Science.gov

Sample records for oxygenase metabolites inhibit

  1. Mechanism of inhibition of cyclo-oxygenase in human blood platelets by carbamate insecticides.

    PubMed Central

    Krug, H F; Hamm, U; Berndt, J

    1988-01-01

    Carbamates are a widely used class of insecticides and herbicides. They were tested for their ability to affect human blood platelet aggregation and arachidonic acid metabolism in platelets. (1) The herbicides of the carbamate type have no, or only little, influence up to a concentration of 100 microM; the carbamate insecticides, however, inhibit both aggregation and arachidonic acid metabolism in a dose- and time-dependent manner. (2) Carbaryl, the most effective compound, inhibits platelet aggregation and cyclo-oxygenase activity completely at 10 microM. The liberation of arachidonic acid from phospholipids and the lipoxygenase pathway are not affected, whereas the products of the cyclo-oxygenase pathway are drastically decreased. (3) By using [14C]carbaryl labelled in the carbamyl or in the ring moiety, it could be proved that the carbamyl residue binds covalently to platelet proteins. In contrast with acetylsalicylic acid, which acetylates only one protein, carbaryl carbamylates a multitude of platelet proteins. (4) One of the carbamylated proteins was found to be the platelet cyclo-oxygenase, indicating that carbaryl resembles in this respect acetylsalicylic acid, which is known to inhibit this enzyme specifically by acetylation. Images Fig. 4. PMID:3128272

  2. Induction of heme oxygenase-1 inhibits the monocyte transmigration induced by mildly oxidized LDL.

    PubMed

    Ishikawa, K; Navab, M; Leitinger, N; Fogelman, A M; Lusis, A J

    1997-09-01

    Heme catabolic processes produce the antioxidants biliverdin and bilirubin, as well as the potent prooxidant free iron. Since these products have opposing effects on oxidative stress, it is not clear whether heme catabolism promotes or inhibits inflammatory processes, including atherosclerotic lesion formation. Heme oxygenase (HO) catalyzes the rate-limiting step of heme catabolism. We used cocultures of human aortic endothelial cells and smooth muscle cells to examine the possible role of HO in early atherosclerosis. Heme oxygenase-1 (HO-1), the inducible isoform of HO, was highly induced by mildly oxidized LDL, and augmented induction was observed with hemin pretreatment. This augmented HO-1 induction resulted in the reduction of monocyte chemotaxis in response to LDL oxidation. Conversely, inhibition of HO by a specific inhibitor, Sn-protoporphyrin IX, enhanced chemotaxis. Furthermore, pretreatment with biliverdin or bilirubin, the products of HO, reduced chemotaxis. Oxidized phospholipids in the mildly oxidized LDL appear to be responsible for HO-1 induction, since oxidized but not native arachidonic acid-containing phospholipids also induced HO-1. These results suggest that HO-1 induced by mildly oxidized LDL may protect against the induction of inflammatory responses in artery wall cells through the production of the antioxidants biliverdin and bilirubin.

  3. Clinical pharmacokinetics of nabumetone. The dawn of selective cyclo-oxygenase-2 inhibition?

    PubMed

    Davies, N M

    1997-12-01

    Nabumetone is a nonsteroidal anti-inflammatory drug (NSAID) of the 2,6-disubstituted naphthyl-alkanone class. Nabumetone is metabolised to an active metabolite 6-methoxy-2-napthylacetic acid (6-MNA) which is a relatively selective cyclo-oxygenase-2 inhibitor that has anti-inflammatory and analgesic properties. Nabumetone and its metabolites bind extensively to plasma albumin. Nabumetone is eliminated following biotransformation to 6-MNA, which does not undergo enterohepatic circulation and the respective glucoroconjugated metabolites are excreted in urine. Substantial concentrations of 6-MNA are attained in synovial fluid, which is he proposed site of action in chronic inflammatory arthropathies. A smaller area under the plasma concentration-time curve (AUC) is evident at steady state as compared with a single dose; this is possibly due to an increase in the volume of distribution and saturation of protein binding. Relationships between 6-MNA concentrations and the therapeutic and toxicological effects have yet to be elucidated for this NSAID. Renal failure significantly reduces 6-MNA elimination but steady-state concentrations of 6-MNA are not increased, possibly because of nonlinear protein binding. Elderly patients with osteoarthritis demonstrate decreased elimination and increased plasma concentrations of nabumetone as compared with young healthy volunteers. Rheumatic disease activity also influences 6-MNA plasma concentrations, as patients with more active disease and lower serum albumin concentrations demonstrate a lower area under the plasma concentration versus time curve. A reduced bioavailability of 6-MNA in patients with severe hepatic impairment is also evident. Dosage adjustment may be required in the elderly, patients with active rheumatic disease and those with hepatic impairment, but not in patients with mild-to-moderate renal failure.

  4. Species Variation in the Predawn Inhibition of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase 1

    PubMed Central

    Servaites, Jerome C.; Parry, Martin A. J.; Gutteridge, Steven; Keys, Alfred J.

    1986-01-01

    The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase was measured in extracts of leaves collected before dawn (predawn activity, pa) and at midday (midday activity, ma). Twenty-three of the 37 species examined showed a pa/ma ratio (≤0.75, while only Capsicum frutescens, Cucumis sativa, Glycine max, Nicotiana tabacum, Vigna unguiculata, and 3 Solanum species showed a pa/ma ratio ≤0.5. Phaseolus vulgaris consistently showed a pa/ma ratio of ≤0.1. Activities and pa/ma ratios of the same species grown in the United States and the United Kingdom were very similar. Gel filtration of extracts before assay had no effect on the observed activities and the pa/ma ratios. These data are consistent with the hypothesis that in a number of species the enzyme is partially inhibited following the night period by the presence of a tight-binding inhibitor. PMID:16665155

  5. Tussilagone inhibits dendritic cell functions via induction of heme oxygenase-1.

    PubMed

    Park, Yunsoo; Ryu, Hwa Sun; Lee, Hong Kyung; Kim, Ji Sung; Yun, Jieun; Kang, Jong Soon; Hwang, Bang Yeon; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2014-10-01

    Sesquiterpenoid tussilagone (TUS) has a variety of pharmacological activities, such as anti-oxidant, anti-cancer, and anti-inflammatory activities. In this study, we investigated the effects of TUS on dendritic cell (DC) functions and the underlying mechanisms. TUS inhibited lipopolysaccharide (LPS)-induced activation of DCs, as shown by decrease in surface molecule expression, cytokine production, cell migration, and allo-T cell activation. In addition, TUS inhibited LPS-induced activation of NF-κB, MAPKs, and IRF-3 signalings in DCs, although it did not directly affect kinase activities of IRAK1/4, TAK1, and IKK, which suggests that TUS might indirectly inhibit TLR signaling in DCs. As a critical mechanism, we showed that TUS activated heme oxygenase-1 (HO-1), which degrades heme to immunosuppressive products, such as carbon monoxide and bilirubin. HO-1 inhibitor reversed the inhibitory activity of TUS in DCs. In conclusion, this study suggests that TUS inhibits DC function through the induction of HO-1.

  6. Inhibition of the enzymatic activity of heme oxygenases by azole-based antifungal drugs.

    PubMed

    Kinobe, Robert T; Dercho, Ryan A; Vlahakis, Jason Z; Brien, James F; Szarek, Walter A; Nakatsu, Kanji

    2006-10-01

    Ketoconazole (KTZ) and other azole antifungal agents are known to have a variety of actions beyond the inhibition of sterol synthesis in fungi. These drugs share structural features with a series of novel heme oxygenase (HO) inhibitors designed in our laboratory. Accordingly, we hypothesized that therapeutically used azole-based antifungal drugs are effective HO inhibitors. Using gas chromatography to quantify carbon monoxide formation in vitro and in vivo, we have shown that azole-containing antifungal drugs are potent HO inhibitors. Terconazole, sulconazole, and KTZ were the most potent drugs with IC(50) values of 0.41 +/- 0.01, 1.1 +/- 0.4, and 0.3 +/- 0.1 microM for rat spleen microsomal HO activity, respectively. Kinetic characterization revealed that KTZ was a noncompetitive HO inhibitor. In the presence of KTZ (2.5 and 10 microM), K(m) values for both rat spleen and brain microsomal HO were not altered; however, a significant decrease in the catalytic capacity (V(max)) was observed (P < 0.005). KTZ was also found to weakly inhibit nitric-oxide synthase with an IC(50) of 177 +/- 2 microM but had no effect on the enzymatic activity of NADPH cytochrome P450 reductase. Because these drugs were effective within the concentration range observed in humans, it is possible that inhibition of HO may play a role in some of the pharmacological actions of these antimycotic drugs.

  7. Cyclo-oxygenase 2 inhibitor, nabumetone, inhibits proliferation in chronic myeloid leukemia cell lines.

    PubMed

    Vural, Filiz; Ozcan, Mehmet Ali; Ozsan, Güner Hayri; Ateş, Halil; Demirkan, Fatih; Pişkin, Ozden; Undar, Bülent

    2005-05-01

    The anti-tumor effect of cyclo-oxygenase (COX) inhibitors has been documented in several studies. COX2 inhibitors have attracted more attention because of the fewer side-effects and the more prominent anti-tumor effects. However, experience with these drugs in hematological malignancies is limited. In our study, a potent COX2 inhibitor, nabumetone (NBT), was investigated for its anti-proliferative and apoptotic effects in K-562 and Meg-01 chronic myeloid leukemia blastic cell lines as a single agent or in combination with adriamycin (ADR) and interferon alpha (IFN-a). In these cell lines, a dose-dependent inhibition of proliferation was observed with NBT. We observed no significant apoptotic effect of NBT. However, NBT potentiated the apoptotic effect of ADR in the K-562 cell line. Bcl-2 expression was reduced by NBT (11% vs. 2%). The combination of NBT with IFN did not have any significant effect on the K-562 cell line. We suggest that NBT inhibits proliferation and potentiates the apoptotic effect of ADR in chronic myeloid leukemia cell lines.

  8. Inhibition of effector antigen-specific T cells by intradermal administration of heme oxygenase-1 inducers.

    PubMed

    Simon, Thomas; Pogu, Julien; Rémy, Séverine; Brau, Frédéric; Pogu, Sylvie; Maquigneau, Maud; Fonteneau, Jean-François; Poirier, Nicolas; Vanhove, Bernard; Blancho, Gilles; Piaggio, Eliane; Anegon, Ignacio; Blancou, Philippe

    2017-03-22

    Developing protocols aimed at inhibiting effector T cells would be key for the treatment of T cell-dependent autoimmune diseases including type 1 autoimmune diabetes (T1D) and multiple sclerosis (MS). While heme oxygenase-1 (HO-1) inducers are clinically approved drugs for non-immune-related diseases, they do have immunosuppressive properties when administered systemically in rodents. Here we show that HO-1 inducers inhibit antigen-specific effector T cells when injected intradermally together with the T cell cognate antigens in mice. This phenomenon was observed in both a CD8(+) T cell-mediated model of T1D and in a CD4(+) T cell-dependent MS model. Intradermal injection of HO-1 inducers induced the recruitment of HO-1(+) monocyte-derived dendritic cell (MoDCs) exclusively to the lymph nodes (LN) draining the site of intradermal injection. After encountering HO-1(+)MoDCs, effector T-cells exhibited a lower velocity and a reduced ability to migrate towards chemokine gradients resulting in impaired accumulation to the inflamed organ. Intradermal co-injection of a clinically approved HO-1 inducer and a specific antigen to non-human primates also induced HO-1(+) MoDCs to accumulate in dermal draining LN and to suppress delayed-type hypersensitivity. Therefore, in both mice and non-human primates, HO-1 inducers delivered locally inhibited effector T-cells in an antigen-specific manner, paving the way for repositioning these drugs for the treatment of immune-mediated diseases.

  9. Inhibiting heme oxygenase-1 attenuates rat liver fibrosis by removing iron accumulation

    PubMed Central

    Wang, Qiu-Ming; Du, Jian-Ling; Duan, Zhi-Jun; Guo, Shi-Bin; Sun, Xiao-Yu; Liu, Zhen

    2013-01-01

    AIM: To investigate the effects of the heme oxygenase (HO)-1/carbon monoxide system on iron deposition and portal pressure in rats with hepatic fibrosis induced by bile duct ligation (BDL). METHODS: Male Sprague-Dawley rats were divided randomly into a Sham group, BDL group, Fe group, deferoxamine (DFX) group, zinc protoporphyrin (ZnPP) group and cobalt protoporphyrin (CoPP) group. The levels of HO-1 were detected using different methods. The serum carboxyhemoglobin (COHb), iron, and portal vein pressure (PVP) were also quantified. The plasma and mRNA levels of hepcidin were measured. Hepatic fibrosis and its main pathway were assessed using Van Gieson’s stain, hydroxyproline, transforming growth factor-β1 (TGF-β1), nuclear factor-E2-related factor 2 (Nrf2), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1). RESULTS: Serum COHb and protein and mRNA expression levels of HO-1 and Nrf2 were increased in the BDL group compared with the Sham group and were much higher in the CoPP group. The ZnPP group showed lower expression of HO-1 and Nrf2 and lower COHb. The levels of iron and PVP were enhanced in the BDL group but were lower in the ZnPP and DFX groups and were higher in the CoPP and Fe groups. Hepcidin levels were higher, whereas superoxide dismutase levels were increased and malonaldehyde levels were decreased in the ZnPP and DFX groups. The ZnPP group also showed inhibited TGF-β1 expression and regulated TIMP-1/MMP-2 expression, as well as obviously attenuated liver fibrosis. CONCLUSION: Reducing hepatic iron deposition and CO levels by inhibiting HO-1 activity though the Nrf2/Keap pathway could be helpful in improving hepatic fibrosis and regulating PVP. PMID:23704825

  10. Dual control mechanism for heme oxygenase: tin(IV)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver.

    PubMed Central

    Sardana, M K; Kappas, A

    1987-01-01

    Tin(IV)-protoporphyrin (Sn-protoporphyrin) potently inhibits heme degradation to bile pigments in vitro and in vivo, a property that confers upon this synthetic compound the ability to suppress a variety of experimentally induced and naturally occurring forms of jaundice in animals and humans. Utilizing rat liver heme oxygenase purified to homogeneity together with appropriate immunoquantitation techniques, we have demonstrated that Sn-protoporphyrin possesses the additional property of potently inducing the synthesis of heme oxygenase protein in liver cells while, concurrently, completely inhibiting the activity of the newly formed enzyme. Substitution of tin for the central iron atom of heme thus leads to the formation of a synthetic heme analogue that regulates heme oxygenase by a dual mechanism, which involves competitive inhibition of the enzyme for the natural substrate heme and simultaneous enhancement of new enzyme synthesis. Cobaltic(III)-protoporphyrin (Co-protoporphyrin) also inhibits heme oxygenase activity in vitro, but unlike Sn-protoporphyrin it greatly enhances the activity of the enzyme in the whole animal. Co-protoporphyrin also acts as an in vivo inhibitor of heme oxygenase; however, its inducing effect on heme oxygenase synthesis is so pronounced as to prevail in vivo over its inhibitory effect on the enzyme. These studies show that certain synthetic heme analogues possess the ability to simultaneously inhibit as well as induce the enzyme heme oxygenase in liver. The net balance between these two actions, as reflected in the rate of heme oxidation activity in the whole animal, appears to be influenced by the nature of the central metal atom of the synthetic metalloporphyrin. Images PMID:3470805

  11. Evidence for biological denitrification inhibition (BDI) by plant secondary metabolites.

    PubMed

    Bardon, Clément; Piola, Florence; Bellvert, Floriant; Haichar, Feth el Zahar; Comte, Gilles; Meiffren, Guillaume; Pommier, Thomas; Puijalon, Sara; Tsafack, Noelline; Poly, Franck

    2014-11-01

    Previous studies on the effect of secondary metabolites on the functioning of rhizosphere microbial communities have often focused on aspects of the nitrogen (N) cycle but have overlooked biological denitrification inhibition (BDI), which can affect plant N-nutrition. Here, we investigated the BDI by the compounds of Fallopia spp., an invasive weed shown to be associated with a low potential denitrification of the soil. Fallopia spp. extracts were characterized by chromatographic analysis and were used to test the BDI effects on the metabolic and respiratory activities of denitrifying bacteria, under aerobic and anaerobic (denitrification) conditions. The BDI of Fallopia spp. extracts was tested on a complex soil community by measuring denitrification enzyme activity (DEA), substrate induced respiration (SIR), as well as abundances of denitrifiers and total bacteria. In 15 strains of denitrifying bacteria, extracts led to a greater BDI (92%) than respiration inhibition (50%). Anaerobic metabolic activity reduction was correlated with catechin concentrations and the BDI was dose dependent. In soil, extracts reduced the DEA/SIR ratio without affecting the denitrifiers: total bacteria ratio. We show that secondary metabolite(s) from Fallopia spp. inhibit denitrification. This provides new insight into plant-soil interactions and improves our understanding of a plant's ability to shape microbial soil functioning.

  12. Nrf2-dependent induction of innate host defense via heme oxygenase-1 inhibits Zika virus replication

    PubMed Central

    Huang, Hanxia; Falgout, Barry; Takeda, Kazuyo; Yamada, Kenneth M.; Dhawan, Subhash

    2017-01-01

    We identified primary human monocyte-derived macrophages (MDM) as vulnerable target cells for Zika virus (ZIKV) infection. We demonstrate dramatic effects of hemin, the natural inducer of the heme catabolic enzyme heme oxygenase-1 (HO-1), in the reduction of ZIKV replication in vitro. Both LLC-MK2 monkey kidney cells and primary MDM exhibited hemin-induced HO-1 expression with major reductions of > 90% in ZIKV replication, with little toxicity to infected cells. Silencing expression of HO-1 or its upstream regulatory gene, nuclear factor erythroid-related factor 2 (Nrf2), attenuated hemin-induced suppression of ZIKV infection, suggesting an important role for induction of these intracellular mediators in retarding ZIKV replication. The inverse correlation between hemin-induced HO-1 levels and ZIKV replication provides a potentially useful therapeutic modality based on stimulation of an innate cellular response against Zika virus infection. PMID:28068513

  13. Nrf2-dependent induction of innate host defense via heme oxygenase-1 inhibits Zika virus replication.

    PubMed

    Huang, Hanxia; Falgout, Barry; Takeda, Kazuyo; Yamada, Kenneth M; Dhawan, Subhash

    2017-03-01

    We identified primary human monocyte-derived macrophages (MDM) as vulnerable target cells for Zika virus (ZIKV) infection. We demonstrate dramatic effects of hemin, the natural inducer of the heme catabolic enzyme heme oxygenase-1 (HO-1), in the reduction of ZIKV replication in vitro. Both LLC-MK2 monkey kidney cells and primary MDM exhibited hemin-induced HO-1 expression with major reductions of >90% in ZIKV replication, with little toxicity to infected cells. Silencing expression of HO-1 or its upstream regulatory gene, nuclear factor erythroid-related factor 2 (Nrf2), attenuated hemin-induced suppression of ZIKV infection, suggesting an important role for induction of these intracellular mediators in retarding ZIKV replication. The inverse correlation between hemin-induced HO-1 levels and ZIKV replication provides a potentially useful therapeutic modality based on stimulation of an innate cellular response against Zika virus infection.

  14. Induction of heme oxygenase 1 by arsenite inhibits cytokine-induced monocyte adhesion to human endothelial cells

    SciTech Connect

    Sun Xi; Pi Jingbo; Liu Wenlan; Hudson, Laurie G.; Liu Kejian; Feng Changjian

    2009-04-15

    Heme oxygenase-1 (HO-1) is an oxidative stress responsive gene upregulated by various physiological and exogenous stimuli. Arsenite, as an oxidative stressor, is a potent inducer of HO-1 in human and rodent cells. In this study, we investigated the mechanistic role of arsenite-induced HO-1 in modulating tumor necrosis factor {alpha} (TNF-{alpha}) induced monocyte adhesion to human umbilical vein endothelial cells (HUVEC). Arsenite pretreatment, which upregulated HO-1 in a time- and concentration-dependent manner, inhibited TNF-{alpha}-induced monocyte adhesion to HUVEC and intercellular adhesion molecule 1 protein expression by 50% and 40%, respectively. Importantly, knockdown of HO-1 by small interfering RNA abolished the arsenite-induced inhibitory effects. These results indicate that induction of HO-1 by arsenite inhibits the cytokine-induced monocyte adhesion to HUVEC by suppressing adhesion molecule expression. These findings established an important mechanistic link between the functional monocyte adhesion properties of HUVEC and the induction of HO-1 by arsenite.

  15. Inhibition of heme oxygenase-1 enhances the chemosensitivity of laryngeal squamous cell cancer Hep-2 cells to cisplatin.

    PubMed

    Lv, Xin; Song, Dong-mei; Niu, Ying-hao; Wang, Bao-shan

    2016-04-01

    It has been previously reported that cisplatin is a well-known anticancer drug being used against a wide range of malignancies including head and neck, ovarian and non-small cell lung carcinoma, and demonstrated its anticancer activity by reacting with DNA or changing cell structure, immune response, reactive oxygen species level (ROS). In this research we proved that cisplatin induced cell injuries and heme oxygenase-1 (HO-1) expression in laryngeal squamous cell cancer Hep-2 cells through ROS generation. The induction of HO-1 clearly protected Hep-2 cells from cisplatin-induced cell death and ROS reaction, and the inhibitor of HO-1 enhanced the cell death and ROS generation induced by cisplatin. Furthermore, the HO-1 expression induced by cisplatin was strongly inhibited by the knockdown of nuclear factor-erythroid-2-related factor-2 (Nrf-2), and the oxidative damages induced by cisplatin were significantly enhanced. Therefore, it may be concluded that the inhibition of HO-1 or the knockdown of Nrf-2 significantly enhanced cisplatin's anticancer effects on Hep-2 cells. In clinic, with the overexpression of HO-1 in laryngeal squamous cancer tissues, the combination of cisplatin with the inhibitor of HO-1 or Nrf-2 siRNA may act as a new method to the treatment of laryngeal squamous cancer.

  16. Heme oxygenase-1 gene delivery by Sleeping Beauty inhibits vascular stasis in a murine model of sickle cell disease

    PubMed Central

    Belcher, John D.; Vineyard, Julie V.; Bruzzone, Carol M.; Chen, Chunsheng; Beckman, Joan D.; Nguyen, Julia; Steer, Clifford J.

    2010-01-01

    Increases in heme oxygenase-1 (HO-1) and administration of heme degradation products CO and biliverdin inhibit vascular inflammation and vasoocclusion in mouse models of sickle cell disease (SCD). In this study, an albumin (alb) promoter-driven Sleeping Beauty (SB) transposase plasmid with a wild-type rat hmox-1 (wt-HO-1) transposable element was delivered by hydrodynamic tail vein injections to SCD mice. Eight weeks after injection, SCD mice had three- to five-fold increases in HO-1 activity and protein expression in liver, similar to hemin-treated mice. Immunohistochemistry demonstrated increased perinuclear HO-1 staining in hepatocytes. Messenger RNA transcription of the hmox-1 transgene in liver was confirmed by quantitative real-time polymerase chain reaction restriction fragment length polymorphism (qRT-PCR RFLP) with no detectible transgene expression in other organs. The livers of all HO-1 overexpressing mice had activation of nuclear phospho-p38 mitogen-activated protein kinase (MAPK) and phospho-Akt, decreased nuclear expression of nuclear factor-kappa B (NF-κB) p65, and decreased soluble vascular cell adhesion molecule-1 (sVCAM-1) in serum. Hypoxia-induced stasis, a characteristic of SCD, but not normal mice, was inhibited in dorsal skin fold chambers in wt-HO-1 SCD mice despite the absence of hmox-1 transgene expression in the skin suggesting distal effects of HO activity on the vasculature. No protective effects were seen in SCD mice injected with nonsense (ns-) rat hmox-1 that encodes carboxy-truncated HO-1 with little or no enzyme activity. We speculate that HO-1 gene delivery to the liver is beneficial in SCD mice by degrading pro-oxidative heme, releasing anti-inflammatory heme degradation products CO and biliverdin/bilirubin into circulation, activating cytoprotective pathways and inhibiting vascular stasis at sites distal to transgene expression. PMID:20306336

  17. Pharmacological Inhibition of Host Heme Oxygenase-1 Suppresses Mycobacterium tuberculosis Infection In Vivo by a Mechanism Dependent on T Lymphocytes.

    PubMed

    Costa, Diego L; Namasivayam, Sivaranjani; Amaral, Eduardo P; Arora, Kriti; Chao, Alex; Mittereder, Lara R; Maiga, Mamoudou; Boshoff, Helena I; Barry, Clifton E; Goulding, Celia W; Andrade, Bruno B; Sher, Alan

    2016-10-25

    Heme oxygenase-1 (HO-1) is a stress response antioxidant enzyme which catalyzes the degradation of heme released during inflammation. HO-1 expression is upregulated in both experimental and human Mycobacterium tuberculosis infection, and in patients it is a biomarker of active disease. Whether the enzyme plays a protective versus pathogenic role in tuberculosis has been the subject of debate. To address this controversy, we administered tin protoporphyrin IX (SnPPIX), a well-characterized HO-1 enzymatic inhibitor, to mice during acute M. tuberculosis infection. These SnPPIX-treated animals displayed a substantial reduction in pulmonary bacterial loads comparable to that achieved following conventional antibiotic therapy. Moreover, when administered adjunctively with antimycobacterial drugs, the HO-1 inhibitor markedly enhanced and accelerated pathogen clearance. Interestingly, both the pulmonary induction of HO-1 expression and the efficacy of SnPPIX treatment in reducing bacterial burden were dependent on the presence of host T lymphocytes. Although M. tuberculosis expresses its own heme-degrading enzyme, SnPPIX failed to inhibit its enzymatic activity or significantly restrict bacterial growth in liquid culture. Together, the above findings reveal mammalian HO-1 as a potential target for host-directed monotherapy and adjunctive therapy of tuberculosis and identify the immune response as a critical regulator of this function.

  18. IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production

    PubMed Central

    Jamal Uddin, Md; Joe, Yeonsoo; Kim, Seul-Ki; Oh Jeong, Sun; Ryter, Stefan W; Pae, Hyun-Ock; Chung, Hun Taeg

    2016-01-01

    The immunoresponsive gene 1 (IRG1) protein has crucial functions in embryonic implantation and neurodegeneration. IRG1 promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species (ROS). The cytoprotective protein heme oxygenase-1 (HO-1), which generates endogenous carbon monoxide (CO), is expressed in the lung during Lipopolysaccharide (LPS) tolerance and cross tolerance. However, the detailed molecular mechanisms and functional links between IRG1 and HO-1 in the innate immune system remain unknown. In the present study, we found that the CO releasing molecule-2 (CORM-2) and chemical inducers of HO-1 increased IRG1 expression in a time- and dose-dependent fashion in RAW264.7 cells. Furthermore, inhibition of HO-1 activity by zinc protoporphyrin IX (ZnPP) and HO-1 siRNA significantly reduced expression of IRG1 under these conditions. In addition, treatment with CO and HO-1 induction significantly increased A20 expression, which was reversed by ZnPP and HO-1 siRNA. LPS-stimulated TNF-α was significantly decreased, whereas IRG1 and A20 were increased by CORM-2 application and HO-1 induction, which in turn were abrogated by ZnPP. Interestingly, siRNA against IRG1 and A20 reversed the effects of CO and HO-1 on LPS-stimulated TNF-α production. Additionally, CO and HO-1 inducers significantly increased IRG1 and A20 expression and downregulated TNF-α production in a LPS-stimulated sepsis mice model. Furthermore, the effects of CO and HO-1 on TNF-α production were significantly reversed when ZnPP was administered. In conclusion, CO and HO-1 induction regulates IRG1 and A20 expression, leading to inhibition of inflammation in vitro and in an in vivo mice model. PMID:25640654

  19. IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production.

    PubMed

    Jamal Uddin, Md; Joe, Yeonsoo; Kim, Seul-Ki; Oh Jeong, Sun; Ryter, Stefan W; Pae, Hyun-Ock; Chung, Hun Taeg

    2016-03-01

    The immunoresponsive gene 1 (IRG1) protein has crucial functions in embryonic implantation and neurodegeneration. IRG1 promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species (ROS). The cytoprotective protein heme oxygenase-1 (HO-1), which generates endogenous carbon monoxide (CO), is expressed in the lung during Lipopolysaccharide (LPS) tolerance and cross tolerance. However, the detailed molecular mechanisms and functional links between IRG1 and HO-1 in the innate immune system remain unknown. In the present study, we found that the CO releasing molecule-2 (CORM-2) and chemical inducers of HO-1 increased IRG1 expression in a time- and dose-dependent fashion in RAW264.7 cells. Furthermore, inhibition of HO-1 activity by zinc protoporphyrin IX (ZnPP) and HO-1 siRNA significantly reduced expression of IRG1 under these conditions. In addition, treatment with CO and HO-1 induction significantly increased A20 expression, which was reversed by ZnPP and HO-1 siRNA. LPS-stimulated TNF-α was significantly decreased, whereas IRG1 and A20 were increased by CORM-2 application and HO-1 induction, which in turn were abrogated by ZnPP. Interestingly, siRNA against IRG1 and A20 reversed the effects of CO and HO-1 on LPS-stimulated TNF-α production. Additionally, CO and HO-1 inducers significantly increased IRG1 and A20 expression and downregulated TNF-α production in a LPS-stimulated sepsis mice model. Furthermore, the effects of CO and HO-1 on TNF-α production were significantly reversed when ZnPP was administered. In conclusion, CO and HO-1 induction regulates IRG1 and A20 expression, leading to inhibition of inflammation in vitro and in an in vivo mice model.

  20. NMDAR inhibition-independent antidepressant actions of ketamine metabolites

    PubMed Central

    Zanos, Panos; Moaddel, Ruin; Morris, Patrick J.; Georgiou, Polymnia; Fischell, Jonathan; Elmer, Greg I.; Alkondon, Manickavasagom; Yuan, Peixiong; Pribut, Heather J.; Singh, Nagendra S.; Dossou, Katina S.S.; Fang, Yuhong; Huang, Xi-Ping; Mayo, Cheryl L.; Wainer, Irving W.; Albuquerque, Edson X.; Thompson, Scott M.; Thomas, Craig J.; Zarate, Carlos A.; Gould, Todd D.

    2016-01-01

    Major depressive disorder afflicts ~16 percent of the world population at some point in their lives. Despite a number of available monoaminergic-based antidepressants, most patients require many weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist, (R,S)-ketamine (ketamine), exerts rapid and sustained antidepressant effects following a single dose in depressed patients. Here we show that the metabolism of ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant actions in vivo. Notably, we demonstrate that these antidepressant actions are NMDAR inhibition-independent but they involve early and sustained α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activation. We also establish that (2R,6R)-HNK lacks ketamine-related side-effects. Our results indicate a novel mechanism underlying ketamine’s unique antidepressant properties, which involves the required activity of a distinct metabolite and is independent of NMDAR inhibition. These findings have relevance for the development of next generation, rapid-acting antidepressants. PMID:27144355

  1. Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-kappaB RelA phosphorylation at serine 276.

    PubMed

    Seldon, Mark P; Silva, Gabriela; Pejanovic, Nadja; Larsen, Rasmus; Gregoire, Isabel Pombo; Filipe, Josina; Anrather, Josef; Soares, Miguel P

    2007-12-01

    Heme oxygenase-1 (HO-1; encoded by the Hmox1 gene) catalyzes the degradation of free heme into biliverdin, via a reaction that releases iron (Fe) and carbon monoxide. We report that HO-1 down-regulates the proinflammatory phenotype associated with endothelial cell (EC) activation by reducing intracellular nonprotein-bound Fe (labile Fe). EC isolated from Hmox1(-/-) mice have higher levels of intracellular labile Fe and reactive oxygen species (ROS) as compared with EC isolated from Hmox1(+/+) mice. Basal and TNF-induced expression of VCAM-1, ICAM-1, and E-selectin were increased in Hmox1(-/-) vs Hmox1(+/+) EC, an effect reversed by Fe chelation using deferoxamine mesylate (DFO). Fe chelation inhibits TNF-driven transcription of Vcam-1, Icam-1, and E-selectin, as assessed using luciferase reporter assays. This effect is associated with inhibition of the transcription factor NF-kappaB via a mechanism that is not associated with the inhibition of IkappaBalpha phosphorylation/degradation or NF-kappaB (i.e., RelA) nuclear translocation, although it affects very modestly NF-kappaB binding to DNA kappaB consensus sequences in the Vcam-1 and E-selectin promoters. HO-1 inhibits NF-kappaB (i.e., RelA) phosphorylation at Ser(276), a phosphoacceptor that is critical to sustain TNF-driven NF-kappaB activity in EC. This effect was mimicked by Fe chelation as well as by antioxidants (N-acetylcysteine). In conclusion, we demonstrate a novel mechanism via which HO-1 down-modulates the proinflammatory phenotype of activated EC, i.e., the inhibition of RelA phosphorylation at Ser(276).

  2. Modulation by stereoselective inhibition of cyclo-oxygenase of electromechanical coupling in the guinea-pig isolated renal pelvis.

    PubMed Central

    Santicioli, P; Carganico, G; Meini, S; Giuliani, S; Giachetti, A; Maggi, C A

    1995-01-01

    1. The effects of the (S)- and (R)-enantiomers of the cyclo-oxygenase (COX) inhibitor, ketoprofen, have been investigated on the spontaneous activity of the guinea-pig isolated renal pelvis and on electrical field stimulation-(EFS) induced contractions of the guinea-pig ureter in comparison with the effects of the achiral COX inhibitor, indomethacin. 2. (S)-ketoprofen (0.1-100 microM) produced a concentration- and time-dependent inhibition of the spontaneous myogenic activity of the renal pelvis. The maximal inhibitory effect (% inhibition of motility index) averaged 29, 42, 47 and 56% inhibition of control values at 0.1, 1, 10 and 100 microM. The (R)-enantiomer was ineffective up to 10 microM. 3. Indomethacin (0.1-100 microM) likewise produced a concentration- and time-dependent inhibition of spontaneous motility of the isolated renal pelvis: its maximal inhibitory effect was larger than that produced by (S)-ketoprofen and averaged 21, 40, 69 and 95% inhibition of motility index at 0.1, 1, 10 and 100 microM respectively. In the presence of a maximally effective (100 microM) concentration of (S)-ketoprofen, 100 microM indomethacin produced > 90% inhibition of residual motility. 4. In the guinea-pig isolated ureter, phasic contractions were induced by EFS (5 ms pulse width, 60 V): (S)-ketoprofen (100-500 microM) had no effect on the EFS-evoked contractions. Indomethacin (100-500 microM) produced a concentration-dependent inhibition and/or suppression of the EFS-evoked contractions. When contraction of the ureter was evoked by 80 mM KCl, indomethacin produced about 30 and 80% inhibition at 100 and 300 microM, respectively, while (S)-ketoprofen (300 microM) was ineffective. 5. The effect of (S)-ketoprofen or indomethacin (10 microM each) on the propagation of myogenic impulses along the ureter was determined by use of a three chamber organ bath. The renal end of the ureter was electrically stimulated while recording the mechanical activity of the renal and bladder

  3. Sesamin increases heme oxygenase-1 protein in RAW 264.7 macrophages through inhibiting its ubiquitination process.

    PubMed

    Fukunaga, Mizuki; Ohnishi, Masatoshi; Shiratsuchi, Ayano; Kawakami, Takuya; Takahashi, Madoka; Motomura, Misato; Egusa, Kyohei; Urasaki, Tomoka; Inoue, Atsuko

    2014-10-15

    Sesamin is a major component in lignans of sesame seed oil, known to possess potent anti-oxidative capacity. In this study, the variation of heme oxygenase (HO)-1, a kind of anti-oxidative enzyme, by sesamin in murine macrophage cell line RAW 264.7 cells was investigated. Lipopolysaccharide (LPS; 10μg/ml) exposure tended to increase HO-1 protein expression. Co-treatment with 100μM sesamin for 12h up-regulated the HO-1 protein level increased by LPS; however, HO-1 mRNA was unaffected. Sesamin delayed the reversal, by the protein synthesis inhibitor cycloheximide (1μM), of the LPS-induced increase of HO-1 protein level. Meanwhile, sesamin suppressed LPS-induced expression of inducible nitric oxide (NO) synthase (iNOS) protein and associated NO release. LPS-induced increase of iNOS protein expression was also reversed by cycloheximide, which was not affected by sesamin, unlike HO-1. To clarify the mechanisms that underlie the up-regulation of HO-1 protein level by sesamin, the human embryonic kidney (HEK) 293T cell line transfected with Flag-tagged HO-1 was used. A proteasome inhibitor, MG-132 (10μM), stabilized HO-1 protein in HEK 293T cells. Co-treatment with sesamin decreased ubiquitinated HO-1 protein accumulation by MG-132. However, sesamin did not affect the proteasome activity. These findings suggest that sesamin disturbs the degradation of HO-1 protein through inhibiting its ubiquitination, resulting in HO-1 protein up-regulation.

  4. Globular adiponectin inhibits ethanol-induced apoptosis in HepG2 cells through heme oxygenase-1 induction.

    PubMed

    Nepal, Saroj; Kim, Mi Jin; Subedi, Amit; Lee, Eung-Seok; Yong, Chul Soon; Kim, Jung-Ae; Kang, WonKu; Kwak, Mi-Kyung; Arya, Dharamvir Singh; Park, Pil-Hoon

    2012-10-01

    Hepatocellular apoptosis is an essential pathological feature of alcoholic liver disease. Adiponectin, an adipokine predominantly secreted from adipose tissue, has been shown to play beneficial roles in alcoholic liver disease against various inflammatory and pro-apoptotic molecules. However, the effects of adiponectin on ethanol-induced apoptosis in liver cells are largely unknown. Herein, we investigated the role of globular adiponectin (gAcrp) in the prevention of ethanol-induced apoptosis and further tried to decipher the potential mechanisms involved. In the present study, we demonstrated that gAcrp significantly inhibits both ethanol-induced increase in Fas ligand expression and activation of caspase-3 in human hepatoma cell lines (HepG2 cells), suggesting that gAcrp plays a protective role against ethanol-induced apoptosis in liver cells. This protective effect of gAcrp was mediated through adiponectin receptor R1 (adipoR1). Further, globular adiponectin treatment caused induction of heme oxygenase-1 (HO-1) through, at least in part, nuclear factor (erythroid-derived 2)-like 2, (Nrf2) signaling. Treatment with SnPP, a pharmacological inhibitor of HO-1, and knockdown of HO-1 with small interfering RNA (siRNA) restored caspase-3 activity suppressed by gAcrp, indicating a critical role of HO-1 in mediating the protective role of gAcrp in ethanol-induced apoptosis in liver cells. In addition, carbon monoxide, a byproduct obtained from the catabolism of free heme was found to contribute to the anti-apoptotic effect of adiponectin. In conclusion, these data demonstrated that globular adiponectin prevents ethanol-induced apoptosis in HepG2 cells via HO-1 induction and revealed a novel biological response of globular adiponectin in the protection of liver injury from alcohol consumption.

  5. Combined inhibition of Hsp90 and heme oxygenase-1 induces apoptosis and endoplasmic reticulum stress in melanoma.

    PubMed

    Barbagallo, Ignazio; Parenti, Rosalba; Zappalà, Agata; Vanella, Luca; Tibullo, Daniele; Pepe, Francesco; Onni, Toniangelo; Li Volti, Giovanni

    2015-10-01

    Heat shock proteins are ubiquitous molecular chaperones involved in post-translational folding, stability, activation and maturation of many proteins that are essential mediators of signal transduction and cell cycle progression. Heat shock protein 90 (Hsp90) has recently emerged as an attractive therapeutic target in cancer treatment since it may act as a key regulator of various oncogene products and cell-signaling molecules. Heme oxygenase-1 (HO-1; also known as Hsp32) is an inducible enzyme participating in heme degradation and involved in oxidative stress resistance. Recent studies indicate that HO-1 activation may play a role in tumor development and progression. In the present study we investigated the chemotherapic effects of combining an Hsp90 inhibitor (NMS E973) and an HO-1 inhibitor (SnMP) on A375 melanoma cells. NMS E973 treatment was able to reduce cell viability and induce endoplasmic reticulum (ER) stress (i.e. Ire1α, ERO1, PDI, BIP and CHOP). Interestingly, no significant effect was observed in reactive oxygen species (ROS) formation. Finally, NMS E973 treatment resulted in a significant HO-1 overexpression, which in turn serves as a possible chemoresistance molecular mechanism. Interestingly, the combination of NMS E973 and SnMP produced an increase of ROS and reduced cell viability compared to NMS E973 treatment alone. The inhibitors combination exhibited higher ER stress, apoptosis as evidenced by bifunctional apoptosis regulator (BFAR) mRNA expression and lower phosphorylation of Akt when compared to NMS E973 alone. In conclusion, these data suggest that HO-1 inhibition potentiates NMS E973 toxicity and may be exploited as a strategy for melanoma treatment.

  6. Suboptimal inhibition of platelet cyclo-oxygenase-1 (COX-1) by aspirin in lupus erythematosus: Association with metabolic syndrome

    PubMed Central

    Kawai, Vivian K.; Avalos, Ingrid; Oeser, Annette; Oates, John A.; Milne, Ginger L.; Solus, Joseph F.; Chung, Cecilia P.; Stein, C. Michael

    2013-01-01

    Objectives Low-dose aspirin prevents platelet aggregation by suppressing thromboxane A2 synthesis. However, in some individuals thromboxane A2 suppression by aspirin is impaired, indicating suboptimal inhibition of platelet COX-1 by aspirin. Because patients with systemic lupus erythematosus (SLE) have increased risk of thrombotic events, many receive aspirin; however, the efficacy of aspirin in SLE has not been determined. We examined the hypothesis that aspirin response is impaired in SLE. Methods We assessed the effect of aspirin by measuring concentrations of the stable metabolite of thromboxane A2 - serum thromboxane B2 (sTxB2), before and after treatment with 81 mg daily aspirin for 7 days in 34 patients with SLE and 36 control subjects. The inability to suppress sTxB2 synthesis to <10 ng/ml represents suboptimal inhibition of platelet COX-1 by aspirin. Results Aspirin almost completely suppressed sTXB2 in control subjects to 1.5, [0.8–2.7] ng/ml (median and interquartile ranges [IQR]), but had less effect in patients with SLE (3.1, [2.2–5.3] ng/ml) (P=0.002). A suboptimal effect of aspirin was present in 15% (5/34) of the patients with SLE but not in control subjects (0/36) (P=0.023). Incomplete responders were more likely to have metabolic syndrome (P=0.048), obesity (P=0.048) and higher concentrations of CRP (P=0.018). Conclusion The pharmacologic effect of aspirin is suboptimal in 15% of patients with SLE but in none of the control subjects, and the suboptimal response was associated with metabolic syndrome, obesity, and higher CRP concentrations. PMID:24022862

  7. Cyproheptadine metabolites inhibit proinsulin and insulin biosynthesis and insulin release in isolated rat pancreatic islets

    SciTech Connect

    Chow, S.A.; Falany, J.L.; Fischer, L.J. )

    1989-06-01

    The contribution of drug metabolites to cyproheptadine (CPH)-induced alterations in endocrine pancreatic beta-cells was investigated by examining the inhibitory activity of CPH and its biotransformation products, desmethylcyproheptadine (DMCPH), CPH-epoxide and DMCPH-epoxide, on hormone biosynthesis and secretion in pancreatic islets isolated from 50-day-old rats. Measurement of (pro)insulin (proinsulin and insulin) synthesis using incorporation of 3H-leucine showed that DMCPH-epoxide, DMCPH and CPH-epoxide were 22, 10 and 4 times, respectively, more potent than CPH in inhibiting hormone synthesis. The biosynthesis of (pro)insulin was also inhibited by CPH and DMCPH-epoxide in islets isolated from 21-day-old rat fetuses. The inhibitory action of CPH and its metabolites was apparently specific for (pro)insulin, and the synthesis of other islet proteins was not affected. Other experiments showed the metabolites of CPH were active in inhibiting glucose-stimulated insulin secretion but were less potent than the parent drug in producing this effect. CPH and its structurally related metabolites, therefore, have differential inhibitory activities on insulin synthesis and release. The observation that CPH metabolites have higher potency than CPH to inhibit (pro)insulin synthesis, when considered with published reports on the disposition of the drug in rats, indicate that CPH metabolites, particularly DMCPH-epoxide, are primarily responsible for the insulin depletion observed when the parent compound is given to fetal and adult animals.

  8. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    SciTech Connect

    Zhang, Wenjie; Zhang, Xiaomei; Lu, Hong; Matsukura, Makoto; Zhao, Jien; Shinohara, Makoto

    2013-05-10

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.

  9. Contribution of metabolites to P450 inhibition-based drug-drug interactions: scholarship from the drug metabolism leadership group of the innovation and quality consortium metabolite group.

    PubMed

    Yu, Hongbin; Balani, Suresh K; Chen, Weichao; Cui, Donghui; He, Ling; Humphreys, W Griffith; Mao, Jialin; Lai, W George; Lee, Anthony J; Lim, Heng-Keang; MacLauchlin, Christopher; Prakash, Chandra; Surapaneni, Sekhar; Tse, Susanna; Upthagrove, Alana; Walsky, Robert L; Wen, Bo; Zeng, Zhaopie

    2015-04-01

    Recent European Medicines Agency (final) and US Food and Drug Administration (draft) drug interaction guidances proposed that human circulating metabolites should be investigated in vitro for their drug-drug interaction (DDI) potential if present at ≥ 25% of the parent area under the time-concentration curve (AUC) (US Food and Drug Administration) or ≥ 25% of the parent and ≥ 10% of the total drug-related AUC (European Medicines Agency). To examine the application of these regulatory recommendations, a group of scientists, representing 18 pharmaceutical companies of the Drug Metabolism Leadership Group of the Innovation and Quality Consortium, conducted a scholarship to assess the risk of contributions by metabolites to cytochrome P450 (P450) inhibition-based DDIs. The group assessed the risk of having a metabolite as the sole contributor to DDI based on literature data and analysis of the 137 most frequently prescribed drugs, defined structural alerts associated with P450 inhibition/inactivation by metabolites, and analyzed current approaches to trigger in vitro DDI studies for metabolites. The group concluded that the risk of P450 inhibition caused by a metabolite alone is low. Only metabolites from 5 of 137 drugs were likely the sole contributor to the in vivo P450 inhibition-based DDIs. Two recommendations were provided when assessing the need to conduct in vitro P450 inhibition studies for metabolites: 1) consider structural alerts that suggest P450 inhibition potential, and 2) use multiple approaches (e.g., a metabolite cut-off value of 100% of the parent AUC and the R(met) strategy) to predict P450 inhibition-based DDIs caused by metabolites in the clinic.

  10. Metabolites inhibiting germination of Orobanche ramosa seeds produced by Myrothecium verrucaria and Fusarium compactum.

    PubMed

    Andolfi, Anna; Boari, Angela; Evidente, Antonio; Vurro, Maurizio

    2005-03-09

    Myrothecium verrucaria and Fusarium compactum were isolated from diseased Orobanche ramosa plants collected in southern Italy to find potential biocontrol agents of this parasitic weed. Both fungi grown in liquid culture produced metabolites that inhibited the germination of O. ramosa seeds at 1-10 muM. Eight metabolites were isolated from M. verrucaria culture extracts. The main metabolite was identified as verrucarin E, a disubstituted pyrrole not belonging to the trichothecene group. Seven compounds were identified by spectroscopic methods as macrocyclic trichothecenes, namely, verrucarins A, B, M, and L acetate, roridin A, isotrichoverrin B, and trichoverrol B. The main metabolite produced by F. compactum was neosoloaniol monoacetate, a trichothecene. All the trichothecenes proved to be potent inhibitors of O. ramosa seed germination and possess strong zootoxic activity when assayed on Artemia salina brine shrimps. Verrucarin E is inactive on both seed germination and zootoxic assay.

  11. Methylselenol, a selenium metabolite, inhibits colon cancer cell growth in vitro and in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylselenol is hypothesized to be a critical selenium (Se) metabolite for anticancer activity. Submicromolar methylselenol exposure inhibited cell growth and led to an increase in the G1 and G2 fractions with a concomitant drop in the S-phase, and an induction of apoptosis in cancerous colon HCT11...

  12. The Effect of Oxidation on Berberine-Mediated CYP1 Inhibition: Oxidation Behavior and Metabolite-Mediated Inhibition.

    PubMed

    Lo, Sheng-Nan; Shen, Chien-Chang; Chang, Chia-Yu; Tsai, Keng-Chang; Huang, Chiung-Chiao; Wu, Tian-Shung; Ueng, Yune-Fang

    2015-07-01

    The protoberberine alkaloid berberine carries methylenedioxy moiety and exerts a variety of pharmacological effects, such as anti-inflammation and lipid-lowering effects. Berberine causes potent CYP1B1 inhibition, whereas CYP1A2 shows resistance to the inhibition. To reveal the influence of oxidative metabolism on CYP1 inhibition by berberine, berberine oxidation and the metabolite-mediated inhibition were determined. After NADPH-fortified preincubation of berberine with P450, the inhibition of CYP1A1 and CYP1B1 variants (CYP1B1.1, CYP1B1.3, and CYP1B1.4) by berberine was not enhanced, and CYP1A2 remained resistant. Demethyleneberberine was identified as the most abundant metabolite of CYP1A1- and CYP1B1-catalyzed oxidations, and thalifendine was generated at a relatively low rate. CYP1A1-catalyzed berberine oxidation had the highest maximal velocity (V max) and exhibited positive cooperativity, suggesting the assistance of substrate binding when the first substrate was present. In contrast, the demethylenation by CYP1B1 showed the property of substrate inhibition. CYP1B1-catalyzed berberine oxidation had low K m values, but it had V max values less than 8% of those of CYP1A1. The dissociation constants generated from the binding spectrum and fluorescence quenching suggested that the low K m values of CYP1B1-catalyzed oxidation might include more than the rate constants describing berberine binding. The natural protoberberine/berberine fmetabolites with methylenedioxy ring-opening (palmatine, jatrorrhizine, and demethyleneberberine) and the demethylation (thalifendine and berberrubine) caused weak CYP1 inhibition. These results demonstrated that berberine was not efficiently oxidized by CYP1B1, and metabolism-dependent irreversible inactivation was minimal. Metabolites of berberine caused a relatively weak inhibition of CYP1.

  13. Transient elevation of serum bilirubin (a heme oxygenase-1 metabolite) level in hemorrhagic stroke: bilirubin is a marker of oxidant stress.

    PubMed

    Dohi, K; Mochizuki, Y; Satoh, K; Jimbo, H; Hayashi, M; Toyoda, I; Ikeda, Y; Abe, T; Aruga, T

    2003-01-01

    Bilirubin (Bil) is the end product of heme catabolism. The production of Bil reflects heme oxygenase-1 expression in response to oxidative stress in various diseases. To assess the role of Bil as a marker of oxidative stress in cases of brain damage, we measured serum Bil concentrations in patients with hemorrhagic stroke. Serum levels of total Bil were measured in 20 subarachnoid hemorrhage patients with symptomatic vasospasms and in 23 patients with intracerebral hemorrhage; concentrations were measured every day for 14 consecutive days. Serum Bil levels were significantly elevated in the early phases in both groups. Moreover, transient elevation was observed on the day prior to the observation of clinical manifestations of symptomatic vasospasm after SAH. Bil, known to be a powerful antioxidant, was induced after hemorrhagic stroke, reflecting the intensity of oxidative stress. Plasma Bil concentrations might serve as a useful marker of oxidative stress in hemorrhagic stroke patients.

  14. Inhibition of neointimal formation by trans-resveratrol: role of phosphatidyl inositol 3-kinase-dependent Nrf2 activation in heme oxygenase-1 induction.

    PubMed

    Kim, Jung Woo; Lim, Sung Chul; Lee, Moo Yeol; Lee, Jeong Woon; Oh, Won Keun; Kim, Sang Kyum; Kang, Keon Wook

    2010-10-01

    Neointima, defined as abnormal growth of the intimal layer of blood vessels, is believed to be a critical event in the development of vascular occlusive disease. Although resveratrol's inhibitory effects on proliferation and migration of vascular smooth muscle cells has been reported, its activity on neointimal formation is still unclear. Oral administration of trans-resveratrol significantly suppressed intimal hyperplasia in a wire-injured femoral artery mouse model. In cultured vascular smooth muscle cells, trans-resveratrol inhibited platelet-derived growth factor-stimulated DNA synthesis and cell proliferation with down-regulation of cyclin D and pRB. Moreover, platelet-derived growth factor-induced production of reactive oxygen species was inhibited by trans-resveratrol and the compound induced heme oxygenase-1 (HO-1). The anti-proliferative activity of trans-resveratrol was reversed by an HO-1 inhibitor, ZnPPIX. Subcellular fractionation and reporter gene analyses revealed that trans-resveratrol increased the level of nuclear Nrf2 and antioxidant response element reporter activity, and that these were essential for the induction of HO-1. Trans-resveratrol also enhanced the activities of phosphatidyl inositol 3-kinase and extracellular signal regulated kinase, and phosphatidyl inositol 3-kinase was required for Nrf2/antioxidant response element-dependent HO-1 induction. These data have significant implications for the elucidation of the pharmacological mechanism by which trans-resveratrol prevents vascular occlusive diseases.

  15. NMDAR inhibition-independent antidepressant actions of ketamine metabolites.

    PubMed

    Zanos, Panos; Moaddel, Ruin; Morris, Patrick J; Georgiou, Polymnia; Fischell, Jonathan; Elmer, Greg I; Alkondon, Manickavasagom; Yuan, Peixiong; Pribut, Heather J; Singh, Nagendra S; Dossou, Katina S S; Fang, Yuhong; Huang, Xi-Ping; Mayo, Cheryl L; Wainer, Irving W; Albuquerque, Edson X; Thompson, Scott M; Thomas, Craig J; Zarate, Carlos A; Gould, Todd D

    2016-05-26

    Major depressive disorder affects around 16 per cent of the world population at some point in their lives. Despite the availability of numerous monoaminergic-based antidepressants, most patients require several weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive, glutamatergic NMDAR (N-methyl-d-aspartate receptor) antagonist (R,S)-ketamine exerts rapid and sustained antidepressant effects after a single dose in patients with depression, but its use is associated with undesirable side effects. Here we show that the metabolism of (R,S)-ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant-related actions in mice. These antidepressant actions are independent of NMDAR inhibition but involve early and sustained activation of AMPARs (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors). We also establish that (2R,6R)-HNK lacks ketamine-related side effects. Our data implicate a novel mechanism underlying the antidepressant properties of (R,S)-ketamine and have relevance for the development of next-generation, rapid-acting antidepressants.

  16. Differential inhibition of CYP1-catalyzed regioselective hydroxylation of estradiol by berberine and its oxidative metabolites.

    PubMed

    Chang, Yu-Ping; Huang, Chiung-Chiao; Shen, Chien-Chang; Tsai, Keng-Chang; Ueng, Yune-Fang

    2015-10-01

    Berberine is a pharmacologically active alkaloid present in widely used medicinal plants, such as Coptis chinensis (Huang-Lian). The hormone estradiol is oxidized by cytochrome P450 (CYP) 1B1 to primarily form the genotoxic metabolite 4-hydroxyestradiol, whereas CYP1A1 and CYP1A2 predominantly generate 2-hydroxyestradiol. To illustrate the effect of berberine on the regioselective oxidation of estradiol, effects of berberine and its metabolites on CYP1 activities were studied. Among CYP1s, CYP1B1.1, 1.3 (L432V), and 1.4 (N453S)-catalyzed 4-hydroxylation were preferentially inhibited by berberine. Differing from the competitive inhibition of CYP1B1.1 and 1.3, N453S substitution in CYP1B1 allowed a non-competitive or mixed-type pattern. An N228T in CYP1B1 highly decreased its activity and preference to 4-hydroxylation. A reverse mutation of T223N in CYP1A2 retained its 2-hydroxylation preference, but enhanced its inhibition susceptibility to berberine. Compared with berberine, metabolites demethyleneberberine and thalifendine caused weaker inhibition of CYP1A1 and CYP1B1 activities. Unexpectedly, thalifendine was more potent than berberine in the inhibition of CYP1A2, in which case an enhanced interaction through polar hydrogen-π bond was predicted from the docking analysis. These results demonstrate that berberine preferentially inhibits the estradiol 4-hydroxylation activity of CYP1B1 variants, suggesting that 4-hydroxyestradiol-mediated toxicity might be reduced by berberine, especially in tissues/tumors highly expressing CYP1B1.

  17. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Khanal, Tilak; Choi, Jae Ho; Kim, Dong Hee; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-09-01

    Resistance to therapy is the major obstacle to more effective cancer treatment. Heme oxygenase-1 (HO-1) is often highly up-regulated in tumor tissues, and its expression is further increased in response to therapies. It has been suggested that inhibition of HO-1 expression is a potential therapeutic approach to sensitize tumors to chemotherapy and radiotherapy. In this study, we tested the hypothesis that the anti-tumor effects of metformin are mediated by suppression of HO-1 expression in cancer cells. Our results indicate that metformin strongly suppresses HO-1 mRNA and protein expression in human hepatic carcinoma HepG2, cervical cancer HeLa, and non-small-cell lung cancer A549 cells. Metformin also markedly reduced Nrf2 mRNA and protein levels in whole cell lysates and suppressed tert-butylhydroquinone (tBHQ)-induced Nrf2 protein stability and antioxidant response element (ARE)-luciferase activity in HepG2 cells. We also found that metformin regulation of Nrf2 expression is mediated by a Keap1-independent mechanism and that metformin significantly attenuated Raf-ERK signaling to suppress Nrf2 expression in cancer cells. Inhibition of Raf-ERK signaling by PD98059 decreased Nrf2 mRNA expression in HepG2 cells, confirming that the inhibition of Nrf2 expression is mediated by an attenuation of Raf-ERK signaling in cancer cells. The inactivation of AMPK by siRNA, DN-AMPK or the pharmacological AMPK inhibitor compound C, revealed that metformin reduced HO-1 expression in an AMPK-independent manner. These results highlight the Raf-ERK-Nrf2 axis as a new molecular target in anticancer therapy in response to metformin treatment. - Highlights: • Metformin inhibits HO-1 expression in cancer cells. • Metformin attenuates Raf-ERK-Nrf2 signaling. • Suppression of HO-1 by metformin is independent of AMPK. • HO-1 inhibition contributes to anti-proliferative effects of metformin.

  18. Alpinia katsumadai H(AYATA) seed extract inhibit LPS-induced inflammation by induction of heme oxygenase-1 in RAW264.7 cells.

    PubMed

    Lee, Mee-Young; Seo, Chang-Seob; Lee, Jin-Ah; Shin, In-Sik; Kim, Su-Jeong; Ha, HeyKyung; Shin, Hyeun-Kyoo

    2012-04-01

    In the present study, we investigated the effects of Alpinia katsumadai H(AYATA) (Zingiberaceae) seed ethanolic extract (AKEE) and its three components on the production of inflammatory mediators and some potential underlying mechanisms in lipopolysaccharide (LPS)-induced inflammation RAW264.7 cells. The whole formula, AKEE, and three major component compounds were then evaluated for their effects on inflammation-related parameters using LPS-induced RAW264.7 cells. Production of namely nitric oxide (NO) and cytokine levels were measured by the Griess reagent and ELISA, respectively. To investigate the underlying mechanisms of anti-inflammatory activities of AKEE, protein expression of nitric oxide synthase (inducible nitric oxide synthase, iNOS), heme oxygenase-1 (HO-1), and nuclear factor-kappa B (NF-κB) were evaluated by western blot analysis. AKEE and the major group of compounds in AKEE (alpinetin, cardamonin, and pinocembrin) complement exert anti-inflammatory effects for NO and PGE(2) production. In addition, AKEE treatment significantly inhibited the LPS-induced production of interleukin-6 and tumor necrosis factor (TNF)-α, as well as the expression of iNOS. AKEE also induced HO-1 expression in RAW264.7 cells and inhibited the nuclear translocation of NF-κB by preventing degradation of the inhibitor kappa B-alpha. We also demonstrated that the effects of AKEE on TNF-α production were partially reversed by the HO-1 inhibitor tin protoporphyrin. These results indicate that AKEE and its major component may have anti-inflammatory activity via induction of HO-1 expression was partly responsible for the anti-inflammatory effects.

  19. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide.

    PubMed

    Oh, Gi-Su; Pae, Hyun-Ock; Lee, Bok-Soo; Kim, Byeong-Nam; Kim, Jong-Moon; Kim, Hyung-Ryong; Jeon, Seon Bok; Jeon, Woo Kyu; Chae, Han-Jung; Chung, Hun-Taeg

    2006-07-01

    Hydrogen sulfide (H(2)S), a regulatory gaseous molecule that is endogenously synthesized by cystathionine gamma-lyase (CSE) and/or cystathionine beta-synthase (CBS) from L-cysteine (L-Cys) metabolism, is a putative vasodilator, and its role in nitric oxide (NO) production is unexplored. Here, we show that at noncytotoxic concentrations, H(2)S was able to inhibit NO production and inducible NO synthase (iNOS) expression via heme oxygenase (HO-1) expression in RAW264.7 macrophages stimulated with lipopolysaccharide (LPS). Both H(2)S solution prepared by bubbling pure H(2)S gas and NaSH, a H(2)S donor, dose dependently induced HO-1 expression through the activation of the extracellular signal-regulated kinase (ERK). Pretreatment with H(2)S or NaHS significantly inhibited LPS-induced iNOS expression and NO production. Moreover, NO production in LPS-stimulated macrophages that are expressing CSE mRNA was significantly reduced by the addition of L-Cys, a substrate for H(2)S, but enhanced by the selective CSE inhibitor beta-cyano-L-alanine but not by the CBS inhibitor aminooxyacetic acid. While either blockage of HO activity by the HO inhibitor, tin protoporphyrin IX, or down-regulation of HO-1 expression by HO-1 small interfering RNA (siRNA) reversed the inhibitory effects of H(2)S on iNOS expression and NO production, HO-1 overexpression produced the same inhibitory effects of H(2)S. In addition, LPS-induced nuclear factor (NF)-kappaB activation was diminished in RAW264.7 macrophages preincubated with H(2)S. Interestingly, the inhibitory effect of H(2)S on NF-kappaB activation was reversed by the transient transfection with HO-1 siRNA, but was mimicked by either HO-1 gene transfection or treatment with carbon monoxide (CO), an end product of HO-1. CO treatment also inhibited LPS-induced NO production and iNOS expression via its inactivation of NF-kappaB. Collectively, our results suggest that H(2)S can inhibit NO production and NF-kappaB activation in LPS

  20. Hypouricaemic action of mangiferin results from metabolite norathyriol via inhibiting xanthine oxidase activity.

    PubMed

    Niu, Yanfen; Liu, Jia; Liu, Hai-Yang; Gao, Li-Hui; Feng, Guo-Hua; Liu, Xu; Li, Ling

    2016-09-01

    Context Mangiferin has been reported to possess a potential hypouricaemic effect. However, the pharmacokinetic studies in rats showed that its oral bioavailability was only 1.2%, suggesting that mangiferin metabolites might exert the action. Objective The hypouricaemic effect and the xanthine oxidase inhibition of mangiferin and norathyriol, a mangiferin metabolite, were investigated. Inhibition of norathyriol analogues (compounds 3-9) toward xanthine oxidase was also evaluated. Materials and methods For a dose-dependent study, mangiferin (1.5-6.0 mg/kg) and norathyriol (0.92-3.7 mg/kg) were administered intragastrically to mice twice daily for five times. For a time-course study, mice received mangiferin and norathyriol both at a single dose of 7.1 μmol/kg. In vitro, inhibition of test compounds (2.4-2.4 mM) against xanthine oxidase activity was evaluated by the spectrophotometrical method. The inhibition type was identified from Lineweaver-Burk plots. Results Norathyriol (0.92, 1.85 and 3.7 mg/kg) dose dependently decreased the serum urate levels by 27.0, 33.6 and 37.4%, respectively. The action was more potent than that of mangiferin at the low dose, but was equivalent at the higher doses. Additionally, the hypouricaemic action of them exhibited a time dependence. In vitro, norathyriol markedly inhibited the xanthine oxidase activities, with the IC50 value of 44.6 μM, but mangiferin did not. The kinetic studies showed that norathyriol was an uncompetitive inhibitor by Lineweaver-Burk plots. The structure-activity relationships exhibited that three hydroxyl groups in norathyriol at the C-1, C-3 and C-6 positions were essential for maintaining xanthine oxidase inhibition. Discussion and conclusion Norathyriol was responsible for the hypouricaemic effect of mangiferin via inhibiting xanthine oxidase activity.

  1. Inhibition of ATP synthesis by fenbufen and its conjugated metabolites in rat liver mitochondria.

    PubMed

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-03-01

    Fenbufen is an arylpropionic acid derivative belonging to the group of non-steroidal anti-inflammatory drugs (NSAIDs). Even though fenbufen is considered a safe drug, some adverse reactions including hepatic events have been reported. To investigate whether mitochondrial damage could be involved in the drug induced liver injury (DILI) by fenbufen, the inhibitory effect of fenbufen and its conjugated metabolites on oxidative phosphorylation (ATP synthesis) in rat liver mitochondria was investigated. Fenbufen glucuronide (F-GlcA), fenbufen-N-acetyl cysteine-thioester (F-NAC) and fenbufen-S-glutathione thioester (F-SG) were found to be more potent inhibitors compared to parent fenbufen (F), whereas fenbufen-O-carnitine (F-carn), fenbufen-glycine (F-gly) and fenbufen-N-acetyl lysine amide (F-NAL) were less potent compared to fenbufen. Fenbufen-CoA thioester (F-CoA) was equally potent as fenbufen in inhibiting ATP synthesis. Fenbufen showed time and concentration dependent inhibition of ATP synthesis with Kinact of 4.4 min(-1) and KI of 0.88 μM and Kinact/KI ratio of 5.01 min(-1) μM(-1). Data show that fenbufen did not act through opening MPT pore, nor did incubation of mitochondria with reduced GSH and fenbufen show any protective effect on fenbufen mediated inhibition of oxidative phosphorylation. Inclusion of NADPH in mitochondrial preparations with fenbufen did not modulate the inhibitory effects, suggesting no role of CYP mediated oxidative metabolites on the ATP synthesis in isolated mitochondria. The results from the present experiments provide evidence that fenbufen and its metabolites could be involved in mitochondrial toxicity through inhibition of ATP synthesis.

  2. Increase in the systemic exposure of primary metabolites of Midazolam in rat arising from CYP inhibition or hepatic dysfunction.

    PubMed

    Hasegawa, Tsubasa; Nakanishi, Satomi; Minami, Keiko; Higashino, Haruki; Kataoka, Makoto; Shitara, Yoshihisa; Yamashita, Shinji

    2017-02-01

    The main purpose of this study is to demonstrate the possibility of increase in the systemic exposure of drug metabolites by CYP-inhibition or acute hepatitis. Midazolam (MDZ) was used as a model substrate of CYP3A and 1-aminobenzotriazole (ABT) was used as a CYP-inhibitor. After oral pretreatment with ABT, MDZ was intravenously injected to rats and the plasma profiles of MDZ and its primary metabolites, 1'-hydroxy MDZ and 4-hydroxy MDZ, were observed. In the ABT-pretreatment rats, plasma AUCs of both metabolites were much larger than those in control rats, demonstrating a higher systemic exposure of metabolites under CYP-inhibited condition. Furthermore, kinetic analysis revealed that the amount of both metabolites entered into the systemic circulation increased significantly (about 5-times). Increases in the systemic exposure of the primary metabolites of MDZ were also observed in the acute hepatitis rats induced by CCl4-pretreatment. As underlying mechanisms, it was speculated that ABT inhibited the subsequent metabolism of primary metabolites of MDZ in the hepatocytes and enhanced their release to the systemic circulation. In vitro study with rat liver microsomes supported this speculation. In conclusion, this study showed the complexity of PK profiles of drug metabolites, which might lead to new aspects on their safety issue.

  3. Efficacy of cyclo-oxygenase-2 inhibition by etoricoxib and naproxen on the axial manifestations of ankylosing spondylitis in the presence of peripheral arthritis

    PubMed Central

    Gossec, L; van der Heijde, D; Melian, A; Krupa, D; James, M; Cavanaugh, P; Reicin, A; Dougados, M

    2005-01-01

    Objective: The combined efficacy of selective and non-selective cyclo-oxygenase-2 (COX-2) inhibition on the axial manifestations of ankylosing spondylitis (AS) in the presence or absence of chronic peripheral arthritis was evaluated. Methods: In a post hoc subgroup analysis of a 6 week, randomised, double blind, placebo controlled trial, 387 patients with active axial AS were randomised to receive etoricoxib 90 mg or 120 mg once a day, naproxen 500 mg twice daily, or placebo. Randomisation was stratified by the presence or absence of chronic peripheral arthritis. The primary outcome measure was the time weighted average change from baseline of spine pain intensity. Efficacy data from the three groups receiving active treatment (the NSAID/COX-2 inhibitor group) were combined to improve precision. An analysis of covariance model was used to evaluate the effect of peripheral disease on treatment response. Results: 93 patients were allocated to receive placebo and 294 to active treatment (naproxen or etoricoxib). The combined NSAID/COX-2 inhibitor group had a significant treatment response compared with the placebo group for all efficacy measures, both in patients with and without peripheral arthritis. A significantly greater difference in mean patient assessment of spine pain was found between active and placebo treatments in patients without compared with those with peripheral arthritis (p = 0.005; –32.5 mm v –17.0 mm, respectively). Similar differences, although not statistically significant, were seen for other end points. Conclusion: NSAIDs and COX-2 inhibitors have a clinically relevant symptomatic effect on axial AS irrespective of the presence of peripheral arthritis. In this exploratory analysis spinal improvement appeared to be greater in patients without peripheral disease. PMID:15731291

  4. Adiponectin Inhibits LPS-Induced HMGB1 Release through an AMP Kinase and Heme Oxygenase-1-Dependent Pathway in RAW 264 Macrophage Cells

    PubMed Central

    Kaede, Ryuji; Okamatsu-Ogura, Yuko

    2016-01-01

    High mobility group protein B1 (HMGB1) is a late inflammatory mediator that exaggerates septic symptoms. Adiponectin, an adipokine, has potent anti-inflammatory properties. However, possible effects of adiponectin on lipopolysaccharide- (LPS-) induced HMGB1 release are unknown. The aim of this study was to investigate effects of full length adiponectin on HMGB1 release in LPS-stimulated RAW 264 macrophage cells. Treatment of the cells with LPS alone significantly induced HMGB1 release associated with HMGB1 translocation from the nucleus to the cytosol. However, prior treatment with adiponectin suppressed LPS-induced HMGB1 release and translocation. The anti-inflammatory cytokine interleukin- (IL-) 10 similarly suppressed LPS-induced HMGB1 release. Adiponectin treatment decreased toll-like receptor 4 (TLR4) mRNA expression and increased heme oxygenase- (HO-) 1 mRNA expression without inducing IL-10 mRNA, while IL-10 treatment decreased TLR2 and HMGB1 mRNA expression and increased the expression of IL-10 and HO-1 mRNA. Treatment with the HO-1 inhibitor ZnPP completely prevented the suppression of HMGB1 release by adiponectin but only partially inhibited that induced by IL-10. Treatment with compound C, an AMP kinase (AMPK) inhibitor, abolished the increase in HO-1 expression and the suppression of HMGB1 release mediated by adiponectin. In conclusion, our results indicate that adiponectin suppresses HMGB1 release by LPS through an AMPK-mediated and HO-1-dependent IL-10-independent pathway. PMID:27313399

  5. Heme oxygenase-1 inhibits basophil maturation and activation but promotes its apoptosis in T helper type 2-mediated allergic airway inflammation.

    PubMed

    Zhong, Wenwei; Di, Caixia; Lv, Jiajia; Zhang, Yanjie; Lin, Xiaoliang; Yuan, Yufan; Lv, Jie; Xia, Zhenwei

    2016-03-01

    The anti-inflammatory role of heme oxygenase-1 (HO-1) has been studied extensively in many disease models including asthma. Many cell types are anti-inflammatory targets of HO-1, such as dendritic cells and regulatory T cells. In contrast to previous reports that HO-1 had limited effects on basophils, which participate in T helper type 2 immune responses and antigen-induced allergic airway inflammation, we demonstrated in this study, for the first time, that the up-regulation of HO-1 significantly suppressed the maturation of mouse basophils, decreased the expression of CD40, CD80, MHC-II and activation marker CD200R on basophils, blocked DQ-ovalbumin uptake and promoted basophil apoptosis both in vitro and in vivo, leading to the inhibition of T helper type 2 polarization. These effects of HO-1 were mimicked by exogenous carbon monoxide, which is one of the catalytic products of HO-1. Furthermore, adoptive transfer of HO-1-modified basophils reduced ovalbumin-induced allergic airway inflammation. The above effects of HO-1 can be reversed by the HO-1 inhibitor Sn-protoporphyrin IX. Moreover, conditional depletion of basophils accompanying hemin treatment further attenuated airway inflammation compared with the hemin group, indicating that the protective role of HO-1 may involve multiple immune cells. Collectively, our findings demonstrated that HO-1 exerted its anti-inflammatory function through suppression of basophil maturation and activation, but promotion of basophil apoptosis, providing a possible novel therapeutic target in allergic asthma.

  6. Heme-mediated inhibition of Bach1 regulates the liver specificity and transience of the Nrf2-dependent induction of zebrafish heme oxygenase 1.

    PubMed

    Fuse, Yuji; Nakajima, Hitomi; Nakajima-Takagi, Yaeko; Nakajima, Osamu; Kobayashi, Makoto

    2015-07-01

    The induction of the gene encoding heme oxygenase 1 (Hmox1, HO-1) by Nrf2 is unique compared with other Nrf2 targets. We previously showed that the Nrf2a-mediated induction of zebrafish hmox1a was liver specific and transient. We screened transcription factors that could repress the induction of hmox1a but not other Nrf2a targets and concluded that Bach1b was a prime candidate. In bach1b-knocked-down larvae, the induction of hmox1a was observed ectopically in nonliver tissues and persisted longer than normal fish, suggesting that Bach1 is the only regulator for both the liver-specific and transient induction of hmox1a. Co-knockdown of bach1b with its co-ortholog bach1a enhanced these effects. To determine why Bach1 could not repress the hmox1a induction in the liver, we analyzed the effects of a heme biosynthesis inhibitor, succinylacetone, and a heme precursor, hemin. Succinylacetone decreased the Nrf2a-mediated hmox1a induction, whereas pre-treatment with hemin caused ectopic induction of hmox1a in nonliver tissues, implying that the high heme levels in the liver may release the repressive activity of Bach1. Our results suggested that Bach1 regulates the liver specificity and transience of the Nrf2a-dependent induction of hmox1a and that heme mediates this regulation through Bach1 inhibition based on its level in each tissue.

  7. Ethynylbenzenoid metabolites of Antrodia camphorata: synthesis and inhibition of TNF expression.

    PubMed

    Buccini, Marco; Punch, Kathryn A; Kaskow, Belinda; Flematti, Gavin R; Skelton, Brian W; Abraham, Lawrence J; Piggott, Matthew J

    2014-02-21

    An improved synthesis of the anti-inflammatory natural product antrocamphin A (2), involving a key Castro-Stephens reaction, is presented, along with the first total synthesis of its congener antrocamphin B (3). Approaches towards the more complex co-metabolite antrodioxolanone (4) were unsuccessful, but a samarium diiodide-mediated pinacol coupling of antrocamphin B did provide the chiral epimers (51). Antrocamphin A (2) inhibits Tumour Necrosis Factor (TNF) reporter gene expression, but its development as an anti-inflammatory agent may be limited by cytotoxicity.

  8. Epoxygenase metabolites of arachidonic acid inhibit vasopressin response in toad bladder

    SciTech Connect

    Schlondorff, D.; Petty, E.; Oates, J.A.; Jacoby, M.; Levine, S.D. Vanderbilt Univ., Nashville, TN )

    1987-09-01

    In addition to cyclooxygenase and lipoxygenase pathways, the kidney can also metabolize arachidonic acid by a NADPH-dependent cytochrome P-450 enzyme to epoxyeicosatrienoic acids (EETs); furthermore, 5,6-EET has been shown to alter electrolyte transport across isolated renal tubules. The authors examined the effects of three ({sup 14}C-labeled)-EETs (5,6-, 11,12-, and 14,15-EET) on osmotic water flow across toad urinary bladder. All three EETs reversibly inhibited vasopressin-stimulated osmotic water flow with 5,6- and 11,12-EET being the most potent. The effects appeared to be independent of prostaglandins EETs inhibited the water flow response to forskolin but not the response to adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) or 8-BrcAMP, consistent with an effect on cAMP generation. To determine whether these effects were due to the EETs or to products of their metabolism, they examined the effects of their vicinal diol hydrolysis products, the dihydroxyeicosatrienoic acids. Nonenzymatic conversion of labeled 5,6-EET to its vicinal diol occurred rapidly in the buffer, whereas 11,12-EET was hydrolyzed in a saturable manner only when incubated in the presence of bladder tissue. The dihydroxyeicosatrienoic acids formed inhibited water flow in a manner paralleling that of the EETs. The data support the hypothesis that EETs and their physiologically active dihydroxyeicosatrienoic acid metabolites inhibit vasopressin-stimulated water flow predominantly via inhibition of adenylate cyclase.

  9. Cannabinoid inhibition of adenylate cyclase: relative activity of constituents and metabolites of marihuana.

    PubMed

    Howlett, A C

    1987-05-01

    delta 9Tetrahydrocannabinol (THC) has been shown to inhibit the activity of adenylate cyclase in the N18TG2 clone of murine neuroblastoma cells. The concentration of delta 9THC exhibiting half-maximal inhibition was 500 nM. delta 8Tetrahydrocannabinol was less active, and cannabinol was only partially active. Cannabidiol, cannabigerol, cannabichromene, olivetol and compounds having a reduced length of the C3 alkyl side chain were inactive. The metabolites of delta 8THC and delta 9THC hydroxylated at the C11 position were more potent than the parent drugs. However, hydroxylation at the C8 position of the terpenoid ring resulted in loss of activity. Compounds hydroxylated along the C3 alkyl side chain were equally efficacious but less potent than delta 9THC. These findings are compared to the pharmacology of cannabinoids reported for psychological effects in humans and behavioral effects in a variety of animal models.

  10. Inhibition of cytochrome P450 activity enhances the systemic availability of triclabendazole metabolites in sheep.

    PubMed

    Virkel, G; Lifschitz, A; Sallovitz, J; Ballent, M; Scarcella, S; Lanusse, C

    2009-02-01

    Understanding the disposition kinetics and the pattern of metabolism is critical to optimise the flukicidal activity of triclabendazole (TCBZ) in ruminants. TCBZ is metabolised by both flavin-monooxygenase (FMO) and cytochrome P450 (P450) in the liver. Interference with these metabolic pathways may be useful to increase the systemic availabilities of TCBZ metabolites, which may improve the efficacy against Fasciola hepatica. The plasma disposition of TCBZ metabolites was evaluated following TCBZ co-administration with FMO [methimazole (MTZ)] and P450 [piperonyl butoxyde (PB) and ketoconazole (KTZ)] inhibitors in sheep. Twenty (20) healthy Corriedale x Merino weaned female lambs were randomly allocated into four experimental groups. Animals of each group were treated as follow: Group A, TCBZ alone (5 mg/kg, IV route); Group B, TCBZ (5 mg/kg, IV) + MTZ (3 mg/kg, IV); Group C, TCBZ (5 mg/kg, IV) + PB (30 mg/kg, IV) and Group D, TCBZ (5 mg/kg, IV) + KTZ (10 mg/kg, orally). Blood samples were taken over 240 h post-treatment and analysed by HPLC. TCBZ sulphoxide and sulphone were the main metabolites recovered in plasma. MTZ did not affect TCBZ disposition kinetics. TCBZ sulphoxide Cmax values were significantly increased (P < 0.05) after the TCBZ + PB (62%) and TCBZ + KTZ (37%) treatments compared to those measured in the TCBZ alone treatment. TCBZ sulphoxide plasma AUCs were higher (P < 0.05) in the presence of both PB (99%) and KTZ (41%). Inhibition of TCBZ P450-mediated oxidation in the liver accounted for the increased systemic availability of its active metabolite TCBZ sulphoxide. This work contributes to the search of different strategies to improve the use of this flukicidal drug in ruminants.

  11. The metabolite alpha-ketoglutarate extends lifespan by inhibiting the ATP synthase and TOR

    PubMed Central

    Chin, Randall M.; Fu, Xudong; Pai, Melody Y.; Vergnes, Laurent; Hwang, Heejun; Deng, Gang; Diep, Simon; Lomenick, Brett; Meli, Vijaykumar S.; Monsalve, Gabriela C.; Hu, Eileen; Whelan, Stephen A.; Wang, Jennifer X.; Jung, Gwanghyun; Solis, Gregory M.; Fazlollahi, Farbod; Kaweeteerawat, Chitrada; Quach, Austin; Nili, Mahta; Krall, Abby S.; Godwin, Hilary A.; Chang, Helena R.; Faull, Kym F.; Guo, Feng; Jiang, Meisheng; Trauger, Sunia A.; Saghatelian, Alan; Braas, Daniel; Christofk, Heather R.; Clarke, Catherine F.; Teitell, Michael A.; Petrascheck, Michael; Reue, Karen; Jung, Michael E.; Frand, Alison R.; Huang, Jing

    2014-01-01

    Metabolism and ageing are intimately linked. Compared to ad libitum feeding, dietary restriction (DR) or calorie restriction (CR) consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms1,2. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits3,4. Recently, several metabolites have been identified that modulate ageing5,6 with largely undefined molecular mechanisms. Here we show that the tricarboxylic acid (TCA) cycle intermediate α-ketoglutarate (α-KG) extends the lifespan of adult C. elegans. ATP synthase subunit beta is identified as a novel binding protein of α-KG using a small-molecule target identification strategy called DARTS (drug affinity responsive target stability)7. The ATP synthase, also known as Complex V of the mitochondrial electron transport chain (ETC), is the main cellular energy-generating machinery and is highly conserved throughout evolution8,9. Although complete loss of mitochondrial function is detrimental, partial suppression of the ETC has been shown to extend C. elegans lifespan10–13. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit beta and is dependent on the target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased upon starvation and α-KG does not extend the lifespan of DR animals, indicating that α-KG is a key metabolite that mediates longevity by DR. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator, and DR in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases. PMID:24828042

  12. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR.

    PubMed

    Chin, Randall M; Fu, Xudong; Pai, Melody Y; Vergnes, Laurent; Hwang, Heejun; Deng, Gang; Diep, Simon; Lomenick, Brett; Meli, Vijaykumar S; Monsalve, Gabriela C; Hu, Eileen; Whelan, Stephen A; Wang, Jennifer X; Jung, Gwanghyun; Solis, Gregory M; Fazlollahi, Farbod; Kaweeteerawat, Chitrada; Quach, Austin; Nili, Mahta; Krall, Abby S; Godwin, Hilary A; Chang, Helena R; Faull, Kym F; Guo, Feng; Jiang, Meisheng; Trauger, Sunia A; Saghatelian, Alan; Braas, Daniel; Christofk, Heather R; Clarke, Catherine F; Teitell, Michael A; Petrascheck, Michael; Reue, Karen; Jung, Michael E; Frand, Alison R; Huang, Jing

    2014-06-19

    Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit β is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit β and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing

  13. Toluhydroquinone, the secondary metabolite of marine algae symbiotic microorganism, inhibits angiogenesis in HUVECs.

    PubMed

    Kim, Nan-Hee; Jung, Hyun-Il; Choi, Woo-Suk; Son, Byeng-Wha; Seo, Yong-Bae; Choi, Jae Sue; Kim, Gun-Do

    2015-03-01

    Angiogenesis, the growth of new blood vessels from the existing ones, occurs during embryo development and wound healing. However, most malignant tumors require angiogenesis for their growth and metastasis as well. Therefore, inhibition of angiogenesis has been focused as a new strategy of cancer therapies. To treat cancer, there are marine microorganism-derived secondary metabolites developed as chemotherapeutic agents. In this study, we used toluhydroquinone (2-methyl-1,4-hydroquinone), one of the secondary metabolites isolated from marine algae symbiotic fungus, Aspergillus sp. We examined the effects of toluhydroquinone on angiogenesis using HUVECs. We identified that toluhydroquinone inhibited the activity of β-catenin and down-regulated Ras/Raf/MEK/ERK signaling which are crucial components during angiogenesis. In addition, the expression and activity of MMPs are reduced by the treatment of toluhydroquinone. In conclusion, we confirmed that toluhydroquinone has inhibitory effects on angiogenic behaviors of human endothelial cells, HUVECs. Our findings suggest that toluhydroquinone can be proposed as a potent anti-angiogenesis drug candidate to treat cancers.

  14. Protective effect of heme oxygenase-1 on Wistar rats with heart failure through the inhibition of inflammation and amelioration of intestinal microcirculation

    PubMed Central

    Zhang, Li; Gan, Zhuo-Kun; Han, Li-Na; Wang, Hao; Bai, Jie; Tan, Guo-Juan; Li, Xiao-Xia; Xu, Ya-Ping; Zhou, Yu; Gong, Mei-Liang; Lin, Mo-Si; Han, Xiao-Yang

    2015-01-01

    Background Myocardial infarction (MI) has likely contributed to the increased prevalence of heart failure (HF). As a result of reduced cardiac function, splanchnic blood flow decreases, causing ischemia in villi and damage to the intestinal barrier. The induction of heme oxygenase-1 (HO-1) could prevent, or lessen the effects of stress and inflammation. Thus, the effect and mechanism thereof of HO-1 on the intestines of rats with HF was investigated. Methods Male Wistar rats with heart failure through ligation of the left coronary artery were identified with an left ventricular ejection fraction of < 45% through echocardiography and then divided into various experimental groups based on the type of peritoneal injection they received [MI: saline; MI + Cobalt protoporphyrin (CoPP): CoPP solution; and MI + Tin mesoporphyrin IX dichloride (SnMP): SnMP solution]. The control group was comprised of rats without coronary ligation. Echocardiography was performed before ligation for a baseline and eight weeks after ligation in order to evaluate the cardiac function of the rats. The bacterial translocation (BT) incidence, mesenteric microcirculation, amount of endotoxins in the vein serum, ileum levels of HO-1, carbon oxide (CO), nitric oxide (NO), interleukin (IL)-10, tumour necrosis factor-α (TNF-α), and the ileum morphology were determined eight weeks after the operation. Results The rats receiving MI + CoPP injections exhibited a recovery in cardiac function, an amelioration of mesenteric microcirculation and change in morphology, a lower BT incidence, a reduction in serum and ileac NO and TNF-α levels, and an elevation in ileac HO-1, CO, and interleukin-10 (IL-10) levels compared to the MI group (P < 0.05). The rats that received the MI + SnMP injections exhibited results inverse to the MI (P < 0.05) group. Conclusions HO-1 exerted a protective effect on the intestines of rats with HF by inhibiting the inflammation and amelioration of microcirculation through the CO

  15. From anti-fouling to biofilm inhibition: new cytotoxic secondary metabolites from two Indonesian Agelas sponges.

    PubMed

    Hertiani, Triana; Edrada-Ebel, RuAngelie; Ortlepp, Sofia; van Soest, Rob W M; de Voogd, Nicole J; Wray, Victor; Hentschel, Ute; Kozytska, Svetlana; Müller, Werner E G; Proksch, Peter

    2010-02-01

    Chemical investigation of Indonesian marine sponges Agelas linnaei and A. nakamurai afforded 24 alkaloid derivatives representing either bromopyrrole or diterpene alkaloids. A. linnaei yielded 16 bromopyrrole alkaloids including 11 new natural products with the latter exhibiting unusual functionalities. The new compounds include the first iodinated tyramine-unit bearing pyrrole alkaloids, agelanesins A-D. These compounds exhibited cytotoxic activity against L5178Y mouse lymphoma cells with IC(50) values between 9.25 and 16.76 muM. Further new compounds include taurine acid substituted bromopyrrole alkaloids and a new dibromophakellin derivative. A. nakamurai yielded eight alkaloids among them are three new natural products. The latter include the diterpene alkaloids (-)-agelasine D and its oxime derivative and the new bromopyrrole alkaloid longamide C. (-)-Agelasine D and its oxime derivative exhibited cytotoxicity against L5178Y mouse lymphoma cells (IC(50) 4.03 and 12.5 microM, respectively). Furthermore, both agelasine derivatives inhibited settling of larvae of Balanus improvisus in an anti-fouling bioassay and proved to be toxic to the larvae. (-)-Agelasine D inhibited the growth of planktonic forms of biofilm forming bacteria S. epidermidis (MIC<0.0877 microM) but did not inhibit biofilm formation whereas the oxime derivative showed the opposite activity profile and inhibited only biofilm formation but not bacterial growth. The structures of the isolated secondary metabolites were elucidated based on extensive spectroscopic analysis involving one- and two-dimensional NMR as well as mass spectrometry and comparison with literature data.

  16. Inhibition of prostaglandin-H-synthase by o-phenylphenol and its metabolites.

    PubMed

    Freyberger, A; Degen, G H

    1998-10-01

    Chronic administration of o-phenylphenol (OPP) is known to induce urinary bladder tumours in the Fischer rat. The underlying toxic mechanism is poorly understood. Recently, arachidonic acid (ARA)-dependent, prostaglandin-H-synthase (PHS)-catalysed metabolic activation of the OPP metabolite phenylhydroquinone (PHQ) to a genotoxic species was suggested to be involved in OPP toxicity. To investigate this hypothesis in more detail, we have studied the effects of OPP and its metabolites on PHS. When microsomal PHS from ovine seminal vesicles (OSV) was used as enzyme source, both OPP, PHQ, and 2-phenyl-1,4-benzoquinone (PBQ) inhibited PHS-cyclooxygenase. The inhibitory potency was inversely related to the ARA concentration in the assay; at 7 microM ARA IC50-values were: 13 microM (OPP), 17 microM (PHQ), and 190 microM (PBQ). In cells cultured from OSV, which express high PHS activity, 40 microM OPP almost completely suppressed prostaglandin formation. Studies with microsomal PHS demonstrated that PHQ was an excellent substrate for PHS-peroxidase; both ARA and hydrogen peroxide supported oxidation to PBQ. OPP was only a poor substrate for PHS, but inhibited the ARA-mediated and to a lesser extent also the hydrogen peroxide-mediated in vitro oxidation of PHQ. Moreover, PHQ at up to moderately cytotoxic concentrations (50 microM) did not induce micronuclei in OSV cell cultures. Taken together, our findings do not provide evidence for an ARA-dependent, PHS-catalysed formation of genotoxic species from PHQ. Moreover, it seems to be questionable whether such activation can effectively occur in vivo, since OPP and PHQ turned out to be efficient cyclooxygenase inhibitors, and high levels of OPP and PHQ were found at least in the urine of OPP-treated rats. On the other hand, inhibition of the formation of cytoprotective prostaglandins in the urogenital tract may play a crucial role in OPP-induced bladder carcinogenesis.

  17. Endoxifen, the active metabolite of tamoxifen, inhibits cloned hERG potassium channels.

    PubMed

    Chae, Yun Ju; Lee, Keon Jin; Lee, Hong Joon; Sung, Ki-Wug; Choi, Jin-Sung; Lee, Eun Hui; Hahn, Sang June

    2015-04-05

    The effects of tamoxifen, and its active metabolite endoxifen (4-hydroxy-N-desmethyl-tamoxifen), on hERG currents stably expressed in HEK cells were investigated using the whole-cell patch-clamp technique and an immunoblot assay. Tamoxifen and endoxifen inhibited hERG tail currents at -50mV in a concentration-dependent manner with IC50 values of 1.2 and 1.6μM, respectively. The steady-state activation curve of the hERG currents was shifted to the hyperpolarizing direction in the presence of endoxifen. The voltage-dependent inhibition of hERG currents by endoxifen increased steeply in the voltage range of channel activation. The inhibition by endoxifen displayed a shallow voltage dependence (δ=0.18) in the full activation voltage range. A fast application of endoxifen induced a reversible block of hERG tail currents during repolarization in a concentration-dependent manner, which suggested an interaction with the open state of the channel. Endoxifen also decreased the hERG current elicited by a 5s depolarizing pulse to +60mV to inactivate the hERG currents, suggesting an interaction with the activated (open and/or inactivated) states of the channels. Tamoxifen and endoxifen inhibited the hERG channel protein trafficking to the plasma membrane in a concentration-dependent manner with endoxifen being more potent than tamoxifen. These results indicated that tamoxifen and endoxifen inhibited the hERG current by direct channel blockage and by the disruption of channel trafficking to the plasma membrane in a concentration-dependent manner. A therapeutic concentration of endoxifen inhibited the hERG current by preferentially interacting with the activated (open and/or inactivated) states of the channel.

  18. Glucocorticoid metabolites inhibit the metabolism of androstenedione in red blood cells of ruminants.

    PubMed

    El-Bahr, S M; Möstl, E; Palme, R

    2003-03-01

    The present work aimed to confirm that erythrocytes of ruminants, in general, are capable of converting 17-oxo to 17-hydroxysteroids. Special attention was given to 11-oxoaetiocholanolone (a cortisol metabolite) and its possible interaction with androstenedione as substrates of 17-hydroxysteroid dehydrogenases (17-OH SDH). Blood samples were taken from cattle, sheep and goats (n = 3). Aliquots (100 or 300 microl) of washed red blood cell (RBC) suspensions were incubated in triplicates with Ringer's/glucose solution (1 ml) containing either androstenedione (10 ng) or 11-oxoaetiocholanolone (100 ng) or a mixture of 10 ng of each. Incubations were performed on a shaker at 38 degrees C for 10, 20, 40 or 80 min, respectively. After centrifugation the supernatants were stored at -24 degrees C until analysis. Concentrations of added steroids were measured with enzyme-immunoassays to monitor their decrease. The 17-OH SDH activity of RBC was highest in cattle followed by goats and sheep, and 11-oxoaetiocholanolone was a better substrate than androstenedione. Concentrations of the latter decreased more pronounced, if incubated alone. High performance liquid chromatography separations of the metabolites of 17-oxosteroids revealed the presence of both, a 17beta- and 17alpha-hydroxylated product formed by erythrocytes of sheep and goats, but only the latter in cattle. The results demonstrated that 11-oxoaetiocholanolone was also a substrate of RBC 17-OH SDH and inhibited the metabolism of androstenedione. Therefore, in ruminants, there might be an interaction between cortisol metabolites and gonadal steroids on the level of peripheral steroid metabolism.

  19. The marine fungal metabolite, AD0157, inhibits angiogenesis by targeting the Akt signaling pathway.

    PubMed

    García-Caballero, Melissa; Cañedo, Librada; Fernández-Medarde, Antonio; Medina, Miguel Ángel; Quesada, Ana R

    2014-01-16

    In the course of a screening program for the inhibitors of angiogenesis from marine sources, AD0157, a pyrrolidinedione fungal metabolite, was selected for its angiosupressive properties. AD0157 inhibited the growth of endothelial and tumor cells in culture in the micromolar range. Our results show that subtoxic doses of this compound inhibit certain functions of endothelial cells, namely, differentiation, migration and proteolytic capability. Inhibition of the mentioned essential steps of in vitro angiogenesis is in agreement with the observed antiangiogenic activity, substantiated by using two in vivo angiogenesis models, the chorioallantoic membrane and the zebrafish embryo neovascularization assays, and by the ex vivo mouse aortic ring assay. Our data indicate that AD0157 induces apoptosis in endothelial cells through chromatin condensation, DNA fragmentation, increases in the subG1 peak and caspase activation. The data shown here altogether indicate for the first time that AD0157 displays antiangiogenic effects, both in vitro and in vivo, that are exerted partly by targeting the Akt signaling pathway in activated endothelial cells. The fact that these effects are carried out at lower concentrations than those required for other inhibitors of angiogenesis makes AD0157 a new promising drug candidate for further evaluation in the treatment of cancer and other angiogenesis-related pathologies.

  20. Inhibition of Poly(ADP-Ribose) Polymerase by Nucleic Acid Metabolite 7-Methylguanine

    PubMed Central

    Nilov, D. K.; Tararov, V. I.; Kulikov, A. V.; Zakharenko, A. L.; Gushchina, I. V.; Mikhailov, S. N.; Lavrik, O. I.; Švedas, V. K.

    2016-01-01

    The ability of 7-methylguanine, a nucleic acid metabolite, to inhibit poly(ADP-ribose)polymerase-1 (PARP-1) and poly(ADP-ribose)polymerase-2 (PARP-2) has been identified in silico and studied experimentally. The amino group at position 2 and the methyl group at position 7 were shown to be important substituents for the efficient binding of purine derivatives to PARPs. The activity of both tested enzymes, PARP-1 and PARP-2, was suppressed by 7-methylguanine with IC50 values of 150 and 50 μM, respectively. At the PARP inhibitory concentration, 7-methylguanine itself was not cytotoxic, but it was able to accelerate apoptotic death of BRCA1-deficient breast cancer cells induced by cisplatin and doxorubicin, the widely used DNA-damaging chemotherapeutic agents. 7-Methylguanine possesses attractive predictable pharmacokinetics and an adverse-effect profile and may be considered as a new additive to chemotherapeutic treatment. PMID:27437145

  1. Hydrogen-rich water protects against inflammatory bowel disease in mice by inhibiting endoplasmic reticulum stress and promoting heme oxygenase-1 expression

    PubMed Central

    Shen, Nai-Ying; Bi, Jian-Bin; Zhang, Jing-Yao; Zhang, Si-Min; Gu, Jing-Xian; Qu, Kai; Liu, Chang

    2017-01-01

    AIM To investigate the therapeutic effect of hydrogen-rich water (HRW) on inflammatory bowel disease (IBD) and to explore the potential mechanisms involved. METHODS Male mice were randomly divided into the following four groups: control group, in which the mice received equivalent volumes of normal saline (NS) intraperitoneally (ip); dextran sulfate sodium (DSS) group, in which the mice received NS ip (5 mL/kg body weight, twice per day at 8 am and 5 pm) for 7 consecutive days after IBD modeling; DSS + HRW group, in which the mice received HRW (in the same volume as the NS treatment) for 7 consecutive days after IBD modeling; and DSS + HRW + ZnPP group, in which the mice received HRW (in the same volume as the NS treatment) and ZnPP [a heme oxygenase-1 (HO-1) inhibitor, 25 mg/kg] for 7 consecutive days after IBD modeling. IBD was induced by feeding DSS to the mice, and blood and colon tissues were collected on the 7th d after IBD modeling to determine clinical symptoms, colonic inflammation and the potential mechanisms involved. RESULTS The DSS + HRW group exhibited significantly attenuated weight loss and a lower extent of disease activity index compared with the DSS group on the 7th d (P < 0.05). HRW exerted protective effects against colon shortening and colonic wall thickening in contrast to the DSS group (P < 0.05). The histological study demonstrated milder inflammation in the DSS + HRW group, which was similar to normal inflammatory levels, and the macroscopic and microcosmic damage scores were lower in this group than in the DSS group (P < 0.05). The oxidative stress parameters, including MDA and MPO in the colon, were significantly decreased in the DSS + HRW group compared with the DSS group (P < 0.05). Simultaneously, the protective indicators, superoxide dismutase and glutathione, were markedly increased with the use of HRW. Inflammatory factors were assessed, and the results showed that the DSS + HRW group exhibited significantly reduced levels of TNF

  2. Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment

    PubMed Central

    Rosas-Murrieta, Nora Hilda; Martínez-Montiel, Mónica; Gaspariano-Cholula, Mayra Patricia

    2016-01-01

    In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics. PMID:27610372

  3. Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment.

    PubMed

    Martínez-Montiel, Nancy; Rosas-Murrieta, Nora Hilda; Martínez-Montiel, Mónica; Gaspariano-Cholula, Mayra Patricia; Martínez-Contreras, Rebeca D

    2016-01-01

    In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics.

  4. Methylselenol, a selenium metabolite, inhibits colon cancer cell growth and cancer xenografts in C57BL/6 mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data indicate that methylselenol is a critical selenium (Se) metabolite for anticancer activity in vivo but its role in colon cancer prevention remains to be characterized. This study tested the hypothesis that methylselenol inhibits the growth of colon cancer cells and tumors. We found that submicr...

  5. The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth

    PubMed Central

    2012-01-01

    Background Increased consumption of plant-based diets has been linked to the presence of certain phytochemicals, including polyphenols such as flavonoids. Several of these compounds exert their protective effect via inhibition of tumor angiogenesis. Identification of additional phytochemicals with potential antiangiogenic activity is important not only for understanding the mechanism of the preventive effect, but also for developing novel therapeutic interventions. Results In an attempt to identify phytochemicals contributing to the well-documented preventive effect of plant-based diets on cancer incidence and mortality, we have screened a set of hitherto untested phytoestrogen metabolites concerning their anti-angiogenic effect, using endothelial cell proliferation as an end point. Here, we show that a novel phytoestrogen, 6-methoxyequol (6-ME), inhibited VEGF-induced proliferation of human umbilical vein endothelial cells (HUVE) cells, whereas VEGF-induced migration and survival of HUVE cells remained unaffected. In addition, 6-ME inhibited FGF-2-induced proliferation of bovine brain capillary endothelial (BBCE) cells. In line with its role in cell proliferation, 6-ME inhibited VEGF-induced phosphorylation of ERK1/2 MAPK, the key cascade responsible for VEGF-induced proliferation of endothelial cells. In this context, 6-ME inhibited in a dose dependent manner the phosphorylation of MEK1/2, the only known upstream activator of ERK1/2. 6-ME did not alter VEGF-induced phosphorylation of p38 MAPK or AKT, compatible with the lack of effect on VEGF-induced migration and survival of endothelial cells. Peri-tumor injection of 6-ME in A-431 xenograft tumors resulted in reduced tumor growth with suppressed neovasularization compared to vehicle controls (P < 0.01). Conclusions 6-ME inhibits VEGF- and FGF2-induced proliferation of ECs by targeting the phosphorylation of MEK1/2 and it downstream substrate ERK1/2, both key components of the mitogenic MAPK pathway

  6. Solution NMR characterization of an unusual distal H-bond network in the active site of the cyanide-inhibited, human heme oxygenase complex of the symmetric substrate, 2,4-dimethyldeuterohemin.

    PubMed

    Li, Yiming; Syvitski, Ray T; Auclair, Karine; Wilks, Angela; Ortiz De Montellano, Paul R; La Mar, Gerd N

    2002-09-06

    The presence of variable static hemin orientational disorder about the alpha-gamma-meso axis in the substrate complexes of mammalian heme oxygenase, together with the incomplete averaging of a second, dynamic disorder, for each hemin orientation, has led to NMR spectra with severe spectral overlap and loss of key two-dimensional correlations that seriously interfere with structural characterization in solution. We demonstrate that the symmetric substrate, 2,4-dimethyldeuterohemin, yields a single solution species for which the dynamic disorder is sufficiently rapid to allow effective and informative (1)H NMR structural characterization. A much more extensive, effective, and definitive NMR characterization of the cyanide-inhibited, symmetric heme complex of human heme oxygenase shows that the active site structure, with some minor differences, is essentially the same as that for the native protohemin in solution and crystal. A unique distal network that involves particularly strong hydrogen bonds, as well as inter-aromatic contacts, is described that is proposed to stabilize the position of the catalytically critical distal helix Asp-140 carboxylate (Liu, Y., Koenigs Lightning, L., Huang, H., Moënne-Loccoz, P., Schuller, D. J., Poulos, T. L., Loehr, T. M., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 34501-34507). The potential role of this network in placing a water molecule to stabilize the hydroperoxy species and as a template for the condensation of the distal helix upon substrate binding are discussed.

  7. Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans.

    PubMed

    Ge, Wei; Wolf, Alexander; Feng, Tianshu; Ho, Chia-hua; Sekirnik, Rok; Zayer, Adam; Granatino, Nicolas; Cockman, Matthew E; Loenarz, Christoph; Loik, Nikita D; Hardy, Adam P; Claridge, Timothy D W; Hamed, Refaat B; Chowdhury, Rasheduzzaman; Gong, Lingzhi; Robinson, Carol V; Trudgian, David C; Jiang, Miao; Mackeen, Mukram M; McCullagh, James S; Gordiyenko, Yuliya; Thalhammer, Armin; Yamamoto, Atsushi; Yang, Ming; Liu-Yi, Phebee; Zhang, Zhihong; Schmidt-Zachmann, Marion; Kessler, Benedikt M; Ratcliffe, Peter J; Preston, Gail M; Coleman, Mathew L; Schofield, Christopher J

    2012-12-01

    The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylation of the ribosomal protein Rpl16. Human ycfD homologs, Myc-induced nuclear antigen (MINA53) and NO66, are also linked to growth and catalyze histidyl hydroxylation of Rpl27a and Rpl8, respectively. This work reveals new therapeutic possibilities via oxygenase inhibition and by targeting modified over unmodified ribosomes.

  8. Identification and characterization of reactive metabolites in myristicin-mediated mechanism-based inhibition of CYP1A2.

    PubMed

    Yang, Ai-Hong; He, Xin; Chen, Jun-Xiu; He, Li-Na; Jin, Chun-Huan; Wang, Li-Li; Zhang, Fang-Liang; An, Li-Jun

    2015-07-25

    Myristicin belongs to the methylenedioxyphenyl or allyl-benzene family of compounds, which are found widely in plants of the Umbelliferae family, such as parsley and carrot. Myristicin is also the major active component in the essential oils of mace and nutmeg. However, this compound can cause adverse reactions, particularly when taken inappropriately or in overdoses. One important source of toxicity of natural products arises from their metabolic biotransformations into reactive metabolites. Myristicin contains a methylenedioxyphenyl substructure, and this specific structural feature may allow compounds to cause a mechanism-based inhibition of cytochrome P450 enzymes and produce reactive metabolites. Therefore, the aim of this work was to identify whether the role of myristicin in CYP enzyme inhibition is mechanism-based inhibition and to gain further information regarding the structure of the resulting reactive metabolites. CYP cocktail assays showed that myristicin most significantly inhibits CYP1A2 among five CYP enzymes (CYP1A2, CYP2D6, CYP2E1, CYP3A4 and CYP2C19) from human liver microsomes. The 3.21-fold IC50 shift value of CYP1A2 indicates that myristicin may be a mechanism-based inhibitor of CYP1A2. Next, reduced glutathione was shown to block the inhibition of CYP1A2, indicating that myristicin utilized a mechanism-based inhibition. Phase I metabolism assays identified two metabolites, 5-allyl-1-methoxy-2,3-dihydroxybenzene (M1) and 1'-hydroxymyristicin or 2',3'-epoxy-myristicin (M2). Reduced glutathione capturing assays captured the glutathione-M1 adduct, and the reactive metabolites were identified using UPLC-MS(2) as a quinone and its tautomer. Thus, it was concluded that myristicin is a mechanism-based inhibitor of CYP1A2, and the reactive metabolites are quinone tautomers. Additionally, the cleavage process of the glutathione-M1 adduct was analyzed in further detail. This study provides additional information on the metabolic mechanism of myristicin

  9. Bioactivation of dibrominated biphenyls by cytochrome P450 activity to metabolites with estrogenic activity and estrogen sulfotransferase inhibition capacity.

    PubMed

    van Lipzig, Marola M H; Commandeur, Jan N; de Kanter, Frans J J; Damsten, Micaela C; Vermeulen, Nico P E; Maat, Evelina; Groot, Ed J; Brouwer, Abraham; Kester, Monique H A; Visser, Theo J; Meerman, John H N

    2005-11-01

    Exposure of humans and wildlife to xenobiotics, such as halogenated biphenyls, that interfere with the endogenous estrogen balance may lead to endocrine disruption. Such compounds may either mimic or block estradiol's action by agonistic or antagonistic action, respectively. They may also affect endogenous estradiol concentrations by induction or inhibition of enzymes that metabolize estradiol. In the present study, we demonstrate that estrogenic metabolites of two brominated biphenyls, 2,2'-dibromobiphenyl (2,2'-DBB) and 4,4'-dibromobiphenyl (4,4'-DBB), are formed by rat liver microsomal cytochrome P450 (CYP) activity. Bioactivation of 2,2'-DBB and 4,4'-DBB yielded various mono- and dihydroxylated bromobiphenyl metabolites, which were collected by preparative HPLC and analyzed by LC/MS. Several of the metabolites bound to the estrogen receptor (ER) activated the ER and inhibited human estrogen sulfotransferase (hEST). Seven monohydroxylated metabolites were positively identified using synthetic monohydroxylated reference compounds. These synthetic monohydroxylated bromobiphenyls also bound to and activated the ER and inhibited hEST. The highest ER affinity was observed for 4-OH-2,2'-DBB, with an EC50 of 6.6 nM. The highest ER activation was observed for 4-OH-3,4'-DBB (EC50 of 74 nM) while 4-OH-4'-MBB and 4-OH-2,2'-DBB induced a supramaximal (as compared to estradiol) ER activation. The strongest hEST inhibition was found with 4-OH-3,4'-DBB (EC50 = 40 nM). In conclusion, we show that two dibrominated biphenyls are bioactivated by CYP activity into very potent estrogenic metabolites and inhibitors of hEST. These findings are of vital importance for accurate risk assessment of exposure to environmental contaminants, such as halogenated biphenyls. Neglecting bioactivation through biotransformation will lead to underestimation of health risks of this class of xenobiotics.

  10. Pretreatment with pPolyHb attenuates H2O2-induced endothelial cell injury through inhibition of JNK/p38 MAPK pathway by upregulation of heme oxygenase-1.

    PubMed

    Xue, Haiyan; Yan, Kunping; Zhao, Xiufang; Zhu, Wenjin; Liu, Lijun; Xie, Zhilan; Zhu, Hongli; Chen, Chao

    2015-06-01

    Polymerized porcine hemoglobin (pPolyHb) exhibits a protective effect on ischemia/reperfusion of organ grafts. A series of experiments were performed to explore the underlying cytoprotective mechanisms of pPolyHb pretreatment on H2O2-induced cell death and apoptosis. The results showed that the pretreatment augmented heme oxygenase-1 (HO-1) expression, and at the same time, decreased the phosphorylation of JNK/p38 mitogen-activated protein kinase (MAPK) and intracellular ROS generation in H2O2-treated HUVECs. Moreover, the inhibition of HO-1 expression by tin porphyrin (SnPP) abolished the protective effects of pPolyHb, which suggested that the cytoprotective effect of pPolyHb involves upregulating HO-1 and subsequently decreasing the phosphorylation of the JNK and p38 MAPK and ROS generation.

  11. Inhibition of Non-flux-Controlling Enzymes Deters Cancer Glycolysis by Accumulation of Regulatory Metabolites of Controlling Steps

    PubMed Central

    Marín-Hernández, Álvaro; Rodríguez-Zavala, José S.; Del Mazo-Monsalvo, Isis; Rodríguez-Enríquez, Sara; Moreno-Sánchez, Rafael; Saavedra, Emma

    2016-01-01

    Glycolysis provides precursors for the synthesis of macromolecules and may contribute to the ATP supply required for the constant and accelerated cellular duplication in cancer cells. In consequence, inhibition of glycolysis has been reiteratively considered as an anti-cancer therapeutic option. In previous studies, kinetic modeling of glycolysis in cancer cells allowed the identification of the main steps that control the glycolytic flux: glucose transporter, hexokinase (HK), hexose phosphate isomerase (HPI), and glycogen degradation in human cervix HeLa cancer cells and rat AS-30D ascites hepatocarcinoma. It was also previously experimentally determined that simultaneous inhibition of the non-controlling enzymes lactate dehydrogenase (LDH), pyruvate kinase (PYK), and enolase (ENO) brings about significant decrease in the glycolytic flux of cancer cells and accumulation of intermediate metabolites, mainly fructose-1,6-bisphosphate (Fru1,6BP), and dihydroxyacetone phosphate (DHAP), which are inhibitors of HK and HPI, respectively. Here it was found by kinetic modeling that inhibition of cancer glycolysis can be attained by blocking downstream non flux-controlling steps as long as Fru1,6BP and DHAP, regulatory metabolites of flux-controlling enzymes, are accumulated. Furthermore, experimental results and further modeling showed that oxamate and iodoacetate inhibitions of PYK, ENO, and glyceraldehyde3-phosphate dehydrogenase (GAPDH), but not of LDH and phosphoglycerate kinase, induced accumulation of Fru1,6BP and DHAP in AS-30D hepatoma cells. Indeed, PYK, ENO, and GAPDH exerted the highest control on the Fru1,6BP and DHAP concentrations. The high levels of these metabolites inhibited HK and HPI and led to glycolytic flux inhibition, ATP diminution, and accumulation of toxic methylglyoxal. Hence, the anticancer effects of downstream glycolytic inhibitors are very likely mediated by this mechanism. In parallel, it was also found that uncompetitive inhibition of the

  12. [Microbial metabolites that inhibit sterol biosynthesis, their chemical diversity and characteristics of mode of action].

    PubMed

    Trenin, A S

    2013-01-01

    Inhibitors of sterol biosynthesis (ISB) are widespread in nature and characterized by appreciable diversity both in their chemical structure and mode of action. Many of these inhibitors express noticeable biological activity and approved themselves in development of various pharmaceuticals. In this review there is a detailed description of biologically active microbial metabolites with revealed chemical structure that have ability to inhibit sterol biosynthesis. Inhibitors of mevalonate pathway in fungous and mammalian cells, exhibiting hypolipidemic or antifungal activity, as well as inhibitors of alternative non-mevalonate (pyruvate gliceraldehyde phosphate) isoprenoid pathway, which are promising in the development of affective antimicrobial or antiparasitic drugs, are under consideration in this review. Chemical formulas of the main natural inhibitors and their semi-synthetic derivatives are represented. Mechanism of their action at cellular and biochemical level is discussed. Special attention is given to inhibitors of 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase (group of lovastatin) and inhibitors of acyl-CoA-cholesterol-acyl transferase (ACAT) that possess hypolipidemic activity and could be affective in the treatment of atherosclerosis. In case of inhibitors of late stages of sterol biosynthesis (after squalene formation) special attention is paid to compounds possessing evident antifungal and antitumoral activity. Explanation of mechanism of anticancer and antiviral action of microbial ISB, as well as the description of their ability to induce apoptosis is given.

  13. Allosteric inhibition of a stem cell RNA-binding protein by an intermediary metabolite

    PubMed Central

    Clingman, Carina C; Deveau, Laura M; Hay, Samantha A; Genga, Ryan M; Shandilya, Shivender MD; Massi, Francesca; Ryder, Sean P

    2014-01-01

    Gene expression and metabolism are coupled at numerous levels. Cells must sense and respond to nutrients in their environment, and specialized cells must synthesize metabolic products required for their function. Pluripotent stem cells have the ability to differentiate into a wide variety of specialized cells. How metabolic state contributes to stem cell differentiation is not understood. In this study, we show that RNA-binding by the stem cell translation regulator Musashi-1 (MSI1) is allosterically inhibited by 18–22 carbon ω-9 monounsaturated fatty acids. The fatty acid binds to the N-terminal RNA Recognition Motif (RRM) and induces a conformational change that prevents RNA association. Musashi proteins are critical for development of the brain, blood, and epithelium. We identify stearoyl-CoA desaturase-1 as a MSI1 target, revealing a feedback loop between ω-9 fatty acid biosynthesis and MSI1 activity. We propose that other RRM proteins could act as metabolite sensors to couple gene expression changes to physiological state. DOI: http://dx.doi.org/10.7554/eLife.02848.001 PMID:24935936

  14. Monascus secondary metabolites monascin and ankaflavin inhibit activation of RBL-2H3 cells.

    PubMed

    Chang, Yu-Ying; Hsu, Wei-Hsuan; Pan, Tzu-Ming

    2015-01-14

    Monascus-fermented products have been used as dietary food and traditional medicine due to their beneficial effects on circulation and digestive systems in Asia for thousands of years. Besides, monascin and ankaflavin, secondary metabolites from Monascus-fermented products, have proven anti-inflammatory and immunomodulatory effects. In previous research, monascin and ankaflavin ameliorated ovalbumin-induced airway allergic reaction often used as a type I allergy asthma model. Additionally, mast cells play critical roles in type I allergy. Therefore, RBL-2H3 cells were used as the mast cell model to determine whether the improving effects on asthma of monascin and ankaflavin came from influencing mast cells. PMA and ionomycin are common activators of mast cells because they stimulate the main signaling molecules during mast cell activation. Forty micromolar monascin and ankaflavin inhibited PMA/ionomycin-induced mast cell degranulation and TNF-α secretion through suppressing the phosphorylation of PKC and MAPK family ERK, JNK, and p38. Consequently, monascin and ankaflavin affected the activation of mast cells and may have the potential to improve type I allergy.

  15. Formation of 1-octen-3-ol from Aspergillus flavus conidia is accelerated after disruption of cells independently of Ppo oxygenases, and is not a main cause of inhibition of germination.

    PubMed

    Miyamoto, Kana; Murakami, Tomoko; Kakumyan, Pattana; Keller, Nancy P; Matsui, Kenji

    2014-01-01

    Eight-carbon (C8) volatiles, such as 1-octen-3-ol, are ubiquitous among fungi. They are the volatiles critical for aroma and flavor of fungi, and assumed to be signals controlling germination of several fungi. In this study, we found that intact Aspergillus flavus conidia scarcely synthesized C8 volatiles but repeated freeze-thaw treatment that made the cell membrane permeable promoted (R)-1-octen-3-ol formation. Loss or down regulation of any one of five fatty acid oxygenases (PpoA, PpoB, PpoC, PpoD or lipoxygenase) hypothesized contribute to 1-octen-3-ol formation had little impact on production of this volatile. This suggested that none of the oxygenases were directly involved in the formation of 1-octen-3-ol or that compensatory pathways exist in the fungus. Germination of the conidia was markedly inhibited at high density (1.0 × 10(9)spores mL(-1)). It has been postulated that 1-octen-3-ol is an autoinhibitor suppressing conidia germination at high density. 1-Octen-3-ol at concentration of no less than 10 mM was needed to suppress the germination while the concentration of 1-octen-3-ol in the suspension at 1.0 × 10(9) mL(-1) was under the detection limit (<1 µM). Thus, 1-octen-3-ol was not the principal component responsible for inhibition of germination. Instead, it was evident that the other heat-labile factor(s) suppressed conidial germination.

  16. Inhibition of the microsomal N-hydroxylation of 2-amino-6-nitrotoluene by a metabolite of methimazole.

    PubMed

    Kedderis, G L; Rickert, D E

    1983-06-15

    Inhibition studies were used to investigate the identity of the microsomal enzyme(s) responsible for the NADPH-dependent N-hydroxylation of 2-amino-6-nitrotoluene. The N-hydroxylation reaction was inhibited by several cytochrome P-450 inhibitors as well as by methimazole, a substrate for flavin-containing monooxygenase. Heat inactivation of flavin-containing monooxygenase had no effect on the rate of the reaction but abolished the inhibition by methimazole. These results indicate that the flavin-containing monooxygenase-mediated metabolism of methimazole produced an inhibitor of the cytochrome P-450-catalyzed N-hydroxylation reaction. When glutathione was included in the incubation the inhibition by methimazole was abolished, presumably due to the reduction of oxygenated metabolites of methimazole. These results show that methimazole inhibition does not necessarily implicate flavin-containing monooxygenase in microsomal N-hydroxylation reactions.

  17. Kakkalide and its metabolite irisolidone ameliorate carrageenan-induced inflammation in mice by inhibiting NF-κB pathway.

    PubMed

    Min, Sung-Won; Park, Young-Jun; Kim, Dong-Hyun

    2011-10-01

    The anti-inflammatory activities of kakkalide, a major constituent of the flower of Pueraria thunbergiana, and irisolidone, a metabolite of kakkalide produced by intestinal microflora, against carrageenan-induced inflammation in air pouches on the backs of mice and in lipopolysaccharide (LPS)-stimulated peritoneal macrophages were investigated. Kakkalide and irisolidone down-regulated the gene expression of cytokines [tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β)] and cyclooxygenase-2 (COX-2) and the production of pro-inflammatory cytokines, TNF-α and IL-1β, and inflammatory mediators, NO and prostaglandin E(2) (PGE(2)), in LPS-stimulated peritoneal macrophages. These agents also inhibited the phosphorylation of IκB-α and the nuclear translocation of nuclear factor-kappa B (NF-κB). Orally administered kakkalide and irisolidone significantly reduced carrageenan-induced inflammatory markers, leukocyte number, and protein amount in the exudates of the air pouch. These constituents also inhibited PGE(2) production and COX-2 inducible nitric oxide synthase, IL-1β, and TNF-α expression. These agents also inhibited NF-κB activation. The anti-inflammatory effects of irisolidone were more potent than those of kakkalide. Based on these findings, kakkalide and irisolidone may inhibit inflammatory reactions via NF-κB pathway, and irisolidone, a metabolite of kakkalide, may more potently inhibit these inflammatory reactions.

  18. Heme oxygenase inhibition by α-(1H-imidazol-1-yl)-ω-phenylalkanes: effect of introduction of heteroatoms in the alkyl linker.

    PubMed

    Vlahakis, Jason Z; Lazar, Carmen; Roman, Gheorghe; Vukomanovic, Dragic; Nakatsu, Kanji; Szarek, Walter A

    2012-05-01

    Several α-(1H-imidazol-1-yl)-ω-phenylalkanes were synthesized and evaluated as novel inhibitors of heme oxygenase (HO). These compounds were found to be potent and selective for the stress-induced isozyme HO-1, showing mostly weak activity toward the constitutive isozyme HO-2. The introduction of an oxygen atom in the alkyl linker produced analogues with decreased potency toward HO-1, whereas the presence of a sulfur atom in the linker gave rise to analogues with greater potency toward HO-1 than the carbon-containing analogues. The most potent compounds studied contained a five-atom linker between the imidazolyl and phenyl moieties, whereas the most HO-1-selective compounds contained a four-atom linker between these groups. The compounds with a five-atom linker containing a heteroatom (O or S) were found to be the most potent inhibitors of HO-2; 1-(N-benzylamino)-3-(1H-imidazol-1-yl)propane dihydrochloride, with a nitrogen atom in the linker, was found to be inactive.

  19. Inhibition effect of secondary metabolites accumulated in a pervaporation membrane bioreactor on ethanol fermentation of Saccharomyces cerevisiae.

    PubMed

    Fan, Senqing; Xiao, Zeyi; Tang, Xiaoyu; Chen, Chunyan; Zhang, Yan; Deng, Qing; Yao, Peina; Li, Weijia

    2014-06-01

    The secondary metabolites accumulated in a pervaporation membrane bioreactor during ethanol fermentation were mostly composed of acetic acid, lactic acid, propionic acid, citric acid, succinic acid and glycerol. The inhibition effect of these compounds at a broad concentration range was studied through ethanol fermentation by Saccharomyces cerevisiae. An increasing concentration of the secondary metabolites led to longer lag time and a reduction of cell growth. The specific cell growth rate, cell yield, ethanol productivity were only 0.061 h(-1), 0.024, 0.47 g L(-1) h(-1) respectively, when the medium contained 3.12 g of acetic acid, 10.23 g of lactic acid, 2.72 g of propionic acid, 1.35 g of citric acid, 2.26 g of succinic acid and 49.25 g of glycerol per liter (a concentration level in pervaporation membrane bioreactor at later fermentation period). By increasing pH of the medium to 6.0-8.0, the inhibition of these secondary metabolites could be greatly relieved.

  20. [Identification of metabolites of epiberberine in rat liver microsomes and its inhibiting effects on CYP2D6].

    PubMed

    Yang, Xiao-Yan; Ye, Jing; Sun, Gui-Xia; Xue, Bao-Juan; Zhao, Yuan-Yuan; Miao, Pei-Pei; Su, Jin; Zhang, Yu-Jie

    2014-10-01

    Epiberberine, one of the most important isoquinoline alkaloid in Coptidis Rhizoma, possesses extensive pharmacological activities. In this paper, the liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to study phase I and phase II metabolites. A Thermo HPLC system (including Surveyor AS, Surveyor LC Pump, Surveyor PDA. USA) was used. The cocktail probe drugs method was imposed to determine the content change of metoprolol, dapsone, phenacetin, chlorzoxazone and tolbutamide simultaneously for evaluating the activity of CYP2D6, CYP3A4, CYP1A2, CYP2E1 and CYP2C9 under different concentrations of epiberberine in rat liver microsomes. The result showed that epiberberine may have phase I and phase II metabolism in the rat liver and two metabolites in phase I and three metabolites in phase II are identified in the temperature incubation system of in vitro liver microsomes. Epiberberine showed significant inhibition on CYP2D6 with IC50 value of 35.22 μmol L(-1), but had no obvious inhibiting effect on the activities of CYP3A4, CYP1A2, CYP2E1 and CYP2C9. The results indicated that epiberberine may be caused drug interactions based on CYP2D6 enzyme. This study aims to provide a reliable experimental basis for its further research and development of epiberberine.

  1. Inhibition of human catechol-O-methyltransferase-mediated dopamine O-methylation by daphnetin and its Phase II metabolites.

    PubMed

    Liang, Si-Cheng; Ge, Guang-Bo; Xia, Yang-Liu; Pei-Pei, Dong; Ping, Wang; Qi, Xiao-Yi; Cai-Xia, Tu; Ling, Yang

    2016-07-20

    1. Finding and developing inhibitors of catechol-O-methyltransferase (COMT) from natural products is highly recommended. Daphnetin, a naturally occurring catechol from the family thymelaeaceae, has a chemical structure similar to several potent COMT inhibitors reported previously. Here the potential of daphnetin and its Phase II metabolites as inhibitors of COMT was investigated with human liver cytosol (HLC). 2. Daphnetin and its methylated metabolite (8-O-methyldaphnetin) were found to inhibit COMT-mediated dopamine O-methylation in a dose-dependent manner. The IC50 values for daphnetin (0.51∼0.53 μM) and 8-O-methyldaphnetin (22.5∼24.3 μM) were little affected by changes in HLC concentrations. Further kinetic analysis showed the differences in inhibition type and parameters (Ki) between daphnetin (competitive, 0.37 μM) and 8-O-methyldaphnetin (noncompetitive, 25.7 μM). Other metabolites, including glucuronidated and sulfated species, showed negligible inhibition against COMT. By using in vitro-in vivo extrapolation (IV-IVE), a 24.3-fold increase in the exposure of the COMT substrates was predicted when they are co-administrated with daphnetin. 3. With high COMT-inhibiting activity, daphnetin could serve as a lead compound for the design and development of new COMT inhibitors. Also, much attention should be paid to the clinical impact of combination of daphnetin and herbal preparations containing daphnetin with the drugs primarily cleared by COMT.

  2. Lycopene inhibits cyclic strain-induced endothelin-1 expression through the suppression of reactive oxygen species generation and induction of heme oxygenase-1 in human umbilical vein endothelial cells.

    PubMed

    Sung, Li-Chin; Chao, Hung-Hsing; Chen, Cheng-Hsien; Tsai, Jen-Chen; Liu, Ju-Chi; Hong, Hong-Jye; Cheng, Tzu-Hurng; Chen, Jin-Jer

    2015-06-01

    Lycopene is the most potent active antioxidant among the major carotenoids, and its use has been associated with a reduced risk for cardiovascular disease (CVD). Endothelin-1 (ET-1) is a powerful vasopressor synthesized by endothelial cells and plays a crucial role in the pathophysiology of CVD. However, the direct effects of lycopene on vascular endothelial cells have not been fully described. This study investigated the effects of lycopene on cyclic strain-induced ET-1 gene expression in human umbilical vein endothelial cells (HUVECs) and identified the signal transduction pathways that are involved in this process. Cultured HUVECs were exposed to cyclic strain (20% in length, 1 Hz) in the presence or absence of lycopene. Lycopene inhibited strain-induced ET-1 expression through the suppression of reactive oxygen species (ROS) generation through attenuation of p22(phox) mRNA expression and NAD(P)H oxidase activity. Furthermore, lycopene inhibited strain-induced ET-1 secretion by reducing ROS-mediated extrace-llular signal-regulated kinase (ERK) phosphorylation. Conversely, lycopene treatment enhanced heme oxygenase-1 (HO-1) gene expression through the activation of phosphoinositide 3-kinase (PI3K)/Akt pathway, followed by induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation; in addition, HO-1 silencing partially inhibited the repressive effects of lycopene on strain-induced ET-1 expression. In summary, our study showed, for the first time, that lycopene inhibits cyclic strain-induced ET-1 gene expression through the suppression of ROS generation and induction of HO-1 in HUVECs. Therefore, this study provides new valuable insight into the molecular pathways that may contribute to the proposed beneficial effects of lycopene on the cardiovascular system.

  3. The marine-derived fungal metabolite, terrein, inhibits cell proliferation and induces cell cycle arrest in human ovarian cancer cells.

    PubMed

    Chen, Yi-Fei; Wang, Shu-Ying; Shen, Hong; Yao, Xiao-Fen; Zhang, Feng-Li; Lai, Dongmei

    2014-12-01

    The difficulties faced in the effective treatment of ovarian cancer are multifactorial, but are mainly associated with relapse and drug resistance. Cancer stem-like cells have been reported to be an important contributor to these hindering factors. In this study, we aimed to investigate the anticancer activities of a bioactive fungal metabolite, namely terrein, against the human epithelial ovarian cancer cell line, SKOV3, primary human ovarian cancer cells and ovarian cancer stem-like cells. Terrein was separated and purified from the fermentation metabolites of the marine sponge-derived fungus, Aspergillus terreus strain PF26. Its anticancer activities against ovarian cancer cells were investigated by cell proliferation assay, cell migration assay, cell apoptosis and cell cycle assays. The ovarian cancer stem-like cells were enriched and cultured in a serum-free in vitro suspension system. Terrein inhibited the proliferation of the ovarian cancer cells by inducing G2/M phase cell cycle arrest. The underlying mechanisms involved the suppression of the expression of LIN28, an important marker gene of stemness in ovarian cancer stem cells. Of note, our study also demonstrated the ability of terrein to inhibit the proliferation of ovarian cancer stem-like cells, in which the expression of LIN28 was also downregulated. Our findings reveal that terrein (produced by fermention) may prove to be a promising drug candidate for the treatment of ovarian cancer by inhibiting the proliferation of cancer stem-like cells.

  4. Serratia Secondary Metabolite Prodigiosin Inhibits Pseudomonas aeruginosa Biofilm Development by Producing Reactive Oxygen Species that Damage Biological Molecules

    PubMed Central

    Kimyon, Önder; Das, Theerthankar; Ibugo, Amaye I.; Kutty, Samuel K.; Ho, Kitty K.; Tebben, Jan; Kumar, Naresh; Manefield, Mike

    2016-01-01

    Prodigiosin is a heterocyclic bacterial secondary metabolite belonging to the class of tripyrrole compounds, synthesized by various types of bacteria including Serratia species. Prodigiosin has been the subject of intense research over the last decade for its ability to induce apoptosis in several cancer cell lines. Reports suggest that prodigiosin promotes oxidative damage to double-stranded DNA (dsDNA) in the presence of copper ions and consequently leads to inhibition of cell-cycle progression and cell death. However, prodigiosin has not been previously implicated in biofilm inhibition. In this study, the link between prodigiosin and biofilm inhibition through the production of redox active metabolites is presented. Our study showed that prodigiosin (500 μM) (extracted from Serratia marcescens culture) and a prodigiosin/copper(II) (100 μM each) complex have strong RNA and dsDNA cleaving properties while they have no pronounced effect on protein. Results support a role for oxidative damage to biomolecules by H2O2 and hydroxyl radical generation. Further, it was demonstrated that reactive oxygen species scavengers significantly reduced the DNA and RNA cleaving property of prodigiosin. P. aeruginosa cell surface hydrophobicity and biofilm integrity were significantly altered due to the cleavage of nucleic acids by prodigiosin or the prodigiosin/copper(II) complex. In addition, prodigiosin also facilitated the bactericidal activity. The ability of prodigiosinto cause nucleic acid degradation offers novel opportunities to interfere with extracellular DNA dependent bacterial biofilms. PMID:27446013

  5. Sulfhydryl compounds inhibit the cyto- and geno-toxicity of o-phenylphenol metabolites in CHO-K1 cells.

    PubMed

    Tayama, S; Nakagawa, Y

    1991-01-01

    The effects of cysteine and reduced glutathione (GSH) on the genotoxicity of o-phenylphenol (OPP) and its metabolites, phenylhydroquinone (PHQ) and phenylbenzoquinone (PBQ), were examined using the frequency of sister-chromatid exchanges (SCEs) and chromosome aberrations in CHO-K1 cells as parameters. Cytotoxic (cell-progression delay) and cytogenetic effects induced by a 3-h treatment with OPP, PHQ (100 micrograms/ml) or PBQ (50 micrograms/ml) with S9 mix after a 27-h expression time were inhibited by cysteine or GSH (3-10 mM). Materials corresponding to the cysteine or GSH adducts were found by HPLC in each incubation mixture. In the culture without S9 mix, PHQ and PBQ showed severe cytotoxicity since no metaphases could be obtained at doses over 25 and 5 micrograms/ml, respectively, and the sulfhydryl compounds inhibited the toxicity by the formation of adducts with PBQ and by inhibiting the formation of PBQ in the case of PHQ. With PHQ, the sulfhydryl compounds appeared to inhibit autooxidation. However, the sulfhydryl compounds did not inhibit the cytotoxic and cytogenetic effects caused by OPP in the cell mixture without S9 mix, but on the contrary intensified them. No adduct formation was detected in the incubation solution. On the basis of these results, it is considered that electrophilic quinone (PBQ) and/or semiquinone (phenylsemiquinone, PSQ) radicals, capable of binding to nucleophilic small molecules (such as cysteine and GSH) or (biological) macromolecules, are produced from metabolite PHQ in metabolic oxidation of OPP, and induce cyto- and geno-toxic effects in the cells. The cyto- and geno-toxic effects of OPP itself to the cells are clearly independent of any electrophilic radical reaction.

  6. Effects of Catechol O-Methyl Transferase Inhibition on Anti-Inflammatory Activity of Luteolin Metabolites.

    PubMed

    Ha, Sang Keun; Lee, Jin-Ah; Cho, Eun Jung; Choi, Inwook

    2017-02-01

    Although luteolin is known to have potent anti-inflammatory activities, much less information has been provided on such activities of its hepatic metabolites. Luteolin was subjected to hepatic metabolism in HepG2 cells either without or with catechol O-methyl transferase (COMT) inhibitor. To identify hepatic metabolites of luteolin without (luteolin metabolites, LMs) or with COMT inhibitor (LMs+CI), metabolites were treated by β-glucuronidase and sulfatase, and found that they were composed of glucuronide and sulfate conjugates of diosmetin in LMs or these conjugates of luteolin in LMs+CI. LMs and LMs+CI were examined for their anti-inflammatory activities on LPS stimulated Raw 264.7 cells. Expression of iNOS and production of nitric oxide and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 were suppressed more effectively by the treatment with LMs+CI than LMs. Our data provide a new insight on possible improvement in functional properties of luteolin on target cells by modifying their metabolic pathway in hepatocytes.

  7. Flagella-Driven Flows Circumvent Diffusive Bottlenecks that Inhibit Metabolite Exchange

    NASA Astrophysics Data System (ADS)

    Short, Martin; Solari, Cristian; Ganguly, Sujoy; Kessler, John; Goldstein, Raymond; Powers, Thomas

    2006-03-01

    The evolution of single cells to large and multicellular organisms requires matching the organisms' needs to the rate of exchange of metabolites with the environment. This logistic problem can be a severe constraint on development. For organisms with a body plan that approximates a spherical shell, such as colonies of the volvocine green algae, the required current of metabolites grows quadratically with colony radius whereas the rate at which diffusion can exchange metabolites grows only linearly with radius. Hence, there is a bottleneck radius beyond which the diffusive current cannot keep up with metabolic demands. Using Volvox carteri as a model organism, we examine experimentally and theoretically the role that advection of fluid by surface-mounted flagella plays in enhancing nutrient uptake. We show that fluid flow driven by the coordinated beating of flagella produces a convective boundary layer in the concentration of a diffusing solute which in turn renders the metabolite exchange rate quadratic in the colony radius. This enhanced transport circumvents the diffusive bottleneck, allowing increase in size and thus evolutionary transitions to multicellularity in the Volvocales.

  8. Cyclo-oxygenase-2: pharmacology, physiology, biochemistry and relevance to NSAID therapy

    PubMed Central

    Mitchell, Jane A; Warner, Timothy D

    1999-01-01

    Cyclo-oxygenase is expressed in cells in two distinct isoforms. Cyclo-oxygenase-1 is present constitutively whilst cyclo-oxygenase-2 is expressed primarily after inflammatory insult. The activity of cyclo-oxygenase-1 and -2 results in the production of a variety of potent biological mediators (the prostaglandins) that regulate homeostatic and disease processes. Inhibitors of cyclo-oxygenase include the nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin, ibuprofen and diclofenac. NSAIDs inhibit cyclo-oxygenase-2 at the site of inflammation, to produce their therapeutic benefits, as well as cyclo-oxygenase-1 in the gastric mucosa, which produces gastric damage. Most recently selective inhibitors of cyclo-oxygenase-2 have been developed and introduced to man for the treatment of arthritis. Moreover, recent epidemiological evidence suggests that cyclo-oxygenase inhibitors may have important therapeutic relevance in the prevention of some cancers or even Alzheimer's disease. This review will discuss how the new advancements in NSAIDs research has led to the development of a new class of NSAIDs that has far reaching implications for the treatment of disease. PMID:10578123

  9. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression.

    PubMed

    Seo, Seung-Hee; Jeong, Gil-Saeng

    2015-12-01

    Oxidative skin damage and skin inflammation play key roles in the pathogenesis of skin-related diseases. Fisetin is a naturally occurring flavonoid abundantly found in several vegetables and fruits. Fisetin has been shown to exert various positive biological effects, such as anti-cancer, anti-proliferative, neuroprotective and anti-oxidative effects. In this study, we investigate the skin protective effects and anti-inflammatory properties of fisetin in hydrogen peroxide- and TNF-α-challenged human keratinocyte HaCaT cells. When HaCaT cells were treated with non-cytotoxic concentrations of fisetin (1-20μM), heme oxygenase (HO)-1 mRNA and protein expression increased in a dose-dependent manner. Furthermore, fisetin dose-dependently increased cell viability and reduced ROS production in hydrogen peroxide-treated HaCaT cells. Fisetin also inhibited the production of NO, PGE2 IL-1β, IL-6, expression of iNOS and COX-2, and activation of NF-κB in HaCaT cells treated with TNF-α. Fisetin induced Nrf2 translocation to the nuclei. HO-1 siRNA transient transfection reversed the effects of fisetin on cytoprotection, ROS reduction, NO, PGE2, IL-1β, IL-6, and TNF-α production, and NF-κB DNA-binding activity. Moreover, fisetin increased Akt phosphorylation and a PI3K pathway inhibitor (LY294002) abolished fisetin-induced cytoprotection and NO inhibition. Taken together, these results provide evidence for a beneficial role of fisetin in skin therapy.

  10. Inhibition of the Serotonin Transporter Is Altered by Metabolites of Selective Serotonin and Norepinephrine Reuptake Inhibitors and Represents a Caution to Acute or Chronic Treatment Paradigms.

    PubMed

    Krout, Danielle; Rodriquez, Meghan; Brose, Stephen A; Golovko, Mikhail Y; Henry, L Keith; Thompson, Brent J

    2016-12-28

    Previous studies of transgenic mice carrying a single isoleucine to methionine substitution (I172M) in the serotonin transporter (SERT) demonstrated a loss of sensitivity to multiple antidepressants (ADs) at SERT. However, the ability of AD metabolites to antagonize SERT was not assessed. Here, we evaluated the selectivity and potency of these metabolites for inhibition of SERT in mouse brain-derived synaptosomes and blood platelets from wild-type (I172 mSERT) and the antidepressant-insensitive mouse M172 mSERT. The metabolites norfluoxetine and desmethylsertraline lost the selectivity demonstrated by the parent compounds for inhibition of wild-type mSERT over M172 mSERT, whereas desvenlafaxine and desmethylcitalopram retained selectivity. Furthermore, we show that the metabolite desmethylcitalopram accumulates in the brain and that the metabolites desmethylcitalopram, norfluoxetine, and desvenlafaxine inhibit serotonin uptake in wild-type mSERT at potencies similar to those of their parent compounds, suggesting that metabolites may play a role in effects observed following AD administration in wild-type and M172 mice.

  11. Gelam honey inhibits lipopolysaccharide-induced endotoxemia in rats through the induction of heme oxygenase-1 and the inhibition of cytokines, nitric oxide, and high-mobility group protein B1.

    PubMed

    Kassim, Mustafa; Yusoff, Kamaruddin Mohd; Ong, Gracie; Sekaran, Shamala; Yusof, Mohd Yasim Bin Md; Mansor, Marzida

    2012-09-01

    Malaysian Gelam honey has anti-inflammatory and antibacterial properties, a high antioxidant capacity, and free radical-scavenging activity. Lipopolysaccharide (LPS) stimulates immune cells to sequentially release early pro- and anti-inflammatory cytokines and induces the synthesis of several related enzymes. The aim of this study was to investigate the effect of the intravenous injection of honey in rats with LPS-induced endotoxemia. The results showed that after 4h of treatment, honey reduced cytokine (tumor necrosis factor-α, interleukins 1β, and 10) and NO levels and increased heme oxygenase-1 levels. After 24h, a decrease in cytokines and NO and an increase in HO-1 were seen in all groups, whereas a reduction in HMGB1 occurred only in the honey-treated groups. These results support the further examination of honey as a natural compound for the treatment of a wide range of inflammatory diseases.

  12. Mitochondrial toxicity of diclofenac and its metabolites via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria: Possible role in drug induced liver injury (DILI).

    PubMed

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-03-01

    Diclofenac is a widely prescribed NSAID, which by itself and its reactive metabolites (Phase-I and Phase-II) may be involved in serious idiosyncratic hepatotoxicity. Mitochondrial injury is one of the mechanisms of drug induced liver injury (DILI). In the present work, an investigation of the inhibitory effects of diclofenac (Dic) and its phase I [4-hydroxy diclofenac (4'-OH-Dic) and 5-hydroxy diclofenac (5-OH-dic)] and Phase-II [diclofenac acyl glucuronide (DicGluA) and diclofenac glutathione thioester (DicSG)] metabolites, on ATP synthesis in rat liver mitochondria was carried out. A mechanism based inhibition of ATP synthesis is exerted by diclofenac and its metabolites. Phase-I metabolite (4'-OH-Dic) and Phase-II metabolites (DicGluA and DicSG) showed potent inhibition (2-5 fold) of ATP synthesis, where as 5-OH-Dic, one of the Phase-I metabolite, was a less potent inhibitor as compared to Dic. The calculated kinetic constants of mechanism based inhibition of ATP synthesis by Dic showed maximal rate of inactivation (Kinact) of 2.64 ± 0.15 min(-1) and half maximal rate of inactivation (KI) of 7.69 ± 2.48 μM with Kinact/KI ratio of 0.343 min(-1) μM(-1). Co-incubation of mitochondria with Dic and reduced GSH exhibited a protective effect on Dic mediated inhibition of ATP synthesis. Our data from this study strongly indicate that Dic as well as its metabolites could be involved in the hepato-toxic action through inhibition of ATP synthesis.

  13. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    SciTech Connect

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi; Rhim, Hyangshuk; Bae, Yong Soo; Choi, Soo Young; Park, Jinseu

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  14. Inhibition of Bacillus cereus Strains by Antimicrobial Metabolites from Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21.

    PubMed

    Soria, M Cecilia; Audisio, M Carina

    2014-12-01

    Bacillus cereus is an endospore-forming, Gram-positive bacterium able to cause foodborne diseases. Lactic acid bacteria (LAB) are known for their ability to synthesize organic acids and bacteriocins, but the potential of these compounds against B. cereus has been scarcely documented in food models. The present study has examined the effect of the metabolites produced by Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21 on the viability of select B. cereus strains. Furthermore, the effect of E. faecium SM21 metabolites against B. cereus strains has also been investigated on a rice food model. L. johnsonii CRL1647 produced 128 mmol/L of lactic acid, 38 mmol/L of acetic acid and 0.3 mmol/L of phenyl-lactic acid. These organic acids reduced the number of vegetative cells and spores of the B. cereus strains tested. However, the antagonistic effect disappeared at pH 6.5. On the other hand, E. faecium SM21 produced only lactic and acetic acid (24.5 and 12.2 mmol/L, respectively) and was able to inhibit both vegetative cells and spores of the B. cereus strains, at a final fermentation pH of 5.0 and at pH 6.5. This would indicate the action of other metabolites, different from organic acids, present in the cell-free supernatant. On cooked rice grains, the E. faecium SM21 bacteriocin(s) were tested against two B. cereus strains. Both of them were significantly affected within the first 4 h of contact; whereas B. cereus BAC1 cells recovered after 24 h, the effect on B. cereus 1 remained up to the end of the assay. The LAB studied may thus be considered to define future strategies for biological control of B. cereus.

  15. P-glycoprotein inhibition by the agricultural pesticide propiconazole and its hydroxylated metabolites: Implications for pesticide-drug interactions.

    PubMed

    Mazur, Christopher S; Marchitti, Satori A; Zastre, Jason

    2015-01-05

    The human efflux transporter P-glycoprotein (P-gp, MDR1) functions as an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure assessment because of their use as both pesticides and drugs. Propiconazole is an agricultural pesticide undergoing evaluation by the U.S. Environmental Protection Agency's Endocrine Disruptor Screening Program. In this study, the P-gp interaction of propiconazole and its hydroxylated metabolites were evaluated using MDR1-expressing membrane vesicles and NIH-3T3/MDR1 cells. Membrane vesicle assays demonstrated propiconazole (IC50,122.9μM) and its metabolites (IC50s, 350.8μM, 366.4μM, and 456.3μM) inhibited P-gp efflux of a probe substrate, with propiconazole demonstrating the strongest interaction. P-gp mediated transport of propiconazole in MDR1-expressed vesicles was not detected indicating propiconazole interacts with P-gp as an inhibitor rather than a substrate. In NIH-3T3/MDR1 cells, propiconazole (1 and 10μM) led to decreased cellular resistance (chemosensitization) to paclitaxel, a chemotherapeutic drug and known MDR1 substrate. Collectively, these results have pharmacokinetic and risk assessment implications as P-gp interaction may influence pesticide toxicity and the potential for pesticide-drug interactions.

  16. The neoflavonoid latifolin isolated from MeOH extract of Dalbergia odorifera attenuates inflammatory responses by inhibiting NF-κB activation via Nrf2-mediated heme oxygenase-1 expression.

    PubMed

    Lee, Dong-Sung; Kim, Kyoung-Su; Ko, Wonmin; Li, Bin; Keo, Samell; Jeong, Gil-Saeng; Oh, Hyuncheol; Kim, Youn-Chul

    2014-08-01

    In Korea and China, the heartwood of Dalbergia odorifera T. Chen is an important traditional medicine used to treat blood disorders, ischemia, swelling, and epigastric pain. In this study, we investigated the inhibitory effects of latifolin, a major neoflavonoid component isolated from the MeOH extract of D. odorifera, on the inflammatory reaction of thioglycollate-elicited peritoneal macrophages exposed to lipopolysaccharide, with a particular focus on heme oxygenase-1 (HO-1) expression and nuclear factor-κB (NF-κB) signaling. Latifolin significantly inhibited the protein and mRNA expression of inducible nitric oxide synthase and COX-2, reduced NO, prostaglandins E2, tumor necrosis factor-α, and interleukin-1β production in primary murine peritoneal macrophages exposed to lipopolysaccharide. Latifolin also suppressed inhibitor κB-α levels, NF-κB nuclear translocation, and NF-κB DNA-binding activity. Furthermore, latifolin upregulated HO-1 expression via nuclear transcription factor-E2-related factor 2 (Nrf2) nuclear translocation. In addition, using inhibitor tin protoporphyrin IX (SnPP), an inhibitor of HO-1, it was verified that the inhibitory effects of latifolin on the proinflammatory mediators and NF-κB DNA-binding activity were associated with the HO-1 expression. These results suggested that the latifolin-mediated up-regulation of HO-1 expression played a critical role in anti-inflammatory effects in macrophages. This study therefore identified potent therapeutic effects of latifolin, which warrants further investigation as a potential treatment for inflammatory diseases.

  17. 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-κB, AP-1 and MAPK pathways in human proximal tubular cells.

    PubMed

    Gong, Xuezhong; Ivanov, Vladimir N; Hei, Tom K

    2016-09-01

    Our recent study demonstrated that sodium arsenite at a clinically relevant dose induced nephrotoxicity in human renal proximal tubular epithelial cell line HK-2, which could be inhibited by natural product 2,3,5,6-tetramethylpyrazine (TMP) with antioxidant activity. The present study demonstrated that arsenic exposure resulted in protein and enzymatic induction of heme oxygenase-1 (HO-1) in dose- and time-dependent manners in HK-2 cells. Blocking HO-1 enzymatic activity by zinc protoporphyrin (ZnPP) augmented arsenic-induced apoptosis, ROS production and mitochondrial dysfunction, suggesting a critical role for HO-1 as a renal protectant in this procession. On the other hand, TMP, upstream of HO-1, inhibited arsenic-induced ROS production and ROS-dependent HO-1 expression. TMP also prevented mitochondria dysfunction and suppressed activation of the intrinsic apoptotic pathway in HK-2 cells. Our results revealed that the regulation of arsenic-induced HO-1 expression was performed through multiple ROS-dependent signal pathways and the corresponding transcription factors, including p38 MAPK and JNK (but not ERK), AP-1, Nrf2 and NF-κB. TMP inhibited arsenic-induced activations of JNK, p38 MAPK, ERK, AP-1 and Nrf2 and block HO-1 protein expression. The present study, furthermore, demonstrated arsenic-induced expression of arsenic response protein 2 (ARS2) that was regulated by p38 MAPK, ERK and NF-κB. To our knowledge, this is the first report showing that ARS2 involved in arsenic-induced nephrotoxicity, while TMP pretreatment prevented such an up-regulation of ARS2 in HK-2 cells. Given ARS2 and HO-1 sharing the similar regulation mechanism, we speculated that ARS2 might also mediate cell survival in this procession. In summary, our study highlighted a role of HO-1 in the protection against arsenic-induced cytotoxicity downstream from the primary targets of TMP and further indicated that TMP may be used as a potential therapeutic agent in the treatment of arsenic

  18. A hydroxylated flavonol, fisetin inhibits the formation of a carcinogenic estrogen metabolite.

    PubMed

    Meng, Xin; Sun, Hui; Yang, Lianrong; Yin, Rui; Qi, Lehui

    2017-03-01

    Fisetin can be found in a wide variety of plants and possesses strong efficacy against many cancers. 17β-Estradiol (E2) is hydrolyzed to 4-hydroxy-E2 (4-OHE2) via cytochrome P450 (CYP) 1B1 in vivo. In estrogen target tissues including the mammary gland, ovaries, and uterus, CYP1B1 is highly expressed, and 4-OHE2 is predominantly formed in cancerous tissues. Herein, we investigated the inhibitory activity of fisetin and flavone against CYP1B1 using estrogen E2 as substrate in vitro to reveal structure-activity relationship between structure of flavonoids and inhibition. The results showed that fisetin possessed inhibitory effect on CYP1B1 activity. Compared with flavone, the inhibition of fisetin was stronger. The Vmax and Ki values were 1.950±0.157pmol/μgprotein/min and 4.925±0.689nM for fisetin and 2.277±0.231pmol/μgprotein/min and 9.148±2.150nM for flavone, respectively. By kinetic analyses, both fisetin and flavone displayed mixed inhibition. Taken together the data suggested that fisetin is able to inhibit the formation of carcinogenic 4-OHE2 from E2, which reveals one of its anti-cancer mechanisms and helps to reveal the relationship between the structure of flavonoids and the inhibition CYP1B1 for discovering new drugs in cancer therapy and prevention.

  19. Inhibition by pregnenolone sulphate, a metabolite of the neurosteroid pregnenolone, of voltage-gated sodium channels expressed in Xenopus oocytes.

    PubMed

    Horishita, Takafumi; Ueno, Susumu; Yanagihara, Nobuyuki; Sudo, Yuka; Uezono, Yasuhito; Okura, Dan; Sata, Takeyoshi

    2012-01-01

    Neurosteroids are known as allosteric modulators of the ligand-gated ion channel superfamily. Voltage-gated sodium channels (Na(v)) play an important role in mediating excitotoxic damages. Here we report the effects of neurosteroids on the function of Na(v), using voltage-clamp techniques in Xenopus oocytes expressed with the Na(v)1.2 α subunit. Pregnenolone sulphate, but not pregnenolone, inhibited sodium currents (I(Na)) at 3 - 100 μmol/L. The suppression of I(Na) by pregnenolone sulphate was due to increased inactivation with little change in activation. These findings suggest that pregnenolone sulphate, a metabolite of pregnenolone, suppresses the function of Na(v) via increased inactivation, which may contribute to the neuroprotection.

  20. Inhibition of hERG potassium channel by the antiarrhythmic agent mexiletine and its metabolite m-hydroxymexiletine

    PubMed Central

    Gualdani, Roberta; Tadini-Buoninsegni, Francesco; Roselli, Mariagrazia; Defrenza, Ivana; Contino, Marialessandra; Colabufo, Nicola Antonio; Lentini, Giovanni

    2015-01-01

    Mexiletine is a sodium channel blocker, primarily used in the treatment of ventricular arrhythmias. Moreover, recent studies have demonstrated its therapeutic value to treat myotonic syndromes and to relieve neuropathic pain. The present study aims at investigating the direct blockade of hERG potassium channel by mexiletine and its metabolite m-hydroxymexiletine (MHM). Our data show that mexiletine inhibits hERG in a time- and voltage-dependent manner, with an IC50 of 3.7 ± 0.7 μmol/L. Analysis of the initial onset of current inhibition during a depolarizing test pulse indicates mexiletine binds preferentially to the open state of the hERG channel. Looking for a possible mexiletine alternative, we show that m-hydroxymexiletine (MHM), a minor mexiletine metabolite recently reported to be as active as the parent compound in an arrhythmia animal model, is a weaker hERG channel blocker, compared to mexiletine (IC50 = 22.4 ± 1.2 μmol/L). The hERG aromatic residues located in the S6 helix (Tyr652 and Phe656) are crucial in the binding of mexiletine and the different affinities of mexiletine and MHM with hERG channel are interpreted by modeling their corresponding binding interactions through ab initio calculations. The simulations demonstrate that the introduction of a hydroxyl group on the meta-position of the aromatic portion of mexiletine weakens the interaction of the drug xylyloxy moiety with Tyr652. These results provide further insights into the molecular basis of drug/hERG interactions and, in agreement with previously reported results on clofilium and ibutilide analogs, support the possibility of reducing hERG potency and related toxicity by modifying the aromatic pattern of substitution of clinically relevant compounds. PMID:26516576

  1. Arachidonic Acid Metabolite 19(S)-HETE Induces Vasorelaxation and Platelet Inhibition by Activating Prostacyclin (IP) Receptor

    PubMed Central

    Chennupati, Ramesh; Nüsing, Rolf M.; Offermanns, Stefan

    2016-01-01

    19(S)-hydroxy-eicosatetraenoic acid (19(S)-HETE) belongs to a family of arachidonic acid metabolites produced by cytochrome P450 enzymes, which play critical roles in the regulation of cardiovascular, renal and pulmonary functions. Although it has been known for a long time that 19(S)-HETE has vascular effects, its mechanism of action has remained unclear. In this study we show that 19(S)-HETE induces cAMP accumulation in the human megakaryoblastic leukemia cell line MEG-01. This effect was concentration-dependent with an EC50 of 520 nM, insensitive to pharmacological inhibition of COX-1/2 and required the expression of the G-protein Gs. Systematic siRNA-mediated knock-down of each G-protein coupled receptor (GPCR) expressed in MEG-01 followed by functional analysis identified the prostacyclin receptor (IP) as the mediator of the effects of 19(S)-HETE, and the heterologously expressed IP receptor was also activated by 19(S)-HETE in a concentration-dependent manner with an EC50 of 567 nM. Pretreatment of isolated murine platelets with 19(S)-HETE blocked thrombin-induced platelets aggregation, an effect not seen in platelets from mice lacking the IP receptor. Furthermore, 19(S)-HETE was able to relax mouse mesenteric artery- and thoracic aorta-derived vessel segments. While pharmacological inhibition of COX-1/2 enzymes had no effect on the vasodilatory activity of 19(S)-HETE these effects were not observed in vessels from mice lacking the IP receptor. These results identify a novel mechanism of action for the CYP450-dependent arachidonic acid metabolite 19(S)-HETE and point to the existence of a broader spectrum of naturally occurring prostanoid receptor agonists. PMID:27662627

  2. Inhibition of rat respiratory-tract cytochrome P-450 isozymes following inhalation of m-Xylene: possible role of metabolites.

    PubMed

    Vaidyanathan, Anu; Foy, J W-D; Schatz, Robert

    2003-06-27

    Xylene is used as a solvent in paints, cleaning agents, and gasoline. Exposure occurs primarily by inhalation. The volatility and lipophilicity of the xylenes make the lung and nasal mucosa the primary target organs. m-Xylene (m-XYL) has been shown to alter cytochrome P-450 (CYP) activity in an organ- and isozyme-specific manner. The purpose of this work was to determine if the metabolism of m-XYL to the inhibitory metabolite m-tolualdehyde (m-ALD) is the cause of inhibition of CYP isozymes following in vivo inhalation exposure to m-XYL (100, 300 ppm), 3-methylbenzyl alcohol (3-MBA) (50, 100 ppm), or m-ALD (50, 100 ppm). A single 6-h inhalation exposure of rats to m-XYL inhibited pulmonary CYPs 2B1, 2E1, and 4B1 in a dose-dependent manner. Inhalation of 3-MBA inhibited pulmonary CYPs 2B1 and 4B1 in a dose-dependent manner. m-ALD inhibited pulmonary CYPs 2B1 and 2E1 in a dose-dependent manner, while 4B1 activity was increased dose dependently. Nasal mucosa CYP 2B1 and 2E1 activity was inhibited following exposure to m-XYL dose dependently, 3-MBA inhibited nasal mucosa CYPs 2E1 and 4B1 dose dependently. CYPs 2B1, 2E1, and 4B1 were inhibited in a dose-dependent fashion following inhalation of m-ALD. Following high-performance liquid chromatography (HPLC) analysis, m-ALD was detected after in vivo exposure to m-XYL, m-ALD, and 3-MBA in a dose-dependent manner, with highest m-ALD levels in the nasal mucosa and lung. Alteration of cytochrome P-450 activity by m-XYL could result in increased or decreased toxicity, changing the metabolic profiles of xenobiotics in coexposure scenarios in an organ-specific manner.

  3. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes.

    PubMed

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi; Rhim, Hyangshuk; Bae, Yong Soo; Choi, Soo Young; Park, Jinseu

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes.

  4. Secondary Metabolites Produced by the Marine Bacterium Halobacillus salinus That Inhibit Quorum Sensing-Controlled Phenotypes in Gram-Negative Bacteria▿

    PubMed Central

    Teasdale, Margaret E.; Liu, Jiayuan; Wallace, Joselynn; Akhlaghi, Fatemeh; Rowley, David C.

    2009-01-01

    Certain bacteria use cell-to-cell chemical communication to coordinate community-wide phenotypic expression, including swarming motility, antibiotic biosynthesis, and biofilm production. Here we present a marine gram-positive bacterium that secretes secondary metabolites capable of quenching quorum sensing-controlled behaviors in several gram-negative reporter strains. Isolate C42, a Halobacillus salinus strain obtained from a sea grass sample, inhibits bioluminescence production by Vibrio harveyi in cocultivation experiments. With the use of bioassay-guided fractionation, two phenethylamide metabolites were identified as the active agents. The compounds additionally inhibit quorum sensing-regulated violacein biosynthesis by Chromobacterium violaceum CV026 and green fluorescent protein production by Escherichia coli JB525. Bacterial growth was unaffected at concentrations below 200 μg/ml. Evidence is presented that these nontoxic metabolites may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. PMID:19060172

  5. Free radical scavenging and COX-2 inhibition by simple colon metabolites of polyphenols: A theoretical approach.

    PubMed

    Amić, Ana; Marković, Zoran; Marković, Jasmina M Dimitrić; Jeremić, Svetlana; Lučić, Bono; Amić, Dragan

    2016-12-01

    Free radical scavenging and inhibitory potency against cyclooxygenase-2 (COX-2) by two abundant colon metabolites of polyphenols, i.e., 3-hydroxyphenylacetic acid (3-HPAA) and 4-hydroxyphenylpropionic acid (4-HPPA) were theoretically studied. Different free radical scavenging mechanisms are investigated in water and pentyl ethanoate as a solvent. By considering electronic properties of scavenged free radicals, hydrogen atom transfer (HAT) and sequential proton loss electron transfer (SPLET) mechanisms are found to be thermodynamically probable and competitive processes in both media. The Gibbs free energy change for reaction of inactivation of free radicals indicates 3-HPAA and 4-HPPA as potent scavengers. Their reactivity toward free radicals was predicted to decrease as follows: hydroxyl>alkoxyls>phenoxyl≈peroxyls>superoxide. Shown free radical scavenging potency of 3-HPAA and 4-HPPA along with their high μM concentration produced by microbial colon degradation of polyphenols could enable at least in situ inactivation of free radicals. Docking analysis with structural forms of 3-HPAA and 4-HPPA indicates dianionic ligands as potent inhibitors of COX-2, an inducible enzyme involved in colon carcinogenesis. Obtained results suggest that suppressing levels of free radicals and COX-2 could be achieved by 3-HPAA and 4-HPPA indicating that these compounds may contribute to reduced risk of colon cancer development.

  6. Sister chromatid exchange induction and cell cycle inhibition by aniline and its metabolites in human fibroblasts

    SciTech Connect

    Wilmer, J.L.; Kligerman, A.D.; Erexson, G.L.

    1981-01-01

    Sister chromatid exchange (SCE) and cell cycle analyses in human fibroblasts were used to ascertain the relative genotoxicity and cytotoxicity of aniline and its metabolites. Significant increases (P0.05) in SCE frequencies were found with aniline HCl, o-aminophenol, N-phenylhydroxylamine, and trimethymelamine (TEM). On an SCE/mmole basis at the highest concentrations examined, o-aminophenol was 270 times more potent than aniline in inducing SCE, whereas TEM was about 390 times more potent than o-aminophenol. Furthermore, fibroblasts treated with o-aminophenol responded in a dose-dependent fashion and exhibited a 2-fold increase in SCE frequency. N-phenylhydroxylamine induced a less clear-cut, dose related increase in SCE frequency with a 1.4-fold elevation. Only marginal increases in SCE were observed with aniline at the highest doses. Using these data, we propose that aniline may exert its turmorigenic potential in rats through the production of both genotoxic and cytotoxic metabolities. (JMT)

  7. Metabolite profile, antioxidant capacity, and inhibition of digestive enzymes in infusions of peppermint (Mentha piperita) grown under drought stress.

    PubMed

    Figueroa-Pérez, Marely G; Rocha-Guzmán, Nuria Elizabeth; Pérez-Ramírez, Iza F; Mercado-Silva, Edmundo; Reynoso-Camacho, Rosalía

    2014-12-10

    Peppermint (Mentha piperita) infusions represent an important source of antioxidants, which can be enhanced by inducing abiotic stress in plants. The aim of this study was to evaluate the effect of drought stress on peppermint cultivation as well as the metabolite profile, antioxidant capacity, and inhibition of digestive enzymes of resulting infusions. At 45 days after planting, irrigation was suppressed until 85 (control), 65, 35, 24, and 12% soil moisture (SM) was reached. The results showed that 35, 24, and 12% SM decreased fresh (20%) and dry (5%) weight. The 35 and 24% SM treatments significantly increased total phenolic and flavonoid contents as well as antioxidant capacity. Coumaric acid, quercetin, luteolin, and naringenin were detected only in some drought treatments; however, in these infusions, fewer amino acids and unsaturated fatty acids were identified. The 24 and 12% SM treatments slightly improved inhibition of pancreatic lipase and α-amylase activity. Therefore, induction of moderate water stress in peppermint is recommended to enhance its biological properties.

  8. All-trans-retinoic acid metabolites significantly inhibit the proliferation of MCF-7 human breast cancer cells in vitro.

    PubMed Central

    Van heusden, J.; Wouters, W.; Ramaekers, F. C.; Krekels, M. D.; Dillen, L.; Borgers, M.; Smets, G.

    1998-01-01

    All-trans-retinoic acid (ATRA) is well known to inhibit the proliferation of human breast cancer cells. Much less is known about the antiproliferative activity of the naturally occurring metabolites and isomers of ATRA. In the present study, we investigated the antiproliferative activity of ATRA, its physiological catabolites 4-oxo-ATRA and 5,6-epoxy-ATRA and isomers 9-cis-RA and 13-cis-RA in MCF-7 human breast cancer cells by bromodeoxyuridine incorporation. MCF-7 cells were grown in steroid- and retinoid-free medium supplemented with growth factors. Under these culture conditions, ATRA and its naturally occurring catabolites and isomers showed significant antiproliferative activity in MCF-7 cells in a concentration-dependent manner (10[-11] M to 10[-6] M). The antiproliferative activity of ATRA catabolites and isomers was equal to that of the parent compound ATRA at concentrations of 10(-8) M and 10(-7) M. Only at 10(-6) M were the catabolites and the stereoisomer 13-cis-RA less potent. The stereoisomer 9-cis-RA was as potent as ATRA at all concentrations tested (10[-11] M to 10[-6] M). In addition, we show that the catabolites and isomers were formed from ATRA to only a limited extent. Together, our findings suggest that in spite of their high antiproliferative activity the catabolites and isomers of ATRA cannot be responsible for the observed growth inhibition induced by ATRA. PMID:9459142

  9. Inhibition of ( sup 3 H)dopamine uptake into rat striatal slices by quaternary N-methylated nicotine metabolites

    SciTech Connect

    Dwoskin, L.P.; Leibee, L.L.; Jewell, A.L.; Fang, Zhaoxia; Crooks, P.A. )

    1992-01-01

    The effects of quaternary N-methylated nicotine derivatives were examined on in vitro uptake of ({sup 3}H)dopamine (({sup 3}H)DA) in rat striatal slices. Striatal slices were incubated with a 10 {mu}M concentration of the following compounds: N-methylnicotinium, N-methylnornicotinium, N-methylcotininium, N,N{prime}-dimethylnicotinium and N{prime}-methylnicotinium salts. The results clearly indicated that significant inhibition of ({sup 3}H)DA uptake occurred with those compounds possessing a N-methylpyridinium group; whereas, compounds that were methylated at the N{prime}-pyrrolidinium position were less effective or exhibited no inhibition of ({sup 3}H)DA uptake. The results suggest that high concentrations of quaternary N-methylated nicotine metabolites which are structurally related to the neurotoxin MPP{sup +}, and which may be formed in the CNS, may protect against Parkinson's Disease and explain the inverse relationship between smoking and Parkinsonism reported in epidemiologic studies.

  10. Irreversible Inhibition of EGFR: Modeling the Combined Pharmacokinetic-Pharmacodynamic Relationship of Osimertinib and Its Active Metabolite AZ5104.

    PubMed

    Yates, James W T; Ashton, Susan; Cross, Darren; Mellor, Martine J; Powell, Steve J; Ballard, Peter

    2016-10-01

    Osimertinib (AZD9291) is a potent, selective, irreversible inhibitor of EGFR-sensitizing (exon 19 and L858R) and T790M-resistant mutation. In vivo, in the mouse, it is metabolized to an active des-methyl metabolite, AZ5104. To understand the therapeutic potential in patients, this study aimed to assess the relationship between osimertinib pharmacokinetics, the pharmacokinetics of the active metabolite, the pharmacodynamics of phosphorylated EGFR reduction, and efficacy in mouse xenograft models of EGFR-driven cancers, including two NSCLC lines. Osimertinib was dosed in xenografted models of EGFR-driven cancers. In one set of experiments, changes in phosphorylated EGFR were measured to confirm target engagement. In a second set of efficacy studies, the resulting changes in tumor volume over time after repeat dosing of osimertinib were observed. To account for the contributions of both molecules, a mathematical modeling approach was taken to integrate the resulting datasets. The model was able to describe the pharmacokinetics, pharmacodynamics, and efficacy in A431, PC9, and NCI-H1975 xenografts, with the differences in sensitivity described by the varying potency against wild-type, sensitizing, and T790M-mutant EGFR and the phosphorylated EGFR reduction required to reduce tumor volume. It was inferred that recovery of pEGFR is slower after chronic dosing due to reduced resynthesis. It was predicted and further demonstrated that although inhibition is irreversible, the resynthesis of EGFR is such that infrequent intermittent dosing is not as efficacious as once daily dosing. Mol Cancer Ther; 15(10); 2378-87. ©2016 AACR.

  11. Inhibition of human DNA topoisomerase II by hydroquinone and p-benzoquinone, reactive metabolites of benzene

    SciTech Connect

    Hutt, A.M.; Kalf, G.F.

    1996-12-01

    Chronic exposure of humans to benzene (BZ) causes acute myeloid leukemia (AML). Both BZ and therapy-related secondary AML are characterized by chromosomal translocations that may occur by inappropriate recombinational events. DNA topoisomerase 11 (topo 11) is an essential sulfhydryl (SH)-dependent endonuclease required for replication, recombination, chromosome segregation, and chromosome structure. Topo 11 cleaves DNA at purine(R)/pyrimidine(Y) repeat sequences that have been shown to be highly recombinogenic in vivo. Certain antineoplastic drugs stabilize topo 11-DNA cleavage complexes at RY repeat sequences, which leads to translocations of the type observed in leukemia. Hydroquinone (HQ) is metabolized to p-benzoquinone (BQ) in a peroxidase-mediated reaction in myeloid progenitor cells. BO interacts with SH groups of SH-dependent enzymes. Consequently, the aims of this research were to determine whether HQ and BO are topo 11 inhibitors. The ability of the compounds to inhibit the activity of topo, 11 was tested using an assay system that depends on the conversion, by homogeneous human topo 11, of catenated kinetoplast DNA into open and/or nicked open circular DNA that can be separated from the catenated DNA by electrophoresis in a 1% agarose-ethidium bromide gel. We provide preliminary data that indicate that both HQ and BO cause a time and concentration (pM)-dependent inhibition of topo 11 activity. 32 refs., 5 figs.

  12. Vitamin D Metabolites Inhibit Hepatitis C Virus and Modulate Cellular Gene Expression

    PubMed Central

    Gutierrez, Julio A.; Jones, Krysten A.; Flores, Roxana; Singhania, Akul; Woelk, Christopher H.; Schooley, Robert T.; Wyles, David L.

    2015-01-01

    Background and Aims Previous studies suggest that low serum 25-hydroxyvitamin D [25(OH) D] levels are associated with reduced responsiveness to interferon and ribavirin therapy. We investigated the impact of vitamin D metabolites on HCV and cellular gene expression in cultured hepatoma cells. Methods HCV Replicon cell lines stably expressing luciferase reporter constructs (genotype 1b and 2a replicon) or JC1-Luc2a were incubated in the presence of vitamin D2, vitamin D3 or 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Presence of HCV was quantified by a luciferase reporter assay and immunoblot of the Core protein. Synergy of interferon-alpha A/D (IFN-α) and 1,25(OH)2D3 was evaluated using the Chou-Talalay method. Cellular gene expression by microarray analysis using Illumina Bead Chips and real-time quantitative PCR. Results Vitamin D2, D3 and 1,25(OH)2D3 each demonstrated anti-HCV activity at low micro molar concentrations. In vitro conversion from D3 to 25(OH)D3 was shown by LC/MS/MS. Combination indices of 1,25(OH)2D3 and IFN-α demonstrated a synergistic effect (0.23-0.46) and significantly reduced core expression by immunoblot. Differentially expressed genes were identified between Huh7.5.1 cells in the presence and absence of 1,25(OH)2D3 and HCV. Genes involved with classical effects of vitamin D metabolism and excretion were activated, along with genes linked to autophagy such as G-protein coupled receptor 37 (GPR37) and Hypoxia-inducible factor 1-alpha (HIF1a). Additionally, additive effects of 1,25(OH)2D3 and IFN-α were seen on mRNA expression of chemokine motif ligand 20 (CCL20). Conclusions This study shows that vitamin D reduces HCV protein production in cell culture synergistically with IFN-α. Vitamin D also activates gene expression independently and additively with IFN-α and this may explain its ability to aid in the clearance of HCV in vivo. PMID:26594646

  13. Interaction of quercetin and its metabolites with warfarin: Displacement of warfarin from serum albumin and inhibition of CYP2C9 enzyme.

    PubMed

    Poór, Miklós; Boda, Gabriella; Needs, Paul W; Kroon, Paul A; Lemli, Beáta; Bencsik, Tímea

    2017-04-01

    Flavonoids are ubiquitous molecules in nature with manifold pharmacological effects. Flavonoids interact with several proteins, and thus potentially interfere with the pharmacokinetics of various drugs. Though much is known about the protein binding characteristics of flavonoid aglycones, the behaviour of their metabolites, which are extensively formed in the human body has received little attention. In this study, the interactions of the flavonoid aglycone quercetin and its main metabolites with the albumin binding of the oral anticoagulant warfarin were investigated by fluorescence spectroscopy and ultrafiltration. Furthermore, the inhibitory effects of these flavonoids on CYP2C9 enzyme were tested because the metabolic elimination of warfarin is catalysed principally by this enzyme. Herein, we demonstrate that each tested flavonoid metabolite can bind to human serum albumin (HSA) with high affinity, some with similar or even higher affinity than quercetin itself. Quercetin metabolites are able to strongly displace warfarin from HSA suggesting that high quercetin doses can strongly interfere with warfarin therapy. On the other hand, tested flavonoids showed no or weaker inhibition of CYP2C9 compared to warfarin, making it very unlikely that quercetin or its metabolites can significantly inhibit the CYP2C9-mediated inactivation of warfarin.

  14. Endogenous xanthine oxidase-derived O sub 2 metabolites inhibit surfactant metabolism

    SciTech Connect

    Baker, R.R.; Panus, P.C.; Holm, B.A.; Engstrom, P.C.; Freeman, B.A.; Matalon, S. )

    1990-10-01

    The ability of xanthine oxidase (XO)-derived, partially reduced O2 species (PROS) to inhibit surfactant production was examined in freshly isolated alveolar type II (ATII) pneumocytes from New Zealand White rabbits. (Methyl-3H)choline chloride and (1-14C)palmitate incorporation into phosphatidylcholine (PC) decreased in a dose-dependent manner, whereas peak media hydrogen peroxide (H2O2) concentration increased, when 1, 5, or 10 mU/ml XO were added to cell suspensions containing 500 microM xanthine. Addition of 100 microM allopurinol inhibited H2O2 production and abolished the decrease in choline and palmitate incorporation into PC. ATII cells incubated with 500 microM xanthine alone incorporated choline and palmitate at 90 and 80% of control levels, respectively. However, 100 microM allopurinol restored precursor incorporation to control values. To identify a possible intracellular source of PROS, ATII cell xanthine dehydrogenase (XDH) and XO activities were measured. Both total activity (XDH + XO; 45 +/- 7 microU/mg protein) and the percentage activity in the oxidase form (%XO; 30 +/- 4%) remained unchanged in ATII cells incubated in media only (control) for 2 h. In contrast, incubation of ATII cells with 500 microM xanthine resulted in a 50% loss of XDH + XO activity and a 21% increase in %XO within 10 min. After 2 h there was no measurable XDH + XO activity in xanthine-treated cells. Total XDH + XO activity in cells incubated with 500 microM xanthine and 100 microM allopurinol was less than 6% of control values throughout the incubation.

  15. Quantitative analysis of phenolic metabolites from different parts of Angelica keiskei by HPLC-ESI MS/MS and their xanthine oxidase inhibition.

    PubMed

    Kim, Dae Wook; Curtis-Long, Marcus J; Yuk, Heung Joo; Wang, Yan; Song, Yeong Hun; Jeong, Seong Hun; Park, Ki Hun

    2014-06-15

    Angelica keiskei is used as popular functional food stuff. However, quantitative analysis of this plant's metabolites has not yet been disclosed. The principal phenolic compounds (1-16) within A. keiskei were isolated, enabling us to quantify the metabolites within different parts of the plant. The specific quantification of metabolites (1-16) was accomplished by multiple reaction monitoring (MRM) using a quadruple tandem mass spectrometer. The limit of detection and limit of quantitation were calculated as 0.4-44 μg/kg and 1.5-148 μg/kg, respectively. Abundance and composition of these metabolites varied significantly across different parts of plant. For example, the abundance of chalcones (12-16) decreased as follows: root bark (10.51 mg/g)>stems (8.52 mg/g)>leaves (2.63 mg/g)>root cores (1.44 mg/g). The chalcones were found to be responsible for the xanthine oxidase (XO) inhibition shown by this plant. The most potent inhibitor, xanthoangelol inhibited XO with an IC50 of 8.5 μM. Chalcones (12-16) exhibited mixed-type inhibition characteristics.

  16. Ribulose diphosphate carboxylase/oxygenase. III. Isolation and properties.

    PubMed

    Ryan, F J; Tolbert, N E

    1975-06-10

    Similarities in properties of ribulose diphosphate carboxylase and oxygenase activities further substantiate the hypothesis that the same protein catalyzes both reactions. The Km (ribulose diphosphate) is 0.33 mM for the ribulose diphosphate oxygenase, when assayed in air with an oxygen electrode. Maximum activity is obtained with 10 to 35 mM MgCl2. Higher MgCl2 concentrations are inhibitory, but they shift the pH optimum from 9.3 or 9.4 to 8.7 or 9.0. MnCl2 is an effective cofactor of the oxygenase and some activity is obtained with CoCl2. Both the ribulose diphosphate carboxylase and oxygenase activity of the purified protein from spinach leaves are slowly inactivated by storage at 0 degrees and reactivated in 10 min at 50 degrees, provided both 25 mM MgCl2 and 1 mM dithiothreitol are present. The sulfhydryl groups of the enzyme which react rapidly with 5,5'-dithiobis(2-nitrobenzoic acid) are approximately 4 at pH 7.8 and 11 at pH 9.4. At both pH values ribulose diphosphate prevents two of these sulfhydryl groups from reacting with this reagent. About 50% inhibition of the oxygenase activity at pH 9.0 occurs with 50 mM bicarbonate in the presence of 3 mM ribulose diphosphate, and from variations in these parameters the inhibition is attributed to the CO2 species. The purified enzyme of acrylamide gels prevented the reduction of nitroblue tetrazolium in the presence of the superoxide radical, but the enzyme in solution did not react as a superoxide dismutase.

  17. The induction of monocytopoiesis in HL-60 promyelocytic leukemia cells is inhibited by hydroquinone, a toxic metabolite of benzene

    SciTech Connect

    Oliveira, N.L.

    1992-01-01

    Chronic exposure of humans to benzene has been shown to have a cytotoxic effect on hematopoietic progenitor cells in intermediate stages of differentiation which can lead to aplastic anemia and acute myelogenous leukemia. This thesis examined the effect of hydroquinone, a toxic metabolite of benzene found in the bone marrow, on the human promyelocytic leukemia cell line (HL-60) which can be induced to differentiate to both monocyte and myeloid cells, and thus has been used as a surrogate for a granulocyte/macrophage progenitor cell. Exposure of HL-60 cells to noncytotoxic concentrations of hydroquinone for three hours prior to induction with 12-O-tetradecanoyl phorbol-13-acetate caused a dose-dependent inhibition of the acquisition of characteristics of monocytic differentiation. These included adherence, nonspecific esterase activity and phagocytosis. Hydroquinone had no effect on cell proliferation. Hydroquinone appeared to be affecting maturation beyond the monoblast/promonocyte stages. Hydroquinone also prevented differentiation induced by 1, 25-dihydroxy vitamin D[sub 3], however, the block occurred after the acquisition of adherence. Hydroquinone at concentrations that inhibited monocytic differentiation had no effect on differentiation to granulocytes, suggesting that the block in the differentiation of these bipotential cells is at a step unique to the monocytic pathway. Hydroquinone was unable to prevent differentiation induced by the macrophage-derived cytokine interleukin-1, a differentiation factor for cells of the monocytic lineage. These data demonstrate that treatment of Hl-60 cells with hydroquinone prior to induction of differentiation prevents the acquisition of the monocytic phenotype induced by TPA or 1, 25(OH)[sub 2]D[sub 3] by a mechanism which at present is unknown, but which appears to be specific for the monocytic pathway. These results are of considerable significance for benzene hematotoxicity.

  18. Different Culture Metabolites of the Red Sea Fungus Fusarium equiseti Optimize the Inhibition of Hepatitis C Virus NS3/4A Protease (HCV PR)

    PubMed Central

    Hawas, Usama W.; Al-Farawati, Radwan; Abou El-Kassem, Lamia T.; Turki, Adnan J.

    2016-01-01

    The endophytic fungus Fusarium equiseti was isolated from the brown alga Padina pavonica, collected from the Red Sea. The fungus was identified by its morphology and 18S rDNA. Cultivation of this fungal strain in biomalt-peptone medium led to isolation of 12 known metabolites of diketopeprazines and anthraquinones. The organic extract and isolated compounds were screened for their inhibition of hepatitis C virus NS3/4A protease (HCV PR). As a result, the fungal metabolites showed inhibition of HCV protease (IC50 from 19 to 77 μM), and the fungus was subjected to culture on Czapek’s (Cz) media, with a yield of nine metabolites with potent HCV protease inhibition ranging from IC50 10 to 37 μM. The Cz culture extract exhibited high-level inhibition of HCV protease (IC50 27.6 μg/mL) compared to the biomalt culture extract (IC50 56 μg/mL), and the most potent HCV PR isolated compound (Griseoxanthone C, IC50 19.8 μM) from the bio-malt culture extract showed less of an inhibitory effect compared to isolated ω-hydroxyemodin (IC50 10.7 μM) from the optimized Cz culture extract. Both HCV PR active inhibitors ω-hydroxyemodin and griseoxanthone C were considered as the lowest selective safe constituents against Trypsin inhibitory effect with IC50 48.5 and 51.3 μM, respectively. PMID:27775589

  19. Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats.

    PubMed

    Jimenez, R; Lopez-Sepulveda, R; Romero, M; Toral, M; Cogolludo, A; Perez-Vizcaino, F; Duarte, J

    2015-02-01

    Quercetin, the most abundant dietary flavonol, exerts antioxidant effects reducing vascular superoxide (O2(-)) and improving endothelial function in animal models of cardiovascular disease. Herein we evaluated the effects of quercetin, and its plasma metabolites, on the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase activity, the main source of O2(-) in the vessel wall, in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Quercetin and its metabolites isorhamnetin and kaempferol inhibited the NADPH-stimulated lucigenin-chemiluminescence signal in VSMCs from both strains. The inhibitory effect of quercetin-3-glucuronide increased after prolonged incubation and was inhibited in the presence of the β-glucuronidase inhibitor saccharolactone. These effects were unrelated to their O2(-) scavenging properties, since they induced only a small inhibition of the rate of pyrogallol autoxidation at high concentrations. All bioflavonoids tested acted as non-competitive inhibitors with respect to NADPH. In conclusion, quercetin and its metabolites inhibit the NADPH oxidase activity in VSMCs reducing O2(-) generation more efficiently than their effect as O2(-) scavengers. The effect of quercetin-3-glucuronide was due to deconjugation and release of free quercetin. The effect is similar in VSMCs from normotensive and hypertensive animals.

  20. Concurrent expression of heme oxygenase-1 and p53 in human retinal pigment epithelial cell line

    SciTech Connect

    Lee, Sang Yull; Jo, Hong Jae; Kim, Kang Mi; Song, Ju Dong; Chung, Hun Taeg; Park, Young Chul

    2008-01-25

    Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. Here, we investigated the effects of HO activity on the expression of p53 in the human retinal pigment epithelium (RPE) cell line ARPE-19. Cobalt protoporphyrin (CoPP) induced the expression of both HO-1 and p53 without significant toxicity to the cells. In addition, the blockage of HO activity with the iron chelator DFO or with HO-1 siRNA inhibited the CoPP-induced expression of p53. Similarly, zinc protoporphyrin (ZnPP), an inhibitor of HO, suppressed p53 expression in ARPE-19 cells, although ZnPP increased the level of HO-1 protein while inhibiting HO activity. Also, CoPP-induced p53 expression was not affected by the formation of reactive oxygen species (ROS). Based on these results, we conclude that HO activity is involved in the regulation of p53 expression in a ROS-independent mechanism, and also suggest that the expression of p53 in ARPE-19 cells is associated with heme metabolites such as biliverdin/bilirubin, carbon monoxide, and iron produced by the activity of HO.

  1. Involvement of tyrosine kinase in the induction of cyclo-oxygenase and nitric oxide synthase by endotoxin in cultured cells.

    PubMed Central

    Akarasereenont, P; Mitchell, J A; Appleton, I; Thiemermann, C; Vane, J R

    1994-01-01

    1. Cyclo-oxygenase (COX) and nitric oxide synthase (NOS) are two enzymes which have distinct cytokine-inducible isoforms (COX-2 and iNOS). Many cytokine receptors have an intracellular tyrosine kinase domain. Here we have used the tyrosine kinase inhibitors, erbstatin and genistein, to investigate the potential role of tyrosine kinase activation in the induction on COX-2 and iNOS caused by endotoxin (lipopolysaccharide; LPS) in bovine aortic endothelial cells (BAEC) and J774.2 macrophages. 2. The main COX metabolites, 6-oxo-prostaglandin F1 alpha (6-oxo-PGF1 alpha) (for BAEC) and PGF2 alpha (for 774.2 macrophages) were measured by radioimmunossay: (i) accumulation of COX metabolites from endogenous arachidonic acid was measured at 24 h after addition of LPS (1 microgram ml-1); (ii) in experiments designed to measure 'COX activity', COX metabolites generated by BAEC or J774.2 macrophages activated with LPS were assayed (at 12 h after LPS administration) after incubation of the washed cells with exogenous arachidonic acid (30 microM for 15 min). Western blot analysis with a specific antibody to COX-2 was used to determine the expression of COX-2 protein caused by LPS in cell extracts. Accumulation of nitrite (measured by the Griess reaction) was used as an indicator of NO formation and, hence, iNOS activity. 3. Erbstatin (0.05 to 5 micrograms ml-1) or genistein (0.5 to 50 micrograms ml-1) caused a dose-dependent inhibition of the accumulation of COX metabolites in the supernatant of BAEC or J774.2 macrophages activated with LPS. Erbstatin or genistein also caused a dose-dependent inhibition of 'COX activity' in both cell types.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4 PMID:7534189

  2. Melatonin and its metabolites accumulate in the human epidermis in vivo and inhibit proliferation and tyrosinase activity in epidermal melanocytes in vitro.

    PubMed

    Kim, Tae-Kang; Lin, Zongtao; Tidwell, William J; Li, We; Slominski, Andrzej T

    2015-03-15

    Melatonin and its metabolites including 6-hydroxymelatonin (6(OH)M), N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) and 5-methoxytryptamine (5MT) are endogenously produced in human epidermis. This production depends on race, gender and age. The highest melatonin levels are in African-Americans. In each racial group they are highest in young African-Americans [30-50 years old (yo)], old Caucasians (60-90 yo) and Caucasian females. AFMK levels are the highest in African-Americans, while 6(OH)M and 5MT levels are similar in all groups. Testing of their phenotypic effects in normal human melanocytes show that melatonin and its metabolites (10(-5) M) inhibit tyrosinase activity and cell growth, and inhibit DNA synthesis in a dose dependent manner with 10(-9) M being the lowest effective concentration. In melanoma cells, they inhibited cell growth but had no effect on melanogenesis, except for 5MT which enhanced L-tyrosine induced melanogenesis. In conclusion, melatonin and its metabolites [6(OH)M, AFMK and 5MT] are produced endogenously in human epidermis and can affect melanocyte and melanoma behavior.

  3. Cangrelor inhibits the binding of the active metabolites of clopidogrel and prasugrel to P2Y12 receptors in vitro.

    PubMed

    Judge, Heather M; Buckland, Robert J; Jakubowski, Joseph A; Storey, Robert F

    2016-01-01

    Cangrelor is a rapid-acting, direct-binding, and reversible P2Y12 antagonist which has been studied for use during percutaneous coronary intervention (PCI) in patients with or without pretreatment with an oral P2Y12 antagonist. As cangrelor is administered intravenously, it is necessary to switch to an oral P2Y12 antagonist following PCI, such as the thienopyridines clopidogrel, and prasugrel or the non-pyridine ticagrelor. Previous studies have suggested a negative pharmacodynamic interaction between cangrelor and thienopyridines. This in vitro study evaluated the receptor-level interaction between cangrelor and the active metabolite (AM) of clopidogrel or prasugrel by assessing functional P2Y12 receptor number using a (33)P-2MeSADP binding assay. All P2Y12 antagonists studied resulted in strong P2Y12 receptor blockade (cangrelor: 93.6%; clopidogrel AM: 93.0%; prasugrel AM: 97.9%). Adding a thienopyridine AM in the presence of cangrelor strongly reduces P2Y12 receptor blockade by the AM (clopidogrel AM: 7%, prasugrel AM: 3.2%). The thienopyridine AMs had limited ability to compete with cangrelor for binding to P2Y12 (% P2Y12 receptor blockade after co-incubation with cangrelor 1000 nmol/L: 11.7% for clopidogrel AM 3 µmol/L; 34.1% for prasugrel AM 3 µmol/L). In conclusion, in vitro cangrelor strongly inhibits the binding of clopidogrel and prasugrel AMs to the P2Y12 receptor, consistent with the previous observation of a negative pharmacodynamic interaction. Care may need to be taken to not overlap exposure to thienopyridine AMs and cangrelor in order to reduce the risk of thrombotic complications following PCI.

  4. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  5. Resveratrol and its metabolites inhibit pro-inflammatory effects of lipopolysaccharides in U-937 macrophages in plasma-representative concentrations.

    PubMed

    Walker, Jessica; Schueller, Katharina; Schaefer, Lisa-Marie; Pignitter, Marc; Esefelder, Laura; Somoza, Veronika

    2014-01-01

    Resveratrol has been shown to exploit various biological activities, including an anti-inflammatory activity. However, resveratrol is metabolized by phase II enzymes post-absorption to predominantly form glucuronides and sulfates. To investigate the anti-inflammatory effects of resveratrol and its dominating sulfated and glucuronated metabolites formed in vivo, U-937 macrophages were chosen as an immune-competent model system, known to release cytokines upon lipopolysaccharide stimulation. U-937 cells were stimulated with lipopolysaccharides from Escherichia coli (E. coli-LPS) to evoke an inflammatory reaction, and pre- or co-incubated with 1 or 10 μM of resveratrol (RES), resveratrol-3-sulfate (R3S), resveratrol-disulfates (RDS), resveratrol-3-glucuronide or resveratrol-4'-glucuronide. Time dependent gene expression of IL-6, IL-1α/β and IL-1R by qPCR was studied at 1 h, 3 h, 6 h, 9 h, and 24 h of incubation, and the release of IL-6 and TNF-α, after 6 h was analysed by means of non-magnetic or magnetic bead analysis. As a result, 10 μM resveratrol completely inhibited the E. coli-LPS-induced release of IL-6, while resveratrol-3-sulfate and resveratrol-disulfates decreased it by respective 84.2 ± 29.4% and 52.3 ± 39.5%. Whereas TNF-α release was reduced by 48.1 ± 15.4%, 33.0 ± 10.0% and 46.7 ± 8.7% by RES, R3S and RDS, respectively. These results show that not only resveratrol but also resveratrol-3-sulfate and resveratrol-disulfates exhibit an anti-inflammatory potential by counteracting an inflammatory challenge in U-937 macrophages at plasma representative concentrations.

  6. Dipyrone metabolite 4-MAA induces hypothermia and inhibits PGE2-dependent and -independent fever while 4-AA only blocks PGE2-dependent fever

    PubMed Central

    Malvar, David do C; Aguiar, Fernando A; Vaz, Artur de L L; Assis, Débora C R; de Melo, Miriam C C; Jabor, Valquíria A P; Kalapothakis, Evanguedes; Ferreira, Sérgio H; Clososki, Giuliano C; de Souza, Glória E P

    2014-01-01

    BACKGROUND AND PURPOSE The antipyretic and hypothermic prodrug dipyrone prevents PGE2-dependent and -independent fever induced by LPS from Escherichia coli and Tityus serrulatus venom (Tsv) respectively. We aimed to identify the dipyrone metabolites responsible for the antipyretic and hypothermic effects. EXPERIMENTAL APPROACH Male Wistar rats were treated i.p. with indomethacin (2 mg·kg−1), dipyrone, 4-methylaminoantipyrine (4-MAA), 4-aminoantipyrine (4-AA) (60–360 mg·kg−1), 4-formylaminoantipyrine, 4-acethylaminoantipyrine (120–360 mg·kg−1) or vehicle 30 min before i.p. injection of LPS (50 μg·kg−1), Tsv (150 μg·kg−1) or saline. Rectal temperatures were measured by tele-thermometry and dipyrone metabolite concentrations determined in the plasma, CSF and hypothalamus by LC-MS/MS. PGE2 concentrations were determined in the CSF and hypothalamus by elisa. KEY RESULTS In contrast to LPS, Tsv-induced fever was not followed by increased PGE2 in the CSF or hypothalamus. The antipyretic time-course of 4-MAA and 4-AA on LPS-induced fever overlapped with the period of the highest concentrations of 4-MAA and 4-AA in the hypothalamus, CSF and plasma. These metabolites reduced LPS-induced fever and the PGE2 increase in the plasma, CSF and hypothalamus. Only 4-MAA inhibited Tsv-induced fever. The higher doses of dipyrone and 4-MAA also induced hypothermia. CONCLUSIONS AND IMPLICATIONS The presence of 4-MAA and 4-AA in the CSF and hypothalamus was associated with PGE2 synthesis inhibition and a decrease in LPS-induced fever. 4-MAA was also shown to be an antipyretic metabolite for PGE2-independent fever induced by Tsv suggesting that it is responsible for the additional antipyretic mechanism of dipyrone. Moreover, 4-MAA is the hypothermic metabolite of dipyrone. PMID:24712707

  7. VX-509 (Decernotinib)-Mediated CYP3A Time-Dependent Inhibition: An Aldehyde Oxidase Metabolite as a Perpetrator of Drug-Drug Interactions.

    PubMed

    Zetterberg, Craig; Maltais, Francois; Laitinen, Leena; Liao, Shengkai; Tsao, Hong; Chakilam, Ananthsrinivas; Hariparsad, Niresh

    2016-08-01

    (R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide (VX-509, decernotinib) is an oral Janus kinase 3 inhibitor that has been studied in patients with rheumatoid arthritis. Patients with rheumatoid arthritis often receive multiple medications, such as statins and steroids, to manage the signs and symptoms of comorbidities, which increases the chances of drug-drug interactions (DDIs). Mechanism-based inhibition is a subset of time-dependent inhibition (TDI) and occurs when a molecule forms a reactive metabolite which irreversibly binds and inactivates drug-metabolizing enzymes, potentially increasing the systemic load to toxic concentrations. Traditionally, perpetrating compounds are screened using human liver microsomes (HLMs); however, this system may be inadequate when the precipitant is activated by a non-cytochrome P450 (P450)-mediated pathway. Even though studies assessing competitive inhibition and TDI using HLM suggested a low risk for CYP3A4-mediated DDI in the clinic, VX-509 increased the area under the curve of midazolam, atorvastatin, and methyl-prednisolone by approximately 12.0-, 2.7-, and 4.3-fold, respectively. Metabolite identification studies using human liver cytosol indicated that VX-509 is converted to an oxidative metabolite, which is the perpetrator of the DDIs observed in the clinic. As opposed to HLM, hepatocytes contain the full complement of drug-metabolizing enzymes and transporters and can be used to assess TDI arising from non-P450-mediated metabolic pathways. In the current study, we highlight the role of aldehyde oxidase in the formation of the hydroxyl-metabolite of VX-509, which is involved in clinically significant TDI-based DDIs and represents an additional example in which a system-dependent prediction of TDI would be evident.

  8. 12(R)-hydroxyicosatetraenoic acid: a cytochrome P450-dependent arachidonate metabolite that inhibits Na/sup +/, K/sup +/-ATPase in the cornea

    SciTech Connect

    Schwartzman, M.L.; Balazy, M.; Masferrer, J.; Abraham, N.G.; McGiff, J.C.; Murphy, R.C.

    1987-11-01

    When corneal microsomes were incubated with arachidonic acid in the presence of an NADPH-generating system, four polar metabolites (compounds A-D) were formed. Synthesis of these metabolites could be inhibited by carbon monoxide, SKF 525A, and anti-cytochrome c reductase antibodies. One of the metabolites, compound C, was found to inhibit partially purified Na/sup +/, K/sup +/-ATPase from the corneal epithelium in a dose-dependent manner. After compound C was purified by TLC and HPLC, it was found to have a UV absorption spectrum with a maximum absorbance at 236 nm suggesting the presence of a conjugated diene. Mass spectrometric analysis using positive- and negative-ionization modes was carried out on derivatized compound C. Abundant fragment ions were consistent with compound C being a monooxygenated derivative of arachidonic acid with a hydroxyl substituent at carbon-12 of the icosanoid backbone; all deuterium atoms from (/sup 2/H/sub 8/)arachidonate were retained in the structure. Compound C was characterized as a 12-hydroxyicosatetraenoic acid. However, only 12(R) isomer was found to be an inhibitor of the Na/sup +/, K/sup +/-ATPase from the corneal epithelium, suggesting that the biologically active compound C was 12(R)-hydroxyy-5,8,10,14-icosatetraenoic acid. Such an inhibitor of Na/sup +/, K/sup +/-ATPase synthesized in the cornea may have an important role in regulating ocular transparency and aqueous human secretion.

  9. Enantioselectivity in the methylation of the catecholic phase I metabolites of methylenedioxy designer drugs and their capability to inhibit catechol-O-methyltransferase-catalyzed dopamine 3-methylation.

    PubMed

    Meyer, Markus R; Maurer, Hans H

    2009-06-01

    The designer drugs R,S-3,4-methylenedioxy-methamphetamine (MDMA, Ecstasy), R,S-3,4-methylenedioxy-ethylamphetamine (MDEA, Eve), and R,S-N-methyl-benzodioxolyl-butanamine (MBDB, Eden) are chiral compounds, and their in vitro and in vivo metabolism is enantioselective with a preference for the S-enantiomer caused in part by P450-mediated demethylenation. As the elimination of the catecholamine metabolites could also be enantioselective, the aim of the present study was to investigate the O-methylation to the corresponding methoxy derivatives catalyzed by the soluble or membrane-bound form of the catechol-O-methyltransferase (COMT). As all three compounds showed substrate inhibition effects during the incubation, their inhibition potential was quantified using the methylation of dopamine as a marker reaction. For investigation of the catechol-O-methylation catalyzed by the soluble form of the COMT (sCOMT), incubations with human liver cytosol (HLC) were performed. Human liver microsomes (HLM) were used for investigation of the membrane-bound form. For inhibition studies, 3-hydroxytyramine (dopamine) was incubated in HLC. The respective catechols were added at various concentrations to check whether they influence the methylation of 3-hydroxytyramine. Our data showed that the S-enantiomers of all studied catecholamines were preferably O-methylated by both types of COMT. Comparing the resulting kinetics of the HLC and HLM assays, the affinity for all substrates was 10-fold higher for the membrane-bound COMT, whereas the turnover rate was 10-fold higher for the soluble COMT. Uncompetitive inhibition of dopamine methylation could be observed for all tested catechols. In conclusion, elimination of the catecholamine metabolites of MDMA, MDEA, and MBDB was shown to be enantioselective and might therefore contribute to the different pharmacokinetic properties observed for both enantiomers. Furthermore, the catecholic metabolites were identified to be uncompetitive inhibitors

  10. Ginsenoside Metabolite Compound K Promotes Recovery of Dextran Sulfate Sodium-Induced Colitis and Inhibits Inflammatory Responses by Suppressing NF-κB Activation

    PubMed Central

    Li, Juan; Zhong, Wei; Wang, Weiwei; Hu, Shaoping; Yuan, Jiahui; Zhang, Bing; Hu, Tianhui; Song, Gang

    2014-01-01

    Phytogenic compounds with anti-oxidant and anti-inflammatory properties, such as ginsenoside metabolite compound K (CK) or berberine (BBR), are currently discussed as promising complementary agents in the prevention and treatment of cancer and inflammation. The latest study showed that ginsenoside Rb1 and its metabolites could inhibit TNBS-induced colitis injury. However, the functional mechanisms of anti-inflammation effects of ginsenoside, particularly its metabolite CK are still not clear. Here, using dextran sulfate sodium (DSS)-induced colitis in mice, clinical parameters, intestinal integrity, pro-inflammatory cytokines production, and signaling pathways in colonic tissues were determined. In mild and sever colitis mice, CK and BBR (as a positive agent) alleviated colitis histopathology injury, ameliorated myeloperoxidase (MPO) activity, reduced pro-inflammatory cytokines production, such as, IL-6, IL-1β, TNF-α, and increased anti-inflammatory cytokine IL-10 production in both mice colon tissues and blood. Nevertheless, the results revealed that CK and BBR inhibited NF-κB p65 nuclear translocation, downregulated p-IκBα and upregulated IκBα, indicating that CK, as well as BBR, suppressed the activation of the NF-κB pathway in the progression of colitis with immunofluorescence, immunohistochemical and western blotting analysis. Furthermore, CK inhibited pro-inflammatory cytokines production in LPS-activated macrophages via down-regulation of NF-κB signaling pathway. Taken together, our results not only reveal that CK promotes the recovery of the progression of colitis and inhibits the inflammatory responses by suppressing NF-κB activation, but also suggest that CK downregulates intestinal inflammation through regulating the activation of macrophages and pro-inflammatory cytokines production. PMID:24504372

  11. Ribosomal oxygenases are structurally conserved from prokaryotes to humans.

    PubMed

    Chowdhury, Rasheduzzaman; Sekirnik, Rok; Brissett, Nigel C; Krojer, Tobias; Ho, Chia-Hua; Ng, Stanley S; Clifton, Ian J; Ge, Wei; Kershaw, Nadia J; Fox, Gavin C; Muniz, Joao R C; Vollmar, Melanie; Phillips, Claire; Pilka, Ewa S; Kavanagh, Kathryn L; von Delft, Frank; Oppermann, Udo; McDonough, Michael A; Doherty, Aidan J; Schofield, Christopher J

    2014-06-19

    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components and in the hydroxylation of transcription factors and splicing factor proteins. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA and ribosomal proteins have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone N(ε)-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases

  12. Inhibition of CUTIN DEFICIENT 2 Causes Defects in Cuticle Function and Structure and Metabolite Changes in Tomato Fruit.

    PubMed

    Kimbara, Junji; Yoshida, Miho; Ito, Hirotaka; Kitagawa, Mamiko; Takada, Wataru; Hayashi, Kayoko; Shibutani, Yusuke; Kusano, Miyako; Okazaki, Yozo; Nakabayashi, Ryo; Mori, Tetsuya; Saito, Kazuki; Ariizumi, Tohru; Ezura, Hiroshi

    2013-09-01

    Tomato (Solanum lycopersicum) fruit cuticle has been extensively studied due to its effect on the biochemical and physiological properties of the fruit. To date, several tomato mutants defective in proper cuticle formation have been identified. To gain insight into tomato cuticle formation, we investigated one such mutant, sticky peel/light green (pe lg). We verified the responsible gene by fine mapping and obtained the same conclusion as a previous report. To elucidate the pleiotropic effects of cuticle deficiency caused by the cd2 mutation, CD2 suppression lines were constructed. As found in the pe lg mutant, the suppression lines showed enhanced water permeability and aberrant leaf and fruit cuticles. Water use efficiency of the suppression line was lower than that of the wild type. However, photosynthetic ability was not affected in the suppression line. Since these phenotypes are related to altered deposition of wax and cutin, other lipidic metabolites might be changed, too. To confirm this hypothesis, we conducted metabolite profiling. The metabolite profiling revealed that not only lipid but also sugar, flavonoid and glycoalkaloid metabolites in fruit were changed in the cd2 mutant. These results indicate that CD2 is essential both for normal cutin and wax deposition and for proper accumulation of specific metabolites in tomato fruit.

  13. Inhibition potential of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites on the in vitro monoamine oxidase (MAO)-catalyzed deamination of the neurotransmitters serotonin and dopamine.

    PubMed

    Steuer, Andrea E; Boxler, Martina I; Stock, Lorena; Kraemer, Thomas

    2016-01-22

    Neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA) is still controversially discussed. Formation of reactive oxygen species e.g. based on elevated dopamine (DA) concentrations and DA quinone formation is discussed among others. Inhibition potential of MDMA metabolites regarding neurotransmitter degradation by catechol-O-methyltransferase and sulfotransferase was described previously. Their influence on monoamine oxidase (MAO) - the major DA degradation pathway-has not yet been studied in humans. Therefore the inhibition potential of MDMA and its metabolites on the deamination of the neurotransmitters DA and serotonin (5-HT) by MAO-A and B using recombinant human enzymes in vitro should be investigated. In initial studies, MDMA and MDA showed relevant inhibition (>30%) toward MAO A for 5-HT and DA. No relevant effects toward MAO B were observed. Further investigation on MAO-A revealed MDMA as a competitive inhibitor of 5-HT and DA deamination with Ki 24.5±7.1 μM and 18.6±4.3 μM respectively and MDA as a mixed-type inhibitor with Ki 7.8±2.6 μM and 8.4±3.2 μM respectively. Although prediction of in vivo relevance needs to be done with care, relevant inhibitory effects at expected plasma concentrations after recreational MDMA consumption seems unlikely based on the obtained data.

  14. Methylselenol, a selenium metabolite, plays a critical role in inhibiting colon cancer cell growth in vitro and in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylselenol is hypothesized to be a critical selenium (Se) metabolite for anticancer activity. In this study, submicromolar methylselenol was generated by incubating methionase with seleno-L methionine, and both colon-cancer-derived HCT-116 cells and noncancerous colon NCM460 cells were exposed to...

  15. In vivo relevant mixed urolithins and ellagic acid inhibit phenotypic and molecular colon cancer stem cell features: A new potentiality for ellagitannin metabolites against cancer.

    PubMed

    Núñez-Sánchez, María Ángeles; Karmokar, Ankur; González-Sarrías, Antonio; García-Villalba, Rocío; Tomás-Barberán, Francisco A; García-Conesa, María Teresa; Brown, Karen; Espín, Juan Carlos

    2016-06-01

    Colon cancer stem cells (CSCs) offer a novel paradigm for colorectal cancer (CRC) treatment and dietary polyphenols may contribute to battle these cells. Specifically, polyphenol-derived colon metabolites have the potential to interact with and affect colon CSCs. We herein report the effects against colon CSCs of two mixtures of ellagitannin (ET) metabolites, ellagic acid (EA) and the gut microbiota-derived urolithins (Uro) at concentrations detected in the human colon tissues following the intake of ET-containing products (pomegranate, walnuts). These mixtures reduce phenotypic and molecular features in two models of colon CSCs: Caco-2 cells and primary tumour cells from a patient with CRC. The mixture containing mostly Uro-A (85% Uro-A, 10% Uro-C, 5% EA) was most effective at inhibiting the number and size of colonospheres and aldehyde dehydrogenase activity (ALDH, a marker of chemoresistance) whereas the mixture containing less Uro-A but IsoUro-A and Uro-B (30% Uro-A, 50% IsoUro-A, 10% Uro-B, 5% Uro-C, 5% EA) had some effects on the number and size of colonospheres but not on ALDH. These data support a role for polyphenols metabolites in the control of colon cancer chemoresistance and relapse and encourage the research on the effects of polyphenols against CSCs.

  16. Pleiotropic mechanisms facilitated by resveratrol and its metabolites

    SciTech Connect

    Calamini, Barbara; Ratia, Kiira; Malkowski, Michael G.; Cuendet, Muriel; Pezzuto, John M.; Santarsiero, Bernard D.; Mesecar, Andrew D.

    2010-07-01

    Resveratrol has demonstrated cancer chemopreventive activity in animal models and some clinical trials are underway. In addition, resveratrol was shown to promote cell survival, increase lifespan and mimic caloric restriction, thereby improving health and survival of mice on high-calorie diet. All of these effects are potentially mediated by the pleiotropic interactions of resveratrol with different enzyme targets including COX-1 (cyclo-oxygenase-1) and COX-2, NAD{sup +}-dependent histone deacetylase SIRT1 (sirtuin 1) and QR2 (quinone reductase 2). Nonetheless, the health benefits elicited by resveratrol as a direct result of these interactions with molecular targets have been questioned, since it is rapidly and extensively metabolized to sulfate and glucuronide conjugates, resulting in low plasma concentrations. To help resolve these issues, we tested the ability of resveratrol and its metabolites to modulate the function of some known targets in vitro. In the present study, we have shown that COX-1, COX-2 and QR2 are potently inhibited by resveratrol, and that COX-1 and COX-2 are also inhibited by the resveratrol 4{prime}-O-sulfate metabolite. We determined the X-ray structure of resveratrol bound to COX-1 and demonstrate that it occupies the COX active site similar to other NSAIDs (non-steroidal anti-inflammatory drugs). Finally, we have observed that resveratrol 3- and 4?-O-sulfate metabolites activate SIRT1 equipotently to resveratrol, but that activation is probably a substrate-dependent phenomenon with little in vivo relevance. Overall, the results of this study suggest that in vivo an interplay between resveratrol and its metabolites with different molecular targets may be responsible for the overall beneficial health effects previously attributed only to resveratrol itself.

  17. Toxicological significance of dihydrodiol metabolites

    SciTech Connect

    Hsia, M.T.

    1982-01-01

    Dihydrodiols are often found as the major organic-extractable metabolites of various olefinic or aromatic xenobiotics in many biological samples. Studies on the chemistry of dihydrodiol metabolites have provided insight into the pharmacokinetic behavior and the mode of action of the parent compound. The toxicology of dihydrodiol is more complex than what can be deduced solely on the basis of diminished bioavailability of the epoxide precursor, and the increased hydrophilicity associated with the dihydrodiol moiety. Dihydrodiols can be intrinsically toxic and may even represent metabolically activated species. Some of the dihydrodiol metabolites may still retain sufficient lipophilic character to serve again as substrates for microsomal oxygenases. Because of the tremendous chemical and biological diversity that existed among the various dihydrodiols, more mechanistic studies are needed to examine the toxicological properties of these compounds. It may be premature to conclude dihydrodiol formation as purely a detoxification route for xenobioties.

  18. The trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine but not trichloroacetate inhibits pathogen-stimulated TNF-α in human extraplacental membranes in vitro.

    PubMed

    Boldenow, Erica; Hassan, Iman; Chames, Mark C; Xi, Chuanwu; Loch-Caruso, Rita

    2015-04-01

    Extraplacental membranes define the gestational compartment and provide a barrier to infectious microorganisms ascending the gravid female reproductive tract. We tested the hypothesis that bioactive metabolites of trichloroethylene (TCE) decrease pathogen-stimulated innate immune response of extraplacental membranes. Extraplacental membranes were cultured for 4, 8, and 24h with the TCE metabolites trichloroacetate (TCA) or S-(1,2-dichlorovinyl)-l-cysteine (DCVC) in the absence or presence of lipoteichoic acid (LTA) or lipopolysaccharide (LPS) to simulate infection. In addition, membranes were cocultured with DCVC and Group B Streptococcus (GBS). DCVC (5-50μM) significantly inhibited LTA-, LPS-, and GBS-stimulated cytokine release from tissue cultures as early as 4h (P≤0.05). In contrast, TCA (up to 500μM) did not inhibit LTA-stimulated cytokine release from tissue punches. Because cytokines are important mediators for host response to infectious microorganisms these findings suggest that TCE exposure could potentially modify susceptibility to infection during pregnancy.

  19. The Trichloroethylene Metabolite S-(1,2-dichlorovinyl)-L-cysteine but not Trichloroacetate Inhibits Pathogen-Stimulated TNF-α in Human Extraplacental Membranes In Vitro

    PubMed Central

    Boldenow, Erica; Hassan, Iman; Chamesb, Mark C.; Xi, Chuanwu; Loch-Caruso, Rita

    2015-01-01

    Extraplacental membranes define the gestational compartment and provide a barrier to infectious microorganisms ascending the gravid female reproductive tract. We tested the hypothesis that bioactive metabolites of trichloroethylene (TCE) decrease pathogen-stimulated innate immune response of extraplacental membranes. Extraplacental membranes were cultured for 4, 8, and 24 h with the TCE metabolites trichloroacetate (TCA) or S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in the absence or presence of lipoteichoic acid (LTA) or lipopolysaccharide (LPS) to simulate infection. In addition, membranes were cocultured with DCVC and Group B Streptococcus (GBS). DCVC (5-50 μM) significantly inhibited LTA-, LPS-, and GBS-stimulated cytokine release from tissue punch cultures as early as 4 h (p ≤ 0.05). In contrast, TCA (up to 500 μM) did not inhibit LTA-stimulated cytokine release from tissue punches. Because cytokines are important mediators for host response to infectious microorganisms these findings suggest that TCE exposure could potentially modify susceptibility to infection during pregnancy. PMID:25653212

  20. Heme oxygenase: evolution, structure, and mechanism.

    PubMed

    Wilks, Angela

    2002-08-01

    Heme oxygenase has evolved to carry out the oxidative cleavage of heme, a reaction essential in physiological processes as diverse as iron reutilization and cellular signaling in mammals, synthesis of essential light-harvesting pigments in cyanobacteria and higher plants, and the acquisition of iron by bacterial pathogens. In all of these processes, heme oxygenase has evolved a similar structural and mechanistic scaffold to function within seemingly diverse physiological pathways. The heme oxygenase reaction is catalytically distinct from that of other hemoproteins such as the cytochromes P450, peroxidases, and catalases, but shares a hemoprotein scaffold that has evolved to generate a distinct activated oxygen species. In the following review we discuss the evolution of the structural and functional properties of heme oxygenase in light of the recent crystal structures of the mammalian and bacterial enzymes.

  1. Methoxychlor and Its Metabolite HPTE Inhibit cAMP Production and Expression of Estrogen Receptors α and β in the Rat Granulosa Cell In Vitro

    PubMed Central

    Harvey, Craig N.; Chen, Joseph C.; Bagnell, Carol A.; Uzumcu, Mehmet

    2015-01-01

    The major metabolite of the estrogenic pesticide methoxychlor (MXC) HPTE is a stronger ESR1 agonist than MXC and acts also as an ESR2 antagonist. In granulosa cells (GCs), FSH stimulates estradiol via the second messenger cAMP. HPTE inhibits estradiol biosynthesis, and this effect is greater in FSH-treated GCs than in cAMP-treated GCs. Therefore; we examined the effect of MXC/HPTE on FSH-stimulated cAMP production in cultured GCs. To test involvement of ESR-signaling, we used the ESR1 and ESR2 antagonist ICI 182,780, ESR2 selective antagonist PHTPP, and ESR2 selective agonist DPN. ESR1 and ESR2 mRNA and protein levels were quantified. Both HPTE and MXC inhibited the FSH-induced cAMP production. ICI 182,780 and PHTPP mimicked the inhibitory action of HPTE. MXC/HPTE reduced FSH-stimulated Esr2 mRNA and protein to basal levels. MXC/HPTE also inhibited FSH-stimulated Esr1. The greater inhibition on FSH-stimulated GCs is likely due to reduced cAMP level that involves ESR-signaling, through ESR2. PMID:25549949

  2. 5-Carboxy-8-hydroxyquinoline is a Broad Spectrum 2-Oxoglutarate Oxygenase Inhibitor which Causes Iron Translocation

    PubMed Central

    Aik, WeiShen; Che, Ka Hing; Li, Xuan Shirley; Kristensen, Jan B. L.; King, Oliver N. F.; Chan, Mun Chiang; Yeoh, Kar Kheng; Choi, Hwanho; Walport, Louise J.; Thinnes, Cyrille C.; Bush, Jacob T.; Lejeune, Clarisse; Rydzik, Anna M.; Rose, Nathan R.; Bagg, Eleanor A.; McDonough, Michael A.; Krojer, Tobias; Yue, Wyatt W.; Ng, Stanley S.; Olsen, Lars; Brennan, Paul E.; Oppermann, Udo; Muller-Knapp, Susanne; Klose, Robert J.; Ratcliffe, Peter J.; Schofield, Christopher J.; Kawamura, Akane

    2015-01-01

    2-Oxoglutarate and iron dependent oxygenases are therapeutic targets for human diseases. Using a representative 2OG oxygenase panel, we compare the inhibitory activities of 5-carboxy-8-hydroxyquinoline (IOX1) and 4-carboxy-8-hydroxyquinoline (4C8HQ) with that of two other commonly used 2OG oxygenase inhibitors, N-oxalylglycine (NOG) and 2,4-pyridinedicarboxylic acid (2,4-PDCA). The results reveal that IOX1 has a broad spectrum of activity, as demonstrated by the inhibition of transcription factor hydroxylases, representatives of all 2OG dependent histone demethylase subfamilies, nucleic acid demethylases and γ-butyrobetaine hydroxylase. Cellular assays show that, unlike NOG and 2,4-PDCA, IOX1 is active against both cytosolic and nuclear 2OG oxygenases without ester derivatisation. Unexpectedly, crystallographic studies on these oxygenases demonstrate that IOX1, but not 4C8HQ, can cause translocation of the active site metal, revealing a rare example of protein ligand-induced metal movement PMID:26682036

  3. Growth inhibitory effect of KYKZL-1 on Hep G{sub 2} cells via inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest

    SciTech Connect

    Cheng, Jing; Du, Yi-Fang; Xiao, Zhi-Yi; Pan, Li-Li; Li, Wei; Huan, Lin; Gong, Zhu-Nan; Wei, Shao-Hua; Huang, Shi-Qian; Xun, Wei; Zhang, Yi; Chang, Lei-Lei; Xie, Meng-Yu; Ao, Gui-Zhen; Cai, Jie; Qiu, Ting; Wu, Hao; Sun, Ting; Xu, Guang-Lin

    2014-01-01

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the inhibitory activity test on Hep G{sub 2} growth. We found that KYKZL-1 inhibited the growth of Hep G{sub 2} cells via inducing apoptosis. Further studies showed that KYKZL-1 activated caspase-3 through cytochrome c release from mitochondria and down regulation of Bcl-2/Bax ratio and reduced the high level of COX-2 and 5-LOX. As shown in its anti-inflammatory effect, KYKZL-1 also exhibited inhibitory effect on the PGE{sub 2} and LTB{sub 4} production in Hep G{sub 2} cells. Accordingly, exogenous addition of PGE{sub 2} or LTB{sub 4} reversed the decreases in cell viability. In addition, KYKZL-1 caused cell cycle arrest at the S–G{sub 2} checkpoint via the activation of p21{sup CIP1} protein and down-regulation of cyclin A expression. These data indicate that the growth inhibitory effect of KYKZL-1 is associated with inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Combined with our previous findings, KYKZL-1 exhibiting COX/5-LOX inhibition may be a promising potential agent not only for inflammation control but also for cancer prevention/therapy with an enhanced gastric safety profile. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 resulted in apoptosis of Hep G{sub 2} cells. • KYKZL-1 activated caspase-3 through cytochrome c and bcl-2/bax ratio. • KYKZL-1 caused cell cycle arrest via modulation of p21{sup CIP1} and cyclin A level.

  4. Bioactive secondary metabolites of a marine Bacillus sp. inhibit superoxide generation and elastase release in human neutrophils by blocking formyl peptide receptor 1.

    PubMed

    Yang, Shun-Chin; Lin, Chwan-Fwu; Chang, Wen-Yi; Kuo, Jimmy; Huang, Yin-Ting; Chung, Pei-Jen; Hwang, Tsong-Long

    2013-06-03

    It is well known that overwhelming neutrophil activation is closely related to acute and chronic inflammatory injuries. Formyl peptide receptor 1 (FPR1) plays an important role in activation of neutrophils and may represent a potent therapeutic target in inflammatory diseases. In the present study, we demonstrated that IA-LBI07-1 (IA), an extract of bioactive secondary metabolites from a marine Bacillus sp., has anti-inflammatory effects in human neutrophils. IA significantly inhibited superoxide generation and elastase release in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated neutrophils, but failed to suppress the cell responses activated by non-FPR1 agonists. IA did not alter superoxide production and elastase activity in cell-free systems. IA also attenuated the downstream signaling from FPR1, such as the Ca2+, MAP kinases and AKT pathways. In addition, IA inhibited the binding of N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein, a fluorescent analogue of FMLP, to FPR1 in human neutrophils and FPR1-transfected HEK293 cells. Taken together, these results show that the anti-inflammatory effects of IA in human neutrophils are through the inhibition of FPR1. Also, our data suggest that IA may have therapeutic potential to decrease tissue damage induced by human neutrophils.

  5. Inhibition of radical-induced DNA strand breaks by water-soluble constituents of coffee: phenolics and caffeine metabolites.

    PubMed

    Rathod, M A; Patel, D; Das, A; Tipparaju, S R; Shinde, S S; Anderson, R F

    2013-07-01

    Epidemiological studies have associated coffee consumption with an inverse risk of developing Parkinson's disease, hepatocellular carcinoma and cirrhosis. The molecular mechanisms by which low concentrations of the constituents of coffee measured in human plasma can reduce the incidence of such diseases are not clear. Using an in vitro plasmid DNA system and radiolytically generated reactive oxygen species under constant radical scavenging conditions, we have shown that coffee chlorogenic acid, its derivatives and certain metabolites of caffeine reduce some of the free radical damage sustained to the DNA. A reduction in the amount of prompt DNA single-strand breaks (SSBs) was observed for all compounds whose radical one-electron reduction potential is < 1.0 V. However, except for chlorogenic acid, the compounds were found to be inactive in reducing the amount of radical damage to the DNA bases. These results support a limited antioxidant role for such compounds in their interaction with DNA radicals.

  6. Long-chain metabolites of α-tocopherol occur in human serum and inhibit macrophage foam cell formation in vitro.

    PubMed

    Wallert, Maria; Mosig, Sandy; Rennert, Knut; Funke, Harald; Ristow, Michael; Pellegrino, Roberto Maria; Cruciani, Gabriele; Galli, Francesco; Lorkowski, Stefan; Birringer, Marc

    2014-03-01

    Despite intensive research the physiological role and molecular mechanisms of action of the lipophilic antioxidant α-tocopherol (α-TOH) are still poorly understood. Hepatic α-TOH catabolism results in intermediate formation of the long-chain metabolites (α-LCMs) α-13'-hydroxy- and α-13'-carboxychromanol (α-13'-OH and α-13'-COOH). We propose that α-LCMs have biological functions that need further exploration. Here we report that α-13'-COOH, as detected by LC/MS Q-TOF, occurs in human serum, providing evidence for its systemic bioavailability. Using semisynthetically derived α-LCMs we performed flow cytometric analyses and found that α-LCMs decrease oxidized LDL (oxLDL) uptake (α-13'-OH, 24±6%, α-13'-COOH, 20±5% vs control) and oxLDL-induced lipid accumulation in human macrophages in vitro (α-13'-OH, 26±4%, α-13'-COOH, 21±9% vs oxLDL), probably owing to α-LCM-mediated reduction in phagocytosis of oxLDL (α-13'-OH, 16±6%, α-13'-COOH, 41±3% vs oxLDL). At the same time, α-LCMs induced expression of CD36, the major scavenger receptor for oxLDL, in human macrophages by about 4.5-fold. Blocking experiments provided evidence that α-LCMs influence oxLDL uptake independent of CD36. A key finding of our study is that bioactivity of the α-LCMs occurs at lower concentrations and with mechanisms distinct from those of their metabolic precursor α-TOH. Our findings shed new light on the mechanistic aspects of α-TOH function in macrophages, which seem to be complicated by circulating α-LCMs. We speculate that α-LCMs represent a new class of regulatory metabolites. Further studies are required to elucidate their physiological role and contribution to cardiovascular disease.

  7. Inhibition of the Human ABC Efflux Transporters P-gp and BCRP by the BDE-47 Hydroxylated Metabolite 6-OH-BDE-47: Considerations for Human Exposure.

    PubMed

    Marchitti, Satori A; Mazur, Christopher S; Dillingham, Caleb M; Rawat, Swati; Sharma, Anshika; Zastre, Jason; Kenneke, John F

    2017-01-01

    High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-binding cassette (ABC) transporters, which mediate cellular xenobiotic efflux. However, little information exists on how PBDEs interact with ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). The purpose of this study was to evaluate the interactions of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and its hydroxylated metabolite 6-OH-BDE-47 with P-gp and BCRP, using human MDR1- and BCRP-expressing membrane vesicles and stably transfected NIH-3T3-MDR1 and MDCK-BCRP cells. In P-gp membranes, BDE-47 did not affect P-gp activity; however, 6-OH-BDE-47 inhibited P-gp activity at low µM concentrations (IC50 = 11.7 µM). In BCRP membranes, BDE-47 inhibited BCRP activity; however, 6-OH-BDE-47 was a stronger inhibitor [IC50 = 45.9 µM (BDE-47) vs. IC50 = 9.4 µM (6-OH-BDE-47)]. Intracellular concentrations of known P-gp and BCRP substrates [((3)H)-paclitaxel and ((3)H)-prazosin, respectively] were significantly higher (indicating less efflux) in NIH-3T3-MDR1 and MDCK-BCRP cells in the presence of 6-OH-BDE-47, but not BDE-47. Collectively, our results indicate that the BDE-47 metabolite 6-OH-BDE-47 is an inhibitor of both P-gp and BCRP efflux activity. These findings suggest that some effects previously attributed to BDE-47 in biological systems may actually be due to 6-OH-BDE-47. Considerations for human exposure are discussed.

  8. Targeting heme oxygenase-1 in vascular disease.

    PubMed

    Durante, William

    2010-12-01

    Heme oxygenase-1 (HO-1) metabolizes heme to generate carbon monoxide (CO), biliverdin, and iron. Biliverdin is subsequently metabolized to bilirubin by biliverdin reductase. HO-1 has recently emerged as a promising therapeutic target in the treatment of vascular disease. Pharmacological induction or gene transfer of HO-1 ameliorates vascular dysfunction in animal models of atherosclerosis, post-angioplasty restenosis, vein graft stenosis, thrombosis, myocardial infarction, and hypertension, while inhibition of HO-1 activity or gene deletion exacerbates these disorders. The vasoprotection afforded by HO-1 is largely attributable to its end products: CO and the bile pigments, biliverdin and bilirubin. These end products exert potent anti-inflammatory, antioxidant, anti-apoptotic, and anti-thrombotic actions. In addition, CO and bile pigments act to preserve vascular homeostasis at sites of arterial injury by influencing the proliferation, migration, and adhesion of vascular smooth muscle cells, endothelial cells, endothelial progenitor cells, or leukocytes. Several strategies are currently being developed to target HO-1 in vascular disease. Pharmacological induction of HO-1 by heme derivatives, dietary antioxidants, or currently available drugs, is a promising near-term approach, while HO-1 gene delivery is a long-term therapeutic goal. Direct administration of CO via inhalation or through the use of CO-releasing molecules and/or CO-sensitizing agents provides an attractive alternative approach in targeting HO-1. Furthermore, delivery of bile pigments, either alone or in combination with CO, presents another avenue for protecting against vascular disease. Since HO-1 and its products are potentially toxic, a major challenge will be to devise clinically effective therapeutic modalities that target HO-1 without causing any adverse effects.

  9. Heme Oxygenases in Cardiovascular Health and Disease.

    PubMed

    Ayer, Anita; Zarjou, Abolfazl; Agarwal, Anupam; Stocker, Roland

    2016-10-01

    Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.

  10. 1,5-Diazacyclooctanes, as Exclusive Oxidative Polyamine Metabolites, Inhibit Amyloid-β(1-40) Fibrillization.

    PubMed

    Tsutsui, Ayumi; Zako, Tamotsu; Bu, Tong; Yamaguchi, Yoshiki; Maeda, Mizuo; Tanaka, Katsunori

    2016-10-01

    Biologically relevant 1,5-diazacyclooctanes derived from polyamines and acrolein, inhibit Aβ40 peptide fibrillization and significantly suppress cell cytotoxicity. Formal [4+4] cycloaddition reaction of imines is thus involved in modulating oxidative stress processes associated with neural diseases.

  11. 3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington disease victims.

    PubMed Central

    Schwarcz, R; Okuno, E; White, R J; Bird, E D; Whetsell, W O

    1988-01-01

    An excess of the tryptophan metabolite quinolinic acid in the brain has been hypothetically related to the pathogenesis of Huntington disease. Quinolinate's immediate biosynthetic enzyme, 3-hydroxyanthranilate oxygenase (EC 1.13.11.6), has now been detected in human brain tissue. The activity of 3-hydroxyanthranilate oxygenase is increased in Huntington disease brains as compared to control brains. The increment is particularly pronounced in the striatum, which is known to exhibit the most prominent nerve-cell loss in Huntington disease. Thus, the Huntington disease brain has a disproportionately high capability to produce the endogenous "excitotoxin" quinolinic acid. This finding may be of relevance for clinical, neuropathologic, and biochemical features associated with Huntington disease. PMID:2967497

  12. Intestinal Absorption of Hemoglobin Iron-Heme Cleavage by Mucosal Heme Oxygenase

    PubMed Central

    Raffin, Steven B.; Woo, Choong H.; Roost, Kenneth T.; Price, David C.; Schmid, Rudi

    1974-01-01

    Hemoglobin and myoglobin are a major source of dietary iron in man. Heme, separated from these hemoproteins by intraluminal proteolysis, is absorbed intact by the intestinal mucosa. The absorbed heme is cleaved in the mucosal cell releasing inorganic iron. Although this mucosal heme-splitting activity initially was ascribed to xanthine oxidase, we investigated the possibility that it is catalyzed by microsomal heme oxygenase, an enzyme which converts heme to bilirubin, CO, and inorganic iron. Microsomes prepared from rat intestinal mucosa contain enzymatic activity similar to that of heme oxygenase in liver and spleen. The intestinal enzyme requires NADPH; is completely inhibited by 50% CO; and produces bilirubin IX-α, identified spectrophotometrically and chromatographically. Moreover, duodenal heme oxygenase was shown to release inorganic 55Fe from 55Fe-heme. Along the intestinal tract, enzyme activity was found to be highest in the duodenum where hemoglobin iron absorption is reported to be most active. Furthermore, when rats were made iron deficient, duodenal heme oxygenase activity and hemoglobin-iron absorption rose to a comparable extent. Upon iron repletion of iron-deficient animals, duodenal enzyme activity returned towards control values. In contrast to heme oxygenase, duodenal xanthine oxidase activity fell sharply in iron deficiency and rose towards base line upon iron repletion. Our findings suggest that mucosal heme oxygenase catalyzes the cleavage of heme absorbed in the intestinal mucosa and thus plays an important role in the absorption of hemoglobin iron. The mechanisms controlling this intestinal enzyme activity and the enzyme's role in the overall regulation of hemoglobin-iron absorption remain to be defined. PMID:4436436

  13. Human mesenchymal stromal cells suppress T-cell proliferation independent of heme oxygenase-1.

    PubMed

    Patel, Seema R; Copland, Ian B; Garcia, Marco A; Metz, Richard; Galipeau, Jacques

    2015-04-01

    Mesenchymal stromal cells deploy immune suppressive properties amenable for use as cell therapy for inflammatory disorders. It is now recognized that mesenchymal stromal cells necessitate priming with an inflammatory milieu, in particular interferon-γ, to exert augmented immunosuppressive effects. It has been recently suggested that the heme-catabolizing enzyme heme oxygenase-1 is an essential component of the mesenchymal stromal cell-driven immune suppressive response. Because mesenchymal stromal cells upregulate indoleamine 2,3-dioxygenase expression on interferon-γ priming and indoleamine 2,3-dioxygenase requires heme as a cofactor for optimal catabolic function, we investigated the potential antagonism of heme oxygenase-1 activity on indoleamine 2, 3-dioxygenase and the impact on mesenchymal stromal cell immune plasticity. We herein sought to evaluate the molecular genetic effect of cytokine priming on human mesenchymal stromal cell heme oxygenase-1 expression and its functional role in differentially primed mesenchymal stromal cells. Contrary to previous reports, messenger RNA and protein analyses demonstrated that mesenchymal stromal cells derived from normal subjects (n = 6) do not express heme oxygenase-1 at steady state or after interferon-γ, tumor necrosis factor-α, and/or transforming growth factor-β priming. Pharmacological inhibition of heme oxygenase-1 with the use of tin protoporphyrin did not significantly abrogate the ability of mesenchymal stromal cells to suppress T-cell proliferation in vitro. Overall, these results unequivocally demonstrate that under steady state and after cytokine priming, human mesenchymal stromal cells immunoregulate T-cell proliferation independent of heme oxygenase-1.

  14. Verapamil, and its metabolite norverapamil, inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple anti-tubercular drugs.

    PubMed

    Adams, Kristin N; Szumowski, John D; Ramakrishnan, Lalita

    2014-08-01

    Drug tolerance likely represents an important barrier to tuberculosis treatment shortening. We previously implicated the Mycobacterium tuberculosis efflux pump Rv1258c as mediating macrophage-induced tolerance to rifampicin and intracellular growth. In this study, we infected the human macrophage-like cell line THP-1 with drug-sensitive and drug-resistant M. tuberculosis strains and found that tolerance developed to most antituberculosis drugs, including the newer agents moxifloxacin, PA-824, linezolid, and bedaquiline. Multiple efflux pump inhibitors in clinical use for other indications reversed tolerance to isoniazid and rifampicin and slowed intracellular growth. Moreover, verapamil reduced tolerance to bedaquiline and moxifloxacin. Verapamil's R isomer and its metabolite norverapamil have substantially less calcium channel blocking activity yet were similarly active as verapamil at inhibiting macrophage-induced drug tolerance. Our finding that verapamil inhibits intracellular M. tuberculosis growth and tolerance suggests its potential for treatment shortening. Norverapamil, R-verapamil, and potentially other derivatives present attractive alternatives that may have improved tolerability.

  15. The thiamine biosynthetic enzyme ThiC catalyzes multiple turnovers and is inhibited by S-adenosylmethionine (AdoMet) metabolites.

    PubMed

    Palmer, Lauren D; Downs, Diana M

    2013-10-18

    ThiC (4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase; EC 4.1.99.17) is a radical S-adenosylmethionine (AdoMet) enzyme that uses a [4Fe-4S](+) cluster to reductively cleave AdoMet to methionine and a 5'-deoxyadenosyl radical that initiates catalysis. In plants and bacteria, ThiC converts the purine intermediate 5-aminoimidazole ribotide to 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate, an intermediate of thiamine pyrophosphate (coenzyme B1) biosynthesis. In this study, assay conditions were implemented that consistently generated 5-fold molar excess of HMP, demonstrating that ThiC undergoes multiple turnovers. ThiC activity was improved by in situ removal of product 5'-deoxyadenosine. The activity was inhibited by AdoMet metabolites S-adenosylhomocysteine, adenosine, 5'-deoxyadenosine, S-methyl-5'-thioadenosine, methionine, and homocysteine. Neither adenosine nor S-methyl-5'-thioadenosine had been shown to inhibit radical AdoMet enzymes, suggesting that ThiC is distinct from other family members. The parameters for improved ThiC activity and turnover described here will facilitate kinetic and mechanistic analyses of ThiC.

  16. A novel stereo bioactive metabolite isolated from an endophytic fungus induces caspase dependent apoptosis and STAT-3 inhibition in human leukemia cells.

    PubMed

    Pathania, Anup Singh; Guru, Santosh Kumar; Ul Ashraf, Nissar; Riyaz-Ul-Hassan, Syed; Ali, Asif; Abdullah Tasduq, Sheikh; Malik, Fayaz; Bhushan, Shashi

    2015-10-15

    The present study describes the anti-leukemic potential of a novel stereo bioactive secondary metabolite, (R)-5-hydroxy-2-methylchroman-4-one (HMC) isolated from a novel endophytic fungus source (Cryptosporiopsis sp. H2-1, NFCCI-2856), associated with Clidemia hirta. HMC inhibited cell proliferation of different cancer cell lines with IC50 values in the range of 8-55 µg/ml. The cytotoxicity window of HMC was 6-12 times lower in normal cells as compared to susceptible leukemic HL-60, MOLT-4 and K-562 cells. It persuades apoptosis through both intrinsic and extrinsic pathways in above leukemic cell lines, which was evident through Hoechst staining, Annexin-V binding, cell cycle analysis, loss of mitochondrial membrane potential (Δψm), release of cytochrome c, Bax, Bid, over-expression of apical death receptors, activation of caspase-3,-8,-9 and PARP (poly ADP ribose polymerase) cleavage. HMC induced caspase dependent apoptosis and robustly attenuate transcription factor, p-STAT-3 in myeloid and lymphoid leukemia cells. The mechanism of HMC arbitrated inhibition of p-STAT-3 was due to the activation of ubiquitin dependent degradation of p-STAT-3. Therefore, our study not only describes the anti-leukemic potential of HMC but also provides insights into how endophytes can be useful in discovery and development of novel anticancer therapeutics.

  17. 5-Aminolevulinic acid combined with ferrous iron enhances the expression of heme oxygenase-1.

    PubMed

    Nishio, Yoshiaki; Fujino, Masayuki; Zhao, Mingyi; Ishii, Takuya; Ishizuka, Masahiro; Ito, Hidenori; Takahashi, Kiwamu; Abe, Fuminori; Nakajima, Motowo; Tanaka, Tohru; Taketani, Shigeru; Nagahara, Yukitoshi; Li, Xiao-Kang

    2014-04-01

    5-Aminolevulinic acid (5-ALA) is the naturally occurring metabolic precursor of heme. Heme negatively regulates the Maf recognition element (MARE) binding- and repressing-activity of the Bach1 transcription factor through its direct binding to Bach1. Heme oxygenase (HO)-1 is an inducible enzyme that catalyzes the rate-limiting step in the oxidative degradation of heme to free iron, biliverdin and carbon monoxide. These metabolites of heme protect against apoptosis, inflammation and oxidative stress. Monocytes and macrophages play a critical role in the initiation, maintenance and resolution of inflammation. Therefore, the regulation of inflammation in macrophages is an important target under various pathophysiological conditions. In order to address the question of what is responsible for the anti-inflammatory effects of 5-ALA, the induction of HO-1 expression by 5-ALA and sodium ferrous citrate (SFC) was examined in macrophage cell line (RAW264 cells). HO-1 expression induced by 5-ALA combined with SFC (5-ALA/SFC) was partially inhibited by MEK/ERK and p38 MAPK inhibitor. The NF-E2-related factor 2 (Nrf2) was activated and translocated from the cytosol to the nucleus in response to 5-ALA/SFC. Nrf2-specific siRNA reduced the HO-1 expression. In addition, 5-ALA/SFC increased the intracellular levels of heme in cells. The increased heme indicated that the inactivation of Bach1 by heme supports the upregulation of HO-1 expression. Taken together, our data suggest that the exposure of 5-ALA/SFC to RAW264 cells enhances the HO-1 expression via MAPK activation along with the negative regulation of Bach1.

  18. Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP Reductase, a crucial enzyme in fatty acid biosynthesis.

    PubMed

    Kirmizibekmez, Hasan; Calis, Ihsan; Perozzo, Remo; Brun, Reto; Dönmez, Ali A; Linden, Anthony; Rüedi, Peter; Tasdemir, Deniz

    2004-08-01

    Anti-plasmodial activity-guided fractionation of Phlomis brunneogaleata (Lamiaceae) led to the isolation of two new metabolites, the iridoid glycoside, brunneogaleatoside and a new pyrrolidinium derivative (2 S,4 R)-2-carboxy-4-( E)- p-coumaroyloxy-1,1-dimethylpyrrolidinium inner salt [(2 S,4 R)-1,1-dimethyl-4-( E)- p-coumaroyloxyproline inner salt]. Moreover, a known iridoid glycoside, ipolamiide, six known phenylethanoid glycosides, verbascoside, isoverbascoside, forsythoside B, echinacoside, glucopyranosyl-(1-->G (i)-6)-martynoside and integrifolioside B, two flavone glycosides, luteolin 7- O-beta- D-glucopyranoside ( 10) and chrysoeriol 7- O-beta- D-glucopyranoside ( 11), a lignan glycoside liriodendrin, an acetophenone glycoside 4-hydroxyacetophenone 4- O-(6'- O-beta- D-apiofuranosyl)-beta- D-glucopyranoside and three caffeic acid esters, chlorogenic acid, 3-O-caffeoylquinic acid methyl ester and 5- O-caffeoylshikimic acid were isolated. The structures of the pure compounds were elucidated by means of spectroscopic methods (UV, IR, MS, 1D and 2D NMR, [alpha] (D)) and X-ray crystallography. Compounds 10 and 11 were determined to be the major anti-malarial principles of the crude extract (IC (50) values of 2.4 and 5.9 micrograms/mL, respectively). They also exhibited significant leishmanicidal activity (IC (50) = 1.1 and 4.1 micrograms/mL, respectively). The inhibitory potential of the pure metabolites against plasmodial enoyl-ACP reductase (FabI), which is the key regulator of type II fatty acid synthases (FAS-II) in P. falciparum, was also assessed. Compound 10 showed promising FabI inhibiting effect (IC (50) = 10 micrograms/mL) and appears to be the first anti-malarial natural product targeting FabI of P. falciparum.

  19. Aptamer-Drug Conjugates of Active Metabolites of Nucleoside Analogs and Cytotoxic Agents Inhibit Pancreatic Tumor Cell Growth.

    PubMed

    Yoon, Sorah; Huang, Kai-Wen; Reebye, Vikash; Spalding, Duncan; Przytycka, Teresa M; Wang, Yijie; Swiderski, Piotr; Li, Lin; Armstrong, Brian; Reccia, Isabella; Zacharoulis, Dimitris; Dimas, Konstantinos; Kusano, Tomokazu; Shively, John; Habib, Nagy; Rossi, John J

    2017-03-17

    Aptamer-drug conjugates (ApDCs) have the potential to improve the therapeutic index of traditional chemotherapeutic agents due to their ability to deliver cytotoxic drugs specifically to cancer cells while sparing normal cells. This study reports on the conjugation of cytotoxic drugs to an aptamer previously described by our group, the pancreatic cancer RNA aptamer P19. To this end, P19 was incorporated with gemcitabine and 5-fluorouracil (5-FU), or conjugated to monomethyl auristatin E (MMAE) and derivative of maytansine 1 (DM1). The ApDCs P19-dFdCMP and P19-5FdUMP were shown to induce the phosphorylation of histone H2AX on Ser139 (γ-H2AX) and significantly inhibited cell proliferation by 51%-53% in PANC-1 and by 54%-34% in the gemcitabine-resistant pancreatic cancer cell line AsPC-1 (p ≤ 0.0001). P19-MMAE and P19-DM1 caused mitotic G2/M phase arrest and inhibited cell proliferation by up to 56% in a dose-dependent manner when compared to the control group (p ≤ 0.001). In addition, the cytotoxicity of P19-MMAE and P19-DM1 in normal cells and the control human breast cancer cell line MCF7 was minimal. These results suggest that this approach may be useful in decreasing cytotoxic side effects in non-tumoral tissue.

  20. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin.

    PubMed

    Cho, Hyun Seob; Lee, Jin-Hyung; Ryu, Shi Yong; Joo, Sang Woo; Cho, Moo Hwan; Lee, Jintae

    2013-07-24

    Pathogenic biofilms are associated with persistent infection due to their high resistances to diverse antibiotics. Pseudomonas aeruginosa infects plants, animals, and humans and is a major cause of nosocomial diseases in patients with cystic fibrosis. In the present study, the antibiofilm abilities of 522 plant extracts against P. aeruginosa PA14 were examined. Three Carex plant extracts at a concentration of 200 μg/mL inhibited P. aeruginosa biofilm formation by >80% without affecting planktonic cell growth. In the most active extract of Carex pumila , resveratrol dimer ε-viniferin was one of the main antibiofilm compounds against P. aeruginosa. Interestingly, ε-viniferin at 10 μg/mL inhibited biofilm formation of enterohemorrhagic Escherichia coli O157:H7 by 98%. Although Carex extracts and trans-resveratrol are known to possess antimicrobial activity, this study is the first to report that C. pumila extract and ε-viniferin have antibiofilm activity against P. aeruginosa and E. coli O157:H7.

  1. Compound K, a metabolite of ginseng saponin, inhibits colorectal cancer cell growth and induces apoptosis through inhibition of histone deacetylase activity.

    PubMed

    Kang, Kyoung Ah; Piao, Mei Jing; Kim, Ki Cheon; Zheng, Jian; Yao, Cheng Wen; Cha, Ji Won; Kim, Hye Sun; Kim, Dong Hyun; Bae, Suk Chul; Hyun, Jin Won

    2013-12-01

    In this study, we investigated the molecular mechanisms underlying the anti-proliferative effects of Compound K, with specific reference to histone modification. Exposure of HT-29 human colon cancer cells to Compound K resulted in time-dependent inhibition of histone deacetylase (HDAC) activity, mRNA and protein expression. Compound K treatment induced unmethylation of the RUNX3 promoter region such as TSA treatment and an accumulation of acetylated histones H3 and H4 within the total cellular chromatin, resulting in an enhanced ability of these histones to bind to the promoter sequences of the tumor suppressor gene Runt-related transcription factor 3 (RUNX3). Treatment of cells with Compound K increased the mRNA and protein expression of RUNX3, as well as p21, a downstream target of RUNX3. These alterations were consistent with cell cycle arrest at the G0/G1 phases and induction of apoptosis. Our results provide new insights into the mechanisms of Compound K action in human colorectal cancer cells and suggest that HDAC inhibition presents a novel approach to prevent or treat colorectal cancer.

  2. An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug-drug and drug-herb interaction by LC-ESI/MS/MS.

    PubMed

    Borkar, Roshan M; Bhandi, Murali Mohan; Dubey, Ajay P; Ganga Reddy, V; Komirishetty, Prashanth; Nandekar, Prajwal P; Sangamwar, Abhay T; Kamal, Ahmed; Banerjee, Sanjay K; Srinivas, R

    2016-10-01

    The aim of the present study was to evaluate the contribution of metabolites to drug-drug interaction and drug-herb interaction using the inhibition of CYP2D6 and CYP3A4 by metoprolol (MET) and its metabolites. The peak concentrations of unbound plasma concentration of MET, α-hydroxy metoprolol (HM), O-desmethyl metoprolol (ODM) and N-desisopropyl metoprolol (DIM) were 90.37 ± 2.69, 33.32 ± 1.92, 16.93 ± 1.70 and 7.96 ± 0.94 ng/mL, respectively. The metabolites identified, HM and ODM, had a ratio of metabolic area under the concentration-time curve (AUC) to parent AUC of ≥0.25 when either total or unbound concentration of metabolite was considered. In vitro CYP2D6 and CYP3A4 inhibition by MET, HM and ODM study revealed that MET, HM and ODM were not inhibitors of CYP3A4-catalyzed midazolam metabolism and CYP2D6-catalyzed dextromethorphan metabolism. However, DIM only met the criteria of >10% of the total drug related material and <25% of the parent using unbound concentrations. If CYP inhibition testing is solely based on metabolite exposure, DIM metabolite would probably not be considered. However, the present study has demonstrated that DIM contributes significantly to in vitro drug-drug interaction. Copyright © 2016 John Wiley & Sons, Ltd.

  3. The metabolites of glutamine prevent hydroxyl radical-induced apoptosis through inhibiting mitochondria and calcium ion involved pathways in fish erythrocytes.

    PubMed

    Li, Huatao; Jiang, Weidan; Liu, Yang; Jiang, Jun; Zhang, Yongan; Wu, Pei; Zhao, Juan; Duan, Xudong; Zhou, Xiaoqiu; Feng, Lin

    2016-03-01

    The present study explored the apoptosis pathways in hydroxyl radicals ((∙)OH)-induced carp erythrocytes. Carp erythrocytes were treated with the caspase inhibitors in physiological carp saline (PCS) or Ca(2+)-free PCS in the presence of 40μM FeSO4/20μM H2O2. The results showed that the generation of reactive oxygen species (ROS), the release of cytochrome c and DNA fragmentation were caspase-dependent, and Ca(2+) was involved in calpain activation and phosphatidylserine (PS) exposure in (∙)OH-induced carp erythrocytes. Moreover, the results suggested that caspases were involved in PS exposure, and Ca(2+) was involved in DNA fragmentation in (∙)OH-induced fish erythrocytes. These results demonstrated that there might be two apoptosis pathways in fish erythrocytes, one is the caspase and cytochrome c-dependent apoptosis that is similar to that in mammal nucleated cells, the other is the Ca(2+)-involved apoptosis that was similar to that in mammal non-nucleated erythrocytes. So, fish erythrocytes may be used as a model for studying oxidative stress and apoptosis in mammal cells. Furthermore, the present study investigated the effects of glutamine (Gln)'s metabolites [alanine (Ala), citrulline (Cit), proline (Pro) and their combination (Ala10Pro4Cit1)] on the pathways of apoptosis in fish erythrocytes. The results displayed that Ala, Cit, Pro and Ala10Pro4Cit1 effectively suppressed ROS generation, cytochrome c release, activation of caspase-3, caspase-8 and caspase-9 at the physiological concentrations, prevented Ca(2+) influx, calpain activation, PS exposure, DNA fragmentation and the degradation of the cytoskeleton and oxidation of membrane and hemoglobin (Hb) and increased activity of anti-hydroxyl radical (AHR) in (∙)OH-induced carp erythrocytes. Ala10Pro4Cit1 produced a synergistic effect of inhibited oxidative stress and apoptosis in fish erythrocytes. These results demonstrated that Ala, Cit, Pro and their combination can protect mammal erythrocytes

  4. Glycolytic metabolite methylglyoxal inhibits cold and menthol activation of the transient receptor potential melastatin type 8 channel.

    PubMed

    Ciobanu, A C; Selescu, T; Gasler, I; Soltuzu, L; Babes, A

    2016-03-01

    Methylglyoxal (MG) is a reactive dicarbonyl compound involved in protein modifications linked to diabetes mellitus. The plasma level of MG is elevated in diabetic patients, particularly those with painful diabetic neuropathy. Diabetic neuropathy is often associated with spontaneous pain and altered thermal perception. This study assesses effects of MG on TRPM8, an ion channel involved in innocuous cold sensing and cold allodynia and also in cold-mediated analgesia. Acute treatment with MG inhibited the activation of recombinant rat and human transient receptor potential melastatin type 8 (TRPM8) by cold and chemical agonists. A similar effect was observed when native TRPM8 was investigated in cultured rat dorsal root ganglion (DRG) neurons. DRG neurons treated with MG for 16-24 hr displayed a significant reduction in the fraction of cold- and menthol-sensitive neurons, most likely expressing TRPM8. The fraction of allyl isothiocyanate-sensitive neurons was also reduced, and the coexpression among different neuronal populations was affected. The same prolonged exposure to MG significantly reduced the expression of TRPM8 at the mRNA level. Overall, our data provide evidence for decreased activity and expression level of TRPM8 in the presence of MG, which may be linked to some of the alterations in pain and temperature sensing reported by diabetic patients. © 2015 Wiley Periodicals, Inc.

  5. Glycoalkaloids and metabolites inhibit the growth of human colon (HT29) and liver (HepG2) cancer cells.

    PubMed

    Lee, Kap-Rang; Kozukue, Nobuyuki; Han, Jae-Sook; Park, Joon-Hong; Chang, Eun-Young; Baek, Eun-Jung; Chang, Jong-Sun; Friedman, Mendel

    2004-05-19

    As part of an effort to improve plant-derived foods such as potatoes, eggplants, and tomatoes, the antiproliferative activities against human colon (HT29) and liver (HepG2) cancer cells of a series of structurally related individual compounds were examined using a microculture tetrazolium (MTT) assay. The objective was to assess the roles of the carbohydrate side chain and aglycon part of Solanum glycosides in influencing inhibitory activities of these compounds. Evaluations were carried out with four concentrations each (0.1, 1, 10, and 100 microg/mL) of the the potato trisaccharide glycoalkaloids alpha-chaconine and alpha-solanine; the disaccharides beta(1)-chaconine, beta(2)-chaconine, and beta(2)-solanine; the monosaccharide gamma-chaconine and their common aglycon solanidine; the tetrasaccharide potato glycoalkaloid dehydrocommersonine; the potato aglycon demissidine; the tetrasaccharide tomato glycoalkaloid alpha-tomatine, the trisaccharide beta(1)-tomatine, the disaccharide gamma-tomatine, the monosaccharide delta-tomatine, and their common aglycon tomatidine; the eggplant glycoalkaloids solamargine and solasonine and their common aglycon solasodine; and the nonsteroidal alkaloid jervine. All compounds were active in the assay, with the glycoalkaloids being the most active and the hydrolysis products less so. The effectiveness against the liver cells was greater than against the colon cells. Potencies of alpha-tomatine and alpha-chaconine at a concentration of 1 microg/mL against the liver carcinoma cells were higher than those observed with the anticancer drugs doxorubicin and camptothecin. Because alpha-chaconine, alpha-solanine, and alpha-tomatine also inhibited normal human liver HeLa (Chang) cells, safety considerations should guide the use of these compounds as preventative or therapeutic treatments against carcinomas.

  6. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications.

    PubMed

    Hilmas, C; Pereira, E F; Alkondon, M; Rassoulpour, A; Schwarcz, R; Albuquerque, E X

    2001-10-01

    The tryptophan metabolite kynurenic acid (KYNA) has long been recognized as an NMDA receptor antagonist. Here, interactions between KYNA and the nicotinic system in the brain were investigated using the patch-clamp technique and HPLC. In the electrophysiological studies, agonists were delivered via a U-shaped tube, and KYNA was applied in admixture with agonists and via the background perfusion. Exposure (>/=4 min) of cultured hippocampal neurons to KYNA (>/=100 nm) inhibited activation of somatodendritic alpha7 nAChRs; the IC(50) for KYNA was approximately 7 microm. The inhibition of alpha7 nAChRs was noncompetitive with respect to the agonist and voltage independent. The slow onset of this effect could not be accounted for by an intracellular action because KYNA (1 mm) in the pipette solution had no effect on alpha7 nAChR activity. KYNA also blocked the activity of preterminal/presynaptic alpha7 nAChRs in hippocampal neurons in cultures and in slices. NMDA receptors were less sensitive than alpha7 nAChRs to KYNA. The IC(50) values for KYNA-induced blockade of NMDA receptors in the absence and presence of glycine (10 microm) were approximately 15 and 235 microm, respectively. Prolonged (3 d) exposure of cultured hippocampal neurons to KYNA increased their nicotinic sensitivity, apparently by enhancing alpha4beta2 nAChR expression. Furthermore, as determined by HPLC with fluorescence detection, repeated systemic treatment of rats with nicotine caused a transient reduction followed by an increase in brain KYNA levels. These results demonstrate that nAChRs are targets for KYNA and suggest a functionally significant cross talk between the nicotinic cholinergic system and the kynurenine pathway in the brain.

  7. Low-dose benzo(a)pyrene and its epoxide metabolite inhibit myogenic differentiation in human skeletal muscle-derived progenitor cells.

    PubMed

    Chiu, Chen-Yuan; Yen, Yuan-Peng; Tsai, Keh-Sung; Yang, Rong-Sen; Liu, Shing-Hwa

    2014-04-01

    The risk of low birth weights is elevated in prenatal exposure to polycyclic aromatic hydrocarbons (PAHs), which are ubiquitous environmental pollutants generated from combustion of organic compounds, including cigarette smoke. We hypothesized that benzo(a)pyrene (BaP), a member of PAHs existing in cigarette smoke, may affect the myogenesis to cause low birth weights. We investigated the effects of BaP and its main metabolite, benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), on the myogenic differentiation of human skeletal muscle-derived progenitor cells (HSMPCs). HSMPCs were isolated by a modified preplate technique and cultured in myogenic differentiation media with or without BaP and BPDE (0.25 and 0.5 μM) for 4 days. The multinucleated myotube formation was morphologically analyzed by hematoxylin and eosin staining. The expressions of myogenic differentiation markers and related signaling proteins were determined by Western blotting. Both BaP and BPDE at the submicromolar concentrations (0.25 and 0.5 μM) dose-dependently repressed HSMPCs myogenic differentiation without obvious cell toxicity. Both BaP and BPDE inhibited the muscle-specific protein expressions (myogenin and myosin heavy chain) and phosphorylation of Akt (a known modulator in myogenesis), which could be significantly reversed by the inhibitors for aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and nuclear factor (NF)-κB. BaP- and BPDE-activated NF-κB-p65 protein phosphorylation could also be attenuated by both AhR and ER inhibitors. The inhibitory effects of BaP and BPDE on myogenesis were reversed after withdrawing BaP exposure, but not after BPDE withdrawal. These results suggest that both BaP and BPDE are capable of inhibiting myogenesis via an AhR- or/and ER-regulated NF-κB/Akt signaling pathway.

  8. The Marine Metabolite SZ-685C Induces Apoptosis in Primary Human Nonfunctioning Pituitary Adenoma Cells by Inhibition of the Akt Pathway in Vitro

    PubMed Central

    Wang, Xin; Tan, Ting; Mao, Zhi-Gang; Lei, Ni; Wang, Zong-Ming; Hu, Bin; Chen, Zhi-Yong; She, Zhi-Gang; Zhu, Yong-Hong; Wang, Hai-Jun

    2015-01-01

    Nonfunctioning pituitary adenoma (NFPA) is one of the most common types of pituitary adenoma. The marine anthraquinone derivative SZ-685C has been isolated from the secondary metabolites of the mangrove endophytic fungus Halorosellinia sp. (No. 1403) which is found in the South China Sea. Recent research has shown that SZ-685C possesses anticancer and tumor suppressive effects. The tetrazolium-based colorimetric assay (MTT assay) to investigate the different effect of the marine compound SZ-685C on the proliferation of primary human NFPA cells, rat normal pituitary cells (RPCs) and rat prolactinoma MMQ cell lines. Hoechst 33342 dye/propidium iodide (PI) double staining and fluorescein isothiocyanate-conjugated Annexin V/PI (Annexin V-FITC/PI) apoptosis assays detected an enhanced rate of apoptosis in cells treated with SZ-685C. Enhanced expression levels of caspase 3 and phosphate and tensin homolog (PTEN) were determined by Western blotting. Notably, the protein expression levels of Akt were decreased when the primary human NFPA cells were treated with SZ-685C. Here, we show that SZ-685C induces apoptosis of human NFPA cells through inhibition of the Akt pathway in vitro. The understanding of apoptosis has provided the basis for novel targeted therapies that can induce death in cancer cells or sensitize them to established cytotoxic agents and radiation therapy. PMID:25806467

  9. Resolving the mechanism of bacterial inhibition by plant secondary metabolites employing a combination of whole-cell biosensors.

    PubMed

    Chan, Andrea C; Ager, Duane; Thompson, Ian P

    2013-06-01

    Tightening regulations regarding the use of biocides have stimulated interest in investigating alternatives to current antimicrobial strategies. Plant essential oils and their constituent compounds are promising candidates as novel antimicrobial agents because of their excellent ability in killing microbes while being non-toxic to humans at antimicrobially-active concentrations. Allyl isothiocyanate (AIT), carvacrol, cinnamaldehyde (CNAD), citral, and thymol were investigated for their antibacterial activity against Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The five compounds were screened via disc diffusion assay and broth microdilution method, by which inhibition zone diameters, minimum inhibitory concentrations (MICs), and minimum bactericidal concentrations (MBCs) were determined. AIT and CNAD displayed the greatest inhibitory effects against all species tested, with AIT yielding MICs of 156.25mg/L and MBCs of 156.25 to 312.5mg/L, and CNAD yielding MICs of 78.125 to 156.25mg/L and MBCs of 78.125 to 312.5mg/L. Based on these results, AIT and CNAD were selected for closer examination of their toxic effects. Two complementary bioluminescence-based bacterial biosensors, E. coli HB101_pUCD607_lux and Acinetobacter baylyi ADP1_recA_lux, were employed to examine the dose-response relationships and mechanism of action of AIT and CNAD. This is the first reported study to employ a lux-based biosensor assay coupled with parallel plate count experiments to demonstrate that AIT and CNAD not only damaged cell membranes, but also disrupted cellular metabolism and energy production in bacteria. It is also the first to use genotoxicity-sensing whole-cell bioreporters to demonstrate that neither AIT nor CNAD induced expression of the universal DNA repair gene, recA. This suggests that AIT and CNAD were not genotoxic. As an antimicrobial agent, it is advantageous that the compound be genetically non-damaging so that toxicity towards

  10. Tangeretin and its metabolite 4′-hydroxytetramethoxyflavone attenuate EGF-stimulated cell cycle progression in hepatocytes; role of inhibition at the level of mTOR/p70S6K

    PubMed Central

    Cheng, Z; Surichan, S; Ruparelia, K; Arroo, R; Boarder, MR

    2011-01-01

    BACKGROUND AND PURPOSE The mechanisms by which the dietary compound tangeretin has anticancer effects may include acting as a prodrug, forming an antiproliferative product in cancer cells. Here we show that tangeretin also inhibits cell cycle progression in hepatocytes and investigate the role of its primary metabolite 4′-hydroxy-5,6,7,8-tetramethoxyflavone (4′-OH-TMF) in this effect. EXPERIMENTAL APPROACH We used epidermal growth factor (EGF)-stimulated rat hepatocytes, with [3H]-thymidine incorporation into DNA as an index of progression to S-phase of the cell cycle, and Western blots for phospho-proteins involved in the cell signalling cascade. KEY RESULTS Incubation of tangeretin with microsomes expressing CYP1A, or with hepatocytes, generated a primary product we identified as 4′-OH-TMF. Low micromolar concentrations of tangeretin or 4′-OH-TMF gave a concentration-dependent inhibition of EGF-stimulated progression to S-phase while having little effect on cell viability. To determine whether time for conversion of tangeretin to an active metabolite would enhance the inhibitory effect we used long pre-incubations; this reduced the inhibitory effect, in parallel with a reduction in the concentration of tangeretin. The EGF-stimulation of hepatocyte cell cycle progression requires signalling through Akt/mTOR/p70S6K kinase cascades. The tangeretin metabolite 4′-OH-TMF selectively inhibited S6K phosphorylation in the absence of significant inhibition of upstream Akt activity, suggesting an effect at the level of mTOR. CONCLUSIONS AND IMPLICATIONS Tangeretin and 4′-OH-TMF both inhibit cell cycle progression in primary hepatocytes. The inhibition of p70S6K phosphorylation by 4′-OH-TMF raises the possibility that inhibition of the mTOR pathway may contribute to the anticancer influence of a flavonoid-rich diet. PMID:21198542

  11. Oxidation of tolualdehydes to toluic acids catalyzed by cytochrome P450-dependent aldehyde oxygenase in the mouse liver.

    PubMed

    Watanabe, K; Matsunaga, T; Yamamoto, I; Yashimura, H

    1995-02-01

    Mouse hepatic microsomal enzymes catalyzed the oxidation of o-, m-, and p-tolualdehydes, intermediate metabolites of xylene, to the corresponding toluic acids. Cofactor requirement for the catalytic activity indicates that the microsomes contain NAD- and NADPH-dependent enzymes for this reaction. GC/MS analyses of the carboxylic acids formed by incubation under oxygen-18 gas indicate that the mechanism for this oxidation is an oxygenation and a dehydrogenation for the NADPH- and NAD-dependent reaction. Vmax/Km (nmol/min/mg protein) ratios indicate that the NADPH-dependent activity is more pronounced than the NAD-dependent activity. These results suggest that the NADPH-dependent reaction is mainly responsible for the microsomal oxidation of tolualdehydes. The NADPH-dependent activity was significantly inhibited by SKF 525-A, disulfiram and menadione, inhibitors of cytochrome P450 (P450), suggesting the involvement of P450 in the reaction. In a reconstituted system, P450 MUT-2 (CYP2C29) purified from mouse hepatic microsomes catalyzed the oxidation of o-, m-, and p-tolualdehydes to the carboxylic acids, and the specific activities (nmol/min/nmol P450) were 1.44, 2.81, and 2.32, respectively. Rabbit antibody raised against P450 MUT-2 significantly inhibited the NADPH-dependent oxidation of tolualdehydes to toluic acids by 88% (o-), 63% (m-), and 62% (p-) using mouse hepatic microsomes. The present study demonstrated that a mouse hepatic microsomal aldehyde oxygenase, P450 MUT-2, catalyzed the most of oxidative activity of tolualdehydes to toluic acids in the microsomes.

  12. Novel imidazole derivatives as heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2) inhibitors and their cytotoxic activity in human-derived cancer cell lines.

    PubMed

    Salerno, Loredana; Pittalà, Valeria; Romeo, Giuseppe; Modica, Maria N; Marrazzo, Agostino; Siracusa, Maria A; Sorrenti, Valeria; Di Giacomo, Claudia; Vanella, Luca; Parayath, Neha N; Greish, Khaled

    2015-01-01

    Heme oxygenase (HO) is a cytoprotective enzyme that can be overexpressed in some pathological conditions, including certain cancers. In this work, novel imidazole derivatives were designed and synthesized as inhibitors of heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2). In these compounds the imidazole ring, crucial for the activity, is connected to a hydrophobic group, represented by aryloxy, benzothiazole, or benzoxazole moieties, by means of alkyl or thioalkyl chains of different length. Many of the tested compounds were potent and/or selective against one of the two isoforms of HO. Furthermore, most of the pentyl derivatives showed to be better inhibitors of HO-2 with respect to HO-1, revealing a critical role of the alkyl chain in discriminating between the two isoenzymes. Compounds which showed the better profile of HO inhibition were selected and tested to evaluate their cytotoxic properties in prostate and breast cancer cell lines (DU-145, PC3, LnCap, MDA-MB-231, and MCF-7). In these assays, aryloxyalkyl derivatives resulted more cytotoxic than benzothiazolethioalkyl ones; in particular compound 31 was active against all the cell lines tested, confirming the anti-proliferative properties of HO inhibitors and their potential use in the treatment of specific cancers.

  13. Heme-Oxygenases during Erythropoiesis in K562 and Human Bone Marrow Cells

    PubMed Central

    Alves, Liliane R.; Costa, Elaine S.; Sorgine, Marcos H. F.; Nascimento-Silva, Maria Clara L.; Teodosio, Cristina; Bárcena, Paloma; Castro-Faria-Neto, Hugo C.; Bozza, Patrícia T.; Orfao, Alberto

    2011-01-01

    In mammalian cells, heme can be degraded by heme-oxygenases (HO). Heme-oxygenase 1 (HO-1) is known to be the heme inducible isoform, whereas heme-oxygenase 2 (HO-2) is the constitutive enzyme. Here we investigated the presence of HO during erythroid differentiation in human bone marrow erythroid precursors and K562 cells. HO-1 mRNA and protein expression levels were below limits of detection in K562 cells. Moreover, heme was unable to induce HO-1, at the protein and mRNA profiles. Surprisingly, HO-2 expression was inhibited upon incubation with heme. To evaluate the physiological relevance of these findings, we analyzed HO expression during normal erythropoiesis in human bone marrow. Erythroid precursors were characterized by lack of significant expression of HO-1 and by progressive reduction of HO-2 during differentiation. FLVCR expression, a recently described heme exporter found in erythroid precursors, was also analyzed. Interestingly, the disruption in the HO detoxification system was accompanied by a transient induction of FLVCR. It will be interesting to verify if the inhibition of HO expression, that we found, is preventing a futile cycle of concomitant heme synthesis and catabolism. We believe that a significant feature of erythropoiesis could be the replacement of heme breakdown by heme exportation, as a mechanism to prevent heme toxicity. PMID:21765894

  14. The role of inorganic metals and metalloporphyrins in the induction of haem oxygenase and heat-shock protein 70 in human hepatoma cells.

    PubMed Central

    Mitani, K; Fujita, H; Fukuda, Y; Kappas, A; Sassa, S

    1993-01-01

    The role of inorganic metals and metalloporphyrins in the induction of mRNAs for haem oxygenase and heat-shock protein 70 (hsp70), the two heat-shock proteins, was examined in human HepG2 and Hep3B hepatoma cells. SnCl2, but not Sn-protoporphyrin, was found to be a potent inducer of both haem oxygenase and hsp70 mRNAs. In contrast, CoCl2, ZnCl2 and FeCl2 caused little induction of haem oxygenase and hsp70 mRNAs, whereas the porphyrin complexes of these metals strongly induced haem oxygenase mRNA, without influencing the level of hsp70 mRNA. The induction process was largely transcriptional, as judged by the inhibition of induction by actinomycin D, but not by cycloheximide, and by increased transcription demonstrated by nuclear run-off analysis. Since CoCl2 is a potent inducer of haem oxygenase in vivo in animals, the possibility of the biosynthesis of Co-protoporphyrin was examined in human hepatoma cells by incubating them with CoCl2 and protoporphyrin, or delta-aminolaevulinate (ALA), the precursor of protoporphyrin. Both types of treatment led to a potent induction of haem oxygenase mRNA. Co-protoporphyrin formation was also spectrally demonstrated in cells incubated with the metal and ALA. The results of this study indicate that certain metals, e.g. SnCl2, may directly induce haem oxygenase mRNA, whereas with other elements, incorporation of the metal into the porphyrin macrocycle is necessary for induction. Therefore CoCl2, like haemin, may activate the haem oxygenase gene via a haem-responsive transcription factor, whereas SnCl2 may exert its effect via a metal-responsive transcription factor. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8384446

  15. ARSENITE INDUCTION OF HEME OXYGENASE AS A BIOMARKER

    EPA Science Inventory

    ARSENITE INDUCTION OF HEME OXYGENASE AS A BIOMARKER

    Useful biomarkers of arsenic effects in both experimental animals and humans are needed. Arsenate and arsenite are good inducers of rat hepatic and renal heme oxygenase (HO); monomethylarsonic acid (MMA) and dimethylarsi...

  16. Heme oxygenase-1 regulates mitochondrial quality control in the heart

    PubMed Central

    Hull, Travis D.; Boddu, Ravindra; Guo, Lingling; Tisher, Cornelia C.; Traylor, Amie M.; Patel, Bindiya; Joseph, Reny; Prabhu, Sumanth D.; Suliman, Hagir B.; Piantadosi, Claude A.; George, James F.

    2016-01-01

    The cardioprotective inducible enzyme heme oxygenase-1 (HO-1) degrades prooxidant heme into equimolar quantities of carbon monoxide, biliverdin, and iron. We hypothesized that HO-1 mediates cardiac protection, at least in part, by regulating mitochondrial quality control. We treated WT and HO-1 transgenic mice with the known mitochondrial toxin, doxorubicin (DOX). Relative to WT mice, mice globally overexpressing human HO-1 were protected from DOX-induced dilated cardiomyopathy, cardiac cytoarchitectural derangement, and infiltration of CD11b+ mononuclear phagocytes. Cardiac-specific overexpression of HO-1 ameliorated DOX-mediated dilation of the sarcoplasmic reticulum as well as mitochondrial disorganization in the form of mitochondrial fragmentation and increased numbers of damaged mitochondria in autophagic vacuoles. HO-1 overexpression promotes mitochondrial biogenesis by upregulating protein expression of NRF1, PGC1α, and TFAM, which was inhibited in WT animals treated with DOX. Concomitantly, HO-1 overexpression inhibited the upregulation of the mitochondrial fission mediator Fis1 and resulted in increased expression of the fusion mediators, Mfn1 and Mfn2. It also prevented dynamic changes in the levels of key mediators of the mitophagy pathway, PINK1 and parkin. Therefore, these findings suggest that HO-1 has a novel role in protecting the heart from oxidative injury by regulating mitochondrial quality control. PMID:27110594

  17. Heme Oxygenase-1: A Metabolic Nike

    PubMed Central

    Nemeth, Zsuzsanna; Correa-Costa, Matheus; Bulmer, Andrew C.; Otterbein, Leo E.

    2014-01-01

    Abstract Significance: Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. Recent Advances: The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. Critical Issues: CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. Future Directions: In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer. Antioxid. Redox Signal. 20, 1709–1722. PMID:24180257

  18. Nickel induction of microsomal heme oxygenase activity in rodents

    SciTech Connect

    Sunderman, F.W. Jr.; Reid, M.C.; Bibeau, L.M.; Linden, J.V.

    1983-01-01

    Heme oxygenase activity was measured in tissues of rats killed after administration of NiCl/sub 2/ or Ni/sub 3/S/sub 2/. Induction of renal heme oxygenase activity occurred 6 hr after NiCl/sub 2/ injection (0.25 mmol/kg sc), reached a maximum of five to six times the baseline activity at 17 hr, and remained significantly increased at 72 hr. Heme oxygenase activities were also increased in liver, lung, and brain at 17 hr after the NiCl/sub 2/ injection; heme oxygenase activities in spleen and intestinal mucosa were unchanged. The effects of NiCl/sub 2/ on heme oxygenase activities in kidney and liver were dose-related from 0.06 to 0.75 mmol/kg, sc. Three Ni chelators were administered (1 mmol/kg, im) prior to injection of NiCl/sub 2/ (0.25 mmol/kg, sc); d-penicillamine partially prevented Ni induction of renal heme oxygenase activity; triethylenetetramine had no effect; sodium diethyldithiocarbamate enhanced the Ni induction of renal heme oxygenase activity (three times greater than NiCl/sub 2/ alone). Intrarenal injection of Ni/sub 3/S/sub 2/ (10 mg/rat) caused induction of renal heme oxygenase activity at 1 week but not at 2, 3, or 4 weeks; no correlation was observed between induction of renal heme oxygenase activity and erythropoietin-mediated erythrocytosis. Hypoxia (10% O/sub 2/, 12 hr/day, 7 days) did not affect renal heme oxygenase activity. Induction of renal heme oxygenase activity was observed in mice, hamsters, and guinea pigs killed 17 hr after injection of NiCl/sub 2/ (0.25 mmol/kg, sc). These studies established (a) the time course, dose-effect, organ selectivity, and species susceptibility relationships for Ni induction of microsomal heme oxygenase activity, (b) the effects of Ni chelators, and (c) the lack of relationship between induction of renal heme oxygenase activity and the erythrocytosis that develops after intrarenal injection of Ni/sub 3/S/sub 2/.

  19. Enzymatic heme oxygenase activity in soluble extracts of the unicellular red alga, Cyanidium caldarium.

    PubMed

    Beale, S I; Cornejo, J

    1984-12-01

    Extracts of the phycocyanin-containing unicellular red alga, Cyanidium caldarium, catalyzed enzymatic cleavage of the heme macrocycle to form the linear tetrapyrrole bilin structure. This is the key first step in the branch of the tetrapyrrole biosynthetic pathway leading to phycobilin photosynthetic accessory pigments. A mixed-function oxidase mechanism, similar to the biliverdin-forming reaction catalyzed by animal cell-derived microsomal heme oxygenase, was indicated by requirements for O2 and a reduced pyridine nucleotide. To avoid enzymatic conversion of the bilin product to phycocyanobilins and subsequent degradation during incubation, mesoheme IX was substituted for the normal physiological substrate, protoheme IX. Mesobiliverdin IX alpha was identified as the primary incubation product by comparative reverse-phase high-pressure liquid chromatography and absorption spectrophotometry. The enzymatic nature of the reaction was indicated by the requirement for cell extract, absence of activity in boiled cell extract, high specificity for NADPH as cosubstrate, formation of the physiologically relevant IX alpha bilin isomer, and over 75% inhibition by 1 microM Sn-protoporphyrin, which has been reported to be a competitive inhibitor of animal microsomal heme oxygenase. On the other hand, coupled oxidation of mesoheme, catalyzed by ascorbate plus pyridine or myoglobin, yielded a mixture of ring-opening mesobiliverdin IX isomers, was not inhibited by Sn-protoporphyrin, and could not use NADPH as the reductant. Unlike the animal microsomal heme oxygenase, the algal reaction appeared to be catalyzed by a soluble enzyme that was not sedimentable by centrifugation for 1 h at 200,000g. Although NADPH was the preferred reductant, small amounts of activity were obtained with NADH or ascorbate. A portion of the activity was retained after gel filtration of the cell extract to remove low-molecular-weight components. Considerable stimulation of activity, particularly in

  20. 2-Diethylaminoethyl-2,2-diphenylvalerate-HCl (SKF525A) revisited: comparative cytochrome P450 inhibition in human liver microsomes by SKF525A, its metabolites, and SKF-acid and SKF-alcohol.

    PubMed

    Franklin, Michael R; Hathaway, Laura B

    2008-12-01

    When incubated with human liver microsomes, 2-diethylaminoethyl-2,2-diphenylvalerate-HCl (SKF525A) undergoes cytochrome P450 (P450)-dependent oxidative N-deethylation to the secondary amine metabolite 2-ethylaminoethyl-2,2-diphenylvalerate (SKF8742). P450-selective inhibitors indicated CYP3As catalyzed this reaction, and the deethylation rate correlated best with the CYP3A activity across a range of human liver microsomes. SKF525A and its metabolite and primary amine analog all inhibited CYP2B6-, CYP2C9-, CYP2C19-, CYP2D6-, and CYP3A-selective reactions to varying degrees but had little effect on CYP1A2, CYP2A6, and CYP2E1 reactions. Only the inhibition of CYP3A showed major enhancement when the inhibitors were preincubated with NADPH-fortified microsomes, and the extent of metabolic intermediate (MI) complex formation approximated typical CYP3A content. Two "lost with time" SKF525A derivatives devoid of the ethylamine moiety, 2,2-diphenylpropylethanol (SKF-Alcohol) and 2,2-diphenylpropylacetic acid (SKF-Acid) did not form an MI complex and were identified as selective inhibitors of CYP2C9. Although without detectable metabolism, their CYP2C9 inhibition fitted best with a competitive mechanism. Thus, not all the human P450s are inhibited by SKF525A and related compounds, and the mechanisms contributing to those that are inhibited vary with the isoform. P450 MI-complex formation only seems to play a role with CYP3As.

  1. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of MC-26 colon cancer xenografts in balb/c mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is has been hypothesized that methylselenol is a critical selenium (Se) metabolite for anticancer activity in vivo. In this study, we used a protein array which contained 112 different antibodies known to be involved in p53 pathway to investigate the molecular targets of methylselenol in human HC...

  2. Mixed function oxygenases and xenobiotic detoxication/toxication systems in bivalve molluscs

    NASA Astrophysics Data System (ADS)

    Moore, M. N.; Livingstone, D. R.; Donkin, P.; Bayne, B. L.; Widdows, J.; Lowe, D. M.

    1980-03-01

    Components of a xenobiotic detoxication/toxication system involving mixed function oxygenases are present in Mytilus edulis. Our paper critically reviews the recent literature on this topic which reported the apparent absence of such a system in bivalve molluscs and attempts to reconcile this viewpoint with our own findings on NADPH neotetrazolium reductase, glucose-6-phosphate dehydrogenase, aldrin epoxidation and other reports of the presence of mixed function oxygenases. New experimental data are presented which indicate that some elements of the detoxication/toxication system in M. edulis can be induced by aromatic hydrocarbons derived from crude oil. This includes a brief review of the results of long-term experiments in which mussels were exposed to low concentrations of the water accommodated fraction of North Sea crude oil (7.7-68 µg 1-1) in which general stress responses such as reduced physiological scope for growth, cytotoxic damage to lysosomal integrity and cellular damage are considered as characteristics of the general stress syndrome induced by the toxic action of the xenobiotics. In addition, induction in the blood cells of microsomal NADPH neotetrazolium reductase (associated with mixed function oxygenases) and the NADPH generating enzyme glucose-6-phosphate dehydrogenase are considered to be specific biological responses to the presence of aromatic hydrocarbons. The consequences of this detoxication/toxication system for Mytilus edulis are discussed in terms of the formation of toxic electrophilic intermediate metabolites which are highly reactive and can combine with DNA, RNA and proteins with subsequent damage to these cellular constituents. Implications for neoplasms associated with the blood cells are also discussed. Finally, in view of the increased use of mussel species in pollutant monitoring programmes, the induction phenomenon which is associated with microsomal enzymes in the blood cells is considered as a possible tool for the

  3. Role of heme Oxygenase-1 in low dose Radioadaptive response

    PubMed Central

    Bao, Lingzhi; Ma, Jie; Chen, Guodong; Hou, Jue; Hei, Tom K.; Yu, K.N.; Han, Wei

    2016-01-01

    Radioadaptive response (RAR) is an important phenomenon induced by low dose radiation. However, the molecular mechanism of RAR is obscure. In this study, we focused on the possible role of heme oxygenase 1 (HO-1) in RAR. Consistent with previous studies, priming dose of X-ray radiation (1–10 cGy) induced significant RAR in normal human skin fibroblasts (AG 1522 cells). Transcription and translation of HO-1 was up-regulated more than two fold by a priming dose of radiation (5 cGy). Zinc protoporphyrin Ⅸ, a specific competitive inhibitor of HO-1, efficiently inhibited RAR whereas hemin, an inducer of HO-1, could mimic priming dose of X-rays to induce RAR. Knocking down of HO-1 by transfection of HO-1 siRNA significantly attenuated RAR. Furthermore, the expression of HO-1 gene was modulated by the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which translocated from cytoplasm to nucleus after priming dose radiation and enhance the antioxidant level of cells. PMID:26966892

  4. Differential expression of the demosponge (Suberites domuncula) carotenoid oxygenases in response to light: protection mechanism against the self-produced toxic protein (Suberitine).

    PubMed

    Müller, Werner E G; Wang, Xiaohong; Binder, Michael; von Lintig, Johannes; Wiens, Matthias; Schröder, Heinz C

    2012-01-01

    The demosponge Suberites domuncula has been described to contain high levels of a proteinaceous toxin, Suberitine, that displays haemolytic activityIn the present study this 7-8 kDa polypeptide has been isolated and was shown to exhibit also cytotoxic effects on cells of the same species. Addition of retinal, a recently identified metabolite of β-carotene that is abundantly present in S. domuncula was found to reduce both the haemolytic and the cell toxic activity of Suberitine at a molar ratio of 1:1. Spectroscopic analyses revealed that the interaction between β-carotene and Suberitine can be ascribed to a reversible energy transfer reaction. The enzyme that synthesises retinal in the sponge system is the β,β-carotene-15,15'-dioxygenase [carotene dioxygenase]. In order to clarify if this enzyme is the only β-carotene-metabolizing enzyme a further oxygenase had been identified and cloned, the (related) carotenoid oxygenase. In contrast to the dioxygenase, the carotenoid oxygenase could not degrade β-carotene or lycopene in Escherichia coli strains that produced these two carotenoids; therefore it had been termed related-carotenoid oxygenase. Exposure of primmorphs to light of different wavelengths from the visible spectrum resulted after 3 days in a strong upregulation of the dioxygenase in those 3D-cell aggregates that had been incubated with β-carotene. The strongest effect is seen with blue light at a maximum around 490 nm. It is concluded that the toxin Suberitine is non-covalently modified by retinal, the cleavage product from β-carotene via the enzyme carotene dioxygenase, a light inducible oxygenase. Hence, this study highlights that in S. domuncula the bioactive metabolite, retinal, has the property to detoxify its homologous toxin.

  5. The function and catalysis of 2-oxoglutarate-dependent oxygenases involved in plant flavonoid biosynthesis.

    PubMed

    Cheng, Ai-Xia; Han, Xiao-Juan; Wu, Yi-Feng; Lou, Hong-Xiang

    2014-01-15

    Flavonoids are secondary metabolites derived from phenylalanine and acetate metabolism. They fulfil a variety of functions in plants and have health benefits for humans. During the synthesis of the tricyclic flavonoid natural products in plants, oxidative modifications to the central C ring are catalyzed by four of FeII and 2-oxoglutarate dependent (2-ODD) oxygenases, namely flavone synthase I (FNS I), flavonol synthase (FLS), anthocyanidin synthase (ANS) and flavanone 3β-hydroxylase (FHT). FNS I, FLS and ANS are involved in desaturation of C2-C3 of flavonoids and FHT in hydroxylation of C3. FNS I, which is restricted to the Apiaceae species and in rice, is predicted to have evolved from FHT by duplication. Due to their sequence similarity and substrate specificity, FLS and ANS, which interact with the α surface of the substrate, belong to a group of dioxygenases having a broad substrate specificity, while FNS I and FHT are more selective, and interact with the naringenin β surface. Here, we summarize recent findings regarding the function of the four 2-ODD oxygenases and the relationship between their catalytic activity, their polypeptide sequence and their tertiary structure.

  6. Effects of HMG-CoA reductase inhibitors on the pharmacokinetics of losartan and its main metabolite EXP-3174 in rats: possible role of CYP3A4 and P-gp inhibition by HMG-CoA reductase inhibitors.

    PubMed

    Yang, Si-Hyung; Choi, Jun-Shik; Choi, Dong-Hyun

    2011-01-01

    The present study was designed to investigate the effects of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (atorvastatin, pravastatin, simvastatin) on the pharmacokinetics of losartan and its active metabolite EXP-3174 in rats. Pharmacokinetic parameters of losartan and EXP-3174 in rats were determined after oral and intravenous administration of losartan (9 mg/kg) without and with HMG-CoA reductase inhibitors (1 mg/kg). The effect of HMG-CoA reductase inhibitors on P-gp and cytochrome (CYP) 3A4 activity were also evaluated. Atorvastatin, pravastatin and simvastatin inhibited CYP3A4 activities with IC₅₀ values of 48.0, 14.1 and 3.10 μmol/l, respectively. Simvastatin (1-10 μmol/l) enhanced the cellular uptake of rhodamine-123 in a concentration-dependent manner. The area under the plasma concentration-time curve (AUC₀₋∞) and the peak plasma concentration of losartan were significantly (p < 0.05) increased by 59.6 and 45.8%, respectively, by simvastatin compared to those of control. The total body clearance (CL/F) of losartan after oral administration with simvastatin was significantly decreased (by 34.8%) compared to that of controls. Consequently, the absolute bioavailability (F) of losartan after oral administration with simvastatin was significantly increased by 59.4% compared to that of control. The metabolite-parent AUC ratio was significantly decreased by 25.7%, suggesting that metabolism of losartan was inhibited by simvastatin. In conclusion, the enhanced bioavailability of losartan might be mainly due to inhibition of P-gp in the small intestine and CYP3A subfamily-mediated metabolism of losartan in the small intestine and/or liver and to reduction of the CL/F of losartan by simvastatin.

  7. Synthesis of the iron-molybdenum cofactor of nitrogenase is inhibited by a low-molecular-weight metabolite of Klebsiella pneumoniae.

    PubMed

    Downs, D M; Ludden, P W; Shah, V K

    1990-10-01

    The in vitro synthesis of the iron-molybdenum cofactor nitrogenase was inhibited by a low-molecular-weight factor. This inhibitory factor was present in the membrane extracts of wild-type and nif mutant strains of Klebsiella pneumoniae that were grown under conditions that either repressed or derepressed nitrogenase expression. In vitro, the inhibition was specific for the NifB protein. Addition of this factor to K. pneumoniae cells at various times during nif derepression decreased nitrogenase activity, presumably through inhibition of iron-molybdenum cofactor synthesis. The inhibitor was purified by solvent extraction and chromatography on DEAE-cellulose, silica gel, and aluminum oxide columns.

  8. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection

    SciTech Connect

    Meseda, Clement A.; Srinivasan, Kumar; Wise, Jasen; Catalano, Jennifer; Yamada, Kenneth M.; Dhawan, Subhash

    2014-11-07

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection.

  9. Detoxification of Indole by an Indole-Induced Flavoprotein Oxygenase from Acinetobacter baumannii

    PubMed Central

    Lin, Guang-Huey; Chen, Hao-Ping; Shu, Hung-Yu

    2015-01-01

    Indole, a derivative of the amino acid tryptophan, is a toxic signaling molecule, which can inhibit bacterial growth. To overcome indole-induced toxicity, many bacteria have developed enzymatic defense systems to convert indole to non-toxic, water-insoluble indigo. We previously demonstrated that, like other aromatic compound-degrading bacteria, Acinetobacter baumannii can also convert indole to indigo. However, no work has been published investigating this mechanism. Here, we have shown that the growth of wild-type A. baumannii is severely inhibited in the presence of 3.5 mM indole. However, at lower concentrations, growth is stable, implying that the bacteria may be utilizing a survival mechanism to oxidize indole. To this end, we have identified a flavoprotein oxygenase encoded by the iifC gene of A. baumannii. Further, our results suggest that expressing this recombinant oxygenase protein in Escherichia coli can drive indole oxidation to indigo in vitro. Genome analysis shows that the iif operon is exclusively present in the genomes of A. baumannii and Pseudomonas syringae pv. actinidiae. Quantitative PCR and Western blot analysis also indicate that the iif operon is activated by indole through the AraC-like transcriptional regulator IifR. Taken together, these data suggest that this species of bacteria utilizes a novel indole-detoxification mechanism that is modulated by IifC, a protein that appears to be, at least to some extent, regulated by IifR. PMID:26390211

  10. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  11. OxDBase: a database of oxygenases involved in biodegradation

    PubMed Central

    Arora, Pankaj K; Kumar, Manish; Chauhan, Archana; Raghava, Gajendra PS; Jain, Rakesh K

    2009-01-01

    Background Oxygenases belong to the oxidoreductive group of enzymes (E.C. Class 1), which oxidize the substrates by transferring oxygen from molecular oxygen (O2) and utilize FAD/NADH/NADPH as the co-substrate. Oxygenases can further be grouped into two categories i.e. monooxygenases and dioxygenases on the basis of number of oxygen atoms used for oxidation. They play a key role in the metabolism of organic compounds by increasing their reactivity or water solubility or bringing about cleavage of the aromatic ring. Findings We compiled a database of biodegradative oxygenases (OxDBase) which provides a compilation of the oxygenase data as sourced from primary literature in the form of web accessible database. There are two separate search engines for searching into the database i.e. mono and dioxygenases database respectively. Each enzyme entry contains its common name and synonym, reaction in which enzyme is involved, family and subfamily, structure and gene link and literature citation. The entries are also linked to several external database including BRENDA, KEGG, ENZYME and UM-BBD providing wide background information. At present the database contains information of over 235 oxygenases including both dioxygenases and monooxygenases. This database is freely available online at . Conclusion OxDBase is the first database that is dedicated only to oxygenases and provides comprehensive information about them. Due to the importance of the oxygenases in chemical synthesis of drug intermediates and oxidation of xenobiotic compounds, OxDBase database would be very useful tool in the field of synthetic chemistry as well as bioremediation. PMID:19405962

  12. Anti-inflammatory effects of Saururus chinensis aerial parts in murine macrophages via induction of heme oxygenase-1.

    PubMed

    Meng, Xue; Kim, Inhye; Jeong, Yong Joon; Cho, Young Mi; Kang, Se Chan

    2016-02-01

    Saururus chinensis (Lour.) Baill. is a perennial plant distributed throughout Northeast Asia and its roots have been widely used as a traditional medicine for hepatitis, asthma, pneumonia, and gonorrhea. This study was designed to investigate the anti-inflammatory activity of an extract of S. chinensis of the aerial parts (rather than the root), and the signaling pathway responsible for this effect in lipopolysaccharide-stimulated murine macrophages. The subfraction 4 (SCF4) from the n-hexane layer of the ethanol extract of the aerial parts of S. chinensis exhibited the highest nitrite-inhibitory activity. SCF4 significantly inhibited the production of nitrite and the expression of pro-inflammatory mediators via heme oxygenase-1 upregulation. SCF4 caused significant phosphorylation of p38 MAPK and Akt, which subsequently induced the nuclear translocation of p-p65 nuclear factor-κB and Nrf2. SCF4 also suppressed the phosphorylation of signal transducers and activators of transcription 1 (p-STAT1). The heme oxygenase-1 inhibitor zinc protoporphyrin attenuated the inhibitory effect of SCF4 on lipopolysaccharide-stimulated nitrite production and expression of inflammatory mediators, tumor necrosis factor alpha, and p-STAT1. We identified sauchinone as the active compound in S. chinensis extract and SCF4. Sauchinone was shown to significantly inhibit nitrite production and inflammatory mediators expression via heme oxygenase-1 upregulation. These results suggest that S. chinensis extract, SCF4, and its active compound, sauchinone, could be used as an anti-inflammatory agent.

  13. Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclo-oxygenase expression.

    PubMed

    Putaala, Heli; Salusjärvi, Tuomas; Nordström, Malin; Saarinen, Markku; Ouwehand, Arthur C; Bech Hansen, Egon; Rautonen, Nina

    2008-01-01

    Controversy exists as to whether contact between a probiotic bacterial cell and an epithelial cell in the gut is needed to confer beneficial effects of probiotics, or whether metabolites from probiotics are sufficient to cause this effect. To address this question, Caco-2 cells were treated with cell-free supernatants of four probiotics, Bifidobacterium lactis 420, Bifidobacterium lactis HN019, Lactobacillus acidophilus NCFM, Lactobacillus salivarius Ls-33, and by a cell-free supernatant of a pathogenic bacteria, Escherichia coli O157:H7 (EHEC). Tight junction integrity as well as expression of cyclo-oxygenases, which are prostaglandin-producing enzymes, were measured. Probiotic-specific as well as EHEC-specific effects on tight junction integrity and cyclo-oxygenase expression were evident, indicating that live bacterial cells were not necessary for the manifestation of the effects. B. lactis 420 cell-free supernatant increased tight junction integrity, while EHEC cell-free supernatant induced damage on tight junctions. In general, EHEC and probiotics had opposite effects upon cyclo-oxygenase expression. Furthermore, B. lactis 420 cell-free supernatant protected the tight junctions from EHEC-induced damage when administered prior to the cell-free supernatant of EHEC. These results indicate that probiotics produce bioactive metabolites, suggesting that consumption of specific probiotic bacteria might be beneficial in protecting intestinal epithelial cells from the deleterious effects of pathogenic bacteria.

  14. IDO metabolite produced by EBV-transformed B cells inhibits surface expression of NKG2D in NK cells via the c-Jun N-terminal kinase (JNK) pathway.

    PubMed

    Song, Hyunkeun; Park, Hyunjin; Kim, Jiyoung; Park, Gabin; Kim, Yeong-Seok; Kim, Sung Mok; Kim, Daejin; Seo, Su Kil; Lee, Hyun-Kyung; Cho, DaeHo; Hur, Daeyoung

    2011-05-01

    Natural Killer cells are known to play a major role in the innate immune response against viral infections and tumor cells. Several viruses, such as CMV, EBV and HIV-1, have acquired strategies to escape elimination by NK cells. In this study, we observed that EBV infection increased expression of IDO on B cells. To evaluate the function of IDO associated with EBV infection, we investigated whether EBV-induced IDO could modulate expression of NK cell-activation receptor, NKG2D. When NK cells were co-incubated with EBV transformed B cells, surface expression of NKG2D was significantly reduced in NK cells. Incubation with L-kynurenine, an IDO metabolite, down-modulated NKG2D expression in NK cells in a dose- and time-dependent manner. Incubation with the JNK inhibitor SP600125 also inhibited NKG2D expression in NK cells. In addition, we observed that the effect of L-kynurenine was blocked by JNK agonist, anisomycin, suggesting the involvement of the JNK pathway in the signal transduction of L-kynurenine-reduced NKG2D expression. Furthermore, IL-18 significantly reduced L-kynurenine-induced down-regulation of NKG2D expression in NK cells. Taken together, these data indicate that down-regulation of NKG2D by EBV-induced IDO metabolite provides a potential mechanism by which EBV escapes NKG2D-mediated attack by immune cells.

  15. 15-deoxy prostaglandin J2, the nonenzymatic metabolite of prostaglandin D2, induces apoptosis in keratinocytes of human hair follicles: a possible explanation for prostaglandin D2-mediated inhibition of hair growth.

    PubMed

    Joo, Hyun Woo; Kang, Yoo Ri; Kwack, Mi Hee; Sung, Young Kwan

    2016-07-01

    Recent studies have shown that prostaglandin D2 (PGD2) and its nonenzymatic metabolite, 15-deoxy-Δ(12,14)-prostaglandin J2 (15-dPGJ2), inhibit in vitro growth of explanted human hair follicles and inhibit hair growth in mice through the GPR44 (DP2). However, the underlying mechanism is still unclear. In this study, we first investigated the expression of DP2 in human hair follicles and in cultured follicular cells. We found that DP2 is strongly expressed in the outer root sheath (ORS) cells and weakly expressed in the dermal papilla (DP) cells. We observed slight growth stimulation when ORS and DP cells were treated with PGD2. We also observed slight growth stimulation when DP and ORS cells were treated with low concentrations (0.5 and 1 μM) of 15-dPGJ2. However, 5 μM 15-dPGJ2 inhibited the viability and caused apoptosis of both cell types. Exposure of cultured human hair follicles to 15-dPGJ2 resulted in significant apoptosis in follicular keratinocytes. Altogether, our data provide an evidence that 15-dPGJ2 promotes apoptosis in follicular keratinocytes and provide rationale for developing remedies for the prevention and treatment of hair loss based on DP2 antagonism.

  16. Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway.

    PubMed

    Lin, Xiaojing; Fang, Qin; Chen, Shuya; Zhe, Nana; Chai, Qixiang; Yu, Meisheng; Zhang, Yaming; Wang, Ziming; Wang, Jishi

    2015-05-01

    There are few studies on the correlation between heme oxygenase-1 (HO-1) and acute myeloid leukemia (AML). We found that HO-1 was aberrantly overexpressed in the majority of AML patients, especially in patients with acute monocytic leukemia (M5) and leukocytosis, and inhibited the apoptosis of HL-60 and U937 cells. Moreover, silencing HO-1 prolonged the survival of xenograft mouse models. Further studies demonstrated that HO-1 suppressed the apoptosis of AML cells through activating the JNK/c-JUN signaling pathway. These data indicate a molecular role of HO-1 in inhibiting cell apoptosis, allowing it to be a potential target for treating AML.

  17. How Heme Oxygenase-1 Prevents Heme-Induced Cell Death.

    PubMed

    Lanceta, Lilibeth; Mattingly, Jacob M; Li, Chi; Eaton, John W

    2015-01-01

    Earlier observations indicate that free heme is selectively toxic to cells lacking heme oxygenase-1 (HO-1) but how this enzyme prevents heme toxicity remains unexplained. Here, using A549 (human lung cancer) and immortalized human bronchial epithelial cells incubated with exogenous heme, we find knock-down of HO-1 using siRNA does promote the accumulation of cell-associated heme and heme-induced cell death. However, it appears that the toxic effects of heme are exerted by "loose" (probably intralysosomal) iron because cytotoxic effects of heme are lessened by pre-incubation of HO-1 deficient cells with desferrioxamine (which localizes preferentially in the lysosomal compartment). Desferrioxamine also decreases lysosomal rupture promoted by intracellularly generated hydrogen peroxide. Supporting the importance of endogenous oxidant production, both chemical and siRNA inhibition of catalase activity predisposes HO-1 deficient cells to heme-mediated killing. Importantly, it appears that HO-1 deficiency somehow blocks the induction of ferritin; control cells exposed to heme show ~10-fold increases in ferritin heavy chain expression whereas in heme-exposed HO-1 deficient cells ferritin expression is unchanged. Finally, overexpression of ferritin H chain in HO-1 deficient cells completely prevents heme-induced cytotoxicity. Although two other products of HO-1 activity--CO and bilirubin--have been invoked to explain HO-1-mediated cytoprotection, we conclude that, at least in this experimental system, HO-1 activity triggers the induction of ferritin and the latter is actually responsible for the cytoprotective effects of HO-1 activity.

  18. Functional imaging: monitoring heme oxygenase-1 gene expression in vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Weisheng; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    The regulation of genetic elements can be monitored in living animals using photoproteins as reporters. Heme oxygenase (HO) is the key catabolic enzyme in the heme degradation pathway. Here, HO expression serves as a model for in vivo functional imaging of transcriptional regulation of a clinically relevant gene. HO enzymatic activity is inhibited by heme analogs, metalloporphyrins, but many members of this family of compounds also activate transcription of the HO-1 promoter. The degree of transcriptional activation by twelve metalloporphyrins, differing at the central metal and porphyrin ring substituents, was evaluated in both NIH 3T3 stable lines and transgenic animals containing HO-1 promoter-luciferase gene fusions. In the correlative cell culture assays, the metalloporphyrins increased transcription form the full length HO promoter fusion to varying degrees, but none increased transcription from a truncated HO-1 promoter. These results suggested that one or both of the two distal enhancer elements located at -4 and -10 Kb upstream from transcriptional start are required for HO-1 induction by heme and its analogs. The full-length HO-1-luc fusion was then evaluated as a transgene in mice. It was possible to monitor the effects of the metalloporphyrins, SnMP and ZnPP, in living animals over time. This spatiotemporal analyses of gene expression in vivo implied that alterations in porphyrin ring substituents and the central metal may affect the extent of gene activation. These data further indicate that using photoprotein reporters, subtle differences in gene expression can be monitored in living animals.

  19. Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria.

    PubMed

    Lee, Do Gyun; Chu, Kung-Hui

    2013-11-01

    Triclosan is an antimicrobial agent, an endocrine disrupting compound, and an emerging contaminant in the environment. This is the first study investigating triclosan biodegradation potential of four oxygenase-expressing bacteria: Rhodococcus jostii RHA1, Mycobacterium vaccae JOB5, Rhodococcus ruber ENV425, and Burkholderia xenovorans LB400. B. xenovorans LB400 and R. ruber ENV425 were unable to degrade triclosan. Propane-grown M. vaccae JOB5 can completely degrade triclosan (5 mg L(-1)). R. jostii RHA1 grown on biphenyl, propane, and LB medium with dicyclopropylketone (DCPK), an alkane monooxygenase inducer, was able to degrade the added triclosan (5 mg L(-1)) to different extents. Incomplete degradation of triclosan by RHA1 is probably due to triclosan product toxicity. The highest triclosan transformation capacity (Tc, defined as the amount of triclosan degraded/the number of cells inactivated; 5.63×10(-3) ng triclosan/16S rRNA gene copies) was observed for biphenyl-grown RHA1 and the lowest Tc (0.20×10(-3) ng-triclosan/16S rRNA gene copies) was observed for propane-grown RHA1. No triclosan degradation metabolites were detected during triclosan degradation by propane- and LB+DCPK-grown RHA1. When using biphenyl-grown RHA1 for degradation, four chlorinated metabolites (2,4-dichlorophenol, monohydroxy-triclosan, dihydroxy-triclosan, and 2-chlorohydroquinone (a new triclosan metabolite)) were detected. Based on the detected metabolites, a meta-cleavage pathway was proposed for triclosan degradation.

  20. Protective role of heme oxygenase-1 in Listeria monocytogenes-induced abortion.

    PubMed

    Tachibana, Masato; Hashino, Masanori; Nishida, Takashi; Shimizu, Takashi; Watarai, Masahisa

    2011-01-01

    It is well-known fact that various pathogens, including bacteria, virus, and protozoa, induce abortion in humans and animals. However the mechanisms of infectious abortion are little known. In this study, we demonstrated that Listeria monocytogenes infection in trophoblast giant cells decreased heme oxygenase (HO)-1 and B-cell lymphoma-extra large (Bcl-XL) expression, and that their overexpression inhibited cell death induced by the infection. Furthermore, HO-1 and Bcl-XL expression levels were also decreased by L. monocytogenes in pregnant mice. Treatment with cobalt protoporphyrin, which is known to induce HO-1, inhibited infectious abortion. Taken together, our study indicates that L. monocytogenes infection decreases HO-1 and Bcl-XL expression and induces cell death in placenta, leading to infectious abortion.

  1. Beyond gastric acid reduction: Proton pump inhibitors induce heme oxygenase-1 in gastric and endothelial cells

    SciTech Connect

    Becker, Jan C. . E-mail: beckeja@uni-muenster.de; Grosser, Nina; Waltke, Christian; Schulz, Stephanie; Erdmann, Kati; Domschke, Wolfram; Schroeder, Henning; Pohle, Thorsten

    2006-07-07

    Proton pump inhibitors (PPIs) have been demonstrated to prevent gastric mucosal injury by mechanisms independent of acid inhibition. Here we demonstrate that both omeprazole and lansoprazole protect human gastric epithelial and endothelial cells against oxidative stress. This effect was abrogated in the presence of the heme oxygenase-1 (HO-1) inhibitor ZnBG. Exposure to either PPI resulted in a strong induction of HO-1 expression on mRNA and protein level, and led to an increased activity of this enzyme. Expression of cyclooxygenase isoforms 1 and 2 remained unaffected, and COX-inhibitors did not antagonize HO-1 induction by PPIs. Our results suggest that the antioxidant defense protein HO-1 is a target of PPIs in both endothelial and gastric epithelial cells. HO-1 induction might account for the gastroprotective effects of PPIs independently of acid inhibition, especially in NSAID gastropathy. Moreover, our findings provide additional perspectives for a possible but yet unexplored use of PPIs in vasoprotection.

  2. Inhibition of acetylcholinesterase by metabolites of copper pyrithione (CuPT) and its possible involvement in vertebral deformity of a CuPT-exposed marine teleostean fish.

    PubMed

    Mochida, Kazuhiko; Ito, Katsutoshi; Harino, Hiroya; Tanaka, Hiroyuki; Onduka, Toshimitsu; Kakuno, Akira; Fujii, Kazunori

    2009-05-01

    In a previous study, we demonstrated that exposure to an antifouling biocide, copper pyrithione (CuPT), early during life induced vertebral deformity in the larvae of a marine fish, the mummichog (Fundulus heteroclitus). Skeletal deformities may be caused by inhibition by of acetylcholiensterase (AChE) activity, and to elucidate the mechanism underlying the CuPT-associated vertebral deformity, we first examined whether CuPT, zinc pyrithione (ZnPT), and their degradation products could inhibit AChE activity in the fish. Two of the degradation products, 2,2'-dipyridyldisulfide [(PS)(2)] and 2,2'-dithiobispyridine-N-oxide [(PT)(2)], but neither CuPT nor ZnPT, exhibited prominent AChE-inhibiting activity. Secondly, thin-layer chromatography revealed that mummichog hepatic microsomes metabolized CuPT to produce (PS)(2) in a microsome-dependent manner. The AChE inhibition induced in CuPT-exposed fish is likely due to (PS)(2) that was produced through metabolism of acquired CuPT. (PS)(2) may cause therefore skeletal deformity in CuPT-exposed fish by means of its neuromuscular blocking properties, through a mechanism similar to that proposed for animals exposed to organophosphorous pesticides.

  3. The acetaminophen metabolite N-acetyl-p-benzoquinone imine (NAPQI) inhibits glutathione synthetase in vitro; a clue to the mechanism of 5-oxoprolinuric acidosis?

    PubMed

    Walker, Valerie; Mills, Graham A; Anderson, Mary E; Ingle, Brandall L; Jackson, John M; Moss, Charlotte L; Sharrod-Cole, Hayley; Skipp, Paul J

    2017-02-01

    1. Metabolic acidosis due to accumulation of l-5-oxoproline is a rare, poorly understood, disorder associated with acetaminophen treatment in malnourished patients with chronic morbidity. l-5-Oxoprolinuria signals abnormal functioning of the γ-glutamyl cycle, which recycles and synthesises glutathione. Inhibition of glutathione synthetase (GS) by N-acetyl-p-benzoquinone imine (NAPQI) could contribute to 5-oxoprolinuric acidosis in such patients. We investigated the interaction of NAPQI with GS in vitro. 2. Peptide mapping of co-incubated NAPQI and GS using mass spectrometry demonstrated binding of NAPQI with cysteine-422 of GS, which is known to be essential for GS activity. Computational docking shows that NAPQI is properly positioned for covalent bonding with cysteine-422 via Michael addition and hence supports adduct formation. 3. Co-incubation of 0.77 μM of GS with NAPQI (25-400 μM) decreased enzyme activity by 16-89%. Inhibition correlated strongly with the concentration of NAPQI and was irreversible. 4. NAPQI binds covalently to GS causing irreversible enzyme inhibition in vitro. This is an important novel biochemical observation. It is the first indication that NAPQI may inhibit glutathione synthesis, which is pivotal in NAPQI detoxification. Further studies are required to investigate its biological significance and its role in 5-oxoprolinuric acidosis.

  4. Chromosomal localization of the human heme oxygenase genes: Heme oxygenase-1 (HMOX1) maps to chromosome 22q12 and heme oxygenase-2 (HMOX2) maps to chromosome 16p13. 3

    SciTech Connect

    Kutty, R.K.; Kutty, G.; Rodriguez, I.R.; Chader, G.J.; Wiggert, B. )

    1994-04-01

    Heme oxygenase catalyzes the oxidation of heme to biliverdin, the precursor of the bile pigment bilirubin, and carbon monoxide, a putative neurotransmitter. The authors have employed polymerase chain reaction and fluorescence in situ hybridization to determine the chromosome localization of the genes coding for the two known heme oxygenase isozymes. Heme oxygenase-1 (HMOX1), the inducible form, was localized to human chromosome 22q12, while heme oxygenase-2 (HMOX2), the constitutive form, was localized to chromosome 16p13.3. 14 refs., 3 figs.

  5. Expanding the alkane oxygenase toolbox: new enzymes and applications.

    PubMed

    van Beilen, Jan B; Funhoff, Enrico G

    2005-06-01

    As highly reduced hydrocarbons are abundant in the environment, enzymes that catalyze the terminal or subterminal oxygenation of alkanes are relatively easy to find. A number of these enzymes have been biochemically characterized in detail, because the potential of alkane hydroxylases to catalyze high added-value reactions is widely recognized. Nevertheless, the industrial application of these enzymes is restricted owing to the complex biochemistry, challenging process requirements, and the limited number of cloned and expressed enzymes. Rational and evolutionary engineering approaches have started to yield more robust and versatile enzyme systems, broadening the alkane oxygenase portfolio. In addition, metagenomic approaches provide access to many novel alkane oxygenase sequences.

  6. Flavonoids, flavonoid metabolites, and phenolic acids inhibit oxidative stress in the neuronal cell line HT-22 monitored by ECIS and MTT assay: a comparative study.

    PubMed

    Kling, Beata; Bücherl, Daniel; Palatzky, Peter; Matysik, Frank-Michael; Decker, Michael; Wegener, Joachim; Heilmann, Jörg

    2014-03-28

    A real-time and label-free in vitro assay based on electric cell-substrate impedance sensing (ECIS) was established, validated, and compared to an end-point MTT assay within an experimental trial addressing the cytoprotective effects of 19 different flavonoids, flavonoid metabolites, and phenolic acids and their methyl esters on the HT-22 neuronal cell line, after induction of oxidative stress with tert-butyl hydroperoxide. Among the flavonoids under study, only those with a catechol unit and an additional 4-keto group provided cytoprotection. The presence of a 2,3-double bond was not a structural prerequisite for a neuroprotective effect. In the case of the phenolics, catechol substitution was the only structural requirement for activity. The flavonoids and other phenolics with a ferulic acid substitution or a single hydroxy group showed no activity. Electrochemical characterization of all compounds via square-wave voltammetry provided a rather specific correlation between cytoprotective activity and redox potential for the active flavonoids, but not for the active phenolics with a low molecular weight. Moreover this study was used to compare label-free ECIS recordings with results of the established MTT assay. Whereas the former provides time-resolved and thus entirely unbiased information on changes of cell morphology that are unequivocally associated with cell death, the latter requires predefined exposure times and a strict causality between metabolic activity and cell death. However, MTT assays are based on standard lab equipment and provide a more economic way to higher throughput.

  7. Fungal transformation of cedryl acetate and α-glucosidase inhibition assay, quantum mechanical calculations and molecular docking studies of its metabolites.

    PubMed

    Sultan, Sadia; Choudhary, M Iqbal; Khan, Shamsun Nahar; Fatima, Urooj; Atif, Muhammad; Ali, Rahat Azhar; Rahman, Atta-Ur-; Fatmi, M Qaiser

    2013-04-01

    The fungal transformation of cedryl acetate (1) was investigated for the first time by using Cunninghamella elegans. The metabolites obtained include, 10β-hydroxycedryl acetate (3), 2α, 10β-dihydroxycedryl acetate (4), 2α-hydroxy-10-oxocedryl acetate (5), 3α,10β-dihydroxycedryl acetate (6), 3α,10α-dihydroxycedryl acetate (7), 10β,14α-dihydroxy cedryl acetate (8), 3β,10β-cedr-8(15)-ene-3,10-diol (9), and 3α,8β,10β -dihydroxycedrol (10). Compounds 1, 2, and 4 showed α-glucosidase inhibitory activity, whereby 1 was more potent than the standard inhibitor, acarbose, against yeast α-glucosidase. Detailed docking studies were performed on all experimentally active compounds to study the molecular interaction and binding mode in the active site of the modeled yeast α-glucosidase and human intestinal maltase glucoamylase. All active ligands were found to have greater binding affinity with the yeast α-glucosidase as compared to that of human homolog, the intestinal maltase, by an average value of approximately -1.4 kcal/mol, however, no significant difference was observed in the case of pancreatic amylase.

  8. Role of Nitric Oxide and CCAAT/Enhancer-Binding Protein Transcription Factor in Statin-Dependent Induction of Heme Oxygenase-1 in Mouse Macrophages

    PubMed Central

    Al-Hariri, Moustafa; Soussi, Hiba; Hamade, Eva; Alam, Jawed; Habib, Aïda

    2013-01-01

    The effect of statins on heme oxygenase-1 (HO-1) was compared in 2 murine cell lines, RAW 264.7 and J774A.1 cell lines, and in primary peritoneal macrophages of BALB/c or C57BL/6 mice. The role of endogenous nitric oxide and the type of transcription factors involved were explored. Simvastatin and fluvastatin induced HO-1. Pretreatment of cells with l-NMMA or 1400 W, two different nitric oxide synthase inhibitors, partially blocked statin-dependent induction of HO-1 in RAW 264.7 and J774A.1 but not in primary peritoneal macrophages. Induction of HO-1 by statins was dependent on p-38 MAP kinase activation in all types of macrophages. In RAW 264.7 cells, both statins increased the activity of reporter genes linked to the proximal 1.3 kbp promoter of HO-1 (EC50 of 1.4±0.3 µM for simvastatin and 0.6±0.03 µM for fluvastatin). This effect was significantly blocked by 1400 W (80±5.2% inhibition, p<0.02) and mevalonate, the direct metabolite of HMGCoA reductase. Gel retardation experiments implicated C/EBPβ, AP-1 but not USF, for both RAW 264.7 and primary peritoneal macrophages of C57BL/6 mice. Collectively we showed a differential role of endogenous nitric oxide between macrophage cell lines and primary macrophages and an effect of statins in the protection against inflammation by increasing HO-1 expression. PMID:23717538

  9. Inhibition of p70 S6 kinase (S6K1) activity by A77 1726, the active metabolite of leflunomide, induces autophagy through TAK1-mediated AMPK and JNK activation.

    PubMed

    Xu, Xiulong; Sun, Jing; Song, Ruilong; Doscas, Michelle E; Williamson, Ashley J; Zhou, Jingsong; Sun, Jun; Jiao, Xinan; Liu, Xiufan; Li, Yi

    2017-03-31

    mTOR activation suppresses autophagy by phosphorylating ULK1 at S757 and suppressing its enzymatic activity. Here we report that feedback activation of mTOR in the PI-3 kinase pathway by two p70 S6 kinase (S6K1) inhibitors (PF-4708671 and A77 1726, the active metabolite of an immunosuppressive drug leflunomide) or by S6K1 knockdown did not suppress but rather induced autophagy. Suppression of S6K1 activity led to the phosphorylation and activation of AMPK, which then phosphorylated ULK1 at S555. While mTOR feedback activation led to increased phosphorylation of ULK1 at S757, this modification did not the disrupt ULK1-AMPK interaction nor dampen ULK1 S555 phosphorylation and the induction of autophagy. In addition, inhibition of S6K1 activity led to JNK activation, which also contributed to autophagy. 5Z-7-oxozeaenol, a specific inhibitor of TAK1, or TAK1 siRNA blocked A77 1726-induced activation of AMPK and JNK, and LC3 lipidation. Taken together, our study establishes S6K1 as a key player in the PI-3 kinase pathway to suppress autophagy through inhibiting AMPK and JNK in a TAK1-dependent manner.

  10. Heme Oxygenase-1, Oxidation, Inflammation, and Atherosclerosis

    PubMed Central

    Araujo, Jesus A.; Zhang, Min; Yin, Fen

    2012-01-01

    Atherosclerosis is an inflammatory process of the vascular wall characterized by the infiltration of lipids and inflammatory cells. Oxidative modifications of infiltrating low-density lipoproteins and induction of oxidative stress play a major role in lipid retention in the vascular wall, uptake by macrophages and generation of foam cells, a hallmark of this disorder. The vasculature has a plethora of protective resources against oxidation and inflammation, many of them regulated by the Nrf2 transcription factor. Heme oxygenase-1 (HO-1) is a Nrf2-regulated gene that plays a critical role in the prevention of vascular inflammation. It is the inducible isoform of HO, responsible for the oxidative cleavage of heme groups leading to the generation of biliverdin, carbon monoxide, and release of ferrous iron. HO-1 has important antioxidant, antiinflammatory, antiapoptotic, antiproliferative, and immunomodulatory effects in vascular cells, most of which play a significant role in the protection against atherogenesis. HO-1 may also be an important feature in macrophage differentiation and polarization to certain subtypes. The biological effects of HO-1 are largely attributable to its enzymatic activity, which can be conceived as a system with three arms of action, corresponding to its three enzymatic byproducts. HO-1 mediated vascular protection may be due to a combination of systemic and vascular local effects. It is usually expressed at low levels but can be highly upregulated in the presence of several proatherogenic stimuli. The HO-1 system is amenable for use in the development of new therapies, some of them currently under experimental and clinical trials. Interestingly, in contrast to the HO-1 antiatherogenic actions, the expression of its transcriptional regulator Nrf2 leads to proatherogenic effects instead. This suggests that a potential intervention on HO-1 or its byproducts may need to take into account any potential alteration in the status of Nrf2 activation

  11. Isoporphyrin Intermediate in Heme Oxygenase Catalysis

    PubMed Central

    Evans, John P.; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-01-01

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the α-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin π-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of α-meso-phenylheme-IX, α-meso-(p-methylphenyl)-mesoheme-III, and α-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593–42604), only the α-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced α-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation. PMID:18487208

  12. Tackling the Cytotoxic Effect of a Marine Polycyclic Quinone-Type Metabolite: Halenaquinone Induces Molt 4 Cells Apoptosis via Oxidative Stress Combined with the Inhibition of HDAC and Topoisomerase Activities.

    PubMed

    Shih, Shou-Ping; Lee, Man-Gang; El-Shazly, Mohamed; Juan, Yung-Shun; Wen, Zhi-Hong; Du, Ying-Chi; Su, Jui-Hsin; Sung, Ping-Jyun; Chen, Yu-Cheng; Yang, Juan-Cheng; Wu, Yang-Chang; Lu, Mei-Chin

    2015-05-20

    A marine polycyclic quinone-type metabolite, halenaquinone (HQ), was found to inhibit the proliferation of Molt 4, K562, MDA-MB-231 and DLD-1 cancer cell lines, with IC50 of 0.48, 0.18, 8.0 and 6.76 μg/mL, respectively. It exhibited the most potent activity against leukemia Molt 4 cells. Accumulating evidence showed that HQ may act as a potent protein kinase inhibitor in cancer therapy. To fully understand the mechanism of HQ, we further explored the precise molecular targets in leukemia Molt 4 cells. We found that the use of HQ increased apoptosis by 26.23%-70.27% and caused disruption of mitochondrial membrane potential (MMP) by 17.15%-53.25% in a dose-dependent manner, as demonstrated by Annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of Molt 4 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by HQ, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of HQ. The results of a cell-free system assay indicated that HQ could act as an HDAC and topoisomerase catalytic inhibitor through the inhibition of pan-HDAC and topoisomerase IIα expression, respectively. On the protein level, the expression of the anti-apoptotic proteins p-Akt, NFκB, HDAC and Bcl-2, as well as hexokinase II was inhibited by the use of HQ. On the other hand, the expression of the pro-apoptotic protein Bax, PARP cleavage, caspase activation and cytochrome c release were increased after HQ treatment. Taken together, our results suggested that the antileukemic effect of HQ is ROS-mediated mitochondrial apoptosis combined with the inhibitory effect on HDAC and topoisomerase activities.

  13. ARSENIC INDUCTION OF HEME OXYGENASE AS A BIOMARKER

    EPA Science Inventory


    Useful biomarkers of arsenic effects in both experimental animals and humans are needed. Arsenate and arsenite are good inducers of rat hepatic and renal heme oxygenase (HO); monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) are not. Therefore, HO enzyme induction ...

  14. AN ELISA ASSAY FOR HEME OXYGENASE (HO-1)

    EPA Science Inventory

    An ELISA assay for heme oxygenase (HO-l )

    Abstract

    A double antibody capture ELISA for the HO-l protein has been developed to separately quantitate HO-I protein. The use of 2.5% NP40 detergent greatly assists in freeing HO-l protein from membranes and/or other cel...

  15. Rapamycin regulates biochemical metabolites

    PubMed Central

    Tucci, Paola; Porta, Giovanni; Agostini, Massimiliano; Antonov, Alexey; Garabadgiu, Alexander Vasilievich; Melino, Gerry; Willis, Anne E

    2013-01-01

    The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth, and deregulation of this pathway is associated with tumorigenesis. p53, and its less investigated family member p73, have been shown to interact closely with mTOR pathways through the transcriptional regulation of different target genes. To investigate the metabolic changes that occur upon inhibition of the mTOR pathway and the role of p73 in this response primary mouse embryonic fibroblast from control and TAp73−/− were treated with the macrocyclic lactone rapamycin. Extensive gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS/MS) analysis were used to obtain a rapamycin-dependent global metabolome profile from control or TAp73−/− cells. In total 289 metabolites involved in selective pathways were identified; 39 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response. PMID:23839040

  16. Carbon Monoxide Generated by Heme Oxygenase 1 Suppresses Endothelial Cell Apoptosis

    PubMed Central

    Brouard, Sophie; Otterbein, Leo E.; Anrather, Josef; Tobiasch, Edda; Bach, Fritz H.; Choi, Augustine M.K.; Soares, Miguel P.

    2000-01-01

    Heme oxygenase 1 (HO-1) inhibits apoptosis by regulating cellular prooxidant iron. We now show that there is an additional mechanism by which HO-1 inhibits apoptosis, namely by generating the gaseous molecule carbon monoxide (CO). Overexpression of HO-1, or induction of HO-1 expression by heme, protects endothelial cells (ECs) from apoptosis. When HO-1 enzymatic activity is blocked by tin protoporphyrin (SnPPIX) or the action of CO is inhibited by hemoglobin (Hb), HO-1 no longer prevents EC apoptosis while these reagents do not affect the antiapoptotic action of bcl-2. Exposure of ECs to exogenous CO, under inhibition of HO-1 activity by SnPPIX, substitutes HO-1 in preventing EC apoptosis. The mechanism of action of HO-1/CO is dependent on the activation of the p38 mitogen-activated protein kinase (MAPK) signaling transduction pathway. Expression of HO-1 or exposure of ECs to exogenous CO enhanced p38 MAPK activation by TNF-α. Specific inhibition of p38 MAPK activation by the pyridinyl imidazol SB203580 or through overexpression of a p38 MAPK dominant negative mutant abrogated the antiapoptotic effect of HO-1. Taken together, these data demonstrate that the antiapoptotic effect of HO-1 in ECs is mediated by CO and more specifically via the activation of p38 MAPK by CO. PMID:11015442

  17. Growth inhibition of fungus Phycomyces blakesleeanus by anion channel inhibitors anthracene-9-carboxylic and niflumic acid attained through decrease in cellular respiration and energy metabolites.

    PubMed

    Stanić, Marina; Križak, Strahinja; Jovanović, Mirna; Pajić, Tanja; Ćirić, Ana; Žižić, Milan; Zakrzewska, Joanna; Cvetić Antić, Tijana; Todorović, Nataša; Živić, Miroslav

    2017-01-18

    Increasing resistance of fungal strains to known fungicides has prompted identification of new candidates for fungicides among substances previously used for other purposes. We have tested the effects of known anion channel inhibitors anthracene-9-carboxylic (A9C) and niflumic acid (NFA) on growth, energy metabolism and anionic current of mycelium of fungus Phycomyces blakesleeanus. Both inhibitors significantly decreased growth and respiration of mycelium, but complete inhibition was only achieved by 100 or 500 µM NFA, for growth and respiration, respectively. A9C had no effect on respiration of human NCI-H460 cell line, and very little effect on cucumber root sprout clippings, which nominates this inhibitor for further investigation as a potential new fungicide. Effects of A9C and NFA on respiration of isolated mitochondria of P. blakesleeanus were significantly smaller, which indicates that their inhibitory effect on respiration of mycelium is indirect. NMR spectroscopy showed that both A9C and NFA decrease the levels of ATP and polyphosphates in the mycelium of P. blakesleanus, but only A9C caused intracellular acidification. Outwardly rectifying, fast inactivating instantaneous anionic current (ORIC) was also reduced to 33±5% and 21±3% of its pre-treatment size by A9C and NFA, respectively, but only in the absence of ATP. It can be assumed from our results that the regulation of ORIC is tightly linked to cellular energy metabolism in P. blakesleeanus, and the decrease in ATP and polyphosphate levels could be a direct cause of growth inhibition.

  18. Apo-10'-lycopenoic acid, an enzymatic metabolite of lycopene, induces Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemopreventive effects of lycopene against certain types of cancers have been proposed to be mediated by its oxidative products/metabolites. Lycopene can be cleaved by carotene 9',10'-oxygenase at its 9',10' double bond to form apo-10'-lycopenoids, including apo-10'-lycopenal, -lycopenol and -...

  19. Apo-10'-lycopenoic acid, a lycopene 1 metabolite, increases sirtuin 1 mRNA and protein levels and decreases hepatic fat accumulation in ob/ob mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lycopene has been shown to be beneficial in protecting against high-fat diet-induced fatty liver. The recent demonstration that lycopene can be converted by carotene 99,10’-oxygenase into a biologically active metabolite, ALA, led us to propose that the function of lycopene can be mediated by ALA. I...

  20. Potential therapeutic applications of aspirin and other cyclo-oxygenase inhibitors

    PubMed Central

    Farah, A. E.; Rosenberg, F.

    1980-01-01

    1 The ubiquitous actions of the cyclo-oxygenase inhibitors are described. 2 These include the inhibitory effect on prostaglandin synthesis and the direct effect of aspirin on lymphocytes and their ability to produce lymphokines. 3 Aspirin reduces some types of platelet aggregation possibly involving inhibition of the precursors of thromboxane A2 and prostacyclin. 4 The therapeutic implications in relation to transient ischaemic attacks, coronary artery disease and reno-allograft rejection are discussed. 5 The beneficial and adverse effects on the gastro-intestinal tract are described. 6 The effects of aspirin-like drugs on the genito-urinary tract are described with particular reference to their adverse effects on labour and their therapeutic effect on dysmenorrhoea. PMID:6776977

  1. Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation.

    PubMed Central

    Zakhary, R; Gaine, S P; Dinerman, J L; Ruat, M; Flavahan, N A; Snyder, S H

    1996-01-01

    Heme oxygenase 2 (HO-2), which synthesizes carbon monoxide (CO), has been localized by immunohistochemistry to endothelial cells and adventitial nerves of blood vessels. HO-2 is also localized to neurons in autonomic ganglia, including the petrosal, superior cervical, and nodose ganglia, as well as ganglia in the myenteric plexus of the intestine. Enzyme studies demonstrated that tin protoporphyrin-9 is a selective inhibitor of HO with approximately 10-fold selectivity for HO over endothelial nitric oxide synthase (NOS) and soluble guanylyl cyclase. Inhibition of HO activity by tin protoporphyrin 9 reverses the component of endothelial-derived relaxation of porcine distal pulmonary arteries not reversed by an inhibitor of NOS. Thus, CO, like NO, may have endothelial-derived relaxing activity. The similarity of NOS and HO-2 localizations and functions in blood vessels and the autonomic nervous system implies complementary and possibly coordinated physiologic roles for these two mediators. Images Fig. 1 Fig. 2 Fig. 3 PMID:8570637

  2. Prevention of Barrier Disruption by Heme Oxygenase-1 in Intestinal Bleeding Model.

    PubMed

    Akagi, Reiko; Akagi, Masaaki; Hatori, Yuta; Inouye, Sachiye

    2016-01-01

    In this study we investigated the effect of free heme, the local level of which was increased by bleeding, on the intestinal barrier function, using human epithelial colorectal adenocarcinoma cells (Caco-2). Our results show that the addition of hemin to the culture medium markedly disrupted the barrier function, which was significantly improved by glutamine supplementation. Although hemin treatment caused the increased expression of heme oxygenase (HO)-1, the inhibition of HO activity resulted in the aggravation of hemin-induced barrier dysfunction. Up-regulation of HO-1 by pretreatment with a low concentration of hemin almost completely prevented hemin-induced barrier dysfunction. Taken together, these observations indicate that an abnormally high level of intracellular free heme causes barrier dysfunction, probably through the modulation of proteins forming tight junctions.

  3. Synergistic effect of DDT and its metabolites in lipopolysaccharide-mediated TNF-α production is inhibited by progesterone in peripheral blood mononuclear cells.

    PubMed

    Dominguez-Lopez, Pablo; Diaz-Cueto, Laura; Aguilar-Rojas, Arturo; Arechavaleta-Velasco, Fabian

    2017-02-26

    Increased TNF-α levels have been associated with adverse pregnancy outcomes. Lipopolysaccharide (LPS), 1,1,1-trichloro-2,2-bis-(chlorophenyl)ethane (DDT), 1,1-bis-(chlorophenyl)-2,2-dichloroethene (DDE), and 1,1-dichloro-2,2-bis(chlorophenyl)ethane (DDD) induce TNF-α release in peripheral blood mononuclear cells (PBMC). Conversely, progesterone (P4) inhibits TNF-α secretion. Pregnant women in malaria endemic areas may be co-exposure to these compounds. Thus, this study was to investigate the synergistic effect of LPS and these pesticides in PBMC and to assess P4 influence on this synergy. Cultured PBMC were exposed to each pesticide in the presence of LPS, P4, or their combination. TNF-α was measured by ELISA. All pesticides enhanced TNF-α synthesis in PBMC. Co-exposure with LPS synergizes TNF-α production, which is blocked by progesterone. These results indicate that these organochlorines act synergistically with LPS to induce TNF-α secretion in PBMC. This effect is blocked by P4.

  4. Inhibition by nonsteroidal antiinflammatory drugs of luminol-dependent human-granulocyte chemiluminescence and /sup 3/H FMLP binding. Effect of sulindac sulfide, indomethacin metabolite, and optical enantiomers (+) and (-) MK830

    SciTech Connect

    Van Dyke, K.; Peden, D.; Van Dyke, C.; Jones, G.; Castranova, V.; Ma, J.

    1982-03-01

    A system is described to evaluate for nonsteroidal antiinflammatory drugs by means of luminol-dependent human-granulocyte chemiluminescence (CL) is described. The CL is produced using either opsonized zymosan (yeast cells) or the soluble chemotactic peptide f-Met-Leu-Phe as the perturbant of the granulocyte membrane. Using either system, the following drug effects 2 x 10(-5) M were noted: only sulindac sulfide, and not sulindac sulfone or sulindac, displayed marked inhibition of chemiluminescence, following the in vivo data regarding inflammatory effects. The 5-OH indomethacin metabolite was likewise inactive as an inhibitor of CL mirroring in vivo effects. MK(+)410, MK(-)830 and MK835 all showed approximately 50% inhibition of CL, displaying deviation from in vivo data. MK(+)830 markedly stimulated CL, 4-6 times the control (without drug), which is clearly different from its enantiomer, MK(-)830. The reasons for this behavior are unclear. However, receptor binding studies with /sup 3/H FMLP were accomplished in the presence and absence of the various drugs at 2 x 10(-5) M that were effective inhibitors of chemiluminescence (CL). Indomethacin, MK(-)830 and MK(+)410 had equivalent percent control binding and percent control CL. Sulindac sulfide and MK(+)835 both had higher percent control binding than percent control CL, with MK(+)835 displaying apparent increased numbers of available receptors relative to control. MK(+)830, which produces large increases in CL, produced a minor effect on percent control binding. A direct relationship between binding and CL does not exist with each drug. Chemiluminescence is dependent on ion movement and oxidative metabolism and is a secondary event to agonist-receptor occupation.

  5. Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery.

    PubMed

    Moss, Nathan A; Bertin, Matthew J; Kleigrewe, Karin; Leão, Tiago F; Gerwick, Lena; Gerwick, William H

    2016-03-01

    Filamentous marine cyanobacteria produce bioactive natural products with both potential therapeutic value and capacity to be harmful to human health. Genome sequencing has revealed that cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The biosynthetic pathways that encode cyanobacterial natural products are mostly uncharacterized, and lack of cyanobacterial genetic tools has largely prevented their heterologous expression. Hence, a combination of cutting edge and traditional techniques has been required to elucidate their secondary metabolite biosynthetic pathways. Here, we review the discovery and refined biochemical understanding of the olefin synthase and fatty acid ACP reductase/aldehyde deformylating oxygenase pathways to hydrocarbons, and the curacin A, jamaicamide A, lyngbyabellin, columbamide, and a trans-acyltransferase macrolactone pathway encoding phormidolide. We integrate into this discussion the use of genomics, mass spectrometric networking, biochemical characterization, and isolation and structure elucidation techniques.

  6. Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery

    PubMed Central

    Bertin, Matthew J.; Kleigrewe, Karin; Leão, Tiago F.; Gerwick, Lena

    2016-01-01

    Filamentous marine cyanobacteria produce bioactive natural products with both potential therapeutic value and capacity to be harmful to human health. Genome sequencing has revealed that cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The biosynthetic pathways that encode cyanobacterial natural products are mostly uncharacterized, and lack of cyanobacterial genetic tools has largely prevented their heterologous expression. Hence, a combination of cutting edge and traditional techniques has been required to elucidate their secondary metabolite biosynthetic pathways. Here, we review the discovery and refined biochemical understanding of the olefin synthase and fatty acid ACP reductase/aldehyde deformylating oxygenase pathways to hydrocarbons, and the curacin A, jamaicamide A, lyngbyabellin, columbamide, and a trans-acyltransferase macrolactone pathway encoding phormidolide. We integrate into this discussion the use of genomics, mass spectrometric networking, biochemical characterization, and isolation and structure elucidation techniques. PMID:26578313

  7. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    SciTech Connect

    Dong, Chenglong; Zheng, Haining; Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng; Ding, Dafa; Lu, Yibing

    2015-10-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.

  8. Heme oxygenase-1 induction by dieldrin in dopaminergic cells.

    PubMed

    Kim, Do Kyung; Kim, Jae-Sung; Kim, Ji-Eun; Kim, Sung-Jun; Lee, Jung-Sup; Kim, Dae-Joong; Son, Jin H; Chun, Hong Sung

    2005-04-04

    We investigated the transcriptional events and signaling pathways involved in the induction of heme oxygenase-1 (HO-1) by dieldrin, an environmental risk factor of Parkinson's disease, in a dopaminergic neuronal cells (SN4741). Dieldrin exposure caused dose-dependent and time-dependent induction of heme oxygenase activity and HO-1 protein expression. Deletional and mutational analyses showed that the 5' distal enhancers, E1 and E2, mediate dieldrin-induced HO-1 gene transcription, and the AP-1 DNA binding sites in the E2 enhancer are critical for E2-mediated HO-1 gene activation. Furthermore, both the p38 and JNK mitogen-activated protein kinase pathways are utilized for HO-1 transcriptional activation by dieldrin. HO-1 inhibitor, ZnPP IX reduced the expression of HO-1 but enhanced the cytotoxicity induced by dieldrin.

  9. Heme oxygenase-1: a provenance for cytoprotective pathways in the kidney and other tissues.

    PubMed

    Nath, K A

    2006-08-01

    Heme oxygenase (HO) is the rate-limiting enzyme in the degradation of heme, converting heme to biliverdin, during which iron is released and carbon monoxide (CO) is emitted; biliverdin is subsequently converted to bilirubin by biliverdin reductase. At least two isozymes possess HO activity: HO-1 represents the isozyme induced by diverse stressors, including ischemia, nephrotoxins, cytokines, endotoxin, oxidants, and vasoactive substances; HO-2 is the constitutive, glucocorticoid-inducible isozyme. HO-1 is upregulated in the kidney in assorted conditions and diseases. Interest in HO is driven by the capacity of this system to protect the kidney against injury, a capacity likely reflecting, at least in part, the cytoprotective properties of its products: in relatively low concentrations, CO exerts vasorelaxant, antiapoptotic, and anti-inflammatory effects while bile pigments are antioxidant and anti-inflammatory metabolites. This article reviews the HO system and the extent to which it influences the function of the healthy kidney; it summarizes conditions and stimuli that elicit HO-1 in the kidney; and it explores the significance of renal expression of HO-1 as induced by ischemia, nephrotoxins, nephritides, transplantation, angiotensin II, and experimental diabetes. This review also points out the tissue specificity of the HO system, and the capacity of HO-1 to induce renal injury in certain settings. Studies of HO in other tissues are discussed insofar as they aid in elucidating the physiologic and pathophysiologic significance of the HO system in the kidney.

  10. Induction of Heme Oxygenase-1 Attenuates Placental-Ischemia Induced Hypertension

    PubMed Central

    George, Eric M.; Cockrell, Kathy; Aranay, Marietta; Csongradi, Eva; Stec, David E.; Granger, Joey P.

    2011-01-01

    Recent in vitro studies have reported that heme oxygenase-1 (HO-1) downregulates the angiostatic protein sFlt-1 from placental villous explants and that the HO-1 metabolites CO and bilirubin negatively regulates endothelin-1 and reactive oxygen species (ROS). Although sFlt-1, ET-1, and ROS have been implicated in the pathophysiology of hypertension during preeclampsia and in response to placental ischemia in pregnant rats, it is unknown whether chronic induction of HO-1 alters the hypertensive response to placental ischemia. The present study examined the hypothesis that HO-1 induction in a rat model of placental ischemia would beneficially affect blood pressure, angiogenic balance, superoxide, and ET-1 production in the ischemic placenta. To achieve this goal we examined the effects of cobalt protoporphyrin (CoPP), an HO-1 inducer, in the reduced uterine perfusion pressure (RUPP) placental ischemia model and in normal pregnant rats. In response to RUPP treatment, MAP increases 29mmHg (136 ± 7 vs. 106 ± 5 mmHg) which is significantly attenuated by CoPP (118 ± 5 mmHg). While RUPP treatment causes placental sFlt-1/VEGF ratios to alter significantly to an angiostatic balance (1 ± 0.1 vs 1.27 ± 0.2,), treatment with CoPP causes a significant shift in the ratio to an angiogenic balance (0.68 ± 0.1). Placental superoxide increased in RUPP (952.5 ± 278.8 vs 243.9 ± 70.5 RLU/min/mg), but was significantly attenuated by HO-1 induction (482.7 ± 117.4 RLU/min/mg). Also, preproendothelin message was significantly increased in RUPP, which was prevented by CoPP. These data indicate that HO-1, or its metabolites, are potential therapeutics for the treatment of preeclampsia. PMID:21383306

  11. Epigallocatechin activates haem oxygenase-1 expression via protein kinase Cδ and Nrf2

    PubMed Central

    Ogborne, Richard M.; Rushworth, Stuart A.; O’Connell, Maria A.

    2008-01-01

    The Nrf2/anti-oxidant response element (ARE) pathway plays an important role in regulating cellular anti-oxidants, including haem oxygenase-1 (HO-1). Various kinases have been implicated in the pathways leading to Nrf2 activation. Here, we investigated the effect of epigallocatechin (EGC) on ARE-mediated gene expression in human monocytic cells. EGC time and dose dependently increased HO-1 mRNA and protein expression but had minimal effect on expression of other ARE-regulated genes, including NAD(P)H:quinone oxidoreductase 1, glutathione cysteine ligase and ferritin. siRNA knock down of Nrf2 significantly inhibited EGC-induced HO-1 expression. Furthermore, inhibition of PKC by Ro-31-8220 dose dependently decreased EGC-induced HO-1 mRNA expression, whereas MAP kinase and phosphatidylinositol-3-kinase pathway inhibitors had no significant effect. EGC stimulated phosphorylation of PKCαβ and δ in THP-1 cells. PKCδ inhibition significantly decreased EGC-induced HO-1 mRNA expression, whereas PKCα- and β-specific inhibitors had no significant effect. These results demonstrate for the first time that EGC-induced HO-1 expression occurs via PKCδ and Nrf2. PMID:18586007

  12. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication

    PubMed Central

    Tseng, Chin-Kai; Lin, Chun-Kuang; Wu, Yu-Hsuan; Chen, Yen-Hsu; Chen, Wei-Chun; Young, Kung-Chia; Lee, Jin-Ching

    2016-01-01

    Dengue virus (DENV) infection and replication induces oxidative stress, which further contributes to the progression and pathogenesis of the DENV infection. Modulation of host antioxidant molecules may be a useful strategy for interfering with DENV replication. In this study, we showed that induction or exogenous overexpression of heme oxygenase-1 (HO-1), an antioxidant enzyme, effectively inhibited DENV replication in DENV-infected Huh-7 cells. This antiviral effect of HO-1 was attenuated by its inhibitor tin protoporphyrin (SnPP), suggesting that HO-1 was an important cellular factor against DENV replication. Biliverdin but not carbon monoxide and ferrous ions, which are products of the HO-1 on heme, mediated the HO-1-induced anti-DENV effect by non-competitively inhibiting DENV protease, with an inhibition constant (Ki) of 8.55 ± 0.38 μM. Moreover, HO-1 induction or its exogenous overexpression, rescued DENV-suppressed antiviral interferon response. Moreover, we showed that HO-1 induction by cobalt protoporphyrin (CoPP) and andrographolide, a natural product, as evidenced by a significant delay in the onset of disease and mortality, and virus load in the infected mice’s brains. These findings clearly revealed that a drug or therapy that induced the HO-1 signal pathway was a promising strategy for treating DENV infection. PMID:27553177

  13. Unusual ribulose 1,5-bisphosphate carboxylase/oxygenase of anoxic Archaea.

    PubMed

    Watson, G M; Yu, J P; Tabita, F R

    1999-03-01

    The predominant pool of organic matter on earth is derived from the biological reduction and assimilation of carbon dioxide gas, catalyzed primarily by the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). By virtue of its capacity to use molecular oxygen as an alternative and competing gaseous substrate, the catalytic efficiency of RubisCO and the enzyme's ability to assimilate CO2 may be severely limited, with consequent environmental and agricultural effects. Recent genomic sequencing projects, however, have identified putative RubisCO genes from anoxic Archaea. In the present study, these potential RubisCO sequences, from Methanococcus jannaschii and Archaeoglobus fulgidus, were analyzed in order to ascertain whether such sequences might encode functional proteins. We also report the isolation and properties of recombinant RubisCO using sequences obtained from the obligately anaerobic hyperthermophilic methanogen M. jannaschii. This is the first description of an archaeal RubisCO sequence; this study also represents the initial characterization of a RubisCO molecule that has evolved in the absence of molecular oxygen. The enzyme was shown to be a homodimer whose deduced sequence, along with other recently obtained archaeal RubisCO sequences, differs substantially from those of known RubisCO molecules. The recombinant M. jannaschii enzyme has a somewhat low, but reasonable kcat, however, unlike previously isolated RubisCO molecules, this enzyme is very oxygen sensitive yet it is stable to hyperthermal temperatures and catalyzes the formation of the expected carboxylation product. Despite inhibition by oxygen, this unusual RubisCO still catalyzes a weak yet demonstrable oxygenase activity, with perhaps the lowest capacity for CO2/O2 discrimination ever encountered for any RubisCO.

  14. Koninginin G, a new metabolite from trichoderma aureoviride

    PubMed

    Cutler; Cutler; Ross; Sayed; Dugan; Bartlett; Hill; Hill; Parker

    1999-01-01

    A new metabolite, koninginin G (1), was isolated from a strain of Trichoderma aureoviride and its structure established by the interpretation of spectroscopic data. The metabolite significantly inhibited the growth of etiolated wheat coleoptiles by 56% at 10(-3) M.

  15. AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    EPA Science Inventory

    AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    Heme oxygenase (HO) occurs in biological tissues as two major isoforms HO-1 and HO-2. HO-1 is inducible by many treatments, particularly oxidative stress-related conditions such as depletion of gl...

  16. Heme Oxygenase-1 Regulates Dendritic Cell Function through Modulation of p38 MAPK-CREB/ATF1 Signaling*

    PubMed Central

    Al-Huseini, Laith M. A.; Aw Yeang, Han Xian; Hamdam, Junnat M.; Sethu, Swaminathan; Alhumeed, Naif; Wong, Wai; Sathish, Jean G.

    2014-01-01

    Dendritic cells (DCs) are critical for the initiation of immune responses including activation of CD8 T cells. Intracellular reactive oxygen species (ROS) levels influence DC maturation and function. Intracellular heme, a product of catabolism of heme-containing metalloproteins, is a key inducer of ROS. Intracellular heme levels are regulated by heme oxygenase-1 (HO-1), which catalyzes the degradation of heme. Heme oxygenase-1 has been implicated in regulating DC maturation; however, its role in other DC functions is unclear. Furthermore, the signaling pathways modulated by HO-1 in DCs are unknown. In this study, we demonstrate that inhibition of HO-1 activity in murine bone marrow-derived immature DCs (iDCs) resulted in DCs with raised intracellular ROS levels, a mature phenotype, impaired phagocytic and endocytic function, and increased capacity to stimulate antigen-specific CD8 T cells. Interestingly, our results reveal that the increased ROS levels following HO-1 inhibition did not underlie the changes in phenotype and functions observed in these iDCs. Importantly, we show that the p38 mitogen-activated protein kinase (p38 MAPK), cAMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1) pathway is involved in the mediation of the phenotypic and functional changes arising from HO-1 inhibition. Furthermore, up-regulation of HO-1 activity rendered iDCs refractory to lipopolysaccharide-induced activation of p38 MAPK-CREB/ATF1 pathway and DC maturation. Finally, we demonstrate that treatment of iDC with the HO-1 substrate, heme, recapitulates the effects that result from HO-1 inhibition. Based on these results, we conclude that HO-1 regulates DC maturation and function by modulating the p38 MAPK-CREB/ATF1 signaling axis. PMID:24719331

  17. The heme oxygenase system and its functions in the brain.

    PubMed

    Maines, M D

    2000-05-01

    The heme oxygenase (HO) system was identified in the early 1970s as a distinct microsomal enzyme system that catalyzes formation of bile pigments (Maines and Kappas, 1974). Up to the early 1990s the system was considered only as a "molecular wrecking ball" (Lane, 1998) for degradation of the heme molecule and production of toxic waste products, CO and bile pigments. For those years, the HO system remained relatively unknown to the research community. In a rather short span of the past 10 years following the discovery of high levels of a second form of the enzyme, HO-2, in the brain, suggesting that "heme oxygenase in the brain has functions aside from heme degradation" (Sun et al., 1990); concomitant with finding that another toxic gas, NO, is a signal molecule for generation of cGMP (Ignarro et al., 1982), the system was propelled into main stream research. This propulsion was fueled by the realization of the multiple and diverse functions of heme degradation products. Heme oxygenase has now found relevance in all kinds of human pathophysiology ranging from stroke, cancer, multiple sclerosis, and malaria to transplantation and immune response. As it turns out, its potential benefits are mesmerizing investigators in diverse fields (Lane, 1998). The most recent findings with HO-2 being a hemoprotein and potentially an intracellular "sink" for NO (McCoubrey et al., 1997a; Ding et al., 1999), together with the discovery of the third form of the enzyme, HO-3 (McCoubrey et al., 1997b), are likely to insure the widespread interest in the enzyme system in the coming years. The present review is intended to highlight molecular properties of HO isozymes and their likely functions in the brain. Extended reviews of the system are found in Maines (1992, 1997).

  18. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression.

    PubMed

    Cho, Joon Hyeong; Kwon, Jung Eun; Cho, Youngmi; Kim, Inhye; Kang, Se Chan

    2015-06-15

    Angelica gigas (AG) is effective against various medical conditions such as bacterial infection, inflammation, and cancer. It contains a number of coumarin compounds and the group of interest is the pyranocoumarin, which comprises decursin and decursinol angelate. This group has an effect on controlling inflammation, which is caused by excessive nitric oxide (NO) production. Heme oxygenases (HOs), particularly HO-1, play a role in regulating the production of NO. Thus, this study aimed to investigate the anti-inflammatory effects of AG by measuring HO-1 expression. Treatments with CH2Cl2 layer and Angelica gigas extract (AGE) showed the highest NO inhibition effects. Decursin, decursinol angelate, and nodakenin were isolated from the CH2Cl2 layer of AGE. Decursin also demonstrated the highest anti-oxidative effect among the coumarins. Although decursin had the best NO inhibition and anti-oxidative effects, the effects of AGE treatment far surpassed that of decursin. This is owing to the combination effect of the coumarins present within AGE, which is a solvent extract of AG. The expression of HO-1 is an effective indicator of the anti-inflammatory effects of AG. Based on the results of the coumarin compounds, HO-1 expression was found to be dose dependent and specific to decursin.

  19. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression

    PubMed Central

    Cho, Joon Hyeong; Kwon, Jung Eun; Cho, Youngmi; Kim, Inhye; Kang, Se Chan

    2015-01-01

    Angelica gigas (AG) is effective against various medical conditions such as bacterial infection, inflammation, and cancer. It contains a number of coumarin compounds and the group of interest is the pyranocoumarin, which comprises decursin and decursinol angelate. This group has an effect on controlling inflammation, which is caused by excessive nitric oxide (NO) production. Heme oxygenases (HOs), particularly HO-1, play a role in regulating the production of NO. Thus, this study aimed to investigate the anti-inflammatory effects of AG by measuring HO-1 expression. Treatments with CH2Cl2 layer and Angelica gigas extract (AGE) showed the highest NO inhibition effects. Decursin, decursinol angelate, and nodakenin were isolated from the CH2Cl2 layer of AGE. Decursin also demonstrated the highest anti-oxidative effect among the coumarins. Although decursin had the best NO inhibition and anti-oxidative effects, the effects of AGE treatment far surpassed that of decursin. This is owing to the combination effect of the coumarins present within AGE, which is a solvent extract of AG. The expression of HO-1 is an effective indicator of the anti-inflammatory effects of AG. Based on the results of the coumarin compounds, HO-1 expression was found to be dose dependent and specific to decursin. PMID:26083119

  20. Interaction of ribulose bisphosphate carboxylase/oxygenase with 2-carboxyhexitol 1,6-bisphosphates.

    PubMed

    Roach, D J; Gollnick, P D; McFadden, B A

    1983-04-01

    2-C-Carboxy-D-glucitol 1,6-bisphosphate (CGBP) and 2-C-carboxy-D-mannitol 1,6-bisphosphate (CMBP) have been synthesized, isolated, and the structures of these compounds and the derived lactones elucidated by NMR spectroscopy and periodate oxidation. Both carboxyhexitol bisphosphates, which are homologs of the transition state analog 2-C-carboxy-D-arabinitol 1,5-bisphosphate, exhibit competitive inhibiton of ribulose bisphosphate carboxylase/oxygenase (EC 4.1.1.9) isolated from spinach (Spinacia oleracea), with respect to ribulose 1,5-bisphosphate. CMBP was a more potent inhibitor (100-fold) displaying an inhibition constant (Ki at pH 8.0 and 30 degrees C) of 1-2 microM with enzymes from spinach, barley (Hordeum vulgare), and Chromatium vinosum. In contrast the Rhodospirillum rubrum enzyme was inhibited about 40-fold more weakly (Ki = 53 microM at pH 8.0 and 30 degrees C). Both CGBP and CMBP potentiated activation of RuBP carboxylase from spinach and R. rubrum.

  1. [Heme oxygenase and carbon monoxide in the physiology and pathology of the cardiovascular system].

    PubMed

    Bełtowski, Jerzy; Jamroz, Anna; Borkowska, Ewelina

    2004-03-03

    Heme oxygenase (HO) degrades heme to carbon monoxide (CO), ferrous ions, and the bile pigment biliverdin, which is subsequently reduced to the other important bile pigment, bilirubin, by biliverdin reductase. Fe2+ liberated from the heme molecule upregulates ferritin production, and bile pigments are potent endogenous antioxidants. The HO enzyme exists in three isophorms: HO-1 is expressed at low levels under physiological conditions, but is induced by numerous factors, including oxidative stress, inflammation, nitric oxide, an elevated level of substrate, and hypoxia. HO-2 is a constitutive enzyme involved in the baseline production of CO in the cardiovascular and nervous systems, whereas HO-3 is also ubiquitously expressed, but possesses low catalytic activity. Like nitric oxide, CO activates soluble guanylate cyclase and elevates cGMP in target tissues, which dilates blood vessels. It also does this by directly activating potassium channels in vascular smooth muscle cells. In addition, CO inhibits platelet aggregation and proliferation of vascular smooth muscle cells, inhibits apoptosis, and stimulates angiogenesis. Both deficiency, and excess of HO-1 may be involved in the pathogenesis of arterial hypertension. Induction of HO-1 attenuates atherosclerosis and myocardial ischemia-reperfusion injury. Pharmacological and genetic induction of HO-1 as well as the delivery of exogenous CO are promising therapeutic strategies for the treatment of cardiovascular diseases.

  2. The effects of cyclo-oxygenase inhibitors on bile-injured and normal equine colon.

    PubMed

    Campbell, N B; Jones, S L; Blikslager, A T

    2002-07-01

    A potential adverse effect of cyclo-oxygenase (COX) inhibitors (nonsteroidal anti-inflammatory drugs [NSAIDs]) in horses is colitis. In addition, we have previously shown an important role for COX-produced prostanoids in recovery of ischaemic-injured equine jejunum. It was hypothesised that the nonselective COX inhibitor flunixin would retard repair of bile-injured colon by preventing production of reparative prostaglandins, whereas the selective COX-2 inhibitor, etodolac would not inhibit repair as a result of continued COX-1 activity. Segments of the pelvic flexure were exposed to 1.5 mmol/l deoxycholate for 30 min, after which they were recovered for 4 h in Ussing chambers. Contrary to the proposed hypothesis, recovery of bile-injured colonic mucosa was not affected by flunixin or etodolac, despite significantly depressed prostanoid production. However, treatment of control tissue with flunixin led to increases in mucosal permeability, whereas treatment with etodolac had no significant effect. Therefore, although recovery from bile-induced colonic injury maybe independent of COX-elaborated prostanoids, treatment of control tissues with nonselective COX inhibitors may lead to marked increases in permeability. Alternatively, selective inhibition of COX-2 may reduce the incidence of adverse effects in horses requiring NSAID therapy.

  3. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  4. Heme oxygenase-1 system and gastrointestinal inflammation: a short review.

    PubMed

    Zhu, Xiao; Fan, Wen-Guo; Li, Dong-Pei; Kung, Hsiangfu; Lin, Marie Cm

    2011-10-14

    Heme oxygenase-1 (HO-1) system catalyzes heme to biologically active products: carbon monoxide, biliverdin/bilirubin and free iron. It is involved in maintaining cellular homeostasis and many physiological and pathophysiological processes. A growing body of evidence indicates that HO-1 activation may play an important protective role in acute and chronic inflammation of gastrointestinal tract. This review focuses on the current understanding of the physiological significance of HO-1 induction and its possible roles in the gastrointestinal inflammation studied to date. The ability to upregulate HO-1 by pharmacological means or using gene therapy may offer therapeutic strategies for gastrointestinal inflammation in the future.

  5. Heme Oxygenase-1 Protects Corexit 9500A-Induced Respiratory Epithelial Injury across Species

    PubMed Central

    Oliva, Octavio M.; Karki, Suman; Surolia, Ranu; Wang, Zheng; Watson, R. Douglas; Thannickal, Victor J.; Powell, Mickie; Watts, Stephen; Kulkarni, Tejaswini; Batra, Hitesh; Bolisetty, Subhashini; Agarwal, Anupam; Antony, Veena B.

    2015-01-01

    The effects of Corexit 9500A (CE) on respiratory epithelial surfaces of terrestrial mammals and marine animals are largely unknown. This study investigated the role of CE-induced heme oxygenase-1 (HO-1), a cytoprotective enzyme with anti-apoptotic and antioxidant activity, in human bronchial airway epithelium and the gills of exposed aquatic animals. We evaluated CE-mediated alterations in human airway epithelial cells, mice lungs and gills from zebrafish and blue crabs. Our results demonstrated that CE induced an increase in gill epithelial edema and human epithelial monolayer permeability, suggesting an acute injury caused by CE exposure. CE induced the expression of HO-1 as well as C-reactive protein (CRP) and NADPH oxidase 4 (NOX4), which are associated with ROS production. Importantly, CE induced caspase-3 activation and subsequent apoptosis of epithelial cells. The expression of the intercellular junctional proteins, such as tight junction proteins occludin, zonula occludens (ZO-1), ZO-2 and adherens junctional proteins E-cadherin and Focal Adhesion Kinase (FAK), were remarkably inhibited by CE, suggesting that these proteins are involved in CE-induced increased permeability and subsequent apoptosis. The cytoskeletal protein F-actin was also disrupted by CE. Treatment with carbon monoxide releasing molecule-2 (CORM-2) significantly inhibited CE-induced ROS production, while the addition of HO-1 inhibitor, significantly increased CE-induced ROS production and apoptosis, suggesting a protective role of HO-1 or its reaction product, CO, in CE-induced apoptosis. Using HO-1 knockout mice, we further demonstrated that HO-1 protected against CE-induced inflammation and cellular apoptosis and corrected CE-mediated inhibition of E-cadherin and FAK. These observations suggest that CE activates CRP and NOX4-mediated ROS production, alters permeability by inhibition of junctional proteins, and leads to caspase-3 dependent apoptosis of epithelial cells, while HO-1 and its

  6. The site of general anaesthesia and cytochrome P450 oxygenases: similarities defined by straight chain and cyclic alcohols

    PubMed Central

    LaBella, F S; Chen, Q -M; Stein, D; Queen, G

    1997-01-01

    General anaesthetics disrupt normal cell receptivity and responsiveness while sparing vital respiratory processes. Ultimate elucidation of the molecular basis of general anaesthesia presumes the identification of one or more subcellular components with appropriate sensitivity to the entire array of anaesthetics.Previously, we showed the universal cellular enzymes, cytochrome P450 mono-oxygenases, to be sensitive at relevant concentrations to all anaesthetics tested. The potential significance of P450 inhibition by anaesthetics resides in the contribution of this enzyme family, in conjunction with that of cyclo-oxygenases and lipoxygenases, to the generation from arachidonic acid of lipid second messengers, the eicosanoids.We have shown that P450 enzymes model the site of general anaesthesia in the tadpole with respect to (a) an absolute sensitivity to increasing chain-length series of flexible, straight chain primary and secondary alcohols and straight chain diols, (b) an absolute sensitivity to increasing molecular weight series of rigid cyclic alkanols and cyclic alkanemethanols, (c) the points of abrupt change and of reversal (cut-off) in the linear relationship between increasing anaesthetic potency with increasing carbon chain length, and (d) non-differentiation between secondary alkanol enantiomers. These findings reveal the P450 enzyme family as the most relevant biomolecular counterpart of the site of general anaesthesia, thus far identified. PMID:9134230

  7. Endogenous Estrogen-Mediated Heme Oxygenase Regulation in Experimental Menopause.

    PubMed

    Pósa, Anikó; Szabó, Renáta; Csonka, Anett; Veszelka, Médea; Berkó, Anikó Magyariné; Baráth, Zoltán; Ménesi, Rudolf; Pávó, Imre; Gyöngyösi, Mariann; László, Ferenc; Kupai, Krisztina; Varga, Csaba

    2015-01-01

    Estrogen deficiency is one of the main causes of age-associated diseases in the cardiovascular system. Female Wistar rats were divided into four experimental groups: pharmacologically ovariectomized, surgically ovariectomized, and 24-month-old intact aging animals were compared with a control group. The activity and expression of heme oxygenases (HO) in the cardiac left ventricle, the concentrations of cardiac interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), the myeloperoxidase (MPO) activity in the cardiac left ventricle, and the effects of heme oxygenase blockade (by 24-hour and 1-hour pretreatment with tin-protoporphyrin IX, SnPP) on the epinephrine and phentolamine-induced electrocardiogram ST segment changes in vivo were investigated. The cardiac HO activity and the expression of HO-1 and HO-2 were significantly decreased in the aged rats and after ovariectomy. Estrogen depletion was accompanied by significant increases in the expression of IL-6 and TNF-α. The aged and ovariectomized animals exhibited a significantly elevated MPO activity and a significant ST segment depression. After pretreatment with SnPP augmented ST segment changes were determined. These findings demonstrate that the sensitivity to cardiac ischemia in estrogen depletion models is associated with suppression of the activity and expression of the HO system and increases in the secretion of proinflammatory cytokines and biomarkers.

  8. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death.

    PubMed

    Kwon, Min-Young; Park, Eunhee; Lee, Seon-Jin; Chung, Su Wol

    2015-09-15

    The oncogenic RAS-selective lethal small molecule Erastin triggers a unique iron-dependent form of nonapoptotic cell death termed ferroptosis. Ferroptosis is dependent upon the production of intracellular iron-dependent reactive oxygen species (ROS), but not other metals. However, key regulators remain unknown. The heme oxygenase (HO) is a major intracellular source of iron. In this study, the role of heme oxygenase in Erastin-triggered ferroptotic cancer cell death has been investigated. Zinc protoporphyrin IX (ZnPP), a HO-1 inhibitor, prevented Erastin-triggered ferroptotic cancer cell death. Furthermore, Erastin induced the protein and mRNA levels of HO-1 in HT-1080 fibrosarcoma cells. HO-1+/+ and HO-1-/- fibroblast, HO-1 overexpression, and chycloheximide-treated experiments revealed that the expression of HO-1 has a decisive effects in Erastin-triggered cell death. Hemin and CO-releasing molecules (CORM) promote Erastin-induced ferroptotic cell death, not by biliverdin and bilirubin. In addition, hemin and CORM accelerate the HO-1 expression in the presence of Erastin and increase membranous lipid peroxidation. Thus, HO-1 is an essential enzyme for iron-dependent lipid peroxidation during ferroptotic cell death.

  9. Dystrophic muscle improvement in zebrafish via increased heme oxygenase signaling

    PubMed Central

    Kawahara, Genri; Gasperini, Molly J.; Myers, Jennifer A.; Widrick, Jeffrey J.; Eran, Alal; Serafini, Peter R.; Alexander, Matthew S.; Pletcher, Mathew T.; Morris, Carl A.; Kunkel, Louis M.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is caused by a lack of the dystrophin protein and has no effective treatment at present. Zebrafish provide a powerful in vivo tool for high-throughput therapeutic drug screening for the improvement of muscle phenotypes caused by dystrophin deficiency. Using the dystrophin-deficient zebrafish, sapje, we have screened a total of 2640 compounds with known modes of action from three drug libraries to identify modulators of the disease progression. Six compounds that target heme oxygenase signaling were found to rescue the abnormal muscle phenotype in sapje and sapje-like, while upregulating the inducible heme oxygenase 1 (Hmox1) at the protein level. Direct Hmox1 overexpression by injection of zebrafish Hmox1 mRNA into fertilized eggs was found to be sufficient for a dystrophin-independent restoration of normal muscle via an upregulation of cGMP levels. In addition, treatment of mdx5cv mice with the PDE5 inhibitor, sildenafil, which was one of the six drugs impacting the Hmox1 pathway in zebrafish, significantly increased the expression of Hmox1 protein, thus making Hmox1 a novel target for the improvement of dystrophic symptoms. These results demonstrate the translational relevance of our zebrafish model to mammalian models and support the use of zebrafish to screen for new drugs to treat human DMD. The discovery of a small molecule and a specific therapeutic pathway that might mitigate DMD disease progression could lead to significant clinical implications. PMID:24234649

  10. Stereochemistry and Mechanism of Undecylprodigiosin Oxidative Carbocyclization to Streptorubin B by the Rieske Oxygenase RedG.

    PubMed

    Withall, David M; Haynes, Stuart W; Challis, Gregory L

    2015-06-24

    The prodiginines are a group of specialized metabolites that share a 4-methoxypyrrolyldipyrromethene core structure. Streptorubin B is a structurally remarkable member of the prodiginine group produced by Streptomyces coelicolor A3(2) and other actinobacteria. It is biosynthesized from undecylprodigiosin by an oxidative carbocyclization catalyzed by the Rieske oxygenase-like enzyme RedG. Undecylprodigiosin derives from the RedH-catalyzed condensation of 2-undecylpyrrole and 4-methoxy-2, 2'-bipyrrole-5-carboxaldehyde (MBC). To probe the mechanism of the RedG-catalyzed reaction, we synthesized 2-(5-pentoxypentyl)-pyrrole, an analogue of 2-undecylpyrrole with an oxygen atom next to the site of C-C bond formation, and fed it, along with synthetic MBC, to Streptomyces albus expressing redH and redG. This resulted in the production of the 6'-oxa analogue of undecylprodigiosin. In addition, a small amount of a derivative of this analogue lacking the n-pentyl group was produced, consistent with a RedG catalytic mechanism involving hydrogen abstraction from the alkyl chain of undecylprodigiosin prior to pyrrole functionalization. To investigate the stereochemistry of the RedG-catalyzed oxidative carbocyclization, [7'-(2)H](7'R)-2-undecylpyrrole and [7'-(2)H](7'S)-2-undecylpyrrole were synthesized and fed separately, along with MBC, to S. albus expressing redH and redG. Analysis of the extent of deuterium incorporation into the streptorubin B produced in these experiments showed that the pro-R hydrogen atom is abstracted from C-7' of undecylprodigiosin and that the reaction proceeds with inversion of configuration at C-7'. This contrasts sharply with oxidative heterocyclization reactions catalyzed by other nonheme iron-dependent oxygenase-like enzymes, such as isopenicillin N synthase and clavaminate synthase, which proceed with retention of configuration at the carbon center undergoing functionalization.

  11. 4-Hydroxyestradiol induces mammary epithelial cell transformation through Nrf2-mediated heme oxygenase-1 overexpression

    PubMed Central

    Park, Sin-Aye; Lee, Mee-Hyun; Na, Hye-Kyung; Surh, Young-Joon

    2017-01-01

    Estrogen (17β-estradiol, E2) undergoes oxidative metabolism by CYP1B1 to form 4-hydroxyestradiol (4-OHE2), a putative carcinogenic metabolite of estrogen. Our previous study showed that 4-OHE2-induced production of reactive oxygen species contributed to neoplastic transformation of human breast epithelial (MCF-10A) cells. In this study, 4-OHE2, but not E2, increased the expression of heme oxygenase-1 (HO-1), a sensor and regulator of oxidative stress, in MCF-10A cells. Silencing the HO-1 gene in MCF-10A cells suppressed 4-OHE2-induced cell proliferation and transformation. In addition, subcutaneous administration of 4-OHE2 markedly enhanced the growth of the MDA-MB-231 human breast cancer xenografts, which was retarded by zinc protoporphyrin, a pharmacological inhibitor of HO-1. 4-OHE2-induced HO-1 expression was mediated by NF-E2-related factor 2 (Nrf2). We speculate that an electrophilic quinone formed as a consequence of oxidation of 4-OHE2 binds directly to Kelch-like ECH-associated protein 1 (Keap1), an inhibitory protein that sequesters Nrf2 in the cytoplasm. This will diminish association between Nrf2 and Keap1. 4-OHE2 failed to interrupt the interaction between Keap1 and Nrf2 and to induce HO-1 expression in Keap1-C273S or C288S mutant cells. Lano-LC-ESI-MS/MS analysis in MCF-10A-Keap1-WT cells which were treated with 4-OHE2 revealed that the peptide fragment containing Cys288 gained a molecular mass of 287.15 Da, equivalent to the addition of a single molecule of 4-OHE2-derived ortho-quinones. PMID:27438141

  12. Heme Oxygenase-1 Protects Endothelial Cells from the Toxicity of Air Pollutant Chemicals

    PubMed Central

    Dittmar, Michael; Lulla, Aaron; Araujo, Jesus A.

    2015-01-01

    Diesel exhaust particles (DEP) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEP on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMEC) were treated with an organic extract of DEP from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 hours. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and UPR gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or Tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or Cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but in a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMEC from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. PMID:25620054

  13. Identification of Interactions between Abscisic Acid and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase

    PubMed Central

    Galka, Marek M.; Rajagopalan, Nandhakishore; Buhrow, Leann M.; Nelson, Ken M.; Switala, Jacek; Cutler, Adrian J.; Palmer, David R. J.; Loewen, Peter C.; Abrams, Suzanne R.; Loewen, Michele C.

    2015-01-01

    Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 μM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation. PMID:26197050

  14. Therapeutic potential of statins and the induction of heme oxygenase-1 in preeclampsia.

    PubMed

    Ramma, Wenda; Ahmed, Asif

    2014-03-01

    Heme oxygenase (Hmox) is an endogenous system that offers protection against placental cytotoxic damage associated with preeclampsia. The Hmox1/carbon monoxide (CO) pathway inhibits soluble Flt-1 (sFlt-1) and soluble Endoglin (sEng). More importantly, statins induce Hmox1 and suppress the release of sFlt-1 and sEng; thus, statins and Hmox1 activators are potential novel therapeutic agents for treating preeclampsia. The contribution of the Hmox system to the pathogenesis of preeclampsia has been further indicated by the incidence of preeclampsia being reduced by a third in smokers, who had reduced levels of circulating sFlt-1. Interestingly, preeclamptic women exhale less CO compared with women with healthy pregnancies. Hmox1 is reduced prior to the increase in sFlt-1 as Hmox1 mRNA expression in the trophoblast is decreased in the first trimester in women who go on to develop preeclampsia. Induction of Hmox1 or exposure to CO or bilirubin has been shown to inhibit the release of sFlt-1 and sEng in animal models of preeclampsia. The functional benefit of statins and Hmox1 induction in women with preeclampsia is valid not only because they inhibit sFlt-1 release, but also because statins and Hmox1 are associated with anti-apoptotic, anti-inflammatory, and anti-oxidant properties. The StAmP trial is the first randomized control trial (RCT) evaluating the use of pravastatin to ameliorate severe preeclampsia. This proof-of-concept study will pave the way for future global RCT, the success of which will greatly contribute to achieving the United Nations Millennium Development Goals (MDG4 and MDG5) and offering an affordable and easily accessible therapy for preeclampsia.

  15. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals.

    PubMed

    Lawal, Akeem O; Zhang, Min; Dittmar, Michael; Lulla, Aaron; Araujo, Jesus A

    2015-05-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM.

  16. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis

    SciTech Connect

    Leon, J.; Shulaev, V.; Yalpani, N.

    1995-10-24

    Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicyclic acid with {sup 18}O{sub 2} suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation of benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[{sup 35}S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes. 21 refs., 6 figs., 1 tab.

  17. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    PubMed Central

    Carvalho-Costa, P.G.; Branco, L.G.S.; Leite-Panissi, C.R.A.

    2014-01-01

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress. PMID:25387672

  18. Heme oxygenase-1 deficiency accompanies neuropathogenesis of HIV-associated neurocognitive disorders

    PubMed Central

    Gill, Alexander J.; Kovacsics, Colleen E.; Cross, Stephanie A.; Vance, Patricia J.; Kolson, Lorraine L.; Jordan-Sciutto, Kelly L.; Gelman, Benjamin B.; Kolson, Dennis L.

    2014-01-01

    Heme oxygenase-1 (HO-1) is an inducible, detoxifying enzyme that is critical for limiting oxidative stress, inflammation, and cellular injury within the CNS and other tissues. Here, we demonstrate a deficiency of HO-1 expression in the brains of HIV-infected individuals. This HO-1 deficiency correlated with cognitive dysfunction, HIV replication in the CNS, and neuroimmune activation. In vitro analysis of HO-1 expression in HIV-infected macrophages, a primary CNS HIV reservoir along with microglia, demonstrated a decrease in HO-1 as HIV replication increased. HO-1 deficiency correlated with increased culture supernatant glutamate and neurotoxicity, suggesting a link among HIV infection, macrophage HO-1 deficiency, and neurodegeneration. HO-1 siRNA knockdown and HO enzymatic inhibition in HIV-infected macrophages increased supernatant glutamate and neurotoxicity. In contrast, increasing HO-1 expression through siRNA derepression or with nonselective pharmacologic inducers, including the CNS-penetrating drug dimethyl fumarate (DMF), decreased supernatant glutamate and neurotoxicity. Furthermore, IFN-γ, which is increased in CNS HIV infection, reduced HO-1 expression in cultured human astrocytes and macrophages. These findings indicate that HO-1 is a protective host factor against HIV-mediated neurodegeneration and suggest that HO-1 deficiency contributes to this degeneration. Furthermore, these results suggest that HO-1 induction in the CNS of HIV-infected patients on antiretroviral therapy could potentially protect against neurodegeneration and associated cognitive dysfunction. PMID:25202977

  19. ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis

    PubMed Central

    Dey, Souvik; Sayers, Carly M.; Verginadis, Ioannis I.; Lehman, Stacey L.; Cheng, Yi; Cerniglia, George J.; Tuttle, Stephen W.; Feldman, Michael D.; Zhang, Paul J.L.; Fuchs, Serge Y.; Diehl, J. Alan; Koumenis, Constantinos

    2015-01-01

    The integrated stress response (ISR) is a critical mediator of cancer cell survival, and targeting the ISR inhibits tumor progression. Here, we have shown that activating transcription factor 4 (ATF4), a master transcriptional effector of the ISR, protects transformed cells against anoikis — a specialized form of apoptosis — following matrix detachment and also contributes to tumor metastatic properties. Upon loss of attachment, ATF4 activated a coordinated program of cytoprotective autophagy and antioxidant responses, including induced expression of the major antioxidant enzyme heme oxygenase 1 (HO-1). HO-1 upregulation was the result of simultaneous activation of ATF4 and the transcription factor NRF2, which converged on the HO1 promoter. Increased levels of HO-1 ameliorated oxidative stress and cell death. ATF4-deficient human fibrosarcoma cells were unable to colonize the lungs in a murine model, and reconstitution of ATF4 or HO-1 expression in ATF4-deficient cells blocked anoikis and rescued tumor lung colonization. HO-1 expression was higher in human primary and metastatic tumors compared with noncancerous tissue. Moreover, HO-1 expression correlated with reduced overall survival of patients with lung adenocarcinoma and glioblastoma. These results establish HO-1 as a mediator of ATF4-dependent anoikis resistance and tumor metastasis and suggest ATF4 and HO-1 as potential targets for therapeutic intervention in solid tumors. PMID:26011642

  20. Fenofibrate Increases Heme Oxygenase 1 Expression and Astrocyte Proliferation While Limits Neuronal Injury During Intracerebral Hemorrhage.

    PubMed

    Wang, Yan; Yu, Min; Ma, Yue; Wang, Ruoping; Liu, Wei; Xia, Wei; Guan, Aili; Xing, Conghui; Lu, Fei; Ji, Xiaoping

    2017-01-01

    Peroxisome proliferator-activated receptors alpha (PPARα) is a therapy target in atherosclerosis and cardiovascular diseases. However, anti-inflammatory effects of PPARα in intracerebral hemorrhage (ICH) remain unknown. We investigated the anti-inflammatory effects of fenofibrate, a ligand of PPARα, in ICH rat model. We found that engagement of fenofibrate increased nissl body and astrocytes, and reduced the neuronal damage, which was observed in paraffin section of ICH rat brain. Fenofibrate also promoted the proliferation of astrocytes that were isolated from adult rat brain. Fenofibrate significantly upregulated heme oxygenase 1 (HO-1) at protein and mRNA levels in human glioblastoma LN-18 cells and rat brain astrocytes respectively, but nuclear factor kappalight- chain-enhancer of activated B cells (NFκB) was downregulated after fenofibrate treatment. Results showed that fenofibrate-induced upregulation of HO-1 expression were inhibited after LN-18 cells were transfected with 50nM small interfering RNA (siRNAs) for 48 hours to knockdown PPARα. Further studies in rat astrocytes confirmed the rescue effects of PPARα silence against fenofibrate induced upregulation of HO-1 expression. Our data indicated that fenofibrate benefits neuronal protection through increasing HO-1 expression level and decreasing NFκB expression in PPARα-dependent manner. In conclusion, PPARα and HO-1 may function as significant targets to protect the brain during ICH.

  1. Heme oxygenase-1 is dispensable for the anti-inflammatory activity of intravenous immunoglobulin

    PubMed Central

    Galeotti, Caroline; Hegde, Pushpa; Das, Mrinmoy; Stephen-Victor, Emmanuel; Canale, Fernando; Muñoz, Marcos; Sharma, Varun K.; Dimitrov, Jordan D.; Kaveri, Srini V.; Bayry, Jagadeesh

    2016-01-01

    Intravenous immunoglobulin G (IVIG) is used in the therapy of various autoimmune and inflammatory conditions. The mechanisms by which IVIG exerts anti-inflammatory effects are not completely understood. IVIG interacts with numerous components of the immune system including dendritic cells, macrophages, T and B cells and modulate their functions. Recent studies have reported that heme oxygenase-1 (HO-1) pathway plays an important role in the regulation of inflammatory response in several pathologies. Several therapeutic agents exert anti-inflammatory effects via induction of HO-1. Therefore, we aimed at exploring if anti-inflammatory effects of IVIG are mediated via HO-1 pathway. Confirming the previous reports, we report that IVIG exerts anti-inflammatory effects on innate cells as shown by the inhibitory effects on IL-6 and nitric oxide production and confers protection in experimental autoimmune encephalomyelitis (EAE) model. However, these effects were not associated with an induction of HO-1 either in innate cells such as monocytes, dendritic cells and macrophages or in the kidneys and liver of IVIG-treated EAE mice. Also, inhibition of endogenous HO-1 did not modify anti-inflammatory effects of IVIG. These results thus indicate that IVIG exerts anti-inflammatory effects independent of HO-1 pathway. PMID:26796539

  2. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent.

    PubMed

    Carvalho-Costa, P G; Branco, L G S; Leite-Panissi, C R A

    2014-12-01

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3',5'-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress.

  3. Cobalt chloride-induced lateral root formation in rice: the role of heme oxygenase.

    PubMed

    Hsu, Yun Yen; Chao, Yun-Yang; Kao, Ching Huei

    2013-08-15

    Lateral roots (LRs) perform the essential tasks of providing water, nutrients, and physical support to plants. Therefore, understanding the regulation of LR development is of agronomic importance. Recent findings suggest that heme oxygenase (HO) plays an important role in LR development. In this study, we examined the effect of cobalt chloride (CoCl2) on LR formation and HO expression in rice. Treatment with CoCl2 induced LR formation and HO activity. We further observed that CoCl2 could induce the expression of OsHO1 but not OsHO2. CoCl2-increased HO activity occurred before LR formation. Zinc protoporphyrin IX (ZnPPIX, the specific inhibitor of HO) and hemoglobin (the carbon monoxide/nitric oxide scavenger) reduced LR formation, HO activity, and OsHO1 expression. Application of biliverdin, a product of HO-catalyzed reaction, to CoCl2-treated rice seedlings reversed the ZnPPIX-inhibited LR formation and ZnPPIX-decreased HO activity. CoCl2 had no effect on H2O2 content and nitric oxide production. Moreover, application of ascorbate, a H2O2 scavenger, failed to affect CoCl2-promoted LR formation and HO activity. It is concluded that HO is required for CoCl2-promoted LR formation in rice.

  4. Unconjugated bilirubin mediates heme oxygenase-1-induced vascular benefits in diabetic mice.

    PubMed

    Liu, Jian; Wang, Li; Tian, Xiao Yu; Liu, Limei; Wong, Wing Tak; Zhang, Yang; Han, Quan-Bin; Ho, Hing-Man; Wang, Nanping; Wong, Siu Ling; Chen, Zhen-Yu; Yu, Jun; Ng, Chi-Fai; Yao, Xiaoqiang; Huang, Yu

    2015-05-01

    Heme oxygenase-1 (HO-1) exerts vasoprotective effects. Such benefit in diabetic vasculopathy, however, remains unclear. We hypothesize that bilirubin mediates HO-1-induced vascular benefits in diabetes. Diabetic db/db mice were treated with hemin (HO-1 inducer) for 2 weeks, and aortas were isolated for functional and molecular assays. Nitric oxide (NO) production was measured in cultured endothelial cells. Hemin treatment augmented endothelium-dependent relaxations (EDRs) and elevated Akt and endothelial NO synthase (eNOS) phosphorylation in db/db mouse aortas, which were reversed by the HO-1 inhibitor SnMP or HO-1 silencing virus. Hemin treatment increased serum bilirubin, and ex vivo bilirubin treatment improved relaxations in diabetic mouse aortas, which was reversed by the Akt inhibitor. Biliverdin reductase silencing virus attenuated the effect of hemin. Chronic bilirubin treatment improved EDRs in db/db mouse aortas. Hemin and bilirubin reversed high glucose-induced reductions in Akt and eNOS phosphorylation and NO production. The effect of hemin but not bilirubin was inhibited by biliverdin reductase silencing virus. Furthermore, bilirubin augmented EDRs in renal arteries from diabetic patients. In summary, HO-1-induced restoration of endothelial function in diabetic mice is most likely mediated by bilirubin, which preserves NO bioavailability through the Akt/eNOS/NO cascade, suggesting bilirubin as a potential therapeutic target for clinical intervention of diabetic vasculopathy.

  5. Modeling the formation and reactions of benzene metabolites.

    PubMed

    Golding, Bernard T; Barnes, Martine L; Bleasdale, Christine; Henderson, Alistair P; Jiang, Dong; Li, Xin; Mutlu, Esra; Petty, Hannah J; Sadeghi, Majid M

    2010-03-19

    One or more of the muconaldehyde isomers is a putative product of benzene metabolism. As muconaldehydes are highly reactive dienals and potentially mutagenic they might be relevant to the carcinogenicity of benzene. Muconaldehydes may be derived through the action of a cytochrome P450 mono-oxygenase on benzene oxide-oxepin, which are established metabolites of benzene. Oxidation of benzene oxide-oxepin either by the one-electron oxidant cerium(IV) ammonium nitrate (CAN) or by iron(III) tris(1,10-phenanthroline) hexafluorophosphate in acetone at -78 degrees C or acetonitrile at -40 degrees C gave (E,Z)-muconaldehyde, which was a single diastereoisomer according to analysis by (1)H NMR spectroscopy. Reaction of toluene-1,2-oxide/2-methyloxepin with CAN gave (2E,4Z)-6-oxo-hepta-2,4-dienal. Similarly, the action of CAN on 1,6-dimethylbenzene oxide-2,7-dimethyloxepin gave (3Z,5E)-octa-3,5-diene-2,7-dione. In vivo, benzene oxide-oxepin could suffer one-electron oxidation by cytochrome P450 mono-oxygenase giving (E,Z)-muconaldehyde. The observations presented may be relevant to the toxicology of benzene oxide-oxepin and other arene oxide-oxepins as we have previously shown that (E,Z)-muconaldehyde, analogously to (Z,Z)-muconaldehyde, affords pyrrole adducts with the exocyclic amino groups of the DNA bases adenine and guanine. Independent of their possible toxicological significance, the experiments described provide preparatively useful routes to (E,Z)-muconaldehyde and its congeners. Methods are also described for the trapping and analysis of reactive benzene metabolites, e.g. using the Diels-Alder reaction with the dienophile 4-phenyl-1,2,4-triazoline-3,5-dione to trap arene oxides and with the diene 1,3-diphenylisobenzofuran to trap enals.

  6. Phosphorylation of chloroplast ribulose bisphosphate carboxylase/oxygenase small subunit by an envelope-bound protein kinase in situ.

    PubMed

    Soll, J; Buchanan, B B

    1983-06-10

    A new protein kinase of the cAMP independent type was found to be bound to the outer envelope membrane of spinach chloroplasts. While stimulated by Mg2+ and inhibited by ADP, the enzyme showed no response to conventional protein substrates and was essentially independent of pH in the physiological (pH 7 to 8) range. The new protein kinase phosphorylated the mature form of the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase and, to a lesser extent, an unidentified 24-kDa polypeptide, both of which were bound to the outer envelope membrane. The results suggest that phosphorylation of cytoplasmically synthesized protein constituents of chloroplasts is involved in their transport through the chloroplast envelope membrane barrier.

  7. Heme oxygenase-1 protects regulatory T cells from hypoxia-induced cellular stress in an experimental mouse brain tumor model

    PubMed Central

    Dey, Mahua; Chang, Alan L.; Wainwright, Derek A.; Ahmed, Atique U.; Han, Yu; Balyasnikova, Irina V.; Lesniak, Maciej S.

    2013-01-01

    Two characteristic features of malignant gliomas (MG) are the presence of hypoxia and accumulation of regulatory T cells (Treg). Heme-oxygenase-1 (HO1) is a cytoprotective enzyme expressed in high level by Tregs in glioma. In this study, we show that higher HO1 expression in Treg is associated with increased survival under hypoxic conditions and that HO1 inhibitor, tin protoporphyrin (SnPP), abrogate the survival benefits. Moreover, SnPP preferentially eliminates Tregs and treatment of tumor bearing mice with SnPP significantly increases survival (23 to 31 days (p < 0.05)). Thus HO1 inhibition provides another alternative way of therapeutically targeting Tregs in MG. PMID:24268287

  8. In vitro reassembly of tobacco ribulose-1,5-bisphosphate carboxylase/oxygenase from fully denatured subunits.

    PubMed

    Yong, Zhen-Hua; Chen, Gen-Yun; Shi, Jiao-Nai; Xu, Da-Quan

    2006-10-01

    It has been generally proved impossible to reassemble ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from fully denatured subunits in vitro in higher plant, because large subunit of fully denatured Rubisco is liable to precipitate when the denaturant is removed by common methods of direct dilution and one-step dialysis. In our experiment, the problem of precipitation was resolved by an improved gradual dialysis method, which gradually decreased the concentration of denaturant. However, fully denatured Rubisco subunits still could not be reassembled into holoenzyme using gradual dialysis unless chaperonin 60 was added. The restored activity of reassembled Rubisco was approximately 8% of natural enzyme. The quantity of reassembled Rubisco increased greatly when heat shock protein 70 was present in the reassembly process. ATP and Mg2+ were unnecessary for in vitro reassembly of Rubisco, and Mg2+ inhibited the reassembly process. The reassembly was weakened when ATP, Mg2+ and K+ existed together in the reassembly process.

  9. Mechanism of action of ribulose bisphosphate carboxylase/oxygenase.

    PubMed

    Lane, M D; Miziorko, H M

    1978-01-01

    RuBP carboxylase-oxygenase appears to catalyze carboxylation and oxygenation by homologous mechanisms. A common binding site exists on the enzyme for the acceptor substrate, RuBP. A mechanism is proposed whereby RuBP is isomerized, and a carbanion is generated at C2. Then, either CO2 or O2 is added as an electrophile at C2 to form the corresponding 3-keto-2-carboxy-RBP or 3-keto-2-hydroperoxy-RBP adduct. Hydrolytic cleavage at the C2-C3 bonds of these intermediates by the enzyme is envisioned to produce 2 molecules of 3-phosphoglycerate in the carboxylation sequence and 1 molecule of phosphoglycolate and 1 molecule of 3-phosphoglycerate in the oxygenation sequence. Further work will be necessary to establish the validity of the proposed mechanism.

  10. Adaptive Responses to Tissue Injury: Role of Heme Oxygenase-1

    PubMed Central

    Agarwal, Anupam; Bolisetty, Subhashini

    2013-01-01

    Tissue injury may result as a consequence of a physical, chemical, or biological insult. Such injury recruits an adaptive response to restore homeostasis and protect against further injury. One of the most prompt protective and adaptive responses by all tissues is the robust activation of the highly inducible, anti-inflammatory, anti-oxidant, and anti-apoptotic protein, heme oxygenase-1 (HO-1). HO-1, a microsomal enzyme, catalyzes the breakdown of pro-oxidant heme, which is released from heme proteins to equimolar quantities of iron, carbon monoxide, and biliverdin. Biliverdin is converted to bilirubin by biliverdin reductase. The beneficial effects of HO-1 expression are not merely due to heme degradation but are also attributed to the cytoprotective properties of the byproducts of the reaction. Manipulation of this enzymatic system in a myriad of disease models has provided substantial evidence to support its role as a cytoprotective enzyme and is therefore an emerging therapeutic molecule. PMID:23874015

  11. Aryl hydrocarbon mono-oxygenase activity in human lymphocytes

    SciTech Connect

    Griffin, G.D.; Schuresko, D.D.

    1981-06-01

    Aryl hydrocarbon mono-oxygenase (AHM), an enzyme of key importance in metabolism of xenobiotic chemicals such as polynuclear aromatic hydrocarbons (PNA), is present in human lymphocytes. Studies investing the relation of activity of AHM in human lymphocytes to parameters such as disease state, PNA exposure, in vitro mitogen stimulation, etc. have been summarized in this report. Some studies have demonstrated increased AHM activity in lymphocytes from cigarette smokers (compared to nonsmokers), and in lung cancer patients when compared to appropriate control groups. These observations are confused by extreme variability in human lymphocyte AHM activities, such variability arising from factors such as genetic variation in AHM activity, variation in in vitro culture conditions which affect AHM activity, and the problematical relationship of common AHM assays to actual PNA metabolism taking place in lymphocytes. If some of the foregoing problems can be adequately addressed, lymphocyte AHM activity could hold the promise of being a useful biomarker system for human PNA exposure.

  12. Heme oxygenase-1 deficiency: the first autopsy case.

    PubMed

    Kawashima, Atsuhiro; Oda, Yoshio; Yachie, Akihiro; Koizumi, Shoichi; Nakanishi, Isao

    2002-01-01

    This article describes the first autopsy case of heme oxygenase (HO)-1 deficiency. A 6-year-old boy who presented with growth retardation; anemia; leukocytosis; thrombocytosis; coagulation abnormality; elevated levels of haptoglobin, ferritin, and heme in serum; a low serum bilirubin concentration; and hyperlipidemia was diagnosed as HO-1 deficient by gene analysis several months before death. Autopsy showed amyloid deposits in the liver and adrenal glands and mesangioproliferative glomerular changes in kidneys, in addition to an irregular distribution of foamy macrophages with iron pigments. Fatty streaks and fibrous plaques were noted in the aorta. Compared with HO-1--targeted mice, the present case seems to more severely involve endothelial cells and the reticuloendothelial system, resulting in intravascular hemolysis, disseminated intravascular coagulation, and amyloidosis with a short survival. This contrasts to the predominant iron metabolic disorders of HO-1--targeted mice with a long survival.

  13. Heme Oxygenase-1 Promotes Delayed Wound Healing in Diabetic Rats

    PubMed Central

    Chen, Qing-Ying; Wang, Guo-Guang; Li, Wei; Jiang, Yu-Xin; Lu, Xiao-Hua; Zhou, Ping-Ping

    2016-01-01

    Diabetic ulcers are one of the most serious and costly chronic complications for diabetic patients. Hyperglycemia-induced oxidative stress may play an important role in diabetes and its complications. The aim of the study was to explore the effect of heme oxygenase-1 on wound closure in diabetic rats. Diabetic wound model was prepared by making an incision with full thickness in STZ-induced diabetic rats. Wounds from diabetic rats were treated with 10% hemin ointment for 21 days. Increase of HO-1 protein expression enhanced anti-inflammation and antioxidant in diabetic rats. Furthermore, HO-1 increased the levels of VEGF and ICAM-1 and expressions of CBS and CSE protein. In summary, HO-1 promoted the wound closure by augmenting anti-inflammation, antioxidant, and angiogenesis in diabetic rats. PMID:26798657

  14. Enhanced metabolite generation

    DOEpatents

    Chidambaram, Devicharan [Middle Island, NY

    2012-03-27

    The present invention relates to the enhanced production of metabolites by a process whereby a carbon source is oxidized with a fermentative microbe in a compartment having a portal. An electron acceptor is added to the compartment to assist the microbe in the removal of excess electrons. The electron acceptor accepts electrons from the microbe after oxidation of the carbon source. Other transfers of electrons can take place to enhance the production of the metabolite, such as acids, biofuels or brewed beverages.

  15. Heme oxygenase activity correlates with serum indices of iron homeostasis in healthy nonsmokers

    EPA Science Inventory

    Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirm...

  16. The potentiation of taurocholate-induced rat gastric erosions following parenteral administration of cyclo-oxygenase inhibitors.

    PubMed Central

    Whittle, B. J.

    1983-01-01

    Subcutaneous administration of anti-inflammatory doses of aspirin, indomethacin, naproxen and flurbiprofen inhibited prostacyclin formation ex vivo in the luminally-perfused gastric mucosa of anaesthetized rats. These doses of anti-inflammatory compounds potentiated the formation of gastric mucosal erosions following 3 h luminal perfusion of the topical irritant, acidified sodium taurocholate (2 mM in 100 mM HCl). The increase in luminal acid-loss during gastric perfusion of acidified taurocholate was not significantly enhanced by these anti-inflammatory agents. A correlation was found between the increase in gastric erosion formation and the inhibition of mucosal prostacyclin formation ex vivo by intravenous injection of aspirin or ketoprofen during acid-taurocholate perfusion. BW755C, which failed to inhibit mucosal prostacyclin formation ex vivo, did not significantly augment acid-taurocholate induced gastric damage. The present findings support the potentiating interactions between topical irritation and inhibition of gastric cyclo-oxygenase in the genesis of the gastric lesions. PMID:6416343

  17. Heme oxygenase 1 controls early innate immune response of macrophages to Salmonella Typhimurium infection.

    PubMed

    Mitterstiller, Anna-Maria; Haschka, David; Dichtl, Stefanie; Nairz, Manfred; Demetz, Egon; Talasz, Heribert; Soares, Miguel P; Einwallner, Elisa; Esterbauer, Harald; Fang, Ferric C; Geley, Stephan; Weiss, Guenter

    2016-10-01

    Macrophages are central for the immune control of intracellular microbes. Heme oxygenase 1 (HO-1, hmox) is the first and rate limiting enzyme in the breakdown of heme originating from degraded senescent erythrocytes and heme-proteins, yielding equal amounts of iron, carbon monoxide and biliverdin. HO-1 is strongly up-regulated in macrophages in response to inflammatory signals, including bacterial endotoxin. In view of the essential role of iron for the growth and proliferation of intracellular bacteria along with known effects of the metal on innate immune function, we examined whether HO-1 plays a role in the control of infection with the intracellular bacterium Salmonella Typhimurium. We studied the course of infection in stably-transfected murine macrophages (RAW264.7) bearing a tetracycline-inducible plasmid producing hmox shRNA and in primary HO-1 knockout macrophages. While uptake of bacteria into macrophages was not affected, a significantly reduced survival of intracellular Salmonella was observed upon hmox knockdown or pharmacological hmox inhibition, which was independent of Nramp1 functionality. This could be traced to limitation of iron availability for intramacrophage bacteria along with enhanced stimulation of innate immune effector pathways, including the formation of reactive oxygen and nitrogen species and increased TNF-α expression. Mechanistically, these latter effects result from intracellular iron limitation with subsequent activation of NF-κB and further inos, tnfa and p47phox transcription along with reduced formation of the anti-inflammatory and radical scavenging molecules, CO and biliverdin as a consequence of HO-1 silencing. Taken together our data provide novel evidence that the infection-driven induction of HO-1 exerts detrimental effects in the early control of Salmonella infection, whereas hmox inhibition can favourably modulate anti-bacterial immune effector pathways of macrophages and promote bacterial elimination.

  18. Galantamine and carbon monoxide protect brain microvascular endothelial cells by heme oxygenase-1 induction

    SciTech Connect

    Nakao, Atsunori; Kaczorowski, David J.; Zuckerbraun, Brian S.; Lei Jing; Faleo, Gaetano; Deguchi, Kentaro; McCurry, Kenneth R.; Billiar, Timothy R.; Kanno, Shinichi

    2008-03-14

    Galantamine, a reversible inhibitor of acetylcholine esterase (AChE), is a novel drug treatment for mild to moderate Alzheimer's disease and vascular dementia. Interestingly, it has been suggested that galantamine treatment is associated with more clinical benefit in patients with mild-to-moderate Alzheimer disease compared to other AChE inhibitors. We hypothesized that the protective effects of galantamine would involve induction of the protective gene, heme oxygenase-1 (HO-1), in addition to enhancement of the cholinergic system. Brain microvascular endothelial cells (mvECs) were isolated from spontaneous hypertensive rats. Galantamine significantly reduced H{sub 2}O{sub 2}-induced cell death of mvECs in association with HO-1 induction. These protective effects were completely reversed by nuclear factor-{kappa}B (NF-{kappa}B) inhibition or HO inhibition. Furthermore, galantamine failed to induce HO-1 in mvECs which lack inducible nitric oxide synthase (iNOS), supplementation of a nitric oxide (NO) donor or iNOS gene transfection on iNOS-deficient mvECs resulted in HO-1 induction with galantamine. These data suggest that the protective effects of galantamine require NF-{kappa}B activation and iNOS expression, in addition to HO-1. Likewise, carbon monoxide (CO), one of the byproducts of HO, up-regulated HO-1 and protected mvECs from oxidative stress in a similar manner. Our data demonstrate that galantamine mediates cytoprotective effects on mvECs through induction HO-1. This pharmacological action of galantamine may, at least in part, account for the superior clinical efficacy of galantamine in vascular dementia and Alzheimer disease.

  19. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity.

    PubMed

    Huang, Ya-Ni; Wu, Ching-Hsiang; Lin, Tzu-Chao; Wang, Jia-Yi

    2009-11-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.

  20. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity

    SciTech Connect

    Huang, Y.-N.; Wu, C.-H.; Lin, T.-C.; Wang, J.-Y.

    2009-11-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.

  1. Relationship between oxidative stress and heme oxygenase induction by copper sulfate.

    PubMed

    Ossola, J O; Groppa, M D; Tomaro, M L

    1997-01-15

    The effect of copper sulfate (CuSO4) on both hepatic oxidative stress and heme oxygenase induction was studied. A strong increase in in vivo rat liver chemiluminescence was observed 1 h after Cu(II) administration. To evaluate liver antioxidant enzymatic defenses, superoxide dismutase, catalase, and glutathione peroxidase activities were determined. Catalase and glutathione peroxidase were found to be significantly decreased 5 h after CuSO4 injection. In contrast, superoxide dismutase activity was increased. Heme oxygenase activity appeared 5 h after treatment, reaching a maximum value 18 h after CuSO4 administration. This induction was preceded by a decrease in the intrahepatic GSH pool and an increase in the generation of thiobarbituric acid reactive substances, both effects taking place a number of hours before induction of heme oxygenase. Administration of bilirubin, the end product of heme catabolism in mammals, and alpha-tocopherol, a widely employed antioxidant, completely prevented heme oxygenase induction as well as the decrease in hepatic GSH and the increase in chemiluminescence when administered 2 h before CuSO4 treatment. Under the same experimental conditions, beta-carotene showed a moderate preventive effect on both heme oxygenase induction and oxidative stress parameters. These data obtained with Cu(II) treatment are in agreement with our previous reports suggesting a correlation between heme oxygenase induction and oxidative stress.

  2. Transportable hyperpolarized metabolites

    NASA Astrophysics Data System (ADS)

    Ji, Xiao; Bornet, Aurélien; Vuichoud, Basile; Milani, Jonas; Gajan, David; Rossini, Aaron J.; Emsley, Lyndon; Bodenhausen, Geoffrey; Jannin, Sami

    2017-01-01

    Nuclear spin hyperpolarization of 13C-labelled metabolites by dissolution dynamic nuclear polarization can enhance the NMR signals of metabolites by several orders of magnitude, which has enabled in vivo metabolic imaging by MRI. However, because of the short lifetime of the hyperpolarized magnetization (typically <1 min), the polarization process must be carried out close to the point of use. Here we introduce a concept that markedly extends hyperpolarization lifetimes and enables the transportation of hyperpolarized metabolites. The hyperpolarized sample can thus be removed from the polarizer and stored or transported for use at remote MRI or NMR sites. We show that hyperpolarization in alanine and glycine survives 16 h storage and transport, maintaining overall polarization enhancements of up to three orders of magnitude.

  3. Transportable hyperpolarized metabolites

    PubMed Central

    Ji, Xiao; Bornet, Aurélien; Vuichoud, Basile; Milani, Jonas; Gajan, David; Rossini, Aaron J.; Emsley, Lyndon; Bodenhausen, Geoffrey; Jannin, Sami

    2017-01-01

    Nuclear spin hyperpolarization of 13C-labelled metabolites by dissolution dynamic nuclear polarization can enhance the NMR signals of metabolites by several orders of magnitude, which has enabled in vivo metabolic imaging by MRI. However, because of the short lifetime of the hyperpolarized magnetization (typically <1 min), the polarization process must be carried out close to the point of use. Here we introduce a concept that markedly extends hyperpolarization lifetimes and enables the transportation of hyperpolarized metabolites. The hyperpolarized sample can thus be removed from the polarizer and stored or transported for use at remote MRI or NMR sites. We show that hyperpolarization in alanine and glycine survives 16 h storage and transport, maintaining overall polarization enhancements of up to three orders of magnitude. PMID:28072398

  4. Ammonia-induced oxidative damage in neurons is prevented by resveratrol and lipoic acid with participation of heme oxygenase 1.

    PubMed

    Bobermin, Larissa Daniele; Wartchow, Krista Minéia; Flores, Marianne Pires; Leite, Marina Concli; Quincozes-Santos, André; Gonçalves, Carlos-Alberto

    2015-07-01

    Ammonia is a metabolite that, at high concentrations, is implicated in neurological disorders, such as hepatic encephalopathy (HE), which is associated with acute or chronic liver failure. Astrocytes are considered the primary target of ammonia toxicity in the central nervous system (CNS) because glutamine synthetase (GS), responsible for ammonia metabolism in CNS, is an astrocytic enzyme. Thus, neuronal dysfunction has been associated as secondary to astrocytic impairment. However, we demonstrated that ammonia can induce direct effects on neuronal cells. The cell viability was decreased by ammonia in SH-SY5Y cells and cerebellar granule neurons. In addition, ammonia induced increased reactive oxygen species (ROS) production and decreased GSH intracellular content, the main antioxidant in CNS. As ammonia neurotoxicity is strongly associated with oxidative stress, we also investigated the potential neuroprotective roles of the antioxidants, resveratrol (RSV) and lipoic acid (LA), against ammonia toxicity in cerebellar granule neurons. RSV and LA were able to prevent the oxidative damage induced by ammonia, maintaining the levels of ROS production and GSH close to basal values. Both antioxidants also decreased ROS production and increased GSH content under basal conditions (in the absence of ammonia). Moreover, we showed that heme oxygenase 1 (HO1), a protein associated with protection against stress conditions, is involved in the beneficial effects of RSV and LA in cerebellar granule neurons. Thus, this study reinforces the neuroprotective effects of RSV and LA. Although more studies in vivo are required, RSV and LA could represent interesting therapeutic strategies for the management of HE.

  5. Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression.

    PubMed

    Wagener, F A; da Silva, J L; Farley, T; de Witte, T; Kappas, A; Abraham, N G

    1999-10-01

    Heme oxygenase (HO), by catabolizing heme to bile pigments, down-regulates cellular hemoprotein, hemoglobin, and heme; the latter generates pro-oxidant products, including free radicals. Two HO isozymes, the products of distinct genes, have been described; HO-1 is the inducible isoform, whereas HO-2 is suggested to be constitutively expressed. We studied the inducing effect of several metal compounds (CoCl(2), stannic mesoporphyrin, and heme) on HO activity. Additionally, we studied HO-1 expression in experimental models of adhesion molecule expression produced by heme in endothelial cells, and the relationship of HO-1 expression to the induced adhesion molecules. Flow cytometry analysis showed that heme induces intracellular adhesion molecule 1 (ICAM-1) expression in a concentration (10-100 microM)- and time (1-24 h)-dependent fashion in human umbilical vein endothelial cells. Pretreatment with stannic mesoporphyrin, an inhibitor of HO activity, caused a 2-fold increase in heme-induced ICAM-1 expression. In contrast, HO induction by CoCl(2) decreased heme-induced ICAM-1 expression by 33%. To examine the contribution of HO-1 and HO-2 to endothelial HO activity, specific antisense oligonucleotides (ODNs) of each isoform were tested for their specificity to inhibit HO activity in cells exposed to heme. Endothelial cells exposed to heme elicited increased HO activity, which was prevented (70%) by HO-1 antisense ODNs. HO-2 antisense ODN inhibited heme-induced HO activity by 21%. Addition of HO-1 antisense ODNs prevented heme degradation and resulted in elevation of microsomal heme. Western blot analysis showed that HO-1 antisense ODNs selectively inhibited HO-1 protein and failed to inhibit HO-2 protein. Incubation of endothelial cells with HO-1 antisense enhanced heme-dependent increase of ICAM-1. In contrast, addition of HO-2 antisense to endothelial cells failed to increase adhesion molecules. The role of glutathione, an important antioxidant, was examined on heme

  6. Heme oxygenase-1 expression is down-regulated by angiotensin II and under hypertension in human neutrophils.

    PubMed

    Alba, Gonzalo; El Bekay, Rajaa; Chacón, Pedro; Reyes, M Edith; Ramos, Eladio; Oliván, Josefina; Jiménez, Juan; López, José M; Martín-Nieto, José; Pintado, Elízabeth; Sobrino, Francisco

    2008-08-01

    Angiotensin II (Ang II) is a peptide hormone able to elicit a strong production of reactive oxygen species by human neutrophils. In this work, we have addressed whether expression of heme oxygenase-1 (HO-1), an antioxidant enzyme, becomes altered in these cells upon Ang II treatment or under hypertension conditions. In neutrophils from healthy and hypertensive subjects, induction of HO-1 mRNA and protein expression with a parallel increase in enzyme activity took place upon treatment with 15-deoxy-Delta12,14-PGJ2 (15dPGJ2). However, Ang II prevented HO-1 synthesis by normal neutrophils in vitro, and HO-1 expression was depressed in neutrophils from hypertensive patients in comparison with cells from healthy subjects. In addition, Ang II treatment led to a reduced HO-1 enzyme activity to levels similar to those found in neutrophils from hypertensive patients. NO donors reversed the inhibition of 15dPGJ2-dependent HO-1 expression in neutrophils from hypertensive patients, and conversely, inhibition of inducible NO synthase (NOS2) activity counteracted the stimulatory effect of 15dPGJ2 on HO-1 expression in normal human neutrophils. Moreover, Ang II canceled 15dPGJ2-dependent induction of NOS2 mRNA synthesis. Present findings indicate that down-regulation of HO-1 expression in neutrophils from hypertensive subjects is likely exerted through the inhibition of NOS2 expression. Additionally, they underscore the potential usefulness of NO donors as new, therapeutic agents against hypertension.

  7. Ischemic preconditioning attenuates ischemia/reperfusion injury in rat steatotic liver: role of heme oxygenase-1-mediated autophagy

    PubMed Central

    Liu, Anding; Guo, Enshuang; Yang, Jiankun; Li, Renlong; Yang, Yan; Liu, Shenpei; Hu, Jifa; Jiang, Xiaojing; Dirsch, Olaf; Dahmen, Uta; Sun, Jian; Ouyang, Mingwen

    2016-01-01

    Steatotic livers are more susceptible to ischemia/reperfusion (I/R) injury, which is ameliorated by ischemic preconditioning (IPC). Autophagy possesses protective action on liver I/R injury and declines in steatotic livers. The aim of this study was to test the hypothesis that the increased susceptibility of steatotic livers to I/R injury was associated with defective hepatic autophagy, which could be restored by IPC via heme oxygenase-1 (HO-1) signaling. Obesity and hepatic steatosis was induced using a high fat diet. Obesity impaired hepatic autophagy activity and decreased hepatic HO-1 expression. Induction of HO-1 restored autophagy activity and inhibited calpain 2 activity. Additionally, suppression of calpain 2 activity also restored autophagy activity. Mitochondrial dysfunction and hepatocellular injury were significantly increased in steatotic livers compared to lean livers in response to I/R injury. This increase in sensitivity to I/R injury was associated with defective hepatic autophagy activity in steatotic livers. IPC increased autophagy and reduced mitochondrial dysfunction and hepatocellular damage in steatotic livers following I/R injury. Furthermore, IPC increased HO-1 expression. Inhibition of HO-1 decreased the IPC-induced autophagy, increased calpain 2 activity and diminished the protective effect of IPC against I/R injury. Inhibition of calpain 2 restored autophagic defect and attenuated mitochondrial dysfunction in steatotic livers after I/R. Collectively, IPC might ameliorate steatotic liver damage and restore mitochondrial function via HO-1-mediated autophagy. PMID:27852058

  8. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    SciTech Connect

    Zhou, Zhao-Hua; Kumari, Namita; Nekhai, Sergei; Clouse, Kathleen A.; Wahl, Larry M.; Yamada, Kenneth M.; Dhawan, Subhash

    2013-06-07

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM.

  9. Role of heme oxygenase 1 in TNF/TNF receptor-mediated apoptosis after hepatic ischemia/reperfusion in rats.

    PubMed

    Kim, Seok-Joo; Eum, Hyun-Ae; Billiar, Timothy R; Lee, Sun-Mee

    2013-04-01

    Hepatocellular apoptosis commonly occurs in ischemia/reperfusion (I/R) injury. The binding of tumor necrosis factor (TNF) to TNF receptor 1 (TNFR1) leads to the formation of a death-inducing signaling complex (DISC), which subsequently initiates a caspase cascade resulting in apoptosis. Heme oxygenase 1 (HO-1) confers cytoprotection against cell death in I/R injury and inhibits stress-induced apoptotic pathways in vitro. This study investigated the role of HO-1 in modulating TNF/TNFR1-mediated cell death pathways in hepatic I/R injury. Rats were pretreated with hemin, an HO-1 inducer, and zinc protoporphyrin (ZnPP), an HO-1 inhibitor, before undergoing hepatic I/R. Heme oxygenase 1 activity increased after reperfusion. Ischemia/reperfusion-induced hepatocellular apoptosis was attenuated by hemin, as determined by the caspase-3 and -8 activity assays and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling). Zinc protoporphyrin eliminated the cytoprotective effect of hemin. Hepatic TNFR1 protein expression was unchanged among the experimental groups, whereas mitochondrial TNFR1 protein increased after I/R. Ischemia/reperfusion increased the quantity of DISC components, including TRADD (TNFR1-associated death domain), FADD (Fas-associated death domain), and caspase-8, as well as the assembly of DISCs within the liver. In the mitochondrial fraction, TNFR1-associated caspase-8 was increased after I/R. These increases were attenuated by hemin; zinc protoporphyrin eliminated this effect. Our findings suggest that the cytoprotective effects of HO-1 are mediated by suppression of TNF/TNFR1-mediated apoptotic signaling, specifically by modulating apoptotic DISC formation and mitochondrial TNFR1 translocation during hepatic I/R.

  10. Elevated catalase and heme oxygenase-1 may contribute to improved postischaemic cardiac function in long-term type 1 diabetes.

    PubMed

    Shen, Wei-Li; Zhong, Mei-Fang; Ding, Wen-Long; Wang, Jian; Zheng, Lin; Zhu, Ping; Wang, Bing-Shun; Higashino, Hideaki; Chen, Hong

    2008-07-01

    1. Although increased oxidative stress has been shown repeatedly to be implicated in diabetes, the cardiovascular anti-oxidant state and heart response to ischaemia in long-term Type 1 diabetes remain largely unknown. The present study was designed to observe heart tolerance to ischaemia-reperfusion and endogenous anti-oxidants in the cardiovascular system in long-term hyperglycaemic rats. 2. Hearts from Sprague-Dawley rats surviving up to 6 months with streptozocin-induced severe hyperglycaemia (blood glucose > 20 mmol/L) were isolated and subjected to global ischaemia and reperfusion. Cardiac function, electrocardiogram and anti-oxidants in the myocardium and aorta were examined. In addition, the morphology of the myocardial mitochondria and the in vitro function of aortic vessels were assessed. 3. Hearts from diabetic rats demonstrated lower baseline heart function but had higher postischaemic coronary flow and left ventricular developed pressure compared with their respective controls (P < 0.05). In addition, hearts from diabetic animals had fewer arrhythmias (P < 0.01) and lower left ventricular end-diastolic pressure during reperfusion (P < 0.05). Higher catalase and heme oxygenase-1 content was found in the aorta and myocardium from diabetic rats (P < 0.01). In aortas from diabetic animals, acetylcholine-induced vasodilatation was enhanced and was approximately 15% after inhibition of nitric oxide synthase, compared with 0% in controls. The 15% relaxation was abrogated by heme oxygenase blockade. Mitochondria from the myocardium of diabetic rats showed significant increases in both size and number (P < 0.05). 4. Hearts of long-term Type 1 diabetic rats demonstrated improved recovery of postischaemic cardiac function and reduced reperfusion arrhythmia. Hyperglycaemia may enhance cardiovascular anti-oxidant capacity and mitochondrial neogenesis, which renders the heart resistant to ischaemia and oxidative injury.

  11. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression

    PubMed Central

    Azuma, Junya; Wong, Ronald J.; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B.; Deng, Alicia C.; Spin, Joshua M.; Stevenson, David K.; Dalman, Ronald L.; Tsao, Philip S.

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease. PMID:26894432

  12. Heme oxygenase-1 against vascular insufficiency: roles of atherosclerotic disorders.

    PubMed

    Ishikawa, Kazunobu

    2003-01-01

    Heme oxygenase (HO), an enzyme essential for heme degradation, shows anti-oxidative and anti-inflammatory properties via the production of bile pigments, carbon monoxide (CO) and ferritin induction under various pathophysiological conditions. A number of recent studies have shown biological effects of HO reaction in cardiovascular disorders. An inducible form of HO, HO-1, is induced by a variety of stresses such as oxidized lipoproteins, cytokines, hemodynamic changes, angiotensin II and nitric oxide (NO) in vascular wall. HO-1 induction seems to function as an adaptive response against these injurious stimuli. HO-1 induction in artery wall scavenges reactive oxygen species, which leads to the attenuation of monocyte adhesion and chemotaxis. HO-1 induction also reduces lipid peroxidation in plasma and artery wall. These properties of HO-1 suggest anti-atherogenic roles of this enzyme. In this review, roles of endothelial HO-1 expression and bilirubin in atherogenesis are also discussed. HO-1 also seems to play a significant role in restenosis after angioplasty, which is a major clinical problem associated with atherosclerosis. Recent progress in human HO-1 genetics supports these experimental results. This review aims to reaffirm current problems in the biological aspects of HO and suggest future research direction and clinical application.

  13. Protective role of heme oxygenase-1 against inflammation in atherosclerosis.

    PubMed

    Durante, William

    2011-06-01

    Heme oxygenase-1 (HO-1) catalyzes the first and rate-limiting step in the metabolism of free heme into equimolar amounts of ferrous iron, carbon monoxide (CO), and biliverdin. Biliverdin is subsequently converted to bilirubin by biliverdin reductase. HO-1 has recently been identified as a promising therapeutic target in the treatment of vascular inflammatory disease, including atherosclerosis. HO-1 represses inflammation by removing the pro-inflammatory molecule heme and by generating CO and the bile pigments, biliverdin and bilirubin. These HO-1 reaction products are capable of blocking innate and adaptive immune responses by modifying the activation, differentiation, maturation, and/or polarization of numerous immune cells, including endothelial cells, monocytes/macrophages, dendritic cells, T lymphocytes, mast cells, and platelets. These cellular actions by CO and bile pigments result in diminished leukocyte recruitment and infiltration, and pro-inflammatory mediator production within atherosclerotic lesions. This review highlights the mechanisms by which HO-1 suppresses vascular inflammation in atherosclerosis, and explores possible therapeutic modalities by which HO-1 and its reaction products can be employed to ameliorate vascular inflammatory disease.

  14. Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy.

    PubMed

    Ryter, Stefan W; Choi, Augustine M K

    2009-09-01

    Heme oxygenase-1 (HO-1), a ubiquitous inducible stress-response protein, serves a major metabolic function in heme turnover. HO activity cleaves heme to form biliverdin-IXalpha, carbon monoxide (CO), and iron. Genetic experiments have revealed a central role for HO-1 in tissue homeostasis, protection against oxidative stress, and in the pathogenesis of disease. Four decades of research have witnessed not only progress in elucidating the molecular mechanisms underlying the regulation and function of this illustrious enzyme, but also have opened remarkable translational applications for HO-1 and its reaction products. CO, once regarded as a metabolic waste, can act as an endogenous mediator of cellular signaling and vascular function. Exogenous application of CO by inhalation or pharmacologic delivery can confer cytoprotection in preclinical models of lung/vascular injury and disease, based on anti-apoptotic, anti-inflammatory, and anti-proliferative properties. The bile pigments, biliverdin and bilirubin, end products of heme degradation, have also shown potential as therapeutics in vascular disease based on anti-inflammatory and anti-proliferative activities. Further translational and clinical trials research will unveil whether the HO-1 system or any of its reaction products can be successfully applied as molecular medicine in human disease.

  15. Heme oxygenase-2 is neuroprotective in cerebral ischemia.

    PubMed Central

    Doré, S.; Sampei, K.; Goto, S.; Alkayed, N. J.; Guastella, D.; Blackshaw, S.; Gallagher, M.; Traystman, R. J.; Hurn, P. D.; Koehler, R. C.; Snyder, S. H.

    1999-01-01

    Heme oxygenase (HO) is believed to be a potent antioxidant enzyme in the nervous system; it degrades heme from heme-containing proteins, giving rise to carbon monoxide, iron, and biliverdin, which is rapidly reduced to bilirubin. The first identified isoform of the enzyme, HO1, is an inducible heat-shock protein expressed in high levels in peripheral organs and barely detectable under normal conditions in the brain, whereas HO2 is constitutive and most highly concentrated in the brain. Interestingly, although HO2 is constitutively expressed, its activity can be modulated by phosphorylation. We demonstrated that bilirubin, formed from HO2, is neuroprotectant, as neurotoxicity is augmented in neuronal cultures from mice with targeted deletion of HO2 (HO2(-/-)) and reversed by low concentrations of bilirubin. We now show that neural damage following middle cerebral artery occlusion (MCAO) and reperfusion, a model of focal ischemia of vascular stroke, is substantially worsened in HO2(-/-) animals. By contrast, stroke damage is not significantly altered in HO1(-/-) mice, despite their greater debility. Neural damage following intracranial injections of N-methyl-d-aspartate (NMDA) is also accentuated in HO2(-/-) animals. These findings establish HO2 as an endogenous neuroprotective system in the brain whose pharmacologic manipulation may have therapeutic relevance. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:10602774

  16. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression.

    PubMed

    Azuma, Junya; Wong, Ronald J; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B; Deng, Alicia C; Spin, Joshua M; Stevenson, David K; Dalman, Ronald L; Tsao, Philip S

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease.

  17. Heme oxygenase-1 in macrophages controls prostate cancer progression.

    PubMed

    Nemeth, Zsuzsanna; Li, Mailin; Csizmadia, Eva; Döme, Balazs; Johansson, Martin; Persson, Jenny Liao; Seth, Pankaj; Otterbein, Leo; Wegiel, Barbara

    2015-10-20

    Innate immune cells strongly influence cancer growth and progression via multiple mechanisms including regulation of epithelial to mesenchymal transition (EMT). In this study, we investigated whether expression of the metabolic gene, heme oxygenase-1 (HO-1) in tumor microenvironment imparts significant effects on prostate cancer progression.We showed that HO-1 is expressed in MARCO-positive macrophages in prostate cancer (PCa) xenografts and human prostate cancers. We demonstrated that macrophage specific (LyzM-Cre) conditional deletion of HO-1 suppressed growth of PC3 xenografts in vivo and delayed progression of prostate intraepithelial neoplasia (PIN) in TRAMP mice. However, initiation and progression of cancer xenografts in the presence of macrophages lacking HO-1 resulted in loss of E-cadherin, a known marker of poor prognosis as well as EMT. Application of CO, a product of HO-1 catalysis, increased levels of E-cadherin in the adherens junctions between cancer cells. We further showed that HO-1-driven expression of E-cadherin in cancer cells cultured in the presence of macrophages is dependent on mitochondrial activity of cancer cells.In summary, these data suggest that HO-1-derived CO from tumor-associated macrophages influences, in part, E-cadherin expression and thus tumor initiation and progression.

  18. Myeloid heme oxygenase-1 promotes metastatic tumor colonization in mice.

    PubMed

    Lin, Heng-Huei; Chiang, Ming-Tsai; Chang, Po-Chiao; Chau, Lee-Young

    2015-03-01

    Heme oxygenase-1 (HO-1) is a heme degradation enzyme with antioxidant and immune-modulatory functions. HO-1 promotes tumorigenesis by enhancing tumor cell proliferation and invasion. Whether HO-1 has an effect on cancer progression through stromal compartments is less clear. Here we show that the growth of tumor engrafted subcutaneously in syngeneic mice was not affected by host HO-1 expression. However, lung metastasis arisen from subcutaneous tumor or circulating tumor cells was significantly reduced in HO-1(+/-) mice comparing to wild type (WT) mice. The reduced lung metastasis was also observed in B6 mice bearing HO-1(+/-) bone marrow as comparing to WT chimeras, indicating that HO-1 expression in hematopoietic cells impacts tumor colonization at the metastatic site. Further experiments demonstrated that the numbers of myeloid cells recruited to pulmonary premetastatic niches and metastatic loci were significantly lower in HO-1(+/-) mice than in WT mice. Likewise, the extents of tumor cell extravasation and colonization at the metastatic loci in the early phase of metastasis were significantly lower in HO-1(+/-) mice. Mechanistic studies revealed that HO-1 impacted chemoattractant-induced myeloid cell migration by modulating p38 kinase signaling. Moreover, myeloid HO-1-induced expressions of vascular endothelial growth factor and interleukin-10 promoted tumor cell transendothelial migration and STAT3 activation in vitro. These data support a pathological role of myeloid HO-1 in metastasis and suggest a possibility of targeting myeloid HO-1 for cancer treatment.

  19. Heme oxygenase-1 and anti-inflammatory M2 macrophages.

    PubMed

    Naito, Yuji; Takagi, Tomohisa; Higashimura, Yasuki

    2014-12-15

    Heme oxygenase-1 (HO-1) catalyzes the first and rate-limiting enzymatic step of heme degradation and produces carbon monoxide, free iron, and biliverdin. HO-1, a stress-inducible protein, is induced by various oxidative and inflammatory signals. Consequently, HO-1 expression has been regarded as an adaptive cellular response against inflammatory response and oxidative injury. Although several transcriptional factors and signaling cascades are involved in HO-1 regulation, the two main pathways of Nrf2/Bach1 system and IL-10/HO-1 axis exist in monocyte/macrophage. Macrophages are broadly divisible into two groups: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages. More recently, several novel macrophage subsets have been identified including Mhem, Mox, and M4 macrophages. Of these, M2 macrophages, Mhem, and Mox are HO-1 highly expressing macrophages. HO-1 has been recognized as having major immunomodulatory and anti-inflammatory properties, which have been demonstrated in HO-1 deficient mice and human cases of genetic HO-1 deficiency. However, the mechanism underlying the immunomodulatory actions of HO-1 remains poorly defined. This review specifically addresses macrophage polarization. The present current evidence indicates that HO-1 induction mediated by multiple pathways can drive the phenotypic shift to M2 macrophages and suggests that HO-1 induction in macrophages is a potential therapeutic approach to immunomodulation in widely diverse human diseases.

  20. Modulation of Antiviral Immunity by Heme Oxygenase-1.

    PubMed

    Espinoza, Janyra A; González, Pablo A; Kalergis, Alexis M

    2017-03-01

    Heme oxygenase-1 (HO-1) is a stress-inducible, anti-inflammatory, and cytoprotective enzyme expressed in most cell types in the organism. Under several stress stimuli, HO-1 expression and activity is up-regulated to catalyze the rate-limiting enzymatic step of heme degradation into carbon monoxide, free iron, and biliverdin. Besides its effects on cell metabolism, HO-1 is also capable of modulating host innate and adaptive immune responses in response to sepsis, transplantation, and autoimmunity, and preventing oxidative damage associated with inflammation. In addition, recent studies have reported that HO-1 can exert a significant antiviral activity against a wide variety of viruses, including HIV, hepatitis C virus, hepatitis B virus, enterovirus 71, influenza virus, respiratory syncytial virus, dengue virus, and Ebola virus, among others. Herein, we address the current understanding of the functional significance of HO-1 against a variety of viruses and its potential as a therapeutic strategy to prevent and control viral infections. Furthermore, we review the most important features of the immunoregulatory functions for this enzyme.

  1. Heme oxygenase-1 comes back to endoplasmic reticulum

    SciTech Connect

    Kim, Hong Pyo; Pae, Hyun-Ock; Back, Sung Hun; Chung, Su Wol; Woo, Je Moon; Son, Yong; Chung, Hun-Taeg

    2011-01-07

    Research highlights: {yields} Although multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. {yields} HO-1 expression at ER is induced by a diverse set of conditions that cause ER stressors. {yields} CO may induce HO-1 expression in human ECs by activating Nrf2 through PERK phosphorylation in a positive-feedback manner. {yields} ER-residing HO-1 and its cytoprotective activity against ER stress is discussed. -- Abstract: Originally identified as a rate-limiting enzyme for heme catabolism, heme oxygenase-1 (HO-1) has expanded its roles in anti-inflammation, anti-apoptosis and anti-proliferation for the last decade. Regulation of protein activity by location is well appreciated. Even though multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. In this review we discuss the endoplasmic reticulum (ER)-residing HO-1 and its cytoprotective activity against ER stress.

  2. The non-canonical functions of the heme oxygenases.

    PubMed

    Vanella, Luca; Barbagallo, Ignazio; Tibullo, Daniele; Forte, Stefano; Zappalà, Agata; Li Volti, Giovanni

    2016-10-18

    Heme oxygenase (HO) isoforms catalyze the conversion of heme to carbon monoxide (CO) and biliverdin with a concurrent release of iron, which can drive the synthesis of ferritin for iron sequestration. Most of the studies so far were directed at evaluating the protective effect of these enzymes because of their ability to generate antioxidant and antiapoptotic molecules such as CO and bilirubin. Recent evidences are suggesting that HO may possess other important physiological functions, which are not related to its enzymatic activity and for which we would like to introduce for the first time the term "non canonical functions". Recent evidence suggest that both HO isoforms may form protein-protein interactions (i.e. cytochrome P450, adiponectin, CD91) thus serving as chaperone-like protein. In addition, truncated HO-1 isoform was localized in the nuclear compartment under certain experimental conditions (i.e. excitotoxicity, hypoxia) regulating the activity of important nuclear transcription factors (i.e. Nrf2) and DNA repair. In the present review, we discuss three potential signaling mechanisms that we refer to as the non-canonical functions of the HO isoforms: protein-protein interaction, intracellular compartmentalization, and extracellular secretion. The aim of the present review is to describe each of this mechanism and all the aspects warranting additional studies in order to unravel all the functions of the HO system.

  3. Isolation and characterization of the rat tryptophan oxygenase gene.

    PubMed Central

    Schmid, W; Scherer, G; Danesch, U; Zentgraf, H; Matthias, P; Strange, C M; Röwekamp, W; Schütz, G

    1982-01-01

    Tryptophan oxygenase (TO, EC 1.13.1.12) from rat liver is subject to glucocorticoid and developmental control. To study the mechanism of regulation, TO mRNA sequences and the chromosomal TO gene were cloned. From a cDNA library prepared from rat liver poly(A)+ RNA enriched for TO mRNA, a recombinant plasmid containing TO cDNA sequences was identified by translation of hybrid-selected RNA and immunoprecipitation with antibodies directed against TO. This cDNA clone hybridizes to a mRNA 2000 bases long that is inducible by dexamethasone. With this clone as probe we isolated from a bacteriophage lambda rat DNA library genomic clones which together span a region of 32 kilobase pairs (kb). Heteroduplex analysis revealed that the gene extends over 19 kb and is interrupted by at least 11 introns. To characterize the presumptive control region the DNA sequence around the 5' end of the TO gene was determined. S1 nuclease protection experiments revealed two separate start sites for TO mRNA transcription within this region. Images Fig. 1. Fig. 2. Fig. 4. Fig. 6. Fig. 7. PMID:6327261

  4. Sex differences in the disposition of albendazole metabolites in sheep.

    PubMed

    Cristòfol, C; Navarro, M; Franquelo, C; Valladares, J E; Arboix, M

    1998-08-14

    Sex differences in the disposition of albendazole metabolites in sheep after oral administration of 20 mg/kg of netobimin have been studied. Some kinetic parameters of both metabolites show statistical differences between sexes; the sulphoxide and sulphone t1/2beta and MRT were lower in male animals than in females. Peak concentrations and AUC of sulphone metabolites were higher in males suggesting a greater oxidation rate compared with females. Urine excretion of albendazole metabolites, sulphoxide, sulphone, and amino sulphone appeared to be greater in female sheep than in males, mainly the sulphoxide metabolite. These differences between sexes can be caused by male sexual hormones, because testosterone and progesterone can induce or inhibit the microsomal Cytochrome P450 metabolism. Plasma protein-binding of albendazole sulphoxide and albendazole sulphone has been studied between male and female sheep, also their binding to sheep albumin and globulins. Both albendazole metabolites readily bind to sheep albumin and globulins. Male animals show a significantly lower binding of albendazole metabolites than females. These differences could be responsible for the non-esterified fatty acids (NEFA) present in the plasma. Males have significantly higher plasma levels of NEFA than females and which may compete with albumin for binding to albendazole metabolites.

  5. Heme oxygenase-1 dysregulates macrophage polarization and the immune response to Helicobacter pylori.

    PubMed

    Gobert, Alain P; Verriere, Thomas; Asim, Mohammad; Barry, Daniel P; Piazuelo, M Blanca; de Sablet, Thibaut; Delgado, Alberto G; Bravo, Luis E; Correa, Pelayo; Peek, Richard M; Chaturvedi, Rupesh; Wilson, Keith T

    2014-09-15

    Helicobacter pylori incites a futile inflammatory response, which is the key feature of its immunopathogenesis. This leads to the ability of this bacterial pathogen to survive in the stomach and cause peptic ulcers and gastric cancer. Myeloid cells recruited to the gastric mucosa during H. pylori infection have been directly implicated in the modulation of host defense against the bacterium and gastric inflammation. Heme oxygenase-1 (HO-1) is an inducible enzyme that exhibits anti-inflammatory functions. Our aim was to analyze the induction and role of HO-1 in macrophages during H. pylori infection. We now show that phosphorylation of the H. pylori virulence factor cytotoxin-associated gene A (CagA) in macrophages results in expression of hmox-1, the gene encoding HO-1, through p38/NF (erythroid-derived 2)-like 2 signaling. Blocking phagocytosis prevented CagA phosphorylation and HO-1 induction. The expression of HO-1 was also increased in gastric mononuclear cells of human patients and macrophages of mice infected with cagA(+) H. pylori strains. Genetic ablation of hmox-1 in H. pylori-infected mice increased histologic gastritis, which was associated with enhanced M1/Th1/Th17 responses, decreased regulatory macrophage (Mreg) response, and reduced H. pylori colonization. Gastric macrophages of H. pylori-infected mice and macrophages infected in vitro with this bacterium showed an M1/Mreg mixed polarization type; deletion of hmox-1 or inhibition of HO-1 in macrophages caused an increased M1 and a decrease of Mreg phenotype. These data highlight a mechanism by which H. pylori impairs the immune response and favors its own survival via activation of macrophage HO-1.

  6. Heme Oxygenase-1 Dysregulates Macrophage Polarization and the Immune Response to Helicobacter pylori

    PubMed Central

    Gobert, Alain P.; Verriere, Thomas; Asim, Mohammad; Barry, Daniel P.; Piazuelo, M. Blanca; de Sablet, Thibaut; Delgado, Alberto G.; Bravo, Luis E.; Correa, Pelayo; Peek, Richard M.; Chaturvedi, Rupesh; Wilson, Keith T.

    2014-01-01

    Helicobacter pylori incites a futile inflammatory response, which is the key feature of its immunopathogenesis. This leads to the ability of this bacterial pathogen to survive in the stomach and cause peptic ulcers and gastric cancer. Myeloid cells recruited to the gastric mucosa during Helicobacter pylori infection have been directly implicated in the modulation of host defense against the bacterium and gastric inflammation. Heme oxygenase-1 (HO-1) is an inducible enzyme that exhibits anti-inflammatory functions. Our aim was to analyze the induction and role of HO-1 in macrophages during H. pylori infection. We now show that phosphorylation of the H. pylori virulence factor cytotoxin associated gene A (CagA) in macrophages results in expression of hmox-1, the gene encoding HO-1, through p38/nuclear factor (erythroid-derived 2)-like 2 signaling. Blocking phagocytosis prevented CagA phosphorylation and HO-1 induction. The expression of HO-1 was also increased in gastric mononuclear cells of human patients and macrophages of mice infected with cagA+ H. pylori strains. Genetic ablation of hmox-1 in H. pylori-infected mice increased histologic gastritis, which was associated with enhanced M1/Th1/Th17 responses, decreased Mreg response, and reduced H. pylori colonization. Gastric macrophages of H. pylori-infected mice and macrophages infected in vitro with this bacterium showed an M1/Mreg mixed polarization type; deletion of hmox-1 or inhibition of HO-1 in macrophages caused an increased M1 and a decreased of Mreg phenotype. These data highlight a mechanism by which H. pylori impairs the immune response and favors its own survival via activation of macrophage HO-1. PMID:25108023

  7. Variation of the oxidation state of verdoheme in the heme oxygenase reaction

    SciTech Connect

    Gohya, Tomohiko; Sato, Michihiko; Zhang Xuhong; Migita, Catharina T.

    2008-11-14

    Heme oxygenase (HO) converts hemin to biliverdin, CO, and iron applying molecular oxygen and electrons. During successive HO reactions, two intermediates, {alpha}-hydroxyhemin and verdoheme, have been generated. Here, oxidation state of the verdoheme-HO complexes is controversial. To clarify this, the heme conversion by soybean and rat HO isoform-1 (GmHO-1 and rHO-1, respectively) was compared both under physiological conditions, with oxygen and NADPH coupled with ferredoxin reductase/ferredoxin for GmHO-1 or with cytochrome P450 reductase for rHO-1, and under a non-physiological condition with hydrogen peroxide. EPR measurements on the hemin-GmHO-1 reaction with oxygen detected a low-spin ferric intermediate, which was undetectable in the rHO-1 reaction, suggesting the verdoheme in the six-coordinate ferric state in GmHO-1. Optical absorption measurements on this reaction indicated that the heme degradation was extremely retarded at verdoheme though this reaction was not inhibited under high-CO concentrations, unlike the rHO-1 reaction. On the contrary, the Gm and rHO-1 reactions with hydrogen peroxide both provided ferric low-spin intermediates though their yields were different. The optical absorption spectra suggested that the ferric and ferrous verdoheme coexisted in reaction mixtures and were slowly converted to the ferric biliverdin complex. Consequently, in the physiological oxygen reactions, the verdoheme is found to be stabilized in the ferric state in GmHO-1 probably guided by protein distal residues and in the ferrous state in rHO-1, whereas in the hydrogen peroxide reactions, hydrogen peroxide or hydroxide coordination stabilizes the ferric state of verdoheme in both HOs.

  8. Heme Oxygenase-1 Regulation of Matrix Metalloproteinase-1 Expression Underlies Distinct Disease Profiles in Tuberculosis

    PubMed Central

    Andrade, Bruno B.; Kumar, Nathella Pavan; Amaral, Eduardo P.; Riteau, Nicolas; Mayer-Barber, Katrin D.; Tosh, Kevin W.; Maier, Nolan; Conceição, Elisabete L.; Kubler, Andre; Sridhar, Rathinam; Banurekha, Vaithilingam V.; Jawahar, Mohideen S.; Barbosa, Theolis; Manganiello, Vincent C.; Moss, Joel; Fontana, Joseph R.; Marciano, Beatriz E.; Sampaio, Elizabeth P.; Olivier, Kenneth N.; Holland, Steven M.; Jackson, Sharon H.; Moayeri, Mahtab; Leppla, Stephen; Sereti, Irini; Barber, Daniel L.; Nutman, Thomas B.; Babu, Subash; Sher, Alan

    2015-01-01

    Pulmonary tuberculosis (TB) is characterized by oxidative stress and lung tissue destruction by matrix metalloproteinases (MMP). The interplay between these distinct pathological processes and the implications for TB diagnosis and disease staging are poorly understood. Heme oxygenase-1 (HO-1) levels have been shown to distinguish active from latent as well as successfully treated Mycobacterium tuberculosis (Mtb) infection. MMP-1 expression is also associated with active TB. Here, we measured plasma levels of these two important biomarkers in distinct TB cohorts from India and Brazil. Patients with active TB expressed either very high levels of HO-1 and low levels of MMP-1 or the converse. Moreover, TB patients with either high HO-1 or MMP-1 levels displayed distinct clinical presentations as well as plasma inflammatory marker profiles. In contrast, in an exploratory North American study, inversely correlated expression of HO-1 and MMP-1 was not observed in patients with other non-tuberculous lung diseases. To assess possible regulatory interactions in the biosynthesis of these two enzymes at the cellular level, we studied expression of HO-1 and MMP-1 in Mtb-infected human and murine macrophages. We found that infection of macrophages with live virulent Mtb is required for robust induction of high levels of HO-1, but not MMP-1. In addition, we observed that carbon monoxide, a product of Mtb induced HO-1 activity, inhibits MMP-1 expression by suppressing c-Jun/AP-1 activation. These findings reveal a mechanistic link between oxidative stress and tissue remodeling that may find applicability in the clinical staging of TB patients. PMID:26268658

  9. Ribulose 1,5-bisphosphate carboxylase/oxygenase from Pseudomonas oxalacticus.

    PubMed Central

    Lawlis, V B; Gordon, G L; McFadden, B A

    1979-01-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase was purified by a rapid, facile procedure from formate-grown Pseudomonas oxalaticus. The electrophoretically homogeneous enzyme had specific activities of 1.9 mumol of CO2 fixed per min per mg of protein and 0.15 mumol of O2 consumed per min per mg of protein. The amino acid composition was similar to that of other bacterial sources of the enzyme. The molecular weights determined by sedimentation equilibrium and by gel filtration were 421,000 and 450,000, respectively. Upon sodium dodecyl sulfate electrophoresis of enzyme purified under conditions which would limit proteolysis, two types of large (L) subunits and two types of small (S) subunits were observed with apparent molecular weights of 57,000, 55,000, 17,000 and 15,000. By densitometric scans at two different protein concentrations the stoichiometry of the total large to total small subunits was 1:1, implying an L6S6 structure. Electron micrographs of the enzyme revealed an unusual structure that was inconsistent with a cubical structure. The enzyme had an unusually high Km for ribulose 1,5-bisphosphate (220 microM) and was strongly inhibited by 6-phosphogluconate in the ribulose 1,5-bisphosphate carboxylase assay (Ki = 270 microM). One, 5, and 12 days after purification the enzyme was half-maximally activated at 0.13 microM, 0.23 mM, and 0.70 mM CO2, respectively, at saturating Mg2+. At saturating CO2, enzyme 1 day afer purification responded sigmoidally to Mg2+ and was half-maximally activated by 0.85 mM Mg2+ in the absence of 6-phosphogluconate (Hill coefficient, h = 2.0) and by 0.19 mM Mg2+ in the presence of mM 6-phosphogluconate (h = 1.7). Images PMID:457602

  10. Disruption of Renal Tubular Mitochondrial Quality Control by Myo-Inositol Oxygenase in Diabetic Kidney Disease

    PubMed Central

    Zhan, Ming; Usman, Irtaza M.; Sun, Lin

    2015-01-01

    Diabetic kidney disease (DKD) is associated with oxidative stress and mitochondrial injury. Myo-inositol oxygenase (MIOX), a tubular-specific enzyme, modulates redox imbalance and apoptosis in tubular cells in diabetes, but these mechanisms remain unclear. We investigated the role of MIOX in perturbation of mitochondrial quality control, including mitochondrial dynamics and autophagy/mitophagy, under high-glucose (HG) ambience or a diabetic state. HK-2 or LLC-PK1 cells subjected to HG exhibited an upregulation of MIOX accompanied by mitochondrial fragmentation and depolarization, inhibition of autophagy/mitophagy, and altered expression of mitochondrial dynamic and mitophagic proteins. Furthermore, dysfunctional mitochondria accumulated in the cytoplasm, which coincided with increased reactive oxygen species generation, Bax activation, cytochrome C release, and apoptosis. Overexpression of MIOX in LLC-PK1 cells enhanced the effects of HG, whereas MIOX siRNA or d-glucarate, an inhibitor of MIOX, partially reversed these perturbations. Moreover, decreasing the expression of MIOX under HG ambience increased PTEN-induced putative kinase 1 expression and the dependent mitofusin-2–Parkin interaction. In tubules of diabetic mice, increased MIOX expression and mitochondrial fragmentation and defective autophagy were observed. Dietary supplementation of d-glucarate in diabetic mice decreased MIOX expression, attenuated tubular damage, and improved renal functions. Notably, d-glucarate administration also partially attenuated mitochondrial fragmentation, oxidative stress, and apoptosis and restored autophagy/mitophagy in the tubular cells of these mice. These results suggest a novel mechanism linking MIOX to impaired mitochondrial quality control during tubular injury in the pathogenesis of DKD and suggest d-glucarate as a potential therapeutic agent for the amelioration of DKD. PMID:25270067

  11. Targeting Heme Oxygenase-1/Carbon Monoxide for Therapeutic Modulation of Inflammation

    PubMed Central

    Ryter, Stefan W.; Choi, Augustine M. K.

    2015-01-01

    The heme oxygenase-1 (HO-1) enzyme system remains an attractive therapeutic target for the treatment of inflammatory conditions. HO-1, a cellular stress protein, serves a vital metabolic function as the rate-limiting step in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin-IXα (BV) which is converted to bilirubin-IXα (BR). HO-1 may function as a pleiotropic regulator of inflammatory signaling programs, through the generation of its biologically active end-products, namely CO and BV/BR. CO, when applied exogenously, can affect apoptotic, proliferative, and inflammatory cellular programs. Specifically, CO can modulate the production of pro- or anti-inflammatory cytokines and mediators. HO-1/CO may also have immunomodulatory effects with respect to regulating the functions of antigen-presenting cells, dendritic cells, and regulatory T-cells. Therapeutic strategies to modulate HO-1 in disease include the application of natural inducing compounds, as well as gene therapy approaches for the targeted genetic overexpression or knockdown of HO-1. Several compounds have been used therapeutically to inhibit HO activity, including competitive inhibitors of the metalloporphyrin series, or non-competitive isoform-selective derivatives of imidazole-dioxolanes. The end-products of HO activity, BV/BR and CO may be used therapeutically as pharmacological treatments. CO may be applied by inhalation, or through the use of CO releasing molecules (CORMs). This review will discuss HO-1 as a therapeutic target in diseases involving inflammation, including lung and vascular injury, sepsis, ischemia/reperfusion injury and transplant rejection. PMID:26166253

  12. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals

    SciTech Connect

    Lawal, Akeem O.; Zhang, Min; Dittmar, Michael; Lulla, Aaron; Araujo, Jesus A.

    2015-05-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. - Highlights: • We examined the role of HO-1 expression on diesel exhaust particle (DEP) in endothelial cells. • DEPs exert cytotoxic and inflammatory effects on human microvascular endothelial cells (HMECs). • DEPs induce HO-1 expression in HMECs. • HO-1 protects against the oxidative stress induced by DEps. • HO-1 attenuates the proinflammatory effects

  13. Therapeutic roles of heme oxygenase-1 in metabolic diseases: curcumin and resveratrol analogues as possible inducers of heme oxygenase-1.

    PubMed

    Son, Yong; Lee, Ju Hwan; Chung, Hun-Taeg; Pae, Hyun-Ock

    2013-01-01

    Metabolic diseases, such as insulin resistance, type II diabetes, and obesity, are associated with a low-grade chronic inflammation (inflammatory stress), oxidative stress, and endoplasmic reticulum (ER) stress. Because the integration of these stresses is critical to the pathogenesis of metabolic diseases, agents and cellular molecules that can modulate these stress responses are emerging as potential targets for intervention and treatment of metabolic diseases. It has been recognized that heme oxygenase-1 (HO-1) plays an important role in cellular protection. Because HO-1 can reduce inflammatory stress, oxidative stress, and ER stress, in part by exerting antioxidant, anti-inflammatory, and antiapoptotic effects, HO-1 has been suggested to play important roles in pathogenesis of metabolic diseases. In the present review, we will explore our current understanding of the protective mechanisms of HO-1 in metabolic diseases and present some emerging therapeutic options for HO-1 expression in treating metabolic diseases, together with the therapeutic potential of curcumin and resveratrol analogues that have their ability to induce HO-1 expression.

  14. Therapeutic Roles of Heme Oxygenase-1 in Metabolic Diseases: Curcumin and Resveratrol Analogues as Possible Inducers of Heme Oxygenase-1

    PubMed Central

    Son, Yong; Lee, Ju Hwan; Chung, Hun-Taeg

    2013-01-01

    Metabolic diseases, such as insulin resistance, type II diabetes, and obesity, are associated with a low-grade chronic inflammation (inflammatory stress), oxidative stress, and endoplasmic reticulum (ER) stress. Because the integration of these stresses is critical to the pathogenesis of metabolic diseases, agents and cellular molecules that can modulate these stress responses are emerging as potential targets for intervention and treatment of metabolic diseases. It has been recognized that heme oxygenase-1 (HO-1) plays an important role in cellular protection. Because HO-1 can reduce inflammatory stress, oxidative stress, and ER stress, in part by exerting antioxidant, anti-inflammatory, and antiapoptotic effects, HO-1 has been suggested to play important roles in pathogenesis of metabolic diseases. In the present review, we will explore our current understanding of the protective mechanisms of HO-1 in metabolic diseases and present some emerging therapeutic options for HO-1 expression in treating metabolic diseases, together with the therapeutic potential of curcumin and resveratrol analogues that have their ability to induce HO-1 expression. PMID:24101950

  15. Oxidative cyclizations in orthosomycin biosynthesis expand the known chemistry of an oxygenase superfamily

    SciTech Connect

    McCulloch, Kathryn M.; McCranie, Emilianne K.; Smith, Jarrod A.; Sarwar, Maruf; Mathieu, Jeannette L.; Gitschlag, Bryan L.; Du, Yu; Bachmann, Brian O.; Iverson, T. M.

    2015-08-03

    Orthosomycins are oligosaccharide antibiotics that include avilamycin, everninomicin, and hygromycin B and are hallmarked by a rigidifying interglycosidic spirocyclic ortho-δ-lactone (orthoester) linkage between at least one pair of carbohydrates. A subset of orthosomycins additionally contain a carbohydrate capped by a methylenedioxy bridge. The orthoester linkage is necessary for antibiotic activity but rarely observed in natural products. Orthoester linkage and methylenedioxy bridge biosynthesis require similar oxidative cyclizations adjacent to a sugar ring. In this paper, we have identified a conserved group of nonheme iron, α-ketoglutarate–dependent oxygenases likely responsible for this chemistry. High-resolution crystal structures of the EvdO1 and EvdO2 oxygenases of everninomicin biosynthesis, the AviO1 oxygenase of avilamycin biosynthesis, and HygX of hygromycin B biosynthesis show how these enzymes accommodate large substrates, a challenge that requires a variation in metal coordination in HygX. Excitingly, the ternary complex of HygX with cosubstrate α-ketoglutarate and putative product hygromycin B identified an orientation of one glycosidic linkage of hygromycin B consistent with metal-catalyzed hydrogen atom abstraction from substrate. These structural results are complemented by gene disruption of the oxygenases evdO1 and evdMO1 from the everninomicin biosynthetic cluster, which demonstrate that functional oxygenase activity is critical for antibiotic production. Finally, our data therefore support a role for these enzymes in the production of key features of the orthosomycin antibiotics.

  16. Oxidative cyclizations in orthosomycin biosynthesis expand the known chemistry of an oxygenase superfamily

    PubMed Central

    McCulloch, Kathryn M.; McCranie, Emilianne K.; Smith, Jarrod A.; Sarwar, Maruf; Mathieu, Jeannette L.; Gitschlag, Bryan L.; Du, Yu; Bachmann, Brian O.; Iverson, T. M.

    2015-01-01

    Orthosomycins are oligosaccharide antibiotics that include avilamycin, everninomicin, and hygromycin B and are hallmarked by a rigidifying interglycosidic spirocyclic ortho-δ-lactone (orthoester) linkage between at least one pair of carbohydrates. A subset of orthosomycins additionally contain a carbohydrate capped by a methylenedioxy bridge. The orthoester linkage is necessary for antibiotic activity but rarely observed in natural products. Orthoester linkage and methylenedioxy bridge biosynthesis require similar oxidative cyclizations adjacent to a sugar ring. We have identified a conserved group of nonheme iron, α-ketoglutarate–dependent oxygenases likely responsible for this chemistry. High-resolution crystal structures of the EvdO1 and EvdO2 oxygenases of everninomicin biosynthesis, the AviO1 oxygenase of avilamycin biosynthesis, and HygX of hygromycin B biosynthesis show how these enzymes accommodate large substrates, a challenge that requires a variation in metal coordination in HygX. Excitingly, the ternary complex of HygX with cosubstrate α-ketoglutarate and putative product hygromycin B identified an orientation of one glycosidic linkage of hygromycin B consistent with metal-catalyzed hydrogen atom abstraction from substrate. These structural results are complemented by gene disruption of the oxygenases evdO1 and evdMO1 from the everninomicin biosynthetic cluster, which demonstrate that functional oxygenase activity is critical for antibiotic production. Our data therefore support a role for these enzymes in the production of key features of the orthosomycin antibiotics. PMID:26240321

  17. Alternative 5' untranslated regions are involved in expression regulation of human heme oxygenase-1.

    PubMed

    Kramer, Marcel; Sponholz, Christoph; Slaba, Monique; Wissuwa, Bianka; Claus, Ralf A; Menzel, Uwe; Huse, Klaus; Platzer, Matthias; Bauer, Michael

    2013-01-01

    The single nucleotide polymorphism rs2071746 and a (GT)n microsatellite within the human gene encoding heme oxygenase-1 (HMOX1) are associated with incidence or outcome in a variety of diseases. Most of these associations involve either release of heme or oxidative stress. Both polymorphisms are localized in the promoter region, but previously reported correlations with heme oxygenase-1 expression remain not coherent. This ambiguity suggests a more complex organization of the 5' gene region which we sought to investigate more fully. We evaluated the 5' end of HMOX1 and found a novel first exon 1a placing the two previously reported polymorphisms in intronic or exonic positions within the 5' untranslated region respectively. Expression of exon 1a can be induced in HepG2 hepatoma cells by hemin and is a repressor of heme oxygenase-1 translation as shown by luciferase reporter assays. Moreover, minigene approaches revealed that the quantitative outcome of alternative splicing within the 5' untranslated region is affected by the (GT)n microsatellite. This data supporting an extended HMOX1 gene model and provide further insights into expression regulation of heme oxygenase-1. Alternative splicing within the HMOX1 5' untranslated region contributes to translational regulation and is a mechanistic feature involved in the interplay between genetic variations, heme oxygenase-1 expression and disease outcome.

  18. Oxidative cyclizations in orthosomycin biosynthesis expand the known chemistry of an oxygenase superfamily

    DOE PAGES

    McCulloch, Kathryn M.; McCranie, Emilianne K.; Smith, Jarrod A.; ...

    2015-08-03

    Orthosomycins are oligosaccharide antibiotics that include avilamycin, everninomicin, and hygromycin B and are hallmarked by a rigidifying interglycosidic spirocyclic ortho-δ-lactone (orthoester) linkage between at least one pair of carbohydrates. A subset of orthosomycins additionally contain a carbohydrate capped by a methylenedioxy bridge. The orthoester linkage is necessary for antibiotic activity but rarely observed in natural products. Orthoester linkage and methylenedioxy bridge biosynthesis require similar oxidative cyclizations adjacent to a sugar ring. In this paper, we have identified a conserved group of nonheme iron, α-ketoglutarate–dependent oxygenases likely responsible for this chemistry. High-resolution crystal structures of the EvdO1 and EvdO2 oxygenases ofmore » everninomicin biosynthesis, the AviO1 oxygenase of avilamycin biosynthesis, and HygX of hygromycin B biosynthesis show how these enzymes accommodate large substrates, a challenge that requires a variation in metal coordination in HygX. Excitingly, the ternary complex of HygX with cosubstrate α-ketoglutarate and putative product hygromycin B identified an orientation of one glycosidic linkage of hygromycin B consistent with metal-catalyzed hydrogen atom abstraction from substrate. These structural results are complemented by gene disruption of the oxygenases evdO1 and evdMO1 from the everninomicin biosynthetic cluster, which demonstrate that functional oxygenase activity is critical for antibiotic production. Finally, our data therefore support a role for these enzymes in the production of key features of the orthosomycin antibiotics.« less

  19. Microalgal metabolites: a new perspective.

    PubMed

    Shimizu, Y

    1996-01-01

    Occurrence of secondary metabolites in microalgae (protoctista) is discussed with respect to the phylogenic or taxonomic relationships of organisms. Biosynthetic mechanisms of certain metabolites such as paralytic shellfish poisoning toxins and polyether toxins are also discussed, and genetic aspects of the secondary metabolite production as well.

  20. Neuroprotective effects of Argon are mediated via an ERK-1/2 dependent regulation of heme-oxygenase-1 in retinal ganglion cells.

    PubMed

    Ulbrich, Felix; Kaufmann, Kai B; Coburn, Mark; Lagrèze, Wolf Alexander; Roesslein, Martin; Biermann, Julia; Buerkle, Hartmut; Loop, Torsten; Goebel, Ulrich

    2015-08-01

    Retinal ischemia and reperfusion injuries (R-IRI) damage neuronal tissue permanently. Recently, we demonstrated that Argon exerts anti-apoptotic and protective properties. The molecular mechanism remains unclear. We hypothesized that Argon inhalation exert neuroprotective effects in rats retinal ganglion cells (RGC) via an ERK-1/2 dependent regulation of heat-shock proteins. Inhalation of Argon (75 Vol%) was performed after R-IRI on the rats' left eyes for 1 h immediately or with delay. Retinal tissue was harvested after 24 h to analyze mRNA and protein expression of heat-shock proteins -70, -90 and heme-oxygenase-1, mitogen-activated protein kinases (p38, JNK, ERK-1/2) and histological changes. To analyze ERK dependent effects, the ERK inhibitor PD98059 was applicated prior to Argon inhalation. RGC count was analyzed 7 days after injury. Statistics were performed using anova. Argon significantly reduced the R-IRI-affected heat-shock protein expression (p < 0.05). While Argon significantly induced ERK-1/2 expression (p < 0.001), inhibition of ERK-1/2 before Argon inhalation resulted in significantly lower vital RGCs (p < 0.01) and increase in heme-oxygenase-1 (p < 0.05). R-IRI-induced RGC loss was reduced by Argon inhalation (p < 0.001). Immunohistochemistry suggested ERK-1/2 activation in Müller cells. We conclude, that Argon treatment protects R-IRI-induced apoptotic loss of RGC via an ERK-1/2 dependent regulation of heme-oxygenase-1. We proposed the following possible mechanism for Argon-mediated neuroprotection: Argon exerts its protective effects via an induction of an ERK with subsequent suppression of the heat shock response. In conclusion, ischemia and reperfusion injuries and subsequent neuronal apoptosis are attenuated. These novel findings may open up new opportunities for Argon as a therapeutic option, especially since Argon is not toxic.

  1. The multiple functions of heme oxygenase-1 in the liver.

    PubMed

    Sass, G; Barikbin, R; Tiegs, G

    2012-01-01

    Heme oxygenases (HO) are essential enzymes which degrade heme into carbon monoxide (CO), biliverdin and free iron. Due to its anti-inflammatory, anti-apoptotic and, as recently described, anti-viral properties the inducible HO isoform HO-1 is an important molecule which could find its way into therapy of gastrointestinal diseases. Acute and chronic liver injuries including acute liver failure, alcoholic or viral hepatitis, chronic inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma are life threatening diseases and as a consequence might result in the necessity of liver transplantation. HO-1 as well as its reaction products of heme degradation has been linked to cytoprotection. HO-1 induction in rodent models of acute and chronic hepatic inflammation resulted in improvement of liver damage and down-regulation of pro-inflammatory cytokine levels. Furthermore HO-1 induction interfered with fibrosis progression in mice and partially resolved existing fibrosis. Likewise, HO-1 induction interfered with replication of hepatitis viruses B and C, which frequently are the reason for chronic hepatitis and subsequent tumor growth. Liver transplantation is limited by ischemia/reperfusion (I/R) injury, which is characterized by hypoxia and nutrient deficiency resulting in oxidative stress, apoptosis and immune activation. Induction of HO-1 and application predominantly of CO have been shown to interfere with I/R liver injury and to improve recipient and graft survival. On the other hand HO-1 has been shown to be over-expressed in various tumors, including hepatocellular carcinoma (HCC). Due to its anti-apoptotic properties this bears the risk to promote tumor growth. Anti-apoptotic effects are predominantly mediated by CO. This review aims to summarize beneficial as well as detrimental effects of HO-1 and its products within the liver.

  2. Naphthalene dioxygenase: purification and properties of a terminal oxygenase component.

    PubMed Central

    Ensley, B D; Gibson, D T

    1983-01-01

    Naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816 is a multicomponent enzyme system that oxidized naphthalene to cis-(1R, 2S)-dihydroxy-1,2-dihydronaphthalene. The terminal oxygenase component B was purified to homogeneity by a three-step procedure that utilized ion-exchange and hydrophobic interaction chromatography. The purified enzyme oxidized naphthalene only in the presence of NADH, oxygen, and partially purified preparations of components A and C. An estimated Mr of 158,000 was obtained by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed the presence of two subunits with molecular weights of ca. 55,000 and 20,000, indicative of an alpha 2 beta 2 quaternary structure. Absorption spectra of the oxidized enzyme showed maxima at 566 (shoulder), 462, and 344 nm, which were replaced by absorption maxima at 520 and 380 nm when the enzyme was reduced anaerobically by stoichiometric quantities of NADH in the presence of the other two components of the naphthalene dioxygenase system. Component B bound naphthalene. Enzyme-bound naphthalene was oxidized to product upon the addition of components A and C, NADH, and O2. These results, together with the detection of the presence of 6.0 g-atoms of iron and 4.0 g-atoms of acid-labile sulfur per mol of the purified enzyme, suggest that component B of the naphthalene dioxygenase system is an iron-sulfur protein which functions in the terminal step of naphthalene oxidation. PMID:6874638

  3. Developmental expression of heme oxygenase in the rat lung.

    PubMed

    Dennery, Phyllis A; Lee, Christen S; Ford, Berendera S; Weng, Yi-Hao; Yang, Guang; Rodgers, Pamela A

    2003-01-01

    Heme oxygenase (HO), the rate-limiting enzyme in the formation of bilirubin, is expressed in the lung and may serve as an antioxidant. This enzyme results in the formation of antioxidant bile pigments and the degradation of pro-oxidant heme. We wanted to evaluate the differences in expression of HO-1, the inducible form, and HO-2, the constitutive isoenzyme, during lung maturation and document whether lung HO expression was similar to that of other antioxidant enzymes. Lung total HO activity and HO-1 and HO-2 proteins as well as HO-1 and HO-2 mRNA were evaluated in animals from 16 d of gestation (e(16.5)) to 2 mo of age. Heme content was also evaluated because heme is the substrate of the reaction. HO-1 mRNA was maximal at e(19.5) and e(20.5), whereas HO-2 mRNA was not changed throughout maturation. Lung HO-1 protein was highest on the first days of life and lowest in adults, whereas HO-2 protein was maximally expressed at postnatal d 5 and then declined to reach adult values. As to HO activity, there was a prenatal peak at e(20.5), a second lesser peak at d 5, and thereafter a decline to adult values. Lung heme content was inversely correlated with HO activity or protein as the highest heme values were seen in adults with the lowest HO activity. In response to hyperoxia, HO-1 mRNA was induced only in the adult lungs. A better understanding of the maturational regulation of lung HO will define a role for HO in newborns at risk for oxygen toxicity.

  4. Discovery and industrial applications of lytic polysaccharide mono-oxygenases.

    PubMed

    Johansen, Katja S

    2016-02-01

    The recent discovery of copper-dependent lytic polysaccharide mono-oxygenases (LPMOs) has opened up a vast area of research covering several fields of application. The biotech company Novozymes A/S holds patents on the use of these enzymes for the conversion of steam-pre-treated plant residues such as straw to free sugars. These patents predate the correct classification of LPMOs and the striking synergistic effect of fungal LPMOs when combined with canonical cellulases was discovered when fractions of fungal secretomes were evaluated in industrially relevant enzyme performance assays. Today, LPMOs are a central component in the Cellic CTec enzyme products which are used in several large-scale plants for the industrial production of lignocellulosic ethanol. LPMOs are characterized by an N-terminal histidine residue which, together with an internal histidine and a tyrosine residue, co-ordinates a single copper atom in a so-called histidine brace. The mechanism by which oxygen binds to the reduced copper atom has been reported and the general mechanism of copper-oxygen-mediated activation of carbon is being investigated in the light of these discoveries. LPMOs are widespread in both the fungal and the bacterial kingdoms, although the range of action of these enzymes remains to be elucidated. However, based on the high abundance of LPMOs expressed by microbes involved in the decomposition of organic matter, the importance of LPMOs in the natural carbon-cycle is predicted to be significant. In addition, it has been suggested that LPMOs play a role in the pathology of infectious diseases such as cholera and to thus be relevant in the field of medicine.

  5. 3′-hydroxy-3,4,5,4′-tetramethoxystilbene, the metabolite of resveratrol analogue DMU-212, inhibits ovarian cancer cell growth in vitro and in a mice xenograft model

    PubMed Central

    Piotrowska-Kempisty, Hanna; Ruciński, Marcin; Borys, Sylwia; Kucińska, Małgorzata; Kaczmarek, Mariusz; Zawierucha, Piotr; Wierzchowski, Marcin; Łażewski, Dawid; Murias, Marek; Jodynis-Liebert, Jadwiga

    2016-01-01

    In screening studies, the cytotoxic activity of four metabolites of resveratrol analogue 3,4,5,4′-tetramethoxystilbene (DMU-212) against A-2780 and SKOV-3 ovarian cancer cells was investigated. The most active metabolite, 3′-hydroxy-3,4,5,4′-tetramethoxystilbene (DMU-214), was chosen for further studies. The cytotoxicity of DMU-214 was shown to be higher than that of the parent compound, DMU-212, in both cell lines tested. Since DMU-212 was supposed to undergo metabolic activation through its conversion to DMU-214, an attempt was made to elucidate the mechanism of its anti-proliferative activity. We found that in SKOV-3 cells lacking p53, DMU-214 induced receptor-mediated apoptosis. In A-2780 cell line with expression of wild-type p53, DMU-214 modulated the expression pattern of p53-target genes driving intrinsic and extrinsic apoptosis pathways, as well as DNA repair and damage prevention. Regardless of the up-regulation of p48, p53R2, sestrins and Gaad45 genes involved in cancer cell DNA repair, we demonstrated the stronger anti-proliferative and pro-apoptotic effects of DMU-214 in A-2780 cells when compared to those in SKOV-3. Hence we verified DMU-214 activity in the xenograft model using SCID mice injected with A-2780 cells. The strong anti-proliferative activity of DMU-214 in the in vivo model allowed to suggest the tested compound as a potential therapeutic in ovarian cancer treatment. PMID:27585955

  6. Crystallization and characterization of ribulose 1,5-bisphosphate carboxylase/oxygenase from eight plant species.

    PubMed

    Johal, S; Bourque, D P; Smith, W W; Suh, S W; Eisenberg, D

    1980-09-25

    Ribulose bisphosphate carboxylase/oxygenase was isolated and crystallized from eight plant species. Crystals grew from either of two similar sets of crystallizing conditions: crystals of the enzyme from alfalfa, corn, cotton, potato, spinach, tobacco, and tomato grew from solutions containing phosphate and polyethylene glycol 6000 as a precipitant, and those from potato, tobacco (both Nicotiana sylvestris and Nicotiana tabacum), and tomato grew from a mixture of ammonium sulfate and phosphate. Crystals of the enzyme from potato and both species of tobacco were large enough to characterize by x-ray diffraction and were found to have the Form III structure, previously reported for crystals of ribulose bisphosphate carboxylase/oxygenase from N. tabacum. For crystalline material from several species, both carboxylase and oxygenase activites have been assayed and copper and iron contents have been determined. The possible significance of the observed general conditions of crystallization of this enzyme is discussed.

  7. Crystal Structure of Dicamba Monooxygenase: A Rieske Nonheme Oxygenase that Catalyzes Oxidative Demethylation

    SciTech Connect

    Dumitru, Razvan; Jiang, Wen Zhi; Weeks, Donald P.; Wilson, Mark A.

    2009-08-28

    Dicamba (3,6-dichloro-2-methoxybenzoic acid) is a widely used herbicide that is efficiently degraded by soil microbes. These microbes use a novel Rieske nonheme oxygenase, dicamba monooxygenase (DMO), to catalyze the oxidative demethylation of dicamba to 3,6-dichlorosalicylic acid (DCSA) and formaldehyde. We have determined the crystal structures of DMO in the free state, bound to its substrate dicamba, and bound to the product DCSA at 2.10-1.75 {angstrom} resolution. The structures show that the DMO active site uses a combination of extensive hydrogen bonding and steric interactions to correctly orient chlorinated, ortho-substituted benzoic-acid-like substrates for catalysis. Unlike other Rieske aromatic oxygenases, DMO oxygenates the exocyclic methyl group, rather than the aromatic ring, of its substrate. This first crystal structure of a Rieske demethylase shows that the Rieske oxygenase structural scaffold can be co-opted to perform varied types of reactions on xenobiotic substrates.

  8. Changing ribulose diphosphate carboxylase/oxygenase activity in ripening tomato fruit.

    PubMed

    Bravdo, B A; Palgi, A; Lurie, S

    1977-08-01

    Tomato fruit (Lycopersicum esculentum Mill) from green, pink, and red stages were assayed for changes in the activity of ribulose diphosphate carboxylase and oxygenase, phosphoenolpyruvate carboxylase, changes in the levels of glycolate and respiratory gas exchange. The ribulose diphosphate carboxylase activity decreased as the fruit ripened. By comparison, the ribulose diphosphate oxygenase activity increased during the transition from the green to the pink stage, and declined afterward. The changes in the endogenous glycolate levels and the respiratory gas exchange, as observed at different stages of ripening, resembled the changes in the ribulose diphosphate oxygenase activity. The utilization of glycolate in further metabolic activity may result in the formation of peroxidases required for the onset of ripening.

  9. Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene.

    PubMed Central

    Hyman, M R; Wood, P M

    1985-01-01

    Acetylene brings about a progressive inactivation of ammonia mono-oxygenase, the ammonia-oxidizing enzyme in Nitrosomonas europaea. High NH4+ ion concentrations were protective. The inactivation followed first-order kinetics, with a rate constant of 1.5 min-1 at saturating concentrations of acetylene. If acetylene was added in the absence of O2, the cells remained active until O2 was re-introduced. A protective effect was also demonstrated with thiourea, a reversible non-competitive inhibitor of ammonia oxidation. Incubation of cells with [14C]acetylene was found to cause labelling of a single membrane polypeptide. This ran on dodecyl sulphate/polyacrylamide-gel electrophoresis with an Mr value of 28 000. It is concluded that acetylene is a suicide substrate for the mono-oxygenase. The labelling experiment provides the first identification of a constituent polypeptide of ammonia mono-oxygenase. Images Fig. 4. PMID:4004794

  10. The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expression in response to inflammation: a potential role of HO-1.

    PubMed

    Seo, Kyuhwa; Yang, Ji Hye; Kim, Sang Chan; Ku, Sae Kwang; Ki, Sung Hwan; Shin, Sang Mi

    2014-06-01

    Previously, we reported that isorhamnentin, a 3'-O-methylated metabolite of quercetin, reduced inducible nitric oxide synthase (iNOS) expression and NO production. The present study further investigated the underlying mechanism of anti-inflammatory and antioxidant effects of isorhamnentin. Administration of isorhamnetin decreased the number of cyclooxygenase-2 (COX-2) positive cells in rats with carrageenan-induced paw edema. Isorhamnetin also suppressed lipopolysaccharide (LPS)-induced expression of COX-2 in cells. It is well known that LPS-induced reactive oxygen species (ROS) production leads to COX-2 induction. Isorhamnetin decreased LPS-induced ROS production and apoptosis. In addition, the basal expression of heme oxygenase-1 (HO-1) was increased by isorhamnetin treatment in agreement with the increase in nuclear translocation of NF-E2-related factor-2 (Nrf2), an essential transcription factor for the regulation of HO-1 expression. Moreover, pretreatment of tin protoporphyrin IX (SnPP), a chemical inhibitor of HO-1, reversed the ability of isothamnetin to inhibit COX-2 expression. These results demonstrate that induction of HO-1 by isorhamnetin leads to a reduction in ROS production and its antioxidant property might contribute to the inhibition of COX-2 expression in response to inflammation.

  11. Phycobilin biosynthesis: reductant requirements and product identification for heme oxygenase from Cyanidium caldarium.

    PubMed

    Rhie, G; Beale, S I

    1995-06-20

    Algal heme oxygenase is a soluble enzyme from Cyanidium caldarium that catalyzes the first committed step of phycobilin biosynthesis by converting protoheme to biliverdin IX alpha. Although the physiological substrate (protoheme) of algal heme oxygenase is identical to that of microsomal heme oxygenase, which catalyzes heme catabolism in animals, the two enzyme systems differ in several respects including the nature of the required reductants and solubility of the enzymes. Addition of the strong Fe3+ ion chelators, desferrioxamine and Tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid), greatly increased the yield of solvent-extracted bilin product. The effect of the Fe3+ chelators was approximately equal whether they were added during or after the enzyme incubation. Postincubation treatment of the enzyme reaction mixture with strong acid also greatly increased the product yield. Addition of desferrioxamine to the reaction mixture after the incubation was terminated caused the appearance of an absorption spectrum, indicating an increase in the concentration of free bilin product. Acid and Fe3+ chelators are known to cause dissociation of Fe(III)-bilin complexes. These results indicate that the in vitro enzymic reaction product of algal heme oxygenase is a nonenzyme-bound Fe(III)-biliverdin IX alpha complex that is poorly extracted and/or quantitated unless it is first dissociated. Algal heme oxygenase required the simultaneous presence of both reduced ferredoxin and a second reductant such as ascorbate for activity. The requirement for L-ascorbate could be substituted by Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) or D-ascorbate, but not by dehydroascorbate or dithiothreitol. Heme oxygenase was purified over 200-fold from C. caldarium by differential (NH4)2SO4 precipitation and serial column chromatography over reactive blue 2-Sepharose, DEAE-cellulose, Sephadex G-75, and ferredoxin-Sepharose.

  12. Putative metabolites derived from dietary combinations of calcium glucarate and N-(4-hydroxyphenyl) retinamide act synergistically to inhibit the induction of rat mammary tumors by 7,12-dimethylbenz(. alpha. )anthracene

    SciTech Connect

    Abou-Issa, H.M.; Duruibe, V.A.; Minton, J.P.; Larroya, S.; Dwivedi, D.; Webb, T.E. )

    1988-06-01

    Calcium glucarate and N-(4-hydroxyphenyl)-retinamide were calculated individually and in combination int he diet as preventative chemical agents, by using the induction of rat mammary tumors by 7,12-dimethylbenz({alpha})anthracene as the test system. When tested separately over 18 weeks, optimal doses of calcium glucarate or N-(4-hydroxyphenyl)retinamide administered daily inhibited tumor incidence by 50% or 57% and tumor multiplicity by 50% or 65%, respectively. Suboptimal doses of calcium glucarate and of N-(4-hydroxyphenyl)-retinamide inhibited tumor incidence by 15% and 5% but had no inhibitory effect on tumor multiplicity. In contrast, the combination of calcium glucarate and N-(4-hydroxyphenyl)retinamide inhibited tumor incidence and tumor multiplicity by 50%. Similar synergism was observed with the combination of calcium glucarate and N-(4-hydroxyphenyl)retinamide, the inhibition being 55-60%. HPLC analysis of the bile of female rats injected intraperitoneally with a single dose of the retinamide showed that the excretion of the retinamide and its glucuronide were markedly suppressed by pretreatment with an oral dose of calcium glucarate.

  13. A reporter ligand NMR screening method for 2-oxoglutarate oxygenase inhibitors

    PubMed Central

    Leung, Ivanhoe K. H.; Demetriades, Marina; Hardy, Adam P.; Lejeune, Clarisse; Smart, Tristan J.; Szöllössi, Andrea; Kawamura, Akane; Schofield, Christopher J.; Claridge, Timothy D. W.

    2015-01-01

    The human 2-oxoglutarate (2OG) dependent oxygenases belong to a family of structurally related enzymes that play important roles in many biological processes. We report that competition-based NMR methods, using 2OG as a reporter ligand, can be used for quantitative and site-specific screening of ligand binding to 2OG oxygenases. The method was demonstrated using hypoxia inducible factor (HIF) hydroxylases and histone demethylases, and KD values were determined for inhibitors that compete with 2OG at the metal centre. This technique is also useful as a screening or validation tool for inhibitor discovery, as exemplified by work with protein-directed dynamic combinatorial chemistry (DCC). PMID:23234607

  14. Therapeutic Efficacy of Stem Cells Transplantation in Diabetes: Role of Heme Oxygenase

    PubMed Central

    Raffaele, Marco; Li Volti, Giovanni; Barbagallo, Ignazio A.; Vanella, Luca

    2016-01-01

    The growing data obtained from in vivo studies and clinical trials demonstrated the benefit of adult stem cells transplantation in diabetes; although an important limit is represented by their survival after the transplant. To this regard, recent reports suggest that genetic manipulation of stem cells prior to transplantation can lead to enhanced survival and better engraftment. The following review proposes to stimulate interest in the role of heme oxygenase-1 over-expression on transplantation of stem cells in diabetes, focusing on the clinical potential of heme oxygenase protein and activity to restore tissue damage and/or to improve the immunomodulatory properties of transplanted stem cells. PMID:27547752

  15. Antibacterial Activity of Metabolites Products of Vibrio Alginolyticus Isolated from Sponge Haliclona sp. Against Staphylococcus Aureus

    PubMed Central

    Nursyam, Happy

    2017-01-01

    The objective of this study was to investigate the antibacterial activity of primary and secondary metabolites from Vibrio alginoliticus isolated from sponge Haliclona sp. against Staphylococcus aureus. A descriptive method was used in this research. The antibacterial activity was analysed by paper disk method. The results showed that the primary metabolites produced by Vibrio alginoliticus that is in symbiosis with sponge Haliclona sp. were able to effectively inhibit Staphylococcus aureus growth with an inhibition zone diameter of 12.9 mm, while the secondary metabolites of 9.9 mm. Electrophoresis analysis of the primary metabolites showed that there were 11 protein bands which were not found in secondary metabolites. Protein bands with low molecular weights presumably had an inhibiting effect on the growth of Staphylococcus aureus. PMID:28299291

  16. Heme oxygenase-1 promotes granuloma development and protects against dissemination of mycobacteria.

    PubMed

    Regev, Doron; Surolia, Ranu; Karki, Suman; Zolak, Jason; Montes-Worboys, Ana; Oliva, Ocatvio; Guroji, Purushotum; Saini, Vikram; Steyn, Adrie Jc; Agarwal, Anupam; Antony, Veena B

    2012-11-01

    Non-tuberculous mycobacterial (NTM) infections occur in both immunocompromised and immunocompetent hosts and are an increasingly recognized cause of morbidity and mortality. The hallmark of pulmonary mycobacterial infections is the formation of granuloma in the lung. Our study focuses on the role of heme oxygenase-1 (HO-1), a cytoprotective enzyme, in the regulation of granuloma development and maturation following infection with Mycobacterium avium. We examined the role of HO-1 in regulating monocyte chemoattractant protein-1 (MCP-1) and chemokine receptor 2 (CCR2), two molecules involved in monocyte-macrophage cell trafficking after infection. We showed that RAW 264.7 mouse monocytes exposed to M. avium expressed HO-1 and MCP-1. Inhibition of HO by zinc protoporphyrin-IX led to inhibition of MCP-1 and increased expression of CCR2, its cognate receptor. HO-1⁻/⁻ mice did not develop organized granuloma in their lungs, had higher lung colony forming unit of M. avium when infected with intratracheal M. avium, and had loose collections of inflammatory cells in the lung parenchyma. Mycobacteria were found only inside defined granulomas but not outside granuloma in the lungs of HO-1⁺/⁺ mice. In HO-1⁻/⁻ mice, mycobacteria were also found in the liver and spleen and showed increased mortality. Peripheral blood monocytes isolated from GFP⁺ mice and given intravenously to HO-1⁺/⁺ mice localized into tight granulomas, while in HO-1⁻/⁻ mice they remained diffusely scattered in areas of parenchymal inflammation. Higher MCP-1 levels were found in bronchoalveolar lavage fluid of M. avium infected HO-1(-/-) mice and CCR2 expression was higher in HO-1⁻/⁻ alveolar macrophages when compared with HO-1⁺/⁺ mice. CCR2 expression localized to granuloma in HO-1⁺/⁺ mice but not in the HO-1⁻/⁻ mice. These findings strongly suggest that HO-1 plays a protective role in the control of M. avium infection.

  17. L-Ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1

    SciTech Connect

    Huang, Ya-Ni; Wang, Jiz-Yuh; Lee, Ching-Tien; Lin, Chih-Hung; Lai, Chien-Cheng; Wang, Jia-Yi

    2012-12-01

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of L-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measured using the fluorochrome 2′,7′-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. -- Highlights: ► Besides the anti-oxidant effect, Vit. C also induces HO-1 expression in brain cells. ► Vit. C reduces METH neurotoxicity and ROS production by

  18. Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites

    PubMed Central

    Cuperlovic-Culf, Miroslava; Rajagopalan, NandhaKishore; Tulpan, Dan; Loewen, Michele C.

    2016-01-01

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a devastating disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic responses to inoculation. Previously published studies have determined major metabolic changes induced by pathogens in resistant and susceptible plants. Functionality of the majority of these metabolites in resistance remains unknown. In this work we have made a compilation of all metabolites determined as selectively accumulated following FHB inoculation in resistant plants. Characteristics, as well as possible functions and targets of these metabolites, are investigated using cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like molecules against fungal pathogens. Results of computational analyses of binding properties of several representative metabolites to homology models of fungal proteins are presented. Theoretical analysis highlights the possibility for strong inhibitory activity of several metabolites against some major proteins in Fusarium graminearum, such as carbonic anhydrases and cytochrome P450s. Activity of several of these compounds has been experimentally confirmed in fungal growth inhibition assays. Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant wheat varieties while showing novel application of cheminformatics approaches in the analysis of plant/pathogen interactions. PMID:27706030

  19. Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites.

    PubMed

    Cuperlovic-Culf, Miroslava; Rajagopalan, NandhaKishore; Tulpan, Dan; Loewen, Michele C

    2016-09-30

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a devastating disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic responses to inoculation. Previously published studies have determined major metabolic changes induced by pathogens in resistant and susceptible plants. Functionality of the majority of these metabolites in resistance remains unknown. In this work we have made a compilation of all metabolites determined as selectively accumulated following FHB inoculation in resistant plants. Characteristics, as well as possible functions and targets of these metabolites, are investigated using cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like molecules against fungal pathogens. Results of computational analyses of binding properties of several representative metabolites to homology models of fungal proteins are presented. Theoretical analysis highlights the possibility for strong inhibitory activity of several metabolites against some major proteins in Fusarium graminearum, such as carbonic anhydrases and cytochrome P450s. Activity of several of these compounds has been experimentally confirmed in fungal growth inhibition assays. Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant wheat varieties while showing novel application of cheminformatics approaches in the analysis of plant/pathogen interactions.

  20. The role of nicotinic acid metabolites in flushing and hepatotoxicity.

    PubMed

    Stern, Ralph H

    2007-07-01

    Flushing and hepatotoxicity are important adverse effects of nicotinic acid. This article reviews the role of metabolism of nicotinic acid in the production of these side effects. The suggestion that nicotinic acid (NUA) formation produces flushing is traced to a correlation of flushing with NUA C(max) (maximal concentration) and the observation that aspirin inhibits NUA formation and flushing. The former does not establish causation and the latter can be explained by inhibition of prostaglandin formation. Recent characterization of the GPR109A receptor that mediates prostaglandin release by Langerhans cells to produce flushing has shown nicotinic acid, not NUA, is responsible. The suggestion that nicotinamide metabolites produce hepatotoxicity is not supported by any data. The mechanism of hepatotoxicity is unknown and a toxic metabolite of nicotinic acid has not been identified. Different nicotinic acid formulations produce different metabolite patterns due to nonlinear pharmacokinetics, but there is no evidence that these differences have any clinical importance.

  1. Endocidal Regulation of Secondary Metabolites in the Producing Organisms

    PubMed Central

    Li, Shiyou; Wang, Ping; Yuan, Wei; Su, Zushang; Bullard, Steven H.

    2016-01-01

    Secondary metabolites are defined as organic compounds that are not directly involved in the normal growth, development, and reproduction of an organism. They are widely believed to be responsible for interactions between the producing organism and its environment, with the producer avoiding their toxicities. In our experiments, however, none of the randomly selected 44 species representing different groups of plants and insects can avoid autotoxicity by its endogenous metabolites once made available. We coined the term endocides (endogenous biocides) to describe such metabolites that can poison or inhibit the parent via induced biosynthesis or external applications. Dosage-dependent endocides can selectively induce morphological mutations in the parent organism (e.g., shrubbiness/dwarfism, pleiocotyly, abnormal leaf morphogenesis, disturbed phyllotaxis, fasciated stems, and variegation in plants), inhibit its growth, development, and reproduction and cause death than non-closely related species. The propagule, as well as the organism itself contains or produces adequate endocides to kill itself. PMID:27389069

  2. p-Benzoquinone, a reactive metabolite of benzene, prevents the processing of pre-interleukins-1{alpha} and -1{beta} to active cytokines by inhibition of the processing enzymes, calpain, and interleukin-1{beta} converting enzyme

    SciTech Connect

    Kalf, G.F.; Renz, J.F.; Niculescu, R.

    1996-12-01

    Chronic exposure of humans to benzene affects hematopoietic stem and progenitor cells and leads to aplastic anemia. The stromal macrophage, a target of benzene toxicity, secretes interieukin-1 (IL-1), which induces the stromal fibroblast to synthesize hematopoietic colony-stimulating factors. In a mouse model, benzene causes an acute marrow hypocellularity that can be prevented by the concomitant administration of IL-1{alpha}. The ability of benzene to interfere with the production and secretion of IL-1{alpha} was tested. Stromal macrophages from benzene-treated mice were capable of the transcription of the IL-1{alpha} gene and the translation of the message but showed an inability to process the 34-kDa pre-IL-1{alpha} precursor to the 17-kDa biologically active cytokine. Treatment of normal murine stromal macrophages in culture with hydroquinone (HQ) also showed an inhibition in processing of pre-IL-1{alpha}. Hydroquinone is oxidized by a peroxidase-mediated reaction in the stromal macrophage to p-benzoquinone, which interacts with the sulfhydryl (SH) groups of proteins and was shown to completely inhibit the activity of calpain, the SH-dependent protease that cleaves pre-IL-1{alpha}. In a similar manner, HQ, via peroxidase oxidation to p-benzoquinone, was capable of preventing the IL-1{beta} autocrine stimulation of growth of human B1 myeloid tumor cells by preventing the processing of pre-IL-1{beta} to mature cytokine. Benzoquinone was also shown to completely inhibit the ability of the SH-dependent IL-1{beta} converting enzyme. Thus benzene-induced bone marrow hypocellularity may result from apoptosis of hematopoietic progenitor cells brought about by lack of essential cylokines and deficient IL-1{alpha} production subsequent to the inhibition of calpain by p-benzoquinone and the prevention of pre-IL-1 processing. 34 refs., 8 figs.

  3. Versatile routes to marine sponge metabolites through benzylidene rhodanines.

    PubMed

    Kottakota, Suresh K; Benton, Mathew; Evangelopoulos, Dimitrios; Guzman, Juan D; Bhakta, Sanjib; McHugh, Timothy D; Gray, Mark; Groundwater, Paul W; Marrs, Emma C L; Perry, John D; Harburn, J Jonathan

    2012-12-21

    The first total synthesis of the marine natural products Psammaplin C and Tokaradine A is described. Benzylidene rhodanines were utilized as versatile intermediates toward the synthesis of seven brominated marine sponge metabolites through the optimization of protection group strategies. Spermatinamine demonstrated good inhibition of all cancer cell lines tested, in particular the leukemia K562 and colon cancer HT29 cell lines.

  4. Mutagenic azide metabolite is azidoalanine

    SciTech Connect

    Owais, W.M.; Rosichan, J.L.; Ronald, R.C.; Kleinhofs, A.; Nilan, R.A.

    1981-01-01

    Sodium axide produces high mutation rates in a number of species. Azide mutagenicity is mediated through a metabolite in barley and bacteria. Many studies showed that azide affects the L-cysteine biosynthesis pathway. Cell-free extracts of Salmonella typhimurium convert azide and O-acetylserine to the mutagenic metabolite. O-acetylserine sulfhydrylase was identified as the enzyme responsible for the metabolite biosynthesis. To confirm the conclusion that the azide metabolite is formed through the ..beta..-substitution pathway of L-cysteine, we radioactively labeled the azide metabolite using /sup 14/C-labeled precursors. Moreover, the mutagenic azide metabolite was purified and identified as azidoalanine based on mass spectroscopy and elemental analysis. 26 refs., 3 figs., 1 tab.

  5. Oxygenase-Catalyzed Desymmetrization of N,N-Dialkyl-piperidine-4-carboxylic Acids**

    PubMed Central

    Rydzik, Anna M; Leung, Ivanhoe K H; Kochan, Grazyna T; McDonough, Michael A; Claridge, Timothy D W; Schofield, Christopher J

    2014-01-01

    γ-Butyrobetaine hydroxylase (BBOX) is a 2-oxoglutarate dependent oxygenase that catalyzes the final hydroxylation step in the biosynthesis of carnitine. BBOX was shown to catalyze the oxidative desymmetrization of achiral N,N-dialkyl piperidine-4-carboxylates to give products with two or three stereogenic centers. PMID:25164544

  6. Isolation of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase from Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a multi-functional enzyme that catalyzes the fixation of CO2 and O2 in photosynthesis and photorespiration, respectively. As the rate-limiting step in photosynthesis, improving the catalytic properties of Rubisco has long been viewed as a...

  7. AN INTEGRATED PHARMACOKINETIC AND PHARMACODYNAMIC STUDY OF ARSENITE ACTION 2. HEME OXYGENASE INDUCTION IN MICE

    EPA Science Inventory

    Heme oxygenase (HO) is the rate-limiting enzyme in heme degradation and its activity has a significant impact on intracellular heme pools. Rat studies indicate that HO induction is a sensitive, dose-dependent response to arsenite (AsIII) exposure in both liver and kidney. The o...

  8. Heme oxygenase-1 deficiency alters erythroblastic island formation, steady-state erythropoiesis and red blood cell lifespan in mice.

    PubMed

    Fraser, Stuart T; Midwinter, Robyn G; Coupland, Lucy A; Kong, Stephanie; Berger, Birgit S; Yeo, Jia Hao; Andrade, Osvaldo Cooley; Cromer, Deborah; Suarna, Cacang; Lam, Magda; Maghzal, Ghassan J; Chong, Beng H; Parish, Christopher R; Stocker, Roland

    2015-05-01

    Heme oxygenase-1 is critical for iron recycling during red blood cell turnover, whereas its impact on steady-state erythropoiesis and red blood cell lifespan is not known. We show here that in 8- to 14-week old mice, heme oxygenase-1 deficiency adversely affects steady-state erythropoiesis in the bone marrow. This is manifested by a decrease in Ter-119(+)-erythroid cells, abnormal adhesion molecule expression on macrophages and erythroid cells, and a greatly diminished ability to form erythroblastic islands. Compared with wild-type animals, red blood cell size and hemoglobin content are decreased, while the number of circulating red blood cells is increased in heme oxygenase-1 deficient mice, overall leading to microcytic anemia. Heme oxygenase-1 deficiency increases oxidative stress in circulating red blood cells and greatly decreases the frequency of macrophages expressing the phosphatidylserine receptor Tim4 in bone marrow, spleen and liver. Heme oxygenase-1 deficiency increases spleen weight and Ter119(+)-erythroid cells in the spleen, although α4β1-integrin expression by these cells and splenic macrophages positive for vascular cell adhesion molecule 1 are both decreased. Red blood cell lifespan is prolonged in heme oxygenase-1 deficient mice compared with wild-type mice. Our findings suggest that while macrophages and relevant receptors required for red blood cell formation and removal are substantially depleted in heme oxygenase-1 deficient mice, the extent of anemia in these mice may be ameliorated by the prolonged lifespan of their oxidatively stressed erythrocytes.

  9. Induction of heme oxygenase 1 by nitrosative stress. A role for nitroxyl anion.

    PubMed

    Naughton, Patrick; Foresti, Roberta; Bains, Sandip K; Hoque, Martha; Green, Colin J; Motterlini, Roberto

    2002-10-25

    Nitric oxide and S-nitrosothiols modulate a variety of important physiological activities. In vascular cells, agents that release NO and donate nitrosonium cation (NO(+)), such as S-nitrosoglutathione, are potent inducers of the antioxidant protein heme oxygenase 1 (HO-1) (Foresti, R., Clark, J. E., Green, C. J., and Motterlini, R. (1997) J. Biol. Chem. 272, 18411-18417; Motterlini, R., Foresti, R., Bassi, R., Calabrese, V., Clark, J. E., and Green, C. J. (2000) J. Biol. Chem. 275, 13613-13620). Here, we report that Angeli's salt (AS) (0.25-2 mm), a compound that releases nitroxyl anion (NO(-)) at physiological pH, induces HO-1 mRNA and protein expression in a concentration- and time-dependent manner, resulting in increased heme oxygenase activity in rat H9c2 cells. A time course analysis revealed that NO(-)-mediated HO-1 expression is transient and gradually disappears within 24 h, in accordance with the short half-life of AS at 37 degrees C (t(12) = 2.3 min). Interestingly, multiple additions of AS at lower concentrations (50 or 100 microm) over a period of time still promoted a significant increase in heme oxygenase activity. Experiments performed using a NO scavenger and the NO electrode confirmed that NO(-), not NO, is the species involved in HO-1 induction by AS; however, the effect on heme oxygenase activity can be amplified by accelerating the rate of NO(-) oxidation. N-Acetylcysteine almost completely abolished AS-mediated induction of HO-1, whereas a glutathione synthesis inhibitor (buthionine sulfoximine) significantly decreased heme oxygenase activation by AS, indicating that sulfydryl groups are crucial targets in the regulation of HO-1 expression by NO(-). We conclude that NO(-), in analogy with other reactive nitrogen species, is a potent inducer of heme oxygenase activity and HO-1 protein expression. These findings indicate that heme oxygenase can act both as a sensor to and target of redox-based mechanisms involving NO and extend our knowledge on

  10. Heme oxygenase-1 promotes survival of renal cancer cells through modulation of apoptosis- and autophagy-regulating molecules.

    PubMed

    Banerjee, Pallavi; Basu, Aninda; Wegiel, Barbara; Otterbein, Leo E; Mizumura, Kenji; Gasser, Martin; Waaga-Gasser, Ana Maria; Choi, Augustine M; Pal, Soumitro

    2012-09-14

    The cytoprotective enzyme heme oxygenase-1 (HO-1) is often overexpressed in different types of cancers and promotes cancer progression. We have recently shown that the Ras-Raf-ERK pathway induces HO-1 to promote survival of renal cancer cells. Here, we examined the possible mechanisms underlying HO-1-mediated cell survival. Considering the growing evidence about the significance of apoptosis and autophagy in cancer, we tried to investigate how HO-1 controls these events to regulate survival of cancer cells. Rapamycin (RAPA) and sorafenib, two commonly used drugs for renal cancer treatment, were found to induce HO-1 expression in renal cancer cells Caki-1 and 786-O; and the apoptotic effect of these drugs was markedly enhanced upon HO-1 knockdown. Overexpression of HO-1 protected the cells from RAPA- and sorafenib-induced apoptosis and also averted drug-mediated inhibition of cell proliferation. HO-1 induced the expression of anti-apoptotic Bcl-xL and decreased the expression of autophagic proteins Beclin-1 and LC3B-II; while knockdown of HO-1 down-regulated Bcl-xL and markedly increased LC3B-II. Moreover, HO-1 promoted the association of Beclin-1 with Bcl-xL and Rubicon, a novel negative regulator of autophagy. Drug-induced dissociation of Beclin-1 from Rubicon and the induction of autophagy were also inhibited by HO-1. Together, our data signify that HO-1 is up-regulated in renal cancer cells as a survival strategy against chemotherapeutic drugs and promotes growth of tumor cells by inhibiting both apoptosis and autophagy. Thus, application of chemotherapeutic drugs along with HO-1 inhibitor may elevate therapeutic efficiency by reducing the cytoprotective effects of HO-1 and by simultaneous induction of both apoptosis and autophagy.

  11. Desferrioxamine reduces ultrahigh-molecular-weight polyethylene-induced osteolysis by restraining inflammatory osteoclastogenesis via heme oxygenase-1

    PubMed Central

    Kang, Hui; Yan, Yufei; Jia, Peng; Yang, Kai; Guo, Changjun; Chen, Hao; Qi, Jin; Qian, Niandong; Xu, Xing; Wang, Fei; Li, Changwei; Guo, Lei; Deng, Lianfu

    2016-01-01

    As wear particles-induced osteolysis still remains the leading cause of early implant loosening in endoprosthetic surgery, and promotion of osteoclastogenesis by wear particles has been confirmed to be responsible for osteolysis. Therapeutic agents targeting osteoclasts formation are considered for the treatment of wear particles-induced osteolysis. In the present study, we demonstrated for the first time that desferrioxamine (DFO), a powerful iron chelator, could significantly alleviate osteolysis in an ultrahigh-molecular-weight polyethylene (UHMWPE) particles-induced mice calvaria osteolysis model. Furthermore, DFO attenuated calvaria osteolysis by restraining enhanced inflammatory osteoclastogenesis induced by UHMWPE particles. Consistent with the in vivo results, we found DFO was also able to inhibit osteoclastogenesis in a dose-dependent manner in vitro, as evidenced by reduction of osteoclasts formation and suppression of osteoclast specific genes expression. In addition, DFO dampened osteoclasts differentiation and formation at early stage but not at late stage. Mechanistically, the reduction of osteoclastogenesis by DFO was due to increased heme oxygenase-1 (HO-1) expression, as decreased osteoclasts formation induced by DFO was significantly restored after HO-1 was silenced by siRNA, while HO-1 agonist COPP treatment enhanced DFO-induced osteoclastogenesis inhibition. In addition, blocking of p38 mitogen-activated protein kinase (p38MAPK) signaling pathway promoted DFO-induced HO-1 expression, implicating that p38 signaling pathway was involved in DFO-mediated HO-1 expression. Taken together, our results suggested that DFO inhibited UHMWPE particles-induced osteolysis by restraining inflammatory osteoclastogenesis through upregulation of HO-1 via p38MAPK pathway. Thus, DFO might be used as an innovative and safe therapeutic alternative for treating wear particles-induced aseptic loosening. PMID:27787522

  12. PTEN deletion and heme oxygenase-1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome.

    PubMed

    Li, Yunru; Su, Jie; DingZhang, Xiao; Zhang, Jianguo; Yoshimoto, Maisa; Liu, Shuhong; Bijian, Krikor; Gupta, Ajay; Squire, Jeremy A; Alaoui Jamali, Moulay A; Bismar, Tarek A

    2011-05-01

    Overexpression of the pro-survival protein heme oxygenase-1 (HO-1) and loss of the pro-apoptotic tumour suppressor PTEN are common events in prostate cancer (PCA). We assessed the occurrence of both HO-1 expression and PTEN deletion in two cohorts of men with localized and castration-resistant prostate cancer (CRPC). The phenotypic cooperation of these markers was examined in preclinical and clinical models. Overall, there was a statistically significant difference in HO-1 epithelial expression between benign, high-grade prostatic intraepithelial neoplasia (HGPIN), localized PCA, and CRPC (p < 0.0001). The highest epithelial HO-1 expression was noted in CRPC (2.00 ± 0.89), followed by benign prostate tissue (1.49 ± 1.03) (p = 0.0003), localized PCA (1.20 ± 0.95), and HGPIN (1.07 ± 0.87) (p < 0.0001). However, the difference between HGPIN and PCA was not statistically significant (p = 0.21). PTEN deletions were observed in 35/55 (63.6%) versus 68/183 (37.1%) cases of CRPC and localized PCA, respectively. Although neither HO-1 overexpression nor PTEN deletions alone in localized PCA showed a statistically significant association with PSA relapse, the combined status of both markers correlated with disease progression (log-rank test, p = 0.01). In a preclinical model, inhibition of HO-1 by shRNA in PTEN-deficient PC3M cell line and their matched cells where PTEN is restored strongly reduced cell growth and invasion in vitro and inhibited tumour growth and lung metastasis formation in mice compared to cells where only HO-1 is inhibited or PTEN is restored. In summary, we provide clinical and experimental evidence for cooperation between epithelial HO-1 expression and PTEN deletions in relation to the PCA patient's outcome. These findings could potentially lead to the discovery of novel therapeutic modalities for advanced PCA.

  13. Iron depletion in HCT116 cells diminishes the upregulatory effect of phenethyl isothiocyanate on heme oxygenase-1.

    PubMed

    Bolloskis, Michael P; Carvalho, Fabiana P; Loo, George

    2016-04-15

    Some of the health-promoting properties of cruciferous vegetables are thought to be partly attributed to isothiocyanates. These phytochemicals can upregulate the expression of certain cytoprotective stress genes, but it is unknown if a particular nutrient is involved. Herein, the objective was to ascertain if adequate iron is needed for enabling HCT116 cells to optimally express heme oxygenase-1 (HO-1) when induced by phenethyl isothiocyanate (PEITC). PEITC increased HO-1 expression and also nuclear translocation of Nrf2, which is a transcription factor known to activate the HO-1 gene. However, in HCT116 cells that were made iron-deficient by depleting intracellular iron with deferoxamine (DFO), PEITC was less able to increase HO-1 expression and nuclear translocation of Nrf2. These suppressive effects of DFO were overcome by replenishing the iron-deficient cells with the missing iron. To elucidate these findings, it was found that PEITC-induced HO-1 upregulation can be inhibited with thiol antioxidants (glutathione and N-acetylcysteine). Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin) and a superoxide scavenger (Tiron) each inhibited PEITC-induced HO-1 upregulation. In doing so, diphenyleneiodonium was the most potent and also inhibited nuclear translocation of redox-sensitive Nrf2. Collectively, the results imply that the HO-1 upregulation by PEITC involves an iron-dependent, oxidant signaling pathway. Therefore, it is concluded that ample iron is required to enable PEITC to fully upregulate HO-1 expression in HCT116 cells. As such, it is conceivable that iron-deficient individuals may not reap the full health benefits of eating PEITC-containing cruciferous vegetables that via HO-1 may help protect against multiple chronic diseases.

  14. Expression and actions of heme oxygenase in the renal medulla of rats.

    PubMed

    Zou, A P; Billington, H; Su, N; Cowley, A W

    2000-01-01

    Recent studies have shown that the heme oxygenase (HO) product, carbon monoxide (CO), induces vasodilation and that inhibition of HO produces a sustained hypertension in rats. Given the importance of renal medullary blood flow (MBF) in the long-term control of arterial blood pressure, we hypothesized that the HO/CO system may play an important role in maintaining the constancy of blood flow to the renal medulla, which in turn contributes to the antihypertensive effects of the renal medulla. To test this hypothesis, we first determined the expression of 2 isoforms of HO (HO-1 and HO-2) in the different kidney regions. By Northern blot analyses, the abundance of both isozyme mRNAs was found highest in the renal inner medulla and lowest in the renal cortex. The transcripts for HO-1 in the renal outer medulla and inner medulla were 2.5 and 3.7 times that expressed in the renal cortex and those for HO-2 in the outer medulla and inner medulla were 1.3 and 1.6 times that expressed in the renal cortex, respectively. Western blot analyses of both enzymes showed the same expression pattern in these kidney regions as the mRNAs. To determine the role that HO plays in the control of renal MBF, we examined the effect of the HO inhibitor zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) on cortical blood flow and MBF in anesthetized rats. ZnDPBG was given by renal medullary interstitial infusion, and cortical blood flow and MBF were measured by laser Doppler flowmetry. Renal medullary interstitial infusion of ZnDPBG at a dose of 60 nmol/kg per minute produced a 31% decrease in MBF over a period of 60 minutes as measured by laser Doppler flow signal (0.62+/-0.02 vs 0.43+/-0.04 V in control vs ZnDPBG). With the use of an in vivo microdialysis technique, ZnDPBG was found to significantly reduce renal medullary cGMP concentrations when infused into the renal medullary interstitial space. These results suggest that both HO-1 and HO-2 are highly expressed in the renal medulla, that HO and

  15. Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity

    SciTech Connect

    Kang, Su Jin; Ryoo, In-geun; Lee, Young Joon; Kwak, Mi-Kyoung

    2012-01-01

    Silver nanoparticles (nano-Ag) have been widely used in various commercial products including textiles, electronic appliances and biomedical products. However, there remains insufficient information on the potential risk of nano-Ag to human health and environment. In the current study, we have investigated the role of NF-E2-related factor 2 (Nrf2) transcription factor in nano-Ag-induced cytotoxicity. When Nrf2 expression was blocked using interring RNA expression in ovarian carcinoma cell line, nano-Ag treatment showed a substantial decrease in cell viability with concomitant increases in apoptosis and DNA damage compared to the control cells. Target gene analysis revealed that the expression of heme oxygenase-1 (HO-1) was highly elevated by nano-Ag in nonspecific shRNA expressing cells, while Nrf2 knockdown cells (NRF2i) did not increase HO-1 expression. The role of HO-1 in cytoprotection against nano-Ag was reinforced by results using pharmacological inducer of HO-1: cobalt protoporphyrin-mediated HO-1 activation in the NRF2i cells prevented nano-Ag-mediated cell death. Similarly, pharmacological or genetic inhibition of HO-1 in nonspecific control cells exacerbated nano-Ag toxicity. As the upstream signaling mechanism, nano-Ag required the phosphoinositide 3-kinase (PI3K) and p38MAPK signaling cascades for HO-1 induction. The treatment with either PI3K inhibitor or p38MAPK inhibitor suppressed HO-1 induction and intensified nano-Ag-induced cell death. Taken together, these results suggest that Nrf2-dependent HO-1 up-regulation plays a protective role in nano-Ag-induced DNA damage and consequent cell death. In addition, nano-Ag-mediated HO-1 induction is associated with the PI3K and p38MAPK signaling pathways. -- Highlights: ► Role of Nrf2 signaling in silver nanoparticle toxicity. ► Silver nanoparticle toxicity is increased by Nrf2 blockade. ► Nrf2-dependent HO-1 induction protects cells from silver nanoparticle toxicity. ► PI3K and p38MAPK cascades are

  16. Cyclo-oxygenase isozymes in mucosal ulcerogenic and functional responses following barrier disruption in rat stomachs

    PubMed Central

    Hirata, Takuya; Ukawa, Hideki; Yamakuni, Hisashi; Kato, Shinichi; Takeuchi, Koji

    1997-01-01

    We examined the effects of selective and nonselective cyclo-oxygenase (COX) inhibitors on various functional changes in the rat stomach induced by topical application of taurocholate (TC) and investigated the preferential role of COX isozymes in these responses. Rat stomachs mounted in ex vivo chambers were perfused with 50 mM HCl and transmucosal potential difference (p.d.), mucosal blood flow (GMBF), luminal acid loss and luminal levels of prostaglandin E2 (PGE2) were measured before, during and after exposure to 20 mM TC. Mucosal application of TC in control rats caused a reduction in p.d., followed by an increase of luminal acid loss and GMBF, and produced only minimal damage in the mucosa 2 h later. Pretreatment with indomethacin (10 mg kg−1, s.c.), a nonselective COX-1 and COX-2 inhibitor, attenuated the gastric hyperaemic response caused by TC without affecting p.d. and acid loss, resulting in haemorrhagic lesions in the mucosa. In contrast, selective COX-2 inhibitors, such as NS-398 and nimesulide (10 mg kg−1, s.c.), had no effect on any of the responses induced by TC and did not cause gross damage in the mucosa. Luminal PGE2 levels were markedly increased during and after exposure to TC and this response was significantly inhibited by indomethacin but not by either NS-398 or nimesulide. The expression of COX-1-mRNA was consistently detected in the gastric mucosa before and after TC treatment, while a faint expression of COX-2-mRNA was detected only 2 h after TC treatment. Both NS-398 and nimesulide significantly suppressed carrageenan-induced rat paw oedema, similar to indomethacin. These results confirmed a mediator role for prostaglandins in the gastric hyperaemic response following TC-induced barrier disruption, and suggest that COX-1 but not COX-2 is a key enzyme in maintaining ‘housekeeping' functions in the gastric mucosa under both normal and adverse conditions. PMID:9351500

  17. Evidence that oxidative dephosphorylation by the nonheme Fe(II), α-ketoglutarate:UMP oxygenase occurs by stereospecific hydroxylation.

    PubMed

    Goswami, Anwesha; Liu, Xiaodong; Cai, Wenlong; Wyche, Thomas P; Bugni, Tim S; Meurillon, Maïa; Peyrottes, Suzanne; Perigaud, Christian; Nonaka, Koichi; Rohr, Jürgen; Van Lanen, Steven G

    2017-02-01

    LipL and Cpr19 are nonheme, mononuclear Fe(II)-dependent, α-ketoglutarate (αKG):UMP oxygenases that catalyze the formation of CO2 , succinate, phosphate, and uridine-5'-aldehyde, the last of which is a biosynthetic precursor for several nucleoside antibiotics that inhibit bacterial translocase I (MraY). To better understand the chemistry underlying this unusual oxidative dephosphorylation and establish a mechanistic framework for LipL and Cpr19, we report herein the synthesis of two biochemical probes-[1',3',4',5',5'-(2) H]UMP and the phosphonate derivative of UMP-and their activity with both enzymes. The results are consistent with a reaction coordinate that proceeds through the loss of one (2) H atom of [1',3',4',5',5'-(2) H]UMP and stereospecific hydroxylation geminal to the phosphoester to form a cryptic intermediate, (5'R)-5'-hydroxy-UMP. Thus, these enzyme catalysts can additionally be assigned as UMP hydroxylase-phospholyases.

  18. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1.

    PubMed

    Farombi, E Olatunde; Shrotriya, Sangeeta; Na, Hye-Kyung; Kim, Sung-Hoon; Surh, Young-Joon

    2008-04-01

    Curcumin (diferuloymethane), a yellow colouring agent present in the rhizome of Curcuma longa Linn (Zingiberaceae), has been reported to possess anti-inflammatory, antioxidant, antimutagenic and anticarcinogenic activities. Curcumin exerts its chemoprotective and chemopreventive effects via multiple mechanisms. It has been reported to induce expression of the antioxidant enzymes in various cell lines. Heme oxygenase-1 (HO-1) is an important antioxidant enzyme that plays a pivotal role in cytoprotection against noxious stimuli of both endogenous and exogenous origin. In the present study, we found that oral administration of curcumin at 200mg/kg dose for four consecutive days not only protected against dimethylnitrosamine (DMN)-induced hepatic injury, but also resulted in more than three-fold induction of HO-1 protein expression as well as activity in rat liver. Inhibition of HO-1 activity by zinc protoporphyrin-IX abrogated the hepatoprotective effect of curcumin against DMN toxicity. NF-E2-related factor 2 (Nrf2) plays a role in the cellular protection against oxidative stress through antioxidant response element (ARE)-directed induction of several phase-2 detoxifying and antioxidant enzymes including HO-1. Curcumin administration resulted in enhanced nuclear translocation and ARE-binding of Nrf2. Taken together, these findings suggest that curcumin protects against DMN-induced hepatotoxicity, at least in part, through ARE-driven induction of HO-1 expression.

  19. Hesperidin upregulates heme oxygenase-1 to attenuate hydrogen peroxide-induced cell damage in hepatic L02 cells.

    PubMed

    Chen, Ming-Cang; Ye, Yi-Yi; Ji, Guang; Liu, Jian-Wen

    2010-03-24

    Hesperidin, a naturally occurring flavonoid presents in fruits and vegetables, has been reported to exert a wide range of pharmacological effects that include antioxidant, anti-inflammatory, antihypercholesterolemic, and anticarcinogenic actions. However, the cytoprotection and mechanism of hesperidin to neutralize oxidative stress in human hepatic L02 cells remain unclear. In this work, we assessed the capability of hesperidin to attenuate hydrogen peroxide (H(2)O(2))-induced cell damage by augmenting the cellular antioxidant defense. Real-time quantitative polymerase chain reaction, Western blot, and enzyme activity assay demonstrated that hesperidin upregulated heme oxygenase-1 (HO-1) expression to protect hepatocytes against oxidative stress. In addition, hesperidin also promoted nuclear translocation of nuclear factor erythroid 2-related factor (Nrf2). What's more, hesperidin exhibited activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). Besides, ERK1/2 inhibitor significantly inhibited hesperidin-mediated HO-1 upregulation and Nrf2 nuclear translocation. Taken together, the above findings suggested that hesperidin augmented cellular antioxidant defense capacity through the induction of HO-1 via ERK/Nrf2 signaling. Therefore, hesperidin has potential as a therapeutic agent in the treatment of oxidative stress-related hepatocyte injury and liver dysfunctions.

  20. The role of inducible nitric oxide synthase and haem oxygenase 1 in growth and development of dental tissue'.

    PubMed

    Speranza, Lorenza; Pesce, Mirko; Franceschelli, Sara; Mastrangelo, Filiberto; Patruno, Antonia; De Lutiis, Maria Anna; Tetè, Stefano; Felaco, Mario; Grilli, Alfredo

    2012-04-01

    In this study, the activity of the antioxidant enzyme network was assessed spectrophotometrically in samples of dental pulp and dental papilla taken from third-molar gem extracts. The production of nitric oxide by the conversion of l-(2,3,4,5)-[3H] arginine to l-(3H) citrulline, the activity of haem oxygenase 1 (HO-1) through bilirubin synthesis and the expression of inducible nitric oxide synthase (iNOS), HO-1 proteins and messenger RNA by Western blot and reverse-transcribed polymerase chain reaction were also tested. The objective of this study was to evaluate the role of two proteins, iNOS and HO-1, which are upregulated by a condition of oxidative stress present during dental tissue differentiation and development. This is fundamental for guaranteeing proper homeostasis favouring a physiological tissue growth. The results revealed an over-expression of iNOS and HO-1 in the papilla, compared with that in the pulp, mediated by the nuclear factor kappa B transcription factor activated by the reactive oxygen species that acts as scavengers for the superoxide radicals. HO-1, a metabolically active enzyme in the papilla, but not in the pulp, seems to inhibit the iNOS enzyme by a crosstalk between the two proteins. We suggest that the probable mechanism through which this happens is the interaction of HO-1 with haem, a cofactor dimer indispensible for iNOS, and the subsequent suppression of its metabolic activity.

  1. Up-regulation of heme oxygenase-1 by isoflurane preconditioning during tolerance against neuronal injury induced by oxygen glucose deprivation.

    PubMed

    Li, Qifang; Zhu, Yesen; Jiang, Hong; Xu, Hui; Liu, Heping

    2008-09-01

    Heme oxygenase (HO) is the rate-limiting enzyme in the degradation of heme to produce bile pigments and carbon monoxide. The HO-1 isozyme is induced by a variety of factors such as heat, heme, ischemia, and hydrogen peroxide. In recent years, mounting findings have suggested that HO-1 has a neuroprotective activity against ischemic injury. The neuroprotective role of isoflurane, a commonly used anesthetic, has been well documented, but little is known about the underlying mechanisms involved. Recently, isoflurane has been shown to up-regulate HO-1 in the liver. In this study, we show that isoflurane preconditioning promotes the survival of cultured ischemic hippocampal neurons by increasing the number of surviving neurons and their viability. Further study by reverse transcription-polymerase chain reaction and Western blot analysis showed that isoflurane preconditioning significantly increases HO-1 expression in oxygen glucose deprivation (OGD)-induced neuronal injury. Furthermore, inhibition of HO activity by tin protoporphyrin partially abolishes isoflurane preconditioning's protective effect as measured by lactate dehydrogenase release in OGD neurons. These findings indicated that the neuroprotective role of isoflurane preconditioning against OGD-induced injury might be associated with its role in up-regulating HO-1 in ischemic neurons.

  2. Protein-tyrosine-kinase-dependent expression of cyclo-oxygenase-1 and -2 mRNAs in human endothelial cells.

    PubMed Central

    Hirai, K; Takayama, H; Tomo, K; Okuma, M

    1997-01-01

    Endothelial cells possess constitutive or inducible cyclo-oxygenase (COX) isoenzymes for prostacyclin production, but the mechanisms for their expression are largely unknown. We found that vanadate, an inhibitor of protein-tyrosine phosphatases, induced the expression of two COX isoenzyme mRNAs in human umbilical vein endothelial cells (HUVEC) in a time- and dose-dependent manner. Vanadate also stimulated an increase in COX-2 protein levels, but did not affect significantly the levels of constitutively expressed COX-1 protein. Synergistic enhancement of expression of the two COX isoenzyme mRNAs was observed on stimulation of HUVEC with vanadate plus interleukin-1alpha. Tyrphostin-47, which as an inhibitor of protein-tyrosine kinases abolished vanadate-induced protein-tyrosine phosphorylation, inhibited expression of the two COX isoenzyme mRNAs in HUVEC stimulated with vanadate or interleukin-1alpha. These data provide conclusive evidence that activation of protein-tyrosine kinases is causally linked to expression of the mRNAs for the two COX isoenzymes in HUVEC. PMID:9065752

  3. Heme oxygenase-1 is critically involved in placentation, spiral artery remodeling, and blood pressure regulation during murine pregnancy

    PubMed Central

    Zenclussen, Maria L.; Linzke, Nadja; Schumacher, Anne; Fest, Stefan; Meyer, Nicole; Casalis, Pablo A.; Zenclussen, Ana C.

    2015-01-01

    The onset of pregnancy implies the appearance of a new organ, the placenta. One main function of the placenta is to supply oxygen to the fetus via hemoproteins. In this review, we highlight the importance of the enzyme heme oxygenase-1 (HO-1) for pregnancy to be established and maintained. HO-1 expression is pivotal to promote placental function and fetal development, thus determining the success of pregnancy. The deletion of the gene Hmox1 in mice leads to inadequate remodeling of spiral arteries and suboptimal placentation followed by intrauterine growth restriction (IUGR) and fetal lethality. A partial Hmox1 deletion leads to IUGR as well, with heterozygote and wild-type fetuses being born, but Hmox1–/– significantly below the expected Mendelian rate. This strong phenotype is associated with diminished number of pregnancy-protective uterine natural killer (uNK) cells. Pregnant heterozygote females develop gestational hypertension. The protective HO-1 effects on placentation and fetal growth can be mimicked by the exogenous administration of carbon monoxide (CO), a product of heme catalyzed by HO-1. CO application promotes the in situ proliferation of uNK cells, restores placentation and fetal growth, while normalizing blood pressure. Similarly, HO-1 inhibition provokes hypertension in pregnant rats. The HO-1/CO axis plays a pivotal role in sustaining pregnancy and aids in the understanding of the biology of pregnancy and reveals a promising therapeutic application in the treatment of pregnancy complications. PMID:25628565

  4. Involvement of Heme Oxygenase-1 Participates in Anti-Inflammatory and Analgesic Effects of Aqueous Extract of Hibiscus taiwanensis

    PubMed Central

    Liu, Shu-Ling; Deng, Jeng-Shyan; Chiu, Chuan-Sung; Hou, Wen-Chi; Huang, Shyh-Shyun; Lin, Wang-Ching; Liao, Jung-Chun; Huang, Guan-Jhong

    2012-01-01

    Anti-inflammatory effects of the aqueous extract of Hibiscus taiwanensis (AHT) were used in lipopolysaccharide (LPS-)stimulated mouse macrophage RAW264.7 cells and carrageenan (Carr-)induced mouse paw edema model. When RAW264.7 macrophages were treated with AHT together with LPS, a concentration-dependent inhibition of nitric oxide (NO), tumor necrosis factor (TNF-α), and prostaglandin E2 (PGE2) levels productions were detected. Western blotting revealed that AHT blocked protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and elevated heme oxygenase-1 (HO-1), significantly. In the animal test, AHT decreased the paw edema at the 4th and the 5th h after Carr administration, and it increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the paw tissue. We also demonstrated AHT decreased the NO, TNF-α, and PGE2 levels on the serum level at the 5th h after the Carr injection. Western blotting revealed that AHT decreased Carr-induced iNOS, and COX-2, and increased HO-1 expressions at the 5th h in the edema paw. These findings demonstrated that AHT has excellent anti-inflammatory activities in vitro and in vivo and thus it has great potential to be used as a source for natural health products. PMID:22778769

  5. Aripiprazole increases NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1 in PC12 cells.

    PubMed

    Kaneko, Yoko S; Takayanagi, Takeshi; Nagasaki, Hiroshi; Kodani, Yu; Nakashima, Akira; Mori, Keiji; Suzuki, Atsushi; Itoh, Mitsuyasu; Kondo, Kazunao; Nagatsu, Toshiharu; Ota, Miyuki; Ota, Akira

    2015-06-01

    We previously showed that aripiprazole increases intracellular NADPH and glucose-6-phosphate dehydrogenase mRNA in PC12 cells. Aripiprazole presumably activates a system that concurrently detoxifies reactive oxygen species and replenishes NADPH. Nrf2, a master transcriptional regulator of redox homeostasis genes, also activates the pentose phosphate pathway, including NADPH production. Therefore, our aim was to determine whether aripiprazole activates Nrf2 in PC12 cells. Aripiprazole increased mRNA expression of Nrf2-dependent genes (NAD(P)H-quinone oxidoreductase-1, Nqo1; heme oxygenase-1, HO1; and glutamate-cysteine ligase catalytic subunit) and protein expression of Nqo1 and HO1 in these cells (p < 0.05). To maintain increased Nrf2 activity, it is necessary to inhibit Nrf2 degradation; this is done by causing Nrf2 to dissociate from Keap1 or β-TrCP. However, in aripiprazole-treated cells, the relative amount of Nrf2 anchored to Keap1 or β-TrCP was unaffected and Nrf2 in the nuclear fraction decreased (p < 0.05). Aripiprazole did not affect phosphorylation of Nrf2 at Ser40 and decreased the relative amount of acetylated Nrf2 (p < 0.05). The increase in Nqo1 and HO1 in aripiprazole-treated cells cannot be explained by the canonical Nrf2-degrading pathways. Further experiments are needed to determine the biochemical mechanisms underlying the aripiprazole-induced increase in these enzymes.

  6. Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy.

    PubMed

    Goga, Michal; Antreich, Sebastian J; Bačkor, Martin; Weckwerth, Wolfram; Lang, Ingeborg

    2016-09-19

    Lichen secondary metabolites can function as allelochemicals and affect the development and growth of neighboring bryophytes, fungi, vascular plants, microorganisms, and even other lichens. Lichen overgrowth on bryophytes is frequently observed in nature even though mosses grow faster than lichens, but there is still little information on the interactions between lichens and bryophytes.In the present study, we used extracts from six lichen thalli containing secondary metabolites like usnic acid, protocetraric acid, atranorin, lecanoric acid, nortistic acid, and thamnolic acid. To observe the influence of these metabolites on bryophytes, the moss Physcomitrella patens was cultivated for 5 weeks under laboratory conditions and treated with lichen extracts. Toxicity of natural mixtures of secondary metabolites was tested at three selected doses (0.001, 0.01, and 0.1 %). When the mixture contained substantial amounts of usnic acid, we observed growth inhibition of protonemata and reduced development of gametophores. Significant differences in cell lengths and widths were also noticed. Furthermore, usnic acid had a strong effect on cell division in protonemata suggesting a strong impact on the early stages of bryophyte development by allelochemicals contained in the lichen secondary metabolites.Biological activities of lichen secondary metabolites were confirmed in several studies such as antiviral, antibacterial, antitumor, antiherbivore, antioxidant, antipyretic, and analgetic action or photoprotection. This work aimed to expand the knowledge on allelopathic effects on bryophyte growth.

  7. Modulation of antimicrobial metabolites production by the fungus Aspergillus parasiticus

    PubMed Central

    Bracarense, Adriana A.P.; Takahashi, Jacqueline A.

    2014-01-01

    Biosynthesis of active secondary metabolites by fungi occurs as a specific response to the different growing environments. Changes in this environment alter the chemical and biological profiles leading to metabolites diversification and consequently to novel pharmacological applications. In this work, it was studied the influence of three parameters (fermentation length, medium composition and aeration) in the biosyntheses of antimicrobial metabolites by the fungus Aspergillus parasiticus in 10 distinct fermentation periods. Metabolism modulation in two culturing media, CYA and YES was evaluated by a 22 full factorial planning (ANOVA) and on a 23 factorial planning, role of aeration, medium composition and carbohydrate concentration were also evaluated. In overall, 120 different extracts were prepared, their HPLC profiles were obtained and the antimicrobial activity against A. flavus, C. albicans, E. coli and S. aureus of all extracts was evaluated by microdilution bioassay. Yield of kojic acid, a fine chemical produced by the fungus A. parasiticus was determined in all extracts. Statistical analyses pointed thirteen conditions able to modulate the production of bioactive metabolites by A. parasiticus. Effect of carbon source in metabolites diversification was significant as shown by the changes in the HPLC profiles of the extracts. Most of the extracts presented inhibition rates higher than that of kojic acid as for the extract obtained after 6 days of fermentation in YES medium under stirring. Kojic acid was not the only metabolite responsible for the activity since some highly active extracts showed to possess low amounts of this compound, as determined by HPLC. PMID:24948950

  8. The "first hit" toward alcohol reinforcement: role of ethanol metabolites.

    PubMed

    Israel, Yedy; Quintanilla, María Elena; Karahanian, Eduardo; Rivera-Meza, Mario; Herrera-Marschitz, Mario

    2015-05-01

    This review analyzes literature that describes the behavioral effects of 2 metabolites of ethanol (EtOH): acetaldehyde and salsolinol (a condensation product of acetaldehyde and dopamine) generated in the brain. These metabolites are self-administered into specific brain areas by animals, showing strong reinforcing effects. A wealth of evidence shows that EtOH, a drug consumed to attain millimolar concentrations, generates brain metabolites that are reinforcing at micromolar and nanomolar concentrations. Salsolinol administration leads to marked increases in voluntary EtOH intake, an effect inhibited by mu-opioid receptor blockers. In animals that have ingested EtOH chronically, the maintenance of alcohol intake is no longer influenced by EtOH metabolites, as intake is taken over by other brain systems. However, after EtOH withdrawal brain acetaldehyde has a major role in promoting binge-like drinking in the condition known as the "alcohol deprivation effect"; a condition seen in animals that have ingested alcohol chronically, are deprived of EtOH for extended periods, and are allowed EtOH re-access. The review also analyzes the behavioral effects of acetate, a metabolite that enters the brain and is responsible for motor incoordination at low doses of EtOH. Also discussed are the paradoxical effects of systemic acetaldehyde. Overall, evidence strongly suggests that brain-generated EtOH metabolites play a major role in the early ("first-hit") development of alcohol reinforcement and in the generation of relapse-like drinking.

  9. Secondary metabolite components of kiwifruit.

    PubMed

    McGhie, Tony K

    2013-01-01

    Both green and gold kiwifruit contain high concentrations of vitamin C, and much of the "health story" of kiwifruit involves this vitamin. Kiwifruit also contain other compounds that are bioactive and beneficial to health. In this chapter, the secondary metabolite composition of kiwifruit is presented. Although there are limited compositional data for kiwifruit published in the scientific literature, the concentrations of 42 compounds have been documented. Included are compounds that are often associated with "healthfulness," such as the vitamins (A, C, E, and K), carotenoids (lutein and β-carotene), folate, and antioxidant phenolic compounds. Metabolite discovery is advancing rapidly with the introduction of "metabolomic" studies where the goal is to identify and measure the complete metabolite composition of a sample. In a metabolomic experiment using liquid chromatography and high-resolution mass spectrometry, it was possible to measure more than 500 metabolites in kiwifruit extracts. The large number of detectable metabolites present suggests that there is an abundance of kiwifruit metabolites still to be discovered. Such studies will provide a more complete understanding of the metabolite composition of kiwifruit that will lead to new and improved hypotheses as to the function and effects of kiwifruit metabolites, including their relevance to human health.

  10. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells

    SciTech Connect

    Choi, Solip; Nguyen, Van Thu; Tae, Nara; Lee, Suhyun; Ryoo, Sungwoo; Min, Byung-Sun; Lee, Jeong-Hyung

    2014-11-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE{sub 2}, butyl lucidenateD{sub 2} (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these

  11. Cellular toxicity of nicotinamide metabolites.

    PubMed

    Rutkowski, Bolesław; Rutkowski, Przemysław; Słomińska, Ewa; Smolenski, Ryszard T; Swierczyński, Julian

    2012-01-01

    There are almost 100 different substances called uremic toxins. Nicotinamide derivatives are known as new family of uremic toxins. These uremic compounds play a role in an increased oxidative stress and disturbances in cellular repair processes by inhibiting poly (ADP-ribose) polymerase activity. New members of this family were discovered and described. Their toxic properties were a subject of recent studies. This study evaluated the concentration of 4-pyridone-3-carboxamid-1-β-ribonucleoside-triphosphate (4PYTP) and 4-pyridone-3-carboxamid-1-β-ribonucleoside-monophosphate (4PYMP) in erythrocytes of patients with chronic renal failure. Serum and red blood cells were collected from chronic renal failure patients on conservative treatment, those treated with hemodialysis, and at different times from those who underwent kidney transplantation. Healthy volunteers served as a control group. Nicotinamide metabolites were determined using liquid chromatography with mass spectrometry based on originally discovered and described method. Three novel compounds were described: 4-pyridone-3-carboxamid-1-β-ribonucleoside (4PYR), 4PYMP, and 4PYTP. 4PYR concentration was elevated in the serum, whereas 4PYMP and 4PYTP concentrations were augmented in erythrocytes of dialysis patients. Interestingly, concentrations of these compounds were less elevated during the treatment with erythropoietin-stimulating agents (ESAs). After successful kidney transplantation, concentrations of 4PYR and 4PYMP normalized according to the graft function, whereas that of 4PYTP was still elevated. During the incubation of erythrocytes in the presence of 4PYR, concentration of 4PYMP rose very rapidly while that of 4PYTP increased slowly. Therefore, we hypothesized that 4PYR, as a toxic compound, was actively absorbed by erythrocytes and metabolized to the 4PYMP and 4PYTP, which may interfere with function and life span of these cells.

  12. Nitric oxide inhibitor N omega -nitro-l-arginine methyl ester potentiates induction of heme oxygenase-1 in kidney ischemia/reperfusion model: a novel mechanism for regulation of the oxygenase.

    PubMed

    Mayer, Robert D; Wang, Xiaojun; Maines, Mahin D

    2003-07-01

    The biological significance of the heme oxygenase (HO) system's response to stress reflects functions of its products-CO and bile pigments. CO is a messenger molecule, whereas bile pigments are antioxidants and modulators of cell signaling. Presently, an unexpected mechanism for sustained suprainduction of renal HO-1 following ischemia/reperfusion injury is described. Inhibition of nitric-oxide synthase (NOS) activity by Nomega-nitro-l-arginine methyl ester (l-NAME) at the resumption of reperfusion of rat kidney subjected to bilateral ischemia (30 min) was as effective as the most potent HO-1 inducer, the spin trap agent n-tert-butyl-alpha-phenyl nitrone (PBN), in causing sustained suprainduction of HO-1 mRNA. PBN forms stable radicals of oxygen and nitrogen. Twenty-four hours after reperfusion, HO-1 mRNA measured approximately 30-fold that of the control in the presence of l-NAME treatment; in its absence, the transcript increased to only approximately 5-fold. At 4 h in the presence or absence of the l-NAME HO-1, mRNA was increased by approximately 30-fold. The transcript was translated to active protein as indicated by Western blotting, immunohistochemistry, and activity analyses. l-NAME was not effective given 1 h after resumption of reperfusion. Suprainduction was restricted to the kidney and not detected in the heart and aorta; ferritin expression in the kidney was not effected. It is reasoned that in tissue directly insulted by ischemia/reperfusion, increased production of NO radicals promotes the loss of HO-1 transcript. Because the absence of NO radicals and presence of PBN had a similar effect on HO-1, we propose that suprainduction of the gene is mainly caused by O2 radicals formed on reperfusion. Inhibition of NOS is potentially useful for sustained induction of HO-1 in organs that will be subjected to oxidative-stress insult.

  13. Heme oxygenase-1 could mediate the protective effects of hyperbaric oxygen preconditioning against hepatic ischemia-reperfusion injury in rats.

    PubMed

    Liu, Yi; Sun, Xue-Jun; Liu, Ji; Kang, Zhi-Min; Deng, Xiao-Ming

    2011-10-01

    1. Heme oxygenase 1 (HO-1) has been shown to play a pivotal role in the maintenance of cellular homeostasis when the liver undergoes sublethal stress, such as ischaemia-reperfusion (I/R) injury. In the present study, we investigated the protective role of HO-1 in hyperbaric oxygen (HBO) preconditioning against liver injury after I/R. 2. A total hepatic ischaemia (30 min) and reperfusion (60 min) injury model in rats was used in the present study. Preconditioned groups were exposed to HBO 24 h prior to the induction of I/R injury. Other groups were injected with zinc protoporphyrin IX (ZnPP) intraperitoneally 1 h before I/R to inhibit HO-1 activity. At the end of the reperfusion period, blood and liver samples were collected for the analysis of liver injury markers, morphological changes, and HO-1 expression and activity in the liver. 3. In untreated rats, I/R induced an increase in hepatic injury markers, such as plasma transaminases, inflammatory cytokines (tumour necrosis factor-α and interleukin-1β), and tissue malondialdehyde. However, HBO preconditioning attenuated the I/R-induced increases in these hepatic injury markers, and prevented both the necrosis and apoptosis of hepatocytes induced by I/R injury. Furthermore, HBO preconditioning significantly increased HO-1 mRNA and protein levels in the liver. In rats in which HO-1 activity had been inhibited with ZnPP pretreatment, the protective effects of HBO preconditioning against I/R injury were abolished. 4. In conclusion, HBO preconditioning can protect the liver against I/R injury and it appears that this effect might be mediated by the induction of HO-1.

  14. The NRF2-heme oxygenase-1 system modulates cyclosporine A-induced epithelial-mesenchymal transition and renal fibrosis

    PubMed Central

    Shin, Dong-ha; Park, Hyun-Min; Jung, Kyeong-Ah; Choi, Han-Gon; Kim, Jung-Ae; Kim, Dae-Duk; Kim, Sang Geon; Kang, Keon Wook; Ku, Sae Kwang; Kensler, Thomas W.; Kwak, Mi-Kyoung

    2013-01-01

    Epithelial-mesenchymal transition (EMT) is an underlying mechanism of tissue fibrosis by generating myofibroblasts, which serve as the primary source of extracellular matrix production from tissue epithelial cells. Recently, it has been suggested that EMT is implicated in immunosuppressive cyclosporine A (CsA)-induced renal fibrosis. In the present study, the potential role of NRF2, which is the master regulator of genes associated with the cellular antioxidant defense system, in CsA-induced EMT-renal fibrosis has been investigated. Pre-treatment of rat tubular epithelial NRK-52E cells with sulforaphane, an activator of NRF2, could prevent EMT gene changes such as the loss of E-cadherin and the increase of α-smooth muscle actin (α-SMA) expression. Conversely, genetic inhibition of NRF2 in these cells aggravated changes in CsA-induced EMT markers. These in vitro observations could be confirmed in vivo: CsA-treatment developed severe renal damage and fibrosis with increased expression of α-SMA in NRF2-deficient mice compared to wild-type mice. NRF2-mediated amelioration of CsA-EMT changes could be accounted in part by the regulation of heme oxygenase-1 (HO-1). CsA treatment increased HO-1 expression in an NRF2-dependent manner in NRK cells as well as murine fibroblasts. Induction of HO-1 by CsA appears to be advantageous by counteracting EMT gene changes: specific increase of HO-1 expression by cobalt protoporphyrin prevented CsA-mediated α-SMA induction, while genetic inhibition of HO-1 by siRNA substantially enhanced α-SMA induction compared to control cells. Collectively, our current results suggest that the NRF2-HO-1 system plays a protective role against CsA-induced renal fibrosis by modulating EMT gene changes. PMID:20096777

  15. Induction of heme oxygenase I (HMOX1) by HPP-4382: a novel modulator of Bach1 activity.

    PubMed

    Attucks, Otis C; Jasmer, Kimberly J; Hannink, Mark; Kassis, Jareer; Zhong, Zhenping; Gupta, Suparna; Victory, Sam F; Guzel, Mustafa; Polisetti, Dharma Rao; Andrews, Robert; Mjalli, Adnan M M; Kostura, Matthew J

    2014-01-01

    Oxidative stress is generated by reactive oxygen species (ROS) produced in response to metabolic activity and environmental factors. Increased oxidative stress is associated with the pathophysiology of a broad spectrum of inflammatory diseases. Cellular response to excess ROS involves the induction of antioxidant response element (ARE) genes under control of the transcriptional activator Nrf2 and the transcriptional repressor Bach1. The development of synthetic small molecules that activate the protective anti-oxidant response network is of major therapeutic interest. Traditional small molecules targeting ARE-regulated gene activation (e.g., bardoxolone, dimethyl fumarate) function by alkylating numerous proteins including Keap1, the controlling protein of Nrf2. An alternative is to target the repressor Bach1. Bach1 has an endogenous ligand, heme, that inhibits Bach1 binding to ARE, thus allowing Nrf2-mediated gene expression including that of heme-oxygenase-1 (HMOX1), a well described target of Bach1 repression. In this report, normal human lung fibroblasts were used to screen a collection of synthetic small molecules for their ability to induce HMOX1. A class of HMOX1-inducing compounds, represented by HPP-4382, was discovered. These compounds are not reactive electrophiles, are not suppressed by N-acetyl cysteine, and do not perturb either ROS or cellular glutathione. Using RNAi, we further demonstrate that HPP-4382 induces HMOX1 in an Nrf2-dependent manner. Chromatin immunoprecipitation verified that HPP-4382 treatment of NHLF cells reciprocally coordinated a decrease in binding of Bach1 and an increase of Nrf2 binding to the HMOX1 E2 enhancer. Finally we show that HPP-4382 can inhibit Bach1 activity in a reporter assay that measures transcription driven by the human HMOX1 E2 enhancer. Our results suggest that HPP-4382 is a novel activator of the antioxidant response through the modulation of Bach1 binding to the ARE binding site of target genes.

  16. Heme oxygenase-1 attenuates acute pulmonary inflammation by decreasing the release of segmented neutrophils from the bone marrow.

    PubMed

    Konrad, Franziska M; Braun, Stefan; Ngamsri, Kristian-Christos; Vollmer, Irene; Reutershan, Jörg

    2014-11-01

    Recruiting polymorphonuclear neutrophil granulocytes (PMNs) from circulation and bone marrow to the site of inflammation is one of the pivotal mechanisms of the innate immune system. During inflammation, the enzyme heme oxygenase 1 (HO-1) has been shown to reduce PMN migration. Although these effects have been described in various models, underlying mechanisms remain elusive. Recent studies revealed an influence of HO-1 on different cells of the bone marrow. We investigated the particular role of the bone marrow in terms of HO-1-dependent pulmonary inflammation. In a murine model of LPS inhalation, stimulation of HO-1 by cobalt (III) protoporphyrin-IX-chloride (CoPP) resulted in reduced segmented PMN migration into the alveolar space. In the CoPP group, segmented PMNs were also decreased intravascularly, and concordantly, mature and immature PMN populations were higher in the bone marrow. Inhibition of the enzyme by tin protoporphyrin-IX increased segmented and banded PMN migration into the bronchoalveolar lavage fluid with enhanced PMN release from the bone marrow and aggravated parameters of tissue inflammation. Oxidative burst activity was significantly higher in immature compared with mature PMNs. The chemokine stromal-derived factor-1 (SDF-1), which mediates homing of leukocytes into the bone marrow and is decreased in inflammation, was increased by CoPP. When SDF-1 was blocked by the specific antagonist AMD3100, HO-1 activation was no longer effective in curbing PMN trafficking to the inflamed lungs. In conclusion, we show evidence that the anti-inflammatory effects of HO-1 are largely mediated by inhibiting the release of segmented PMNs from the bone marrow rather than direct effects within the lung.

  17. Up-regulation of heme oxygenase-1 contributes to the amelioration of aluminum-induced oxidative stress in Medicago sativa.

    PubMed

    Cui, Weiti; Zhang, Jing; Xuan, Wei; Xie, Yanjie

    2013-10-15

    In this report, pharmacological, histochemical and molecular approaches were used to investigate the effect of heme oxygenase-1 (HO-1) up-regulation on the alleviation of aluminum (Al)-induced oxidative stress in Medicago sativa. Exposure of alfalfa to AlCl3 (0-100 μM) resulted in a dose-dependent inhibition of root elongation as well as the enhancement of thiobarbituric acid reactive substances (TBARS) content. 1 and 10 μM (in particular) Al(3+) increased alfalfa HO-1 transcript or its protein level, and HO activity in comparison with the decreased changes in 100 μM Al-treated samples. After recuperation, however, TBARS levels in 1 and 10 μM Al-treated alfalfa roots returned to control values, which were accompanied with the higher levels of HO activity. Subsequently, exogenous CO, a byproduct of HO-1, could substitute for the cytoprotective effects of the up-regulation of HO-1 in alfalfa plants upon Al stress, which was confirmed by the alleviation of TBARS and Al accumulation, as well as the histochemical analysis of lipid peroxidation and loss of plasma membrane integrity. Theses results indicated that endogenous CO generated via heme degradation by HO-1 could contribute in a critical manner to its protective effects. Additionally, the pretreatments of butylated hydroxytoluene (BHT) and hemin, an inducer of HO-1, exhibited the similar cytoprotective roles in the alleviation of oxidative stress, both of which were impaired by the potent inhibitor of HO-1, zinc protoporphyrin IX (ZnPP). However, the Al-induced inhibition of root elongation was not influenced by CO, BHT and hemin, respectively. Together, the present results showed up-regulation of HO-1 expression could act as a mechanism of cell protection against oxidative stress induced by Al treatment.

  18. Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer.

    PubMed

    Lu, Wenjie Jessie; Desta, Zeruesenay; Flockhart, David A

    2012-01-01

    The mechanism of tamoxifen action in the treatment of breast cancer is believed to be via active metabolites that act as potent estrogen receptor antagonists. Attempts to identify relationships between active metabolite concentrations and clinical outcomes have produced mixed results. Since anti-estrogenic effects may be brought about not only by estrogen antagonism, but also by reduced estrogen synthesis, we tested the ability of tamoxifen and its principal metabolites to inhibit aromatase in vitro. The activity of human aromatase in both recombinant and placental microsomal preparations was measured using the rate of generation of a fluorescent metabolite in the presence and absence of multiple concentrations of tamoxifen, endoxifen, N-desmethyl-tamoxifen, and Z-4-hydroxy-tamoxifen. Aromatase inhibition was further characterized by measuring the inhibition of testosterone metabolism to estradiol. The biochemical mechanisms of inhibition were documented and their inhibitory potency was compared. Using recombinant human aromatase, endoxifen, and N-desmethyl-tamoxifen were able to inhibit aromatase activity with K (i) values of 4.0 and 15.9 μM, respectively. Detailed characterization of inhibition by endoxifen and N-desmethyl-tamoxifen indicated non-competitive kinetics for both inhibitors. Similarly, endoxifen-inhibited testosterone metabolism via a non-competitive mechanism. No appreciable inhibition by tamoxifen or Z-4-hydroxy-tamoxifen was observed at similar concentrations. The relative inhibitory potency was: endoxifen > N-desmethyl-tamoxifen > Z-4-hydroxy-tamoxifen > tamoxifen. Similar data were obtained in human placental microsomes. Endoxifen and N-desmethyl-tamoxifen were found to be potent inhibitors of aromatase. Inhibition by these tamoxifen metabolites may contribute to the variability in clinical effects of tamoxifen in patients with breast cancer. Relationships between tamoxifen metabolite concentrations and clinical outcomes may be complex

  19. Rethinking cycad metabolite research.

    PubMed

    Snyder, Laura R; Marler, Thomas E

    2011-01-01

    Cycads are among the most ancient of extant Spermatophytes, and are known for their numerous pharmacologically active compounds. One compound in particular, β-methylamino-L-alanine (BMAA), has been implicated as the cause of amyotrophic lateral sclerosis/Parkinson dementia complex (ALS/PDC) on Guam. Previous studies allege that BMAA is produced exclusively by cyanobacteria, and is transferred to cycads through the symbiotic relationship between these cyanobacteria and the roots of cycads. We recently published data showing that Cycas micronesica seedlings grown without endophytic cyanobacteria do in fact increase in BMAA, invalidating the foundation of the BMAA hypothesis. We use this example to suggest that the frenzy centered on BMAA and other single putative toxins has hindered progress. The long list of cycad-specific compounds may have important roles in signaling or communication, but these possibilities have been neglected during decades of attempts to force single metabolites into a supposed anti-herbivory function. We propose that an unbiased, comprehensive approach may be a more appropriate means of proceeding with cycad biochemistry research.

  20. Synthesis Of Labeled Metabolites

    DOEpatents

    Martinez, Rodolfo A.; Silks, III, Louis A.; Unkefer, Clifford J.; Atcher, Robert

    2004-03-23

    The present invention is directed to labeled compounds, for example, isotopically enriched mustard gas metabolites including: [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1-[[2-(methylsulfinyl)ethyl]sulfonyl]-2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylsulfinyl)]; and, 2,2'-sulfinylbis([1,2-.sup.13 C.sub.2 ]ethanol of the general formula ##STR1## where Q.sup.1 is selected from the group consisting of sulfide (--S--), sulfone (--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), at least one C* is .sup.13 C, X is selected from the group consisting of hydrogen and deuterium, and Z is selected from the group consisting of hydroxide (--OH), and --Q.sup.2 --R where Q.sup.2 is selected from the group consisting of sulfide (--S--), sulfone(--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), and R is selected from the group consisting of hydrogen, a C.sub.1 to C.sub.4 lower alkyl, and amino acid moieties, with the proviso that when Z is a hydroxide and Q.sup.1 is a sulfide, then at least one X is deuterium.

  1. cDNA sequencing and expression analysis of Dicentrarchus labrax heme oxygenase-1.

    PubMed

    Prevot-D'Alvise, N; Pierre, S; Gaillard, S; Gouze, E; Gouze, J-N; Aubert, J; Richard, S; Grillasca, J-P

    2008-11-17

    The liver cDNA encoding heme oxygenase--1 (HO-1) was sequenced from European sea bass (Dicentrarchus labrax) (accession number no. EF139130). The HO-1 cDNA was 1250 bp in nucleotide length and the open reading frame encoded 277 amino acid residues. The deduced amino acid sequence of the European sea bass had 75% and 50% identity with the amino acid sequences of tetraodontiformes (Tetraodon nigroviridis and Takifugu rubripes) and human HO-1 proteins, respectively. A short hydrophobic transmembrane domain at the C--terminal region was found, and four histidine residues were highly conserved, including human his25 that is essential for HO catalytic activity. RT-PCR of mRNA from eight different European sea bass tissues revealed that, in a homeostatis state, the heme oxygenase--1 was abundant in the spleen and liver but not in the brain.

  2. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    PubMed

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics.

  3. Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic cyanobacterium Thermosynechococcus elongatus.

    PubMed

    Gubernator, Beata; Bartoszewski, Rafal; Kroliczewski, Jaroslaw; Wildner, Guenter; Szczepaniak, Andrzej

    2008-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) can be divided into two branches: the "red-like type" of marine algae and the "green-like type" of cyanobacteria, green algae, and higher plants. We found that the "green-like type" rubisco from the thermophilic cyanobacterium Thermosynechococcus elongatus has an almost 2-fold higher specificity factor compared with rubiscos of mesophilic cyanobacteria, reaching the values of higher plants, and simultaneously revealing an improvement in enzyme thermostability. The difference in the activation energies at the transition stages between the oxygenase and carboxylase reactions for Thermosynechococcus elongatus rubisco is very close to that of Galdieria partita and significantly higher than that of spinach. This is the first characterization of a "green-like type" rubisco from thermophilic organism.

  4. Characterization of a heme oxygenase of Clostridium tetani and its possible role in oxygen tolerance.

    PubMed

    Brüggemann, Holger; Bauer, Rosalie; Raffestin, Stéphanie; Gottschalk, Gerhard

    2004-10-01

    In order to colonize mammalian wounds, the anaerobic bacterium Clostridium tetani must presumably cope with temporary oxic conditions. Therefore, the recently decoded genome sequence was searched for genes which could confer oxygen tolerance. A few identified systems such as superoxide dismutases and peroxidases are probably responsible for this protection against toxic oxygen species. Another system was detected, a heme oxygenase which could have a role in establishing or maintaining an anoxic microenvironment in the process of wound colonization. The hemT gene encoding the heme oxygenase is expressed in C. tetani, as shown by reverse transcription-PCR. When overexpressed in Escherichia coli, the enzyme converts heme to biliverdin under strict oxic conditions.

  5. How astrocyte networks may contribute to cerebral metabolite clearance

    PubMed Central

    Asgari, Mahdi; de Zélicourt, Diane; Kurtcuoglu, Vartan

    2015-01-01

    The brain possesses an intricate network of interconnected fluid pathways that are vital to the maintenance of its homeostasis. With diffusion being the main mode of solute transport in cerebral tissue, it is not clear how bulk flow through these pathways is involved in the removal of metabolites. In this computational study, we show that networks of astrocytes may contribute to the passage of solutes between tissue and paravascular spaces (PVS) by serving as low resistance pathways to bulk water flow. The astrocyte networks are connected through aquaporin-4 (AQP4) water channels with a parallel, extracellular route carrying metabolites. Inhibition of the intracellular route by deletion of AQP4 causes a reduction of bulk flow between tissue and PVS, leading to reduced metabolite clearance into the venous PVS or, as observed in animal studies, a reduction of tracer influx from arterial PVS into the brain tissue. PMID:26463008

  6. Chemical and Physical Characterization of the Activation of Ribulosebiphosphate Carboxylase/Oxygenase

    DOE R&D Accomplishments Database

    Donnelly, M. I.; Ramakrishnan, V.; Hartman, F. C.

    1983-08-01

    Molecular structure of ribulosebiphosphate carboxylase/oxygenase isolated from Rhodospirillium was compared with the enzyme isolated from Alcaligens eutrophus. Peptides derived from the active center of the bacterial enzyme were highly homologous with those isolated from spinach. Molecular shapes of the carboxylases were estimated using neutron scattering data. These studies suggested that the enzyme as isolated from R. rubrum is a solid prolate ellipsoid or cylinder, while the spinach enzyme resembles a hollow sphere.

  7. Dicamba Monooxygenase: Structural Insights into a Dynamic Rieske Oxygenase that Catalyzes an Exocyclic Monooxygenation

    SciTech Connect

    D'Ordine, Robert L.; Rydel, Timothy J.; Storek, Michael J.; Sturman, Eric J.; Moshiri, Farhad; Bartlett, Ryan K.; Brown, Gregory R.; Eilers, Robert J.; Dart, Crystal; Qi, Youlin; Flasinski, Stanislaw; Franklin, Sonya J.

    2009-09-08

    Dicamba (2-methoxy-3,6-dichlorobenzoic acid) O-demethylase (DMO) is the terminal Rieske oxygenase of a three-component system that includes a ferredoxin and a reductase. It catalyzes the NADH-dependent oxidative demethylation of the broad leaf herbicide dicamba. DMO represents the first crystal structure of a Rieske non-heme iron oxygenase that performs an exocyclic monooxygenation, incorporating O{sub 2} into a side-chain moiety and not a ring system. The structure reveals a 3-fold symmetric trimer ({alpha}{sub 3}) in the crystallographic asymmetric unit with similar arrangement of neighboring inter-subunit Rieske domain and non-heme iron site enabling electron transport consistent with other structurally characterized Rieske oxygenases. While the Rieske domain is similar, differences are observed in the catalytic domain, which is smaller in sequence length than those described previously, yet possessing an active-site cavity of larger volume when compared to oxygenases with larger substrates. Consistent with the amphipathic substrate, the active site is designed to interact with both the carboxylate and aromatic ring with both key polar and hydrophobic interactions observed. DMO structures were solved with and without substrate (dicamba), product (3,6-dichlorosalicylic acid), and either cobalt or iron in the non-heme iron site. The substitution of cobalt for iron revealed an uncommon mode of non-heme iron binding trapped by the non-catalytic Co{sup 2+}, which, we postulate, may be transiently present in the native enzyme during the catalytic cycle. Thus, we present four DMO structures with resolutions ranging from 1.95 to 2.2 {angstrom}, which, in sum, provide a snapshot of a dynamic enzyme where metal binding and substrate binding are coupled to observed structural changes in the non-heme iron and catalytic sites.

  8. Length polymorphism in heme oxygenase-1 and risk of CKD among patients with coronary artery disease.

    PubMed

    Chen, Yu-Hsin; Kuo, Ko-Lin; Hung, Szu-Chun; Hsu, Chih-Cheng; Chen, Ying-Hwa; Tarng, Der-Cherng

    2014-11-01

    The length polymorphism of guanosine thymidine dinucleotide repeats in the heme oxygenase-1 gene promoter is associated with cardiovascular events and mortality in high-risk populations. Experimental data suggest that heme oxygenase-1 protects against kidney disease. However, the association between this polymorphism and long-term risk of CKD in high-risk patients is unknown. We analyzed the allelic frequencies of guanosine thymidine dinucleotide repeats in the heme oxygenase-1 gene promoter in 386 patients with coronary artery disease recruited from January 1999 to July 2001 and followed until August 31, 2012. The S allele represents short repeats (<27), and the L allele represents long repeats (≥27). The primary renal end points consisted of sustained serum creatinine doubling and/or ESRD requiring long-term RRT. The secondary end points were major adverse cardiovascular events and mortality. At the end of study, the adjusted hazard ratios (95% confidence intervals) for each L allele in the additive model were 1.99 (1.27 to 3.14; P=0.003) for the renal end points, 1.70 (1.27 to 2.27; P<0.001) for major adverse cardiovascular events, and 1.36 (1.04 to 1.79; P=0.03) for mortality. With cardiac events as time-dependent covariates, the adjusted hazard ratio for each L allele in the additive model was 1.91 (1.20 to 3.06; P=0.01) for the renal end points. In conclusion, a greater number of guanosine thymidine dinucleotide repeats in the heme oxygenase-1 gene promoter is associated with higher risk for CKD, cardiovascular events, and mortality among patients with coronary artery disease.

  9. Chemical and physical characterization of the activation of ribulosebiphosphate carboxylase/oxygenase

    SciTech Connect

    Donnelly, M.I.; Ramakrishnan, V.; Hartman, F.C.

    1983-01-01

    Molecular structure of ribulosebiphosphate carboxylase/oxygenase isolated from Rhodospirillium was compared with the enzyme isolated from Alcaligens eutrophus. Peptides derived from the active center of the bacterial enzyme were highly homologous with those isolated from spinach. Molecular shapes of the carboxylases were estimated using neutron scattering data. These studies suggested that the enzyme as isolated from R. rubrum is a solid prolate ellipsoid or cylinder, while the spinach enzyme resembles a hollow sphere. 1 drawing.

  10. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases

    PubMed Central

    Chowdhury, Rasheduzzaman; Yeoh, Kar Kheng; Tian, Ya-Min; Hillringhaus, Lars; Bagg, Eleanor A; Rose, Nathan R; Leung, Ivanhoe K H; Li, Xuan S; Woon, Esther C Y; Yang, Ming; McDonough, Michael A; King, Oliver N; Clifton, Ian J; Klose, Robert J; Claridge, Timothy D W; Ratcliffe, Peter J; Schofield, Christopher J; Kawamura, Akane

    2011-01-01

    Mutations in isocitrate dehydrogenases (IDHs) have a gain-of-function effect leading to R(−)-2-hydroxyglutarate (R-2HG) accumulation. By using biochemical, structural and cellular assays, we show that either or both R- and S-2HG inhibit 2-oxoglutarate (2OG)-dependent oxygenases with varying potencies. Half-maximal inhibitory concentration (IC50) values for the R-form of 2HG varied from approximately 25 μM for the histone Nɛ-lysine demethylase JMJD2A to more than 5 mM for the hypoxia-inducible factor (HIF) prolyl hydroxylase. The results indicate that candidate oncogenic pathways in IDH-associated malignancy should include those that are regulated by other 2OG oxygenases than HIF hydroxylases, in particular those involving the regulation of histone methylation. PMID:21460794

  11. Plasmatic hypercoagulation in patients with breast cancer: role of heme oxygenase-1.

    PubMed

    Nielsen, Vance G; Ley, Michele L B; Waer, Amy L; Alger, Patrick W; Matika, Ryan W; Steinbrenner, Evangelina B

    2013-12-01

    Breast cancer is an important health threat to women worldwide, and is associated with a 9-14% incidence of thrombophilia. Of interest, patients with breast cancer have been noted to have an increase in endogenous carbon monoxide production via upregulation of heme oxygenase-1 activity. Given that it has been demonstrated that carbon monoxide enhances plasmatic coagulation in vitro and in vivo, we sought to determine whether patients with breast cancer had an increase in endogenous carbon monoxide and concurrent plasmatic hypercoagulability. Breast cancer patients who were not smokers scheduled to undergo partial or complete mastectomy (n = 18) had 15 ml of whole blood collected via an indwelling intravenous catheter and anticoagulated with sodium citrate. Whole blood was centrifuged and citrated plasma assessed with a thromboelastometric method to measure coagulation kinetics and the formation of carboxyhemefibrinogen. Breast cancer patients were determined to have an abnormally increased carboxyhemoglobin concentration of 2.5 ± 1.3%, indicative of heme oxygenase-1 upregulation. Breast cancer patient plasma on average clotted 73% more quickly and had 32% stronger thrombus strength than normal individual (n = 30) plasma. Further, 44% of breast cancer patients had plasma clot strength that exceeded the 95% confidence interval value observed in normal individuals, and 75% of this hypercoagulable subgroup had carboxyhemefibrinogen formation. Future investigation of the role played by heme oxygenase-1-derived carbon monoxide in the pathogenesis of breast cancer-related thrombophilia is warranted.

  12. Rieske business: structure-function of Rieske non-heme oxygenases.

    PubMed

    Ferraro, Daniel J; Gakhar, Lokesh; Ramaswamy, S

    2005-12-09

    Rieske non-heme iron oxygenases (RO) catalyze stereo- and regiospecific reactions. Recently, an explosion of structural information on this class of enzymes has occurred in the literature. ROs are two/three component systems: a reductase component that obtains electrons from NAD(P)H, often a Rieske ferredoxin component that shuttles the electrons and an oxygenase component that performs catalysis. The oxygenase component structures have all shown to be of the alpha3 or alpha3beta3 types. The transfer of electrons happens from the Rieske center to the mononuclear iron of the neighboring subunit via a conserved aspartate, which is shown to be involved in gating electron transport. Molecular oxygen has been shown to bind side-on in naphthalene dioxygenase and a concerted mechanism of oxygen activation and hydroxylation of the ring has been proposed. The orientation of binding of the substrate to the enzyme is hypothesized to control the substrate selectivity and regio-specificity of product formation.

  13. TNT metabolites in animal tissues

    SciTech Connect

    Shugart, L.R.

    1990-01-01

    The overall objectives of this project are: to provide quantitative analytical procedures for the analysis of TNT and at least eight of its metabolites in animal tissues; and to obtain representative samples of tissues from animals from designated Army sites, and to determine the presence or absence of TNT and its metabolites in these samples. The study is divided into two Phases corresponding to the stated overall objectives of the project. 5 figs., 4 tabs.

  14. Carbon monoxide promotes proliferation of uterine natural killer cells and remodeling of spiral arteries in pregnant hypertensive heme oxygenase-1 mutant mice.

    PubMed

    Linzke, Nadja; Schumacher, Anne; Woidacki, Katja; Croy, B Anne; Zenclussen, Ana C

    2014-03-01

    Heme Oxygenase-1 (HO-1) and its metabolite carbon monoxide (CO) promote implantation and placentation. Pregnancy disorders such as preeclampsia and intrauterine growth restriction are linked to both HO-1 diminution and impaired remodeling of maternal spiral arteries (SAs). Here, we investigated whether CO is able to prevent preeclampsia and intrauterine growth restriction through the modulation of uterine natural killer (uNK) cells that are necessary for initiation of SA remodeling. Hmox1(+/-) or Hmox1(-/-) implantations presented fewer uNK cell numbers and lower expression of uNK-related angiogeneic factors compared with Hmox1(+/+) sites. Quantitative histology revealed that Hmox1(+/-) and Hmox1(-/-) implantations had shallow SA development that was accompanied by intrauterine growth restriction and gestational hypertension. Application of CO at low dose during early to midgestation prevented intrauterine growth restriction in Hmox1(+/-) mothers, this being associated with enhanced in situ proliferation of uNK cells and normalization of angiogenic parameters. Most importantly, CO improved SA remodeling and normalized blood pressure, ensuring a proper fetal growth. Thus, CO emerges as a key molecular player in pregnancy success by modulating uNK cells, which results in promotion of SA remodeling, adequate fetal support/growth, and prevention of hypertension.

  15. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    PubMed Central

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Introduction Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. Methods MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. Results The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with

  16. Impairment of Nitric Oxide Synthase but Not Heme Oxygenase Accounts for Baroreflex Dysfunction Caused by Chronic Nicotine in Female Rats

    PubMed Central

    Fouda, Mohamed A.; El-Gowelli, Hanan M.; El-Gowilly, Sahar M.; Rashed, Laila; El-Mas, Mahmoud M.

    2014-01-01

    We recently reported that chronic nicotine impairs reflex chronotropic activity in female rats. Here, we sought evidence to implicate nitric oxide synthase (NOS) and/or heme oxygenase (HO) in the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate to increases (phenylephrine) or decreases (sodium nitroprusside) in blood pressure were generated in conscious female rats treated with nicotine or saline in absence and presence of pharmacological modulators of NOS or HO activity. Compared with saline-treated rats, nicotine (2 mg/kg/day i.p., for 14 days) significantly reduced the slopes of baroreflex curves, a measure of baroreflex sensitivity (BRS). Findings that favor the involvement of NOS inhibition in the nicotine effect were (i) NOS inhibition (Nω-Nitro-L-arginine methyl ester, L-NAME) reduced BRS in control rats but failed to do so in nicotine-treated rats, (ii) L-arginine, NO donor, reversed the BRS inhibitory effect of nicotine. Alternatively, HO inhibition (zinc protoporphyrin IX, ZnPP) had no effect on BRS in nicotine- or control rats and failed to reverse the beneficial effect of L-arginine on nicotine-BRS interaction. Similar to female rats, BRS was reduced by L-NAME, but not ZnPP, in male rats and the L-NAME effect was not accentuated after concomitant administration of nicotine. Baroreflex dysfunction caused by nicotine in female rats was blunted after supplementation with hemin (HO inducer) but not tricarbonyldichlororuthenium(II) dimer (CORM-2), a carbon monoxide (CO) releasing molecule, or bilirubin, the breakdown product of heme catabolism. The facilitatory effect of hemin was abolished upon simultaneous treatment with L-NAME or 1H-[1], [2], [4] oxadiazolo[4,3-a] quinoxalin-1-one (inhibitor of soluble guanylate cyclase, sGC). The activities of HO and NOS in brainstem tissues were also significantly increased by hemin. Thus, the inhibition of NOS, but not HO, accounts for the baroreflex depressant of chronic nicotine

  17. Ginseng Metabolites on Cancer Chemoprevention: An Angiogenesis Link?

    PubMed Central

    Wang, Chong-Zhi; Cai, Yi; Anderson, Samantha; Yuan, Chun-Su

    2015-01-01

    Cancer is a leading cause of death in the United States. Angiogenesis inhibitors have been introduced for the treatment of cancer. Based on the fact that many anticancer agents have been developed from botanical sources, there is a significant untapped resource to be found in natural products. American ginseng is a commonly used herbal medicine in the U.S., which possess antioxidant properties. After oral ingestion, natural ginseng saponins are biotransformed to their metabolites by the enteric microbiome before being absorbed. The major metabolites, ginsenoside Rg3 and compound K, showed significant potent anticancer activity compared to that of their parent ginsenosides Rb1, Rc and Rd. In this review, the molecular mechanisms of ginseng metabolites on cancer chemoprevention, especially apoptosis and angiogenic inhibition, are discussed. Ginseng gut microbiome metabolites showed significant anti-angiogenic effects on pulmonary, gastric and ovarian cancers. This review suggests that in addition to the chemopreventive effects of ginseng compounds, as angiogenic inhibitors, ginsenoside metabolites could be used in combination with other cancer chemotherapeutic agents in cancer management. PMID:26941993

  18. Effects of metronidazole and its metabolites on histamine immunosuppression activity.

    PubMed

    Elizondo, G; Ostrosky-Wegman, P

    1996-01-01

    We have previously reported that metronidazole treatment increases human lymphocyte proliferation showing individual differences. This drug and its metabolites are imidazole compounds like histamine and cimetidine. The first is an endogenous amine that inhibits T-helper lymphocyte proliferation, and the second is a histamine antagonist. We presently report the in vitro effects of histamine, cimetidine, imidazole, metronidazole and its two principal metabolites (the acetic acid and hydroxy forms), on the mitogenic response to phytohemagglutinin (PHA) stimulation of human peripheral blood lymphocytes. Histamine decreased lymphocyte proliferation while (in order of potency) cimetidine, the hydroxy metabolite of metronidazole, imidazole and metronidazole, increased the mitogenic response to PHA in a dose-response fashion. The acetic acid metabolite lacked immunomodulatory effects. Competitive studies showed that cimetidine, metronidazole, and the hydroxy metabolite blocked the inhibitory effect of histamine on lymphocyte proliferation in a dose-related manner. This blockage was non-competitive, suggesting that the target of the imidazole compounds was not the active site of the H2 receptor.

  19. Anti-Inflammatory Effect of Heme Oxygenase-1 Toward Porphyromonas gingivalis Lipopolysaccharide in Macrophages Exposed to Gomisins A, G, and J

    PubMed Central

    Ryu, Eun Yeon; Park, Sun Young; Kim, Sun Gun; Park, Da Jung; Kang, Jum Soon; Kim, Young Hun; Seetharaman, Rajaseker

    2011-01-01

    Abstract Periodontitis, a chronic inflammatory periodontal disease that develops from gingivitis, is caused by periodontal pathogenic bacteria such as Porphyromonas gingivalis. Recent studies have focused on the antioxidant, anti–human immunodeficiency virus, anticarcinogenic, and anti-inflammatory properties of gomisins. However, the anti-inflammatory activities of gomisin plants through heme oxygenase-1 (HO-1) signals remain poorly defined. We found that gomisins' anti-inflammatory activity occurs via the induction of HO-1 expression. Gomisins G and J inhibit the production of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6 and also block nuclear factor-κB activation in Raw264.7 cells stimulated with P. gingivalis lipopolysaccharide. Furthermore, pro-inflammatory cytokine production is inhibited through the induction of HO-1 expression. HO-1 expression is induced by all gomisins, but their anti-inflammatory activity via HO-1 signaling is observed with gomisins G and J, and not A. We found that gomisins G and J extracted from Schisandria chinensis can inhibit the P. gingivalis lipopolysaccharide induced-inflammatory responses in Raw264.7 cells. PMID:22145771

  20. Anti-inflammatory effect of transduced PEP-1-heme oxygenase-1 in Raw 264.7 cells and a mouse edema model

    SciTech Connect

    Kwon, Soon Won; Sohn, Eun Jeong; Kim, Dae Won; Jeong, Hoon Jae; Kim, Mi Jin; Ahn, Eun Hee; Kim, Young Nam; Dutta, Suman; Kim, Duk-Soo; Park, Jinseu; Eum, Won Sik; Hwang, Hyun Sook; Choi, Soo Young

    2011-07-29

    Highlights: {yields} Recombinant PEP-1 heme oxygenase-1 expression vector was constructed and overexpressed. {yields} We investigated transduction efficiency of PEP-1-HO-1 protein in Raw 264.7 cells. {yields} PEP-1-HO-1 was efficiently transduced into Raw 264.7 cells in a dose and time dependent manner. {yields} PEP-1-HO-1 exerted anti-inflammatory activity in Raw 264.7 cells and in a mice edema model. {yields} PEP-1-HO-1 could be used as a therapeutic drug against inflammatory diseases. -- Abstract: Heme oxygenase-1 (HO-1), which catalyzes the degradation of free heme to biliverdin, carbon monoxide (CO), and free iron (Fe{sup 2+}), is up-regulated by several cellular stress and cell injuries, including inflammation, ischemia and hypoxia. In this study, we examined whether fusion of HO-1 with PEP-1, a protein transduction domain that is able to deliver exogenous molecules to living cells or tissues, would facilitate HO-1 delivery to target cells and tissues, and thereby effectively exert a therapeutically useful response against inflammation. Western blot analysis demonstrated that PEP-1-HO-1 fusion proteins were transduced into Raw 264.7 cells in time- and dose-dependent manners, and were stably maintained in the cells for about 60 h. In addition, fluorescence analysis revealed that only PEP-1-HO-1 fusion proteins were significantly transduced into the cytoplasm of cells, while HO-1 proteins failed to be transduced. In lipopolysaccharide (LPS)-stimulated Raw 264.7 cells and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse edema model, transduced PEP-1-HO-1 fusion proteins effectively inhibited the overexpression of pro-inflammatory mediators and cytokines. Also, histological analysis demonstrated that PEP-1-HO-1 remarkably suppressed ear edema. The results suggest that the PEP-1-HO-1 fusion protein can be used as a therapeutic molecule against reactive oxygen species-related inflammatory diseases.

  1. Heme oxygenase-1 regulates matrix metalloproteinase MMP-1 secretion and chondrocyte cell death via Nox4 NADPH oxidase activity in chondrocytes.

    PubMed

    Rousset, Francis; Nguyen, Minh Vu Chuong; Grange, Laurent; Morel, Françoise; Lardy, Bernard

    2013-01-01

    Interleukin-1β (IL-1β) activates the production of reactive oxygen species (ROS) and secretion of MMPs as well as chondrocyte apoptosis. Those events lead to matrix breakdown and are key features of osteoarthritis (OA). We confirmed that in human C-20/A4 chondrocytes the NADPH oxidase Nox4 is the main source of ROS upon IL-1β stimulation. Since heme molecules are essential for the NADPH oxidase maturation and activity, we therefore investigated the consequences of the modulation of Heme oxygenase-1 (HO-1), the limiting enzyme in heme catabolism, on the IL-1β signaling pathway and more specifically on Nox4 activity. Induction of HO-1 expression decreased dramatically Nox4 activity in C-20/A4 and HEK293 T-REx™ Nox4 cell lines. Unexpectedly, this decrease was not accompanied by any change in the expression, the subcellular localization or the maturation of Nox4. In fact, the inhibition of the heme synthesis by succinylacetone rather than heme catabolism by HO-1, led to a confinement of the Nox4/p22(phox) heterodimer in the endoplasmic reticulum with an absence of redox differential spectrum highlighting an incomplete maturation. Therefore, the downregulation of Nox4 activity by HO-1 induction appeared to be mediated by carbon monoxide (CO) generated from the heme degradation process. Interestingly, either HO-1 or CO caused a significant decrease in the expression of MMP-1 and DNA fragmentation of chondrocytes stimulated by IL-1β. These results all together suggest that a modulation of Nox4 activity via heme oxygenase-1 may represent a promising therapeutic tool in osteoarthritis.

  2. Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells.

    PubMed

    Cremers, Niels A J; Lundvig, Ditte M S; van Dalen, Stephanie C M; Schelbergen, Rik F; van Lent, Peter L E M; Szarek, Walter A; Regan, Raymond F; Carels, Carine E; Wagener, Frank A D T G

    2014-10-08

    Mesenchymal stem cell (MSC) administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO) generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO) and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs) from wild type (WT) and HO-2 knockout (KO) mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2) significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy.

  3. Soy Metabolites, Isoflavones in Cell Growth and Apoptosis

    DTIC Science & Technology

    2000-07-01

    genistein in the testis, but was undetectable in the DLP. There were no inhibition is observed in a human colonic cancer cell Mne ( CaCo - 2 ) associated with...also assayed for P3-galactosidase activity to normalize for transfection efficiency . Results In order to determine whether there are any differential...blank) 2 . REPORT DATE 3. REPORT TYPE AND DATES COVERED July 2000 Annual (13 Jun 99 - 13 Jun 00) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Soy Metabolites

  4. Pharmacological preconditioning with vitamin C attenuates intestinal injury via the induction of heme oxygenase-1 after hemorrhagic shock in rats.

    PubMed

    Zhao, Bing; Fei, Jian; Chen, Ying; Ying, Yi-Lin; Ma, Li; Song, Xiao-Qin; Wang, Lu; Chen, Er-Zhen; Mao, En-Qiang

    2014-01-01

    Pre-induction of heme oxygenase (HO)-1, which is regarded as an effective method of "organ preconditioning", exerts beneficial effects during hemorrhagic shock (HS). However, the available HO-1 inducers exhibit disadvantages such as toxicity or complex technical requirements. Therefore, a safe and convenient HO-1 inducer would be promising and could be exploited in the treatment of foreseeable hemorrhaging, such as prior to major surgery. Here we investigated the effect of vitamin C (VitC), a common antioxidant, on intestinal HO-1 expression and examined whether VitC pretreatment prevented HS related intestinal tissue injuries after HO-1 induction. First, we conducted an in vitro study and found that HO-1 expression in rat intestinal epithelial cells (IEC-6) was induced by non-toxic VitC in a time and concentration dependent manner, and the mechanism was related to the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Next, we conducted an in vivo study and found that VitC induced intestinal HO-1 protein expression (mainly observed in the intestinal epithelial cells) and HO-1 activity in normal SD rats, and that these HO-1 levels were further enhanced by VitC in a rat model of HS. The HS related intestinal injuries, including histological damage, pro-inflammatory cytokine levels (tumor necrosis factor and interleukin-6), neutrophil infiltration and apoptosis decreased after VitC pretreatment, and this alleviating of organ injuries was abrogated after the inhibition of HO-1 activity by zinc protoporphyrin-IX. It was of note that VitC did little histological damage to the intestine of the sham rats. These data suggested that VitC might be applied as a safe inducer of intestinal HO-1 and that VitC pretreatment attenuated HS related intestinal injuries via the induction of HO-1.

  5. Enhanced expression of heme oxygenase-1 and carbon monoxide excitatory effects in oxytocin and vasopressin neurones during water deprivation.

    PubMed

    Reis, W L; Biancardi, V C; Son, S; Antunes-Rodrigues, J; Stern, J E

    2012-04-01

    A growing body of evidence indiates that carbon monoxide (CO) acts as a gas neurotransmitter within the central nervous system. Although CO has been shown to affect neurohypophyseal hormone release in response to osmotic stimuli, the precise sources, targets and mechanisms underlying the actions of CO within the magnocellular neurosecretory system remain largely unknown. In the present study, we combined immunohistochemistry and patch-clamp electrophysiology to study the cellular distribution of the CO-synthase enzyme heme oxygenase type 1 (HO-1), as well as the actions of CO on oxytocin (OT) and vasopressin (VP) magnocellular neurosecretory cells (MNCs), in euhydrated (EU) and 48-h water-deprived rats (48WD). Our results show the expression of HO-1 immunoreactivity both in OT and VP neurones, as well as in a small proportion of astrocytes, both in supraoptic (SON) and paraventricular (PVN) nuclei. HO-1 expression, and its colocalisation with OT and VP neurones within the SON and PVN, was significantly enhanced in 48WD rats. Inhibition of HO activity with chromium mesoporphyrin IX chloride (CrMP; 20 μm) resulted in a slight membrane hyperpolarisation in SON neurones from EU rats, without significantly affecting their firing activity. In 48WD rats, on the other hand, CrMP resulted in a more robust membrane hyperpolarisation, significantly decreasing neuronal firing discharge. Taken together, our results indicate that magnocellular SON and PVN neurones express HO-1, and that CO acts as an excitatory gas neurotransmitter in this system. Moreover, we found that the expression and actions of CO were enhanced in water-deprived rats, suggesting that the state-dependent up-regulation of the HO-1/CO signalling pathway contributes to enhance MNCs firing activity during an osmotic challenge.

  6. Omega-3 Fatty Acids Protect the Brain against Ischemic Injury by Activating Nrf2 and Upregulating Heme Oxygenase 1

    PubMed Central

    Zhang, Meijuan; Wang, Suping; Mao, Leilei; Leak, Rehana K.; Shi, Yejie; Zhang, Wenting; Hu, Xiaoming; Sun, Baoliang; Cao, Guodong; Gao, Yanqin; Xu, Yun

    2014-01-01

    Ischemic stroke is a debilitating clinical disorder that affects millions of people, yet lacks effective neuroprotective treatments. Fish oil is known to exert beneficial effects against cerebral ischemia. However, the underlying protective mechanisms are not fully understood. The present study tests the hypothesis that omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate ischemic neuronal injury by activating nuclear factor E2-related factor 2 (Nrf2) and upregulating heme oxygenase-1 (HO-1) in both in vitro and in vivo models. We observed that pretreatment of rat primary neurons with docosahexaenoic acid (DHA) significantly reduced neuronal death following oxygen-glucose deprivation. This protection was associated with increased Nrf2 activation and HO-1 upregulation. Inhibition of HO-1 activity with tin protoporphyrin IX attenuated the protective effects of DHA. Further studies showed that 4-hydroxy-2E-hexenal (4-HHE), an end-product of peroxidation of n-3 PUFAs, was a more potent Nrf2 inducer than 4-hydroxy-2E-nonenal derived from n-6 PUFAs. In an in vivo setting, transgenic mice overexpressing fatty acid metabolism-1, an enzyme that converts n-6 PUFAs to n-3 PUFAs, were remarkably resistant to focal cerebral ischemia compared with their wild-type littermates. Regular mice fed with a fish oil-enhanced diet also demonstrated significant resistance to ischemia compared with mice fed with a regular diet. As expected, the protection was associated with HO-1 upregulation, Nrf2 activation, and 4-HHE generation. Together, our data demonstrate that n-3 PUFAs are highly effective in protecting the brain, and that the protective mechanisms involve Nrf2 activation and HO-1 upregulation by 4-HHE. Further investigation of n-3 PUFA neuroprotective mechanisms may accelerate the development of stroke therapies. PMID:24478369

  7. Heme Oxygenase-1 (HO-1) Expression in Prostate Cancer Cells Modulates the Oxidative Response in Bone Cells

    PubMed Central

    Ferrando, Mercedes; Wan, Xinhai; Meiss, Roberto; Yang, Jun; De Siervi, Adriana; Navone, Nora; Vazquez, Elba

    2013-01-01

    Prostate cancer (PCa) is a leading cause of death among males. It is currently estimated that inflammatory responses are linked to 15-20% of all deaths from cancer worldwide. PCa is dominated by complications arising from metastasis to the bone where the tumor cells interact with the bone microenvironment impairing the balance between bone formation and degradation. However, the molecular nature of this interaction is not completely understood. Heme oxygenase-1 (HO-1) counteracts oxidative damage and inflammation. Previous studies from our laboratory showed that HO-1 is implicated in PCa, demonstrating that endogenous HO-1 inhibits bone derived-prostate cancer cells proliferation, invasion and migration and decreases tumor growth and angiogenesis in vivo. The aim of this work was to analyze the impact of HO-1 modulated PCa cells on osteoblasts proliferation in vitro and on bone remodeling in vivo. Using a co-culture system of PC3 cells with primary mice osteoblasts (PMOs), we demonstrated that HO-1 pharmacological induction (hemin treatment) abrogated the diminution of PMOs proliferation induced by PCa cells and decreased the expression of osteoclast-modulating factors in osteoblasts. No changes were detected in the expression of genes involved in osteoblasts differentiation. However, co-culture of hemin pre-treated PC3 cells (PC3 Hem) with PMOs provoked an oxidative status and activated FoxO signaling in osteoblasts. The percentage of active osteoblasts positive for HO-1 increased in calvarias explants co-cultured with PC3 Hem cells. Nuclear HO-1 expression was detected in tumors generated by in vivo bone injection of HO-1 stable transfected PC3 (PC3HO-1) cells in the femur of SCID mice. These results suggest that HO-1 has the potential to modify the bone microenvironment impacting on PCa bone metastasis. PMID:24224047

  8. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Dahiya, R.; Hughes-Fulford, M.

    1997-01-01

    Prostaglandins are synthesized from arachidonic acid by the enzyme cyclo-oxygenase. There are two isoforms of cyclooxygenases: COX-1 (a constitutive form) and COX-2 (an inducible form). COX-2 has recently been categorized as an immediate-early gene and is associated with cellular growth and differentiation. The purpose of this study was to investigate the effects of exogenous dimethylprostaglandin E2 (dmPGE2) on prostate cancer cell growth. Results of these experiments demonstrate that administration of dmPGE2 to growing PC-3 cells significantly increased cellular proliferation (as measured by the cell number), total DNA content and endogenous PGE2 concentration. DmPGE2 also increased the steady-state mRNA levels of its own inducible synthesizing enzyme, COX-2, as well as cellular growth to levels similar to those seen with fetal calf serum and phorbol ester. The same results were observed in other human cancer cell types, such as the androgen-dependent LNCaP cells, breast cancer MDA-MB-134 cells and human colorectal carcinoma DiFi cells. In PC-3 cells, the dmPGE2 regulation of the COX-2 mRNA levels was both time dependent, with maximum stimulation seen 2 h after addition, and dose dependent on dmPGE2 concentration, with maximum stimulation seen at 5 microg ml(-1). The non-steroidal anti-inflammatory drug flurbiprofen (5 microM), in the presence of exogenous dmPGE2, inhibited the up-regulation of COX-2 mRNA and PC-3 cell growth. Taken together, these data suggest that PGE2 has a specific role in the maintenance of human cancer cell growth and that the activation of COX-2 expression depends primarily upon newly synthesized PGE2, perhaps resulting from changes in local cellular PGE2 concentrations.

  9. Tobacco-smoke-inducible human haem oxygenase-1 gene expression: role of distinct transcription factors and reactive oxygen intermediates.

    PubMed Central

    Favatier, F; Polla, B S

    2001-01-01

    Exposure of eukaryotic cells to a variety of reactive-oxygen-intermediate (ROI)-mediated sources of cellular injury, including heavy metals and UV radiation, induces the expression of heat-shock (HS) and stress-related genes among which is a 32-34 kDa protein identified as inducible haem oxygenase-1 (HO-1). We previously showed that tobacco smoke (TS), a potent source of oxidants leading to oxidative stress, induces both HS proteins (HSPs) and HO-1 in normal human monocytes. Here we investigated the induction mechanisms of human HO-1 gene expression by TS in the human premonocytic line U937. Northern blotting and flow cytometry revealed a dose- and time-dependent induction of HO-1 mRNA and protein by TS. In order to clarify the role of transacting factors in this induction, electrophoretic mobility-shift analysis was performed with nuclear extracts from control, TS-, cadmium (Cd)- or H(2)O(2)-exposed cells, incubated with consensus elements and binding sites of the promoter region of HO-1[heat-shock factor (HSF), nuclear factor kappaB (NF-kappaB) and activator protein-1 (AP-1)] and the cadmium-responsive element (CdRE) isolated by Takeda, Ishizawa, Sato, Yoshida and Shibahara [(1994) J. Biol. Chem. 269, 22858-22867]. We report an inhibition of NF-kappaB activation by TS, no effect on AP-1 and a strong activation of CdRE-binding activity, whereas cadmium chelation from TS only partially prevented HO-1 induction. H(2)O(2) also activated the CdRE-binding activity, and pretreatment with N-acetyl-L-cysteine, which replenishes the intracellular levels of GSH, suppressed, in TS-treated cells, both the CdRE-binding activity and the increased HO-1 expression. PMID:11171043

  10. Heme oxygenase-1 promotes migration and β-epithelial Na+ channel expression in cytotrophoblasts and ischemic placentas.

    PubMed

    Warrington, Junie P; Coleman, Kayla; Skaggs, Courtney; Hosick, Peter A; George, Eric M; Stec, David E; Ryan, Michael J; Granger, Joey P; Drummond, Heather A

    2014-05-01

    Preeclampsia is thought to arise from inadequate cytotrophoblast migration and invasion of the maternal spiral arteries, resulting in placental ischemia and hypertension. Evidence suggests that altered expression of epithelial Na(+) channel (ENaC) proteins may be a contributing mechanism for impaired cytotrophoblast migration. ENaC activity is required for normal cytotrophoblast migration. Moreover, β-ENaC, the most robustly expressed placental ENaC message, is reduced in placentas from preeclamptic women. We recently demonstrated that heme oxygenase-1 (HO-1) protects against hypertension in a rat model of placental ischemia; however, whether HO-1 regulation of β-ENaC contributes to the beneficial effects of HO-1 is unknown. The purpose of this study was to determine whether β-ENaC mediates cytotrophoblast migration and whether HO-1 enhances ENaC-mediated migration. We showed that placental ischemia, induced by reducing uterine perfusion suppressed, and HO-1 induction restored, β-ENaC expression in ischemic placentas. Using an in vitro model, we found that HO-1 induction, using cobalt protoporphyrin, stimulates cytotrophoblast β-ENaC expression by 1.5- and 1.8-fold (10 and 50 μM). We then showed that silencing of β-ENaC in cultured cytotrophoblasts (BeWo cells), by expression of dominant-negative constructs, reduced migration to 56 ± 13% (P < 0.05) of control. Importantly, HO-1 induction enhanced migration (43 ± 5% of control, P < 0.05), but the enhanced migratory response was entirely blocked by ENaC inhibition with amiloride (10 μM). Taken together, our results suggest that β-ENaC mediates cytotrophoblast migration and increasing β-ENaC expression by HO-1 induction enhances migration. HO-1 regulation of cytotrophoblast β-ENaC expression and migration may be a potential therapeutic target in preeclamptic patients.

  11. BML-111 Attenuates Renal Ischemia/Reperfusion Injury Via Peroxisome Proliferator-Activated Receptor-α-Regulated Heme Oxygenase-1.

    PubMed

    Wu, Sheng-Hua; Chen, Xiao-Qing; Lü, Jing; Wang, Ming-Jie

    2016-04-01

    We examine whether BML-111, a lipoxin receptor agonist, inhibits renal ischemia/reperfusion (I/R) injury, and whether peroxisome proliferator-activated receptor-α (PPARα) or heme oxygenase-1 (HO-1) is involved in protective effects of BML-111 on kidney against I/R injury. Rats subjected to renal I/R injury were treated with or without BML-111. Renal histological and immunohistochemical studies were performed. Expressions of phosphorylated p38 mitogen-activated protein kinase (pp38 MAPK), phosphorylated PPARα (pPPARα), and HO-1 were assessed in NRK-52E cells exposed to BML-111. The binding activity of PPARα to peroxisome proliferator-responsive element (PPRE) on HO-1 promoter in the cells was determined. BML-111 treatment resulted in a marked reduction in the severity of histological features of renal I/R injury, and attenuated the rise in renal myeloperoxidase and malondialdehyde, blood urea nitrogen and creatinine, urinary N-acetyl-β-glucosaminidase, and leucine aminopeptidase levels caused by I/R injury. BML-111 stimulated the renal expressions of pPPARα and HO-1, and cellular messenger RNA (mRNA) and protein expressions of pPPARα and HO-1 which were both blocked by GW6471, a selective PPARα antagonist, and ZnPP-IX, a specific inhibitor of HO-1 pretreatment. The pp38 MAPK inhibitor SB203580 blocked the BML-111-induced expressions of pp38 MAPK, pPPARα, and HO-1 in NRK-52E cells. The binding activity of PPARα to PPRE in nuclear extracts of NRK-52E cells was enhanced by treatment of the cells with BML-111, and was suppressed by GW6471 and SB203580. BML-111 protects the kidney against I/R injury via activation of p38 MAPK/PPARα/HO-1 pathway.

  12. Celastrol protects ischaemic myocardium through a heat shock response with up-regulation of haeme oxygenase-1

    PubMed Central

    Der Sarkissian, S; Cailhier, J-F; Borie, M; Stevens, L-M; Gaboury, L; Mansour, S; Hamet, P; Noiseux, N

    2014-01-01

    Background and Purpose Celastrol, a triterpene from plants, has been used in traditional oriental medicine to treat various diseases. Here, we investigated the cardioprotective effects of celastrol against ischaemia. Experimental Approach Protective pathways induced by celastrol were investigated in hypoxic cultures of H9c2 rat cardiomyoblasts and in a rat model of myocardial infarction, assessed with echocardiographic and histological analysis. Key Results In H9c2 cells, celastrol triggered reactive oxygen species (ROS) formation within minutes, induced nuclear translocation of the transcription factor heat shock factor 1 (HSF1) resulting in a heat shock response (HSR) leading to increased expression of heat shock proteins (HSPs). ROS scavenger N-acetylcysteine reduced expression of HSP70 and HSP32 (haeme oxygenase-1, HO-1). Celastrol improved H9c2 survival under hypoxic stress, and functional analysis revealed HSF1 and HO-1 as key effectors of the HSR, induced by celastrol, in promoting cytoprotection. In the rat ischaemic myocardium, celastrol treatment improved cardiac function and reduced adverse left ventricular remodelling at 14 days. Celastrol triggered expression of cardioprotective HO-1 and inhibited fibrosis and infarct size. In the peri-infarct area, celastrol reduced myofibroblast and macrophage infiltration, while attenuating up-regulation of TGF-β and collagen genes. Conclusions and Implications Celastrol treatment induced an HSR through activation of HSF1 with up-regulation of HO-1 as the key effector, promoting cardiomyocyte survival, reduction of injury and adverse remodelling with preservation of cardiac function. Celastrol may represent a novel potent pharmacological cardioprotective agent mimicking ischaemic conditioning that could have a valuable impact in the treatment of myocardial infarction. PMID:25041185

  13. Role of Heme Oxygenase-1 in Postnatal Differentiation of Stem Cells: A Possible Cross-Talk with MicroRNAs

    PubMed Central

    Kozakowska, Magdalena; Szade, Krzysztof

    2014-01-01

    Abstract Significance: Heme oxygenase-1 (HO-1) converts heme to biliverdin, carbon monoxide, and ferrous ions, but its cellular functions are far beyond heme metabolism. HO-1 via heme removal and degradation products acts as a cytoprotective, anti-inflammatory, immunomodulatory, and proangiogenic protein, regulating also a cell cycle. Additionally, HO-1 can translocate to nucleus and regulate transcription factors, so it can also act independently of enzymatic function. Recent Advances: Recently, a body of evidence has emerged indicating a role for HO-1 in postnatal differentiation of stem and progenitor cells. Maturation of satellite cells, skeletal myoblasts, adipocytes, and osteoclasts is inhibited by HO-1, whereas neurogenic differentiation and formation of cardiomyocytes perhaps can be enhanced. Moreover, HO-1 influences a lineage commitment in pluripotent stem cells and maturation of hematopoietic cells. It may play a role in development of osteoblasts, but descriptions of its exact effects are inconsistent. Critical Issues: In this review we discuss a role of HO-1 in cell differentiation, and possible HO-1-dependent signal transduction pathways. Among the potential mediators, we focused on microRNA (miRNA). These small, noncoding RNAs are critical for cell differentiation. Recently we have found that HO-1 not only influences expression of specific miRNAs but also regulates miRNA processing enzymes. Future Directions: It seems that interplay between HO-1 and miRNAs may be important in regulating fates of stem and progenitor cells and needs further intensive studies. Antioxid. Redox Signal. 20, 1827–1850. PMID:24053682

  14. Heme oxygenase-1 suppresses the infiltration of neutrophils in rat liver during sepsis through inactivation of p38 MAPK.

    PubMed

    Lin, Yi-Tseng; Chen, Yen-Hsu; Yang, Yi-Hsin; Jao, Hsiao-Ching; Abiko, Yoshimitsu; Yokoyama, Kazushige; Hsu, Chin

    2010-12-01

    To investigate the molecular mechanism underlying heme oxygenase-1 (HO-1)-modulated infiltration of neutrophils, the sepsis model of cecal ligation and puncture in Sprague-Dawley rats was used. In vivo induction and suppression of HO-1 were performed by pretreatment with cobalt protoporphyrin IX (CoPP) and zinc protoporphyrin IX, respectively. Tricarbonyldichlororuthenium(II) dimer, [Ru(CO)₃Cl₂]₂ (a carbon monoxide [CO] releaser), and hemoglobin (a CO scavenger) were used to examine the participation of HO-1/CO in the effect of CoPP pretreatment on formylated peptide (fMLP)-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation. Anisomycin (a p38 MAPK activator) and SB203580 (a p38 MAPK inhibitor) were used to examine p38 MAPK mediation in the attenuation of fMLP-attracted migration by HO-1. The results demonstrated that zinc protoporphyrin IX and CoPP pretreatment conferred enhancing and inhibitory effects, respectively, on hepatic neutrophil infiltration. Pretreatment with CoPP inhibited fMLP-induced migration and p38 MAPK phosphorylation in neutrophils ex vivo. The [Ru(CO)₃Cl₂]₂ stimulated whereas hemoglobin diminished the suppression of fMLP-induced p38 MAPK phosphorylation by CoPP. Moreover, anisomycin diminished the suppressive effects of CoPP pretreatment on fMLP-induced migration, actin polymerization, polarization, and migration speed of neutrophils. These results suggest that HO-1 in neutrophil attenuates its infiltration during sepsis via the inactivation of p38 MAPK. Understanding the mechanism that diminishes neutrophil infiltration by HO-1 may help prevent hepatic failure during sepsis.

  15. Heme Oxygenase-1 Protects Retinal Endothelial Cells against High Glucose- and Oxidative/Nitrosative Stress-Induced Toxicity

    PubMed Central

    Castilho, Áurea F.; Aveleira, Célia A.; Leal, Ermelindo C.; Simões, Núria F.; Fernandes, Carolina R.; Meirinhos, Rita I.; Baptista, Filipa I.; Ambrósio, António F.

    2012-01-01

    Diabetic retinopathy is a leading cause of visual loss and blindness, characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for the development of diabetic retinopathy and is associated with increased oxidative/nitrosative stress in the retina. Since heme oxygenase-1 (HO-1) is an enzyme with antioxidant and protective properties, we investigated the potential protective role of HO-1 in retinal endothelial cells exposed to high glucose and oxidative/nitrosative stress conditions. Retinal endothelial cells were exposed to elevated glucose, nitric oxide (NO) and hydrogen peroxide (H2O2). Cell viability and apoptosis were assessed by MTT assay, Hoechst staining, TUNEL assay and Annexin V labeling. The production of reactive oxygen species (ROS) was detected by the oxidation of 2′,7′-dichlorodihydrofluorescein diacetate. The content of HO-1 was assessed by immunobloting and immunofluorescence. HO activity was determined by bilirubin production. Long-term exposure (7 days) of retinal endothelial cells to elevated glucose decreased cell viability and had no effect on HO-1 content. However, a short-time exposure (24 h) to elevated glucose did not alter cell viability, but increased both the levels of intracellular ROS and HO-1 content. Moreover, the inhibition of HO with SnPPIX unmasked the toxic effect of high glucose and revealed the protection conferred by HO-1. Oxidative/nitrosative stress conditions increased cell death and HO-1 protein levels. These effects of elevated glucose and HO inhibition on cell death were confirmed in primary endothelial cells (HUVECs). When cells were exposed to oxidative/nitrosative stress conditions there was also an increase in retinal endothelial cell death and HO-1 content. The inhibition of HO enhanced ROS production and the toxic effect induced by exposure to H2O2 and NOC-18 (NO donor). Overexpression of HO-1 prevented the toxic effect induced by H2O2 and NOC-18. In conclusion, HO-1

  16. Heme oxygenase 1 plays role of neuron-protection by regulating Nrf2-ARE signaling post intracerebral hemorrhage.

    PubMed

    Yin, Xiao-Ping; Wu, Dan; Zhou, Jun; Chen, Zhi-Ying; Bao, Bing; Xie, Liang

    2015-01-01

    The NF-E2 related factor 2 (Nrf2) could be activated in intracerebral hemorrhage (ICH), and trigger the expression of ARE regulated heme oxygenase 1 (HO-1) subsequently. This study aims to explore neuroprotection of HO-1 protein in regulating the Nrf2-ARE signaling pathway in ICH. In this study, the femoral artery injection method was used to establish the ICH model. The zinc porphyrin-9 (ZPP-IX) was used to inhibit the HO-1 expression in ICH rats. The ICH rats were randomly divided into 3 groups, ICH group, ZPP-IX (10 mg/kg) + ICH group and DMSO (10 mg/kg) + ICH group. Neurological scores were evaluated for the 3 groups. Double immunofluorescence staining method was employed to observe the co-expression of HO-1, Nrf2, NF-κB and TNF-α and CD11b in glia cells. Western blot and RT-PCR assay were used to detect the total Nrf2, binding Nrf2, HO-1, NF-κB and TNF-α expression. The results indicated that ZPP-IX could aggravate the neurological dyafunstions of ICH rats. The HO-1 level in ZPP-IX group was significantly decreased compared to the ICH group (P < 0.05). The binding-Nrf2 protein was significantly increased in ZPP-IX group compared to ICH group (P < 0.05). The NF-κB and TNF-α level were significantly increased in ZPP-IX group compared to ICH group (P < 0.05). The ZPP-IX significantly inhibited the HO-1 and Nrf2, and enhanced NF-κB and TNF-α co-expressing with the CD11b compared to the ICH group (P < 0.05). In conclusion, HO-1 protein regulates the Nrf2-ARE pathway in ICH model by inhibiting the Nrf2 entering nucleus and activating the NF-κB and TNF-α expression.

  17. Heme oxygenase 1 plays role of neuron-protection by regulating Nrf2-ARE signaling post intracerebral hemorrhage

    PubMed Central

    Yin, Xiao-Ping; Wu, Dan; Zhou, Jun; Chen, Zhi-Ying; Bao, Bing; Xie, Liang

    2015-01-01

    The NF-E2 related factor 2 (Nrf2) could be activated in intracerebral hemorrhage (ICH), and trigger the expression of ARE regulated heme oxygenase 1 (HO-1) subsequently. This study aims to explore neuroprotection of HO-1 protein in regulating the Nrf2-ARE signaling pathway in ICH. In this study, the femoral artery injection method was used to establish the ICH model. The zinc porphyrin-9 (ZPP-IX) was used to inhibit the HO-1 expression in ICH rats. The ICH rats were randomly divided into 3 groups, ICH group, ZPP-IX (10 mg/kg) + ICH group and DMSO (10 mg/kg) + ICH group. Neurological scores were evaluated for the 3 groups. Double immunofluorescence staining method was employed to observe the co-expression of HO-1, Nrf2, NF-κB and TNF-α and CD11b in glia cells. Western blot and RT-PCR assay were used to detect the total Nrf2, binding Nrf2, HO-1, NF-κB and TNF-α expression. The results indicated that ZPP-IX could aggravate the neurological dyafunstions of ICH rats. The HO-1 level in ZPP-IX group was significantly decreased compared to the ICH group (P < 0.05). The binding-Nrf2 protein was significantly increased in ZPP-IX group compared to ICH group (P < 0.05). The NF-κB and TNF-α level were significantly increased in ZPP-IX group compared to ICH group (P < 0.05). The ZPP-IX significantly inhibited the HO-1 and Nrf2, and enhanced NF-κB and TNF-α co-expressing with the CD11b compared to the ICH group (P < 0.05). In conclusion, HO-1 protein regulates the Nrf2-ARE pathway in ICH model by inhibiting the Nrf2 entering nucleus and activating the NF-κB and TNF-α expression. PMID:26617723

  18. In vitro cytotoxicity of BTEX metabolites in HeLa cells.

    PubMed

    Shen, Y

    1998-04-01

    Fuel leakage from underground storage tanks is a major source of groundwater contamination. Although the toxicity of regulated compounds such as benzene, toluene, ethylbenzene, and xylene (BTEX) are well recognized, the cytotoxicity of their metabolites has not been studied extensively. In this study, Hela cells, propagated at 37 degrees C in an atmosphere of 5% CO2-95% air, served as a target for evaluation of cytotoxicity of BTEX metabolites 3-methylcatechol, 4-methylcatechol, 4-hydroxybenzoic acid, and 4-hydroxy-3-methoxybenzoic acid. The cells were exposed to different concentrations of the metabolites, which subsequently showed inhibition of cell growth and produced dose-related decreases in cell viability and cell protein content. The BTEX metabolites affected the levels of the polyamines spermidine, spermine, and putrescine, which are known to be important in cell proliferation. The cytotoxic effects for these BTEX metabolites to Hela cells were 3-methylcatechol > 4-methylcatechol > 4-hydroxy-3-methoxybenzoic acid > 4-hydroxybenzoic acid.

  19. The source and characteristics of chemiluminescence associated with the oxygenase reaction catalyzed by Mn(2+)-ribulosebisphosphate carboxylase.

    PubMed

    Lilley, R M; Riesen, H; Andrews, T J

    1993-07-05

    We confirm the observation of Mogel and McFadden (Mogel, S.N., and McFadden, B. A. (1990) Biochemistry 29, 8333-8337) that ribulosebisphosphate carboxylase/oxygenase (rubisco) exhibits chemiluminescence while catalyzing its oxygenase reaction in the presence of Mn2+. However, our results with the spinach and Rhodospirillum rubrum enzymes differ markedly in the following respects. 1) Chemiluminescence intensity was directly proportional to enzyme concentration and behaved as if representing the rate of oxygenase catalysis. 2) The wavelength spectrum peaked at about 770 nm and extended beyond 810 nm. This seems inconsistent with chemiluminescence generated by simultaneous decay of pairs of singlet O2 molecules. It is consistent with manganese(II) luminescence and we discuss its possible sources. The time course of chemiluminescence (resolution, 0.25 s) was distinctively different for spinach and R. rubrum enzymes during the initial 5 s of catalysis, with the bacterial enzyme exhibiting a pronounced initial "burst." Chemiluminescence by the spinach enzyme responded to substrate concentrations in a manner consistent with known oxygenase properties, exhibiting Michaelis-Menten kinetics with ribulose-1,5-bisphosphate (Km 400 nM). Chemiluminescence required carbamylated enzyme with Mn2+ bound at the active site (activation energy, -57.1 KJ.mol-1). As an indicator of oxygenase activity, chemiluminescence represents an improvement over oxygen electrode measurements in response time and sensitivity by factors of at least 100.

  20. Loss of Akt activity increases circulating soluble endoglin release in preeclampsia: identification of inter-dependency between Akt-1 and heme oxygenase-1

    PubMed Central

    Cudmore, Melissa J.; Ahmad, Shakil; Sissaoui, Samir; Ramma, Wenda; Ma, Bin; Fujisawa, Takeshi; Al-Ani, Bahjat; Wang, Keqing; Cai, Meng; Crispi, Fatima; Hewett, Peter W.; Gratacós, Eduard; Egginton, Stuart; Ahmed, Asif

    2012-01-01

    Aims Endothelial dysfunction is a hallmark of preeclampsia. Desensitization of the phosphoinositide 3-kinase (PI3K)/Akt pathway underlies endothelial dysfunction and haeme oxygenase-1 (HO-1) is decreased in preeclampsia. To identify therapeutic targets, we sought to assess whether these two regulators act to suppress soluble endoglin (sEng), an antagonist of transforming growth factor-β (TGF-β) signalling, which is known to be elevated in preeclampsia. Methods and results Vascular endothelial growth factor-A (VEGF-A), fibroblast growth factor (FGF-2), angiopoietin-1 (Ang-1), and insulin, which all activate the PI3K/Akt pathway, inhibited the release of sEng from endothelial cells. Inhibition of the PI3K/Akt pathway, by overexpression of phosphatase and tensin homolog (PTEN) or a dominant-negative isoform of Akt (Aktdn) induced sEng release from endothelial cells and prevented the inhibitory effect of VEGF-A. Conversely, overexpression of a constitutively active Akt (Aktmyr) inhibited PTEN and cytokine-induced sEng release. Systemic delivery of Aktmyr to mice significantly reduced circulating sEng, whereas Aktdn promoted sEng release. Phosphorylation of Akt was reduced in preeclamptic placenta and this correlated with the elevated level of circulating sEng. Knock-down of Akt using siRNA prevented HO-1-mediated inhibition of sEng release and reduced HO-1 expression. Furthermore, HO-1 null mice have reduced phosphorylated Akt in their organs and overexpression of Aktmyr failed to suppress the elevated levels of sEng detected in HO-1 null mice, indicating that HO-1 is required for the Akt-mediated inhibition of sEng. Conclusion The loss of PI3K/Akt and/or HO-1 activity promotes sEng release and positive manipulation of these pathways offers a strategy to circumvent endothelial dysfunction. PMID:21411816

  1. Mitochondrial metabolites: undercover signalling molecules

    PubMed Central

    2017-01-01

    Mitochondria are one of most characterized metabolic hubs of the cell. Here, crucial biochemical reactions occur and most of the cellular adenosine triphosphate (ATP) is produced. In addition, mitochondria act as signalling platforms and communicate with the rest of the cell by modulating calcium fluxes, by producing free radicals, and by releasing bioactive proteins. It is emerging that mitochondrial metabolites can also act as second messengers and can elicit profound (epi)genetic changes. This review describes the many signalling functions of mitochondrial metabolites under normal and stress conditions, focusing on metabolites of the tricarboxylic acid cycle. We provide a new framework for understanding the role of mitochondrial metabolism in cellular pathophysiology. PMID:28382199

  2. Response of Cultured Maize Cells to (+)-Abscisic Acid, (-)-Abscisic Acid, and Their Metabolites.

    PubMed Central

    Balsevich, J. J.; Cutler, A. J.; Lamb, N.; Friesen, L. J.; Kurz, E. U.; Perras, M. R.; Abrams, S. R.

    1994-01-01

    The metabolism and effects of (+)-S- and (-)-R-abscisic acid (ABA) and some metabolites were studied in maize (Zea mays L. cv Black Mexican Sweet) suspension-cultured cells. Time-course studies of metabolite formation were performed in both cells and medium via analytical high-performance liquid chromatography. Metabolites were isolated and identified using physical and chemical methods. At 10 [mu]M concentration and 28[deg] C, (+)-ABA was metabolized within 24 h, yielding natural (-)-phaseic acid [(-)-PA] as the major product. The unnatural enantiomer (-)-ABA was less than 50% metabolized within 24 h and gave primarily (-)-7[prime]-hydroxyABA [(-)-7[prime]-HOABA], together with (+)-PA and ABA glucose ester. The distribution of metabolites in cells and medium was different, reflecting different sites of metabolism and membrane permeabilities of conjugated and nonconjugated metabolites. The results imply that (+)-ABA was oxidized to (-)-PA inside the cell, whereas (-)-ABA was converted to (-)-7[prime]-HOABA at the cell surface. Growth of maize cells was inhibited by both (+)- and (-)-ABA, with only weak contributions from their metabolites. The concentration of (+)-ABA that caused a 50% inhibition of growth of maize cells was approximately 1 [mu]M, whereas that for its metabolite (-)-PA was approximately 50 [mu]M. (-)-ABA was less active than (+)-ABA, with 50% growth inhibition observed at about 10 [mu]M. (-)-7[prime]-HOABA was only weakly active, with 50% inhibition caused by approximately 500 [mu]M. Time-course studies of medium pH indicated that (+)-ABA caused a transient pH increase (+0.3 units) at 6 h after addition that was not observed in controls or in samples treated with (-)-PA. The effect of (-)-ABA on medium Ph was marginal. No racemization at C-1[prime] of (+)-ABA, (-)-ABA, or metabolites was observed during the studies. PMID:12232311

  3. Modelling the biodegradation kinetics of the herbicide propanil and its metabolite 3,4-dichloroaniline.

    PubMed

    Marques, Ricardo; Oehmen, Adrian; Carvalho, Gilda; Reis, Maria A M

    2015-05-01

    This study models the biodegradation kinetics of two toxic xenobiotic compounds in enriched mixed cultures: a commonly applied herbicide (3,4-dichloropropionanilide or propanil) and its metabolite (3,4-dichloroaniline or DCA). The dependence of the metabolite degradation kinetics on the presence of the parent compound was investigated, as well as the influence of the feeding operation strategy. Model equations were proposed incorporating substrate inhibition of the parent compound and the metabolite during dump feed operation of a sequencing batch reactor (SBR). The kinetic parameters of the biomass were compared to step feed degradation of the SBR. The relationship between propanil and DCA degradation rates with the concentration of each compound was studied. A statistical comparison was carried out between the model predictions and experimental results. Substrate inhibition by both propanil and DCA was prominent during dump feed operation but insignificant during step feed. With both feeding strategies, the metabolite degradation was found to be dependent on the concentration of both the parent compound and the metabolite, suggesting that the DCA degrading enzymatic activity was independent of the detachment of the propionate moiety from the propanil molecule. After incorporating this finding into the model equations, the model was able to describe well the propanil and DCA degradation profiles, with an r (2) correlation >0.95 for each case. A kinetic model was developed for the degradation of the herbicide propanil and its metabolite DCA. An exponential inhibition term was incorporated to describe the substrate inhibition during dump feeding. The kinetics of metabolite degradation was dependent of the sum of the concentrations of metabolite and parent compound, which could also be of relevance to future xenobiotic modelling applications from wastewater.

  4. Anticancer properties of Monascus metabolites.

    PubMed

    Yang, Tao; Liu, Junwen; Luo, Feijun; Lin, Qinlu; Rosol, Thomas J; Deng, Xiyun

    2014-08-01

    This review provides up-to-date information on the anticancer properties of Monascus-fermented products. Topics covered include clinical evidence for the anticancer potential of Monascus metabolites, bioactive Monascus components with anticancer potential, mechanisms of the anticancer effects of Monascus metabolites, and existing problems as well as future perspectives. With the advancement of related fields, the development of novel anticancer Monascus food products and/or pharmaceuticals will be possible with the ultimate goal of decreasing the incidence and mortality of malignancies in humans.

  5. Microbial production of primary metabolites

    NASA Astrophysics Data System (ADS)

    Demain, Arnold L.

    1980-12-01

    Microbial production of primary metabolites contributes significantly to the quality of life. Through fermentation, microorganisms growing on inexpensive carbon sources can produce valuable products such as amino acids, nucleotides, organic acids, and vitamins which can be added to food to enhance its flavor or increase its nutritive value. The contribution of microorganisms will go well beyond the food industry with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum-derived products as well as the ethanol necessary for liquid fuel. The role of primary metabolites and the microbes which produce them will certainly increase in importance.

  6. Simultaneous Kinetic Analysis of Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase Activities 1

    PubMed Central

    Kent, Samuel S.; Young, Joseph D.

    1980-01-01

    An assay was developed for simultaneous kinetic analysis of the activities of the bifunctional plant enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase [EC 4.1.1.39]. [1-14C,5-3H]Ribulose 1,5-bisphosphate (RuBP) was used as the labeled substrate. Tritium enrichment of the doubly labeled 3-phosphoglycerate (3-PGA) product, common to both enzyme activities, may be used to calculate Vc/Vo ratios from the expression A/(B-A) where A and B represent the 3H/14C isotope ratios of doubly labeled RuBP and 3-PGA, and Vc and Vo represent the activities of carboxylase and oxygenase, respectively. Doubly labeled substrate was synthesized from [2-14C]glucose and [6-3H]glucose using the enzymes of the pentose phosphate pathway coupled with phosphoribulokinase. The kinetic properties of a commercial preparation of fully activated spinach carboxylase were studied under approximated physiological conditions of 20% O2 (252 micromolar), 295 μl/l CO2 (10 micromolar), 25 C, and pH 8.19. The Vc/Vo ratio was, within experimental error, constant at 30 seconds and 1 minute. This double label assay method may be used to calculate Vc/Vo ratios for the Laing-Ogren-Hageman equation, Vc/Vo = (VcKo/VoKc) ([CO2]/[O2]) where Vc and Vo represent Vmax, and Kc and Ko represent Michaelis constants for the carboxylase and oxygenase activities, respectively. PMID:16661214

  7. The oxygenase component of phenol hydroxylase from Acinetobacter radioresistens S13.

    PubMed

    Divari, Sara; Valetti, Francesca; Caposio, Patrizia; Pessione, Enrica; Cavaletto, Maria; Griva, Ersilia; Gribaudo, Giorgio; Gilardi, Gianfranco; Giunta, Carlo

    2003-05-01

    Phenol hydroxylase (PH) from Acinetobacter radioresistens S13 represents an example of multicomponent aromatic ring monooxygenase made up of three moieties: a reductase (PHR), an oxygenase (PHO) and a regulative component (PHI). The function of the oxygenase component (PHO), here characterized for the first time, is to bind molecular oxygen and catalyse the mono-hydroxylation of substrates (phenol, and with less efficiency, chloro- and methyl-phenol and naphthol). PHO was purified from extracts of A. radioresistens S13 cells and shown to be a dimer of 206 kDa. Each monomer is composed by three subunits: alpha (54 kDa), beta (38 kDa) and gamma (11 kDa). The gene encoding PHO alpha (named mopN) was cloned and sequenced and the corresponding amino acid sequence matched with that of functionally related oxygenases. By structural alignment with the catalytic subunits of methane monooxygenase (MMO) and alkene monooxygenase, we propose that PHO alpha contains the enzyme active site, harbouring a dinuclear iron centre Fe-O-Fe, as also suggested by spectral analysis. Conserved hydrophobic amino acids known to define the substrate recognition pocket, are also present in the alpha-subunit. The prevalence of alpha-helices (99.6%) as studied by CD confirmed the hypothized structural homologies between PHO and MMO. Three parameters (optimum ionic strength, temperature and pH) that affect kinetics of the overall phenol hydroxylase reaction were further analyzed with a fixed optimal PHR/PHI/PHO ratio of 2/1/1. The highest level of activity was evaluated between 0.075 and 0.1 m of ionic strength, the temperature dependence showed a maximum of activity at 24 degrees C and finally the pH for optimal activity was determined to be 7.5.

  8. 4,2',5'-trihydroxy-4'-methoxychalcone from Dalbergia odorifera exhibits anti-inflammatory properties by inducing heme oxygenase-1 in murine macrophages.

    PubMed

    Lee, Dong-Sung; Li, Bin; Im, Nam-Kyung; Kim, Youn-Chul; Jeong, Gil-Saeng

    2013-05-01

    Dalbergia odorifera T. Chen (Leguminosae) has traditionally been used as an ingredient in East Asian medicines to treat various diseases. In the present study, 4,2',5'-trihydroxy-4'-methoxychalcone (TMC), a biologically active chalcone isolated from the heartwood of D. odorifera, inhibited cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, leading to a reduction in COX-2-induced prostaglandin E2 (PGE2) and iNOS-induced nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. Furthermore, TMC suppressed tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) production, and the phosphorylation and degradation of IκB-α as well as the LPS-stimulated nuclear translocation of p65 in macrophages. The present study also demonstrated that TMC induced heme oxygenase-1 (HO-1) expression through the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in macrophages. The effects of TMC on LPS-induced NO, PGE2, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β production were partially reversed by the HO inhibitor tin protoporphyrin (SnPP). These results suggest that TMC inhibits pro-inflammatory mediators by inducing the expression of anti-inflammatory HO-1 via the Nrf2 pathway.

  9. Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis

    PubMed Central

    Bauer, Andrea; Mylroie, Hayley; Thornton, C. Clare; Calay, Damien; Birdsey, Graeme M.; Kiprianos, Allan P.; Wilson, Garrick K.; Soares, Miguel P.; Yin, Xiaoke; Mayr, Manuel; Randi, Anna M.; Mason, Justin C.

    2016-01-01

    Angiogenesis is an essential physiological process and an important factor in disease pathogenesis. However, its exploitation as a clinical target has achieved limited success and novel molecular targets are required. Although heme oxygenase-1 (HO-1) acts downstream of vascular endothelial growth factor (VEGF) to modulate angiogenesis, knowledge of the mechanisms involved remains limited. We set out identify novel HO-1 targets involved in angiogenesis. HO-1 depletion attenuated VEGF-induced human endothelial cell (EC) proliferation and tube formation. The latter response suggested a role for HO-1 in EC migration, and indeed HO-1 siRNA negatively affected directional migration of EC towards VEGF; a phenotype reversed by HO-1 over-expression. EC from Hmox1−/− mice behaved similarly. Microarray analysis of HO-1-depleted and control EC exposed to VEGF identified cyclins A1 and E1 as HO-1 targets. Migrating HO-1-deficient EC showed increased p27, reduced cyclin A1 and attenuated cyclin-dependent kinase 2 activity. In vivo, cyclin A1 siRNA inhibited VEGF-driven angiogenesis, a response reversed by Ad-HO-1. Proteomics identified structural protein vimentin as an additional VEGF-HO-1 target. HO-1 depletion inhibited VEGF-induced calpain activity and vimentin cleavage, while vimentin silencing attenuated HO-1-driven proliferation. Thus, vimentin and cyclins A1 and E1 represent VEGF-activated HO-1-dependent targets important for VEGF-driven angiogenesis. PMID:27388959

  10. Nrf2-heme oxygenase-1 axis in mucoepidermoid carcinoma of the lung: Antitumoral effects associated with down-regulation of matrix metalloproteinases.

    PubMed

    Tertil, Magdalena; Golda, Slawomir; Skrzypek, Klaudia; Florczyk, Urszula; Weglarczyk, Kazimierz; Kotlinowski, Jerzy; Maleszewska, Monika; Czauderna, Szymon; Pichon, Chantal; Kieda, Claudine; Jozkowicz, Alicja; Dulak, Jozef

    2015-12-01

    Lung mucoepidermoid carcinoma (MEC) is a very poorly characterized rare subtype of non-small-cell lung cancer (NSCLC) associated with more favorable prognoses than other forms of intrathoracic malignancies. We have previously identified that heme oxygenase-1 (HO-1, encoded by HMOX1) inhibits MEC tumor growth and modulates the transcriptome of microRNAs. Here we investigate the role of a major upstream regulator of HO-1 and a master regulator of cellular antioxidant responses, transcription factor Nrf2, in MEC biology. Nrf2 overexpression in the NCI-H292 MEC cell line mimicked the phenotype of HO-1 overexpressing cells, leading to inhibition of cell proliferation and migration and down-regulation of oncogenic miR-378. HMOX1 silencing identified HO-1 as a major mediator of Nrf2 action. Nrf2- and HO-1 overexpressing cells exhibited strongly diminished expression of multiple matrix metalloproteinases and inflammatory cytokine interleukin-1β, which was confirmed in an NCI-HO-1 xenograft model. Overexpression of HO-1 altered not only human MMP levels in tumor cells but also murine MMP levels within tumor microenvironment and metastatic niche. This could possibly contribute to decreased metastasis to the lungs and inhibitory effects of HO-1 on MEC tumor growth. Our profound transcriptome analysis and molecular characterization of the mucoepidermoid lung carcinoma helps to understand the specific clinical presentations of these tumors, emphasizing a unique antitumoral role of the Nrf2-HO-1 axis.

  11. Isolation of ribulose-1,5-bisphosphate carboxylase/oxygenase from leaves.

    PubMed

    Carmo-Silva, A Elizabete; Barta, Csengele; Salvucci, Michael E

    2011-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a multifunctional enzyme that catalyzes the fixation of CO2 and O2 in photosynthesis and photorespiration, respectively. As the rate-limiting step in photosynthesis, improving the catalytic properties of Rubisco has long been viewed as a viable strategy for increasing plant productivity. Advances in biotechnology have made this goal more attainable by making it possible to modify Rubisco in planta. To properly evaluate the properties of Rubisco, it is necessary to isolate the enzyme in pure form. This chapter describes procedures for rapid and efficient purification of Rubisco from leaves of several species.

  12. Finding intermediates in the O2 activation pathways of non-heme iron oxygenases.

    PubMed

    Kovaleva, E G; Neibergall, M B; Chakrabarty, S; Lipscomb, J D

    2007-07-01

    Intermediates in the reaction cycle of an oxygenase are usually very informative with respect to the chemical mechanism of O 2 activation and insertion. However, detection of these intermediates is often complicated by their short lifetime and the regulatory mechanism of the enzyme designed to ensure specificity. Here, the methods used to detect the intermediates in an extradiol dioxygenase, a Rieske cis-dihydrodiol dioxygenase, and soluble methane monooxygenase are discussed. The methods include the use of alternative, chromophoric substrates, mutagenesis of active site catalytic residues, forced changes in substrate binding order, control of reaction rates using regulatory proteins, and initialization of catalysis in crystallo.

  13. Improvement of heme oxygenase-1-based heme sensor for quantifying free heme in biological samples.

    PubMed

    Taira, Junichi; Nakashima, Yukinori; Yoshihara, Shun; Koga, Shinya; Sueda, Shinji; Komatsu, Hideyuki; Higashimoto, Yuichiro; Takahashi, Toru; Tanioka, Nohito; Shimizu, Hiroko; Morimatsu, Hiroshi; Sakamoto, Hiroshi

    2015-11-15

    We recently reported a novel heme sensor using fluorescently labeled heme oxygenase-1; however, its inherent enzyme activity would be a potential obstacle in quantifying heme in biological samples. Here, we found that mutation of the catalytically important residue, Asp140, with histidine in the sensor not only diminished the heme degradation activity but also increased heme binding affinity. The sensor with a visible fluorophore was also found to be beneficial to avoid background emission from endogenous substance in biological samples. By using the improved heme sensor, we succeeded in quantifying free heme in rat hepatic samples for the first time.

  14. Impairment of neutrophil oxidative burst in children with sickle cell disease is associated with heme oxygenase-1.

    PubMed

    Evans, Ceri; Orf, Katharine; Horvath, Erzsebet; Levin, Michael; De La Fuente, Josu; Chakravorty, Subarna; Cunnington, Aubrey J

    2015-12-01

    Sickle cell disease is a risk factor for invasive bacterial infections, and splenic dysfunction is believed to be the main underlying cause. We have previously shown that the liberation of heme in acute hemolysis can induce heme oxygenase-1 during granulopoiesis, impairing the ability of developing neutrophils to mount a bactericidal oxidative burst, and increasing susceptibility to bacterial infection. We hypothesized that this may also occur with the chronic hemolysis of sickle cell disease, potentially contributing to susceptibility to infections. We found that neutrophil oxidative burst activity was significantly lower in treatment-naïve children with sickle cell disease compared to age-, gender- and ethnicity-matched controls, whilst degranulation was similar. The defect in neutrophil oxidative burst was quantitatively related to both systemic heme oxygenase-1 activity (assessed by carboxyhemoglobin concentration) and neutrophil mobilization. A distinct population of heme oxygenase-1-expressing cells was present in the bone marrow of children with sickle cell disease, but not in healthy children, with a surface marker profile consistent with neutrophil progenitors (CD49d(Hi) CD24(Lo) CD15(Int) CD16(Int) CD11b(+/-)). Incubation of promyelocytic HL-60 cells with the heme oxygenase-1 substrate and inducer, hemin, demonstrated that heme oxygenase-1 induction during neutrophilic differentiation could reduce oxidative burst capacity. These findings indicate that impairment of neutrophil oxidative burst activity in sickle cell disease is associated with hemolysis and heme oxygenase-1 expression. Neutrophil dysfunction might contribute to risk of infection in sickle cell disease, and measurement of neutrophil oxidative burst might be used to identify patients at greatest risk of infection, who might benefit from enhanced prophylaxis.

  15. Natural products: Hunting microbial metabolites

    NASA Astrophysics Data System (ADS)

    Schmidt, Eric W.

    2015-05-01

    Symbiotic bacteria synthesize many specialized small molecules; however, establishing the role these chemicals play in human health and disease has been difficult. Now, the chemical structure and mechanism of the Escherichia coli product colibactin provides insight into the link between this secondary metabolite and colorectal cancer.

  16. Automated analysis of oxidative metabolites

    NASA Technical Reports Server (NTRS)

    Furner, R. L. (Inventor)

    1974-01-01

    An automated system for the study of drug metabolism is described. The system monitors the oxidative metabolites of aromatic amines and of compounds which produce formaldehyde on oxidative dealkylation. It includes color developing compositions suitable for detecting hyroxylated aromatic amines and formaldehyde.

  17. Primary expectations of secondary metabolites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant secondary metabolites (e.g., phenolics) are important for human health, in addition to the organoleptic properties they impart to fresh and processed foods. Consumer expectations such as appearance, taste, or texture influence their purchasing decisions. Thorough identification of phenolic com...

  18. Primary expectations of secondary metabolites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    My program examines the plant secondary metabolites (i.e. phenolics) important for human health, and which impart the organoleptic properties that are quality indicators for fresh and processed foods. Consumer expectations such as appearance, taste, or texture influence their purchasing decisions; a...

  19. Discovery of microsomal triglyceride transfer protein (MTP) inhibitors with potential for decreased active metabolite load compared to dirlotapide.

    PubMed

    Robinson, Ralph P; Bartlett, Jeremy A; Bertinato, Peter; Bessire, Andrew J; Cosgrove, Judith; Foley, Patrick M; Manion, Tara B; Minich, Martha L; Ramos, Brenda; Reese, Matthew R; Schmahai, Theodore J; Swick, Andrew G; Tess, David A; Vaz, Alfin; Wolford, Angela

    2011-07-15

    Analogues related to dirlotapide (1), a gut-selective inhibitor of microsomal triglyceride transfer protein (MTP) were prepared with the goal of further reducing the potential for unwanted liver MTP inhibition and associated side-effects. Compounds were designed to decrease active metabolite load: reducing MTP activity of likely human metabolites and increasing metabolite clearance to reduce exposure. Introduction of 4'-alkyl and 4'-alkoxy substituents afforded compounds exhibiting improved therapeutic index in rats with respect to liver triglyceride accumulation and enzyme elevation. Likely human metabolites of select compounds were prepared and characterized for their potential to inhibit MTP in vivo. Based on preclinical efficacy and safety data and its potential for producing short-lived, weakly active metabolites, compound 13 (PF-02575799) advanced into phase 1 clinical studies.

  20. The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites

    PubMed Central

    Waku, Tsuyoshi; Shiraki, Takuma; Oyama, Takuji; Maebara, Kanako; Nakamori, Rinna; Morikawa, Kosuke

    2010-01-01

    The nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ), recognizes various synthetic and endogenous ligands by the ligand-binding domain. Fatty-acid metabolites reportedly activate PPARγ through conformational changes of the Ω loop. Here, we report that serotonin metabolites act as endogenous agonists for PPARγ to regulate macrophage function and adipogenesis by directly binding to helix H12. A cyclooxygenase inhibitor, indomethacin, is a mimetic agonist of these metabolites. Crystallographic analyses revealed that an indole acetate functions as a common moiety for the recognition by the sub-pocket near helix H12. Intriguingly, a serotonin metabolite and a fatty-acid metabolite each bind to distinct sub-pockets, and the PPARγ antagonist, T0070907, blocked the fatty-acid agonism, but not that of the serotonin metabolites. Mutational analyses on receptor-mediated transcription and coactivator binding revealed that each metabolite individually uses coregulator and/or heterodimer interfaces in a ligand-type-specific manner. Furthermore, the inhibition of the serotonin metabolism reduced the expression of the endogenous PPARγ-target gene. Collectively, these results suggest a novel agonism, in which PPARγ functions as a multiple sensor in response to distinct metabolites. PMID:20717101

  1. Inhibition of cellular respiration by endogenously produced carbon monoxide.

    PubMed

    D'Amico, Gabriela; Lam, Francis; Hagen, Thilo; Moncada, Salvador

    2006-06-01

    Endogenously produced nitric oxide (NO) interacts with mitochondrial cytochrome c oxidase, leading to inhibition of cellular respiration. This interaction has been shown to have important physiological and pathophysiological consequences. Exogenous carbon monoxide (CO) is also known to inhibit cytochrome c oxidase in vitro; however, it is not clear whether endogenously produced CO can inhibit cellular respiration and, if so, what the significance of this might be. In this study, we show that exogenous CO inhibits respiration in a moderate but persistent manner in HEK293 cells under ambient (21%) oxygen concentrations (K(i) = 1.44 microM). This effect of CO was increased (K(i) = 0.35 microM) by incubation in hypoxic conditions (1% oxygen). Endogenous CO, generated by HEK293 cells transfected with the inducible isoform of haem oxygenase (haem oxygenase-1; HO-1), also inhibited cellular respiration moderately (by 12%) and this was accompanied by inhibition (23%) of cytochrome c oxidase activity. When the cells were incubated in hypoxic conditions during HO-1 induction, the inhibitory effect of CO on cell respiration was markedly increased to 70%. Furthermore, endogenously produced CO was found to be responsible for the respiratory inhibition that occurs in RAW264.7 cells activated in hypoxic conditions with lipopolysaccharide and interferon-gamma, in the presence of N-(iminoethyl)-L-ornithine to prevent the synthesis of NO. Our results indicate that CO contributes significantly to the respiratory inhibition in activated cells, particularly under hypoxic conditions. Inhibition of cell respiration by endogenous CO through its interaction with cytochrome c oxidase might have an important role in inflammatory and hypoxic conditions.

  2. The Induction of Heme Oxygenase 1 Decreases Painful Diabetic Neuropathy and Enhances the Antinociceptive Effects of Morphine in Diabetic Mice

    PubMed Central

    Castany, Sílvia; Carcolé, Mireia; Leánez, Sergi; Pol, Olga

    2016-01-01

    Painful diabetic neuropathy is a common complication of diabetes mellitus which is poorly controlled by conventional analgesics. This study investigates if treatment with an heme oxygenase 1 (HO-1) inducer, cobalt protoporphyrin IX (CoPP), could modulate the allodynia and hyperalgesia induced by diabetes and enhanced the antinociceptive effects of morphine. In a diabetic mice model induced by the injection of streptozotocin (STZ), we evaluated the antiallodynic and antihyperalgesic effects produced by the intraperitoneal administration of 5 and 10 mg/kg of CoPP at several days after its administration. The antinociceptive actions produced by the systemic administration of morphine alone or combined with CoPP were also evaluated. In addition, the effects of CoPP treatment on the expression of HO-1, the microglial activation marker (CD11b/c), the inducible nitric oxide synthase (NOS2) and μ-opioid receptors (MOR), were also assessed. Our results showed that the administration of 10 mg/kg of CoPP during 5 consecutive days completely blocked the mechanical and thermal hypersensitivity induced by diabetes. These effects are accompanied by the increased spinal cord, dorsal root ganglia and sciatic nerve protein levels of HO-1. In addition, the STZ-induced activation of microglia and overexpression of NOS2 in the spinal cord were inhibited by CoPP treatment. Furthermore, the antinociceptive effects of morphine were enhanced by CoPP treatment and reversed by the administration of an HO-1 inhibitor, tin protoporphyrin IX (SnPP). The spinal cord expression of MOR was also increased by CoPP treatment in diabetic mice. In conclusion, our data provide the first evidence that the induction of HO-1 attenuated STZ-induced painful diabetic neuropathy and enhanced the antinociceptive effects of morphine via inhibition of microglia activation and NOS2 overexpression as well as by increasing the spinal cord levels of MOR. This study proposes the administration of CoPP alone or

  3. Nitric oxide synthase-cyclo-oxygenase pathways in organum vasculosum laminae terminalis: possible role in pyrogenic fever in rabbits.

    PubMed Central

    Lin, J. H.; Lin, M. T.

    1996-01-01

    1. Fever was induced in rabbits by administration of Escherichia coli endotoxin (lipopolysaccharide; LPS; 0.001-10 micrograms) into the organum vasculosum laminae terminalis (OVLT). Deep body temperature was evaluated over a period of 7 h. 2. The LPS-induced febrile response was mimicked by intra-OVLT injection of the nitric oxide (NO) donors, S-nitroso-acetylpenicillamine (SNAP, 1-10 micrograms), sodium nitroprusside (SNP, 50 micrograms), or hydroxylamine (10 micrograms), the cyclic GMP analogue 8-bromo-cyclic GMP (8-Br-cyclic GMP, 10-100 micrograms), or prostaglandin E2 (PGE2, 0.2 micrograms). 3. Dexamethasone (Dex, a potent inhibitor of the transcription of inducible NO synthase, iNOS, 10 micrograms), anisomycin (a protein synthesis inhibitor, 100 micrograms), L-N5-(1-iminoethyl)ornithine (L-NIO; an irreversible NOS inhibitor, 10-200 micrograms), aminoguanidine (a specific iNOS inhibitor, 1000 micrograms), or NG-methyl-L-arginine acetate (L-NMMA, a NOS inhibitor, 100 micrograms) inhibited fever induced by LPS when injected into the OVLT 1 h before LPS injection. An intra-OVLT dose of 1000 micrograms of NG-nitro-L-arginine methyl ester (L-NAME, a potent inhibitor of constitutive NOS) did not exhibit antipyretic effects. 4. Methylene blue (an inhibitor of NOS and soluble guanylate cyclase, 1-10 micrograms), 6-(phenylamino)-5,8-quinolinedione (LY-83583; an inhibitor of soluble guanylate cyclase and NO release, 20 micrograms), or indomethacin (an inhibitor of cyclo-oxygenase, COX, 400 micrograms) inhibited fever induced by LPS when injected into the OVLT 1 h before LPS injection. Pretreatment with methylene blue or haemoglobin (a NO scavenger, 100 micrograms) attenuated the fever induced by intra-OVLT injection of SNAP. 5. The PGE2-induced fever was potentiated, rather then attenuated, by pretreatment with an intra-OVLT dose of animoguanidine (1000 micrograms), L-NMMA (100 micrograms) or L-NIO (200 micrograms). 6. These results suggest that iNOS-COX pathways in the

  4. Relative roles of nitric oxide and cyclo-oxygenase and lipoxygenase products of arachidonic acid in the contractile responses of rat renal arcuate arteries.

    PubMed Central

    Wu, X. C.; Richards, N. T.; Michael, J.; Johns, E.

    1994-01-01

    1. We have examined the effects of inhibition of nitric oxide synthase, cyclo-oxygenase and lipoxygenase on the responses of renal arcuate arteries of Wistar rats, with and without endothelium, to noradrenaline, potassium chloride, endothelin-1, acetylcholine and sodium nitroprusside. 2. Noradrenaline, potassium chloride and endothelin-1 caused concentration-dependent contraction of the vessels. Indomethacin (14 microM) attenuated the contractile response to noradrenaline and to potassium chloride. The inhibitory effect of indomethacin persisted following endothelial removal. 3. Acetylcholine produced concentration-dependent relaxation of the vessels which was potentiated by indomethacin (14 microM). 4. NG-nitro-L-arginine methyl ester (L-NAME, 100 microM) did not affect the contractile response to either noradrenaline or potassium chloride but abolished relaxation to acetylcholine. In addition, L-NAME abolished the affects of indomethacin on acetylcholine-induced relaxation and noradrenaline- and potassium chloride-induced contraction. 5. BWC755C attenuated noradrenaline and potassium chloride-induced contraction. This effect persisted in the presence of indomethacin. 6. In vessels pretreated with CHAPS, BW755C inhibited both noradrenaline and potassium chloride-induced contraction. In these vessels BW755C had no additional inhibitory effect to indomethacin on noradrenaline- and potassium-induced contraction. 7. Inhibition of nitric oxide synthase with L-NAME (100 microM) attenuated the effect of BW755C on noradrenaline- and potassium-induced contraction. 8. BW755C alone did not affect endothelium-dependent relaxation as assessed by the response to acetylcholine. However, in the presence of indomethacin, BW755C inhibited acetylcholine-induced relaxation. 9. BW755C did not affect endothelium-independent relaxation as assessed by the response to sodium nitroprusside in vessels with or without endothelium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8075854

  5. The role of volatile metabolites in microbial communities of the lSS higher plant link

    NASA Astrophysics Data System (ADS)

    Tirranen, L. S.; Gitelson, I. I.

    The possibility of controlling the microbial community composition through metabolites produced by microbes has been considered. Basing on the comparative analysis of the experimental data we have revealed the greater contribution of volatile metabolites to microbial interaction than non-volatile. Investigations proved that the interaction between microorganisms through extracted volatile materials is a widespread phenomenon peculiar to many microorganisms. Most cultures inhibited each other's growth, in a number of cases displayed bactericidal action. Stimulatory action occurred 6 - 8 times rarely. The individuality of affect on studied test-cultures growth and the spectrum of microbial resistance to volatile metabolites have been revealed. Based on the comparative cluster analysis of these spectra from 100 studied cultures we have revealed that studied organisms produce a complex of volatile metabolites including 82 inhibiting and 52 stimulating. It was found that excretion of volatile metabolites of studied microorganisms depended upon the culture age, concentration of nutrient medium separate components and volatile by-products excreted by other microorganisms. The production can be increased or decreased by volatile by-products of other microbes. This is related to strain features and the culture age. The prospects of using these regulating metabolites can be defined by the "range", specificity and safety for other members of the microbial community in insufficient concentrations. Volatile metabolites of either plants and microorganisms or other system links - humans and technological equipment installed inside the closed ecosystem - can influence the formation of microbial communities, gas composition of the system atmosphere and state of the plants through the atmosphere. Special experiments showed that volatile microorganism metabolites could accumulate in the environment, dissolve in atmospheric water and maintain their biological activity for many days

  6. Post-translational modifications in the large subunit of ribulose bisphosphate carboxylase/oxygenase.

    PubMed

    Houtz, R L; Stults, J T; Mulligan, R M; Tolbert, N E

    1989-03-01

    Two adjacent N-terminal tryptic peptides of the large subunit of ribulose bisphosphate carboxylase/oxygenase [3-phospho-D-glycerate carboxy-lyase (dimerizing), EC 4.1.1.39] from spinach, wheat, tobacco, and muskmelon were removed by limited tryptic proteolysis. Characterization by peptide sequencing, amino acid composition, and tandem mass spectrometry revealed that the N-terminal residue from the large subunit of the enzyme from each plant species was acetylated proline. The sequence of the penultimate N-terminal tryptic peptide from the large subunit of the spinach and wheat enzyme was consistent with previous primary structure determinations. However, the penultimate N-terminal peptide from the large subunit of both the tobacco and muskmelon enzymes, while identical, differed from the corresponding peptide from spinach and wheat by containing a trimethyllysyl residue at position 14. Thus, tryptic proteolysis occurred at lysine-18 rather than lysine-14 as with the spinach and wheat enzymes. A comparison of the DNA sequences for the large subunit of ribulose bisphosphate carboxylase/oxygenase indicates that the N terminus has been post-translationally processed by removal of methionine-1 and serine-2 followed by acetylation of proline-3. In addition, for the enzyme from tobacco and muskmelon a third post-translational modification occurs at lysine-14 in the form of N epsilon-trimethylation.

  7. Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases

    PubMed Central

    Tarhonskaya, Hanna; Rydzik, Anna M.; Leung, Ivanhoe K. H.; Loik, Nikita D.; Chan, Mun Chiang; Kawamura, Akane; McCullagh, James S. O.; Claridge, Timothy D. W.; Flashman, Emily; Schofield, Christopher J.

    2014-01-01

    Accumulation of (R)-2-hydroxyglutarate in cells results from mutations to isocitrate dehydrogenase that correlate with cancer. A recent study reports that (R)-, but not (S)-2-hydroxyglutarate, acts as a co-substrate for the hypoxia-inducible factor prolyl hydroxylases via enzyme-catalysed oxidation to 2-oxoglutarate. Here we investigate the mechanism of 2-hydroxyglutarate-enabled activation of 2-oxoglutarate oxygenases, including prolyl hydroxylase domain 2, the most important human prolyl hydroxylase isoform. We observe that 2-hydroxyglutarate-enabled catalysis by prolyl hydroxylase domain 2 is not enantiomer-specific and is stimulated by ferrous/ferric ion and reducing agents including L-ascorbate. The results reveal that 2-hydroxyglutarate is oxidized to 2-oxoglutarate non-enzymatically, likely via iron-mediated Fenton-chemistry, at levels supporting in vitro catalysis by 2-oxoglutarate oxygenases. Succinic semialdehyde and succinate are also identified as products of 2-hydroxyglutarate oxidation. Overall, the results rationalize the reported effects of 2-hydroxyglutarate on catalysis by prolyl hydroxylases in vitro and suggest that non-enzymatic 2-hydroxyglutarate oxidation may be of biological interest. PMID:24594748

  8. Crystallization of the extracellular rubber oxygenase RoxA from Xanthomonas sp. strain 35Y

    SciTech Connect

    Hoffmann, Maren; Braaz, Reinhard; Jendrossek, Dieter; Einsle, Oliver

    2008-02-01

    The extracellular rubber-degrading enzyme rubber oxygenase A (RoxA) from Xanthomonas sp. strain 35Y has been crystallized and diffraction data have been collected to high resolution. Rubber oxygenase A (RoxA) from Xanthomonas sp. strain 35Y is an extracellular dioxygenase that is capable of cleaving the double bonds of poly(cis-1,4-isoprene) into short-chain isoprene units with 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD) as the major cleavage product. Crystals of the dihaem c-type cytochrome RoxA were grown by sitting-drop vapour diffusion using polyethylene glycol as a precipitant. RoxA crystallized in space group P2{sub 1}, with unit-cell parameters a = 72.4, b = 97.1, c = 101.1 Å, β = 98.39°, resulting in two monomers per asymmetric unit. Diffraction data were collected to a limiting resolution of 1.8 Å. Despite a protein weight of 74.1 kDa and only two iron sites per monomer, phasing was successfully carried out by multiple-wavelength anomalous dispersion.

  9. Induction of heme oxygenase: A general response to oxidant stress in cultured mammalian cells