusion, these results suggest that bifurcation capability is dictated primarily by the presence of both HydB and HydC in Hyd complexes, rather than by variation in HydA.

  10. Configuration-dependent electronic and magnetic properties of graphene monolayers and nanoribbons functionalized with aryl groups

    SciTech Connect

    Tian, Xiaoqing Gu, Juan; Xu, Jian-bin

    2014-01-28

    Graphene monolayers functionalized with aryl groups exhibit configuration-dependent electronic and magnetic properties. The aryl groups were adsorbed in pairs of neighboring atoms in the same sublattice A (different sublattices) of graphene monolayers, denoted as the M{sub 2}{sup AA} (M{sub 2}{sup AB}) configuration. The M{sub 2}{sup AA} configuration behaved as a ferromagnetic semiconductor. The band gaps for the majority and minority bands were 1.1 eV and 1.2 eV, respectively. The M{sub 2}{sup AB} configuration behaved as a nonmagnetic semiconductor with a band gap of 0.8 eV. Each aryl group could induce 1 Bohr magneton (μ{sub B}) into the molecule-graphene system. Armchair graphene nanoribbons (GNRs) exhibited the same configuration-dependent magnetic properties as the graphene monolayers. The net spin of the functionalized zigzag GNRs was mainly localized on the edges demonstrating an adsorption site-dependent magnetism. For the zigzag GNRs, both the M{sub 2}{sup AA} and M{sub 2}{sup AB} configurations possibly had a magnetic moment. Each aryl group could induce 1.5–3.5 μ{sub B} into the molecule-graphene system. There was a metal-to-insulator transition after adsorption of the aryl groups for the zigzag GNRs.

  11. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles.

    PubMed

    Molina-Sánchez, Maria D; García-Rodríguez, Fernando M; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3' end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro. The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods.

  12. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles

    PubMed Central

    Molina-Sánchez, Maria D.; García-Rodríguez, Fernando M.; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3′ end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro. The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods. PMID:27730127

  13. Control of oxo-group functionalization and reduction of the uranyl ion.

    PubMed

    Arnold, Polly L; Pécharman, Anne-Frédérique; Lord, Rianne M; Jones, Guy M; Hollis, Emmalina; Nichol, Gary S; Maron, Laurent; Fang, Jian; Davin, Thomas; Love, Jason B

    2015-04-06

    Uranyl complexes of a large, compartmental N8-macrocycle adopt a rigid, "Pacman" geometry that stabilizes the U(V) oxidation state and promotes chemistry at a single uranyl oxo-group. We present here new and straightforward routes to singly reduced and oxo-silylated uranyl Pacman complexes and propose mechanisms that account for the product formation, and the byproduct distributions that are formed using alternative reagents. Uranyl(VI) Pacman complexes in which one oxo-group is functionalized by a single metal cation are activated toward single-electron reduction. As such, the addition of a second equivalent of a Lewis acidic metal complex such as MgN″2 (N″ = N(SiMe3)2) forms a uranyl(V) complex in which both oxo-groups are Mg functionalized as a result of Mg-N bond homolysis. In contrast, reactions with the less Lewis acidic complex [Zn(N″)Cl] favor the formation of weaker U-O-Zn dative interactions, leading to reductive silylation of the uranyl oxo-group in preference to metalation. Spectroscopic, crystallographic, and computational analysis of these reactions and of oxo-metalated products isolated by other routes have allowed us to propose mechanisms that account for pathways to metalation or silylation of the exo-oxo-group.

  14. Group analysis of self-organizing maps based on functional MRI using restricted Frechet means

    PubMed Central

    Fournel, Arnaud P.; Reynaud, Emanuelle; Brammer, Michael J.; Simmons, Andrew; Ginestet, Cedric E.

    2013-01-01

    Studies of functional MRI data are increasingly concerned with the estimation of differences in spatio-temporal networks across groups of subjects or experimental conditions. Unsupervised clustering and independent component analysis (ICA) have been used to identify such spatio-temporal networks. While these approaches have been useful for estimating these networks at the subject-level, comparisons over groups or experimental conditions require further methodological development. In this paper, we tackle this problem by showing how self-organizing maps (SOMs) can be compared within a Frechean inferential framework. Here, we summarize the mean SOM in each group as a Frechet mean with respect to a metric on the space of SOMs. The advantage of this approach is twofold. Firstly, it allows the visualization of the mean SOM in each experimental condition. Secondly, this Frechean approach permits one to draw inference on group differences, using permutation of the group labels. We consider the use of different distance functions, and introduce one extension of the classical sum of minimum distance (SMD) between two SOMs, which take into account the spatial pattern of the fMRI data. The validity of these methods is illustrated on synthetic data. Through these simulations, we show that the two distance functions of interest behave as expected, in the sense that the ones capturing temporal and spatial aspects of the SOMs are more likely to reach significance under simulated scenarios characterized by temporal, spatial [and spatio-temporal] differences, respectively. In addition, a re-analysis of a classical experiment on visually-triggered emotions demonstrates the usefulness of this methodology. In this study, the multivariate functional patterns typical of the subjects exposed to pleasant and unpleasant stimuli are found to be more similar than the ones of the subjects exposed to emotionally neutral stimuli. In this re-analysis, the group-level SOM output units with the

  15. Compatibility of functional groups in K[sup ow]-based QSARs: Application to nitro compounds

    SciTech Connect

    Banerjee, S.; Williams, C.L. )

    1993-10-01

    Nitro compounds are particular difficult to handle in simple K[sup ow]-based QSARs, owing to differences in their lipid-phase activity coefficients. These differences can be corrected, in part, through inclusion of a term in octanol solubility. A procedure for identifying potentially incompatible groups in a given QSAR is suggested. The quality of a QSAR is best if the interactions of the functional groups involved with octanol fall within a narrow range. These interactions are easily calculated by the UNIFAC method.

  16. An Application of Functional Renormalization Group Method for Superdense Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Barnaföldi, G. G.; Jakovác, A.; Pósfay, P.

    2017-01-01

    We proposed a method, using the expansion of the effective potential in a base of harmonic functions, to study the Functional Renormalization Group (FRG) method at finite chemical potential. Within this theoretical framework we determined the equation of state and the phase diagram of a simple model of massless fermions coupled to scalars through Yukawa-couling at the zero-temperature limit. Here, we use our FRG-based equation of state to describe the superdense nuclear matter inside compact astrophysical objects. We calculated the mass-radius relation for a compact star using the TOV equation, which was compared to other results.

  17. Universal short-time dynamics: Boundary functional renormalization group for a temperature quench

    NASA Astrophysics Data System (ADS)

    Chiocchetta, Alessio; Gambassi, Andrea; Diehl, Sebastian; Marino, Jamir

    2016-11-01

    We present a method to calculate short-time nonequilibrium universal exponents within the functional-renormalization-group scheme. As an example, we consider the classical critical dynamics of the relaxational model A after a quench of the temperature of the system and calculate the initial-slip exponent which characterizes the nonequilibrium universal short-time behavior of both the order parameter and correlation functions. The value of this exponent is found to be consistent with the result of a perturbative dimensional expansion and of Monte Carlo simulations in three spatial dimensions.

  18. Computations for group sequential boundaries using the Lan-DeMets spending function method.

    PubMed

    Reboussin, D M; DeMets, D L; Kim, K M; Lan, K K

    2000-06-01

    We describe an interactive Fortran program which performs computations related to the design and analysis of group sequential clinical trials using Lan-DeMets spending functions. Many clinical trials include interim analyses of accumulating data and rely on group sequential methods to avoid consequent inflation of the type I error rate. The computations are appropriate for interim test statistics whose distribution or limiting distribution is multivariate normal with independent increments. Recent theoretical results indicate that virtually any design likely to be used in a clinical trial will fall into this category. Interim analyses need not be equally spaced, and their number need not be specified in advance. In addition to determining sequential boundaries using an alpha spending function, the program can perform power computations, compute probabilities associated with a given set of boundaries, and generate confidence intervals.

  19. How surface functional groups influence fracturation in nanofluids droplets dry-outs

    NASA Astrophysics Data System (ADS)

    Brutin, David; Carle, Florian

    2012-11-01

    We report an experimental investigation of the drying of a deposited droplets of nanofluids with different surface functional groups. For identical nano-particles diameter, material and concentration, identical drying conditions, the substrate and the functional groups at the nano-particles surface are changed. Both flow motion, adhesion, gelation and fracturation occur during the evaporation of this complex matter leading to different final typical patterns. The differences in between the patterns are explained based on the surface chemical potential. Crack shapes and wavelengths are globally proportional to the electrical charges carried at the nano- particles surface which is a new parameter to implement in existing predicting models. Presently only the colloid concentration and softness and the deposit thickness are used (Allain and Limat, 1995). The authors gratefully acknowledge the help and the fruitful discussions raised with J.B. Lang.

  20. The Effect of Functional Groups in Bio-Derived Fuel Candidates.

    PubMed

    Jenkins, Rhodri W; Moore, Cameron M; Semelsberger, Troy A; Chuck, Christopher J; Gordon, John C; Sutton, Andrew D

    2016-05-10

    Interest in developing renewable fuels is continuing to grow and biomass represents a viable source of renewable carbon with which to replace fossil-based components in transportation fuels. During our own work, we noticed that chemists think in terms of functional groups whereas fuel engineers think in terms of physical fuel properties. In this Concept article, we discuss the effect of carbon and oxygen functional groups on potential fuel properties. This serves as a way of informing our own thinking and provides us with a basis with which to design and synthesize molecules from biomass that could provide useful transportation fuels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Approaching many-body localization from disordered Luttinger liquids via the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Moore, J. E.

    2015-09-01

    We study the interplay of interactions and disorder in a one-dimensional fermion lattice coupled adiabatically to infinite reservoirs. We employ both the functional renormalization group (FRG) as well as matrix product state techniques, which serve as an accurate benchmark for small systems. Using the FRG, we compute the length- and temperature-dependence of the conductance averaged over 104 samples for lattices as large as 105 sites. We identify regimes in which non-Ohmic power law behavior can be observed and demonstrate that the corresponding exponents can be understood by adapting earlier predictions obtained perturbatively for disordered Luttinger liquids. In the presence of both disorder and isolated impurities, the conductance has a universal single-parameter scaling form. This lays the groundwork for an application of the functional renormalization group to the realm of many-body localization.

  2. The Donaldson-Witten Function for Gauge Groups of Rank Larger Than One

    NASA Astrophysics Data System (ADS)

    Mariño, Marcos; Moore, Gregory

    We study correlation functions in topologically twisted , d=4 supersymmetric Yang-Mills theory for gauge groups of rank larger than one on compact four-manifolds X. We find that the topological invariance of the generator of correlation functions of BRST invariant observables is not spoiled by noncompactness of field space. We show how to express the correlators on simply connected manifolds of b2,+(X)>0 in terms of Seiberg-Witten invariants and the classical cohomology ring of X. For manifolds X of simple type and gauge group SU(N) we give explicit expressions of the correlators as a sum over =1 vacua. We describe two applications of our expressions, one to superconformal field theory and one to large N expansions of SU(N) , d=4 supersymmetric Yang-Mills theory.

  3. Preparation and properties of a novel biodegradable polyester elastomer with functional groups.

    PubMed

    Liu, Quan-Yong; Wu, Si-Zhu; Tan, Tian-Wei; Weng, Jing-Yi; Zhang, Li-Qun; Liu, Li; Tian, Wei; Chen, Da-Fu

    2009-01-01

    A novel biodegradable poly(sebacate-glycerol-citrate) (PGSC) elastomer with functional groups was prepared in this study. First, moldable mixtures were obtained by mixing citric acid with the poly(glycerol-sebacate) (PGS) pre-polymers synthesized in our lab. The PGSC elastomers were obtained from moldable mixtures that were thermally cured in the moulds. Then, the structures, compositions and properties of the elastomers were studied by Fourier transformation infrared spectroscopy (FT-IR), swelling test, differential scanning calorimeter (DSC), tensile test, water contact angle measurement, water absorption experiments and a in vitro degradation test. It showed that the hydroxyl groups remained in the elastomers which would endow the polymer chains with functionality such as good surface modification. By controlling the thermal curing time, the compositions of the PGSC elastomers were adjusted for different mechanical and biodegradable properties. Therefore, PGSC elastomers might be used as anti-conglutination films in surgery, guided tissue regeneration membranes and drug-delivery matrices.

  4. N-containing functional groups induced superior cytocompatible and hemocompatible graphene by NH₂ ion implantation.

    PubMed

    Guo, Meixian; Li, Minsi; Liu, Xiaoqi; Zhao, Mengli; Li, Dejun; Geng, Dongsheng; Sun, Xueliang; Gu, Hanqing

    2013-12-01

    Graphene is functionalized with amine by NH2 ion implantation at room temperature in vacuum. The reaction is featured by nucleophilic substitution of C-O groups by the ammonia radicals. The presence of N-containing functional groups in graphene is identified by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. N element was successfully introduced to graphene, the atomic ratio of N to C rose to 3.12 %. NH2 ion implanted graphene (G-NH2) is a better hydrophilic material than pristine grahene according to the contact angle experiment. Mouse fibroblast cells and human endothelial cells cultured on G-NH2 displayed superior cell-viability, proliferation and stretching over that on pristine graphene. Platelet adhesion, hemolysis and Kinetic-clotting time were measured on G-NH2, showing excellent anticoagulation, with as good hemolysis as pristine graphene.

  5. Assemblage patterns of fish functional groups relative to habitat connectivity and conditions in floodplain lakes

    USGS Publications Warehouse

    Miyazono, S.; Aycock, J.N.; Miranda, L.E.; Tietjen, T.E.

    2010-01-01

    We evaluated the influences of habitat connectivity and local environmental factors on the distribution and abundance patterns of fish functional groups in 17 floodplain lakes in the Yazoo River Basin, USA. The results of univariate and multivariate analyses showed that species-environmental relationships varied with the functional groups. Species richness and assemblage structure of periodic strategists showed strong and positive correlations with habitat connectivity. Densities of most equilibrium and opportunistic strategists decreased with habitat connectivity. Densities of certain equilibrium and opportunistic strategists increased with turbidity. Forested wetlands around the lakes were positively related to the densities of periodic and equilibrium strategists. These results suggest that decreases in habitat connectivity, forested wetland buffers and water quality resulting from environmental manipulations may cause local extinction of certain fish taxa and accelerate the dominance of tolerant fishes in floodplain lakes. ?? 2010 John Wiley & Sons A/S.

  6. Synthesis and physicochemical properties of polysiloxane functionalized with aminoacetic acid groups

    NASA Astrophysics Data System (ADS)

    Lakiza, N. V.; Neudachina, L. K.

    2016-07-01

    Polysiloxane functionalized with aminoacetic acid groups was synthesized using sol-gel technology. Elemental analysis and FTIR spectroscopy were used to determine the composition of the polysiloxane show that it is a mesoporous material with a developed surface (109.4 m2/g). It was found that the selective properties of carboxymethylated polysiloxane towards transition metal ions simultaneously present in an ammonium acetate solution change in the order Zn < Cu > Ni > Co > Pb > Cd. It was shown that the sorption of copper(II) ions by carboxymethylated aminopropylpolysiloxane with particle sizes of 50-71 μm reaches its maximum level within 2 h; the rate-limiting step of the process is the chemical reaction between the ions and the polysiloxane functional groups; and the pseudo-second-order model is the best way of describing sorption.

  7. Functional recovery of the plantarflexor muscle group after hindlimb unloading in the rat.

    PubMed

    Warren, G L; Stallone, J L; Allen, M R; Bloomfield, S A

    2004-10-01

    Research into skeletal muscle's response to hindlimb unloading (HU) of the rodent has focused on that of the markedly affected slow-twitch anti-gravity muscles (e.g., soleus). However, the ability of the animal to locomote following HU should be best determined by the in vivo functional properties of the muscle groups involved and, to our knowledge, this has not been investigated. Our objective was to determine how the in vivo functional properties of the rat ankle plantarflexor group change after 28 days of HU and during a subsequent 28-day recovery. Rats ( n=48) were unloaded for 28 days after which they were either tested immediately or allowed to recover for 7, 14, or 28 days before being tested. Control rats ( n=61) were tested at comparable times. In vivo functional properties of the ankle plantarflexors were assessed under anesthesia using an isokinetic dynamometer and included determination of the isometric torque-frequency relationship, the concentric torque-ankle angular velocity relationship, and fatigability. Immediately after HU, plantarflexor muscle weight was reduced by 24% but isometric torque production was reduced by 7-9% only at > or =100 Hz and concentric torque production was not significantly affected. However, after 7 days of recovery, in vivo function was more adversely affected; isometric and concentric torques were reduced by 12-33% and 16-36%, respectively, relative to control levels. In vivo plantarflexor function was recovered by 14 days. In conclusion, 28 days of HU has minor adverse effects on the in vivo function of the rat ankle plantarflexors. During the first week of recovery from HU, injury apparently occurs to the plantarflexors resulting in a transient impairment of functional capacity.

  8. Organic Mass Fragments and Organic Functional Groups in Aged Biomass Burning and Fossil Fuel Combustion Aerosol

    NASA Astrophysics Data System (ADS)

    Day, D. A.; Hawkins, L. N.; Russell, L. M.

    2009-12-01

    Organic functional group concentrations in submicron aerosol particles collected from 27 June to 17 September at the Scripps Pier in La Jolla, California as part of AeroSCOPE 2008 were quantified using Fourier Transform Infrared (FTIR) spectroscopy. Organic and inorganic non-refractory components in the same air masses were quantified using a Quadrupole Aerosol Mass Spectrometer (Q-AMS). Previous measurements at the Scripps pier indicate that a large fraction of submicron particle mass originates in Los Angeles and the port of Long Beach. Additional particle sources to the region include local urban emissions and periodic biomass burning during large wildfires. Three distinct types of organic aerosol components were identified from organic composition and elemental tracers, including biomass burning, fossil fuel combustion, and polluted marine components. Fossil fuel combustion organic aerosol was dominated by unsaturated alkane and was correlated with sulfur, vanadium, and nickel supporting ship and large trucks in and around the Los Angeles/Long Beach region as the dominant source. Biomass burning organic aerosol comprised a smaller unsaturated alkane fraction and larger fractions of non-acid carbonyl, amine, and carboxylic acid and was correlated with potassium and bromine. Polluted marine organic aerosol was dominated by organic hydroxyl and unsaturated alkane and was not correlated with any elemental tracers. Mass spectra of the organic aerosol support the aerosol sources determined by organic functional groups and elemental tracers and contain fragments commonly attributed to oxygenated organic aerosol (OOA), hydrocarbon-like organic aerosol (HOA), and biomass burning organic aerosol (BBOA). Comparisons of the PMF-derived Q-AMS source spectra with FTIR source spectra and functional group composition provide additional information on the relationship between commonly reported organic aerosol factors and organic functional groups in specific organic aerosol

  9. β-Diversity of Functional Groups of Woody Plants in a Tropical Dry Forest in Yucatan

    PubMed Central

    López-Martínez, Jorge Omar; Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Meave, Jorge Arturo; Gallardo-Cruz, José Alberto

    2013-01-01

    Two main theories have attempted to explain variation in plant species composition (β-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity –possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity patterns and

  10. β-Diversity of functional groups of woody plants in a tropical dry forest in Yucatan.

    PubMed

    López-Martínez, Jorge Omar; Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Meave, Jorge Arturo; Gallardo-Cruz, José Alberto

    2013-01-01

    Two main theories have attempted to explain variation in plant species composition (β-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity -possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity patterns and

  11. Regularized Green's Function and Group of Reflections in a Cavity with Triangular Cross Section

    SciTech Connect

    Ahmedov, H.; Duru, I.H.

    2005-10-01

    For a certain class of triangles (with angles proportional to {pi}/N, N {>=} 3) we formulate the image method by making use of the group G{sub N} generated by reflections with respect to three lines which form the triangle under consideration. A regularized Green's function (which is employed in Casimir energy calculations) is obtained by classification of subgroups of G{sub N} and corresponding fixed points in the triangle.

  12. Harmonic expansion of the effective potential in a functional renormalization group at finite chemical potential

    NASA Astrophysics Data System (ADS)

    Barnaföldi, G. G.; Jakovác, A.; Pósfay, P.

    2017-01-01

    In this paper we propose a method to study the functional renormalization group (FRG) at finite chemical potential. The method consists of mapping the FRG equations within the Fermi surface into a differential equation defined on a rectangle with zero boundary conditions. To solve this equation we use an expansion of the potential in a harmonic basis. With this method we determined the phase diagram of a simple Yukawa-type model; as expected, the bosonic fluctuations decrease the strength of the transition.

  13. The tertiary structure of group II introns: implications for biological function and evolution

    PubMed Central

    Pyle, Anna Marie

    2015-01-01

    Group II introns are some of the largest ribozymes in nature, and they are a major source of information about RNA assembly and tertiary structural organization. These introns are of biological significance because they are self-splicing mobile elements that have migrated into diverse genomes and played a major role in the genomic organization and metabolism of most life forms. The tertiary structure of group II introns has been the subject of many phylogenetic, genetic, biochemical and biophysical investigations, all of which are consistent with the recent crystal structure of an intact group IIC intron from the alkaliphilic eubacterium Oceanobacillus iheyensis. The crystal structure reveals that catalytic intron domain V is enfolded within the other intronic domains through an elaborate network of diverse tertiary interactions. Within the folded core, DV adopts an activated conformation that readily binds catalytic metal ions and positions them in a manner appropriate for reaction with nucleic acid targets. The tertiary structure of the group II intron reveals new information on motifs for RNA architectural organization, mechanisms of group II intron catalysis, and the evolutionary relationships among RNA processing systems. Guided by the structure and the wealth of previous genetic and biochemical work, it is now possible to deduce the probable location of DVI and the site of additional domains that contribute to the function of the highly derived group IIB and IIA introns. PMID:20446804

  14. 2-Pyridinyl Thermolabile Groups as General Protectants for Hydroxyl, Phosphate, and Carboxyl Functions.

    PubMed

    Brzezinska, Jolanta; Witkowska, Agnieszka; Kaczyński, Tomasz P; Krygier, Dominika; Ratajczak, Tomasz; Chmielewski, Marcin K

    2017-03-02

    Application of 2-pyridinyl thermolabile protecting groups (2-PyTPGs) for protection of hydroxyl, phosphate, and carboxyl functions is presented in this unit. Their characteristic feature is a unique removal process following the intramolecular cyclization mechanism and induced only by temperature rise. Deprotection rate of 2-PyTPGs is dependent on certain parameters, such as solvent (aqueous or non-aqueous medium), pH values, and electron distribution in a pyridine ring. The presented approach pertains not only to protecting groups but also to an advanced system of controlling certain properties of 2-pyridinyl derivatives. We improved the "chemical switch" method, allowing us to regulate the protecting group stability by inversing the electron distribution in 2-PyTPG. Together with pH values manipulation, this allows us to regulate the protecting group stability. Moreover, phosphite cyclization to oxazaphospholidine provides a very stable but easily reversible tool for phosphate protection/modifications. For all TPGs we confirmed their utility in a system of protecting groups. This concept can contribute to designing the general protecting group that could be useful in bioorganic chemistry. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  15. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly report, January 1--March 30, 1996

    SciTech Connect

    Kubiak, C.P.

    1996-12-31

    Over the course of the studies on catalytic deoxygenation of phenolic residues in coal by carbon monoxide, the author performed preliminary investigations into the removal of other heteroatom groups. This report describes the attempted carbonylation of phenyl amido complexes. These studies resulted in the surprisingly facile formation of amidines. The amidine group is the nitrogen analog of carboxylic acids and esters. This functional group combines the properties of an azomethane-like C=N double bond with an amide-like C-N single bond. This group, like the related allyl (C-C-C), aza-allyl (C-N-C), and carboxylato (O-C-O) groups, form a number of transition metal derivatives, with both early and late transition metals. Various bonding modes of the amidino group have been reported. However, most isolated complexes have the amidino ligand as a chelating ligand or bridging two metals. This is due to the preference of amidines to bond via the nitrogen lone pairs, in contrast to the {eta}3 bonding observed in metal-allyl complexes. The experimental section of the paper describes the synthesis of platinum complexes, X-ray diffraction data for one Pt complex, and its reaction with carbon monoxide. Results are presented on the crystal and molecular structure of a platinum complex.

  16. Biodegradable polyglycerols with randomly distributed ketal groups as multi-functional drug delivery systems.

    PubMed

    Shenoi, Rajesh A; Lai, Benjamin F L; Imran ul-haq, Muhammad; Brooks, Donald E; Kizhakkedathu, Jayachandran N

    2013-08-01

    Biodegradable multi-functional polymeric nanostructures that undergo controlled degradation in response to physiological cues are important in numerous biomedical applications including drug delivery, bio-conjugation and tissue engineering. In this paper, we report the development of a new class of water soluble multi-functional branched biodegradable polymer with high molecular weight and biocompatibility which demonstrates good correlation of in vivo biodegradation and in vitro hydrolysis. Main chain degradable hyperbranched polyglycerols (HPG) (20-100 kDa) were synthesized by the introduction of acid labile groups within the polymer structure by an anionic ring opening copolymerization of glycidol with ketal-containing epoxide monomers with different ketal structures. The water soluble biodegradable HPGs with randomly distributed ketal groups (RBHPGs) showed controlled degradation profiles in vitro depending on the pH of solution, temperature and the structure of incorporated ketal groups, and resulted in non-toxic degradation products. NMR studies demonstrated the branched nature of RBHPGs which is correlating with their smaller hydrodynamic radii. The RBHPGs and their degradation products exhibited excellent blood compatibility and tissue compatibility based on various analyses methods, independent of their molecular weight and ketal group structure. When administered intravenously in mice, tritium labeled RBHPG of molecular weight 100 kDa with dimethyl ketal group showed a circulation half life of 2.7 ± 0.3 h, correlating well with the in vitro polymer degradation half life (4.3 h) and changes in the molecular weight profile during the degradation (as measured by gel permeation chromatography) in buffer conditions at 37 °C. The RBHPG degraded into low molecular weight fragments that were cleared from circulation rapidly. The biodistribution and excretion studies demonstrated that RBHPG exhibited significantly lower tissue accumulation and enhanced urinary

  17. Temporal lobe contribution to perceptual function: A tale of three patient groups.

    PubMed

    Behrmann, M; Lee, A C H; Geskin, J Z; Graham, K S; Barense, M D

    2016-09-01

    There has been growing recognition of the contribution of medial and anterior temporal lobe structures to non-mnemonic functions, such as perception. To evaluate the nature of this contribution, we contrast the perceptual performance of three patient groups, all of whom have a perturbation of these temporal lobe structures. Specifically, we compare the profile of patients with focal hippocampal (HC) lesions, those with more extensive lesions to the medial temporal lobe (MTL) that include HC and perirhinal cortex (PrC), and those with congenital prosopagnosia (CP), whose deficit has been attributed to the disconnection of the anterior temporal lobe from more posterior structures. All participants completed a range of'oddity' tasks in which, on each trial, they determined which of four visual stimuli in a display was the'odd-one-out'. There were five stimulus categories including faces, scenes, objects (high and low ambiguity) and squares of different sizes. Comparisons were conducted separately for the HC, MTL and CP groups against their matched control groups and then the group data were compared to each other directly. The group profiles were easily differentiable. Whereas the HC group stood out for its difficulty in discriminating scenes and the CP group stood out for its disproportionate difficulty in discriminating faces with milder effects for scenes and high ambiguity objects, the MTL group evinced a more general discrimination deficit for faces, scenes and high ambiguity objects. The group differences highlight distinct profiles for each of the three groups and distinguish the signature perceptual impairments following more extended temporal lobe alterations. In the recent reconsideration of the role of the hippocampus and neocortex, Moscovitch and colleagues (Moscovitch et al., 2016) note that the medial temporal lobe structures play a role in non-mnemonic functions, such as perception, problem solving, decision-making and language. Here, we address this

  18. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean

    PubMed Central

    Alexander, Harriet; Rouco, Mónica; Haley, Sheean T.; Wilson, Samuel T.; Karl, David M.; Dyhrman, Sonya T.

    2015-01-01

    A diverse microbial assemblage in the ocean is responsible for nearly half of global primary production. It has been hypothesized and experimentally demonstrated that nutrient loading can stimulate blooms of large eukaryotic phytoplankton in oligotrophic systems. Although central to balancing biogeochemical models, knowledge of the metabolic traits that govern the dynamics of these bloom-forming phytoplankton is limited. We used eukaryotic metatranscriptomic techniques to identify the metabolic basis of functional group-specific traits that may drive the shift between net heterotrophy and autotrophy in the oligotrophic ocean. Replicated blooms were simulated by deep seawater (DSW) addition to mimic nutrient loading in the North Pacific Subtropical Gyre, and the transcriptional responses of phytoplankton functional groups were assayed. Responses of the diatom, haptophyte, and dinoflagellate functional groups in simulated blooms were unique, with diatoms and haptophytes significantly (95% confidence) shifting their quantitative metabolic fingerprint from the in situ condition, whereas dinoflagellates showed little response. Significantly differentially abundant genes identified the importance of colimitation by nutrients, metals, and vitamins in eukaryotic phytoplankton metabolism and bloom formation in this system. The variable transcript allocation ratio, used to quantify transcript reallocation following DSW amendment, differed for diatoms and haptophytes, reflecting the long-standing paradigm of phytoplankton r- and K-type growth strategies. Although the underlying metabolic potential of the large eukaryotic phytoplankton was consistently present, the lack of a bloom during the study period suggests a crucial dependence on physical and biogeochemical forcing, which are susceptible to alteration with changing climate. PMID:26460011

  19. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    NASA Astrophysics Data System (ADS)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-11-01

    The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with -SO3H and -COOH groups can adsorb more of the wine nitrogen-containing compounds whereas -NH2 and -NR3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on -NR3 and -CHO surfaces. The -OH modified surfaces had the lowest ability to absorb wine components.

  20. Chemical functionalization of nanodiamond by amino groups: an X-ray photoelectron spectroscopy study.

    PubMed

    Dhanak, V R; Butenko, Yu V; Brieva, A C; Coxon, P R; Alves, L; Siller, L

    2012-04-01

    The development of chemical functionalization techniques for diamond nanocrystallites opens up ways with a view to altering their solubility in different solvents, improve interfacial adhesion of nanodiamonds with a composite matrix in new materials, and provide new possibilities for the modification of the electronic properties of nanodiamond crystallites. In this work, we present results on the chemical functionalization of nanodiamonds by amino groups using ammonia as a nitrogenation agent. Nanodiamond material used was formed by the detonation technique with average crystallite sizes of 4-5 nm. The final materials and intermediates products were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Chemical functionalization of nanodiamonds by amino groups could enable the preparation of new nylon nano-composite materials. Presence of surface amino groups could alter pH of nanodiamond colloids towards basic values and improve colloidal stability of nanodiamond suspensions at pH close to 7. This could enable syntheses of new drug delivery systems based on nanodiamonds.

  1. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGES

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Kohler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. Furthermore, the model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  2. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  3. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Benoit, Danielle S. W.; Schwartz, Michael P.; Durney, Andrew R.; Anseth, Kristi S.

    2008-10-01

    Cell-matrix interactions have critical roles in regeneration, development and disease. The work presented here demonstrates that encapsulated human mesenchymal stem cells (hMSCs) can be induced to differentiate down osteogenic and adipogenic pathways by controlling their three-dimensional environment using tethered small-molecule chemical functional groups. Hydrogels were formed using sufficiently low concentrations of tether molecules to maintain constant physical characteristics, encapsulation of hMSCs in three dimensions prevented changes in cell morphology, and hMSCs were shown to differentiate in normal growth media, indicating that the small-molecule functional groups induced differentiation. To our knowledge, this is the first example where synthetic matrices are shown to control induction of multiple hMSC lineages purely through interactions with small-molecule chemical functional groups tethered to the hydrogel material. Strategies using simple chemistry to control complex biological processes would be particularly powerful as they could make production of therapeutic materials simpler, cheaper and more easily controlled.

  4. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean.

    PubMed

    Alexander, Harriet; Rouco, Mónica; Haley, Sheean T; Wilson, Samuel T; Karl, David M; Dyhrman, Sonya T

    2015-11-03

    A diverse microbial assemblage in the ocean is responsible for nearly half of global primary production. It has been hypothesized and experimentally demonstrated that nutrient loading can stimulate blooms of large eukaryotic phytoplankton in oligotrophic systems. Although central to balancing biogeochemical models, knowledge of the metabolic traits that govern the dynamics of these bloom-forming phytoplankton is limited. We used eukaryotic metatranscriptomic techniques to identify the metabolic basis of functional group-specific traits that may drive the shift between net heterotrophy and autotrophy in the oligotrophic ocean. Replicated blooms were simulated by deep seawater (DSW) addition to mimic nutrient loading in the North Pacific Subtropical Gyre, and the transcriptional responses of phytoplankton functional groups were assayed. Responses of the diatom, haptophyte, and dinoflagellate functional groups in simulated blooms were unique, with diatoms and haptophytes significantly (95% confidence) shifting their quantitative metabolic fingerprint from the in situ condition, whereas dinoflagellates showed little response. Significantly differentially abundant genes identified the importance of colimitation by nutrients, metals, and vitamins in eukaryotic phytoplankton metabolism and bloom formation in this system. The variable transcript allocation ratio, used to quantify transcript reallocation following DSW amendment, differed for diatoms and haptophytes, reflecting the long-standing paradigm of phytoplankton r- and K-type growth strategies. Although the underlying metabolic potential of the large eukaryotic phytoplankton was consistently present, the lack of a bloom during the study period suggests a crucial dependence on physical and biogeochemical forcing, which are susceptible to alteration with changing climate.

  5. Identifying functional groups for response to disturbance in an abandoned pasture

    NASA Astrophysics Data System (ADS)

    Lavorel, Sandra; Touzard, Blaise; Lebreton, Jean-Dominique; Clément, Bernard

    1998-06-01

    In an abandoned pasture in Brittany, we compared artificial small-scale disturbances to natural disturbances by wild boar and undisturbed vegetation. We developed a multivariate statistical approach which analyses how species biological attributes explain the response of community composition to disturbances. This technique, which reconciles the inductive and deductive approaches for functional classifications, identifies groups of species with similar responses to disturbance and characterizes their biological profiles. After 5 months of recolonization, artificial disturbances had a greater species richness than undisturbed vegetation as a result of recruitment of new species without the exclusion of pre-existing matrix species. Species morphology, described by canopy structure, canopy height and lateral spread, explained a large part (16 %) of community response to disturbance. Regeneration strategies, described by life history, seed mass, dispersal agent, dormancy and the existence of vegetative multiplication, explained a smaller part of community response to disturbance (8 %). Artificial disturbances were characterized by therophyte and compact rosettes with moderately dormant seeds, including a number of Asteraceae and other early successional species. Natural disturbances were colonized by leafy guerrilla species without seed dormancy. Few species were tightly related to undisturbed vegetation and were essentially grasses with a phalanx rosette morphology. The functional classification obtained is consistent with the classification of the community into fugitives, regenerators and persistors. These groups are structured according to Grubb's model for temperate grasslands, with regenerators and persistors in the matrix and fugitives taking advantage of gaps open by small-scale disturbances. The conjunction of functional diversity and species diversity within functional groups is the key to resilience to disturbance, an important ecosystem function.

  6. Magneto-Sensitive Adsorbents Modified by Functional Nitrogen-Containing Groups

    NASA Astrophysics Data System (ADS)

    Melnyk, Inna V.; Gdula, Karolina; Dąbrowski, Andrzej; Zub, Yuriy L.

    2016-02-01

    In order to obtain amino-functionalized silica materials with magnetic core, one-step synthesis was carried out. Several materials, differ in number and structure of amino groups, were synthesized on the basis of sol-gel method. The synthesized materials were examined by several analytical techniques. The presence and content of amino groups were measured by using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and acid-base titration, respectively. Specific surface areas were measured by nitrogen/adsorption desorption isotherms. It was proved that sol-gel approach leads to obtain materials with high content of amino groups built into their surfaces (in the range 1.6-2.7 mmol/g). As-obtained materials were tested as potential adsorbents for copper(II) ions. The received maximum adsorption capacities were in the range 0.4-0.7 mmol/g.

  7. Differential item functioning between ethnic groups in the epidemiological assessment of depression.

    PubMed

    Breslau, Joshua; Javaras, Kristin N; Blacker, Deborah; Murphy, Jane M; Normand, Sharon-Lise T

    2008-04-01

    A potential explanation for the finding that disadvantaged minority status is associated with a lower lifetime risk for depression is that individuals from minority ethnic groups may be less likely to endorse survey questions about depression even when they have the same level of depression. We examine this possibility using a nonparametric item response theory approach to assess differential item functioning (DIF) in a national survey of psychiatric disorders, the National Comorbidity Survey. Of 20 questions used to assess depression symptoms, we found evidence of DIF in 3 questions when comparing non-Hispanic blacks with non-Hispanic whites and in 3 questions when comparing Hispanics with non-Hispanic whites. However, removal of the questions with DIF did not alter the relative prevalence of depression between ethnic groups. Ethnic differences do exist in response to questions concerning depression, but these differences do not account for the finding of relatively low prevalence of depression among minority groups.

  8. Functional renormalization group approach to the singlet-triplet transition in quantum dots.

    PubMed

    Magnusson, E B; Hasselmann, N; Shelykh, I A

    2012-09-12

    We present a functional renormalization group approach to the zero bias transport properties of a quantum dot with two different orbitals and in the presence of Hund's coupling. Tuning the energy separation of the orbital states, the quantum dot can be driven through a singlet-triplet transition. Our approach, based on the approach by Karrasch et al (2006 Phys. Rev. B 73 235337), which we apply to spin-dependent interactions, recovers the key characteristics of the quantum dot transport properties with very little numerical effort. We present results on the conductance in the vicinity of the transition and compare our results both with previous numerical renormalization group results and with predictions of the perturbative renormalization group.

  9. Coumestan inhibits radical-induced oxidation of DNA: is hydroxyl a necessary functional group?

    PubMed

    Xi, Gao-Lei; Liu, Zai-Qun

    2014-06-18

    Coumestan is a natural tetracycle with a C═C bond shared by a coumarin moiety and a benzofuran moiety. In addition to the function of the hydroxyl group on the antioxidant activity of coumestan, it is worth exploring the influence of the oxygen-abundant scaffold on the antioxidant activity as well. In this work, seven coumestans containing electron-withdrawing and electron-donating groups were synthesized to evaluate the abilities to trap 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS(•+)), 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH), and galvinoxyl radical, respectively, and to inhibit the oxidations of DNA mediated by (•)OH, Cu(2+)/glutathione (GSH), and 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), respectively. It was found that all of the coumestans used herein can quench the aforementioned radicals and can inhibit (•)OH-, Cu(2+)/GSH-, and AAPH-induced oxidations of DNA. In particular, substituent-free coumestan exhibits higher ability to quench DPPH and to inhibit AAPH-induced oxidation of DNA than Trolox. In addition, nonsubstituted coumestan shows a similar ability to inhibit (•)OH- and Cu(2+)/GSH-induced oxidations of DNA relative to that of Trolox. The antioxidant effectiveness of the coumestan can be attributed to the lactone in the coumarin moiety and, therefore, a hydroxyl group may not be a necessary functional group for coumestan to be an antioxidant.

  10. Synthesis and characterization of bifunctional surfaces with tunable functional group pairs

    NASA Astrophysics Data System (ADS)

    Galloway, John M.; Kung, Mayfair; Kung, Harold H.

    2016-06-01

    Grafting of pairs of functional groups onto a silica surface was demonstrated by tethering both terminals of an organochlorosilane precursor molecule, Cl2(CH3)Si(CH2)4(CO)(OSi(i-Pr)2)(CH2)2Si(CH3)Cl2, that possess a cleavable silyl ester bond, onto a silica surface. Hydrolytic cleavage of the silyl ester bond of the grafted molecule resulted in the generation of organized pairs of carboxylic acid and organosilanol groups. This organosilanol moiety was easily transformed into other functional groups through condensation reactions to form, together with the neighboring acid group, pairs such as carboxylic acid/secondary amine, carboxylic acid/pyridine, and carboxylic acid/phosphine. In the case of carboxylic acid/amine pairing, there was evidence of the formation of amide. A sample grafted with amine-carboxylic acid pairs was three times more active (per free amine) than a sample without such pairs for the nitroaldol condensation of 4-nitrobenzaldehyde and nitromethane.

  11. Molecular weight distribution and functional group profiles of TEMPO-oxidized lyocell fibers.

    PubMed

    Milanovic, Jovana; Schiehser, Sonja; Milanovic, Predrag; Potthast, Antje; Kostic, Mirjana

    2013-10-15

    The effects of TEMPO-mediated oxidation, performed with NaClO, a catalytic amount of NaBr, and 2,2',6,6'-tetramethylpiperidine-1-oxy radical (TEMPO), were studied on lyocell fibers by means of GPC using multiple detection and group-selective fluorescence labeling according to the CCOA and FDAM methodology. The applied method determines functional group content as a sum parameter, as well as functional group profiles in relation to the molecular weight of the cellulose fibers. Both the CHO and COOH profiles, as well as molecular weight alterations, were analyzed. A significant decrease in the average molecular weight was obtained during the first hour of TEMPO-mediated oxidation, but prolonged oxidation time resulted in no strong additional chain scission. Significant amounts of COOH groups were introduced in the high molecular weight fractions by the oxidation with higher concentrations of NaClO (2.42-9.67 mmol NaClO/g fiber) after modification times of 1h or longer.

  12. A meta‐analysis of functional group responses to forest recovery outside of the tropics

    PubMed Central

    Ezard, Thomas H. G.; Martin, Philip A.; Newton, Adrian C.; Doncaster, C. Patrick

    2015-01-01

    Abstract Both active and passive forest restoration schemes are used in degraded landscapes across the world to enhance biodiversity and ecosystem service provision. Restoration is increasingly also being implemented in biodiversity offset schemes as compensation for loss of natural habitat to anthropogenic development. This has raised concerns about the value of replacing old‐growth forest with plantations, motivating research on biodiversity recovery as forest stands age. Functional diversity is now advocated as a key metric for restoration success, yet it has received little analytical attention to date. We conducted a meta‐analysis of 90 studies that measured differences in species richness for functional groups of fungi, lichens, and beetles between old‐growth control and planted or secondary treatment forests in temperate, boreal, and Mediterranean regions. We identified functional‐group–specific relationships in the response of species richness to stand age after forest disturbance. Ectomycorrhizal fungi averaged 90 years for recovery to old‐growth values (between 45 years and unrecoverable at 95% prediction limits), and epiphytic lichens took 180 years to reach 90% of old‐growth values (between 140 years and never for recovery to old‐growth values at 95% prediction limits). Non‐saproxylic beetle richness, in contrast, decreased as stand age of broadleaved forests increased. The slow recovery by some functional groups essential to ecosystem functioning makes old‐growth forest an effectively irreplaceable biodiversity resource that should be exempt from biodiversity offsetting initiatives. PMID:26040756

  13. Gas-Phase Reactivity of Carboxylic Acid Functional Groups with Carbodiimides

    PubMed Central

    Prentice, Boone M.; Gilbert, Joshua D.; Stutzman, John R.; Forrest, William P.; McLuckey, Scott A.

    2012-01-01

    Gas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [N-cyclohexyl-N′-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT). Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities. PMID:23208744

  14. Functionalization of metal-organic frameworks through the postsynthetic transformation of olefin side groups.

    PubMed

    Hindelang, Konrad; Kronast, Alexander; Vagin, Sergei I; Rieger, Bernhard

    2013-06-17

    For the first time, the adaptability of the C=C double bond as a versatile precursor for the postsynthetic modification (PSM) of microporous materials was extensively investigated and evaluated. Therefore, an olefin-tagged 4,4'-bipyridine linker was synthesized and successfully introduced as pillar linker within a 9,10-triptycenedicarboxylate (TDC) zinc paddle-wheel metal-organic framework (MOF) through microwave-assisted synthesis. Different reactions, predominately used in organic chemistry, were tested, leading to the development of new postsynthetic reactions for the functionalization of solid materials. The postsynthetic oxidation of the olefin side groups applying osmium tetroxide (OsO₄) as a catalyst led to the formation of a microporous material with free vicinal diol functionalities. The epoxidation with dimethyldioxirane (DMDO) enabled the synthesis of epoxy-functionalized MOFs. In addition to that, reaction procedures for a postsynthetic hydroboration with borane dimethyl sulfide as well as a photoinduced thiol-ene click reaction with ethyl mercaptan were developed. For all of these PSMs, yields of more than 90% were obtained, entirely maintaining the crystallinity of the MOFs. Since the direct introduction of the corresponding groups by means of pre-synthetic approaches is hardly possible, these new PSMs are useful tools for the functionalization of porous solids towards applications such as selective adsorption, separation, and catalysis.

  15. Evidence supporting the importance of microbial functional groups in decomposition models

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Lu, L.; Allison, S. D.

    2010-12-01

    Microbial communities mediate organic carbon decomposition in both soil and marine environments. Decomposition depends on microbes that produce extracellular enzymes to degrade complex organic matter, as well as microbes that mineralize simple organic matter to CO2. Therefore microbes could be represented in Earth system models as functional groups based on the extracellular enzymes they produce. However, the importance of including the functional diversity of microbes in decomposition models has been unclear. In this study we simulated microbial functional diversity with two strains of Pseudomonas fluorescens bacteria, one of which secretes extracellular protease and one that does not. These two strains were competed on several carbon resources including casein-glucose, casamino acids-glucose and glucose over several days. We then fit a series of models to the resulting data: 1) an explicit model representing both biomass and substrate pools, 2) a simplified substrate pool model with two biomass pools and one substrate pool, 3) a simplified biomass pool model with one biomass and two substrate pools, 4) a simplified biomass/substrate pool model with one biomass and one substrate pool, and 5) a single carbon pool model. We found that the explicit model (#1) fit the laboratory data significantly better than the other models, suggesting that functional groups and substrate pools should be represented in global decomposition models with time steps on the order of hours.

  16. Interplay between group function of kinesin based transport and lipid bilayer mobility

    NASA Astrophysics Data System (ADS)

    Lopes, Joseph; Hirst, Linda; Xu, Jing

    2015-03-01

    Motor proteins, discovered in recent decades, are important building blocks to life. These molecular machines transport cargo and although indispensable to cell function, are not well understood at present. Single kinesin transport properties have been documented, but their group function remains unknown. In this project, the properties of kinesin-based transport by multiple motors are investigated in-vitro to establish a link between travel distance and lipid diffusion in the vesicle membrane. In the experiments, silica beads coated in a supported lipid membrane and giant lipid vesicles are transported along a microtubule by embedded kinesin motors. In an alternate geometry, this system can be inverted, whereby motors are bound to a surface of a lipid bilayer and microtubules are deposited. We have characterized motor function with respect to the fluidity of the membrane. To measure the diffusion properties of different membranes, planar lipid bilayers are prepared on silica slides and supported by bovine serum albumin protein. To establish a diffusion constant at room temperature for the lipid membrane we use the FRAP technique (fluorescence recovery after photobleaching). Using this method we can investigate if there is any interplay between group travel function and membrane fluidity.

  17. Gas-phase reactivity of carboxylic acid functional groups with carbodiimides.

    PubMed

    Prentice, Boone M; Gilbert, Joshua D; Stutzman, John R; Forrest, William P; McLuckey, Scott A

    2013-01-01

    Gas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT)]. Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities.

  18. Various fates of neuronal progenitor cells observed on several different chemical functional groups

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Wang, Ying; He, Jin; Wang, Xiu-Mei; Cui, Fu-Zhai; Xu, Quan-Yuan

    2011-12-01

    Neuronal progenitor cells cultured on gold-coated glass surfaces modified by different chemical functional groups, including hydroxyl (-OH), carboxyl (-COOH), amino (-NH2), bromo (-Br), mercapto (-SH), - Phenyl and methyl (-CH3), were studied here to investigate the influence of surface chemistry on the cells' adhesion, morphology, proliferation and functional gene expression. Focal adhesion staining indicated in the initial culture stage cells exhibited morphological changes in response to different chemical functional groups. Cells cultured on -NH2 grafted surface displayed focal adhesion plaque and flattened morphology and had the largest contact area. However, their counter parts on -CH3 grafted surface displayed no focal adhesion and rounded morphology and had the smallest contact area. After 6 days culture, the proliferation trend was as follows: -NH2 > -SH> -COOH> - Phenyl > - Br > -OH> -CH3. To determine the neural functional properties of the cells affected by surface chemistry, the expression of glutamate decarboxylase (GAD67), nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) were characterized. An increase of GAD67 expression was observed on -NH2, -COOH and -SH grafted surfaces, while no increase in NGF and BDNF expression was observed on any chemical surfaces. These results highlight the importance of surface chemistry in the fate determination of neuronal progenitor cells, and suggest that surface chemistry must be considered in the design of biomaterials for neural tissue engineering.

  19. Fossil group origins. V. The dependence of the luminosity function on the magnitude gap

    NASA Astrophysics Data System (ADS)

    Zarattini, S.; Aguerri, J. A. L.; Sánchez-Janssen, R.; Barrena, R.; Boschin, W.; del Burgo, C.; Castro-Rodriguez, N.; Corsini, E. M.; D'Onghia, E.; Girardi, M.; Iglesias-Páramo, J.; Kundert, A.; Méndez-Abreu, J.; Vilchez, J. M.

    2015-09-01

    Context. In nature we observe galaxy aggregations that span a wide range of magnitude gaps between the two first-ranked galaxies of a system (Δm12). Thus, there are systems with gaps close to zero (e.g., the Coma cluster), and at the other extreme of the distribution, the largest gaps are found among the so-called fossil systems. The observed distribution of magnitude gaps is thought to be a consequence of the orbital decay of M∗ galaxies in massive halos and the associated growth of the central object. As a result, to first order the amplitude of this gap is a good statistical proxy for the dynamical age of a system of galaxies. Fossil and non-fossil systems could therefore have different galaxy populations that should be reflected in their luminosity functions. Aims: In this work we study, for the first time, the dependence of the luminosity function parameters on Δm12 using data obtained by the fossil group origins (FOGO) project. Methods: We constructed a hybrid luminosity function for 102 groups and clusters at z ≤ 0.25 using both photometric data from the SDSS-DR7 and redshifts from the DR7 and the FOGO surveys. The latter consists of ~1200 new redshifts in 34 fossil system candidates. We stacked all the individual luminosity functions, dividing them into bins of Δm12, and studied their best-fit Schechter parameters. We additionally computed a "relative" luminosity function, expressed as a function of the central galaxy luminosity, which boosts our capacity to detect differences - especially at the bright end. Results: We find trends as a function of Δm12 at both the bright and faint ends of the luminosity function. In particular, at the bright end, the larger the magnitude gap, the fainter the characteristic magnitude M∗. The characteristic luminosity in systems with negligible gaps is more than a factor three brighter than in fossil-like ones. Remarkably, we also find differences at the faint end. In this region, the larger the gap, the flatter

  20. Spectral functions with the density matrix renormalization group: Krylov-space approach for correction vectors

    NASA Astrophysics Data System (ADS)

    Nocera, A.; Alvarez, G.

    2016-11-01

    Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. This paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper then studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases studied indicate that the Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.

  1. Spectral functions with the density matrix renormalization group: Krylov-space approach for correction vectors

    DOE PAGES

    None, None

    2016-11-21

    Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. Our paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper also studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases we studied indicate that themore » Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.« less

  2. Structural Function Analysis of Selected Luminous Blue Variables in the Local Group

    NASA Astrophysics Data System (ADS)

    Gantchev, Gantcho; Valcheva, Antoniya; Nedialkov, Petko; Ovcharov, Evgeni

    2017-01-01

    We compiled historical observations spanning ˜100 yr period for a dozen of the best studied LBVs in the Local Group. We constructed structure functions for their light curves and calculated two parameters that describe the LBVs' behavior: structure function slope and characteristic time scale. The sensitivity of these parameters to the variability behavior of the stars was tested with a number of photometric data sets. The slope of the structure function may anti-correlate with the time scale. Our preliminary analysis hints that the time scale of the LBVs may be used to extend the period-luminosity relation, combining classical Cepheids and LBVs, and using the LBVs as an extragalactic distance indicator.

  3. Spectral functions with the density matrix renormalization group: Krylov-space approach for correction vectors

    SciTech Connect

    None, None

    2016-11-21

    Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. Our paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper also studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases we studied indicate that the Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.

  4. Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal-Organic Frameworks

    SciTech Connect

    Yuan, S; Lu, WG; Chen, YP; Zhang, Q; Liu, TF; Feng, DW; Wang, X; Qin, JS; Zhou, HC

    2015-03-11

    A unique strategy, sequential linker installation (SLI), has been developed to construct multivariate MOFs with functional groups precisely positioned. PCN-700, a Zr-MOF with eight-connected Zr6O4(OH)(8)(H2O)(4) clusters, has been judiciously designed; the Zr-6 clusters in this MOF are arranged in such a fashion that, by replacement of terminal OH-/H2O ligands, subsequent insertion of linear dicarboxylate linkers is achieved. We demonstrate that linkers with distinct lengths and functionalities can be sequentially installed into PCN-700. Single-crystal to single-crystal transformation is realized so that the positions of the subsequently installed linkers are pinpointed via single-crystal X-ray diffraction analyses. This methodology provides a powerful tool to construct multivariate MOFs with precisely positioned functionalities in the desired proximity, which would otherwise be difficult to achieve.

  5. Spectral functions with the density matrix renormalization group: Krylov-space approach for correction vectors.

    PubMed

    Nocera, A; Alvarez, G

    2016-11-01

    Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. This paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper then studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases studied indicate that the Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.

  6. The two-point correlation function for groups of galaxies in the Center for Astrophysics redshift survey

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    The large-scale distribution of groups of galaxies selected from complete slices of the CfA redshift survey extension is examined. The survey is used to reexamine the contribution of group members to the galaxy correlation function. The relationship between the correlation function for groups and those calculated for rich clusters is discussed, and the results for groups are examined as an extension of the relation between correlation function amplitude and richness. The group correlation function indicates that groups and individual galaxies are equivalent tracers of the large-scale matter distribution. The distribution of group centers is equivalent to random sampling of the galaxy distribution. The amplitude of the correlation function for groups is consistent with an extrapolation of the amplitude-richness relation for clusters. The amplitude scaled by the mean intersystem separation is also consistent with results for richer clusters.

  7. Functionalized quantum dots induce proinflammatory responses in vitro: the role of terminal functional group-associated endocytic pathways

    NASA Astrophysics Data System (ADS)

    Zhang, Yijuan; Pan, Hong; Zhang, Pengfei; Gao, Ningning; Lin, Yi; Luo, Zichao; Li, Ping; Wang, Ce; Liu, Lanlan; Pang, Daiwen; Cai, Lintao; Ma, Yifan

    2013-06-01

    PEGylation has been applied as an effective strategy of surface functionalization to improve the stability and reduce non-specific binding of quantum dots (QDs). However, its effects on the proinflammatory properties of QDs and the underlying mechanism have not been well elucidated yet. Herein, the proinflammatory effects of PEGylated CdSe/ZnS QDs with an amphiphilic polymer coating (PEG-pQDs) were investigated in human pulmonary epithelial cells and macrophages by evaluating the cytokine/chemokine production. The results showed that the proinflammatory effects of PEG-pQDs were strongly associated with the functional groups (-COOH, -NH2, -OH, and -OCH3) at the end of PEG chain. COOH-PEG-pQDs demonstrated the most proinflammatory effects followed by NH2-PEG-pQDs and HO-PEG-pQDs with CH3O-PEG-pQDs exhibiting the least proinflammatory effects. The proinflammatory effects of PEG-pQDs relied on lipid raft- and class A scavenger receptor (SRA)-dependent endocytic pathways as well as the downstream NF-κB and MAPK signaling cascades. COOH-PEG-pQDs were selectively internalized by lipid raft- and SRA-mediated endocytosis, which consequently activated NF-κB signaling pathway. On the other hand, NH2-PEG-pQDs and HO-PEG-pQDs were mostly internalized via lipid raft-mediated endocytosis, thereby activating p38 MAPK/AP-1 signaling cascades. These data revealed a critical role of terminal functional group-associated endocytic pathways in the proinflammatory responses induced by PEGylated QDs in human pulmonary epithelial cells and macrophages.PEGylation has been applied as an effective strategy of surface functionalization to improve the stability and reduce non-specific binding of quantum dots (QDs). However, its effects on the proinflammatory properties of QDs and the underlying mechanism have not been well elucidated yet. Herein, the proinflammatory effects of PEGylated CdSe/ZnS QDs with an amphiphilic polymer coating (PEG-pQDs) were investigated in human pulmonary epithelial

  8. Effects of plant diversity, functional group composition, and fertilization on soil microbial properties in experimental grassland.

    PubMed

    Strecker, Tanja; Barnard, Romain L; Niklaus, Pascal A; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Scheu, Stefan; Eisenhauer, Nico

    2015-01-01

    Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization. We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency. Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and nutrient inputs for soil processes.

  9. Effects of Plant Diversity, Functional Group Composition, and Fertilization on Soil Microbial Properties in Experimental Grassland

    PubMed Central

    Strecker, Tanja; Barnard, Romain L.; Niklaus, Pascal A.; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Scheu, Stefan; Eisenhauer, Nico

    2015-01-01

    Background Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization. Methodology/Principal Findings We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency. Conclusions/Significance Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and

  10. Competition patterns among phytoplankton functional groups: How useful are the complex mathematical models?

    NASA Astrophysics Data System (ADS)

    Zhao, Jingyang; Ramin, Maryam; Cheng, Vincent; Arhonditsis, George B.

    2008-05-01

    Simple models have significant contribution to the development of ecological theory. However, these minimalistic modeling approaches usually focus on a small subset of the causes of a phenomenon and neglect important aspects of system dynamics. In this study, we use a complex aquatic biogeochemical model to examine competition patterns and structural shifts in the phytoplankton community under nutrient enrichment conditions. Our model simulates multiple elemental cycles (org. C, N, P, Si, O), multiple functional phytoplankton (diatoms, green algae and cyanobacteria) and zooplankton (copepods and cladocerans) groups. It also takes into account recent advances in stoichiometric nutrient recycling theory, and the zooplankton grazing term is reformulated to include algal food quality effects on zooplankton assimilation efficiency. The model provided a realistic platform to examine the functional properties (e.g., kinetics, growth strategies, intracellular storage capacity) and the abiotic conditions (temperature, nutrient loading) under which the different phytoplankton groups can dominate or can be competitively excluded in oligo, meso and eutrophic environments. Based on the results of our analysis, the intergroup variability in the minimum cell quota and maximum transport rate at the cell surface for phosphorus along with the group-specific metabolic losses can shape the structure of plankton communities. We also use classification tree analysis to elucidate aspects (e.g., relative differences in the functional group properties, critical values of the abiotic conditions, levels of the other plankton community residents) of the complex interplay among physical, chemical and biological factors that drive epilimnetic plankton dynamics. Finally, our study highlights the importance of improving the mathematical representation of phytoplankton adaptive strategies for resources procurement (e.g., regulation of transport kinetics, effects of transport kinetics on the

  11. Water Desalination through Zeolitic Imidazolate Framework Membranes: Significant Role of Functional Groups.

    PubMed

    Gupta, Krishna M; Zhang, Kang; Jiang, Jianwen

    2015-12-08

    A molecular simulation study is reported for water desalination through five zeolitic imidazolate framework (ZIF) membranes, namely ZIF-25, -71, -93, -96, and -97. The five ZIFs possess identical rho-topology but differ in functional groups. The rejection of salt (NaCl) is found to be around 97% in ZIF-25, and 100% in the other four ZIFs. The permeance ranges from 27 to 710 kg/(m(2)·h·bar), about one∼two orders of magnitude higher compared with commercial reverse osmosis membranes. Due to a larger aperture size da, ZIF-25, -71, and -96 exhibit a much higher water flux than ZIF-93 and -97; however, the flux in ZIF-25, -71, and -96 is governed by the polarity of functional group rather than da. With the hydrophobic CH3 group, ZIF-25 has the highest flux despite the smallest da among ZIF-25, -71, and -96. The lifetime of hydrogen bonding in ZIF-25 is shorter than that in ZIF-71 and -96. Furthermore, water molecules undergo a fast flushing motion in ZIF-25, but frequent jumping in ZIF-96 and particularly in ZIF-97. An Arrhenius-type relationship is found between water flux in ZIF-25 and temperature, and the activation energy is predicted to be 6.5 kJ/mol. This simulation study provides a microscopic insight into water desalination in a series of ZIFs, reveals the key factors (aperture size and polarity of functional group) governing water flux, and suggests that ZIF-25 might be an interesting reverse osmosis membrane for high-performance water desalination.

  12. School Functioning of a Particularly Vulnerable Group: Children and Young People in Residential Child Care

    PubMed Central

    González-García, Carla; Lázaro-Visa, Susana; Santos, Iriana; del Valle, Jorge F.; Bravo, Amaia

    2017-01-01

    A large proportion of the children and young people in residential child care in Spain are there as a consequence of abuse and neglect in their birth families. Research has shown that these types of adverse circumstances in childhood are risk factors for emotional and behavioral problems, as well as difficulties in adapting to different contexts. School achievement is related to this and represents one of the most affected areas. Children in residential child care exhibit extremely poor performance and difficulties in school functioning which affects their transition to adulthood and into the labor market. The main aim of this study is to describe the school functioning of a sample of 1,216 children aged between 8 and 18 living in residential child care in Spain. The specific needs of children with intellectual disability and unaccompanied migrant children were also analyzed. Relationships with other variables such as gender, age, mental health needs, and other risk factors were also explored. In order to analyze school functioning in this vulnerable group, the sample was divided into different groups depending on school level and educational needs. In the vast majority of cases, children were in primary or compulsory secondary education (up to age 16), this group included a significant proportion of cases in special education centers. The rest of the sample were in vocational training or post-compulsory secondary school. Results have important implications for the design of socio-educative intervention strategies in both education and child care systems in order to promote better school achievement and better educational qualifications in this vulnerable group. PMID:28725205

  13. Function of the triceps surae muscle group in low and high arched feet: an exploratory study.

    PubMed

    Branthwaite, Helen; Pandyan, Anand; Chockalingam, Nachiappan

    2012-06-01

    The Achilles tendon has been shown to be comprised of segmental components of tendon arising from the tricpes surae muscle group. Motion of the foot joints in low and high arched feet may induce a change in behaviour of the triceps surae muscle group due to altered strain on the tendon. Surface electromyogram of the medial and lateral gastrocnemius and the soleus muscle from 12 subjects (with 6 low arched and 6 high arched feet) (1:1) was recorded whilst walking at a self selected speed along a 10m walkway. The results showed a high variability in muscle activity between groups with patterns emerging within groups. Soleus was more active in 50% of the low arch feet at forefoot loading and there was a crescendo of activity towards heel lift in 58% of all subjects. This observed variability between groups and foot types emphasises the need for further work on individual anatomical variation and foot function to help in the understanding and management of Achilles tendon pathologies and triceps surae dysfunction.

  14. In Situ Measurement of Surface Functional Groups on Silica Nanoparticles Using Solvent Relaxation Nuclear Magnetic Resonance.

    PubMed

    Yuan, Li; Chen, Lan; Chen, Xiaohong; Liu, Renxiao; Ge, Guanglu

    2017-09-05

    In situ analysis and study on the surface of nanoparticles (NPs) is a key to obtain their important physicochemical properties for the subsequent applications. Of them, most works focus on the qualitative characterization whereas quantitative analysis and measurement on the NPs under their storage and usage conditions is still a challenge. In order to cope with this challenge, solvation relaxation-based nuclear magnetic resonance (NMR) technology has been applied to measure the wet specific surface area and, therefore, determine the number of the bound water molecules on the surface of silica NPs in solution and the hydrophilic groups of various types grafted on the surface of the NPs. By changing the surface functional group on silica particles, the fine distinction for the solvent-particle interaction with different surface group can be quantitatively differentiated by measuring the number of water molecules absorbed on the surface. The results show that the number of the surface hydroxyl, amine, and carboxyl group per nm(2) is 4.0, 3.7, and 2.3, respectively, for the silica particles with a diameter of 203 nm. The method reported here is the first attempt to determine in situ the number of bound solvent molecules and any solvophilic groups grafted on nanoparticles.

  15. Thermodynamic characterization of the biocompatible ionic liquid effects on protein model compounds and their functional groups.

    PubMed

    Attri, Pankaj; Venkatesu, Pannuru

    2011-04-14

    The stability of proteins under co-solvent conditions is dependant on the nature of the co-solvent; the co-solvent can alter a protein's properties and structural effects through bimolecular interactions between its functional groups and co-solvent particles. Ionic liquids (ILs) represent a rather diverse class of co-solvents that are combinations of different ions, which are liquids at or close to room temperature. To quantify the bimolecular interactions of protein functional groups with biocompatible ILs, we report the systematic and quantitative apparent transfer free energies (ΔG'(tr)) of a homologous series of cyclic dipeptides (CDs) from water to aqueous solutions of ILs through solubility measurements, as a function of IL concentration at 25 °C under atmospheric pressure. The materials investigated in the present work included the CDs of cyclo(Gly-Gly), cyclo(Ala-Gly), cyclo(Ala-Ala), cyclo(Leu-Ala), and cyclo(Val-Val). The ILs used such as diethylammonium acetate ([Et(2)NH][CH(3)COO], DEAA), triethylammonium acetate ([Et(3)NH][CH(3)COO], TEAA), diethylammonium dihydogen phosphate ([Et(3)NH][H(2)PO(4)], DEAP), triethylammonium dihydogen phosphate ([Et(3)NH][H(2)PO(4)], TEAP), diethylammonium sulfate ([Et(3)NH][HSO(4)], DEAS) and triethylammonium sulfate ([Et(3)NH][HSO(4)], TEAS). We observed positive values of ΔG'(tr) for CDs from water to ILs, indicating that interactions between ILs and CDs are unfavourable, which leads to stabilization of the native structure of CDs. The experimental results were further used for estimating the transfer free energies (Δg'(tr)) of the peptide bond (-CONH-), the peptide backbone unit (-CH(2)C=ONH-), and various functional groups from water to IL solutions. Our results explicitly elucidate that a series of all ammonium ILs act as stabilizers for tested model compounds through the exclusion of ILs from CDs surface.

  16. Improving plant functional groups for dynamic models of biodiversity: at the crossroads between functional and community ecology

    PubMed Central

    Isabelle, Boulangeat; Pauline, Philippe; Sylvain, Abdulhak; Roland, Douzet; Luc, Garraud; Sébastien, Lavergne; Sandra, Lavorel; Jérémie, Van Es; Pascal, Vittoz; Wilfried, Thuiller

    2013-01-01

    The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue. These models, at the crossroads between phenomenological and process-based models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling. PMID:24403847

  17. Improving plant functional groups for dynamic models of biodiversity: at the crossroads between functional and community ecology.

    PubMed

    Isabelle, Boulangeat; Pauline, Philippe; Sylvain, Abdulhak; Roland, Douzet; Luc, Garraud; Sébastien, Lavergne; Sandra, Lavorel; Jérémie, Van Es; Pascal, Vittoz; Wilfried, Thuiller

    2012-11-01

    The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue. These models, at the crossroads between phenomenological and process-based models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling.

  18. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications

    PubMed Central

    Wang, Wei; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree; Zhou, Jianwei; Zhang, Ruiwen

    2016-01-01

    Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-polycomb functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the polycomb-repressive and non-polycomb functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy. PMID:26227500

  19. Tree Diametric Increment and Litterfall Production in an Eastern Amazonian Forest: the Role of Functional Groups

    NASA Astrophysics Data System (ADS)

    Camargo, P. B. D.; Ferreira, M. L.; Oliveira Junior, R. C.; Saleska, S. R.

    2014-12-01

    Tree growth is a biotic variable of great importance in understanding the dynamics of tree communities and may be used as a tool in studies of biological or climate modeling. Some climate models predict more recurrent climate anomalies in this century, which may alter the functioning of tropical forests with serious structural and demographic implications. The present study aimed to evaluate the profile of tree growth and litterfall production in an eastern Amazon forest, which has suffered recent climatic disturbances. We contrasted different functional groups based on wood density (stem with 0.55; 0.56-0.7; >0.7 g cm-3), light availability (crown illumination index; high illuminated crown - IIC1 until shaded crown - IIC5), and, size class (trees 10-22.5; 22.6-35; 35.1-55; 55,1-90; >90 cm dbh). Tree diameter increment was monthly measured from November 2011 to September 2013 by using dendrometer bands installed on 850 individuals from different families. Litterfall was collected in 64 circular traps, oven dried and weighed, separated into leaves, twigs, reproductive parts and miscellaneous. During the rainy season the sampled trees had the highest rates of tree diametric increment. When analyzing the data by functional groups, large trees had faster growth, but when grouped by wood density, trees with wood density up to 0.55 and between 0.56 and 0.7 g cm-3 had the fastest rates of growth. When grouped by crown illumination index, trees exposed to higher levels of light grew more in comparison to partially shaded trees. Maximum daily air temperature and precipitation were the most important environmental variables in determining the diametric increment profile of the trees. Litterfall production was estimated to be 7.1 Mg ha-1.year-1 and showed a strong seasonal pattern, with dry season production being higher than in the rainy season. Leaves formed the largest fraction of the litterfall, followed by twigs, reproductive parts, and finally miscellaneous. These

  20. Acute toxicity of arsenic to Daphnia pulex: influence of organic functional groups and oxidation state.

    PubMed

    Shaw, Joseph R; Glaholt, Stephen P; Greenberg, Noah S; Sierra-Alvarez, Reyes; Folt, Carol L

    2007-07-01

    Investigations were conducted to determine the influence of organic functional groups (i.e., methyl, phenyl) and valence state (i.e., III, V) on acute (48-h) arsenic toxicity in Daphnia pulex. These included toxicity texts with a suite of inorganic (arsenite, arsenate) and organic arsenicals (trivalent and pentavalent methylated arsenicals, roxarsone, p-arsanilic acid). Toxicity, based on median lethal concentrations (LC50 values), clustered the arsenicals into three groups and followed the order (most toxic to least toxic) of monomethylarsonous acid (MMA(III)), 120 microg/L > inorganic arsenic, 2,500 to 3,900 microg/L > pentavalent methylated arsenicals and phenylarsonic compounds, 13,800 to 15,700 microg/L. Pentavalent organic arsenicals were less toxic than inorganic forms regardless of functional group. In contrast, the trivalent organic species (M MA(III)) was the most toxic arsenical studied. These findings, which are the first to include an aquatic organism, add to the growing body of evidence that find that MMA(III) is an extremely toxic intermediate of arsenic methylation and contradict theories of arsenic toxicity that regard methylation as a detoxication event.

  1. Differences in anosmic and normosmic group in bimodal odorant perception: a functional- MRI study.

    PubMed

    Iannilli, E; Bitter, T; Gudziol, H; Burmeister, H P; Mentzel, H J; Chopra, A P S; Hummel, T

    2011-10-01

    So-called bimodal odorants are able to stimulate the intranasal trigeminal system at relatively low concentrations. Using them as stimuli, the current study focused on the interaction between the olfactory and trigeminal systems at a cerebral level. In the experiment, menthol was used at two concentrations, low and high, and these were delivered to two groups of subjects, a healthy control group and an anosmic group who were unable to perceive smells. A computer-controlled olfactometer based on principles of air-dilution was used to deliver the stimuli, while the brain functions were assessed by a functional magnetic resonance imaging (fMRI) technique. SPM5 was used for data analysis. The results showed that normosmic subjects exhibited activation in the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC), prefrontal cortex (PFC), and cerebellum. Whilst anosmic subjects activated the same area inside the anterior cingulate; moreover a cluster of activation was found in the left parahippocampal gyrus. In controls, an effect of stimulus intensity was localized between the anterior cingulated, the medial frontal gyrus and the cerebellum; such areas could not be found in anosmic subjects. These results suggest that the olfactory system modifies trigeminally mediated information causing an evident effect in the differentiation between stimulus intensities.

  2. Combinatorial approach to determine functional group effects on lipidoid-mediated siRNA delivery.

    PubMed

    Mahon, Kerry P; Love, Kevin T; Whitehead, Kathryn A; Qin, June; Akinc, Akin; Leshchiner, Elizaveta; Leshchiner, Ignaty; Langer, Robert; Anderson, Daniel G

    2010-08-18

    The application of RNA interference (RNAi), either in the clinic or in the laboratory, requires safe and effective delivery methods. Here, we develop a combinatorial approach to synthesize a library of delivery vectors based on two lipid-like substrates with known siRNA delivery capabilities. Members of this library have a mixture of lipid-like tails and feature appendages containing hydroxyl, carbamate, ether, or amine functional groups as well as variations in alkyl chain length and branching. Using a luciferase reporter system in HeLa cells, we studied the relationship between lipid chemical modification and delivery performance in vitro. The impact of the functional group was shown to vary depending on the overall amine content and tail number of the delivery vector. Additionally, in vivo performance was evaluated using a Factor VII knockdown assay. Two library members, each containing ether groups, were found to knock down the target protein at levels comparable to those of the parent delivery vector. These results demonstrate that small chemical changes to the delivery vector impact knockdown efficiency and cell viability both in vitro and in vivo. The work described here identifies new materials for siRNA delivery and provides new insight into the parameters for optimized chemical makeup of lipid-like siRNA delivery materials.

  3. Derivatization of hydroxyl functional groups for liquid chromatography and capillary electroseparation.

    PubMed

    Escrig-Doménech, A; Simó-Alfonso, E F; Herrero-Martínez, J M; Ramis-Ramos, G

    2013-06-28

    The derivatization reactions commonly used to enhance the analytical signal in the HPLC and CE determination of compounds with hydroxyl functional groups are revised. Focus is placed on the determination of compounds having aliphatic alcohols and phenols while lacking other reactive functional groups. The derivatization with acyl chlorides, organic anhydrides, isocyanates and a variety of other approaches, including oxidation of primary and secondary alcohols, sulfonation, esterification with carboxylic acids, and the use of azides, sulfonyl chlorides and other reagents having miscellaneous leaving groups, is covered. Reactions mainly addressed to introduce a chromophore or a fluorophore in the analyte molecule, or to introduce a charge to enhance sensitivity in MS detection, or to enable CE separation are included. Applications related to the industrial quality control of raw materials and manufactured products, and to the evaluation of their environmental impact are emphasized. The problem of the different response factors of the derivatives when complex mixtures of oligomers are derivatized, as occurs with non-ionic surfactants (mainly fatty alcohol ethoxylates) and soluble synthetic polymers, is discussed. Other applications related to the biochemical, biomedical, pharmaceutical, nutritional and toxicological fields are also reviewed. The reactions, the criteria to be applied to select the reagent, and the characteristics of the derivatives in relation to separation and detection, are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Littelmann path model for geometric crystals, Whittaker functions on Lie groups and Brownian motion

    NASA Astrophysics Data System (ADS)

    Chhaibi, Reda

    2013-02-01

    Generally speaking, this thesis focuses on the interplay between the representations of Lie groups and probability theory. It subdivides into essentially three parts. In a first rather algebraic part, we construct a path model for geometric crystals in the sense of Berenstein and Kazhdan, for complex semi-simple Lie groups. We will mainly describe the algebraic structure, its natural morphisms and parameterizations. The theory of total positivity will play a particularly important role. Then, we anticipate on the probabilistic part by exhibiting a canonical measure on geometric crystals. It uses as ingredients the superpotential for the flag manifold and a measure invariant under the crystal actions. The image measure under the weight map plays the role of Duistermaat-Heckman measure. Its Laplace transform defines Whittaker functions, providing an interesting formula for all Lie groups. Then it appears clearly that Whittaker functions are to geometric crystals, what characters are to combinatorial crystals. The Littlewood-Richardson rule is also exposed. Finally we present the probabilistic approach that allows to find the canonical measure. It is based on the fundamental idea that the Wiener measure will induce the adequate measure on the algebraic structures through the path model. In the last chapter, we show how our geometric model degenerates to the continuous classical Littelmann path model and thus recover known results. For example, the canonical measure on a geometric crystal of highest weight degenerates into a uniform measure on a polytope, and recovers the parameterizations of continuous crystals.

  5. Stochastic geometric network models for groups of functional and structural connectomes.

    PubMed

    Friedman, Eric J; Landsberg, Adam S; Owen, Julia P; Li, Yi-Ou; Mukherjee, Pratik

    2014-11-01

    Structural and functional connectomes are emerging as important instruments in the study of normal brain function and in the development of new biomarkers for a variety of brain disorders. In contrast to single-network studies that presently dominate the (non-connectome) network literature, connectome analyses typically examine groups of empirical networks and then compare these against standard (stochastic) network models. The current practice in connectome studies is to employ stochastic network models derived from social science and engineering contexts as the basis for the comparison. However, these are not necessarily best suited for the analysis of connectomes, which often contain groups of very closely related networks, such as occurs with a set of controls or a set of patients with a specific disorder. This paper studies important extensions of standard stochastic models that make them better adapted for analysis of connectomes, and develops new statistical fitting methodologies that account for inter-subject variations. The extensions explicitly incorporate geometric information about a network based on distances and inter/intra hemispherical asymmetries (to supplement ordinary degree-distribution information), and utilize a stochastic choice of network density levels (for fixed threshold networks) to better capture the variance in average connectivity among subjects. The new statistical tools introduced here allow one to compare groups of networks by matching both their average characteristics and the variations among them. A notable finding is that connectomes have high "smallworldness" beyond that arising from geometric and degree considerations alone.

  6. Recent horizontal transfer, functional adaptation and dissemination of a bacterial group II intron.

    PubMed

    LaRoche-Johnston, Félix; Monat, Caroline; Cousineau, Benoit

    2016-10-20

    Group II introns are catalytically active RNA and mobile retroelements present in certain eukaryotic organelles, bacteria and archaea. These ribozymes self-splice from the pre-mRNA of interrupted genes and reinsert within target DNA sequences by retrohoming and retrotransposition. Evolutionary hypotheses place these retromobile elements at the origin of over half the human genome. Nevertheless, the evolution and dissemination of group II introns was found to be quite difficult to infer. We characterized the functional and evolutionary relationship between the model group II intron from Lactococcus lactis, Ll.LtrB, and Ef.PcfG, a newly discovered intron from a clinical strain of Enterococcus faecalis. Ef.PcfG was found to be homologous to Ll.LtrB and to splice and mobilize in its native environment as well as in L. lactis. Interestingly, Ef.PcfG was shown to splice at the same level as Ll.LtrB but to be significantly less efficient to invade the Ll.LtrB recognition site. We also demonstrated that specific point mutations between the IEPs of both introns correspond to functional adaptations which developed in L. lactis as a response to selective pressure on mobility efficiency independently of splicing. The sequence of all the homologous full-length variants of Ll.LtrB were compared and shown to share a conserved pattern of mutation acquisition. This work shows that Ll.LtrB and Ef.PcfG are homologous and have a common origin resulting from a recent lateral transfer event followed by further adaptation to the new target site and/or host environment. We hypothesize that Ef.PcfG is the ancestor of Ll.LtrB and was initially acquired by L. lactis, most probably by conjugation, via a single event of horizontal transfer. Strong selective pressure on homing site invasion efficiency then led to the emergence of beneficial point mutations in the IEP, enabling the successful establishment and survival of the group II intron in its novel lactococcal environment. The current

  7. Bronchodilator activity of xanthine derivatives substituted with functional groups at the 1- or 7-position.

    PubMed

    Miyamoto, K; Yamamoto, Y; Kurita, M; Sakai, R; Konno, K; Sanae, F; Ohshima, T; Takagi, K; Hasegawa, T; Iwasaki, N

    1993-05-14

    Xanthine derivatives with several functional groups at the 1- or 7-position were synthesized, and their pharmacological activities in guinea pigs were studied. In general, the in vitro tracheal relaxant action and positive chronotropic action of 3-propylxanthines were increased by substitutions with nonpolar functional groups at the 1-position, but decreased by any substitution at the 7-position. On the other hand, because positive chronotropic actions of substituents with allyl, aminoalkyl, alkoxyalkyl, and normal alkyl groups were much less than tracheal muscle became very high with substitutions of 3'-butenyl, (dimethylamino)ethyl, 2'-ethoxyethyl, 3'-methoxypropyl, and n-propyl groups at the 1-position and of 2'-ethoxyethyl, 2'-oxopropyl, and n-propyl groups at the 7-position, compared with theophylline and the corresponding unsubstituted xanthines, 3-propylxanthine and 1-methyl-3-propylxanthine. When compounds were intraduodenally administered to the guinea pig, 1-(2'-ethoxyethyl)-, 1-(3'-methoxypropyl)-, 1-(3'-butenyl)-, and 1-[(dimethylamino)-ethyl]-3-propylxanthines, 1-methyl-7-(2'-oxopropyl)-3-propylxanthine, and denbufylline (1,3-di-n-butyl-7-(2'-oxopropyl)xanthine) effectively inhibited the acetylcholine-induced bronchospasm without heart stimulation or central nervous system-stimulation at the effective dosage range. Particularly, the bronchodilatory effect of 1-(2'-ethoxyethyl)-3-propylxanthine was much stronger and more continuous than those of theophylline and pentoxifylline. On the other hand, there were certain relationships among the in vitro tracheal relaxant activities of these compounds, their affinities for adenosine (A1) receptors in the brain membrane, and their inhibition of cyclic AMP-phosphodiesterase (PDE) in the tracheal muscle. The affinity for A2 receptors of these compounds was very low or negligible. This suggests that both the action on A1 receptors or interaction with adenosine and the cyclic AMP-PDE inhibitory activity contribute

  8. Architectural and Functional Diversity of Polycomb Group Response Elements in Drosophila

    PubMed Central

    Brown, J. Lesley; Kassis, Judith A.

    2013-01-01

    Polycomb group response elements (PREs) play an essential role in gene regulation by the Polycomb group (PcG) repressor proteins in Drosophila. PREs are required for the recruitment and maintenance of repression by the PcG proteins. PREs are made up of binding sites for multiple DNA-binding proteins, but it is still unclear what combination(s) of binding sites is required for PRE activity. Here we compare the binding sites and activities of two closely linked yet separable PREs of the Drosophila engrailed (en) gene, PRE1 and PRE2. Both PRE1 and PRE2 contain binding sites for multiple PRE–DNA-binding proteins, but the number, arrangement, and spacing of the sites differs between the two PREs. These differences have functional consequences. Both PRE1 and PRE2 mediate pairing-sensitive silencing of mini-white, a functional assay for PcG repression; however, PRE1 requires two binding sites for Pleiohomeotic (Pho), whereas PRE2 requires only one Pho-binding site for this activity. Furthermore, for full pairing-sensitive silencing activity, PRE1 requires an AT-rich region not found in PRE2. These two PREs behave differently in a PRE embryonic and larval reporter construct inserted at an identical location in the genome. Our data illustrate the diversity of architecture and function of PREs. PMID:23934890

  9. Argos and Spitz group genes function to regulate midline glial cell number in Drosophila embryos.

    PubMed

    Stemerdink, C; Jacobs, J R

    1997-10-01

    The midline glia of the Drosophila embryonic nerve cord undergo a reduction in cell number after facilitating commissural tract morphogenesis. The numbers of midline glia entering apoptosis at this stage can be increased by a loss or reduction of function in genes of the spitz group or Drosophila EGF receptor (DER) pathway. Argos, a secreted molecule with an atypical EGF motif, is postulated to function as a DER antagonist. In this work, we assess the role of argos in the determination of midline glia cell number. Although all midline glia express DER, argos expression is restricted to the midline glia which do not enter apoptosis. Fewer midline glia enter apoptosis in embryos lacking argos function. Ectopic expression of argos is sufficient to remove all DER-expressing midline glia from the nerve cord, even those that already express argos. DER expression is not terminated in the midline glia after spitz group signaling triggers changes in gene expression. It is therefore likely that an attenuation of DER signaling by Argos is integrated with the augmentation of DER signaling by Spitz throughout the period of reduction of midline glia number. We suggest that signaling by Spitz but not Argos is restricted to adhesive junctions. In this manner, midline glia not forming signaling junctions remain sensitive to juxtacrine Argos signaling, while an autocrine Argos signal is excluded by the adhesive junction.

  10. Group 2 innate lymphoid cells express functional NKp30 receptor inducing type 2 cytokine production1

    PubMed Central

    Salimi, Maryam; Xue, Luzheng; Jolin, Helen; Hardman, Clare; Cousins, David J.; McKenzie, Andrew N.J.; Ogg, Graham S.

    2016-01-01

    Group 2 innate lymphoid cells (ILC2) are important in effector functions for eliciting allergic inflammation, parasite defence, epithelial repair and lipid homeostasis. ILC2 lack rearranged antigen-specific receptors, and while many soluble factors such as cytokines and lipid mediators can influence ILC2, direct interaction of these cells with microenvironment and other cells has been less explored. Natural cytotoxicity receptors are expressed by subsets of ILC1 and ILC3 and thought to be important for their effector function, but have not been shown to be expressed by ILC2. Therefore, we sought to investigate the expression and functional properties of the natural cytotoxicity receptor NKp30 on human group 2 innate lymphoid cells. A subset of ex vivo and cultured ILC2 express NKp30 that upon interaction with its cognate activatory ligand B7-H6 induces rapid production of type 2 cytokines. This interaction can be blocked by NKp30 blocking antibody and an inhibitory ligand, galectin-3. Higher expression of B7-H6 was observed in lesional skin biopsies of patients with atopic dermatitis; and incubation of keratinocytes with pro-inflammatory and type 2 cytokines upregulated B7-H6 leading to increased ILC2 cytokine production. NKp30-B7-H6 interaction is a novel cell contact mechanism that mediates activation of ILC2 and identifies a potential target for the development of novel therapeutics for atopic dermatitis and other atopic diseases. PMID:26582946

  11. The synthesis of desired functional groups on PEI microgel particles for biomedical and environmental applications

    NASA Astrophysics Data System (ADS)

    Sahiner, Nurettin; Demirci, Sahin; Sahiner, Mehtap; Al-Lohedan, Hamad

    2015-11-01

    Polyethyleneimine (PEI) microgels were synthesized by micro emulsion polymerization technique and converted to positively charged forms by chemical treatments with various modifying agents with different functional groups, such as 2-bromoethanol (-OH), 4-bromobutyronitrile (-CN), 2-bromoethylamine hydrobromide (-NH2), and glycidol (-OH). The functionalization of PEI microgels was confirmed by FT-IR, TGA and zeta potential measurements. Furthermore, a second modification of the modified PEI microgels was induced on 4-bromo butyronitrile-modified PEI microgels (PEI-CN) by amidoximation, to generate new functional groups on the modified PEI microgels. The PEI and modified PEI microgels were also tested for their antimicrobial effects against various bacteria such as Bacillus subtilis ATCC 6633, Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 25323. Moreover, the PEI-based particles were used for removal of organic dyes such as methyl orange (MO) and congo red (CR). The absorption capacity of PEI-based microgels increased with modification from 101.8 mg/g to 218.8 mg/g with 2-bromoethylamine, 216.2 m/g with 1-bromoethanol, and 224.5 mg/g with 4-bromobutyronitrile for MO. The increase in absorption for CR dyes was from 347.3 mg/g to 390.4 mg/g with 1-bromoethanol, 399.6 mg/g with glycidol, and 349.9 mg/g with 4-bromobutyronitrile.

  12. 14 CFR Section 11 - Functional Classification-Operating Expenses of Group II and Group III Air Carriers

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operations. b. This subfunction shall not include expenses related to financial accounting, purchasing or... contribute to more than a single operating function such as general financial accounting activities... accounting year. Allocations of maintenance burden to capital projects, and service sales to others shall...

  13. ATR-FTIR characterization of organic functional groups and inorganic ions in ambient aerosols at a rural site

    NASA Astrophysics Data System (ADS)

    Coury, Charity; Dillner, Ann M.

    An Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopic method was used to measure organic functional groups and inorganic ions at Tonto National Monument (TNM), an Interagency Monitoring of Protected Visual Environments (IMPROVE) sampling site in a rural area near Phoenix, Arizona. Functional groups and ions from common aerosol compound classes such as aliphatic and aromatic CH, methylene, methyl, aldehydes/ketones, carboxylic acids, ammonium sulfate and nitrate as well as functional groups from difficult to measure compound classes such as esters/lactones, acid anhydrides, carbohydrate hydroxyl and ethers, amino acids, and amines were quantified. On average, ˜33% of the PM 1.0 mass was composed of organic aerosol. The average (standard deviation) composition of the organic aerosol at TNM was 34% (6%) biogenic functional groups, 21% (5%) oxygenated functional groups, 28% (7%) aliphatic hydrocarbon functional groups (aliphatic CH, methylene and methyl) and 17% (1%) aromatic hydrocarbon functional groups. Compositional analysis, functional group correlations, and back trajectories were used to identify three types of events with source signatures: primary biogenic-influenced, urban-influenced, and regional background. The biogenic-influenced event had high concentrations of amino acids and carbohydrate hydroxyl and ether, as well as aliphatic CH and aromatic CH functional groups and qualitatively high levels of silicate. The urban-influenced events had back trajectories traveling directly from the Phoenix area and high concentrations of hydrocarbons, oxygenated functional groups, and inorganic ions. This aerosol characterization suggests that both primary emissions in Phoenix and secondary formation of aerosols from Phoenix emissions had a major impact on the aerosol composition and concentration at TNM. The regional background source had low concentrations of all functional groups, but had higher concentrations of biogenic functional

  14. Ethnic self-awareness as a function of ethnic group status, group composition, and ethnic identity orientation.

    PubMed

    Kim-ju, Greg M; Liem, Ramsay

    2003-08-01

    This study found that ethnic self-awareness (i.e., the extent to which people are consciously aware of their ethnicity at any given moment) has different meanings for European Americans and Asian Americans and for Asian Americans with different ethnic identity orientations. The authors found main effects of ethnic group status and ethnic composition on ethnic self-awareness when comparing Asian Americans and European Americans. There was also an interaction effect between ethnic composition and ethnic identity orientation for Asian Americans when examining ethnic self-awareness. Findings are discussed in relation to theories that predict salience of ethnicity and to educators and practitioners who deal with ethnic minority group members.

  15. Anatomy and function of group III metabotropic glutamate receptors in gastric vagal pathways.

    PubMed

    Young, Richard L; Cooper, Nicole J; Blackshaw, L Ashley

    2008-05-01

    Metabotropic glutamate receptors (mGluR) are classified into groups I (excitatory), II and III (inhibitory) mGluR. Activation of peripheral group III mGluR (mGluR4, mGluR6, mGluR7, mGluR8), particularly mGluR8, inhibits vagal afferent mechanosensitivity in vitro which translates into reduced triggering of transient lower oesophageal sphincter relaxations and gastroesophageal reflux in vivo. However, the expression and function of group III mGluR in central gastrointestinal vagal reflex pathways is not known. Here we assessed the expression of group III mGluR in identified gastric vagal afferents in the nodose ganglion (NG) and in the dorsal medulla. We also determined the central action of the mGluR8a agonist S-3,4-DCPG (DCPG) on nucleus tractus solitarius (NTS) neurons with gastric mechanosensory input in vivo. Labelling for mGluR4 and mGluR8 was abundant in gastric vagal afferents in the NG, at their termination site in the NTS (subnucleus gelatinosus) and in gastric vagal motorneurons, while labelling for mGluR6 and mGluR7 was weaker in these regions. DCPG (0.1 nmol or 0.001-10 nmol i.c.v.) inhibited or markedly attenuated responses of 8/10 NTS neurons excited by isobaric gastric distension with no effect on blood pressure or respiration; 2 NTS neurons were unaffected. The effects of DCPG were significantly reversed by the group III mGluR antagonist MAP4 (10 nmol, i.c.v.). In contrast, 4/4 NTS neurons inhibited by gastric distension were unaffected by DCPG. We conclude that group III mGluR are expressed in peripheral and central vagal pathways, and that mGluR8 within the NTS selectively reduce excitatory transmission along gastric vagal pathways.

  16. Mechanistic considerations on contact-active antimicrobial surfaces with controlled functional group densities.

    PubMed

    Bieser, Arno M; Tiller, Joerg C

    2011-04-08

    A series of N-alkyl-N,N-dimethyldeoxyammonium celluloses is synthesized by converting tosyl celluloses with DBA and DDA, respectively. Surface coatings with these water-insoluble derivatives contain well-defined densities of quaternary ammonium functions and nonactive hydrophobic and hydrophilic groups. It is shown that the antimicrobial activity of such surfaces against S. aureus requires a delicate balance between DDA, BDA, and hydrophobic groups. A mechanism is proposed that involves the selective adhesion of anionic phospholipids from the bacterial cell membrane. This so-called phospholipid sponge effect is supported by the fact that all coatings could be deactivated by treatment with SDS or negatively charged phospholipids, but not with neutral phospholipids.

  17. Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent.

    PubMed

    Zhang, Huanyu; Yong, Xueyong; Zhou, Jinyong; Deng, Jianping; Wu, Youping

    2016-02-03

    The contribution reports the first polymeric microspheres derived from a biomass, vanillin. It reacted with methacryloyl chloride, providing monomer vanillin methacrylate (VMA), which underwent suspension polymerization in aqueous media and yielded microspheres in high yield (>90 wt %). By controlling the N2 bubbling mode and by optimizing the cosolvent for dissolving the solid monomer, the microspheres were endowed with surface pores, demonstrated by SEM images and mercury intrusion porosimetry measurement. Taking advantage of the reactive aldehyde groups, the microspheres further reacted with glycine, thereby leading to a novel type of Schiff-base chelating material. The functionalized microspheres demonstrated remarkable adsorption toward Cu(2+) (maximum, 135 mg/g) which was taken as representative for metal ions. The present study provides an unprecedented class of biobased polymeric microspheres showing large potentials as adsorbents in wastewater treatment. Also importantly, the reactive aldehyde groups may enable the microspheres to be used as novel materials for immobilizing biomacromolecules, e.g. enzymes.

  18. Natural molecular fragments, functional groups, and holographic constraints on electron densities.

    PubMed

    Mezey, Paul G

    2012-06-28

    One of the tools of the shape analysis of molecular electron densities, the Density Threshold Progression Approach used in Shape Group studies can also serve as a criterion for the selection of "natural" molecular fragments, relevant to functional group comparisons, reactivity studies, as well as to the study of levels of relative "autonomy" of various molecular regions. The relevance of these approaches to the fragment-based studies of large molecules, such as biopolymers and nanostructures is emphasized, and the constraints represented by the holographic electron density theorem to this and alternative recent fragment approaches are discussed. The analogies with potential energy hypersurface analysis using the Energy Threshold Progression Approach and connections to level set methods are discussed, and the common features of these seemingly distant problems are described.

  19. Preparation of magnetic latexes functionalized with chloromethyl groups via emulsifier-free miniemulsion polymerization

    NASA Astrophysics Data System (ADS)

    Faridi-Majidi, Reza; Sharifi-Sanjani, Naser

    2007-04-01

    Functionalized crosslinked polystyrene-co-divinylbenzene-co-chloromethylstyrene magnetic latex particles were prepared via emulsifier-free miniemulsion polymerization using 2, 2' azobis (2-amidinopropane) dihydrochloride (V-50) as an initiator and in the presence of magnetite nanoparticles in the monomers. Transmission electron microscopy (TEM) proved the presence of magnetite nanoparticles in polymer particles. Differential scanning calorimetery (DSC) analysis of the product showed an exothermic signal due to crosslinking of chains through electrophilic aromatic substitution of phenyl groups with chloromethyl groups in the presence of the dispersed Fe 3O 4 as Lewis acid. This was proven by thermogravimetric analysis (TGA) via the loss of gaseous HCl. The results were also compared with those of magnetite-free miniemulsion polymerization using V-50.

  20. Complete chemical modification of amine and acid functional groups of peptides and small proteins

    PubMed Central

    Krusemark, Casey J.; Frey, Brian L.; Smith, Lloyd M.; Belshaw, Peter J.

    2013-01-01

    Summary The chemical modification of protein thiols by reduction and alkylation is common in the preparation of proteomic samples for analysis by mass spectrometry (MS). Modification at other functional groups has received less attention in MS-based proteomics. Amine modification (Lys, N-termini) by reductive dimethylation or by acylation (e.g. iTRAQ labeling) has recently gained some popularity in peptide-based approaches (bottom-up MS). Modification at acidic groups (Asp, Glu, C-termini) has been explored very minimally. Here, we describe a sequential labeling strategy that enables complete modification of thiols, amines, and acids on peptides or small intact proteins. This method includes (1) the reduction and alkylation of thiols, (2) the reductive dimethylation of amines, and (3) the amidation of acids with any of several amines. This chemical modification scheme offers several options both for the incorporation of stable isotopes for relative quantification and for improving peptides or proteins as MS analytes. PMID:21604117

  1. Elastic–plastic properties of graphene engineered by oxygen functional groups

    NASA Astrophysics Data System (ADS)

    Hou, Yuan; Zhu, YinBo; Liu, XiaoYi; Dai, ZhaoHe; Liu, LuQi; Wu, HengAn; Zhang, Zhong

    2017-09-01

    Using molecular dynamics (MD) simulations, we investigate the elastic–plastic mechanical performances of monolayer graphene oxide (GO) under uniaxial tension. The brittle–ductile–brittle transition and nonlinear–linear–nonlinear elastic transition is found in the uniaxial tension of GO, which displays strong correlations to the content, distribution and proportion of oxygen functional groups. In principle, the tensile behavior of graphene with epoxy groups exhibits ductile fracture features due to the unique epoxy-to-ether transformation in structural evolution. Our simulation results also reveal that wrinkling could cause a competing mechanism of strain-hardening or -softening, and in turn, the nonlinear–linear elasticity transition. Moreover, we propose a continuum mechanical model with a modified stress–strain relation to understand the unique deformation performances, which is consistent with the MD results. These findings might provide valuable insight and design guidelines for optimizing the specific mechanical properties and deformation behaviors of graphene and its derivatives.

  2. Light interception in species with different functional groups coexisting in moorland plant communities.

    PubMed

    Kamiyama, Chiho; Oikawa, Shimpei; Kubo, Takuya; Hikosaka, Kouki

    2010-11-01

    Competition for light is one of the most essential mechanisms affecting species composition. It has been suggested that similar light acquisition efficiency (Φ(mass), absorbed photon flux per unit aboveground mass) may contribute to species coexistence in multi-species communities. On the other hand, it is known that traits related with light acquisition vary among functional groups. We studied whether Φ(mass) was similar among species with different functional groups coexisting in moorland communities. We conducted stratified clipping in midsummer when the stand biomass reached a maximum. Light partitioning among species was estimated using a model accounting for both direct and diffuse light. Evergreen species were found to have a significantly lower Φ(mass) than deciduous species, which resulted from their lower absorbed photon flux per unit leaf area and lower specific leaf area. Shrubs had a smaller leaf mass fraction, but their Φ(mass) was not lower than that of herbs because they had a higher leaf position due to the presence of wintering stems. Species with vertical leaves had a higher Φ(mass) than those with horizontal leaves despite vertical leaves being a decided disadvantage in terms of light absorption. This higher Φ(mass) was achieved by a greater leaf height in species with vertical leaves. Our results clearly demonstrate that light acquisition efficiency was different among the functional groups. However, the trend observed is not necessarily the same as that expected based on prior knowledge, suggesting that disadvantages in some traits for light acquisition efficiency are partly compensated for by other traits.

  3. Algorithmic derivation of functional renormalization group equations and Dyson-Schwinger equations

    NASA Astrophysics Data System (ADS)

    Huber, Markus Q.; Braun, Jens

    2012-06-01

    We present the Mathematica application DoFun which allows to derive Dyson-Schwinger equations and renormalization group flow equations for n-point functions in a simple manner. DoFun offers several tools which considerably simplify the derivation of these equations from a given physical action. We discuss the application of DoFun by means of two different types of quantum field theories, namely a bosonic O(N) theory and the Gross-Neveu model. Program summaryProgram title:DoFun Catalogue identifier: AELN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 506 No. of bytes in distributed program, including test data, etc.: 571 837 Distribution format: tar.gz Programming language: Mathematica 7 and higher Computer: PCs and workstations Operating system: All on which Mathematica is available (Windows, Unix, MacOS) Classification: 11.1, 11.4, 11.5, 11.6 Nature of problem: Derivation of functional renormalization group equations and Dyson-Schwinger equations from the action of a given theory. Solution method: Implementation of an algorithm to derive functional renormalization group and Dyson-Schwinger equations. Unusual features: The results can be plotted as Feynman diagrams in Mathematica. The output is compatible with the syntax of many other programs and is therefore suitable for further (algebraic) computations. Running time: Seconds to minutes

  4. Acidity of the amidoxime functional group in aqueous solution. A combined experimental and computational study

    SciTech Connect

    Mehio, Nada; Lashely, Mark A.; Nugent, Joseph W.; Tucker, Lyndsay; Correia, Bruna; Do-Thanh, Chi-Linh; Dai, Sheng; Hancock, Robert D.; Bryantsev, Vyacheslav S.

    2015-01-26

    Poly(acrylamidoxime) adsorbents are often invoked in discussions of mining uranium from seawater. It has been demonstrated repeatedly in the literature that the success of these materials is due to the amidoxime functional group. While the amidoxime-uranyl chelation mode has been established, a number of essential binding constants remain unclear. This is largely due to the wide range of conflicting pKa values that have been reported for the amidoxime functional group in the literature. To resolve this existing controversy we investigated the pKa values of the amidoxime functional group using a combination of experimental and computational methods. Experimentally, we used spectroscopic titrations to measure the pKa values of representative amidoximes, acetamidoxime and benzamidoxime. Computationally, we report on the performance of several protocols for predicting the pKa values of aqueous oxoacids. Calculations carried out at the MP2 or M06-2X levels of theory combined with solvent effects calculated using the SMD model provide the best overall performance with a mean absolute error of 0.33 pKa units and 0.35 pKa units, respectively, and a root mean square deviation of 0.46 pKa units and 0.45 pKa units, respectively. Finally, we employ our two best methods to predict the pKa values of promising, uncharacterized amidoxime ligands. Hence, our study provides a convenient means for screening suitable amidoxime monomers for future generations of poly(acrylamidoxime) adsorbents used to mine uranium from seawater.

  5. Ecological Significance of a Geomorphic Stream Classification: Species and Functional Group Composition of Riparian Plant Communities

    NASA Astrophysics Data System (ADS)

    Shaw, J. R.; Cooper, D. J.

    2014-12-01

    We tested the ecological significance of a geomorphic classification of Sonoran Desert ephemeral stream channels based on channel plan-form, degree of lateral confinement, and boundary material composition. This typology has been shown to discriminate among channel geometry and hydraulic characteristics for bedrock, bedrock with alluvium, incised alluvium, braided, and piedmont headwater channels. We examined stream reach-scale relationships of geomorphic stream types to the relative cover and density of perennial plant species and functional groups, and identified the dominant fluvial drivers, within riparian communities at 101 ephemeral stream reaches on the U.S. Army Yuma Proving Ground and Barry M. Goldwater Air Force Range in southwestern Arizona, USA. Nonparametric multivariate analysis of variance showed that species and functional group composition differed significantly among geomorphic stream types, both in terms of relative cover and density. Partitioning of among-site multivariate dissimilarity revealed that species compositional differences between stream types were caused largely by variation in the cover and density of the most common members of the regional flora. Distinctive functional group composition among reach types resulted from differences in the cover and density of drought-deciduous shrubs and subshrubs, evergreen trees and shrubs, and photosynthetic-stemmed trees. Comparison of environmental and biotic dissimilarity matrices highlighted the role of channel gradient as the dominant abiotic driver of riparian plant community composition, with stream channel elevation and width:depth providing additional explanatory power. Distinctive riparian plant community composition among the geomorphic stream types demonstrates the ecological significance of this a priori channel classification, and indicates its potential utility in understanding spatial patterns of ecological dynamics, sample stratification for process-based studies, and reference

  6. Acidity of the amidoxime functional group in aqueous solution. A combined experimental and computational study

    DOE PAGES

    Mehio, Nada; Lashely, Mark A.; Nugent, Joseph W.; ...

    2015-01-26

    Poly(acrylamidoxime) adsorbents are often invoked in discussions of mining uranium from seawater. It has been demonstrated repeatedly in the literature that the success of these materials is due to the amidoxime functional group. While the amidoxime-uranyl chelation mode has been established, a number of essential binding constants remain unclear. This is largely due to the wide range of conflicting pKa values that have been reported for the amidoxime functional group in the literature. To resolve this existing controversy we investigated the pKa values of the amidoxime functional group using a combination of experimental and computational methods. Experimentally, we used spectroscopicmore » titrations to measure the pKa values of representative amidoximes, acetamidoxime and benzamidoxime. Computationally, we report on the performance of several protocols for predicting the pKa values of aqueous oxoacids. Calculations carried out at the MP2 or M06-2X levels of theory combined with solvent effects calculated using the SMD model provide the best overall performance with a mean absolute error of 0.33 pKa units and 0.35 pKa units, respectively, and a root mean square deviation of 0.46 pKa units and 0.45 pKa units, respectively. Finally, we employ our two best methods to predict the pKa values of promising, uncharacterized amidoxime ligands. Hence, our study provides a convenient means for screening suitable amidoxime monomers for future generations of poly(acrylamidoxime) adsorbents used to mine uranium from seawater.« less

  7. Subject order-independent group ICA (SOI-GICA) for functional MRI data analysis.

    PubMed

    Zhang, Han; Zuo, Xi-Nian; Ma, Shuang-Ye; Zang, Yu-Feng; Milham, Michael P; Zhu, Chao-Zhe

    2010-07-15

    Independent component analysis (ICA) is a data-driven approach to study functional magnetic resonance imaging (fMRI) data. Particularly, for group analysis on multiple subjects, temporally concatenation group ICA (TC-GICA) is intensively used. However, due to the usually limited computational capability, data reduction with principal component analysis (PCA: a standard preprocessing step of ICA decomposition) is difficult to achieve for a large dataset. To overcome this, TC-GICA employs multiple-stage PCA data reduction. Such multiple-stage PCA data reduction, however, leads to variable outputs due to different subject concatenation orders. Consequently, the ICA algorithm uses the variable multiple-stage PCA outputs and generates variable decompositions. In this study, a rigorous theoretical analysis was conducted to prove the existence of such variability. Simulated and real fMRI experiments were used to demonstrate the subject-order-induced variability of TC-GICA results using multiple PCA data reductions. To solve this problem, we propose a new subject order-independent group ICA (SOI-GICA). Both simulated and real fMRI data experiments demonstrated the high robustness and accuracy of the SOI-GICA results compared to those of traditional TC-GICA. Accordingly, we recommend SOI-GICA for group ICA-based fMRI studies, especially those with large data sets. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Submerged vegetation removal promotes shift of dominant phytoplankton functional groups in a eutrophic lake.