Science.gov

Sample records for oxygenase metabolites inhibit

  1. Isocyanides inhibit human heme oxygenases at the verdoheme stage.

    PubMed

    Evans, John P; Kandel, Sylvie; Ortiz de Montellano, Paul R

    2009-09-22

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides, isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 microM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design.

  2. Amlodipine and haemodynamic effects of cyclo-oxygenase inhibition.

    PubMed

    Minuz, P; Pancera, P; Ribul, M; Priante, F; Degan, M; Campedelli, A; Arosio, E; Lechi, A

    1995-01-01

    1. The haemodynamic effects of calcium antagonists could depend at least in part on the activity of vasoactive prostanoids. 2. We set out to study the effect of the cyclo-oxygenase inhibitor ibuprofen, 400 mg three times daily for 3 days, by a randomised cross-over study vs placebo in 12 mild to moderate essential hypertensive patients who had been treated for 1 month with amlodipine. 3. Blood pressure, heart rate and vascular resistances in the upper limb (Doppler ultrasound) were measured. Plasma renin activity and urinary aldosterone, as well as indices of renal function, were evaluated. Urinary 2,3-dinor-6-keto-PGF1 alpha and 2,3-dinor-TXB2, as well as 6-keto-PGF1 alpha and TXB2, were measured as indices of systemic and renal PGI2 and TXA2 synthesis. 4. Amlodipine normalised blood pressure and reduced upper limb vascular resistances; it did not affect urinary prostanoid excretion. Short-term combined administration of ibuprofen resulted in, by comparison with placebo, inhibition of systemic PGI2 (-80.5 ng 24 h-1, 95% CI -99.2, -61.4; P < 0.001) and TXA2 (-216.1 ng 24 h-1, 95% CI -276.5, -155.8; P < 0.001), together with an increase in systolic (+7.8 mm Hg, 95% CI +3.1, +12.3; P < 0.01) and diastolic (+3.9 mm Hg, 95% CI +1.2, +6.6; P < 0.01) blood pressure; it had no significant effect on regional vascular resistances (+4.7 mm Hg ml-1 s, 95% CI -5.6, +15.0). Effects of ibuprofen on renal prostanoid synthesis were less marked, and there was no change in indices of renal function or hydro-electrolytic balance.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Species Variation in the Predawn Inhibition of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase 1

    PubMed Central

    Servaites, Jerome C.; Parry, Martin A. J.; Gutteridge, Steven; Keys, Alfred J.

    1986-01-01

    The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase was measured in extracts of leaves collected before dawn (predawn activity, pa) and at midday (midday activity, ma). Twenty-three of the 37 species examined showed a pa/ma ratio (≤0.75, while only Capsicum frutescens, Cucumis sativa, Glycine max, Nicotiana tabacum, Vigna unguiculata, and 3 Solanum species showed a pa/ma ratio ≤0.5. Phaseolus vulgaris consistently showed a pa/ma ratio of ≤0.1. Activities and pa/ma ratios of the same species grown in the United States and the United Kingdom were very similar. Gel filtration of extracts before assay had no effect on the observed activities and the pa/ma ratios. These data are consistent with the hypothesis that in a number of species the enzyme is partially inhibited following the night period by the presence of a tight-binding inhibitor. PMID:16665155

  4. Structural insights into human heme oxygenase-1 inhibition by potent and selective azole-based compounds

    PubMed Central

    Rahman, Mona N.; Vukomanovic, Dragic; Vlahakis, Jason Z.; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao

    2013-01-01

    The development of heme oxygenase (HO) inhibitors, especially those that are isozyme-selective, promises powerful pharmacological tools to elucidate the regulatory characteristics of the HO system. It is already known that HO has cytoprotective properties and may play a role in several disease states, making it an enticing therapeutic target. Traditionally, the metalloporphyrins have been used as competitive HO inhibitors owing to their structural similarity with the substrate, heme. However, given heme's important role in several other proteins (e.g. cytochromes P450, nitric oxide synthase), non-selectivity is an unfortunate side-effect. Reports that azalanstat and other non-porphyrin molecules inhibited HO led to a multi-faceted effort to develop novel compounds as potent, selective inhibitors of HO. This resulted in the creation of non-competitive inhibitors with selectivity for HO, including a subset with isozyme selectivity for HO-1. Using X-ray crystallography, the structures of several complexes of HO-1 with novel inhibitors have been elucidated, which provided insightful information regarding the salient features required for inhibitor binding. This included the structural basis for non-competitive inhibition, flexibility and adaptability of the inhibitor binding pocket, and multiple, potential interaction subsites, all of which can be exploited in future drug-design strategies. PMID:23097500

  5. Heme oxygenase-1 promotes tumor progression and metastasis of colorectal carcinoma cells by inhibiting antitumor immunity

    PubMed Central

    Seo, Geom Seog; Jiang, Wen-Yi; Chi, Jin Hua; Jin, Hao; Park, Won-Chul; Sohn, Dong Hwan; Park, Pil-Hoon; Lee, Sung Hee

    2015-01-01

    Heme oxygenase-1 (HO-1) is upregulated in colorectal carcinoma (CRC) cells. However, the role of HO-1 in the metastatic potential of CRC remains to be elucidated. In this study, we investigated the potential of HO-1 to control the antitumor immunity of CRC. Intercellular adhesion molecule-1 (ICAM-1) plays an important role in the immune surveillance system. Hemin-induced HO-1 expression suppressed the expression of ICAM-1 in human CRC cells. HO-1 regulated ICAM-1 expression via tristetraprolin, an mRNA-binding protein, at the posttranscriptional level in CRC cells. The upregulated HO-1 expression in CRC cells markedly decreased the adhesion of peripheral blood mononuclear lymphocytes (PBMLs) to CRC cells and PBML-mediated cytotoxicity against CRC cells. Production of CXCL10, an effector T cell-recruiting chemokine, was significantly reduced by the increased HO-1 expression. The expression of the CXCL10 receptor, CXCR3, decreased significantly in PBMLs that adhered to CRC cells. HO-1 expression correlated negatively, although nonsignificantly, with ICAM-1 and CXCL10 expression in xenograft tumors. Taken together, our data suggest that HO-1 expression is functionally linked to the mediation of tumor progression and metastasis of CRC cells by inhibiting antitumor immunity. PMID:26087182

  6. Heme oxygenase/carbon monoxide pathway inhibition plays a role in ameliorating fibrosis following splenectomy.

    PubMed

    Wang, Qiu-Ming; Duan, Zhi-Jun; Du, Jian-Ling; Guo, Shi-Bin; Sun, Xiao-Yu; Liu, Zhen

    2013-05-01

    Splenectomy is a recognized therapy for liver cirrhosis with splenomegaly, since it decreases free iron concentration that accompanies the destruction of red blood cells. Heme oxygenase (HO)-1 and its by-products, iron and carbon monoxide (CO), play crucial roles in hepatic fibrosis. The aim of the present study was to determine whether splenectomy in cirrhotic rats induced by bile duct ligation (BDL), through the HO/CO pathway, could slow down the development of liver fibrosis. Male Sprague-Dawley rats were divided randomly into the sham, BDL, splenectomy, Fe, zinc protoporphyrin (Znpp) and cobalt protoporphyrin (Copp) treatment groups, for inhibiting and inducing HO-1 expression. The level of HO-1 was detected by western blot analysis and reverse transcription-polymerase chain reaction. Serum carboxyhemoglobin (COHb), iron and portal vein pressure (PVP) were also quantified. Liver iron was measured by atomic absorption spectrometry with acetylene-air flame atomization. HO-1 and α-smooth muscle actin (α-SMA) were localized by immunohistochemistry. Liver and spleen iron were visualized by Perls' Prussian blue staining. Hepatic fibrosis was assessed using hematoxylin and eosin (H&E) staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum transforming growth factor-β1 (TGF-β1). The results showed that liver, spleen and serum levels of HO-1, COHb and iron were greatly enhanced in the BDL group compared with the sham group; they were reduced following splenectomy and Znpp treatment, but were elevated in the Copp and Fe groups. Hydroxyproline, TGF-β1, α-SMA, PVP and malonaldehyde levels were lower in the splenectomy and Znpp groups compared to BDL, while higher levels were observed in the Copp and Fe-treated groups. Our study shows that splenectomy reduces iron and CO levels in part by reducing HO-1 expression, and it decreases portal pressure and slightly decreases hepatic fibroproliferation. PMID:23525258

  7. Heme Oxygenase-1 Inhibits HLA Class I Antibody-Dependent Endothelial Cell Activation

    PubMed Central

    Vijayan, Vijith; Hiller, Oliver; Figueiredo, Constanca; Aljabri, Abid; Blasczyk, Rainer; Theilmeier, Gregor; Becker, Jan Ulrich; Larmann, Jan; Immenschuh, Stephan

    2015-01-01

    Antibody-mediated rejection (AMR) is a key limiting factor for long-term graft survival in solid organ transplantation. Human leukocyte antigen (HLA) class I (HLA I) antibodies (Abs) play a major role in the pathogenesis of AMR via their interactions with HLA molecules on vascular endothelial cells (ECs). The antioxidant enzyme heme oxygenase (HO)-1 has anti-inflammatory functions in the endothelium. As complement-independent effects of HLA I Abs can activate ECs, it was the goal of the current study to investigate the role of HO-1 on activation of human ECs by HLA I Abs. In cell cultures of various primary human macro- and microvascular ECs treatment with monoclonal pan- and allele-specific HLA I Abs up-regulated the expression of inducible proinflammatory adhesion molecules and chemokines (vascular cell adhesion molecule-1 [VCAM-1], intercellular cell adhesion molecule-1 [ICAM-1], interleukin-8 [IL-8] and monocyte chemotactic protein 1 [MCP-1]). Pharmacological induction of HO-1 with cobalt-protoporphyrin IX reduced, whereas inhibition of HO-1 with either zinc-protoporphyrin IX or siRNA-mediated knockdown increased HLA I Ab-dependent up-regulation of VCAM-1. Treatment with two carbon monoxide (CO)-releasing molecules, which liberate the gaseous HO product CO, blocked HLA I Ab-dependent EC activation. Finally, in an in vitro adhesion assay exposure of ECs to HLA I Abs led to increased monocyte binding, which was counteracted by up-regulation of HO-1. In conclusion, HLA I Ab-dependent EC activation is modulated by endothelial HO-1 and targeted induction of this enzyme may be a novel therapeutic approach for the treatment of AMR in solid organ transplantation. PMID:26690352

  8. Dual control mechanism for heme oxygenase: tin(IV)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver.

    PubMed Central

    Sardana, M K; Kappas, A

    1987-01-01

    Tin(IV)-protoporphyrin (Sn-protoporphyrin) potently inhibits heme degradation to bile pigments in vitro and in vivo, a property that confers upon this synthetic compound the ability to suppress a variety of experimentally induced and naturally occurring forms of jaundice in animals and humans. Utilizing rat liver heme oxygenase purified to homogeneity together with appropriate immunoquantitation techniques, we have demonstrated that Sn-protoporphyrin possesses the additional property of potently inducing the synthesis of heme oxygenase protein in liver cells while, concurrently, completely inhibiting the activity of the newly formed enzyme. Substitution of tin for the central iron atom of heme thus leads to the formation of a synthetic heme analogue that regulates heme oxygenase by a dual mechanism, which involves competitive inhibition of the enzyme for the natural substrate heme and simultaneous enhancement of new enzyme synthesis. Cobaltic(III)-protoporphyrin (Co-protoporphyrin) also inhibits heme oxygenase activity in vitro, but unlike Sn-protoporphyrin it greatly enhances the activity of the enzyme in the whole animal. Co-protoporphyrin also acts as an in vivo inhibitor of heme oxygenase; however, its inducing effect on heme oxygenase synthesis is so pronounced as to prevail in vivo over its inhibitory effect on the enzyme. These studies show that certain synthetic heme analogues possess the ability to simultaneously inhibit as well as induce the enzyme heme oxygenase in liver. The net balance between these two actions, as reflected in the rate of heme oxidation activity in the whole animal, appears to be influenced by the nature of the central metal atom of the synthetic metalloporphyrin. Images PMID:3470805

  9. NF-kappaB-inhibited acute myeloid leukemia cells are rescued from apoptosis by heme oxygenase-1 induction.

    PubMed

    Rushworth, Stuart A; Bowles, Kristian M; Raninga, Prahlad; MacEwan, David J

    2010-04-01

    Despite high basal NF-kappaB activity in acute myeloid leukemia (AML) cells, inhibiting NF-kappaB in these cells has little or no effect on inducing apoptosis. We previously showed that heme oxygenase-1 (HO-1) underlies this resistance of AML to tumor necrosis factor-induced apoptosis. Here, we describe a mechanism by which HO-1 is a silent antiapoptotic factor only revealed when NF-kappaB is inhibited, thus providing a secondary antiapoptotic mechanism to ensure AML cell survival and chemoresistance. We show that inhibition of NF-kappaB increased HO-1 expression in primary AML cells compared with that of nonmalignant cells. In addition, we observed this suppressed HO-1 level in AML cells compared with CD34(+) nonmalignant control cells. Using chromatin immunoprecipitation assay and small interfering RNA knockdown, we showed that the NF-kappaB subunits p50 and p65 control this suppression of HO-1 in AML cells. Finally, we showed that inhibition of HO-1 and NF-kappaB in combination significantly induced apoptosis in AML cells but not in noncancerous control cells. Thus, NF-kappaB inhibition combined with HO-1 inhibition potentially provides a novel therapeutic approach to treat chemotherapy-resistant forms of AML.

  10. A Novel, ;Double-Clamp; Binding Mode for Human Heme Oxygenase-1 Inhibition

    SciTech Connect

    Rahman, Mona N.; Vlahakis, Jason Z.; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao

    2012-08-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be {approx}15 times more potent (IC{sub 50} = 0.27{+-}0.07 {mu}M) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC{sub 50} = 4.0{+-}1.8 {mu}M). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This 'double-clamp' binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

  11. A Novel, “Double-Clamp” Binding Mode for Human Heme Oxygenase-1 Inhibition

    PubMed Central

    Rahman, Mona N.; Vlahakis, Jason Z.; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao

    2012-01-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC50 = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC50 = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This “double-clamp” binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors. PMID:22276118

  12. Heme oxygenase-1 inhibits phosphorylation of the Helicobacter pylori oncoprotein CagA in gastric epithelial cells

    PubMed Central

    Gobert, Alain P.; Verriere, Thomas; de Sablet, Thibaut; Peek, Richard M.; Chaturvedi, Rupesh; Wilson, Keith T.

    2012-01-01

    Summary The cytotoxin-associated gene A protein (CagA) plays a pivotal role in the etiology of Helicobacter (H.) pylori-associated gastric diseases. CagA is injected into the cytoplasm of host cells by a type IV secretion system, and is phosphorylated on tyrosine residues by the host enzyme c-Src. We previously reported that the enzyme heme oxygenase-1 (HO-1) inhibits IL-8 secretion by H. pylori-infected cells. However, the cellular mechanism by which HO-1 regulates the innate immune function of infected cells remains unknown. We now show that nitric oxide and hemin, two inducers of HO-1, decrease the level of phosphorylated CagA (p-CagA) in H. pylori-infected gastric epithelial cells and this is blocked by either pharmacologic inhibition of HO-1 or siRNA knockdown of hmox-1. Moreover, forced expression of HO-1 by transfection of a plasmid expressing hmox-1 also results in a strong attenuation of CagA phosphorylation. This occurs through the inhibition of H. pylori-induced c-Src phosphorylation/activation by HO-1. Consequently, H. pylori-induced cytoskeletal rearrangements and activation of the pro-inflammatory response mediated by p-CagA are inhibited in HO-1-expressing cells. These data highlight a mechanism by which the innate immune response of the host can restrict the pathogenicity of H. pylori by attenuating CagA phosphorylation in gastric epithelial cells. PMID:23051580

  13. Phenylhydrazine-mediated induction of haem oxygenase activity in rat liver and kidney and development of hyperbilirubinaemia. Inhibition by zinc-protoporphyrin.

    PubMed Central

    Maines, M D; Veltman, J C

    1984-01-01

    Phenylhydrazine was found to be a potent inducer of microsomal haem oxygenase activity in rat liver and kidney, but not in spleen. The phenylhydrazine-mediated increase in haem oxygenase activity was time-dependent. Maximum activity was attained 12h after treatment in the liver, and 24h after treatment in the kidney. The increases in the activity of haem oxygenase in the liver and the kidney could be inhibited by cycloheximide. Furthermore, the increases could not be elicited by the treatment of microsomal preparations in vitro with phenylhydrazine. In consonance with the increased haem oxygenase activity, a marked increase (16-fold) was observed in the serum total bilirubin concentration in phenylhydrazine-treated rats. The mechanism of haem degradation promoted by phenylhydrazine in vivo appears to differ from that in vitro; only in the former case is bilirubin formed as the end-product of haem degradation. When rats were given zinc-protoporphyrin (40 mumol/kg) 12h before and after phenylhydrazine treatment, the phenylhydrazine-mediated increases in haem oxygenase activity in the liver and the kidney were effectively blocked. Treatment of rats in vivo with the metalloporphyrin also inhibited the activity of splenic haem oxygenase, and promoted a major decrease in the serum bilirubin levels. In phenylhydrazine-treated animals, the microsomal content of cytochrome P-450 was significantly decreased in the absence of a decrease in the microsomal haem concentration. The decrease in cytochrome P-450 content was accompanied by an increased absorption in the 420nm region of the reduced CO-difference spectrum, suggesting the conversion of the cytochrome to an inactive form. The marked depletion of cellular glutathione levels suggests that this conversion may be related to the action of active intermediates and free radicals formed in the course of the interaction of phenylhydrazine with the haem moiety of cytochrome P-450. PMID:6546515

  14. Disruption of Nitric Oxide Signaling by Helicobacter pylori Results in Enhanced Inflammation by Inhibition of Heme Oxygenase-1

    PubMed Central

    Gobert, Alain P.; Asim, Mohammad; Piazuelo, M. Blanca; Verriere, Thomas; Scull, Brooks P.; de Sablet, Thibaut; Glumac, Ashley; Lewis, Nuruddeen D.; Correa, Pelayo; Peek, Richard M.; Chaturvedi, Rupesh; Wilson, Keith T.

    2011-01-01

    A strong cellular crosstalk exists between the pathogen Helicobacter pylori and high-output NO production. However, how NO and H. pylori interact to signal in gastric epithelial cells and modulate the innate immune response is unknown. We show that chemical or cellular sources of NO induce the anti-inflammatory effector heme oxygenase-1 (HO-1) in gastric epithelial cells through a pathway that requires NF-κB. However, H. pylori decreases NO-induced NF-κB activation, thereby inhibiting HO-1 expression. This inhibitory effect of H. pylori results from activation of the transcription factor heat shock factor-1 by the H. pylori virulence factor CagA and by the host signaling molecules ERK1/2 and JNK. Consistent with these findings, HO-1 is downregulated in gastric epithelial cells of patients infected with cagA+, but not cagA− H. pylori. Enhancement of HO-1 activity in infected cells or in H. pylori-infected mice inhibits chemokine generation and reduces inflammation. These data define a mechanism by which H. pylori favors its own pathogenesis by inhibiting HO-1 induction through the action of CagA. PMID:21987660

  15. Induction of heme oxygenase 1 by arsenite inhibits cytokine-induced monocyte adhesion to human endothelial cells

    SciTech Connect

    Sun Xi; Pi Jingbo; Liu Wenlan; Hudson, Laurie G.; Liu Kejian; Feng Changjian

    2009-04-15

    Heme oxygenase-1 (HO-1) is an oxidative stress responsive gene upregulated by various physiological and exogenous stimuli. Arsenite, as an oxidative stressor, is a potent inducer of HO-1 in human and rodent cells. In this study, we investigated the mechanistic role of arsenite-induced HO-1 in modulating tumor necrosis factor {alpha} (TNF-{alpha}) induced monocyte adhesion to human umbilical vein endothelial cells (HUVEC). Arsenite pretreatment, which upregulated HO-1 in a time- and concentration-dependent manner, inhibited TNF-{alpha}-induced monocyte adhesion to HUVEC and intercellular adhesion molecule 1 protein expression by 50% and 40%, respectively. Importantly, knockdown of HO-1 by small interfering RNA abolished the arsenite-induced inhibitory effects. These results indicate that induction of HO-1 by arsenite inhibits the cytokine-induced monocyte adhesion to HUVEC by suppressing adhesion molecule expression. These findings established an important mechanistic link between the functional monocyte adhesion properties of HUVEC and the induction of HO-1 by arsenite.

  16. Inhibition of fatty acid amide hydrolase activates Nrf2 signalling and induces heme oxygenase 1 transcription in breast cancer cells

    PubMed Central

    Li, H; Wood, J T; Whitten, K M; Vadivel, S K; Seng, S; Makriyannis, A; Avraham, H K

    2013-01-01

    BACKGROUND AND PURPOSE Endocannabinoids such as anandamide (AEA) are important lipid ligands regulating cell proliferation, differentiation and apoptosis. Their levels are regulated by hydrolase enzymes, the fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). Here, we investigated whether FAAH or AEA are involved in NF (erythroid-derived 2)-like 2 (Nrf2)/antioxidant responsive element (ARE) pathway. EXPERIMENTAL APPROACH The aim of this study was to analyse the effects of AEA or FAAH inhibition by the URB597 inhibitor or FAAH/siRNA on the activation of Nrf2-ARE signalling pathway and heme oxygenase-1 (HO-1) induction and transcription. KEY RESULTS Endogenous AEA was detected in the immortalized human mammary epithelial MCF-10A cells (0.034 ng per 106 cells) but not in MCF-7 or MDA-MB-231 breast cancer cells. Because breast tumour cells express FAAH abundantly, we examined the effects of FAAH on Nrf2/antioxidant pathway. We found that inhibition of FAAH by the URB597 inhibitor induced antioxidant HO-1 in breast cancer cells and MCF-10A cells. RNAi-mediated knockdown of FAAH or treatment with AEA-activated ARE-containing reporter induced HO-1 mRNA and protein expression, independent of the cannabinoid receptors, CB1, CB2 or TRPV1. Furthermore, URB597, AEA and siRNA-FAAH treatments induced the nuclear translocation of Nrf2, while siRNA-Nrf2 treatment and Keap1 expression blocked AEA, URB597 and si-FAAH from activation of ARE reporter and HO-1 induction. siRNA-HO-1 treatment decreased the viability of breast cancer cells and MCF-10A cells. CONCLUSIONS AND IMPLICATIONS These data uncovered a novel mechanism by which inhibition of FAAH or exposure to AEA induced HO-1 transcripts and implicating AEA and FAAH as direct modifiers in signalling mediated activation of Nrf2-HO-1 pathway, independent of cannabinoid receptors. PMID:23347118

  17. Heme oxygenase-1 gene delivery by Sleeping Beauty inhibits vascular stasis in a murine model of sickle cell disease.

    PubMed

    Belcher, John D; Vineyard, Julie V; Bruzzone, Carol M; Chen, Chunsheng; Beckman, Joan D; Nguyen, Julia; Steer, Clifford J; Vercellotti, Gregory M

    2010-07-01

    Increases in heme oxygenase-1 (HO-1) and administration of heme degradation products CO and biliverdin inhibit vascular inflammation and vasoocclusion in mouse models of sickle cell disease (SCD). In this study, an albumin (alb) promoter-driven Sleeping Beauty (SB) transposase plasmid with a wild-type rat hmox-1 (wt-HO-1) transposable element was delivered by hydrodynamic tail vein injections to SCD mice. Eight weeks after injection, SCD mice had three- to five-fold increases in HO-1 activity and protein expression in liver, similar to hemin-treated mice. Immunohistochemistry demonstrated increased perinuclear HO-1 staining in hepatocytes. Messenger RNA transcription of the hmox-1 transgene in liver was confirmed by quantitative real-time polymerase chain reaction restriction fragment length polymorphism (qRT-PCR RFLP) with no detectible transgene expression in other organs. The livers of all HO-1 overexpressing mice had activation of nuclear phospho-p38 mitogen-activated protein kinase (MAPK) and phospho-Akt, decreased nuclear expression of nuclear factor-kappa B (NF-kappaB) p65, and decreased soluble vascular cell adhesion molecule-1 (sVCAM-1) in serum. Hypoxia-induced stasis, a characteristic of SCD, but not normal mice, was inhibited in dorsal skin fold chambers in wt-HO-1 SCD mice despite the absence of hmox-1 transgene expression in the skin suggesting distal effects of HO activity on the vasculature. No protective effects were seen in SCD mice injected with nonsense (ns-) rat hmox-1 that encodes carboxy-truncated HO-1 with little or no enzyme activity. We speculate that HO-1 gene delivery to the liver is beneficial in SCD mice by degrading pro-oxidative heme, releasing anti-inflammatory heme degradation products CO and biliverdin/bilirubin into circulation, activating cytoprotective pathways and inhibiting vascular stasis at sites distal to transgene expression. PMID:20306336

  18. Pharmacological Inhibition of Host Heme Oxygenase-1 Suppresses Mycobacterium tuberculosis Infection In Vivo by a Mechanism Dependent on T Lymphocytes

    PubMed Central

    Costa, Diego L.; Namasivayam, Sivaranjani; Amaral, Eduardo P.; Arora, Kriti; Chao, Alex; Mittereder, Lara R.; Maiga, Mamoudou; Boshoff, Helena I.; Barry, Clifton E.; Goulding, Celia W.; Andrade, Bruno B.

    2016-01-01

    ABSTRACT Heme oxygenase-1 (HO-1) is a stress response antioxidant enzyme which catalyzes the degradation of heme released during inflammation. HO-1 expression is upregulated in both experimental and human Mycobacterium tuberculosis infection, and in patients it is a biomarker of active disease. Whether the enzyme plays a protective versus pathogenic role in tuberculosis has been the subject of debate. To address this controversy, we administered tin protoporphyrin IX (SnPPIX), a well-characterized HO-1 enzymatic inhibitor, to mice during acute M. tuberculosis infection. These SnPPIX-treated animals displayed a substantial reduction in pulmonary bacterial loads comparable to that achieved following conventional antibiotic therapy. Moreover, when administered adjunctively with antimycobacterial drugs, the HO-1 inhibitor markedly enhanced and accelerated pathogen clearance. Interestingly, both the pulmonary induction of HO-1 expression and the efficacy of SnPPIX treatment in reducing bacterial burden were dependent on the presence of host T lymphocytes. Although M. tuberculosis expresses its own heme-degrading enzyme, SnPPIX failed to inhibit its enzymatic activity or significantly restrict bacterial growth in liquid culture. Together, the above findings reveal mammalian HO-1 as a potential target for host-directed monotherapy and adjunctive therapy of tuberculosis and identify the immune response as a critical regulator of this function. PMID:27795400

  19. 3,4,5-Trimethoxyphenylacetaldehyde, an intermediate metabolite of mescaline, is a substrate for microsomal aldehyde oxygenase in the mouse liver.

    PubMed

    Watanabe, K; Kayano, Y; Matsunaga, T; Yamamoto, I; Yoshimura, H

    1995-05-01

    3,4,5-Trimethoxyphenylacetaldehyde, an intermediate metabolite of mescaline, was oxidized to 3,4,5-trimethoxyphenylacetic acid by mouse hepatic microsomes. The reaction was NADPH-dependent, and inhibited by SKF 525-A, metyrapone and disulfiram. A P450 isozyme in mouse hepatic microsomes, P450 MUT-2 (CYP2C29), catalyzed the reaction (0.96 nmol/min/nmol P450) in which NADPH and NADPH-cytochrome c reductase were essential for the catalytic activity. The reaction was confirmed to be an oxygenation since molecular oxygen was incorporated into the carboxylic acid metabolite formed under oxygen-18 gas by GC-MS analysis. By addition of antibody against CYP2C29 to the microsomes (3.2 mg/mg microsomal protein) the MALDO activity was inhibited by 35% of the control value with preimmune serum, suggesting that CYP2C29 or an immunologically-related isozyme(s) plays a major role in the NADPH-dependent oxidation of 3,4,5-trimethoxyphenylacetaldehyde to 3,4,5-trimethoxyphenylacetic acid by mouse hepatic microsomes. Pharmacological experiments on mescaline and its deaminated metabolites using mice indicated that the metabolites were much less active or were inactive in cataleptogenic effect and pentobarbital-induced sleep prolongation as compared with the parent compound.

  20. Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Park, So-Yeon; Nguyen, Thanh Thi; Yu, Young Hyun; Nguyen, Tru Van; Sun, Eun Gene; Udeni, Jayalal; Jeong, Min-Hye; Pereira, Iris; Moon, Cheol; Ha, Hyung-Ho; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2015-01-01

    Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3'-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action. PMID:26371759

  1. Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Park, So-Yeon; Nguyen, Thanh Thi; Yu, Young Hyun; Nguyen, Tru Van; Sun, Eun Gene; Udeni, Jayalal; Jeong, Min-Hye; Pereira, Iris; Moon, Cheol; Ha, Hyung-Ho; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2015-01-01

    Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3’-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action. PMID:26371759

  2. The inhibition of platelet cyclo-oxygenase by aspirin is associated with the acetylation of a 72kDa polypeptide in the intracellular membranes.

    PubMed

    Hack, N; Carey, F; Crawford, N

    1984-10-01

    Previous studies by Roth & Majerus [J. Clin. Invest. (1975) 56, 624-632] showed that exposure of platelets to [acetyl-14C]aspirin resulted in the radioactive labelling of three polypeptides, two of which were in the cytosol and not saturable, whilst the third was located in particulate material, and was saturated at 30 microM-aspirin. By using high voltage free flow electrophoresis to separate a platelet mixed membrane fraction into highly purified surface and intracellular membrane subfractions, we have confirmed that the major polypeptide acetylated after exposing whole platelets to [acetyl-14C]aspirin is almost exclusively associated with intracellular membrane structures. We have shown previously that these intracellular membranes are the major site for prostanoid biosynthesis [Carey, Menashi & Crawford (1982) Biochem. J. 204, 847-851] and in the present study the extent of the radioactive labelling correlated well with inhibition of the cyclo-oxygenase activity in these intracellular membranes. In sodium dodecyl sulphate/polyacrylamide-gel electrophoresis the [14C]acetylated component, which appears to be a dimer, migrates with a mobility corresponding to 72kDa. Although cyclo-oxygenase is inhibited, there is no discernible radioactive labelling when the platelets are exposed to aromatic-ring-labelled [14C]aspirin. We suggest that the site or sites for aspirin acetylation and cyclo-oxygenase activity are structurally associated in the platelet's intracellular membranes referred to by electron microscopists as the dense tubular membrane system.

  3. Combined inhibition of Hsp90 and heme oxygenase-1 induces apoptosis and endoplasmic reticulum stress in melanoma.

    PubMed

    Barbagallo, Ignazio; Parenti, Rosalba; Zappalà, Agata; Vanella, Luca; Tibullo, Daniele; Pepe, Francesco; Onni, Toniangelo; Li Volti, Giovanni

    2015-10-01

    Heat shock proteins are ubiquitous molecular chaperones involved in post-translational folding, stability, activation and maturation of many proteins that are essential mediators of signal transduction and cell cycle progression. Heat shock protein 90 (Hsp90) has recently emerged as an attractive therapeutic target in cancer treatment since it may act as a key regulator of various oncogene products and cell-signaling molecules. Heme oxygenase-1 (HO-1; also known as Hsp32) is an inducible enzyme participating in heme degradation and involved in oxidative stress resistance. Recent studies indicate that HO-1 activation may play a role in tumor development and progression. In the present study we investigated the chemotherapic effects of combining an Hsp90 inhibitor (NMS E973) and an HO-1 inhibitor (SnMP) on A375 melanoma cells. NMS E973 treatment was able to reduce cell viability and induce endoplasmic reticulum (ER) stress (i.e. Ire1α, ERO1, PDI, BIP and CHOP). Interestingly, no significant effect was observed in reactive oxygen species (ROS) formation. Finally, NMS E973 treatment resulted in a significant HO-1 overexpression, which in turn serves as a possible chemoresistance molecular mechanism. Interestingly, the combination of NMS E973 and SnMP produced an increase of ROS and reduced cell viability compared to NMS E973 treatment alone. The inhibitors combination exhibited higher ER stress, apoptosis as evidenced by bifunctional apoptosis regulator (BFAR) mRNA expression and lower phosphorylation of Akt when compared to NMS E973 alone. In conclusion, these data suggest that HO-1 inhibition potentiates NMS E973 toxicity and may be exploited as a strategy for melanoma treatment.

  4. Suboptimal inhibition of platelet cyclo-oxygenase-1 (COX-1) by aspirin in lupus erythematosus: Association with metabolic syndrome

    PubMed Central

    Kawai, Vivian K.; Avalos, Ingrid; Oeser, Annette; Oates, John A.; Milne, Ginger L.; Solus, Joseph F.; Chung, Cecilia P.; Stein, C. Michael

    2013-01-01

    Objectives Low-dose aspirin prevents platelet aggregation by suppressing thromboxane A2 synthesis. However, in some individuals thromboxane A2 suppression by aspirin is impaired, indicating suboptimal inhibition of platelet COX-1 by aspirin. Because patients with systemic lupus erythematosus (SLE) have increased risk of thrombotic events, many receive aspirin; however, the efficacy of aspirin in SLE has not been determined. We examined the hypothesis that aspirin response is impaired in SLE. Methods We assessed the effect of aspirin by measuring concentrations of the stable metabolite of thromboxane A2 - serum thromboxane B2 (sTxB2), before and after treatment with 81 mg daily aspirin for 7 days in 34 patients with SLE and 36 control subjects. The inability to suppress sTxB2 synthesis to <10 ng/ml represents suboptimal inhibition of platelet COX-1 by aspirin. Results Aspirin almost completely suppressed sTXB2 in control subjects to 1.5, [0.8–2.7] ng/ml (median and interquartile ranges [IQR]), but had less effect in patients with SLE (3.1, [2.2–5.3] ng/ml) (P=0.002). A suboptimal effect of aspirin was present in 15% (5/34) of the patients with SLE but not in control subjects (0/36) (P=0.023). Incomplete responders were more likely to have metabolic syndrome (P=0.048), obesity (P=0.048) and higher concentrations of CRP (P=0.018). Conclusion The pharmacologic effect of aspirin is suboptimal in 15% of patients with SLE but in none of the control subjects, and the suboptimal response was associated with metabolic syndrome, obesity, and higher CRP concentrations. PMID:24022862

  5. Use of Human Plasma Samples to Identify Circulating Drug Metabolites that Inhibit Cytochrome P450 Enzymes.

    PubMed

    Eng, Heather; Obach, R Scott

    2016-08-01

    Drug interactions elicited through inhibition of cytochrome P450 (P450) enzymes are important in pharmacotherapy. Recently, greater attention has been focused on not only parent drugs inhibiting P450 enzymes but also on possible inhibition of these enzymes by circulating metabolites. In this report, an ex vivo method whereby the potential for circulating metabolites to be inhibitors of P450 enzymes is described. To test this method, seven drugs and their known plasma metabolites were added to control human plasma at concentrations previously reported to occur in humans after administration of the parent drug. A volume of plasma for each drug based on the known inhibitory potency and time-averaged concentration of the parent drug was extracted and fractionated by high-pressure liquid chromatography-mass spectrometry, and the fractions were tested for inhibition of six human P450 enzyme activities (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). Observation of inhibition in fractions that correspond to the retention times of metabolites indicates that the metabolite has the potential to contribute to P450 inhibition in vivo. Using this approach, norfluoxetine, hydroxyitraconazole, desmethyldiltiazem, desacetyldiltiazem, desethylamiodarone, hydroxybupropion, erythro-dihydrobupropion, and threo-dihydrobupropion were identified as circulating metabolites that inhibit P450 activities at a similar or greater extent as the parent drug. A decision tree is presented outlining how this method can be used to determine when a deeper investigation of the P450 inhibition properties of a drug metabolite is warranted. PMID:27271369

  6. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    SciTech Connect

    Zhang, Wenjie; Zhang, Xiaomei; Lu, Hong; Matsukura, Makoto; Zhao, Jien; Shinohara, Makoto

    2013-05-10

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.

  7. Cyproheptadine metabolites inhibit proinsulin and insulin biosynthesis and insulin release in isolated rat pancreatic islets

    SciTech Connect

    Chow, S.A.; Falany, J.L.; Fischer, L.J. )

    1989-06-01

    The contribution of drug metabolites to cyproheptadine (CPH)-induced alterations in endocrine pancreatic beta-cells was investigated by examining the inhibitory activity of CPH and its biotransformation products, desmethylcyproheptadine (DMCPH), CPH-epoxide and DMCPH-epoxide, on hormone biosynthesis and secretion in pancreatic islets isolated from 50-day-old rats. Measurement of (pro)insulin (proinsulin and insulin) synthesis using incorporation of 3H-leucine showed that DMCPH-epoxide, DMCPH and CPH-epoxide were 22, 10 and 4 times, respectively, more potent than CPH in inhibiting hormone synthesis. The biosynthesis of (pro)insulin was also inhibited by CPH and DMCPH-epoxide in islets isolated from 21-day-old rat fetuses. The inhibitory action of CPH and its metabolites was apparently specific for (pro)insulin, and the synthesis of other islet proteins was not affected. Other experiments showed the metabolites of CPH were active in inhibiting glucose-stimulated insulin secretion but were less potent than the parent drug in producing this effect. CPH and its structurally related metabolites, therefore, have differential inhibitory activities on insulin synthesis and release. The observation that CPH metabolites have higher potency than CPH to inhibit (pro)insulin synthesis, when considered with published reports on the disposition of the drug in rats, indicate that CPH metabolites, particularly DMCPH-epoxide, are primarily responsible for the insulin depletion observed when the parent compound is given to fetal and adult animals.

  8. Inhibition of cytochrome P450 1A2-mediated metabolism and production of reactive oxygen species by heme oxygenase-1 in rat liver microsomes.

    PubMed

    Reed, James R; Cawley, George F; Backes, Wayne L

    2011-01-01

    Heme oxygenase-1 (HO-1) is induced in most cell types by many forms of environmental stress and is believed to play a protective role in cells exposed to oxidative stress. Metabolism by cytochromes P450 (P450) is highly inefficient as the oxidation of substrate is associated with the production of varying proportions of hydrogen peroxide and/or superoxide. This study tests the hypothesis that heme oxygenase-1 (HO-1) plays a protective role against oxidative stress by competing with P450 for binding to the common redox partner, the NADPH P450 reductase (CPR) and in the process, diminishing P450 metabolism and the associated production of reactive oxygen species (ROS). Liver microsomes were isolated from uninduced rats and rats that were treated with cadmium and/or β-napthoflavone (BNF) to induce HO-1 and/or CYP1A2. HO-1 induction was associated with slower rates of metabolism of the CYP1A2-specific substrate, 7-ethoxyresorufin. Furthermore, HO-1 induction also was associated with slower rates of hydrogen peroxide and hydroxyl radical production by microsomes from rats induced for CYP1A2. The inhibition associated with HO-1 induction was not dependent on the addition of heme to the microsomal incubations. The effects of HO-1 induction were less dramatic in the absence of substrate for CYP1A2, suggesting that the enzyme was more effective in inhibiting the CYP1A2-related activity than the CPR-related production of superoxide (that dismutates to form hydrogen peroxide).

  9. Contribution of metabolites to P450 inhibition-based drug-drug interactions: scholarship from the drug metabolism leadership group of the innovation and quality consortium metabolite group.

    PubMed

    Yu, Hongbin; Balani, Suresh K; Chen, Weichao; Cui, Donghui; He, Ling; Humphreys, W Griffith; Mao, Jialin; Lai, W George; Lee, Anthony J; Lim, Heng-Keang; MacLauchlin, Christopher; Prakash, Chandra; Surapaneni, Sekhar; Tse, Susanna; Upthagrove, Alana; Walsky, Robert L; Wen, Bo; Zeng, Zhaopie

    2015-04-01

    Recent European Medicines Agency (final) and US Food and Drug Administration (draft) drug interaction guidances proposed that human circulating metabolites should be investigated in vitro for their drug-drug interaction (DDI) potential if present at ≥ 25% of the parent area under the time-concentration curve (AUC) (US Food and Drug Administration) or ≥ 25% of the parent and ≥ 10% of the total drug-related AUC (European Medicines Agency). To examine the application of these regulatory recommendations, a group of scientists, representing 18 pharmaceutical companies of the Drug Metabolism Leadership Group of the Innovation and Quality Consortium, conducted a scholarship to assess the risk of contributions by metabolites to cytochrome P450 (P450) inhibition-based DDIs. The group assessed the risk of having a metabolite as the sole contributor to DDI based on literature data and analysis of the 137 most frequently prescribed drugs, defined structural alerts associated with P450 inhibition/inactivation by metabolites, and analyzed current approaches to trigger in vitro DDI studies for metabolites. The group concluded that the risk of P450 inhibition caused by a metabolite alone is low. Only metabolites from 5 of 137 drugs were likely the sole contributor to the in vivo P450 inhibition-based DDIs. Two recommendations were provided when assessing the need to conduct in vitro P450 inhibition studies for metabolites: 1) consider structural alerts that suggest P450 inhibition potential, and 2) use multiple approaches (e.g., a metabolite cut-off value of 100% of the parent AUC and the R(met) strategy) to predict P450 inhibition-based DDIs caused by metabolites in the clinic.

  10. Contribution of metabolites to P450 inhibition-based drug-drug interactions: scholarship from the drug metabolism leadership group of the innovation and quality consortium metabolite group.

    PubMed

    Yu, Hongbin; Balani, Suresh K; Chen, Weichao; Cui, Donghui; He, Ling; Humphreys, W Griffith; Mao, Jialin; Lai, W George; Lee, Anthony J; Lim, Heng-Keang; MacLauchlin, Christopher; Prakash, Chandra; Surapaneni, Sekhar; Tse, Susanna; Upthagrove, Alana; Walsky, Robert L; Wen, Bo; Zeng, Zhaopie

    2015-04-01

    Recent European Medicines Agency (final) and US Food and Drug Administration (draft) drug interaction guidances proposed that human circulating metabolites should be investigated in vitro for their drug-drug interaction (DDI) potential if present at ≥ 25% of the parent area under the time-concentration curve (AUC) (US Food and Drug Administration) or ≥ 25% of the parent and ≥ 10% of the total drug-related AUC (European Medicines Agency). To examine the application of these regulatory recommendations, a group of scientists, representing 18 pharmaceutical companies of the Drug Metabolism Leadership Group of the Innovation and Quality Consortium, conducted a scholarship to assess the risk of contributions by metabolites to cytochrome P450 (P450) inhibition-based DDIs. The group assessed the risk of having a metabolite as the sole contributor to DDI based on literature data and analysis of the 137 most frequently prescribed drugs, defined structural alerts associated with P450 inhibition/inactivation by metabolites, and analyzed current approaches to trigger in vitro DDI studies for metabolites. The group concluded that the risk of P450 inhibition caused by a metabolite alone is low. Only metabolites from 5 of 137 drugs were likely the sole contributor to the in vivo P450 inhibition-based DDIs. Two recommendations were provided when assessing the need to conduct in vitro P450 inhibition studies for metabolites: 1) consider structural alerts that suggest P450 inhibition potential, and 2) use multiple approaches (e.g., a metabolite cut-off value of 100% of the parent AUC and the R(met) strategy) to predict P450 inhibition-based DDIs caused by metabolites in the clinic. PMID:25655830

  11. A metabolite of aspartame inhibits angiotensin converting enzyme.

    PubMed

    Grobelny, D; Galardy, R E

    1985-04-30

    Aspartame (L-aspartyl-L-phenylalanine methyl ester, is a widely used artificIal sweetener. In humans and other animals aspartame is initially hydrolyzed to L-aspartyl-L-phenylalanine by intestinal esterases. L-Aspartyl-L-phenylalanine inhibits angiotensin converting enzyme purified from rabbit lungs with a Ki of 11 +/- 2 microM, equipotent to the IC50 of 12 microM for 2-D-methyl-succinyl-L-proline which has been reported to be an orally active antihypertensive agent in rats. Thus the possibility exists that L-aspartyl-L-phenylalanine inhibits angiotensin converting enzyme in humans consuming large quantities of aspartame. Both aspartame itself and the diketopiperazine formed from it, 3-carboxymethyl-6-benzyl-2,5-diketopiperazine, are weak inhibitors with Ki's greater than 1 mM.

  12. Methylselenol, a selenium metabolite, inhibits colon cancer cell growth in vitro and in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylselenol is hypothesized to be a critical selenium (Se) metabolite for anticancer activity. Submicromolar methylselenol exposure inhibited cell growth and led to an increase in the G1 and G2 fractions with a concomitant drop in the S-phase, and an induction of apoptosis in cancerous colon HCT11...

  13. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites

    PubMed Central

    Breda, Carlo; Sathyasaikumar, Korrapati V.; Sograte Idrissi, Shama; Notarangelo, Francesca M.; Estranero, Jasper G.; Moore, Gareth G. L.; Green, Edward W.; Kyriacou, Charalambos P.; Schwarcz, Robert; Giorgini, Flaviano

    2016-01-01

    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway—kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP—the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington’s disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer’s and Parkinson’s disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits. PMID:27114543

  14. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites.

    PubMed

    Breda, Carlo; Sathyasaikumar, Korrapati V; Sograte Idrissi, Shama; Notarangelo, Francesca M; Estranero, Jasper G; Moore, Gareth G L; Green, Edward W; Kyriacou, Charalambos P; Schwarcz, Robert; Giorgini, Flaviano

    2016-05-10

    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway-kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP-the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington's disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer's and Parkinson's disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits. PMID:27114543

  15. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity.

    PubMed

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-01-01

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs. PMID:27244239

  16. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity

    PubMed Central

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-01-01

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs. DOI: http://dx.doi.org/10.7554/eLife.11156.001 PMID:27244239

  17. Methoxychlor and its metabolites inhibit growth and induce atresia of baboon antral follicles.

    PubMed

    Gupta, Rupesh K; Aberdeen, Graham; Babus, Janice K; Albrecht, Eugene D; Flaws, Jodi A

    2007-08-01

    Methoxychlor (MXC), an organochlorine pesticide, inhibits growth and induces atresia of antral follicles in rodents. MXC metabolites, mono-OH MXC (mono-OH) and bis-OH MXC (HPTE), are thought to be more toxic than the parent compound. Although studies have examined effects of MXC in rodents, few studies have evaluated the effects of MXC in primates. Therefore, the present study tested the hypothesis that MXC, mono-OH, and HPTE inhibit growth and induce atresia of baboon antral follicles. To test this hypothesis, antral follicles were isolated from adult baboon ovaries and cultured with vehicle (dimethylsulfoxide; DMSO), MXC (1-100 micro g/ml), mono-OH (0.1-10 micro g/ml), or HPTE (0.1-10 micro g/ml) for 96 hr. Growth was monitored at 24 hr intervals. After culture, follicles were processed for histological evaluation of atresia. MXC, mono-OH, and HPTE significantly inhibited follicular growth and increased atresia compared to DMSO. Moreover, the adverse effects of MXC and its metabolites on growth and atresia in baboon antral follicles were observed at lower (100-fold) doses than those causing similar effects in rodents. These data suggest that MXC and its metabolites inhibit growth and induce atresia of baboon antral follicles, and that primate follicles are more sensitive to MXC than rodent follicles.

  18. Inhibition of Endocannabinoid Metabolism by the Metabolites of Ibuprofen and Flurbiprofen

    PubMed Central

    Karlsson, Jessica; Fowler, Christopher J.

    2014-01-01

    Background In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) by cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH), respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen. Methodology/Principal Findings COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1) and arachidonic acid and 2-AG (for COX-2). FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4′-hydroxyflurbiprofen and possibly also 3′-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds. Conclusions/Significance It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo. PMID:25061885

  19. The inhibition of protein prenyltransferases by oxygenated metabolites of limonene and perillyl alcohol.

    PubMed

    Gelb, M H; Tamanoi, F; Yokoyama, K; Ghomashchi, F; Esson, K; Gould, M N

    1995-05-01

    The monoterpenes limonene and perillyl alcohol are effective therapeutic agents against advanced rat mammary cancer. Limonene is currently undergoing clinical testing in cancer patients. These monoterpenes and their oxygenated metabolites have been previously shown to inhibit protein prenylation in cultured cells. Since farnesylation of ras protein is critical for its ability to cause oncogenic transformation, inhibition of protein prenylation may be the basis of the anti-tumor effects of limonene and perillyl alcohol. In this study we test the ability of limonene and its oxygenated analogs to inhibit protein prenylation enzymes in vitro. Limonene and perillyl alcohol and their major in vivo metabolite, perillic acid, are weak inhibitors of both mammalian and yeast protein farnesyl transferase (PFT) and protein geranylgeranyl transferase (PGGT). In contrast, a minor metabolite of both limonene and perillyl alcohol, perillic acid methyl ester, is a potent inhibitor of both enzymes. Perillic acid methyl ester is a competitive inhibitor of yeast PFT with respect to farnesyl pyrophosphate. These studies suggest that if the inhibition of protein prenylation is a mechanism for limonene's and perillyl alcohol's anti-cancer activities, these monoterpenes may be prodrugs that are converted into pharmacologically-active substances by metabolic modification.

  20. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Khanal, Tilak; Choi, Jae Ho; Kim, Dong Hee; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-09-01

    Resistance to therapy is the major obstacle to more effective cancer treatment. Heme oxygenase-1 (HO-1) is often highly up-regulated in tumor tissues, and its expression is further increased in response to therapies. It has been suggested that inhibition of HO-1 expression is a potential therapeutic approach to sensitize tumors to chemotherapy and radiotherapy. In this study, we tested the hypothesis that the anti-tumor effects of metformin are mediated by suppression of HO-1 expression in cancer cells. Our results indicate that metformin strongly suppresses HO-1 mRNA and protein expression in human hepatic carcinoma HepG2, cervical cancer HeLa, and non-small-cell lung cancer A549 cells. Metformin also markedly reduced Nrf2 mRNA and protein levels in whole cell lysates and suppressed tert-butylhydroquinone (tBHQ)-induced Nrf2 protein stability and antioxidant response element (ARE)-luciferase activity in HepG2 cells. We also found that metformin regulation of Nrf2 expression is mediated by a Keap1-independent mechanism and that metformin significantly attenuated Raf-ERK signaling to suppress Nrf2 expression in cancer cells. Inhibition of Raf-ERK signaling by PD98059 decreased Nrf2 mRNA expression in HepG2 cells, confirming that the inhibition of Nrf2 expression is mediated by an attenuation of Raf-ERK signaling in cancer cells. The inactivation of AMPK by siRNA, DN-AMPK or the pharmacological AMPK inhibitor compound C, revealed that metformin reduced HO-1 expression in an AMPK-independent manner. These results highlight the Raf-ERK-Nrf2 axis as a new molecular target in anticancer therapy in response to metformin treatment. - Highlights: • Metformin inhibits HO-1 expression in cancer cells. • Metformin attenuates Raf-ERK-Nrf2 signaling. • Suppression of HO-1 by metformin is independent of AMPK. • HO-1 inhibition contributes to anti-proliferative effects of metformin.

  1. Metabolite-driven Regulation of Heme Uptake by the Biliverdin IXβ/δ-Selective Heme Oxygenase (HemO) of Pseudomonas aeruginosa.

    PubMed

    Mouriño, Susana; Giardina, Bennett J; Reyes-Caballero, Hermes; Wilks, Angela

    2016-09-23

    Pseudomonas aeruginosa acquires extracellular heme via the Phu (Pseudomonas heme uptake) and Has (heme assimilation system) systems. We have previously shown the catalytic actions of heme oxygenase (HemO) along with the cytoplasmic heme transport protein PhuS control heme flux into the cell. To further investigate the role of the PhuS-HemO couple in modulating heme uptake, we have characterized two HemO variants, one that is catalytically inactive (HemO H26A/K34A/K132A or HemOin) and one that has altered regioselectivity (HemO N19K/K34A/F117Y/K132A or HemOα), producing biliverdin IXα (BVIXα). HemOα similar to wild type was able to interact and acquire heme from holo-PhuS. In contrast, the HemOin variant did not interact with holo-PhuS and showed no enzymatic activity. Complementation of a hemO deletion strain with the hemOin or hemOα variants in combination with [(13)C]heme isotopic labeling experiments revealed that the absence of BVIXβ and BVIXδ leads to a decrease in extracellular levels of hemophore HasA. We propose BVIXβ and/or BVIXδ transcriptionally or post-transcriptionally regulates HasA. Thus, coupling the PhuS-dependent flux of heme through HemO to feedback regulation of the cell surface signaling system through HasA allows P. aeruginosa to rapidly respond to fluctuating extracellular heme levels independent of the iron status of the cell. PMID:27493207

  2. Ribulose diphosphate carboxylase/oxygenase. IV. Regulation by phosphate esters.

    PubMed

    Ryan, F J; Tolbert, N E

    1975-06-10

    The stimulation or inhibition of ribulose diphosphate oxygenase by a variety of compounds is compared with the reported effects on these compounds on the ribulose diphosphate carboxylase activity. A possible transition state analog of ribulose diphosphate, 2-carboxyribitol 1, 5-diphosphate, at a molar ratio of inhibitor to enzyme of 10 to 1, irreversibly inactivates the oxygenase and carboxylase activities. This is consistent with the hypothesis that there may be a single active site for both the carboxylase and oxygenase activities. Several compounds of the reductive pentose photosynthetic carbon cycle act as effectors of the ribulose diphosphate oxygenase in a manner complementary to their reported effect upon the carboxylase. Ribose 5-phosphate inhibits the oxygenase with an apparent Ki of 1.8 mM, but it is reported to activate the carboxylase; fructose 6-phosphate and glucose 6-phosphate act similarly but are less effective than ribose 5-phosphate. Fructose 1. 6-diphosphate stimulates the oxygenase at low magnesium ion concentrations. The stimulatory effect of 6-phosphogluconate on the oxygenase is associated with a 3-fold reduction of the Km (Mg2+). ATP inhibits the oxygenase but has been reported to stimulate the carboxylase; pyrophosphate acts in an opposite manner. From these results it appears that the ratio of carboxylase to oxygenase activity may be a variable factor with predictable subsequent alteration in the ratio between photosynthetic CO2 fixation and photorespiration.

  3. Differential inhibition of CYP1-catalyzed regioselective hydroxylation of estradiol by berberine and its oxidative metabolites.

    PubMed

    Chang, Yu-Ping; Huang, Chiung-Chiao; Shen, Chien-Chang; Tsai, Keng-Chang; Ueng, Yune-Fang

    2015-10-01

    Berberine is a pharmacologically active alkaloid present in widely used medicinal plants, such as Coptis chinensis (Huang-Lian). The hormone estradiol is oxidized by cytochrome P450 (CYP) 1B1 to primarily form the genotoxic metabolite 4-hydroxyestradiol, whereas CYP1A1 and CYP1A2 predominantly generate 2-hydroxyestradiol. To illustrate the effect of berberine on the regioselective oxidation of estradiol, effects of berberine and its metabolites on CYP1 activities were studied. Among CYP1s, CYP1B1.1, 1.3 (L432V), and 1.4 (N453S)-catalyzed 4-hydroxylation were preferentially inhibited by berberine. Differing from the competitive inhibition of CYP1B1.1 and 1.3, N453S substitution in CYP1B1 allowed a non-competitive or mixed-type pattern. An N228T in CYP1B1 highly decreased its activity and preference to 4-hydroxylation. A reverse mutation of T223N in CYP1A2 retained its 2-hydroxylation preference, but enhanced its inhibition susceptibility to berberine. Compared with berberine, metabolites demethyleneberberine and thalifendine caused weaker inhibition of CYP1A1 and CYP1B1 activities. Unexpectedly, thalifendine was more potent than berberine in the inhibition of CYP1A2, in which case an enhanced interaction through polar hydrogen-π bond was predicted from the docking analysis. These results demonstrate that berberine preferentially inhibits the estradiol 4-hydroxylation activity of CYP1B1 variants, suggesting that 4-hydroxyestradiol-mediated toxicity might be reduced by berberine, especially in tissues/tumors highly expressing CYP1B1.

  4. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells

    SciTech Connect

    Lin, Y.-J.; Hou, Y.C.; Lin, C.-H.; Hsu, Y.-A.; Sheu, Jim J.C.; Lai, C.-H.; Chen, B.-H.; Lee Chao, Pei-Dawn; Wan Lei Tsai, F.-J.

    2009-01-23

    Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI{sub 50}) concentration of 2.35 {mu}M. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.

  5. Adiponectin Inhibits LPS-Induced HMGB1 Release through an AMP Kinase and Heme Oxygenase-1-Dependent Pathway in RAW 264 Macrophage Cells

    PubMed Central

    Kaede, Ryuji; Okamatsu-Ogura, Yuko

    2016-01-01

    High mobility group protein B1 (HMGB1) is a late inflammatory mediator that exaggerates septic symptoms. Adiponectin, an adipokine, has potent anti-inflammatory properties. However, possible effects of adiponectin on lipopolysaccharide- (LPS-) induced HMGB1 release are unknown. The aim of this study was to investigate effects of full length adiponectin on HMGB1 release in LPS-stimulated RAW 264 macrophage cells. Treatment of the cells with LPS alone significantly induced HMGB1 release associated with HMGB1 translocation from the nucleus to the cytosol. However, prior treatment with adiponectin suppressed LPS-induced HMGB1 release and translocation. The anti-inflammatory cytokine interleukin- (IL-) 10 similarly suppressed LPS-induced HMGB1 release. Adiponectin treatment decreased toll-like receptor 4 (TLR4) mRNA expression and increased heme oxygenase- (HO-) 1 mRNA expression without inducing IL-10 mRNA, while IL-10 treatment decreased TLR2 and HMGB1 mRNA expression and increased the expression of IL-10 and HO-1 mRNA. Treatment with the HO-1 inhibitor ZnPP completely prevented the suppression of HMGB1 release by adiponectin but only partially inhibited that induced by IL-10. Treatment with compound C, an AMP kinase (AMPK) inhibitor, abolished the increase in HO-1 expression and the suppression of HMGB1 release mediated by adiponectin. In conclusion, our results indicate that adiponectin suppresses HMGB1 release by LPS through an AMPK-mediated and HO-1-dependent IL-10-independent pathway. PMID:27313399

  6. Heme-mediated inhibition of Bach1 regulates the liver specificity and transience of the Nrf2-dependent induction of zebrafish heme oxygenase 1.

    PubMed

    Fuse, Yuji; Nakajima, Hitomi; Nakajima-Takagi, Yaeko; Nakajima, Osamu; Kobayashi, Makoto

    2015-07-01

    The induction of the gene encoding heme oxygenase 1 (Hmox1, HO-1) by Nrf2 is unique compared with other Nrf2 targets. We previously showed that the Nrf2a-mediated induction of zebrafish hmox1a was liver specific and transient. We screened transcription factors that could repress the induction of hmox1a but not other Nrf2a targets and concluded that Bach1b was a prime candidate. In bach1b-knocked-down larvae, the induction of hmox1a was observed ectopically in nonliver tissues and persisted longer than normal fish, suggesting that Bach1 is the only regulator for both the liver-specific and transient induction of hmox1a. Co-knockdown of bach1b with its co-ortholog bach1a enhanced these effects. To determine why Bach1 could not repress the hmox1a induction in the liver, we analyzed the effects of a heme biosynthesis inhibitor, succinylacetone, and a heme precursor, hemin. Succinylacetone decreased the Nrf2a-mediated hmox1a induction, whereas pre-treatment with hemin caused ectopic induction of hmox1a in nonliver tissues, implying that the high heme levels in the liver may release the repressive activity of Bach1. Our results suggested that Bach1 regulates the liver specificity and transience of the Nrf2a-dependent induction of hmox1a and that heme mediates this regulation through Bach1 inhibition based on its level in each tissue.

  7. Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland.

    PubMed

    Seeram, Navindra P; Aronson, William J; Zhang, Yanjun; Henning, Susanne M; Moro, Aune; Lee, Ru-Po; Sartippour, Maryam; Harris, Diane M; Rettig, Matthew; Suchard, Marc A; Pantuck, Allan J; Belldegrun, Arie; Heber, David

    2007-09-19

    Our group has shown in a phase II clinical trial that pomegranate juice (PJ) increases prostate specific antigen (PSA) doubling time in prostate cancer (CaP) patients with a rising PSA. Ellagitannins (ETs) are the most abundant polyphenols present in PJ and contribute greatly towards its reported biological properties. On consumption, ETs hydrolyze to release ellagic acid (EA), which is then converted by gut microflora to 3,8-dihydroxy-6H-dibenzo[b, d]pyran-6-one (urolithin A, UA) derivatives. Despite the accumulating knowledge of ET metabolism in animals and humans, there is no available data on the pharmacokinetics and tissue disposition of urolithins. Using a standardized ET-enriched pomegranate extract (PE), we sought to further define the metabolism and tissue distribution of ET metabolites. PE and UA (synthesized in our laboratory) were administered to C57BL/6 wild-type male mice, and metabolite levels in plasma and tissues were determined over 24 h. ET metabolites were concentrated at higher levels in mouse prostate, colon, and intestinal tissues as compared to other tissues after administration of PE or UA. We also evaluated the effects of PE on CaP growth in severe combined immunodeficient (SCID) mice injected subcutaneously with human CaP cells (LAPC-4). PE significantly inhibited LAPC-4 xenograft growth in SCID mice as compared to vehicle control. Finally, EA and several synthesized urolithins were shown to inhibit the growth of human CaP cells in vitro. The chemopreventive potential of pomegranate ETs and localization of their bioactive metabolites in mouse prostate tissue suggest that pomegranate may play a role in CaP treatment and chemoprevention. This warrants future human tissue bioavailability studies and further clinical studies in men with CaP.

  8. Sulfasalazine and its metabolites inhibit platelet function in patients with inflammatory arthritis.

    PubMed

    MacMullan, Paul A; Madigan, Anne M; Paul, Nevin; Peace, Aaron J; Alagha, Ahmed; Nolan, Kevin B; McCarthy, Geraldine M; Kenny, Dermot

    2016-02-01

    The purpose of this study is to assess the effect of sulfasalazine and its metabolites on platelet function in patients with inflammatory arthritis (IA). One hundred thirty-five consecutive patients with an established diagnosis of IA were screened. Those with a history of cardiovascular disease (CVD), taking anti-platelet agents or non-steroidal anti-inflammatory drugs (NSAIDs) were excluded. A total of 32 patients were investigated, 15 taking sulfasalazine and 17 taking other disease-modifying anti-rheumatic drugs (DMARDs) and no sulfasalazine. These two cohorts were compared to 15 patients with stable CVD on long-term aspirin. The effect of sulfasalazine and its metabolites on arachidonic acid (AA)-induced platelet aggregation was also tested in vitro in samples from healthy donors (n = 18). Demographics, CVD risk factors and disease activity indices were similar in the sulfasalazine and other DMARD groups. AA-induced platelet aggregation was significantly inhibited in the sulfasalazine group (9 ± 7 %) and comparable to that in the aspirin group (10 ± 6 %). In contrast, there was no effect on AA-induced platelet aggregation in the other DMARDs group (77 ± 12 %) (p < 0.001). Furthermore, sulfasalazine therapy had no effect on platelet aggregation in response to multiple other agonists. Sulfasalazine and its metabolites (5-aminosalicylic acid and sulfapyridine) exerted an additive and dose-dependent inhibitory effect on AA-induced platelet aggregation in vitro (p < 0.001). The inhibition of AA-induced platelet aggregation by sulfasalazine is comparable to that achieved by aspirin and is dependent on both sulfasalazine and its metabolites. This represents a potential mechanism that may contribute to the known cardioprotective effect of sulfasalazine in patients with IA. PMID:25253538

  9. Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase: product inhibition, cooperativity, and magnesium activation.

    PubMed

    Hazra, Suratna; Henderson, J Nathan; Liles, Kevin; Hilton, Matthew T; Wachter, Rebekka M

    2015-10-01

    In many photosynthetic organisms, tight-binding Rubisco inhibitors are released by the motor protein Rubisco activase (Rca). In higher plants, Rca plays a pivotal role in regulating CO2 fixation. Here, the ATPase activity of 0.005 mm tobacco Rca was monitored under steady-state conditions, and global curve fitting was utilized to extract kinetic constants. The kcat was best fit by 22.3 ± 4.9 min(-1), the Km for ATP by 0.104 ± 0.024 mm, and the Ki for ADP by 0.037 ± 0.007 mm. Without ADP, the Hill coefficient for ATP hydrolysis was extracted to be 1.0 ± 0.1, indicating noncooperative behavior of homo-oligomeric Rca assemblies. However, the addition of ADP was shown to introduce positive cooperativity between two or more subunits (Hill coefficient 1.9 ± 0.2), allowing for regulation via the prevailing ATP/ADP ratio. ADP-mediated activation was not observed, although larger amounts led to competitive product inhibition of hydrolytic activity. The catalytic efficiency increased 8.4-fold upon cooperative binding of a second magnesium ion (Hill coefficient 2.5 ± 0.5), suggesting at least three conformational states (ATP-bound, ADP-bound, and empty) within assemblies containing an average of about six subunits. The addition of excess Rubisco (24:1, L8S8/Rca6) and crowding agents did not modify catalytic rates. However, high magnesium provided for thermal Rca stabilization. We propose that magnesium mediates the formation of closed hexameric toroids capable of high turnover rates and amenable to allosteric regulation. We suggest that in vivo, the Rca hydrolytic activity is tuned by fluctuating [Mg(2+)] in response to changes in available light.

  10. Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase: product inhibition, cooperativity, and magnesium activation.

    PubMed

    Hazra, Suratna; Henderson, J Nathan; Liles, Kevin; Hilton, Matthew T; Wachter, Rebekka M

    2015-10-01

    In many photosynthetic organisms, tight-binding Rubisco inhibitors are released by the motor protein Rubisco activase (Rca). In higher plants, Rca plays a pivotal role in regulating CO2 fixation. Here, the ATPase activity of 0.005 mm tobacco Rca was monitored under steady-state conditions, and global curve fitting was utilized to extract kinetic constants. The kcat was best fit by 22.3 ± 4.9 min(-1), the Km for ATP by 0.104 ± 0.024 mm, and the Ki for ADP by 0.037 ± 0.007 mm. Without ADP, the Hill coefficient for ATP hydrolysis was extracted to be 1.0 ± 0.1, indicating noncooperative behavior of homo-oligomeric Rca assemblies. However, the addition of ADP was shown to introduce positive cooperativity between two or more subunits (Hill coefficient 1.9 ± 0.2), allowing for regulation via the prevailing ATP/ADP ratio. ADP-mediated activation was not observed, although larger amounts led to competitive product inhibition of hydrolytic activity. The catalytic efficiency increased 8.4-fold upon cooperative binding of a second magnesium ion (Hill coefficient 2.5 ± 0.5), suggesting at least three conformational states (ATP-bound, ADP-bound, and empty) within assemblies containing an average of about six subunits. The addition of excess Rubisco (24:1, L8S8/Rca6) and crowding agents did not modify catalytic rates. However, high magnesium provided for thermal Rca stabilization. We propose that magnesium mediates the formation of closed hexameric toroids capable of high turnover rates and amenable to allosteric regulation. We suggest that in vivo, the Rca hydrolytic activity is tuned by fluctuating [Mg(2+)] in response to changes in available light. PMID:26283786

  11. Epoxygenase metabolites of arachidonic acid inhibit vasopressin response in toad bladder

    SciTech Connect

    Schlondorff, D.; Petty, E.; Oates, J.A.; Jacoby, M.; Levine, S.D. Vanderbilt Univ., Nashville, TN )

    1987-09-01

    In addition to cyclooxygenase and lipoxygenase pathways, the kidney can also metabolize arachidonic acid by a NADPH-dependent cytochrome P-450 enzyme to epoxyeicosatrienoic acids (EETs); furthermore, 5,6-EET has been shown to alter electrolyte transport across isolated renal tubules. The authors examined the effects of three ({sup 14}C-labeled)-EETs (5,6-, 11,12-, and 14,15-EET) on osmotic water flow across toad urinary bladder. All three EETs reversibly inhibited vasopressin-stimulated osmotic water flow with 5,6- and 11,12-EET being the most potent. The effects appeared to be independent of prostaglandins EETs inhibited the water flow response to forskolin but not the response to adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) or 8-BrcAMP, consistent with an effect on cAMP generation. To determine whether these effects were due to the EETs or to products of their metabolism, they examined the effects of their vicinal diol hydrolysis products, the dihydroxyeicosatrienoic acids. Nonenzymatic conversion of labeled 5,6-EET to its vicinal diol occurred rapidly in the buffer, whereas 11,12-EET was hydrolyzed in a saturable manner only when incubated in the presence of bladder tissue. The dihydroxyeicosatrienoic acids formed inhibited water flow in a manner paralleling that of the EETs. The data support the hypothesis that EETs and their physiologically active dihydroxyeicosatrienoic acid metabolites inhibit vasopressin-stimulated water flow predominantly via inhibition of adenylate cyclase.

  12. Protective effect of heme oxygenase-1 on Wistar rats with heart failure through the inhibition of inflammation and amelioration of intestinal microcirculation

    PubMed Central

    Zhang, Li; Gan, Zhuo-Kun; Han, Li-Na; Wang, Hao; Bai, Jie; Tan, Guo-Juan; Li, Xiao-Xia; Xu, Ya-Ping; Zhou, Yu; Gong, Mei-Liang; Lin, Mo-Si; Han, Xiao-Yang

    2015-01-01

    Background Myocardial infarction (MI) has likely contributed to the increased prevalence of heart failure (HF). As a result of reduced cardiac function, splanchnic blood flow decreases, causing ischemia in villi and damage to the intestinal barrier. The induction of heme oxygenase-1 (HO-1) could prevent, or lessen the effects of stress and inflammation. Thus, the effect and mechanism thereof of HO-1 on the intestines of rats with HF was investigated. Methods Male Wistar rats with heart failure through ligation of the left coronary artery were identified with an left ventricular ejection fraction of < 45% through echocardiography and then divided into various experimental groups based on the type of peritoneal injection they received [MI: saline; MI + Cobalt protoporphyrin (CoPP): CoPP solution; and MI + Tin mesoporphyrin IX dichloride (SnMP): SnMP solution]. The control group was comprised of rats without coronary ligation. Echocardiography was performed before ligation for a baseline and eight weeks after ligation in order to evaluate the cardiac function of the rats. The bacterial translocation (BT) incidence, mesenteric microcirculation, amount of endotoxins in the vein serum, ileum levels of HO-1, carbon oxide (CO), nitric oxide (NO), interleukin (IL)-10, tumour necrosis factor-α (TNF-α), and the ileum morphology were determined eight weeks after the operation. Results The rats receiving MI + CoPP injections exhibited a recovery in cardiac function, an amelioration of mesenteric microcirculation and change in morphology, a lower BT incidence, a reduction in serum and ileac NO and TNF-α levels, and an elevation in ileac HO-1, CO, and interleukin-10 (IL-10) levels compared to the MI group (P < 0.05). The rats that received the MI + SnMP injections exhibited results inverse to the MI (P < 0.05) group. Conclusions HO-1 exerted a protective effect on the intestines of rats with HF by inhibiting the inflammation and amelioration of microcirculation through the CO

  13. The Anthelmintic Triclabendazole and Its Metabolites Inhibit the Membrane Transporter ABCG2/BCRP

    PubMed Central

    Barrera, Borja; Otero, Jon A.; Egido, Estefanía; Prieto, Julio G.; Seelig, Anna; Álvarez, Ana I.

    2012-01-01

    ABCG2/BCRP is an ATP-binding cassette transporter that extrudes compounds from cells in the intestine, liver, kidney, and other organs, such as the mammary gland, affecting pharmacokinetics and milk secretion of antibiotics, anticancer drugs, and other compounds and mediating drug-drug interactions. In addition, ABCG2 expression in cancer cells may directly cause resistance by active efflux of anticancer drugs. The development of ABCG2 modulators is critical in order to improve drug pharmacokinetic properties, reduce milk secretion of xenotoxins, and/or increase the effective intracellular concentrations of substrates. Our purpose was to determine whether the anthelmintic triclabendazole (TCBZ) and its main plasma metabolites triclabendazole sulfoxide (TCBZSO) and triclabendazole sulfone (TCBZSO2) inhibit ABCG2 activity. ATPase assays using human ABCG2-enriched membranes demonstrated a clear ABCG2 inhibition exerted by these compounds. Mitoxantrone accumulation assays using murine Abcg2- and human ABCG2-transduced MDCK-II cells confirmed that TCBZSO and TCBZSO2 are ABCG2 inhibitors, reaching inhibitory potencies between 40 and 55% for a concentration range from 5 to 25 μM. Transepithelial transport assays of ABCG2 substrates in the presence of both TCBZ metabolites at 15 μM showed very efficient inhibition of the Abcg2/ABCG2-mediated transport of the antibacterial agents nitrofurantoin and danofloxacin. TCBZSO administration also inhibited nitrofurantoin Abcg2-mediated secretion into milk by more than 2-fold and increased plasma levels of the sulfonamide sulfasalazine by more than 1.5-fold in mice. These results support the potential role of TCBZSO and TCBZSO2 as ABCG2 inhibitors to participate in drug interactions and modulate ABCG2-mediated pharmacokinetic processes. PMID:22508302

  14. The metabolite alpha-ketoglutarate extends lifespan by inhibiting the ATP synthase and TOR

    PubMed Central

    Chin, Randall M.; Fu, Xudong; Pai, Melody Y.; Vergnes, Laurent; Hwang, Heejun; Deng, Gang; Diep, Simon; Lomenick, Brett; Meli, Vijaykumar S.; Monsalve, Gabriela C.; Hu, Eileen; Whelan, Stephen A.; Wang, Jennifer X.; Jung, Gwanghyun; Solis, Gregory M.; Fazlollahi, Farbod; Kaweeteerawat, Chitrada; Quach, Austin; Nili, Mahta; Krall, Abby S.; Godwin, Hilary A.; Chang, Helena R.; Faull, Kym F.; Guo, Feng; Jiang, Meisheng; Trauger, Sunia A.; Saghatelian, Alan; Braas, Daniel; Christofk, Heather R.; Clarke, Catherine F.; Teitell, Michael A.; Petrascheck, Michael; Reue, Karen; Jung, Michael E.; Frand, Alison R.; Huang, Jing

    2014-01-01

    Metabolism and ageing are intimately linked. Compared to ad libitum feeding, dietary restriction (DR) or calorie restriction (CR) consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms1,2. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits3,4. Recently, several metabolites have been identified that modulate ageing5,6 with largely undefined molecular mechanisms. Here we show that the tricarboxylic acid (TCA) cycle intermediate α-ketoglutarate (α-KG) extends the lifespan of adult C. elegans. ATP synthase subunit beta is identified as a novel binding protein of α-KG using a small-molecule target identification strategy called DARTS (drug affinity responsive target stability)7. The ATP synthase, also known as Complex V of the mitochondrial electron transport chain (ETC), is the main cellular energy-generating machinery and is highly conserved throughout evolution8,9. Although complete loss of mitochondrial function is detrimental, partial suppression of the ETC has been shown to extend C. elegans lifespan10–13. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit beta and is dependent on the target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased upon starvation and α-KG does not extend the lifespan of DR animals, indicating that α-KG is a key metabolite that mediates longevity by DR. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator, and DR in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases. PMID:24828042

  15. Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents.

    PubMed

    Carvajal-Arroyo, José M; Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A

    2013-03-01

    Anaerobic ammonium oxidation (anammox) is an emerging technology for nitrogen removal that provides a more environmentally sustainable and cost effective alternative compared to conventional biological treatment methods. The objective of this study was to investigate the inhibitory impact of anammox substrates, metabolites and common wastewater constituents on the microbial activity of two different anammox enrichment cultures (suspended and granular), both dominated by bacteria from the genus Brocadia. Inhibition was evaluated in batch assays by comparing the N(2) production rates in the absence or presence of each compound supplied in a range of concentrations. The optimal pH was 7.5 and 7.3 for the suspended and granular enrichment cultures, respectively. Among the substrates or products, ammonium and nitrate caused low to moderate inhibition, whereas nitrite caused almost complete inhibition at concentrations higher than 15 mM. The intermediate, hydrazine, either stimulated or caused low inhibition of anammox activity up to 3mM. Of the common constituents in wastewater, hydrogen sulfide was the most severe inhibitor, with 50% inhibitory concentrations (IC(50)) as low as 0.03 mM undissociated H(2)S. Dissolved O(2) showed moderate inhibition (IC(50)=2.3-3.8 mg L(-1)). In contrast, phosphate and salinity (NaCl) posed very low inhibition. The suspended- and granular anammox enrichment cultures had similar patterns of response to the various inhibitory stresses with the exception of phosphate. The findings of this study provide comprehensive insights on the tolerance of the anammox process to a wide variety of potential inhibiting compounds.

  16. The Marine Fungal Metabolite, AD0157, Inhibits Angiogenesis by Targeting the Akt Signaling Pathway

    PubMed Central

    García-Caballero, Melissa; Cañedo, Librada; Fernández-Medarde, Antonio; Medina, Miguel Ángel; Quesada, Ana R.

    2014-01-01

    In the course of a screening program for the inhibitors of angiogenesis from marine sources, AD0157, a pyrrolidinedione fungal metabolite, was selected for its angiosupressive properties. AD0157 inhibited the growth of endothelial and tumor cells in culture in the micromolar range. Our results show that subtoxic doses of this compound inhibit certain functions of endothelial cells, namely, differentiation, migration and proteolytic capability. Inhibition of the mentioned essential steps of in vitro angiogenesis is in agreement with the observed antiangiogenic activity, substantiated by using two in vivo angiogenesis models, the chorioallantoic membrane and the zebrafish embryo neovascularization assays, and by the ex vivo mouse aortic ring assay. Our data indicate that AD0157 induces apoptosis in endothelial cells through chromatin condensation, DNA fragmentation, increases in the subG1 peak and caspase activation. The data shown here altogether indicate for the first time that AD0157 displays antiangiogenic effects, both in vitro and in vivo, that are exerted partly by targeting the Akt signaling pathway in activated endothelial cells. The fact that these effects are carried out at lower concentrations than those required for other inhibitors of angiogenesis makes AD0157 a new promising drug candidate for further evaluation in the treatment of cancer and other angiogenesis-related pathologies. PMID:24441613

  17. Inhibition of Poly(ADP-Ribose) Polymerase by Nucleic Acid Metabolite 7-Methylguanine

    PubMed Central

    Nilov, D. K.; Tararov, V. I.; Kulikov, A. V.; Zakharenko, A. L.; Gushchina, I. V.; Mikhailov, S. N.; Lavrik, O. I.; Švedas, V. K.

    2016-01-01

    The ability of 7-methylguanine, a nucleic acid metabolite, to inhibit poly(ADP-ribose)polymerase-1 (PARP-1) and poly(ADP-ribose)polymerase-2 (PARP-2) has been identified in silico and studied experimentally. The amino group at position 2 and the methyl group at position 7 were shown to be important substituents for the efficient binding of purine derivatives to PARPs. The activity of both tested enzymes, PARP-1 and PARP-2, was suppressed by 7-methylguanine with IC50 values of 150 and 50 μM, respectively. At the PARP inhibitory concentration, 7-methylguanine itself was not cytotoxic, but it was able to accelerate apoptotic death of BRCA1-deficient breast cancer cells induced by cisplatin and doxorubicin, the widely used DNA-damaging chemotherapeutic agents. 7-Methylguanine possesses attractive predictable pharmacokinetics and an adverse-effect profile and may be considered as a new additive to chemotherapeutic treatment. PMID:27437145

  18. Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment.

    PubMed

    Martínez-Montiel, Nancy; Rosas-Murrieta, Nora Hilda; Martínez-Montiel, Mónica; Gaspariano-Cholula, Mayra Patricia; Martínez-Contreras, Rebeca D

    2016-01-01

    In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics. PMID:27610372

  19. Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment

    PubMed Central

    Rosas-Murrieta, Nora Hilda; Martínez-Montiel, Mónica; Gaspariano-Cholula, Mayra Patricia

    2016-01-01

    In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics. PMID:27610372

  20. Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment

    PubMed Central

    Rosas-Murrieta, Nora Hilda; Martínez-Montiel, Mónica; Gaspariano-Cholula, Mayra Patricia

    2016-01-01

    In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics.

  1. Methylselenol, a selenium metabolite, inhibits colon cancer cell growth and cancer xenografts in C57BL/6 mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data indicate that methylselenol is a critical selenium (Se) metabolite for anticancer activity in vivo but its role in colon cancer prevention remains to be characterized. This study tested the hypothesis that methylselenol inhibits the growth of colon cancer cells and tumors. We found that submicr...

  2. A cyclooxygenase metabolite of anandamide causes inhibition of interleukin-2 secretion in murine splenocytes.

    PubMed

    Rockwell, Cheryl E; Kaminski, Norbert E

    2004-11-01

    anandamide-mediated suppression of IL-2 secretion. Collectively, the aforementioned studies suggest that inhibition of interleukin-2 secretion by anandamide is independent of CB1/CB2 and the AMT/FAAH system. Additionally, these studies also suggest that inhibition of interleukin-2 is mediated by a PPARgamma, which is activated by a cyclooxygenase-2 metabolite of anandamide.

  3. Ginseng saponin metabolite 20(S)-protopanaxadiol inhibits tumor growth by targeting multiple cancer signaling pathways

    PubMed Central

    GAO, JIAN-LI; LV, GUI-YUAN; HE, BAI-CHENG; ZHANG, BING-QIANG; ZHANG, HONGYU; WANG, NING; WANG, CHONG-ZHI; DU, WEI; YUAN, CHUN-SU; HE, TONG-CHUAN

    2013-01-01

    Plant-derived active constituents and their semi-synthetic or synthetic analogs have served as major sources of anticancer drugs. 20(S)-protopanaxadiol (PPD) is a metabolite of ginseng saponin of both American ginseng (Panax quinquefolius L.) and Asian ginseng (Panax ginseng C.A. Meyer). We previously demonstrated that ginsenoside Rg3, a glucoside precursor of PPD, exhibits anti-proliferative effects on HCT116 cells and reduces tumor size in a xenograft model. Our subsequent study indicated that PPD has more potent antitumor activity than that of Rg3 in vitro although the mechanism underlying the anticancer activity of PPD remains to be defined. Here, we investigated the mechanism underlying the anticancer activity of PPD in human cancer cells in vitro and in vivo. PPD was shown to inhibit growth and induce cell cycle arrest in HCT116 cells. The in vivo studies indicate that PPD inhibits xenograft tumor growth in athymic nude mice bearing HCT116 cells. The xenograft tumor size was significantly reduced when the animals were treated with PPD (30 mg/kg body weight) for 3 weeks. When the expression of previously identified Rg3 targets, A kinase (PRKA) anchor protein 8 (AKAP8L) and phosphatidylinositol transfer protein α (PITPNA), was analyzed, PPD was shown to inhibit the expression of PITPNA while upregulating AKAP8L expression in HCT116 cells. Pathway-specific reporter assays indicated that PPD effectively suppressed the NF-κB, JNK and MAPK/ERK signaling pathways. Taken together, our results suggest that the anticancer activity of PPD in colon cancer cells may be mediated through targeting NF-κB, JNK and MAPK/ERK signaling pathways, although the detailed mechanisms underlying the anticancer mode of PPD action need to be fully elucidated. PMID:23633038

  4. Inhibition of acetylcholinesterase by green and white tea and their simulated intestinal metabolites.

    PubMed

    Okello, Edward J; Leylabi, Ramin; McDougall, Gordon J

    2012-06-01

    By 2034 it is forecast that 5% of the global population will be aged 85 years or over--approximately two and half fold increase on present day figures--which will inevitably lead to an increase in age-associated disorders such as Alzheimer's disease. There is mounting evidence that green tea (Camellia sinensis) possesses numerous health-promoting properties, and may potentially be beneficial to those suffering from Alzheimer's and other diseases, including cardiovascular disease and cancer. These beneficial properties are largely attributed to the high polyphenol content, particularly the catechins. In this study, we measured acetylcholinesterase inhibition by white and green teas and their simulated intestinal digests. We found that the potency with which the white and green tea extracts inhibited acetylcholinesterase varied through the simulated digestion procedure. Initially, in the undigested extract form, potency was high with IC₅₀ values of 7.20 μg mL⁻¹ and 8.06 μg mL⁻¹ for green and white tea respectively.However, this decreased significantly after gastric digestion but activity was recovered after pancreatic digestion which could be related to relative increases in the levels of caffeine and specific phenolic components. Of the pure tea compounds tested, EGCG was the most potent with an IC₅₀ of 0.0096 μmol mL⁻¹ but its breakdown product; γ-valerolactone was the least potent analyte. Particularly interesting were the results of caffeine,which exhibited a strong inhibitory activity and pyrogallol, which recorded a much stronger potency than its parent compound gallic acid, suggesting a pro-drug-like relationship. Overall, the results indicate that further research is necessary to determine the full potential of digestion of tea and its metabolites and how inter-individual variation may indicate that some sections of society could potentially benefit more from drinking tea as a strategy to prevent the development of dementia. We have also

  5. Relative inhibitory potency of molinate and metabolites with aldehyde dehydrogenase2: implications for the mechanism of enzyme inhibition

    PubMed Central

    Allen, Erin M.G.; Anderson, David G.R.; Florang, Virginia R.; Khanna, May; Hurley, Thomas D.; Doorn, Jonathan A.

    2010-01-01

    Molinate is a thiocarbamate herbicide used as a pre-emergent in rice patty fields. It has two predominant sulfoxidation metabolites, molinate sulfoxide and molinate sulfone. Previous work demonstrated an in vivo decrease in liver aldehyde dehydrogenase (ALDH) activity in rats treated with molinate and motor function deficits in dogs dosed chronically with this compound. ALDH is an enzyme important in the catabolism of many neurotransmitters, such as dopamine. Inhibition of this enzyme may lead to the accumulation of endogenous neurotoxic metabolites such as 3,4-dihydroxyphenylacetaldehyde (DOPAL), a dopamine metabolite, which may account for the observed neurotoxicity. In this study, the relative reactivity of molinate and both of its sulfoxidation metabolites towards ALDH were investigated, as well as the mechanism of inhibition. ALDH activity was monitored in two different model systems, human recombinant ALDH (hALDH2) and mouse striatal synaptosomes. Molinate sulfone was found to be the most potent ALDH inhibitor, compared to molinate and molinate sulfoxide. The reactivity of these three compounds was also assessed, using N-acetyl Cys, model peptides, and hALDH2. It was determined that molinate sulfone is capable of covalently modifying Cys residues, including catalytic Cys302 of ALDH, accounting for the observed enzyme inhibition. PMID:20954713

  6. Relative inhibitory potency of molinate and metabolites with aldehyde dehydrogenase 2: implications for the mechanism of enzyme inhibition.

    PubMed

    Allen, Erin M G; Anderson, David G R; Florang, Virginia R; Khanna, May; Hurley, Thomas D; Doorn, Jonathan A

    2010-11-15

    Molinate is a thiocarbamate herbicide used as a pre-emergent in rice patty fields. It has two predominant sulfoxidation metabolites, molinate sulfoxide and molinate sulfone. Previous work demonstrated an in vivo decrease in liver aldehyde dehydrogenase (ALDH) activity in rats treated with molinate and motor function deficits in dogs dosed chronically with this compound. ALDH is an enzyme important in the catabolism of many neurotransmitters, such as dopamine. Inhibition of this enzyme may lead to the accumulation of endogenous neurotoxic metabolites such as 3,4-dihydroxyphenylacetaldehyde, a dopamine metabolite, which may account for the observed neurotoxicity. In this study, the relative reactivity of molinate and both of its sulfoxidation metabolites toward ALDH was investigated, as well as the mechanism of inhibition. The ALDH activity was monitored in two different model systems, human recombinant ALDH (hALDH2) and mouse striatal synaptosomes. Molinate sulfone was found to be the most potent ALDH inhibitor, as compared to molinate and molinate sulfoxide. The reactivity of these three compounds was also assessed, using N-acetyl Cys, model peptides, and hALDH2. It was determined that molinate sulfone is capable of covalently modifying Cys residues, including catalytic Cys302 of ALDH, accounting for the observed enzyme inhibition.

  7. Identification and characterization of reactive metabolites in myristicin-mediated mechanism-based inhibition of CYP1A2.

    PubMed

    Yang, Ai-Hong; He, Xin; Chen, Jun-Xiu; He, Li-Na; Jin, Chun-Huan; Wang, Li-Li; Zhang, Fang-Liang; An, Li-Jun

    2015-07-25

    Myristicin belongs to the methylenedioxyphenyl or allyl-benzene family of compounds, which are found widely in plants of the Umbelliferae family, such as parsley and carrot. Myristicin is also the major active component in the essential oils of mace and nutmeg. However, this compound can cause adverse reactions, particularly when taken inappropriately or in overdoses. One important source of toxicity of natural products arises from their metabolic biotransformations into reactive metabolites. Myristicin contains a methylenedioxyphenyl substructure, and this specific structural feature may allow compounds to cause a mechanism-based inhibition of cytochrome P450 enzymes and produce reactive metabolites. Therefore, the aim of this work was to identify whether the role of myristicin in CYP enzyme inhibition is mechanism-based inhibition and to gain further information regarding the structure of the resulting reactive metabolites. CYP cocktail assays showed that myristicin most significantly inhibits CYP1A2 among five CYP enzymes (CYP1A2, CYP2D6, CYP2E1, CYP3A4 and CYP2C19) from human liver microsomes. The 3.21-fold IC50 shift value of CYP1A2 indicates that myristicin may be a mechanism-based inhibitor of CYP1A2. Next, reduced glutathione was shown to block the inhibition of CYP1A2, indicating that myristicin utilized a mechanism-based inhibition. Phase I metabolism assays identified two metabolites, 5-allyl-1-methoxy-2,3-dihydroxybenzene (M1) and 1'-hydroxymyristicin or 2',3'-epoxy-myristicin (M2). Reduced glutathione capturing assays captured the glutathione-M1 adduct, and the reactive metabolites were identified using UPLC-MS(2) as a quinone and its tautomer. Thus, it was concluded that myristicin is a mechanism-based inhibitor of CYP1A2, and the reactive metabolites are quinone tautomers. Additionally, the cleavage process of the glutathione-M1 adduct was analyzed in further detail. This study provides additional information on the metabolic mechanism of myristicin

  8. Oxymetazoline inhibits proinflammatory reactions: effect on arachidonic acid-derived metabolites.

    PubMed

    Beck-Speier, Ingrid; Dayal, Niru; Karg, Erwin; Maier, Konrad L; Schumann, Gabriele; Semmler, Manuela; Koelsch, Stephan M

    2006-02-01

    The nasal decongestant oxymetazoline effectively reduces rhinitis symptoms. We hypothesized that oxymetazoline affects arachidonic acid-derived metabolites concerning inflammatory and oxidative stress-dependent reactions. The ability of oxymetazoline to model pro- and anti-inflammatory and oxidative stress responses was evaluated in cell-free systems, including 5-lipoxygenase (5-LO) as proinflammatory, 15-lipoxygenase (15-LO) as anti-inflammatory enzymes, and oxidation of methionine by agglomerates of ultrafine carbon particles (UCPs), indicating oxidative stress. In a cellular approach using canine alveolar macrophages (AMs), the impact of oxymetazoline on phospholipase A(2) (PLA(2)) activity, respiratory burst and synthesis of prostaglandin E(2) (PGE(2)), 15(S)-hydroxy-eicosatetraenoic acid (15-HETE), leukotriene B(4) (LTB(4)), and 8-isoprostane was measured in the absence and presence of UCP or opsonized zymosan as particulate stimulants. In cell-free systems, oxymetazoline (0.4-1 mM) inhibited 5-LO but not 15-LO activity and did not alter UCP-induced oxidation of methionine. In AMs, oxymetazoline induced PLA(2) activity and 15-HETE at 1 mM, enhanced PGE(2) at 0.1 mM, strongly inhibited LTB(4) and respiratory burst at 0.4/0.1 mM (p < 0.05), but did not affect 8-isoprostane formation. In contrast, oxymetazoline did not alter UCP-induced PLA(2) activity and PGE(2) and 15-HETE formation in AMs but inhibited UCP-induced LTB(4) formation and respiratory burst at 0.1 mM and 8-isoprostane formation at 0.001 mM (p < 0.05). In opsonized zymosan-stimulated AMs, oxymetazoline inhibited LTB(4) formation and respiratory burst at 0.1 mM (p < 0.05). In conclusion, in canine AMs, oxymetazoline suppressed proinflammatory reactions including 5-LO activity, LTB(4) formation, and respiratory burst and prevented particle-induced oxidative stress, whereas PLA(2) activity and synthesis of immune-modulating PGE(2) and 15-HETE were not affected.

  9. Inhibition of Non-flux-Controlling Enzymes Deters Cancer Glycolysis by Accumulation of Regulatory Metabolites of Controlling Steps

    PubMed Central

    Marín-Hernández, Álvaro; Rodríguez-Zavala, José S.; Del Mazo-Monsalvo, Isis; Rodríguez-Enríquez, Sara; Moreno-Sánchez, Rafael; Saavedra, Emma

    2016-01-01

    Glycolysis provides precursors for the synthesis of macromolecules and may contribute to the ATP supply required for the constant and accelerated cellular duplication in cancer cells. In consequence, inhibition of glycolysis has been reiteratively considered as an anti-cancer therapeutic option. In previous studies, kinetic modeling of glycolysis in cancer cells allowed the identification of the main steps that control the glycolytic flux: glucose transporter, hexokinase (HK), hexose phosphate isomerase (HPI), and glycogen degradation in human cervix HeLa cancer cells and rat AS-30D ascites hepatocarcinoma. It was also previously experimentally determined that simultaneous inhibition of the non-controlling enzymes lactate dehydrogenase (LDH), pyruvate kinase (PYK), and enolase (ENO) brings about significant decrease in the glycolytic flux of cancer cells and accumulation of intermediate metabolites, mainly fructose-1,6-bisphosphate (Fru1,6BP), and dihydroxyacetone phosphate (DHAP), which are inhibitors of HK and HPI, respectively. Here it was found by kinetic modeling that inhibition of cancer glycolysis can be attained by blocking downstream non flux-controlling steps as long as Fru1,6BP and DHAP, regulatory metabolites of flux-controlling enzymes, are accumulated. Furthermore, experimental results and further modeling showed that oxamate and iodoacetate inhibitions of PYK, ENO, and glyceraldehyde3-phosphate dehydrogenase (GAPDH), but not of LDH and phosphoglycerate kinase, induced accumulation of Fru1,6BP and DHAP in AS-30D hepatoma cells. Indeed, PYK, ENO, and GAPDH exerted the highest control on the Fru1,6BP and DHAP concentrations. The high levels of these metabolites inhibited HK and HPI and led to glycolytic flux inhibition, ATP diminution, and accumulation of toxic methylglyoxal. Hence, the anticancer effects of downstream glycolytic inhibitors are very likely mediated by this mechanism. In parallel, it was also found that uncompetitive inhibition of the

  10. Competitive inhibition of renal tubular secretion of ciprofloxacin and metabolite by probenecid

    PubMed Central

    Landersdorfer, Cornelia B; Kirkpatrick, Carl M J; Kinzig, Martina; Bulitta, Jürgen B; Holzgrabe, Ulrike; Jaehde, Ulrich; Reiter, Andreas; Naber, Kurt G; Rodamer, Michael; Sörgel, Fritz

    2010-01-01

    AIMS Probenecid influences transport processes of drugs at several sites in the body and decreases elimination of several quinolones. We sought to explore extent, time course, and mechanism of the interaction between ciprofloxacin and probenecid at renal and nonrenal sites. METHODS A randomized, two-way crossover study was conducted in 12 healthy volunteers (in part previously published Clin Pharmacol Ther 1995; 58: 532–41). Subjects received 200 mg ciprofloxacin as 30-min intravenous infusion without and with 3 g probenecid divided into five oral doses. Drug concentrations were analysed by liquid chromatography–tandem mass spectrometry and high-performance liquid chromatography. Ciprofloxacin and its 2-aminoethylamino-metabolite (M1) in plasma and urine with and without probenecid were modelled simultaneously with WinNonlin®. RESULTS Data are ratio of geometric means (90% confidence intervals). Addition of probenecid reduced the median renal clearance from 23.8 to 8.25 l h−1[65% reduction (59, 71), P < 0.01] for ciprofloxacin and from 20.5 to 8.26 l h−1 (66% reduction (57, 73), P < 0.01] for M1 (estimated by modelling). Probenecid reduced ciprofloxacin nonrenal clearance by 8% (1, 14) (P < 0.08). Pharmacokinetic modelling indicated competitive inhibition of the renal tubular secretion of ciprofloxacin and M1 by probenecid. The affinity for the renal transporter was 4.4 times higher for ciprofloxacin and 3.6 times higher for M1 than for probenecid, based on the molar ratio. Probenecid did not affect volume of distribution of ciprofloxacin or M1, nonrenal clearance or intercompartmental clearance of ciprofloxacin. CONCLUSIONS Probenecid inhibited the renal tubular secretion of ciprofloxacin and M1, probably by a competitive mechanism and due to reaching >100-fold higher plasma concentrations. Formation of M1, nonrenal clearance and distribution of ciprofloxacin were not affected. PMID:20233180

  11. Amiodarone and metabolite MDEA inhibit Ebola virus infection by interfering with the viral entry process.

    PubMed

    Salata, Cristiano; Baritussio, Aldo; Munegato, Denis; Calistri, Arianna; Ha, Huy Riem; Bigler, Laurent; Fabris, Fabrizio; Parolin, Cristina; Palù, Giorgio; Mirazimi, Ali

    2015-07-01

    Ebola virus disease (EVD) is one of the most lethal transmissible infections characterized by a high fatality rate, and a treatment has not been developed yet. Recently, it has been shown that cationic amphiphiles, among them the antiarrhythmic drug amiodarone, inhibit filovirus infection. In the present work, we investigated how amiodarone interferes with Ebola virus infection. Wild-type Sudan ebolavirus and recombinant vesicular stomatitis virus, pseudotyped with the Zaire ebolavirus glycoprotein, were used to gain further insight into the ability of amiodarone to affect Ebola virus infection. We show that amiodarone decreases Ebola virus infection at concentrations close to those found in the sera of patients treated for arrhythmias. The drug acts by interfering with the fusion of the viral envelope with the endosomal membrane. We also show that MDEA, the main amiodarone metabolite, contributes to the antiviral activity. Finally, studies with amiodarone analogues indicate that the antiviral activity is correlated with drug ability to accumulate into and interfere with the endocytic pathway. Considering that it is well tolerated, especially in the acute setting, amiodarone appears to deserve consideration for clinical use in EVD.

  12. Phorbaketal A, Isolated from the Marine Sponge Phorbas sp., Exerts Its Anti-Inflammatory Effects via NF-κB Inhibition and Heme Oxygenase-1 Activation in Lipopolysaccharide-Stimulated Macrophages

    PubMed Central

    Seo, Yun-Ji; Lee, Kyung-Tae; Rho, Jung-Rae; Choi, Jung-Hye

    2015-01-01

    Marine sponges harbor a range of biologically active compounds. Phorbaketal A is a tricyclic sesterterpenoid isolated from the marine sponge Phorbas sp.; however, little is known about its biological activities and associated molecular mechanisms. In this study, we examined the anti-inflammatory effects and underlying molecular mechanism of phorbaketal A in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that phorbaketal A significantly inhibited the LPS-induced production of nitric oxide (NO), but not prostaglandin E2, in RAW 264.7 cells. Further, phorbaketal A suppressed the expression of inducible NO synthase at both the mRNA and protein levels. In addition, phorbaketal A reduced the LPS-induced production of inflammatory cytokines such as tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6, and monocyte chemotactic protein-1. Treatment with phorbaketal A inhibited the transcriptional activity of nuclear factor-kappaB (NF-κB), a crucial signaling molecule in inflammation. Moreover, phorbaketal A up-regulated the expression of heme oxygenase-1 (HO-1) in LPS-stimulated RAW 264.7 cells. These data suggest that phorbaketal A, isolated from the marine sponge Phorbas sp., inhibits the production of inflammatory mediators via down-regulation of the NF-κB pathway and up-regulation of the HO-1 pathway. PMID:26610528

  13. Phorbaketal A, Isolated from the Marine Sponge Phorbas sp., Exerts Its Anti-Inflammatory Effects via NF-κB Inhibition and Heme Oxygenase-1 Activation in Lipopolysaccharide-Stimulated Macrophages.

    PubMed

    Seo, Yun-Ji; Lee, Kyung-Tae; Rho, Jung-Rae; Choi, Jung-Hye

    2015-11-01

    Marine sponges harbor a range of biologically active compounds. Phorbaketal A is a tricyclic sesterterpenoid isolated from the marine sponge Phorbas sp.; however, little is known about its biological activities and associated molecular mechanisms. In this study, we examined the anti-inflammatory effects and underlying molecular mechanism of phorbaketal A in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that phorbaketal A significantly inhibited the LPS-induced production of nitric oxide (NO), but not prostaglandin E₂, in RAW 264.7 cells. Further, phorbaketal A suppressed the expression of inducible NO synthase at both the mRNA and protein levels. In addition, phorbaketal A reduced the LPS-induced production of inflammatory cytokines such as tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6, and monocyte chemotactic protein-1. Treatment with phorbaketal A inhibited the transcriptional activity of nuclear factor-kappaB (NF-κB), a crucial signaling molecule in inflammation. Moreover, phorbaketal A up-regulated the expression of heme oxygenase-1 (HO-1) in LPS-stimulated RAW 264.7 cells. These data suggest that phorbaketal A, isolated from the marine sponge Phorbas sp., inhibits the production of inflammatory mediators via down-regulation of the NF-κB pathway and up-regulation of the HO-1 pathway. PMID:26610528

  14. Increased active metabolite formation explains the greater platelet inhibition with prasugrel compared to high-dose clopidogrel.

    PubMed

    Payne, Christopher D; Li, Ying Grace; Small, David S; Ernest, C Steven; Farid, Nagy A; Jakubowski, Joseph A; Brandt, John T; Salazar, Daniel E; Winters, Kenneth J

    2007-11-01

    Prasugrel pharmacodynamics and pharmacokinetics after a 60-mg loading dose (LD) and daily 10-mg maintenance doses (MD) were compared in a 3-way crossover study to clopidogrel 600-mg/75-mg and 300-mg/75-mg LD/MD in 41 healthy, aspirin-free subjects. Each LD was followed by 7 days of daily MD and a 14-day washout period. Inhibition of platelet aggregation (IPA) was assessed by turbidometric aggregometry (20 and 5 microM ADP). Prasugrel 60-mg achieved higher mean IPA (54%) 30 minutes post-LD than clopidogrel 300-mg (3%) or 600-mg (6%) (P < 0.001) and greater IPA by 1 hour (82%) and 2 hours (91%) than the 6-hour IPA for clopidogrel 300-mg (51%) or 600-mg (69%) (P < 0.01). During MD, IPA for prasugrel 10-mg (78%) exceeded that of clopidogrel (300-mg/75-mg, 56%; 600-mg/75-mg, 52%; P < 0.001). Active metabolite area under the concentration-time curve (AUC0-tlast) after prasugrel 60-mg (594 ng.hr/mL) was 2.2 times that after clopidogrel 600-mg. Prasugrel active metabolite AUC0-tlast was consistent with dose-proportionality from 10-mg to 60-mg, while clopidogrel active metabolite AUC0-tlast exhibited saturable absorption and/or metabolism. In conclusion, greater exposure to prasugrel's active metabolite results in faster onset, higher levels, and less variability of platelet inhibition compared with high-dose clopidogrel in healthy subjects. PMID:18030066

  15. Inhibition of CYP2C19 and CYP3A4 by Omeprazole Metabolites and Their Contribution to Drug-Drug Interactions

    PubMed Central

    Shirasaka, Yoshiyuki; Sager, Jennifer E.; Lutz, Justin D.; Davis, Connie

    2013-01-01

    The aim of this study was to evaluate the contribution of metabolites to drug-drug interactions (DDI) using the inhibition of CYP2C19 and CYP3A4 by omeprazole and its metabolites as a model. Of the metabolites identified in vivo, 5-hydroxyomeprazole, 5′-O-desmethylomeprazole, omeprazole sulfone, and carboxyomeprazole had a metabolite to parent area under the plasma concentration–time curve (AUCm/AUCp) ratio ≥ 0.25 when either total or unbound concentrations were measured after a single 20-mg dose of omeprazole in a cocktail. All of the metabolites inhibited CYP2C19 and CYP3A4 reversibly. In addition omeprazole, omeprazole sulfone, and 5′-O-desmethylomeprazole were time dependent inhibitors (TDI) of CYP2C19, whereas omeprazole and 5′-O-desmethylomeprazole were found to be TDIs of CYP3A4. The in vitro inhibition constants and in vivo plasma concentrations were used to evaluate whether characterization of the metabolites affected DDI risk assessment. Identifying omeprazole as a TDI of both CYP2C19 and CYP3A4 was the most important factor in DDI risk assessment. Consideration of reversible inhibition by omeprazole and its metabolites would not identify DDI risk with CYP3A4, and with CYP2C19, reversible inhibition values would only identify DDI risk if the metabolites were included in the assessment. On the basis of inactivation data, CYP2C19 and CYP3A4 inhibition by omeprazole would be sufficient to identify risk, but metabolites were predicted to contribute 30–63% to the in vivo hepatic interactions. Therefore, consideration of metabolites may be important in quantitative predictions of in vivo DDIs. The results of this study show that, although metabolites contribute to in vivo DDIs, their relative abundance in circulation or logP values do not predict their contribution to in vivo DDI risk. PMID:23620487

  16. Metabolites from invasive pests inhibit mitochondrial complex II: A potential strategy for the treatment of human ovarian carcinoma?

    PubMed

    Ferramosca, Alessandra; Conte, Annalea; Guerra, Flora; Felline, Serena; Rimoli, Maria Grazia; Mollo, Ernesto; Zara, Vincenzo; Terlizzi, Antonio

    2016-05-13

    The red pigment caulerpin, a secondary metabolite from the marine invasive green algae Caulerpa cylindracea can be accumulated and transferred along the trophic chain, with detrimental consequences on biodiversity and ecosystem functioning. Despite increasing research efforts to understand how caulerpin modifies fish physiology, little is known on the effects of algal metabolites on mammalian cells. Here we report for the first time the mitochondrial targeting activity of both caulerpin, and its closely related derivative caulerpinic acid, by using as experimental model rat liver mitochondria, a system in which bioenergetics mechanisms are not altered. Mitochondrial function was tested by polarographic and spectrophotometric methods. Both compounds were found to selectively inhibit respiratory complex II activity, while complexes I, III, and IV remained functional. These results led us to hypothesize that both algal metabolites could be used as antitumor agents in cell lines with defects in mitochondrial complex I. Ovarian cancer cisplatin-resistant cells are a good example of cell lines with a defective complex I function on which these molecules seem to have a toxic effect on proliferation. This provided novel insight toward the potential use of metabolites from invasive Caulerpa species for the treatment of human ovarian carcinoma cisplatin-resistant cells. PMID:27091429

  17. Heme Oxygenase-1 in Tumors

    PubMed Central

    JOZKOWICZ, ALICJA; WAS, HALINA; DULAK, JOZEF

    2007-01-01

    Heme oxygenase-1 (HO-1) catalyzes the oxidation of heme to biologically active products: carbon monoxide (CO), biliverdin, and ferrous iron. It participates in maintaining cellular homeostasis and plays an important protective role in the tissues by reducing oxidative injury, attenuating the inflammatory response, inhibiting cell apoptosis, and regulating cell proliferation. HO-1 is also an important proangiogenic mediator. Most studies have focused on the role of HO-1 in cardiovascular diseases, in which its significant, beneficial activity is well recognized. A growing body of evidence indicates, however, that HO-1 activation may play a role in carcinogenesis and can potently influence the growth and metastasis of tumors. HO-1 is very often upregulated in tumor tissues, and its expression is further increased in response to therapies. Although the exact effect can be tissue specific, HO-1 can be regarded as an enzyme facilitating tumor progression. Accordingly, inhibition of HO-1 can be suggested as a potential therapeutic approach sensitizing tumors to radiation, chemotherapy, or photodynamic therapy. PMID:17822372

  18. Inhibition effect of secondary metabolites accumulated in a pervaporation membrane bioreactor on ethanol fermentation of Saccharomyces cerevisiae.

    PubMed

    Fan, Senqing; Xiao, Zeyi; Tang, Xiaoyu; Chen, Chunyan; Zhang, Yan; Deng, Qing; Yao, Peina; Li, Weijia

    2014-06-01

    The secondary metabolites accumulated in a pervaporation membrane bioreactor during ethanol fermentation were mostly composed of acetic acid, lactic acid, propionic acid, citric acid, succinic acid and glycerol. The inhibition effect of these compounds at a broad concentration range was studied through ethanol fermentation by Saccharomyces cerevisiae. An increasing concentration of the secondary metabolites led to longer lag time and a reduction of cell growth. The specific cell growth rate, cell yield, ethanol productivity were only 0.061 h(-1), 0.024, 0.47 g L(-1) h(-1) respectively, when the medium contained 3.12 g of acetic acid, 10.23 g of lactic acid, 2.72 g of propionic acid, 1.35 g of citric acid, 2.26 g of succinic acid and 49.25 g of glycerol per liter (a concentration level in pervaporation membrane bioreactor at later fermentation period). By increasing pH of the medium to 6.0-8.0, the inhibition of these secondary metabolites could be greatly relieved.

  19. Inhibition of Anthracycline Alcohol Metabolite Formation in Human Heart Cytosol: A Potential Role for Several Promising Drugs.

    PubMed

    Mordente, Alvaro; Silvestrini, Andrea; Martorana, Giuseppe Ettore; Tavian, Daniela; Meucci, Elisabetta

    2015-11-01

    The clinical efficacy of anthracyclines (e.g., doxorubicin and daunorubicin) in cancer therapy is limited by their severe cardiotoxicity, the etiology of which is still not fully understood. The development of anthracycline-induced cardiomyopathy has been found to correlate with myocardial formation and accumulation of anthracycline secondary alcohol metabolites (e.g., doxorubicinol and daunorubicinol) that are produced by distinct cytosolic NADPH-dependent reductases. The aim of the current study is to identify chemical compounds capable of inhibiting myocardial reductases implied in anthracycline reductive metabolism in an attempt to decrease the production of cardiotoxic C-13 alcohol metabolites. Among the variety of tested compounds (metal chelators, radical scavengers, antioxidants, β-blockers, nitrone spin traps, and lipid-lowering drugs), ebselen, cyclopentenone prostaglandins, nitric oxide donors, and short-chain coenzyme Q analogs resulted in being effective inhibitors of both doxorubicinol and daunorubicinol formation. In particular, ebselen (as well as ebselen diselenide, its storage form in the cells) was the most potent inhibitor of cardiotoxic anthracycline alcohol metabolites with 50% inhibition of doxorubicinol formation at 0.2 mol Eq of ebselen with respect to doxorubicin concentration. The high efficacy, together with its favorable pharmacological profile (low toxicity, lack of adverse effects, and metabolic stability) portends ebselen as a promising cardioprotective agent against anthracycline-induced cardiotoxicity. PMID:26265744

  20. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms.

    PubMed

    Chuang, Cheng-Hung; Yeh, Chiao-Lin; Yeh, Shu-Lan; Lin, En-Shyh; Wang, Li-Yu; Wang, Ying-Hsuna

    2016-07-01

    Our previous study demonstrated that quercetin-metabolite-enriched plasma (QP) but not quercetin itself upregulates peroxisome proliferator-activated receptor gamma (PPAR-γ) expression to induce G2/M arrest in A549 cells. In the present study, we incubated A549 cells with QP as well as quercetin-3-glucuronide (Q3G) and quercetin-3'-sulfate (Q3'S), two major metabolites of quercetin, to investigate the effects of quercetin metabolites on cell invasion and migration, the possible mechanisms and the role of PPAR-γ. We also compared the effects of QP with those of quercetin and troglitazone (TGZ), a PPAR-γ ligand. The results showed that QP significantly suppressed cell invasion and migration, as well as matrix metalloproteinases (MMPs)-2 activity and expression in a dose-dependent manner. The effects of 10% QP on those parameters were similar to those of 10μM quercetin and 20μM TGZ. However, QP and TGZ rather than quercetin itself increased the expressions of nm23-H1 and tissue inhibitor of metalloproteinase (TIMP-2). Furthermore, we demonstrated that Q3G and Q3'S also inhibited the protein expression of MMP-2. GW9662, a PPAR-γ antagonist, significantly diminished such an effect of Q3G and Q3'S. Silencing PPAR-γ expression in A549 cells also significantly diminished the suppression effect of Q3G and Q3'S on MMP-2 expression. Taken together, our study demonstrated that QP inhibited cell invasion and migration through nm23-H1/TIMP-2/MMP-2 associated mechanisms. The upregulation of PPAR-γ by quercetin metabolites such as Q3G and Q3'S could play an important role in the effects of QP. PMID:27260467

  1. Hydroxyzine and metabolites as a source of interference in carbamazepine particle-enhanced turbidimetric inhibition immunoassay (PETINIA).

    PubMed

    Parant, François; Moulsma, Mustapha; Gagnieu, Marie Claude; Lardet, Gisèle

    2005-08-01

    A 32-year-old epileptic patient with a lengthy history of multiple-drug abuse and psychotic disorders was found to have an elevated serum carbamazepine concentration of 40.5 mg/L (therapeutic range 4-12 mg/L) using particle-enhanced turbidimetric inhibition immunoassay (PETINIA). Serum reanalysis by LC-DAD revealed only high hydroxyzine (HDZ) concentration (HDZ = 0.55 mg/L; therapeutic range <0.1 mg/L), suggesting cross-reactivity between HDZ and PETINIA. To confirm this hypothesis, the authors tested 2 commercially available carbamazepine immunoassays, PETINIA and EMIT 2000, for in vitro cross-reactivity with HDZ and 2 HDZ metabolites (cetirizine and norchlorcyclizine). To determine the frequency of this interaction in a clinical setting, 40 sera of 39 patients taking HDZ without carbamazepine were tested by both immunoassays. For some samples, LC-ESI-MS analysis of HDZ metabolites was performed. Additionally, cross-reactivities produced by other benzhydrylpiperazine drugs were evaluated. in vitro, 5 mg of HDZ, cetirizine, and norchlorcyclizine cross-reacted with PETINIA at 85%, 125%, and 66%, respectively. Conversely, EMIT 2000 showed no cross-reactivity. For PETINIA, erroneous carbamazepine concentrations were detected in 35 out of 40 sera of patients taking HDZ. The magnitude of interference correlated moderately with serum HDZ concentrations (Spearman rho coefficient 0.58, P < 0.001), suggesting a major role for the multiple HDZ metabolites (4 serum metabolites were detected by LC-ESI-MS). Furthermore, other benzhydrylpiperazine drugs (eg, oxatomide) showed in vitro cross-reactivity with PETINIA. In conclusion, HDZ and its metabolites cross-react with carbamazepine PETINIA immunoassay, which could significantly affect the correct interpretation of serum carbamazepine concentrations in patients treated with HDZ.

  2. Drug-Drug Interactions Potential of Icariin and Its Intestinal Metabolites via Inhibition of Intestinal UDP-Glucuronosyltransferases

    PubMed Central

    Cao, Yun-Feng; He, Rong-Rong; Cao, Jun; Chen, Jian-Xing; Huang, Ting; Liu, Yong

    2012-01-01

    Icariin is known as an indicative constituent of the Epimedium genus, which has been commonly used in Chinese herbal medicine to enhance treat impotence and improve sexual function, as well as for several other indications for over 2000 years. In this study, we aimed to investigate the effects of icariin and its intestinal metabolites on the activities of human UDP-glucuronosyltransferase (UGT) activities. Using a panel of recombinant human UGT isoforms, we found that icariin exhibited potent inhibition against UGT1A3. It is interesting that the intestinal metabolites of icariin exhibited a different inhibition profile compared with icariin. Different from icariin, icariside II was a potent inhibitor of UGT1A4, UGT1A7, UGT1A9, and UGT2B7, and icaritin was a potent inhibitor of UGT1A7 and UGT1A9. The potential for drug interactions in vivo was also quantitatively predicted and compared. The quantitative prediction of risks indicated that in vivo inhibition against intestinal UGT1A3, UGT1A4, and UGT1A7 would likely occur after oral administration of icariin products. PMID:23118789

  3. Serratia Secondary Metabolite Prodigiosin Inhibits Pseudomonas aeruginosa Biofilm Development by Producing Reactive Oxygen Species that Damage Biological Molecules

    PubMed Central

    Kimyon, Önder; Das, Theerthankar; Ibugo, Amaye I.; Kutty, Samuel K.; Ho, Kitty K.; Tebben, Jan; Kumar, Naresh; Manefield, Mike

    2016-01-01

    Prodigiosin is a heterocyclic bacterial secondary metabolite belonging to the class of tripyrrole compounds, synthesized by various types of bacteria including Serratia species. Prodigiosin has been the subject of intense research over the last decade for its ability to induce apoptosis in several cancer cell lines. Reports suggest that prodigiosin promotes oxidative damage to double-stranded DNA (dsDNA) in the presence of copper ions and consequently leads to inhibition of cell-cycle progression and cell death. However, prodigiosin has not been previously implicated in biofilm inhibition. In this study, the link between prodigiosin and biofilm inhibition through the production of redox active metabolites is presented. Our study showed that prodigiosin (500 μM) (extracted from Serratia marcescens culture) and a prodigiosin/copper(II) (100 μM each) complex have strong RNA and dsDNA cleaving properties while they have no pronounced effect on protein. Results support a role for oxidative damage to biomolecules by H2O2 and hydroxyl radical generation. Further, it was demonstrated that reactive oxygen species scavengers significantly reduced the DNA and RNA cleaving property of prodigiosin. P. aeruginosa cell surface hydrophobicity and biofilm integrity were significantly altered due to the cleavage of nucleic acids by prodigiosin or the prodigiosin/copper(II) complex. In addition, prodigiosin also facilitated the bactericidal activity. The ability of prodigiosinto cause nucleic acid degradation offers novel opportunities to interfere with extracellular DNA dependent bacterial biofilms. PMID:27446013

  4. Serratia Secondary Metabolite Prodigiosin Inhibits Pseudomonas aeruginosa Biofilm Development by Producing Reactive Oxygen Species that Damage Biological Molecules.

    PubMed

    Kimyon, Önder; Das, Theerthankar; Ibugo, Amaye I; Kutty, Samuel K; Ho, Kitty K; Tebben, Jan; Kumar, Naresh; Manefield, Mike

    2016-01-01

    Prodigiosin is a heterocyclic bacterial secondary metabolite belonging to the class of tripyrrole compounds, synthesized by various types of bacteria including Serratia species. Prodigiosin has been the subject of intense research over the last decade for its ability to induce apoptosis in several cancer cell lines. Reports suggest that prodigiosin promotes oxidative damage to double-stranded DNA (dsDNA) in the presence of copper ions and consequently leads to inhibition of cell-cycle progression and cell death. However, prodigiosin has not been previously implicated in biofilm inhibition. In this study, the link between prodigiosin and biofilm inhibition through the production of redox active metabolites is presented. Our study showed that prodigiosin (500 μM) (extracted from Serratia marcescens culture) and a prodigiosin/copper(II) (100 μM each) complex have strong RNA and dsDNA cleaving properties while they have no pronounced effect on protein. Results support a role for oxidative damage to biomolecules by H2O2 and hydroxyl radical generation. Further, it was demonstrated that reactive oxygen species scavengers significantly reduced the DNA and RNA cleaving property of prodigiosin. P. aeruginosa cell surface hydrophobicity and biofilm integrity were significantly altered due to the cleavage of nucleic acids by prodigiosin or the prodigiosin/copper(II) complex. In addition, prodigiosin also facilitated the bactericidal activity. The ability of prodigiosinto cause nucleic acid degradation offers novel opportunities to interfere with extracellular DNA dependent bacterial biofilms. PMID:27446013

  5. The marine-derived fungal metabolite, terrein, inhibits cell proliferation and induces cell cycle arrest in human ovarian cancer cells.

    PubMed

    Chen, Yi-Fei; Wang, Shu-Ying; Shen, Hong; Yao, Xiao-Fen; Zhang, Feng-Li; Lai, Dongmei

    2014-12-01

    The difficulties faced in the effective treatment of ovarian cancer are multifactorial, but are mainly associated with relapse and drug resistance. Cancer stem-like cells have been reported to be an important contributor to these hindering factors. In this study, we aimed to investigate the anticancer activities of a bioactive fungal metabolite, namely terrein, against the human epithelial ovarian cancer cell line, SKOV3, primary human ovarian cancer cells and ovarian cancer stem-like cells. Terrein was separated and purified from the fermentation metabolites of the marine sponge-derived fungus, Aspergillus terreus strain PF26. Its anticancer activities against ovarian cancer cells were investigated by cell proliferation assay, cell migration assay, cell apoptosis and cell cycle assays. The ovarian cancer stem-like cells were enriched and cultured in a serum-free in vitro suspension system. Terrein inhibited the proliferation of the ovarian cancer cells by inducing G2/M phase cell cycle arrest. The underlying mechanisms involved the suppression of the expression of LIN28, an important marker gene of stemness in ovarian cancer stem cells. Of note, our study also demonstrated the ability of terrein to inhibit the proliferation of ovarian cancer stem-like cells, in which the expression of LIN28 was also downregulated. Our findings reveal that terrein (produced by fermention) may prove to be a promising drug candidate for the treatment of ovarian cancer by inhibiting the proliferation of cancer stem-like cells.

  6. Serratia Secondary Metabolite Prodigiosin Inhibits Pseudomonas aeruginosa Biofilm Development by Producing Reactive Oxygen Species that Damage Biological Molecules.

    PubMed

    Kimyon, Önder; Das, Theerthankar; Ibugo, Amaye I; Kutty, Samuel K; Ho, Kitty K; Tebben, Jan; Kumar, Naresh; Manefield, Mike

    2016-01-01

    Prodigiosin is a heterocyclic bacterial secondary metabolite belonging to the class of tripyrrole compounds, synthesized by various types of bacteria including Serratia species. Prodigiosin has been the subject of intense research over the last decade for its ability to induce apoptosis in several cancer cell lines. Reports suggest that prodigiosin promotes oxidative damage to double-stranded DNA (dsDNA) in the presence of copper ions and consequently leads to inhibition of cell-cycle progression and cell death. However, prodigiosin has not been previously implicated in biofilm inhibition. In this study, the link between prodigiosin and biofilm inhibition through the production of redox active metabolites is presented. Our study showed that prodigiosin (500 μM) (extracted from Serratia marcescens culture) and a prodigiosin/copper(II) (100 μM each) complex have strong RNA and dsDNA cleaving properties while they have no pronounced effect on protein. Results support a role for oxidative damage to biomolecules by H2O2 and hydroxyl radical generation. Further, it was demonstrated that reactive oxygen species scavengers significantly reduced the DNA and RNA cleaving property of prodigiosin. P. aeruginosa cell surface hydrophobicity and biofilm integrity were significantly altered due to the cleavage of nucleic acids by prodigiosin or the prodigiosin/copper(II) complex. In addition, prodigiosin also facilitated the bactericidal activity. The ability of prodigiosinto cause nucleic acid degradation offers novel opportunities to interfere with extracellular DNA dependent bacterial biofilms.

  7. Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice

    PubMed Central

    Belcher, John D.; Mahaseth, Hemachandra; Welch, Thomas E.; Otterbein, Leo E.; Hebbel, Robert P.; Vercellotti, Gregory M.

    2006-01-01

    Transgenic sickle mice expressing βS hemoglobin have activated vascular endothelium that exhibits enhanced expression of NF-κB and adhesion molecules that promote vascular stasis in sickle, but not in normal, mice in response to hypoxia/reoxygenation. Sickle mice hemolyze rbcs in vivo as demonstrated by increased reticulocyte counts, plasma hemoglobin and bilirubin, and reduced plasma haptoglobin. The heme content is elevated in sickle organs, which promotes vascular inflammation and heme oxygenase-1 expression. Treatment of sickle mice with hemin further increases heme oxygenase-1 expression and inhibits hypoxia/reoxygenation–induced stasis, leukocyte-endothelium interactions, and NF-κB, VCAM-1, and ICAM-1 expression. Heme oxygenase inhibition by tin protoporphyrin exacerbates stasis in sickle mice. Furthermore, treatment of sickle mice with the heme oxygenase enzymatic product carbon monoxide or biliverdin inhibits stasis and NF-κB, VCAM-1, and ICAM-1 expression. Local administration of heme oxygenase-1 adenovirus to subcutaneous skin increases heme oxygenase-1 and inhibits hypoxia/reoxygenation–induced stasis in the skin of sickle mice. Heme oxygenase-1 plays a vital role in the inhibition of vaso-occlusion in transgenic sickle mice. PMID:16485041

  8. Flagella-Driven Flows Circumvent Diffusive Bottlenecks that Inhibit Metabolite Exchange

    NASA Astrophysics Data System (ADS)

    Short, Martin; Solari, Cristian; Ganguly, Sujoy; Kessler, John; Goldstein, Raymond; Powers, Thomas

    2006-03-01

    The evolution of single cells to large and multicellular organisms requires matching the organisms' needs to the rate of exchange of metabolites with the environment. This logistic problem can be a severe constraint on development. For organisms with a body plan that approximates a spherical shell, such as colonies of the volvocine green algae, the required current of metabolites grows quadratically with colony radius whereas the rate at which diffusion can exchange metabolites grows only linearly with radius. Hence, there is a bottleneck radius beyond which the diffusive current cannot keep up with metabolic demands. Using Volvox carteri as a model organism, we examine experimentally and theoretically the role that advection of fluid by surface-mounted flagella plays in enhancing nutrient uptake. We show that fluid flow driven by the coordinated beating of flagella produces a convective boundary layer in the concentration of a diffusing solute which in turn renders the metabolite exchange rate quadratic in the colony radius. This enhanced transport circumvents the diffusive bottleneck, allowing increase in size and thus evolutionary transitions to multicellularity in the Volvocales.

  9. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression.

    PubMed

    Seo, Seung-Hee; Jeong, Gil-Saeng

    2015-12-01

    Oxidative skin damage and skin inflammation play key roles in the pathogenesis of skin-related diseases. Fisetin is a naturally occurring flavonoid abundantly found in several vegetables and fruits. Fisetin has been shown to exert various positive biological effects, such as anti-cancer, anti-proliferative, neuroprotective and anti-oxidative effects. In this study, we investigate the skin protective effects and anti-inflammatory properties of fisetin in hydrogen peroxide- and TNF-α-challenged human keratinocyte HaCaT cells. When HaCaT cells were treated with non-cytotoxic concentrations of fisetin (1-20μM), heme oxygenase (HO)-1 mRNA and protein expression increased in a dose-dependent manner. Furthermore, fisetin dose-dependently increased cell viability and reduced ROS production in hydrogen peroxide-treated HaCaT cells. Fisetin also inhibited the production of NO, PGE2 IL-1β, IL-6, expression of iNOS and COX-2, and activation of NF-κB in HaCaT cells treated with TNF-α. Fisetin induced Nrf2 translocation to the nuclei. HO-1 siRNA transient transfection reversed the effects of fisetin on cytoprotection, ROS reduction, NO, PGE2, IL-1β, IL-6, and TNF-α production, and NF-κB DNA-binding activity. Moreover, fisetin increased Akt phosphorylation and a PI3K pathway inhibitor (LY294002) abolished fisetin-induced cytoprotection and NO inhibition. Taken together, these results provide evidence for a beneficial role of fisetin in skin therapy. PMID:26590114

  10. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression.

    PubMed

    Seo, Seung-Hee; Jeong, Gil-Saeng

    2015-12-01

    Oxidative skin damage and skin inflammation play key roles in the pathogenesis of skin-related diseases. Fisetin is a naturally occurring flavonoid abundantly found in several vegetables and fruits. Fisetin has been shown to exert various positive biological effects, such as anti-cancer, anti-proliferative, neuroprotective and anti-oxidative effects. In this study, we investigate the skin protective effects and anti-inflammatory properties of fisetin in hydrogen peroxide- and TNF-α-challenged human keratinocyte HaCaT cells. When HaCaT cells were treated with non-cytotoxic concentrations of fisetin (1-20μM), heme oxygenase (HO)-1 mRNA and protein expression increased in a dose-dependent manner. Furthermore, fisetin dose-dependently increased cell viability and reduced ROS production in hydrogen peroxide-treated HaCaT cells. Fisetin also inhibited the production of NO, PGE2 IL-1β, IL-6, expression of iNOS and COX-2, and activation of NF-κB in HaCaT cells treated with TNF-α. Fisetin induced Nrf2 translocation to the nuclei. HO-1 siRNA transient transfection reversed the effects of fisetin on cytoprotection, ROS reduction, NO, PGE2, IL-1β, IL-6, and TNF-α production, and NF-κB DNA-binding activity. Moreover, fisetin increased Akt phosphorylation and a PI3K pathway inhibitor (LY294002) abolished fisetin-induced cytoprotection and NO inhibition. Taken together, these results provide evidence for a beneficial role of fisetin in skin therapy.

  11. Multiple modes of inhibition of human cytochrome P450 2J2 by dronedarone, amiodarone and their active metabolites.

    PubMed

    Karkhanis, Aneesh; Lam, Hui Yuan; Venkatesan, Gopalakrishnan; Koh, Siew Kwan; Chai, Christina Li Lin; Zhou, Lei; Hong, Yanjun; Kojodjojo, Pipin; Chan, Eric Chun Yong

    2016-05-01

    Dronedarone, a multiple ion channel blocker is prescribed for the treatment of paroxysmal and persistent atrial fibrillation. While dronedarone does not precipitate toxicities like its predecessor amiodarone, its clinical use has been associated with idiosyncratic hepatic and cardiac adverse effects and drug-drug interactions (DDIs). As dronedarone is a potent mechanism-based inactivator of CYP3A4 and CYP3A5, a question arose if it exerts a similar inhibitory effect on CYP2J2, a prominent cardiac CYP450 enzyme. In this study, we demonstrated that CYP2J2 is reversibly inhibited by dronedarone (Ki=0.034 μM), amiodarone (Ki=4.8μM) and their respective pharmacologically active metabolites namely N-desbutyldronedarone (NDBD) (Ki=0.55 μM) and N-desethylamiodarone (NDEA) (Ki=7.4 μM). Moreover, time-, concentration- and NADPH-dependent irreversible inactivation of CYP2J2 was investigated where inactivation kinetic parameters (KI, kinact) and partition ratio (r) of dronedarone (0.05 μM, 0.034 min(-1), 3.3), amiodarone (0.21 μM, 0.015 min(-1), 20.7) and NDBD (0.48 μM, 0.024 min(-1), 21.7) were observed except for NDEA. The absence of the characteristic Soret peak, lack of recovery of CYP2J2 activity upon dialysis, and biotransformation of dronedarone and NDBD to quinone-oxime reactive metabolites further confirmed the irreversible inactivation of CYP2J2 by dronedarone and NDBD is via the covalent adduction of CYP2J2. Our novel findings illuminate the possible mechanisms of DDIs and cardiac adverse effects due to both reversible inhibition and irreversible inactivation of CYP2J2 by dronedarone, amiodarone and their active metabolites. PMID:26972388

  12. Metabolites of Pseudevernia furfuracea (L.) Zopf. and their inhibition potential of proteolytic enzymes.

    PubMed

    Proksa, B; Adamcová, J; Sturdíková, M; Fuska, J

    1994-04-01

    Atranorin (1), physodic acid (2), oxyphysodic acid (3) and virensic (4) acid were identified in P. furfuracea, a lichen species collected in West Tatra. According to HPLC analysis contents of these metabolites in dried material was 0.11-0.19% (1), 1.46-3.78% (2), 1.69 to 3.44% (3), 1.14-1.46% (4). Atranorin was the strongest inhibitor of trypsin as well as of the porcine pancreatic elastase. PMID:8197230

  13. Inhibition of Na+-Taurocholate Co-transporting Polypeptide-mediated Bile Acid Transport by Cholestatic Sulfated Progesterone Metabolites*

    PubMed Central

    Abu-Hayyeh, Shadi; Martinez-Becerra, Pablo; Sheikh Abdul Kadir, Siti H.; Selden, Clare; Romero, Marta R.; Rees, Myrddin; Marschall, Hanns-Ulrich; Marin, Jose J. G.; Williamson, Catherine

    2010-01-01

    Sulfated progesterone metabolite (P4-S) levels are raised in normal pregnancy and elevated further in intrahepatic cholestasis of pregnancy (ICP), a bile acid-liver disorder of pregnancy. ICP can be complicated by preterm labor and intrauterine death. The impact of P4-S on bile acid uptake was studied using two experimental models of hepatic uptake of bile acids, namely cultured primary human hepatocytes (PHH) and Na+-taurocholate co-transporting polypeptide (NTCP)-expressing Xenopus laevis oocytes. Two P4-S compounds, allopregnanolone-sulfate (PM4-S) and epiallopregnanolone-sulfate (PM5-S), reduced [3H]taurocholate (TC) uptake in a dose-dependent manner in PHH, with both Na+-dependent and -independent bile acid uptake systems significantly inhibited. PM5-S-mediated inhibition of TC uptake could be reversed by increasing the TC concentration against a fixed PM5-S dose indicating competitive inhibition. Experiments using NTCP-expressing Xenopus oocytes confirmed that PM4-S/PM5-S are capable of competitively inhibiting NTCP-mediated uptake of [3H]TC. Total serum PM4-S + PM5-S levels were measured in non-pregnant and third trimester pregnant women using liquid chromatography-electrospray tandem mass spectrometry and were increased in pregnant women, at levels capable of inhibiting TC uptake. In conclusion, pregnancy levels of P4-S can inhibit Na+-dependent and -independent influx of taurocholate in PHH and cause competitive inhibition of NTCP-mediated uptake of taurocholate in Xenopus oocytes. PMID:20177056

  14. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    SciTech Connect

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi; Rhim, Hyangshuk; Bae, Yong Soo; Choi, Soo Young; Park, Jinseu

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  15. Mitochondrial toxicity of diclofenac and its metabolites via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria: Possible role in drug induced liver injury (DILI).

    PubMed

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-03-01

    Diclofenac is a widely prescribed NSAID, which by itself and its reactive metabolites (Phase-I and Phase-II) may be involved in serious idiosyncratic hepatotoxicity. Mitochondrial injury is one of the mechanisms of drug induced liver injury (DILI). In the present work, an investigation of the inhibitory effects of diclofenac (Dic) and its phase I [4-hydroxy diclofenac (4'-OH-Dic) and 5-hydroxy diclofenac (5-OH-dic)] and Phase-II [diclofenac acyl glucuronide (DicGluA) and diclofenac glutathione thioester (DicSG)] metabolites, on ATP synthesis in rat liver mitochondria was carried out. A mechanism based inhibition of ATP synthesis is exerted by diclofenac and its metabolites. Phase-I metabolite (4'-OH-Dic) and Phase-II metabolites (DicGluA and DicSG) showed potent inhibition (2-5 fold) of ATP synthesis, where as 5-OH-Dic, one of the Phase-I metabolite, was a less potent inhibitor as compared to Dic. The calculated kinetic constants of mechanism based inhibition of ATP synthesis by Dic showed maximal rate of inactivation (Kinact) of 2.64 ± 0.15 min(-1) and half maximal rate of inactivation (KI) of 7.69 ± 2.48 μM with Kinact/KI ratio of 0.343 min(-1) μM(-1). Co-incubation of mitochondria with Dic and reduced GSH exhibited a protective effect on Dic mediated inhibition of ATP synthesis. Our data from this study strongly indicate that Dic as well as its metabolites could be involved in the hepato-toxic action through inhibition of ATP synthesis.

  16. Inhibition of heme oxygenase-1 partially reverses the arsenite-mediated decrease of CYP1A1, CYP1A2, CYP3A23, and CYP3A2 catalytic activity in isolated rat hepatocytes.

    PubMed

    Anwar-Mohamed, Anwar; Klotz, Lars-Oliver; El-Kadi, Ayman O S

    2012-03-01

    Heme oxygenase (HO-1), the rate-limiting enzyme in the physiological breakdown of heme, is ubiquitous, and its expression can be increased by arsenite [As(III)], and similar other stimuli that induce cellular oxidative stress. Interestingly, it has been shown that the As(III)-induced HO-1 is inversely correlated with a decrease in cytochromes P450 (P450s) activity; however, the direct role for HO-1 in the inhibition of P450 enzymes remains unknown. Our results showed that As(III) at a concentration of 5 μM decreased the constitutive and inducible expression of CYP1A1, CYP1A2, CYP3A23, and CYP3A2 at the mRNA, protein, and catalytic activity levels. Moreover, As(III) decreased the nuclear accumulation of aryl hydrocarbon receptor (AhR) and pregnane X receptor without increasing their degradation. As(III) also increased the binding of cytosolic AhR to heat shock protein 90 and hepatitis B virus X-associated protein 2. In the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin as an inducer for CYP1A and rifampin as an inducer for CYP3A, As(III) decreased the enzymatic activity of the four P450s more than it decreased their mRNA or protein expression levels. It is noteworthy that treatment with the competitive HO-1 inhibitor, tin-mesoporphyrin, or supplementing external heme partially reversed the As(III)-mediated decrease in activities of the four P450s. In conclusion, the current study provides the first evidence that As(III) decreases CYP1A1, CYP1A2, CYP3A23, and CYP3A2 expression in freshly isolated rat primary hepatocytes. Furthermore, inhibiting the As(III)-mediated induction of HO-1 partially restores the enzymatic activity of these P450s that was initially decreased by As(III), confirming the direct role of HO-1 in the inhibition of P450s.

  17. Differences in Butadiene Adduct Formation between Rats and Mice Not Due to Selective Inhibition of CYP2E1 by Butadiene Metabolites

    PubMed Central

    Pianalto, Kaila M.; Hartman, Jessica H.; Boysen, Gunnar; Miller, Grover P.

    2013-01-01

    CYP2E1 metabolizes 1,3-butadiene (BD) into genotoxic and possibly carcinogenic 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB), and 1,2-epoxy-3,4-butanediol (EB-diol). The dose response of DNA and protein adducts derived from BD metabolites increase linearly at low BD exposures and then saturate at higher exposures in rats, but not mice. It was hypothesized that differences in adduct formation between rodents reflect more efficient BD oxidation in mice than rats. Herein, we assessed whether BD-derived metabolites selectively inhibit rat but not mouse CYP2E1 activity using B6C3F1 mouse and Fisher 344 rat liver microsomes. Basal CYP2E1 activities toward 4-nitrophenol were similar between rodents. Through IC50 studies, EB was the strongest inhibitor (IC50 54 μM, mouse; 98 μM, rat), BD-diol considerably weaker (IC50 1200 μM, mouse; 1000 μM, rat), and DEB inhibition nonexistent (IC50 >25 mM). Kinetic studies showed that in both species EB and BD-diol inhibited 4-nitrophenol oxidation through two-site mechanisms in which inhibition constants reflected trends observed in IC50 studies. None of the reactive epoxide metabolites inactivated CYP2E1 irreversibly. Thus, there was no selective inhibition or inactivation of rat CYP2E1 by BD metabolites relative to mouse Cyp2e1, and it can be inferred that CYP2E1 activity toward BD between rodent species would similarly not be impacted by the presence of BD metabolites. Inhibition of CYP2E1 by BD metabolites is then not responsible for the reported species difference in BD metabolism, formation of BD-derived DNA and protein adducts, mutagenicity and tumorigenesis. PMID:24021170

  18. Inhibition of Bacillus cereus Strains by Antimicrobial Metabolites from Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21.

    PubMed

    Soria, M Cecilia; Audisio, M Carina

    2014-12-01

    Bacillus cereus is an endospore-forming, Gram-positive bacterium able to cause foodborne diseases. Lactic acid bacteria (LAB) are known for their ability to synthesize organic acids and bacteriocins, but the potential of these compounds against B. cereus has been scarcely documented in food models. The present study has examined the effect of the metabolites produced by Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21 on the viability of select B. cereus strains. Furthermore, the effect of E. faecium SM21 metabolites against B. cereus strains has also been investigated on a rice food model. L. johnsonii CRL1647 produced 128 mmol/L of lactic acid, 38 mmol/L of acetic acid and 0.3 mmol/L of phenyl-lactic acid. These organic acids reduced the number of vegetative cells and spores of the B. cereus strains tested. However, the antagonistic effect disappeared at pH 6.5. On the other hand, E. faecium SM21 produced only lactic and acetic acid (24.5 and 12.2 mmol/L, respectively) and was able to inhibit both vegetative cells and spores of the B. cereus strains, at a final fermentation pH of 5.0 and at pH 6.5. This would indicate the action of other metabolites, different from organic acids, present in the cell-free supernatant. On cooked rice grains, the E. faecium SM21 bacteriocin(s) were tested against two B. cereus strains. Both of them were significantly affected within the first 4 h of contact; whereas B. cereus BAC1 cells recovered after 24 h, the effect on B. cereus 1 remained up to the end of the assay. The LAB studied may thus be considered to define future strategies for biological control of B. cereus.

  19. Studying inhibition of calcium oxalate stone formation: an in vitro approach for screening hydrogen sulfide and its metabolites

    PubMed Central

    Vaitheeswari, S.; Sriram, R.; Brindha, P.; Kurian, Gino A.

    2015-01-01

    ABSTRACT Purpose: Calcium oxalate urolithiasis is one of the most common urinary tract diseases and is of high prevalence. The present study proposes to evaluate the antilithiatic property of hydrogen sulfide and its metabolites like thiosulfate & sulfate in an in vitro model. Materials and Methods: The antilithiatic activity of sodium hydrogen sulfide (NaSH), sodium thiosulfate (Na2S2O3) and sodium sulfate (Na2SO4) on the kinetics of calcium oxalate crystal formation was investigated both in physiological buffer and in urine from normal and recurrent stone forming volunteers. The stones were characterized by optical and spectroscopic techniques. Results: The stones were characterized to be monoclinic, prismatic and bipyramidal habit which is of calcium monohydrate and dihydrate nature. The FTIR displayed fingerprint corresponding to calcium oxalate in the control while in NaSH treated, S=O vibrations were visible in the spectrum. The order of percentage inhibition was NaSH>Na2S2O3>Na2SO4. Conclusion: Our study indicates that sodium hydrogen sulfide and its metabolite thiosulfate are inhibitors of calcium oxalate stone agglomeration which makes them unstable both in physiological buffer and in urine. This effect is attributed to pH changes and complexing of calcium by S2O3 2-and SO4 2- moiety produced by the test compounds. PMID:26200543

  20. P-glycoprotein inhibition by the agricultural pesticide propiconazole and its hydroxylated metabolites: Implications for pesticide-drug interactions.

    PubMed

    Mazur, Christopher S; Marchitti, Satori A; Zastre, Jason

    2015-01-01

    The human efflux transporter P-glycoprotein (P-gp, MDR1) functions as an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure assessment because of their use as both pesticides and drugs. Propiconazole is an agricultural pesticide undergoing evaluation by the U.S. Environmental Protection Agency's Endocrine Disruptor Screening Program. In this study, the P-gp interaction of propiconazole and its hydroxylated metabolites were evaluated using MDR1-expressing membrane vesicles and NIH-3T3/MDR1 cells. Membrane vesicle assays demonstrated propiconazole (IC50,122.9μM) and its metabolites (IC50s, 350.8μM, 366.4μM, and 456.3μM) inhibited P-gp efflux of a probe substrate, with propiconazole demonstrating the strongest interaction. P-gp mediated transport of propiconazole in MDR1-expressed vesicles was not detected indicating propiconazole interacts with P-gp as an inhibitor rather than a substrate. In NIH-3T3/MDR1 cells, propiconazole (1 and 10μM) led to decreased cellular resistance (chemosensitization) to paclitaxel, a chemotherapeutic drug and known MDR1 substrate. Collectively, these results have pharmacokinetic and risk assessment implications as P-gp interaction may influence pesticide toxicity and the potential for pesticide-drug interactions.

  1. Arachidonic Acid Metabolite 19(S)-HETE Induces Vasorelaxation and Platelet Inhibition by Activating Prostacyclin (IP) Receptor

    PubMed Central

    Chennupati, Ramesh; Nüsing, Rolf M.; Offermanns, Stefan

    2016-01-01

    19(S)-hydroxy-eicosatetraenoic acid (19(S)-HETE) belongs to a family of arachidonic acid metabolites produced by cytochrome P450 enzymes, which play critical roles in the regulation of cardiovascular, renal and pulmonary functions. Although it has been known for a long time that 19(S)-HETE has vascular effects, its mechanism of action has remained unclear. In this study we show that 19(S)-HETE induces cAMP accumulation in the human megakaryoblastic leukemia cell line MEG-01. This effect was concentration-dependent with an EC50 of 520 nM, insensitive to pharmacological inhibition of COX-1/2 and required the expression of the G-protein Gs. Systematic siRNA-mediated knock-down of each G-protein coupled receptor (GPCR) expressed in MEG-01 followed by functional analysis identified the prostacyclin receptor (IP) as the mediator of the effects of 19(S)-HETE, and the heterologously expressed IP receptor was also activated by 19(S)-HETE in a concentration-dependent manner with an EC50 of 567 nM. Pretreatment of isolated murine platelets with 19(S)-HETE blocked thrombin-induced platelets aggregation, an effect not seen in platelets from mice lacking the IP receptor. Furthermore, 19(S)-HETE was able to relax mouse mesenteric artery- and thoracic aorta-derived vessel segments. While pharmacological inhibition of COX-1/2 enzymes had no effect on the vasodilatory activity of 19(S)-HETE these effects were not observed in vessels from mice lacking the IP receptor. These results identify a novel mechanism of action for the CYP450-dependent arachidonic acid metabolite 19(S)-HETE and point to the existence of a broader spectrum of naturally occurring prostanoid receptor agonists. PMID:27662627

  2. Inhibition of hERG potassium channel by the antiarrhythmic agent mexiletine and its metabolite m-hydroxymexiletine.

    PubMed

    Gualdani, Roberta; Tadini-Buoninsegni, Francesco; Roselli, Mariagrazia; Defrenza, Ivana; Contino, Marialessandra; Colabufo, Nicola Antonio; Lentini, Giovanni

    2015-10-01

    Mexiletine is a sodium channel blocker, primarily used in the treatment of ventricular arrhythmias. Moreover, recent studies have demonstrated its therapeutic value to treat myotonic syndromes and to relieve neuropathic pain. The present study aims at investigating the direct blockade of hERG potassium channel by mexiletine and its metabolite m-hydroxymexiletine (MHM). Our data show that mexiletine inhibits hERG in a time- and voltage-dependent manner, with an IC50 of 3.7 ± 0.7 μmol/L. Analysis of the initial onset of current inhibition during a depolarizing test pulse indicates mexiletine binds preferentially to the open state of the hERG channel. Looking for a possible mexiletine alternative, we show that m-hydroxymexiletine (MHM), a minor mexiletine metabolite recently reported to be as active as the parent compound in an arrhythmia animal model, is a weaker hERG channel blocker, compared to mexiletine (IC50 = 22.4 ± 1.2 μmol/L). The hERG aromatic residues located in the S6 helix (Tyr652 and Phe656) are crucial in the binding of mexiletine and the different affinities of mexiletine and MHM with hERG channel are interpreted by modeling their corresponding binding interactions through ab initio calculations. The simulations demonstrate that the introduction of a hydroxyl group on the meta-position of the aromatic portion of mexiletine weakens the interaction of the drug xylyloxy moiety with Tyr652. These results provide further insights into the molecular basis of drug/hERG interactions and, in agreement with previously reported results on clofilium and ibutilide analogs, support the possibility of reducing hERG potency and related toxicity by modifying the aromatic pattern of substitution of clinically relevant compounds. PMID:26516576

  3. Inhibition of hERG potassium channel by the antiarrhythmic agent mexiletine and its metabolite m-hydroxymexiletine

    PubMed Central

    Gualdani, Roberta; Tadini-Buoninsegni, Francesco; Roselli, Mariagrazia; Defrenza, Ivana; Contino, Marialessandra; Colabufo, Nicola Antonio; Lentini, Giovanni

    2015-01-01

    Mexiletine is a sodium channel blocker, primarily used in the treatment of ventricular arrhythmias. Moreover, recent studies have demonstrated its therapeutic value to treat myotonic syndromes and to relieve neuropathic pain. The present study aims at investigating the direct blockade of hERG potassium channel by mexiletine and its metabolite m-hydroxymexiletine (MHM). Our data show that mexiletine inhibits hERG in a time- and voltage-dependent manner, with an IC50 of 3.7 ± 0.7 μmol/L. Analysis of the initial onset of current inhibition during a depolarizing test pulse indicates mexiletine binds preferentially to the open state of the hERG channel. Looking for a possible mexiletine alternative, we show that m-hydroxymexiletine (MHM), a minor mexiletine metabolite recently reported to be as active as the parent compound in an arrhythmia animal model, is a weaker hERG channel blocker, compared to mexiletine (IC50 = 22.4 ± 1.2 μmol/L). The hERG aromatic residues located in the S6 helix (Tyr652 and Phe656) are crucial in the binding of mexiletine and the different affinities of mexiletine and MHM with hERG channel are interpreted by modeling their corresponding binding interactions through ab initio calculations. The simulations demonstrate that the introduction of a hydroxyl group on the meta-position of the aromatic portion of mexiletine weakens the interaction of the drug xylyloxy moiety with Tyr652. These results provide further insights into the molecular basis of drug/hERG interactions and, in agreement with previously reported results on clofilium and ibutilide analogs, support the possibility of reducing hERG potency and related toxicity by modifying the aromatic pattern of substitution of clinically relevant compounds. PMID:26516576

  4. Compound K, a Ginsenoside Metabolite, Inhibits Colon Cancer Growth via Multiple Pathways Including p53-p21 Interactions

    PubMed Central

    Zhang, Zhiyu; Du, Guang-Jian; Wang, Chong-Zhi; Wen, Xiao-Dong; Calway, Tyler; Li, Zejuan; He, Tong-Chuan; Du, Wei; Bissonnette, Marc; Musch, Mark W.; Chang, Eugene B.; Yuan, Chun-Su

    2013-01-01

    Compound K (20-O-beta-d-glucopyranosyl-20(S)-protopanaxadiol, CK), an intestinal bacterial metabolite of ginseng protopanaxadiol saponins, has been shown to inhibit cell growth in a variety of cancers. However, the mechanisms are not completely understood, especially in colorectal cancer (CRC). A xenograft tumor model was used first to examine the anti-CRC effect of CK in vivo. Then, multiple in vitro assays were applied to investigate the anticancer effects of CK including antiproliferation, apoptosis and cell cycle distribution. In addition, a qPCR array and western blot analysis were executed to screen and validate the molecules and pathways involved. We observed that CK significantly inhibited the growth of HCT-116 tumors in an athymic nude mouse xenograft model. CK significantly inhibited the proliferation of human CRC cell lines HCT-116, SW-480, and HT-29 in a dose- and time-dependent manner. We also observed that CK induced cell apoptosis and arrested the cell cycle in the G1 phase in HCT-116 cells. The processes were related to the upregulation of p53/p21, FoxO3a-p27/p15 and Smad3, and downregulation of cdc25A, CDK4/6 and cyclin D1/3. The major regulated targets of CK were cyclin dependent inhibitors, including p21, p27, and p15. These results indicate that CK inhibits transcriptional activation of multiple tumor-promoting pathways in CRC, suggesting that CK could be an active compound in the prevention or treatment of CRC. PMID:23434653

  5. Photoprotector capacity of lichen metabolites assessed through the inhibition of the 8-methoxypsoralen photobinding to protein.

    PubMed

    Fernández, E; Reyes, A; Hidalgo, M E; Quilhot, W

    1998-03-01

    Lichens produce a diversity of phenolic compounds, some of which efficiently absorb ultraviolet radiation, 8-Methoxypsoralen (8-MOP), commonly used in the treatment of psoriasis, binds irreversibly to proteins in the presence of ultraviolet radiation by a mechanism that is not well established. In this paper we demonstrate the photoprotector capacity of three phenolic compounds-pannarin, 1'chloropannarin and atranorin-through the inhibition of 8-MOP-human serum albumin (HSA) photobinding. The method measures the UV-filtering capacity of lichen compounds by means of a double-tube compartment (thus, solubility and interaction with the reaction medium is avoided). Photobinding was determined by measuring the radioactivity of mixtures containing 8-(methyl-3H) MOP and HSA irradiated at 360 and 310 nm in the presence of increasing concentrations of lichen phenolics. Pannarin, l'-chloropannarin and atranorin at a concentration of 10 mM and irradiated at 360 nm, inhibited photobinding to HSA by 40.4%, 31.7% and 20.1% respectively. Pannarin (10 mM) irradiated at 310 nm inhibited the photobinding by 35.2%. The participation of singlet oxygen and hydroxyl radicals was demonstrated in the photoreaction process. PMID:9595708

  6. Photoprotector capacity of lichen metabolites assessed through the inhibition of the 8-methoxypsoralen photobinding to protein.

    PubMed

    Fernández, E; Reyes, A; Hidalgo, M E; Quilhot, W

    1998-03-01

    Lichens produce a diversity of phenolic compounds, some of which efficiently absorb ultraviolet radiation, 8-Methoxypsoralen (8-MOP), commonly used in the treatment of psoriasis, binds irreversibly to proteins in the presence of ultraviolet radiation by a mechanism that is not well established. In this paper we demonstrate the photoprotector capacity of three phenolic compounds-pannarin, 1'chloropannarin and atranorin-through the inhibition of 8-MOP-human serum albumin (HSA) photobinding. The method measures the UV-filtering capacity of lichen compounds by means of a double-tube compartment (thus, solubility and interaction with the reaction medium is avoided). Photobinding was determined by measuring the radioactivity of mixtures containing 8-(methyl-3H) MOP and HSA irradiated at 360 and 310 nm in the presence of increasing concentrations of lichen phenolics. Pannarin, l'-chloropannarin and atranorin at a concentration of 10 mM and irradiated at 360 nm, inhibited photobinding to HSA by 40.4%, 31.7% and 20.1% respectively. Pannarin (10 mM) irradiated at 310 nm inhibited the photobinding by 35.2%. The participation of singlet oxygen and hydroxyl radicals was demonstrated in the photoreaction process.

  7. Inhibition of human DNA topoisomerase II by hydroquinone and p-benzoquinone, reactive metabolites of benzene.

    PubMed Central

    Hutt, A M; Kalf, G F

    1996-01-01

    Chronic exposure of humans to benzene (BZ) causes acute myeloid leukemia (AML). Both BZ and therapy-related secondary AML are characterized by chromosomal translocations that may occur by inappropriate recombinational events. DNA topoisomerase II (topo II) is an essential sulfhydryl (SH)-dependent endonuclease required for replication, recombination, chromosome segregation, and chromosome structure. Topo II cleaves DNA at purine(R)/pyrimidine(Y) repeat sequences that have been shown to be highly recombinogenic in vivo. Certain antineoplastic drugs stabilize topo II-DNA cleavage complexes at RY repeat sequences, which leads to translocations of the type observed in leukemia. Hydroquinone (HQ) is metabolized to p-benzoquinone (BQ) in a peroxidase-mediated reaction in myeloid progenitor cells. BQ interacts wit SH groups of SH-dependent enzymes. Consequently, the aims of this research were to determine whether HQ and BQ are topo II inhibitors. The ability of the compounds to inhibit the activity of topo III was tested using an assay system that depends on the conversion, by homogeneous human topo II, of catenated kinetoplast DNA into open and/or nicked open circular DNA that can be separated from the catenated DNA by electrophoresis in a 1% agarose-ethidium bromide gel. We provide preliminary data that indicate that both HQ and BQ cause a time and concentration (microM)-dependent inhibition of topo II activity. These compounds, which potentially can form adducts with DNA, have no effect on the migration of the supercoiled and open circular forms in the electrophoretic gradient, and BQ-adducted KDNA can be decatenated by topo II. Using a pRYG plasmid DNA with a single RY repeat as a cleavage site, it was determined that BQ does not stimulate the production of linear DNA indicative of an inhibition of topo II religation of strand breaks by stabilization of the covalent topo III-DNA cleavage complex. Rather, BQ most probably inhibits the SH-dependent topo II by binding to

  8. Inhibition of human DNA topoisomerase II by hydroquinone and p-benzoquinone, reactive metabolites of benzene.

    PubMed

    Hutt, A M; Kalf, G F

    1996-12-01

    Chronic exposure of humans to benzene (BZ) causes acute myeloid leukemia (AML). Both BZ and therapy-related secondary AML are characterized by chromosomal translocations that may occur by inappropriate recombinational events. DNA topoisomerase II (topo II) is an essential sulfhydryl (SH)-dependent endonuclease required for replication, recombination, chromosome segregation, and chromosome structure. Topo II cleaves DNA at purine(R)/pyrimidine(Y) repeat sequences that have been shown to be highly recombinogenic in vivo. Certain antineoplastic drugs stabilize topo II-DNA cleavage complexes at RY repeat sequences, which leads to translocations of the type observed in leukemia. Hydroquinone (HQ) is metabolized to p-benzoquinone (BQ) in a peroxidase-mediated reaction in myeloid progenitor cells. BQ interacts wit SH groups of SH-dependent enzymes. Consequently, the aims of this research were to determine whether HQ and BQ are topo II inhibitors. The ability of the compounds to inhibit the activity of topo III was tested using an assay system that depends on the conversion, by homogeneous human topo II, of catenated kinetoplast DNA into open and/or nicked open circular DNA that can be separated from the catenated DNA by electrophoresis in a 1% agarose-ethidium bromide gel. We provide preliminary data that indicate that both HQ and BQ cause a time and concentration (microM)-dependent inhibition of topo II activity. These compounds, which potentially can form adducts with DNA, have no effect on the migration of the supercoiled and open circular forms in the electrophoretic gradient, and BQ-adducted KDNA can be decatenated by topo II. Using a pRYG plasmid DNA with a single RY repeat as a cleavage site, it was determined that BQ does not stimulate the production of linear DNA indicative of an inhibition of topo II religation of strand breaks by stabilization of the covalent topo III-DNA cleavage complex. Rather, BQ most probably inhibits the SH-dependent topo II by binding to

  9. Metabolite profile, antioxidant capacity, and inhibition of digestive enzymes in infusions of peppermint (Mentha piperita) grown under drought stress.

    PubMed

    Figueroa-Pérez, Marely G; Rocha-Guzmán, Nuria Elizabeth; Pérez-Ramírez, Iza F; Mercado-Silva, Edmundo; Reynoso-Camacho, Rosalía

    2014-12-10

    Peppermint (Mentha piperita) infusions represent an important source of antioxidants, which can be enhanced by inducing abiotic stress in plants. The aim of this study was to evaluate the effect of drought stress on peppermint cultivation as well as the metabolite profile, antioxidant capacity, and inhibition of digestive enzymes of resulting infusions. At 45 days after planting, irrigation was suppressed until 85 (control), 65, 35, 24, and 12% soil moisture (SM) was reached. The results showed that 35, 24, and 12% SM decreased fresh (20%) and dry (5%) weight. The 35 and 24% SM treatments significantly increased total phenolic and flavonoid contents as well as antioxidant capacity. Coumaric acid, quercetin, luteolin, and naringenin were detected only in some drought treatments; however, in these infusions, fewer amino acids and unsaturated fatty acids were identified. The 24 and 12% SM treatments slightly improved inhibition of pancreatic lipase and α-amylase activity. Therefore, induction of moderate water stress in peppermint is recommended to enhance its biological properties.

  10. Inhibition of ( sup 3 H)dopamine uptake into rat striatal slices by quaternary N-methylated nicotine metabolites

    SciTech Connect

    Dwoskin, L.P.; Leibee, L.L.; Jewell, A.L.; Fang, Zhaoxia; Crooks, P.A. )

    1992-01-01

    The effects of quaternary N-methylated nicotine derivatives were examined on in vitro uptake of ({sup 3}H)dopamine (({sup 3}H)DA) in rat striatal slices. Striatal slices were incubated with a 10 {mu}M concentration of the following compounds: N-methylnicotinium, N-methylnornicotinium, N-methylcotininium, N,N{prime}-dimethylnicotinium and N{prime}-methylnicotinium salts. The results clearly indicated that significant inhibition of ({sup 3}H)DA uptake occurred with those compounds possessing a N-methylpyridinium group; whereas, compounds that were methylated at the N{prime}-pyrrolidinium position were less effective or exhibited no inhibition of ({sup 3}H)DA uptake. The results suggest that high concentrations of quaternary N-methylated nicotine metabolites which are structurally related to the neurotoxin MPP{sup +}, and which may be formed in the CNS, may protect against Parkinson's Disease and explain the inverse relationship between smoking and Parkinsonism reported in epidemiologic studies.

  11. Metabolite profile, antioxidant capacity, and inhibition of digestive enzymes in infusions of peppermint (Mentha piperita) grown under drought stress.

    PubMed

    Figueroa-Pérez, Marely G; Rocha-Guzmán, Nuria Elizabeth; Pérez-Ramírez, Iza F; Mercado-Silva, Edmundo; Reynoso-Camacho, Rosalía

    2014-12-10

    Peppermint (Mentha piperita) infusions represent an important source of antioxidants, which can be enhanced by inducing abiotic stress in plants. The aim of this study was to evaluate the effect of drought stress on peppermint cultivation as well as the metabolite profile, antioxidant capacity, and inhibition of digestive enzymes of resulting infusions. At 45 days after planting, irrigation was suppressed until 85 (control), 65, 35, 24, and 12% soil moisture (SM) was reached. The results showed that 35, 24, and 12% SM decreased fresh (20%) and dry (5%) weight. The 35 and 24% SM treatments significantly increased total phenolic and flavonoid contents as well as antioxidant capacity. Coumaric acid, quercetin, luteolin, and naringenin were detected only in some drought treatments; however, in these infusions, fewer amino acids and unsaturated fatty acids were identified. The 24 and 12% SM treatments slightly improved inhibition of pancreatic lipase and α-amylase activity. Therefore, induction of moderate water stress in peppermint is recommended to enhance its biological properties. PMID:25439559

  12. Inhibition of human DNA topoisomerase II by hydroquinone and p-benzoquinone, reactive metabolites of benzene

    SciTech Connect

    Hutt, A.M.; Kalf, G.F.

    1996-12-01

    Chronic exposure of humans to benzene (BZ) causes acute myeloid leukemia (AML). Both BZ and therapy-related secondary AML are characterized by chromosomal translocations that may occur by inappropriate recombinational events. DNA topoisomerase 11 (topo 11) is an essential sulfhydryl (SH)-dependent endonuclease required for replication, recombination, chromosome segregation, and chromosome structure. Topo 11 cleaves DNA at purine(R)/pyrimidine(Y) repeat sequences that have been shown to be highly recombinogenic in vivo. Certain antineoplastic drugs stabilize topo 11-DNA cleavage complexes at RY repeat sequences, which leads to translocations of the type observed in leukemia. Hydroquinone (HQ) is metabolized to p-benzoquinone (BQ) in a peroxidase-mediated reaction in myeloid progenitor cells. BO interacts with SH groups of SH-dependent enzymes. Consequently, the aims of this research were to determine whether HQ and BO are topo 11 inhibitors. The ability of the compounds to inhibit the activity of topo, 11 was tested using an assay system that depends on the conversion, by homogeneous human topo 11, of catenated kinetoplast DNA into open and/or nicked open circular DNA that can be separated from the catenated DNA by electrophoresis in a 1% agarose-ethidium bromide gel. We provide preliminary data that indicate that both HQ and BO cause a time and concentration (pM)-dependent inhibition of topo 11 activity. 32 refs., 5 figs.

  13. Tryptophan in Alcoholism Treatment I:  Kynurenine Metabolites Inhibit the Rat Liver Mitochondrial Low Km Aldehyde Dehydrogenase Activity, Elevate Blood Acetaldehyde Concentration and Induce Aversion to Alcohol

    PubMed Central

    Badawy, Abdulla A.-B.; Bano, Samina; Steptoe, Alex

    2011-01-01

    Aims: The aims were to provide proofs of mechanism and principle by establishing the ability of kynurenine metabolites to inhibit the liver mitochondrial low Km aldehyde dehydrogenase (ALDH) activity after administration and in vivo, and to induce aversion to alcohol. Methods: Kynurenic acid (KA), 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA) were administered to normal male Wistar rats and ALDH activity was determined both in vitro in liver homogenates and in vivo (by measuring blood acetaldehyde following ethanol administration). Alcohol consumption was studied in an aversion model in rats and in alcohol-preferring C57 mice. Results: ALDH activity was significantly inhibited by all three metabolites by doses as small as 1 mg/kg body wt. Blood acetaldehyde accumulation after ethanol administration was strongly elevated by KA and 3-HK and to a lesser extent by 3-HAA. All three metabolites induced aversion to alcohol in rats and decreased alcohol preference in mice. Conclusions: The above kynurenine metabolites of tryptophan induce aversion to alcohol by inhibiting ALDH activity. An intellectual property covering the use of 3-HK and 3-HAA and derivatives thereof in the treatment of alcoholism by aversion awaits further development. PMID:21896552

  14. Quantitative analysis of phenolic metabolites from different parts of Angelica keiskei by HPLC-ESI MS/MS and their xanthine oxidase inhibition.

    PubMed

    Kim, Dae Wook; Curtis-Long, Marcus J; Yuk, Heung Joo; Wang, Yan; Song, Yeong Hun; Jeong, Seong Hun; Park, Ki Hun

    2014-06-15

    Angelica keiskei is used as popular functional food stuff. However, quantitative analysis of this plant's metabolites has not yet been disclosed. The principal phenolic compounds (1-16) within A. keiskei were isolated, enabling us to quantify the metabolites within different parts of the plant. The specific quantification of metabolites (1-16) was accomplished by multiple reaction monitoring (MRM) using a quadruple tandem mass spectrometer. The limit of detection and limit of quantitation were calculated as 0.4-44 μg/kg and 1.5-148 μg/kg, respectively. Abundance and composition of these metabolites varied significantly across different parts of plant. For example, the abundance of chalcones (12-16) decreased as follows: root bark (10.51 mg/g)>stems (8.52 mg/g)>leaves (2.63 mg/g)>root cores (1.44 mg/g). The chalcones were found to be responsible for the xanthine oxidase (XO) inhibition shown by this plant. The most potent inhibitor, xanthoangelol inhibited XO with an IC50 of 8.5 μM. Chalcones (12-16) exhibited mixed-type inhibition characteristics.

  15. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition.

    PubMed

    Chang, Pamela V; Hao, Liming; Offermanns, Stefan; Medzhitov, Ruslan

    2014-02-11

    Given the trillions of microbes that inhabit the mammalian intestines, the host immune system must constantly maintain a balance between tolerance to commensals and immunity against pathogens to avoid unnecessary immune responses against otherwise harmless bacteria. Misregulated responses can lead to inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. The mechanisms by which the immune system maintains this critical balance remain largely undefined. Here, we demonstrate that the short-chain fatty acid n-butyrate, which is secreted in high amounts by commensal bacteria, can modulate the function of intestinal macrophages, the most abundant immune cell type in the lamina propria. Treatment of macrophages with n-butyrate led to the down-regulation of lipopolysaccharide-induced proinflammatory mediators, including nitric oxide, IL-6, and IL-12, but did not affect levels of TNF-α or MCP-1. These effects were independent of toll-like receptor signaling and activation of G-protein-coupled receptors, two pathways that could be affected by short-chain fatty acids. In this study, we provide several lines of evidence that suggest that these effects are due to the inhibition of histone deacetylases by n-butyrate. These findings elucidate a pathway in which the host may maintain tolerance to intestinal microbiota by rendering lamina propria macrophages hyporesponsive to commensal bacteria through the down-regulation of proinflammatory effectors.

  16. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition.

    PubMed

    Chang, Pamela V; Hao, Liming; Offermanns, Stefan; Medzhitov, Ruslan

    2014-02-11

    Given the trillions of microbes that inhabit the mammalian intestines, the host immune system must constantly maintain a balance between tolerance to commensals and immunity against pathogens to avoid unnecessary immune responses against otherwise harmless bacteria. Misregulated responses can lead to inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. The mechanisms by which the immune system maintains this critical balance remain largely undefined. Here, we demonstrate that the short-chain fatty acid n-butyrate, which is secreted in high amounts by commensal bacteria, can modulate the function of intestinal macrophages, the most abundant immune cell type in the lamina propria. Treatment of macrophages with n-butyrate led to the down-regulation of lipopolysaccharide-induced proinflammatory mediators, including nitric oxide, IL-6, and IL-12, but did not affect levels of TNF-α or MCP-1. These effects were independent of toll-like receptor signaling and activation of G-protein-coupled receptors, two pathways that could be affected by short-chain fatty acids. In this study, we provide several lines of evidence that suggest that these effects are due to the inhibition of histone deacetylases by n-butyrate. These findings elucidate a pathway in which the host may maintain tolerance to intestinal microbiota by rendering lamina propria macrophages hyporesponsive to commensal bacteria through the down-regulation of proinflammatory effectors. PMID:24390544

  17. Secondary metabolites of Seseli rigidum: Chemical composition plus antioxidant, antimicrobial and cholinesterase inhibition activity.

    PubMed

    Stankov-Jovanović, V P; Ilić, M D; Mitić, V D; Mihajilov-Krstev, T M; Simonović, S R; Nikolić Mandić, S D; Tabet, J C; Cole, R B

    2015-01-01

    Extracts of different polarity obtained from various plant parts (root, leaf, flower and fruit) of Seseli rigidum were studied by different antioxidant assays: DPPH and ABTS radical scavenging activity, by total reducing power method as well as via total content of flavonoids and polyphenols. Essential oils of all plant parts showed weak antioxidant characteristics. The inhibitory concentration range of the tested extracts, against bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, and fungi Candida albicans and Aspergillus niger was 0.01-1.50 mg/mL and of a microbicidal 0.02-3.00 mg/mL. In the interaction with cholinesterase, all essential oils proved effective as inhibitors. The highest percentage of inhibition versus human and horse cholinesterase was shown by root essential oil (38.20% and 48.30%, respectively) among oils, and root hexane extract (40.56% and 50.65% respectively). Essential oils and volatile components of all plant parts were identified by GC, GC-MS and headspace/GC-MS. Statistical analysis of the ensemble of results showed that the root essential oil composition differed significantly from essential oils of other parts of the plant. Taking into account all of the studied activities, the root hexane extract showed the best overall properties. By means of high performance liquid chromatography coupled to high resolution mass spectrometry, the 30 most abundant constituents were identified in extracts of different polarity. The presence of identified constituents was linked to observed specific biological activities, thus designating compounds potentially responsible for each exhibited activity. PMID:25863020

  18. Enhanced active metabolite generation and platelet inhibition with prasugrel compared to clopidogrel regardless of genotype in thienopyridine metabolic pathways.

    PubMed

    Braun, Oscar Ö; Angiolillo, Dominick J; Ferreiro, Jose L; Jakubowski, Joseph A; Winters, Kenneth J; Effron, Mark B; Duvvuru, Suman; Costigan, Timothy M; Sundseth, Scott; Walker, Joseph R; Saucedo, Jorge F; Kleiman, Neal S; Varenhorst, Christoph

    2013-12-01

    Clopidogrel response varies according to the presence of genetic polymorphisms. The CYP2C19*2 allele has been associated with impaired response; conflicting results have been reported for CYP2C19*17, ABCB1, and PON1 genotypes. We assessed the impact of CYP2C19, PON1, and ABCB1 polymorphisms on clopidogrel and prasugrel pharmacodynamic (PD) and pharmacokinetic (PK) parameters. Aspirin-treated patients (N=194) with coronary artery disease from two independent, prospective, randomised, multi-centre studies comparing clopidogrel (75 mg) and prasugrel (10 mg) were genotyped and classified by predicted CYP2C19 metaboliser phenotype (ultra metabolisers [UM] = *17 carriers; extensive metabolisers [EM] = *1/1 homozygotes; reduced metabolisers [RM] = *2 carriers). ABCB1 T/T and C/T polymorphisms and PON1 A/A, A/G and G/G polymorphisms were also genotyped. PD parameters were assessed using VerifyNow® P2Y12 and vasodilator stimulated phosphoprotein (VASP) expressed as platelet reactivity index (PRI) after 14 days of maintenance dosing. Clopidogrel and prasugrel active metabolite (AM) exposure was calculated in a cohort of 96 patients. For clopidogrel, genetic variants in CYP2C19, but not ABCB1 or PON1, affected PK and PD. For prasugrel, none of the measured genetic variants affected PK or PD. Compared with clopidogrel, platelet inhibition with prasugrel was greater even in the CYP2C19 UM phenotype. Prasugrel generated more AM and achieved greater platelet inhibition than clopidogrel irrespective of CYP2C19, ABCB1, and PON1 polymorphisms. The lack of effect from genetic variants on prasugrel AM generation or antiplatelet activity is consistent with previous studies in healthy volunteers and is consistent with improved efficacy in acute coronary syndrome patients managed with percutaneous coronary intervention. PMID:24009042

  19. The induction of monocytopoiesis in HL-60 promyelocytic leukemia cells is inhibited by hydroquinone, a toxic metabolite of benzene

    SciTech Connect

    Oliveira, N.L.

    1992-01-01

    Chronic exposure of humans to benzene has been shown to have a cytotoxic effect on hematopoietic progenitor cells in intermediate stages of differentiation which can lead to aplastic anemia and acute myelogenous leukemia. This thesis examined the effect of hydroquinone, a toxic metabolite of benzene found in the bone marrow, on the human promyelocytic leukemia cell line (HL-60) which can be induced to differentiate to both monocyte and myeloid cells, and thus has been used as a surrogate for a granulocyte/macrophage progenitor cell. Exposure of HL-60 cells to noncytotoxic concentrations of hydroquinone for three hours prior to induction with 12-O-tetradecanoyl phorbol-13-acetate caused a dose-dependent inhibition of the acquisition of characteristics of monocytic differentiation. These included adherence, nonspecific esterase activity and phagocytosis. Hydroquinone had no effect on cell proliferation. Hydroquinone appeared to be affecting maturation beyond the monoblast/promonocyte stages. Hydroquinone also prevented differentiation induced by 1, 25-dihydroxy vitamin D[sub 3], however, the block occurred after the acquisition of adherence. Hydroquinone at concentrations that inhibited monocytic differentiation had no effect on differentiation to granulocytes, suggesting that the block in the differentiation of these bipotential cells is at a step unique to the monocytic pathway. Hydroquinone was unable to prevent differentiation induced by the macrophage-derived cytokine interleukin-1, a differentiation factor for cells of the monocytic lineage. These data demonstrate that treatment of Hl-60 cells with hydroquinone prior to induction of differentiation prevents the acquisition of the monocytic phenotype induced by TPA or 1, 25(OH)[sub 2]D[sub 3] by a mechanism which at present is unknown, but which appears to be specific for the monocytic pathway. These results are of considerable significance for benzene hematotoxicity.

  20. Arsenic and Its Methylated Metabolites Inhibit the Differentiation of Neural Plate Border Specifier Cells.

    PubMed

    McCoy, Christopher R; Stadelman, Bradley S; Brumaghim, Julia L; Liu, Jui-Tung; Bain, Lisa J

    2015-07-20

    Exposure to arsenic in food and drinking water has been correlated with adverse developmental outcomes, such as reductions in birth weight and neurological deficits. Additionally, studies have shown that arsenic suppresses sensory neuron formation and skeletal muscle myogenesis, although the reason why arsenic targets both of these cell types in unclear. Thus, P19 mouse embryonic stem cells were used to investigate the mechanisms by which arsenic could inhibit cellular differentiation. P19 cells were exposed to 0, 0.1, or 0.5 μM sodium arsenite and induced to form embryoid bodies over a period of 5 days. The expression of transcription factors necessary to form neural plate border specifier (NPBS) cells, neural crest cells and their progenitors, and myocytes and their progenitors were examined. Early during differentiation, arsenic significantly reduced the transcript and protein expression of Msx1 and Pax3, both needed for NPBS cell formation. Arsenic also significantly reduced the protein expression of Sox 10, needed for neural crest progenitor cell production, by 31-50%, and downregulated the protein and mRNA levels of NeuroD1, needed for neural crest cell differentiation, in a time- and dose-dependent manner. While the overall protein expression of transcription factors in the skeletal muscle lineage was not changed, arsenic did alter their nuclear localization. MyoD nuclear translocation was significantly reduced on days 2-5 between 15 and 70%. At a 10-fold lower concentration, monomethylarsonous acid (MMA III) appeared to be just as potent as inorganic arsenic at reducing the mRNA levels Pax3 (79% vs84%), Sox10 (49% vs 65%), and Msx1 (56% vs 56%). Dimethylarsinous acid (DMA III) also reduced protein and transcript expression, but the changes were less dramatic than those with MMA or arsenite. All three arsenic species reduced the nuclear localization of MyoD and NeuroD1 in a similar manner. The early changes in the differentiation of neural plate border

  1. Different Culture Metabolites of the Red Sea Fungus Fusarium equiseti Optimize the Inhibition of Hepatitis C Virus NS3/4A Protease (HCV PR)

    PubMed Central

    Hawas, Usama W.; Al-Farawati, Radwan; Abou El-Kassem, Lamia T.; Turki, Adnan J.

    2016-01-01

    The endophytic fungus Fusarium equiseti was isolated from the brown alga Padina pavonica, collected from the Red Sea. The fungus was identified by its morphology and 18S rDNA. Cultivation of this fungal strain in biomalt-peptone medium led to isolation of 12 known metabolites of diketopeprazines and anthraquinones. The organic extract and isolated compounds were screened for their inhibition of hepatitis C virus NS3/4A protease (HCV PR). As a result, the fungal metabolites showed inhibition of HCV protease (IC50 from 19 to 77 μM), and the fungus was subjected to culture on Czapek’s (Cz) media, with a yield of nine metabolites with potent HCV protease inhibition ranging from IC50 10 to 37 μM. The Cz culture extract exhibited high-level inhibition of HCV protease (IC50 27.6 μg/mL) compared to the biomalt culture extract (IC50 56 μg/mL), and the most potent HCV PR isolated compound (Griseoxanthone C, IC50 19.8 μM) from the bio-malt culture extract showed less of an inhibitory effect compared to isolated ω-hydroxyemodin (IC50 10.7 μM) from the optimized Cz culture extract. Both HCV PR active inhibitors ω-hydroxyemodin and griseoxanthone C were considered as the lowest selective safe constituents against Trypsin inhibitory effect with IC50 48.5 and 51.3 μM, respectively. PMID:27775589

  2. Concurrent expression of heme oxygenase-1 and p53 in human retinal pigment epithelial cell line

    SciTech Connect

    Lee, Sang Yull; Jo, Hong Jae; Kim, Kang Mi; Song, Ju Dong; Chung, Hun Taeg; Park, Young Chul

    2008-01-25

    Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. Here, we investigated the effects of HO activity on the expression of p53 in the human retinal pigment epithelium (RPE) cell line ARPE-19. Cobalt protoporphyrin (CoPP) induced the expression of both HO-1 and p53 without significant toxicity to the cells. In addition, the blockage of HO activity with the iron chelator DFO or with HO-1 siRNA inhibited the CoPP-induced expression of p53. Similarly, zinc protoporphyrin (ZnPP), an inhibitor of HO, suppressed p53 expression in ARPE-19 cells, although ZnPP increased the level of HO-1 protein while inhibiting HO activity. Also, CoPP-induced p53 expression was not affected by the formation of reactive oxygen species (ROS). Based on these results, we conclude that HO activity is involved in the regulation of p53 expression in a ROS-independent mechanism, and also suggest that the expression of p53 in ARPE-19 cells is associated with heme metabolites such as biliverdin/bilirubin, carbon monoxide, and iron produced by the activity of HO.

  3. Hepatic microsomal metabolism of the anthelmintic benzimidazole fenbendazole: enhanced inhibition of cytochrome P450 reactions by oxidized metabolites of the drug.

    PubMed

    Murray, M; Hudson, A M; Yassa, V

    1992-01-01

    Potentiation of the anthelmintic action of benzimidazole carbamates, such as fenbendazole [methyl 5(6)-(phenylthio)-1H-benzimidazol-2-ylcarbamate], has been noted during concurrent administration of benzimidazoles that possess no intrinsic anthelmintic activity. This study investigated the possibility that inhibition of P450 enzymes by fenbendazole and its metabolites could play a role in the potentiation phenomenon. Fenbendazole underwent P450-mediated oxidation in microsomes from untreated rat liver to the sulfoxide and (4'-hydroxyphenyl)thio metabolites [2.92 and 2.87 nmol/(mg of protein.h)]. Pretreatment of rats with phenobarbital or dexamethasone enhanced sulfoxidation by 1.9- and 2.9-fold, respectively. 4'-Hydroxylation was increased slightly (by 28%) by phenobarbital and decreased slightly (by 41%) by dexamethasone. Induction also promoted further metabolism of the sulfoxide to fenbendazole sulfone. Immunoinhibition and chemical inhibition studies suggested that P450 3A proteins and the flavin-containing monooxygenase are involved in sulfoxide and sulfone formation whereas 4'-hydroxylation involved the P450s 2C11, 2C6, and 2B1, depending on the type of induction. In untreated rat liver, the sulfoxide and (4'-hydroxyphenyl)thio metabolites of fenbendazole were relatively potent inhibitors of P450-mediated androstenedione 16 alpha-, 16 beta-, and 6 beta-hydroxylation (IC50 values of 42, 36, and 74 microM, respectively); 7 alpha-hydroxylase activity was uninhibited. In contrast, fenbendazole and its sulfone metabolite were not inhibitors of these reactions. Mixed-function oxidase activities in phenobarbital-induced rat hepatic microsomes were refractory to inhibition by most compounds, but P450 1A1 mediated activities in microsomes from beta-naphthoflavone-induced rat liver were quite susceptible to inhibition by fenbendazole sulfoxide. Studies with two analogous sulfoxides yielded similar findings.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Melatonin and its metabolites accumulate in the human epidermis in vivo and inhibit proliferation and tyrosinase activity in epidermal melanocytes in vitro.

    PubMed

    Kim, Tae-Kang; Lin, Zongtao; Tidwell, William J; Li, We; Slominski, Andrzej T

    2015-03-15

    Melatonin and its metabolites including 6-hydroxymelatonin (6(OH)M), N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) and 5-methoxytryptamine (5MT) are endogenously produced in human epidermis. This production depends on race, gender and age. The highest melatonin levels are in African-Americans. In each racial group they are highest in young African-Americans [30-50 years old (yo)], old Caucasians (60-90 yo) and Caucasian females. AFMK levels are the highest in African-Americans, while 6(OH)M and 5MT levels are similar in all groups. Testing of their phenotypic effects in normal human melanocytes show that melatonin and its metabolites (10(-5) M) inhibit tyrosinase activity and cell growth, and inhibit DNA synthesis in a dose dependent manner with 10(-9) M being the lowest effective concentration. In melanoma cells, they inhibited cell growth but had no effect on melanogenesis, except for 5MT which enhanced L-tyrosine induced melanogenesis. In conclusion, melatonin and its metabolites [6(OH)M, AFMK and 5MT] are produced endogenously in human epidermis and can affect melanocyte and melanoma behavior.

  5. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  6. Plasmodium falciparum spermidine synthase inhibition results in unique perturbation-specific effects observed on transcript, protein and metabolite levels

    PubMed Central

    2010-01-01

    also observed. Most notably, uridine phosphorylase, adenosine deaminase, lysine decarboxylase (LDC) and S-adenosylmethionine synthetase were differentially expressed at the transcript and/or protein level. Several genes in associated metabolic pathways (purine metabolism and various methyltransferases) were also affected. The specific nature of the perturbation was additionally reflected by changes in polyamine metabolite levels. Conclusions This study details the malaria parasite's response to PfSpdSyn inhibition on the transcriptomic, proteomic and metabolic levels. The results corroborate and significantly expand previous functional genomics studies relating to polyamine depletion in this parasite. Moreover, they confirm the role of transcriptional regulation in P. falciparum, particularly in this pathway. The findings promote this essential pathway as a target for antimalarial chemotherapeutic intervention strategies. PMID:20385001

  7. Dipyrone metabolite 4-MAA induces hypothermia and inhibits PGE2-dependent and -independent fever while 4-AA only blocks PGE2-dependent fever

    PubMed Central

    Malvar, David do C; Aguiar, Fernando A; Vaz, Artur de L L; Assis, Débora C R; de Melo, Miriam C C; Jabor, Valquíria A P; Kalapothakis, Evanguedes; Ferreira, Sérgio H; Clososki, Giuliano C; de Souza, Glória E P

    2014-01-01

    BACKGROUND AND PURPOSE The antipyretic and hypothermic prodrug dipyrone prevents PGE2-dependent and -independent fever induced by LPS from Escherichia coli and Tityus serrulatus venom (Tsv) respectively. We aimed to identify the dipyrone metabolites responsible for the antipyretic and hypothermic effects. EXPERIMENTAL APPROACH Male Wistar rats were treated i.p. with indomethacin (2 mg·kg−1), dipyrone, 4-methylaminoantipyrine (4-MAA), 4-aminoantipyrine (4-AA) (60–360 mg·kg−1), 4-formylaminoantipyrine, 4-acethylaminoantipyrine (120–360 mg·kg−1) or vehicle 30 min before i.p. injection of LPS (50 μg·kg−1), Tsv (150 μg·kg−1) or saline. Rectal temperatures were measured by tele-thermometry and dipyrone metabolite concentrations determined in the plasma, CSF and hypothalamus by LC-MS/MS. PGE2 concentrations were determined in the CSF and hypothalamus by elisa. KEY RESULTS In contrast to LPS, Tsv-induced fever was not followed by increased PGE2 in the CSF or hypothalamus. The antipyretic time-course of 4-MAA and 4-AA on LPS-induced fever overlapped with the period of the highest concentrations of 4-MAA and 4-AA in the hypothalamus, CSF and plasma. These metabolites reduced LPS-induced fever and the PGE2 increase in the plasma, CSF and hypothalamus. Only 4-MAA inhibited Tsv-induced fever. The higher doses of dipyrone and 4-MAA also induced hypothermia. CONCLUSIONS AND IMPLICATIONS The presence of 4-MAA and 4-AA in the CSF and hypothalamus was associated with PGE2 synthesis inhibition and a decrease in LPS-induced fever. 4-MAA was also shown to be an antipyretic metabolite for PGE2-independent fever induced by Tsv suggesting that it is responsible for the additional antipyretic mechanism of dipyrone. Moreover, 4-MAA is the hypothermic metabolite of dipyrone. PMID:24712707

  8. VX-509 (Decernotinib)-Mediated CYP3A Time-Dependent Inhibition: An Aldehyde Oxidase Metabolite as a Perpetrator of Drug-Drug Interactions.

    PubMed

    Zetterberg, Craig; Maltais, Francois; Laitinen, Leena; Liao, Shengkai; Tsao, Hong; Chakilam, Ananthsrinivas; Hariparsad, Niresh

    2016-08-01

    (R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide (VX-509, decernotinib) is an oral Janus kinase 3 inhibitor that has been studied in patients with rheumatoid arthritis. Patients with rheumatoid arthritis often receive multiple medications, such as statins and steroids, to manage the signs and symptoms of comorbidities, which increases the chances of drug-drug interactions (DDIs). Mechanism-based inhibition is a subset of time-dependent inhibition (TDI) and occurs when a molecule forms a reactive metabolite which irreversibly binds and inactivates drug-metabolizing enzymes, potentially increasing the systemic load to toxic concentrations. Traditionally, perpetrating compounds are screened using human liver microsomes (HLMs); however, this system may be inadequate when the precipitant is activated by a non-cytochrome P450 (P450)-mediated pathway. Even though studies assessing competitive inhibition and TDI using HLM suggested a low risk for CYP3A4-mediated DDI in the clinic, VX-509 increased the area under the curve of midazolam, atorvastatin, and methyl-prednisolone by approximately 12.0-, 2.7-, and 4.3-fold, respectively. Metabolite identification studies using human liver cytosol indicated that VX-509 is converted to an oxidative metabolite, which is the perpetrator of the DDIs observed in the clinic. As opposed to HLM, hepatocytes contain the full complement of drug-metabolizing enzymes and transporters and can be used to assess TDI arising from non-P450-mediated metabolic pathways. In the current study, we highlight the role of aldehyde oxidase in the formation of the hydroxyl-metabolite of VX-509, which is involved in clinically significant TDI-based DDIs and represents an additional example in which a system-dependent prediction of TDI would be evident.

  9. VX-509 (Decernotinib)-Mediated CYP3A Time-Dependent Inhibition: An Aldehyde Oxidase Metabolite as a Perpetrator of Drug-Drug Interactions.

    PubMed

    Zetterberg, Craig; Maltais, Francois; Laitinen, Leena; Liao, Shengkai; Tsao, Hong; Chakilam, Ananthsrinivas; Hariparsad, Niresh

    2016-08-01

    (R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide (VX-509, decernotinib) is an oral Janus kinase 3 inhibitor that has been studied in patients with rheumatoid arthritis. Patients with rheumatoid arthritis often receive multiple medications, such as statins and steroids, to manage the signs and symptoms of comorbidities, which increases the chances of drug-drug interactions (DDIs). Mechanism-based inhibition is a subset of time-dependent inhibition (TDI) and occurs when a molecule forms a reactive metabolite which irreversibly binds and inactivates drug-metabolizing enzymes, potentially increasing the systemic load to toxic concentrations. Traditionally, perpetrating compounds are screened using human liver microsomes (HLMs); however, this system may be inadequate when the precipitant is activated by a non-cytochrome P450 (P450)-mediated pathway. Even though studies assessing competitive inhibition and TDI using HLM suggested a low risk for CYP3A4-mediated DDI in the clinic, VX-509 increased the area under the curve of midazolam, atorvastatin, and methyl-prednisolone by approximately 12.0-, 2.7-, and 4.3-fold, respectively. Metabolite identification studies using human liver cytosol indicated that VX-509 is converted to an oxidative metabolite, which is the perpetrator of the DDIs observed in the clinic. As opposed to HLM, hepatocytes contain the full complement of drug-metabolizing enzymes and transporters and can be used to assess TDI arising from non-P450-mediated metabolic pathways. In the current study, we highlight the role of aldehyde oxidase in the formation of the hydroxyl-metabolite of VX-509, which is involved in clinically significant TDI-based DDIs and represents an additional example in which a system-dependent prediction of TDI would be evident. PMID:27298338

  10. Studies on the mechanism of induction of haem oxygenase by cobalt and other metal ions.

    PubMed Central

    Maines, M D; Kappas, A

    1976-01-01

    Cobalt ions (Co2+) are potent inducers of haem oxygenase in liver and inhibit microsomal drug oxidation probably by depleting microsomal haem and cytochrome P-450. Complexing of Co2+ ions with cysteine or glutathione (GSH) blocked ability of the former to induce haem oxygenase. When hepatic GSH content was depleted by treatment of animals with diethyl maleate, the inducing effect of Co2+ on haem oxygenase was significantly augmented. Other metal ions such as Cr2+, Mn2+, Fe2+, Fe3+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ were also capable of inducing haem oxygenase and depleting microsomal haem and cytochrome P-450. None of these metal ions had a stimulatory effect on hepatic haem oxidation activity in vitro. It is suggested that the inducing action of Co2+ and other metal ions on microsomal haem oxygenase involves either the covalent binding of the metal ions to some cellular component concerned directly with regulating haem oxygenase or non-specific complex-formation by the metal ions, which depletes some regulatory system in liver cells of an essential component involved in controlling synthesis or activity of the enzyme. PMID:819007

  11. Ribosomal oxygenases are structurally conserved from prokaryotes to humans.

    PubMed

    Chowdhury, Rasheduzzaman; Sekirnik, Rok; Brissett, Nigel C; Krojer, Tobias; Ho, Chia-Hua; Ng, Stanley S; Clifton, Ian J; Ge, Wei; Kershaw, Nadia J; Fox, Gavin C; Muniz, Joao R C; Vollmar, Melanie; Phillips, Claire; Pilka, Ewa S; Kavanagh, Kathryn L; von Delft, Frank; Oppermann, Udo; McDonough, Michael A; Doherty, Aidan J; Schofield, Christopher J

    2014-06-19

    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components and in the hydroxylation of transcription factors and splicing factor proteins. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA and ribosomal proteins have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone N(ε)-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases

  12. The broad spectrum 2-oxoglutarate oxygenase inhibitor N-oxalylglycine is present in rhubarb and spinach leaves.

    PubMed

    Al-Qahtani, Khalid; Jabeen, Bushra; Sekirnik, Rok; Riaz, Naheed; Claridge, Timothy D W; Schofield, Christopher J; McCullagh, James S O

    2015-09-01

    2-Oxoglutarate (2OG) and ferrous iron dependent oxygenases are involved in many biological processes in organisms ranging from humans (where some are therapeutic targets) to plants. These enzymes are of significant biomedicinal interest because of their roles in hypoxic signaling and epigenetic regulation. Synthetic N-oxalylglycine (NOG) has been identified as a broad-spectrum 2OG oxygenase inhibitor and is currently widely used in studies on the hypoxic response and chromatin modifications in animals. We report the identification of NOG as a natural product present in Rheum rhabarbarum (rhubarb) and Spinach oleracea (spinach) leaves; NOG was not observed in Escherchia coli or human embryonic kidney cells (HEK 293T). The finding presents the possibility that NOG plays a natural role in regulating gene expression by inhibiting 2OG dependent oxygenases. This has significance because tricarboxylic acid cycle (TCA) intermediate inhibition of 2OG dependent oxygenases has attracted major interest in cancer research.

  13. Mechanistic studies on cyclohexanone oxygenase.

    PubMed

    Ryerson, C C; Ballou, D P; Walsh, C

    1982-05-25

    The bacterial flavoprotein monooxygenase carries out an oxygen insertion reaction on cyclohexanone, with ring expansion to form the seven-membered cyclic product epsilon-caprolactone, a transformation quite distinct from the phenol leads to catechol transformation carried out by the bacterial flavoprotein aromatic hydroxylases. Cyclohexanone oxygenase catalysis involves the four-electron of O2 at the expense of a two-electron oxidation of NADPH, concomitant with a two-electron oxidation of cyclohexanone to epsilon-caprolactone. NADPH oxidase activity is fully coupled with oxygen transfer to substrate. Steady-state kinetic assays demonstrate a ter-ter mechanism for this enzyme. Pre-steady-state kinetic assays demonstrate the participation of a 4a-hydroperoxyflavin intermediate during catalysis. In addition to its ketolactonizing activity, cyclohexanone oxygenase carries out S-oxygenation of thiane to thiane 1-oxide, a reaction which represents a nucleophilic displacement by the sulfur upon the terminal oxygen of the hydroperoxide. This is in contrast to cyclohexanone oxygenations where the flavin hydroperoxide acts as a nucleophile. In addition, a stable apoenzyme form is accessible and can be reconstituted with various FAD analogues with up to 100% recovery of enzyme activity. The accumulated results presented here support a Baeyer-Villiger rearrangement mechanism for the enzymatic oxygenation of cyclohexanone.

  14. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    PubMed

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  15. The active metabolite of prasugrel inhibits ADP-stimulated thrombo-inflammatory markers of platelet activation: Influence of other blood cells, calcium, and aspirin.

    PubMed

    Frelinger, Andrew L; Jakubowski, Joseph A; Li, Youfu; Barnard, Marc R; Fox, Marsha L; Linden, Matthew D; Sugidachi, Atsuhiro; Winters, Kenneth J; Furman, Mark I; Michelson, Alan D

    2007-07-01

    The novel thienopyridine prodrug prasugrel, a platelet P2Y(12) ADP receptor antagonist, requires in vivo metabolism for activity. Although pharmacological data have been collected on the effects of prasugrel on platelet aggregation, there are few data on the direct effects of the prasugrel's active metabolite, R-138727, on other aspects of platelet function. Here we examined the effects of R-138727 on thrombo-inflammatory markers of platelet activation, and the possible modulatory effects of other blood cells, calcium, and aspirin. Blood (PPACK or citrate anticoagulated) from healthy donors pre- and post-aspirin was incubated with R-138727 and the response to ADP assessed in whole blood or platelet-rich plasma (PRP) by aggregometry and flow cytometric analysis of leukocyte-platelet aggregates, platelet surface P-selectin, and GPIIb-IIIa activation. Low-micromolar concentrations of R-138727 resulted in a rapid and consistent inhibition of these ADP-stimulated thrombo-inflammatory markers. These rapid kinetics required physiological calcium levels, but were largely unaffected by aspirin. Lower IC(50) values in whole blood relative to PRP suggested that other blood cells affect ADP-induced platelet activation and hence the net inhibition by R-138727. R-138727 did not inhibit P2Y(12)-mediated ADP-induced shape change, even at concentrations that completely inhibited platelet aggregation, confirming the specificity of R-138727 for P2Y(12). In conclusion, R-138727, the active metabolite of prasugrel, results in rapid, potent, consistent, and selective inhibition of P2Y(12)-mediated up-regulation of thrombo-inflammatory markers of platelet activation. This inhibition is enhanced in the presence other blood cells and calcium, but not aspirin. PMID:17598013

  16. Inhibition potential of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites on the in vitro monoamine oxidase (MAO)-catalyzed deamination of the neurotransmitters serotonin and dopamine.

    PubMed

    Steuer, Andrea E; Boxler, Martina I; Stock, Lorena; Kraemer, Thomas

    2016-01-22

    Neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA) is still controversially discussed. Formation of reactive oxygen species e.g. based on elevated dopamine (DA) concentrations and DA quinone formation is discussed among others. Inhibition potential of MDMA metabolites regarding neurotransmitter degradation by catechol-O-methyltransferase and sulfotransferase was described previously. Their influence on monoamine oxidase (MAO) - the major DA degradation pathway-has not yet been studied in humans. Therefore the inhibition potential of MDMA and its metabolites on the deamination of the neurotransmitters DA and serotonin (5-HT) by MAO-A and B using recombinant human enzymes in vitro should be investigated. In initial studies, MDMA and MDA showed relevant inhibition (>30%) toward MAO A for 5-HT and DA. No relevant effects toward MAO B were observed. Further investigation on MAO-A revealed MDMA as a competitive inhibitor of 5-HT and DA deamination with Ki 24.5±7.1 μM and 18.6±4.3 μM respectively and MDA as a mixed-type inhibitor with Ki 7.8±2.6 μM and 8.4±3.2 μM respectively. Although prediction of in vivo relevance needs to be done with care, relevant inhibitory effects at expected plasma concentrations after recreational MDMA consumption seems unlikely based on the obtained data. PMID:26721607

  17. Melatonin and its metabolites accumulate in the human epidermis in vivo and inhibit proliferation and tyrosinase activity in epidermal melanocytes in vitro

    PubMed Central

    Kim, Tae-Kang; Lin, Zongtao; Tidwell, William J.; Li, We; Slominski, Andrzej T.

    2015-01-01

    Melatonin and its metabolites including 6-hydroxymelatonin (6(OH)M), N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and 5-methoxytryptamine (5MT) are endogenously produced in human epidermis. This production depends on race, gender and age. The highest melatonin levels are in African-Americans. In each racial group they are highest in young African-Americans [30–50 years old (yo)], old Caucasians (60–90 yo) and Caucasian females. AFMK levels are the highest in African-Americans, while 6(OH)M and 5MT levels are similar in all groups. Testing of their phenotypic effects in normal human melanocytes show that melatonin and its metabolites (10−5 M) inhibit tyrosinase activity and cell growth, and inhibit DNA synthesis in a dose dependent manner with 10−9 M being the lowest effective concentration. In melanoma cells, they inhibited cell growth but had no effect on melanogenesis, except for 5MT which enhanced L-tyrosine induced melanogenesis. In conclusion, melatonin and itsmetabolites [6(OH)M, AFMK and 5MT] are produced endogenously in human epidermis and can affect melanocyte and melanoma behavior. PMID:25168391

  18. Inhibition potential of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites on the in vitro monoamine oxidase (MAO)-catalyzed deamination of the neurotransmitters serotonin and dopamine.

    PubMed

    Steuer, Andrea E; Boxler, Martina I; Stock, Lorena; Kraemer, Thomas

    2016-01-22

    Neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA) is still controversially discussed. Formation of reactive oxygen species e.g. based on elevated dopamine (DA) concentrations and DA quinone formation is discussed among others. Inhibition potential of MDMA metabolites regarding neurotransmitter degradation by catechol-O-methyltransferase and sulfotransferase was described previously. Their influence on monoamine oxidase (MAO) - the major DA degradation pathway-has not yet been studied in humans. Therefore the inhibition potential of MDMA and its metabolites on the deamination of the neurotransmitters DA and serotonin (5-HT) by MAO-A and B using recombinant human enzymes in vitro should be investigated. In initial studies, MDMA and MDA showed relevant inhibition (>30%) toward MAO A for 5-HT and DA. No relevant effects toward MAO B were observed. Further investigation on MAO-A revealed MDMA as a competitive inhibitor of 5-HT and DA deamination with Ki 24.5±7.1 μM and 18.6±4.3 μM respectively and MDA as a mixed-type inhibitor with Ki 7.8±2.6 μM and 8.4±3.2 μM respectively. Although prediction of in vivo relevance needs to be done with care, relevant inhibitory effects at expected plasma concentrations after recreational MDMA consumption seems unlikely based on the obtained data.

  19. Crystallization of recombinant cyclo-oxygenase-2

    NASA Astrophysics Data System (ADS)

    Stevens, Anna M.; Pawlitz, Jennifer L.; Kurumbail, Ravi G.; Gierse, James K.; Moreland, Kirby T.; Stegeman, Roderick A.; Loduca, Jina Y.; Stallings, William C.

    1999-01-01

    The integral membrane protein, prostaglandin H 2 synthase, or cyclo-oxygenase (COX), catalyses the first step in the conversion of arachidonic acid to prostaglandins (PGs) and is the target of nonsteroidal anti-inflammatory drugs (NSAIDs). Two isoforms are known. The constitutive enzyme, COX-1, is present in most tissues and is responsible for the physiological production of PGs. The isoform responsible for the elevated production of PGs during inflammation is COX-2 which is induced specifically at inflammatory sites. Three-dimensional structures of inhibitor complexes of COX-2, and of site variants of COX-2 which mimic COX-1, provide insight into the structural basis for selective inhibition of COX-2. Additionally, structures of COX-2 mutants and complexes with the substrate can provide a clearer understanding of the catalytic mechanism of the reaction. A crystallization protocol has been developed for COX-2 which reproducibly yields diffraction quality crystals. Polyethyleneglycol 550 monomethylether (MMP550) and MgCl 2 were systematically varied and used in conjunction with the detergent β- D-octylglucopyranoside ( β-OG). As a result of many crystallization trials, we determined that the initial β-OG concentration should be held constant, allowing the salt concentration to modulate the critical micelle concentration (CMC) of the detergent. Over 25 crystal structures have been solved using crystals generated from this system. Most crystals belong to the space group P2 12 12, with lattice constants of a=180, b=134, c=120 Å in a pseudo body-centered lattice.

  20. Methylselenol, a selenium metabolite, plays a critical role in inhibiting colon cancer cell growth in vitro and in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylselenol is hypothesized to be a critical selenium (Se) metabolite for anticancer activity. In this study, submicromolar methylselenol was generated by incubating methionase with seleno-L methionine, and both colon-cancer-derived HCT-116 cells and noncancerous colon NCM460 cells were exposed to...

  1. Endocannabinoids and their oxygenation by cyclo-oxygenases, lipoxygenases and other oxygenases.

    PubMed

    Urquhart, P; Nicolaou, A; Woodward, D F

    2015-04-01

    The naturally occurring mammalian endocannabinoids possess biological attributes that extend beyond interaction with cannabinoid receptors. These extended biological properties are the result of oxidative metabolism of the principal mammalian endocannabinoids arachidonoyl ethanolamide (anandamide; A-EA) and 2-arachidonoylglycerol (2-AG). Both endocannabinoids are oxidized by cyclo-oxygenase-2 (COX-2), but not by COX-1, to a series of prostaglandin derivatives (PGs) with quite different biological properties from those of the parent substrates. PG ethanolamides (prostamides, PG-EAs) and PG glyceryl esters (PG-Gs) are not only pharmacologically distinct from their parent endocannabinoids, they are distinct from the corresponding acidic PGs, and are differentiated from each other. Ethanolamides and glyceryl esters of the major prostanoids PGD2, PGE2, PGF2α, and PGI2 are formed by the various PG synthases, and thromboxane ethanolamides and glyceryl esters are not similarly produced. COX-2 is also of interest by virtue of its corollary central role in modulating endocannabinoid tone, providing a new therapeutic approach for treating pain and anxiety. Other major oxidative conversion pathways are provided for both A-EA and 2-AG by several lipoxygenases (LOXs), resulting in the formation of numerous hydroxyl metabolites. These do not necessarily represent inactivation pathways for endocannabinoids but may mimic or modulate the endocannabinoids or even display alternative pharmacology. Similarly, A-EA and 2-AG may be oxidized by P450 enzymes. Again a very diverse number of metabolites are formed, with either cannabinoid-like biological properties or an introduction of disparate pharmacology. The biological activity of epoxy and hydroxyl derivatives of the endocannabinoids remains to be fully elucidated. This review attempts to consolidate and compare the findings obtained to date in an increasingly important research area. This article is part of a Special Issue entitled

  2. In vivo relevant mixed urolithins and ellagic acid inhibit phenotypic and molecular colon cancer stem cell features: A new potentiality for ellagitannin metabolites against cancer.

    PubMed

    Núñez-Sánchez, María Ángeles; Karmokar, Ankur; González-Sarrías, Antonio; García-Villalba, Rocío; Tomás-Barberán, Francisco A; García-Conesa, María Teresa; Brown, Karen; Espín, Juan Carlos

    2016-06-01

    Colon cancer stem cells (CSCs) offer a novel paradigm for colorectal cancer (CRC) treatment and dietary polyphenols may contribute to battle these cells. Specifically, polyphenol-derived colon metabolites have the potential to interact with and affect colon CSCs. We herein report the effects against colon CSCs of two mixtures of ellagitannin (ET) metabolites, ellagic acid (EA) and the gut microbiota-derived urolithins (Uro) at concentrations detected in the human colon tissues following the intake of ET-containing products (pomegranate, walnuts). These mixtures reduce phenotypic and molecular features in two models of colon CSCs: Caco-2 cells and primary tumour cells from a patient with CRC. The mixture containing mostly Uro-A (85% Uro-A, 10% Uro-C, 5% EA) was most effective at inhibiting the number and size of colonospheres and aldehyde dehydrogenase activity (ALDH, a marker of chemoresistance) whereas the mixture containing less Uro-A but IsoUro-A and Uro-B (30% Uro-A, 50% IsoUro-A, 10% Uro-B, 5% Uro-C, 5% EA) had some effects on the number and size of colonospheres but not on ALDH. These data support a role for polyphenols metabolites in the control of colon cancer chemoresistance and relapse and encourage the research on the effects of polyphenols against CSCs.

  3. In vivo relevant mixed urolithins and ellagic acid inhibit phenotypic and molecular colon cancer stem cell features: A new potentiality for ellagitannin metabolites against cancer.

    PubMed

    Núñez-Sánchez, María Ángeles; Karmokar, Ankur; González-Sarrías, Antonio; García-Villalba, Rocío; Tomás-Barberán, Francisco A; García-Conesa, María Teresa; Brown, Karen; Espín, Juan Carlos

    2016-06-01

    Colon cancer stem cells (CSCs) offer a novel paradigm for colorectal cancer (CRC) treatment and dietary polyphenols may contribute to battle these cells. Specifically, polyphenol-derived colon metabolites have the potential to interact with and affect colon CSCs. We herein report the effects against colon CSCs of two mixtures of ellagitannin (ET) metabolites, ellagic acid (EA) and the gut microbiota-derived urolithins (Uro) at concentrations detected in the human colon tissues following the intake of ET-containing products (pomegranate, walnuts). These mixtures reduce phenotypic and molecular features in two models of colon CSCs: Caco-2 cells and primary tumour cells from a patient with CRC. The mixture containing mostly Uro-A (85% Uro-A, 10% Uro-C, 5% EA) was most effective at inhibiting the number and size of colonospheres and aldehyde dehydrogenase activity (ALDH, a marker of chemoresistance) whereas the mixture containing less Uro-A but IsoUro-A and Uro-B (30% Uro-A, 50% IsoUro-A, 10% Uro-B, 5% Uro-C, 5% EA) had some effects on the number and size of colonospheres but not on ALDH. These data support a role for polyphenols metabolites in the control of colon cancer chemoresistance and relapse and encourage the research on the effects of polyphenols against CSCs. PMID:26995228

  4. Pleiotropic mechanisms facilitated by resveratrol and its metabolites

    SciTech Connect

    Calamini, Barbara; Ratia, Kiira; Malkowski, Michael G.; Cuendet, Muriel; Pezzuto, John M.; Santarsiero, Bernard D.; Mesecar, Andrew D.

    2010-07-01

    Resveratrol has demonstrated cancer chemopreventive activity in animal models and some clinical trials are underway. In addition, resveratrol was shown to promote cell survival, increase lifespan and mimic caloric restriction, thereby improving health and survival of mice on high-calorie diet. All of these effects are potentially mediated by the pleiotropic interactions of resveratrol with different enzyme targets including COX-1 (cyclo-oxygenase-1) and COX-2, NAD{sup +}-dependent histone deacetylase SIRT1 (sirtuin 1) and QR2 (quinone reductase 2). Nonetheless, the health benefits elicited by resveratrol as a direct result of these interactions with molecular targets have been questioned, since it is rapidly and extensively metabolized to sulfate and glucuronide conjugates, resulting in low plasma concentrations. To help resolve these issues, we tested the ability of resveratrol and its metabolites to modulate the function of some known targets in vitro. In the present study, we have shown that COX-1, COX-2 and QR2 are potently inhibited by resveratrol, and that COX-1 and COX-2 are also inhibited by the resveratrol 4{prime}-O-sulfate metabolite. We determined the X-ray structure of resveratrol bound to COX-1 and demonstrate that it occupies the COX active site similar to other NSAIDs (non-steroidal anti-inflammatory drugs). Finally, we have observed that resveratrol 3- and 4?-O-sulfate metabolites activate SIRT1 equipotently to resveratrol, but that activation is probably a substrate-dependent phenomenon with little in vivo relevance. Overall, the results of this study suggest that in vivo an interplay between resveratrol and its metabolites with different molecular targets may be responsible for the overall beneficial health effects previously attributed only to resveratrol itself.

  5. Toxicological significance of dihydrodiol metabolites

    SciTech Connect

    Hsia, M.T.

    1982-01-01

    Dihydrodiols are often found as the major organic-extractable metabolites of various olefinic or aromatic xenobiotics in many biological samples. Studies on the chemistry of dihydrodiol metabolites have provided insight into the pharmacokinetic behavior and the mode of action of the parent compound. The toxicology of dihydrodiol is more complex than what can be deduced solely on the basis of diminished bioavailability of the epoxide precursor, and the increased hydrophilicity associated with the dihydrodiol moiety. Dihydrodiols can be intrinsically toxic and may even represent metabolically activated species. Some of the dihydrodiol metabolites may still retain sufficient lipophilic character to serve again as substrates for microsomal oxygenases. Because of the tremendous chemical and biological diversity that existed among the various dihydrodiols, more mechanistic studies are needed to examine the toxicological properties of these compounds. It may be premature to conclude dihydrodiol formation as purely a detoxification route for xenobioties.

  6. 2-Methoxyestradiol, an endogenous 17β-estradiol metabolite, inhibits microglial proliferation and activation via an estrogen receptor-independent mechanism.

    PubMed

    Schaufelberger, Sara A; Rosselli, Marinella; Barchiesi, Federica; Gillespie, Delbert G; Jackson, Edwin K; Dubey, Raghvendra K

    2016-03-01

    17β-Estradiol (estradiol) inhibits microglia proliferation. 2-Methoxyestradiol (2-ME) is an endogenous metabolite of estradiol with little affinity for estrogen receptors (ERs). We hypothesize that 2-ME inhibits microglial proliferation and activation and contributes to estradiol's inhibitory effects on microglia. We compared the effects of estradiol, 2-hydroxyestradiol [2-OE; estradiol metabolite produced by cytochrome P450 (CYP450)], and 2-ME [formed by catechol-O-methyltransferase (COMT) acting upon 2-OE] on microglial (BV2 cells) DNA synthesis, cell proliferation, activation, and phagocytosis. 2-ME and 2-OE were approximately three- and 10-fold, respectively, more potent than estradiol in inhibiting microglia DNA synthesis. The antimitogenic effects of estradiol were reduced by pharmacological inhibitors of CYP450 and COMT. Inhibition of COMT blocked the conversion of 2-OE to 2-ME and the antimitogenic effects of 2-OE but not 2-ME. Microglia expressed ERβ and GPR30 but not ERα. 2,3-Bis(4-hydroxyphenyl)-propionitrile (ERβ agonist), but not 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (ERα agonist) or G1 (GPR30 agonist), inhibited microglial proliferation. The antiproliferative effects of estradiol, but not 2-OE or 2-ME, were partially reversed by ICI-182,780 (ERα/β antagonist) but not by 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole (ERα antagonist) or G15 (GPR30 antagonist). Lipopolysaccharide increased microglia iNOS and COX-2 expression and phagocytosing activity of microglia; these effects were inhibited by 2-ME. We conclude that in microglia, 2-ME inhibits proliferation, proinflammatory responses, and phagocytosis. 2-ME partially mediates the effects of estradiol via ER-independent mechanisms involving sequential metabolism of estradiol to 2-OE and 2-ME. 2-ME could be of potential therapeutic use in postischemic stroke injuries. Interindividual differences in estradiol metabolism might affect the

  7. Anti-inflammatory activities of cardamonin from Alpinia katsumadai through heme oxygenase-1 induction and inhibition of NF-κB and MAPK signaling pathway in the carrageenan-induced paw edema.

    PubMed

    Li, Yuan-Yuan; Huang, Shyh-Shyun; Lee, Min-Min; Deng, Jeng-Shyan; Huang, Guan-Jhong

    2015-04-01

    Cardamonin is a chalcone isolated from Alpinia katsumadai. This study is aimed to evaluate treatment of cardamonin decreased the paw edema at the 5th hour after λ-carrageenan (Carr) administration and increased the activities of catalase (CAT) and superoxide dismutase (SOD) in the anti-inflammatory test. We also demonstrated that cardamonin significantly attenuated the malondialdehyde (MDA) level in the edema paw at the 5th hour after Carr injection. Cardamonin decreased the nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 levels on the serum level at the 5th hour after Carr injection. Western blotting revealed that cardamonin decreased Carr-induced inducible nitric oxide synthase (iNOS), cycloxyclase (COX-2), nuclear factor-κB (NF-κB) and MAPK [extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), p38] expressions and increased heme oxygenase-1 (HO-1) expressions at the 5th hour in the edema paw. The anti-inflammatory mechanisms of cardamonin might be related to the decrease in the level of MDA, iNOS, COX-2, NF-κB, and MAPK and induction of the HO-1 expression in the edema paw via increasing the activities of CAT and SOD in the edema paw through the suppression of NO, TNF-α, IL-1β, and IL-6.

  8. Methoxychlor and its metabolite HPTE inhibit cAMP production and expression of estrogen receptors α and β in the rat granulosa cell in vitro.

    PubMed

    Harvey, Craig N; Chen, Joseph C; Bagnell, Carol A; Uzumcu, Mehmet

    2015-01-01

    The major metabolite of the estrogenic pesticide methoxychlor (MXC) HPTE is a stronger ESR1 agonist than MXC and acts also as an ESR2 antagonist. In granulosa cells (GCs), FSH stimulates estradiol via the second messenger cAMP. HPTE inhibits estradiol biosynthesis, and this effect is greater in FSH-treated GCs than in cAMP-treated GCs. Therefore; we examined the effect of MXC/HPTE on FSH-stimulated cAMP production in cultured GCs. To test involvement of ESR-signaling, we used the ESR1 and ESR2 antagonist ICI 182,780, ESR2 selective antagonist PHTPP, and ESR2 selective agonist DPN. ESR1 and ESR2 mRNA and protein levels were quantified. Both HPTE and MXC inhibited the FSH-induced cAMP production. ICI 182,780 and PHTPP mimicked the inhibitory action of HPTE. MXC/HPTE reduced FSH-stimulated Esr2 mRNA and protein to basal levels. MXC/HPTE also inhibited FSH-stimulated Esr1. The greater inhibition on FSH-stimulated GCs is likely due to reduced cAMP level that involves ESR-signaling, through ESR2.

  9. Methoxychlor and Its Metabolite HPTE Inhibit cAMP Production and Expression of Estrogen Receptors α and β in the Rat Granulosa Cell In Vitro

    PubMed Central

    Harvey, Craig N.; Chen, Joseph C.; Bagnell, Carol A.; Uzumcu, Mehmet

    2015-01-01

    The major metabolite of the estrogenic pesticide methoxychlor (MXC) HPTE is a stronger ESR1 agonist than MXC and acts also as an ESR2 antagonist. In granulosa cells (GCs), FSH stimulates estradiol via the second messenger cAMP. HPTE inhibits estradiol biosynthesis, and this effect is greater in FSH-treated GCs than in cAMP-treated GCs. Therefore; we examined the effect of MXC/HPTE on FSH-stimulated cAMP production in cultured GCs. To test involvement of ESR-signaling, we used the ESR1 and ESR2 antagonist ICI 182,780, ESR2 selective antagonist PHTPP, and ESR2 selective agonist DPN. ESR1 and ESR2 mRNA and protein levels were quantified. Both HPTE and MXC inhibited the FSH-induced cAMP production. ICI 182,780 and PHTPP mimicked the inhibitory action of HPTE. MXC/HPTE reduced FSH-stimulated Esr2 mRNA and protein to basal levels. MXC/HPTE also inhibited FSH-stimulated Esr1. The greater inhibition on FSH-stimulated GCs is likely due to reduced cAMP level that involves ESR-signaling, through ESR2. PMID:25549949

  10. Solution 1H NMR investigation of the active site molecular and electronic structures of substrate-bound, cyanide-inhibited HmuO, a bacterial heme oxygenase from Corynebacterium diphtheriae.

    PubMed

    Li, Yiming; Syvitski, Ray T; Chu, Grace C; Ikeda-Saito, Masao; Mar, Gerd N La

    2003-02-28

    The molecular structure and dynamic properties of the active site environment of HmuO, a heme oxygenase (HO) from the pathogenic bacterium Corynebacterium diphtheriae, have been investigated by (1)H NMR spectroscopy using the human HO (hHO) complex as a homology model. It is demonstrated that not only the spatial contacts among residues and between residues and heme, but the magnetic axes that can be related to the direction and magnitude of the steric tilt of the FeCN unit are strongly conserved in the two HO complexes. The results indicate that very similar contributions of steric blockage of several meso positions and steric tilt of the attacking ligand are operative. A distal H-bond network that involves numerous very strong H-bonds and immobilized water molecules is identified in HmuO that is analogous to that previously identified in hHO (Li, Y., Syvitski, R. T., Auclair, K., Wilks, A., Ortiz de Montellano, P. R., and La Mar, G. N. (2002) J. Biol. Chem. 277, 33018-33031). The NMR results are completely consistent with the very recent crystal structure of the HmuO.substrate complex. The H-bond network/ordered water molecules are proposed to orient the distal water molecule near the catalytically key Asp(136) (Asp(140) in hHO) that stabilizes the hydroperoxy intermediate. The dynamic stability of this H-bond network in HmuO is significantly greater than in hHO and may account for the slower catalytic rate in bacterial HO compared with mammalian HO.

  11. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis.

    PubMed

    Maciąg-Dorszyńska, Monika; Węgrzyn, Grzegorz; Guzow-Krzemińska, Beata

    2014-04-01

    Usnic acid, a compound produced by various lichen species, has been demonstrated previously to inhibit growth of different bacteria and fungi; however, mechanism of its antimicrobial activity remained unknown. In this report, we demonstrate that usnic acid causes rapid and strong inhibition of RNA and DNA synthesis in Gram-positive bacteria, represented by Bacillus subtilis and Staphylococcus aureus, while it does not inhibit production of macromolecules (DNA, RNA, and proteins) in Escherichia coli, which is resistant to even high doses of this compound. However, we also observed slight inhibition of RNA synthesis in a Gram-negative bacterium, Vibrio harveyi. Inhibition of protein synthesis in B. subtilis and S. aureus was delayed, which suggest indirect action (possibly through impairment of transcription) of usnic acid on translation. Interestingly, DNA synthesis was halted rapidly in B. subtilis and S. aureus, suggesting interference of usnic acid with elongation of DNA replication. We propose that inhibition of RNA synthesis may be a general mechanism of antibacterial action of usnic acid, with additional direct mechanisms, such as impairment of DNA replication in B. subtilis and S. aureus.

  12. Heme Oxygenases in Cardiovascular Health and Disease.

    PubMed

    Ayer, Anita; Zarjou, Abolfazl; Agarwal, Anupam; Stocker, Roland

    2016-10-01

    Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies. PMID:27604527

  13. An active metabolite of oltipraz (M2) increases mitochondrial fuel oxidation and inhibits lipogenesis in the liver by dually activating AMPK

    PubMed Central

    Kim, Tae Hyun; Eom, Jeong Sik; Lee, Chan Gyu; Yang, Yoon Mee; Lee, Yong Sup; Kim, Sang Geon

    2013-01-01

    Background and Purpose Oltipraz, a cancer chemopreventive agent, has an anti-steatotic effect via liver X receptor-α (LXRα) inhibition. Here we have assessed the biological activity of a major metabolite of oltipraz (M2) against liver steatosis and steatohepatitis and the underlying mechanism(s). Experimental Approach Blood biochemistry and histopathology were assessed in high-fat diet (HFD)-fed mice treated with M2. An in vitroHepG2 cell model was used to study the mechanism of action. Immunoblotting, real-time PCR and luciferase reporter assays were performed to measure target protein or gene expression levels. Key Results M2 treatment inhibited HFD-induced steatohepatitis and diminished oxidative stress in liver. It increased expression of genes encoding proteins involved in mitochondrial fuel oxidation. Mitochondrial DNA content and oxygen consumption rate were enhanced. Moreover, M2 treatment repressed activity of LXRα and induction of its target genes, indicating anti-lipogenic effects. M2 activated AMP-activated protein kinase (AMPK). Inhibition of AMPK by over-expression of dominant negative AMPK (DN-AMPK) or by Compound C prevented M2 from inducing genes for fatty acid oxidation and repressed sterol regulatory element binding protein-1c (SREBP-1c) expression. M2 activated liver kinase B1 (LKB1) and increased the AMP/ATP ratio. LKB1 knockdown failed to reverse target protein modulations or AMPK activation by M2, supporting the proposal that both LKB1 and increased AMP/ATP ratio contribute to its anti-steatotic effect. Conclusion and Implications M2 inhibited liver steatosis and steatohepatitis by enhancing mitochondrial fuel oxidation and inhibiting lipogenesis. These effects reflected activation of AMPK elicited by increases in LKB1 activity and AMP/ATP ratio. PMID:23145499

  14. Growth inhibitory effect of KYKZL-1 on Hep G{sub 2} cells via inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest

    SciTech Connect

    Cheng, Jing; Du, Yi-Fang; Xiao, Zhi-Yi; Pan, Li-Li; Li, Wei; Huan, Lin; Gong, Zhu-Nan; Wei, Shao-Hua; Huang, Shi-Qian; Xun, Wei; Zhang, Yi; Chang, Lei-Lei; Xie, Meng-Yu; Ao, Gui-Zhen; Cai, Jie; Qiu, Ting; Wu, Hao; Sun, Ting; Xu, Guang-Lin

    2014-01-01

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the inhibitory activity test on Hep G{sub 2} growth. We found that KYKZL-1 inhibited the growth of Hep G{sub 2} cells via inducing apoptosis. Further studies showed that KYKZL-1 activated caspase-3 through cytochrome c release from mitochondria and down regulation of Bcl-2/Bax ratio and reduced the high level of COX-2 and 5-LOX. As shown in its anti-inflammatory effect, KYKZL-1 also exhibited inhibitory effect on the PGE{sub 2} and LTB{sub 4} production in Hep G{sub 2} cells. Accordingly, exogenous addition of PGE{sub 2} or LTB{sub 4} reversed the decreases in cell viability. In addition, KYKZL-1 caused cell cycle arrest at the S–G{sub 2} checkpoint via the activation of p21{sup CIP1} protein and down-regulation of cyclin A expression. These data indicate that the growth inhibitory effect of KYKZL-1 is associated with inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Combined with our previous findings, KYKZL-1 exhibiting COX/5-LOX inhibition may be a promising potential agent not only for inflammation control but also for cancer prevention/therapy with an enhanced gastric safety profile. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 resulted in apoptosis of Hep G{sub 2} cells. • KYKZL-1 activated caspase-3 through cytochrome c and bcl-2/bax ratio. • KYKZL-1 caused cell cycle arrest via modulation of p21{sup CIP1} and cyclin A level.

  15. Haem and nitric oxide: synergism in the modulation of the endothelial haem oxygenase-1 pathway.

    PubMed Central

    Foresti, Roberta; Hoque, Martha; Bains, Sandip; Green, Colin J; Motterlini, Roberto

    2003-01-01

    NO potently up-regulates vascular haem oxygenase-1 (HO-1), an inducible defensive protein that degrades haem to CO, iron and the antioxidant bilirubin. Since several pathological states are characterized by increased NO production and liberation of haem from haem-containing proteins, we examined how NO influences HO-1 induction mediated by haemin. Aortic endothelial cells treated with S-nitroso-N-acetylpenicillamine (SNAP), sodium nitroprusside (SNP) or diethylenetriamine-NONOate (DETA/NO) and haemin exhibited higher levels of haem oxygenase activity compared with cells exposed to NO donors or haemin alone. This was accompanied by a marked increase in bilirubin production and, notably, by a strong magnification of cellular haem uptake. A role for haem metabolites in modulating HO-1 expression by NO was assessed by exposing cells to SNAP, SNP or DETA/NO in medium derived from cells treated with haemin, which contained increased bilirubin levels. This treatment considerably potentiated HO-1 expression and haem oxygenase activity mediated by NO and the use of a haem oxygenase inhibitor abolished this effect. Both iron liberated during haem breakdown and the formation of nitroxyl anion from NO appeared to partially contribute to the amplifying phenomenon; in addition, medium from haemin-treated cells significantly augmented the release of NO by NO donors. Thus we have identified novel mechanisms related to the induction of HO-1 by NO indicating that the signalling actions of NO vary significantly in the presence of haem and haem metabolites, ultimately increasing the defensive abilities of the endothelium to counteract oxidative and nitrosative stress. PMID:12622689

  16. Space radiation-induced inhibition of neurogenesis in the hippocampal dentate gyrus and memory impairment in mice: ameliorative potential of the melatonin metabolite, AFMK.

    PubMed

    Manda, Kailash; Ueno, Megumi; Anzai, Kazunori

    2008-11-01

    Evaluation of potential health effects from high energy charged particle radiation exposure during long duration space travel is important for the future of manned missions. Cognitive health of an organism is considered to be maintained by the capacity of hippocampal precursors to proliferate and differentiate. Environmental stressors including irradiation have been shown to inhibit neurogenesis and are associated with the onset of cognitive impairments. The present study reports on the protective effects of N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK), a melatonin metabolite, against high energy charged particle radiation-induced oxidative damage to the brain. We observed that radiation exposure (2.0 Gy of 500 MeV/nucleon (56)Fe beams, a ground-based model of space radiation) impaired the spatial memory of mice at later intervals without affecting the motor activities. AFMK pretreatment significantly ameliorated these neurobehavioral ailments. Radiation-induced changes in the population of immature and proliferating neurons in the dentate gyrus were localized using anti-doublecortin (Dcx) and anti-Ki-67 expression. AFMK pretreatment significantly inhibited the loss of Dcx and Ki-67 positive cells. Moreover, AFMK pretreatment ameliorated the radiation-induced augmentation of protein carbonyls and 4-hydroxyalkenal + malondialdehyde (MDA + HAE) in the brain and maintained the total antioxidant capacity of plasma and nonprotein sulfhydryl contents in brain.

  17. Space radiation-induced inhibition of neurogenesis in the hippocampal dentate gyrus and memory impairment in mice: ameliorative potential of the melatonin metabolite, AFMK.

    PubMed

    Manda, Kailash; Ueno, Megumi; Anzai, Kazunori

    2008-11-01

    Evaluation of potential health effects from high energy charged particle radiation exposure during long duration space travel is important for the future of manned missions. Cognitive health of an organism is considered to be maintained by the capacity of hippocampal precursors to proliferate and differentiate. Environmental stressors including irradiation have been shown to inhibit neurogenesis and are associated with the onset of cognitive impairments. The present study reports on the protective effects of N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK), a melatonin metabolite, against high energy charged particle radiation-induced oxidative damage to the brain. We observed that radiation exposure (2.0 Gy of 500 MeV/nucleon (56)Fe beams, a ground-based model of space radiation) impaired the spatial memory of mice at later intervals without affecting the motor activities. AFMK pretreatment significantly ameliorated these neurobehavioral ailments. Radiation-induced changes in the population of immature and proliferating neurons in the dentate gyrus were localized using anti-doublecortin (Dcx) and anti-Ki-67 expression. AFMK pretreatment significantly inhibited the loss of Dcx and Ki-67 positive cells. Moreover, AFMK pretreatment ameliorated the radiation-induced augmentation of protein carbonyls and 4-hydroxyalkenal + malondialdehyde (MDA + HAE) in the brain and maintained the total antioxidant capacity of plasma and nonprotein sulfhydryl contents in brain. PMID:18631288

  18. The pentachlorophenol metabolite tetrachlorohydroquinone induces massive ROS and prolonged p-ERK expression in splenocytes, leading to inhibition of apoptosis and necrotic cell death.

    PubMed

    Chen, Hsiu-Min; Zhu, Ben-Zhan; Chen, Rong-Jane; Wang, Bour-Jr; Wang, Ying-Jan

    2014-01-01

    Pentachlorophenol (PCP) has been used extensively as a biocide and a wood preservative and has been reported to be immunosuppressive in rodents and humans. Tetrachlorohydroquinone (TCHQ) is a major metabolite of PCP. TCHQ has been identified as the main cause of PCP-induced genotoxicity due to reactive oxidant stress (ROS). However, the precise mechanisms associated with the immunotoxic effects of PCP and TCHQ remain unclear. The aim of this study was to examine the effects of PCP and TCHQ on the induction of ROS and injury to primary mouse splenocytes. Our results shown that TCHQ was more toxic than PCP and that a high dose of TCHQ led to necrotic cell death of the splenocytes through induction of massive and sudden ROS and prolonged ROS-triggered ERK activation. Inhibition of ROS production by N-acetyl-cysteine (NAC) partially restored the mitochondrial membrane potential, inhibited ERK activity, elevated caspase-3 activity and PARP cleavage, and, eventually, switched the TCHQ-induced necrosis to apoptosis. We suggest that prolonged ERK activation is essential for TCHQ-induced necrosis, and that ROS play a pivotal role in the different TCHQ-induced cell death mechanisms. PMID:24586814

  19. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of colon cancer xenografts in Balb/c mice.

    PubMed

    Zeng, Huawei; Cheng, Wen-Hsing; Johnson, Luann K

    2013-05-01

    It is has been hypothesized that methylselenol is a critical selenium metabolite for anticancer activity in vivo. In this study, we used a protein array which contained 112 different antibodies known to be involved in the p53 pathway to investigate the molecular targets of methylselenol in human HCT116 colon cancer cells. The array analysis indicated that methylselenol exposure changed the expression of 11 protein targets related to the regulation of cell cycle and apoptosis. Subsequently, we confirmed these proteins with the Western blotting approach, and found that methylselenol increased the expression of GADD 153 and p21 but reduced the level of c-Myc, E2F1 and Phos p38 MAP kinase. Similar to our previous report on human HCT116 colon cancer cells, methylselenol also inhibited cell growth and led to an increase in G1 and G2 fractions with a concomitant drop in S-phase in mouse colon cancer MC26 cells. When the MC26 cells were transplanted to their immune-competent Balb/c mice, methylselenol-treated MC26 cells had significantly less tumor growth potential than that of untreated MC26 cells. Taken together, our data suggest that methylselenol modulates the expression of key genes related to cell cycle and apoptosis and inhibits colon cancer cell proliferation and tumor growth.

  20. The methoxychlor metabolite, HPTE, directly inhibits the catalytic activity of cholesterol side-chain cleavage (P450scc) in cultured rat ovarian cells.

    PubMed

    Akgul, Yucel; Derk, Raymond C; Meighan, Terence; Rao, K Murali Krishna; Murono, Eisuke P

    2008-01-01

    Exposure to the pesticide methoxychlor in rodents is linked to impaired steroid production, ovarian atrophy and reduced fertility. Following in vivo administration, it is rapidly converted by the liver to 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), the reported active metabolite. Both methoxychlor and HPTE have weak estrogenic and antiandrogenic activities, and these effects are thought to be mediated through the estrogen and androgen receptors, respectively. Previous in vivo studies on methoxychlor exposure to female animals have demonstrated decreased progesterone production but no change in serum estrogen levels. We recently showed that HPTE specifically inhibits the P450 cholesterol side-chain cleavage (P450scc, CYP11A1) step resulting in decreased androgen production by cultured rat testicular Leydig cells. The current studies examined the mechanism of action of HPTE on progesterone production by cultured ovarian cells (granulosa and theca-interstitial) from pregnant mare serum gonadotropin-primed immature rats. In addition, we evaluated whether the effects of HPTE on rat ovarian cell progesterone biosynthesis were mediated through the estrogen or androgen receptors. Exposure to HPTE (0, 10, 50 or 100nM) alone progressively inhibited progesterone formation in cultured theca-interstitial and granulosa cells and the P450scc catalytic activity in theca-interstitial cells in a dose-dependent manner with significant declines starting at 50nM. However, HPTE did not change mRNA levels of the P450scc system (P450scc, adrenodoxin reductase and adrenodoxin) as well as P450scc protein levels. Of interest, estradiol, xenoestrogens (bisphenol-A or 4-tert-octylphenol), a pure antiestrogen (ICI 182,780), or antiandrogens (4-hydroxyflutamide or the vinclozolin metabolite M-2), had no effect on progesterone production even at 1000nM. Co-treatment of HPTE with ICI 182,780 did not block the effect of HPTE on progesterone formation. These studies suggest that the

  1. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin.

    PubMed

    Cho, Hyun Seob; Lee, Jin-Hyung; Ryu, Shi Yong; Joo, Sang Woo; Cho, Moo Hwan; Lee, Jintae

    2013-07-24

    Pathogenic biofilms are associated with persistent infection due to their high resistances to diverse antibiotics. Pseudomonas aeruginosa infects plants, animals, and humans and is a major cause of nosocomial diseases in patients with cystic fibrosis. In the present study, the antibiofilm abilities of 522 plant extracts against P. aeruginosa PA14 were examined. Three Carex plant extracts at a concentration of 200 μg/mL inhibited P. aeruginosa biofilm formation by >80% without affecting planktonic cell growth. In the most active extract of Carex pumila , resveratrol dimer ε-viniferin was one of the main antibiofilm compounds against P. aeruginosa. Interestingly, ε-viniferin at 10 μg/mL inhibited biofilm formation of enterohemorrhagic Escherichia coli O157:H7 by 98%. Although Carex extracts and trans-resveratrol are known to possess antimicrobial activity, this study is the first to report that C. pumila extract and ε-viniferin have antibiofilm activity against P. aeruginosa and E. coli O157:H7. PMID:23819562

  2. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin.

    PubMed

    Cho, Hyun Seob; Lee, Jin-Hyung; Ryu, Shi Yong; Joo, Sang Woo; Cho, Moo Hwan; Lee, Jintae

    2013-07-24

    Pathogenic biofilms are associated with persistent infection due to their high resistances to diverse antibiotics. Pseudomonas aeruginosa infects plants, animals, and humans and is a major cause of nosocomial diseases in patients with cystic fibrosis. In the present study, the antibiofilm abilities of 522 plant extracts against P. aeruginosa PA14 were examined. Three Carex plant extracts at a concentration of 200 μg/mL inhibited P. aeruginosa biofilm formation by >80% without affecting planktonic cell growth. In the most active extract of Carex pumila , resveratrol dimer ε-viniferin was one of the main antibiofilm compounds against P. aeruginosa. Interestingly, ε-viniferin at 10 μg/mL inhibited biofilm formation of enterohemorrhagic Escherichia coli O157:H7 by 98%. Although Carex extracts and trans-resveratrol are known to possess antimicrobial activity, this study is the first to report that C. pumila extract and ε-viniferin have antibiofilm activity against P. aeruginosa and E. coli O157:H7.

  3. Myo-inositol oxygenase is important for the removal of excess myo-inositol from syncytia induced by Heterodera schachtii in Arabidopsis roots.

    PubMed

    Siddique, Shahid; Endres, Stefanie; Sobczak, Miroslaw; Radakovic, Zoran S; Fragner, Lena; Grundler, Florian M W; Weckwerth, Wolfram; Tenhaken, Raimund; Bohlmann, Holger

    2014-01-01

    The enzyme myo-inositol oxygenase is the key enzyme of a pathway leading from myo-inositol to UDP-glucuronic acid. In Arabidopsis, myo-inositol oxygenase is encoded by four genes. All genes are strongly expressed in syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Here, we studied the effect of a quadruple myo-inositol oxygenase mutant on nematode development. We performed metabolite profiling of syncytia induced in roots of the myo-inositol oxygenase quadruple mutant. The role of galactinol in syncytia was studied using Arabidopsis lines with elevated galactinol levels and by supplying galactinol to wild-type seedlings. The quadruple myo-inositol oxygenase mutant showed a significant reduction in susceptibility to H. schachtii, and syncytia had elevated myo-inositol and galactinol levels and an elevated expression level of the antimicrobial thionin gene Thi2.1. This reduction in susceptibility could also be achieved by exogenous application of galactinol to wild-type seedlings. The primary function of myo-inositol oxygenase for syncytium development is probably not the production of UDP-glucuronic acid as a precursor for cell wall polysaccharides, but the reduction of myo-inositol levels and thereby a reduction in the galactinol level to avoid the induction of defence-related genes.

  4. Myo-inositol oxygenase is important for the removal of excess myo-inositol from syncytia induced by Heterodera schachtii in Arabidopsis roots.

    PubMed

    Siddique, Shahid; Endres, Stefanie; Sobczak, Miroslaw; Radakovic, Zoran S; Fragner, Lena; Grundler, Florian M W; Weckwerth, Wolfram; Tenhaken, Raimund; Bohlmann, Holger

    2014-01-01

    The enzyme myo-inositol oxygenase is the key enzyme of a pathway leading from myo-inositol to UDP-glucuronic acid. In Arabidopsis, myo-inositol oxygenase is encoded by four genes. All genes are strongly expressed in syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Here, we studied the effect of a quadruple myo-inositol oxygenase mutant on nematode development. We performed metabolite profiling of syncytia induced in roots of the myo-inositol oxygenase quadruple mutant. The role of galactinol in syncytia was studied using Arabidopsis lines with elevated galactinol levels and by supplying galactinol to wild-type seedlings. The quadruple myo-inositol oxygenase mutant showed a significant reduction in susceptibility to H. schachtii, and syncytia had elevated myo-inositol and galactinol levels and an elevated expression level of the antimicrobial thionin gene Thi2.1. This reduction in susceptibility could also be achieved by exogenous application of galactinol to wild-type seedlings. The primary function of myo-inositol oxygenase for syncytium development is probably not the production of UDP-glucuronic acid as a precursor for cell wall polysaccharides, but the reduction of myo-inositol levels and thereby a reduction in the galactinol level to avoid the induction of defence-related genes. PMID:24117492

  5. Haeme oxygenase-1 and cardiac anaphylaxis.

    PubMed

    Ndisang, J F; Wang, R; Vannacci, A; Marzocca, C; Fantappiè, O; Mazzanti, R; Mannaioni, P F; Masini, E

    2001-12-01

    1. Haeme oxygenase (HO) is an enzyme mainly localized in the smooth endoplasmic reticulum and involved in haeme degradation and in the generation of carbon monoxide (CO). Here we investigate (1) whether the inducible isoform of HO (HO-1) is expressed in the isolated heart of the guinea-pig and (2) the functional significance of HO-1 on the response to antigen in isolated hearts taken from actively sensitized guinea-pigs. 2. Both the HO-1 expression and activity are consistently increased in hearts from guinea-pigs pretreated with hemin, an HO-1 inducer (4 mg kg(-1) i.p., 18 h before antigen challenge). The administration of the HO-1 inhibitor zinc-protoporphyrin IX (ZnPP-IX, 50 micromol kg(-1), i.p., 6 h before hemin) abolished the increase of both the HO-1 expression and activity. 3. In vitro challenge with the specific antigen of hearts from actively sensitized animals evokes a positive inotropic and chronotropic effect, a coronary constriction followed by dilation and an increase in the amount of histamine in the perfusates. In hearts from hemin-pretreated animals, antigen challenge did not modify the heart rate and the force of contraction; the coronary outflow was significantly increased and a diminution of the release of histamine was observed. The patterns of cardiac anaphylaxis were fully restored in hearts from animals treated with ZnPP-IX 6 h before hemin. 4. In isolated hearts perfused with a Tyrode solution gassed with 100% CO for 5 min and successively reoxygenated, the response to antigen was similar to that observed in hearts from hemin-pretreated animals. 5. Pretreatment with hemin or the exposure to exogenous CO were linked to an increase in cardiac cyclic GMP levels and to a decrease of tissue Ca(2+) levels. 6. The study demonstrates that overexpression of HO-1 inhibits cardiac anaphylaxis through the generation of CO which, in turn, decreases the release of histamine through a cyclic GMP- and Ca(2+)-dependent mechanism. PMID:11739245

  6. Haeme oxygenase-1 and cardiac anaphylaxis

    PubMed Central

    Ndisang, Joseph Fomusi; Wang, Rui; Vannacci, Alfredo; Marzocca, Cosimo; Fantappiè, Ornella; Mazzanti, Roberto; Mannaioni, Pier Francesco; Masini, Emanuela

    2001-01-01

    Haeme oxygenase (HO) is an enzyme mainly localized in the smooth endoplasmic reticulum and involved in haeme degradation and in the generation of carbon monoxide (CO). Here we investigate (1) whether the inducible isoform of HO (HO-1) is expressed in the isolated heart of the guinea-pig and (2) the functional significance of HO-1 on the response to antigen in isolated hearts taken from actively sensitized guinea-pigs. Both the HO-1 expression and activity are consistently increased in hearts from guinea-pigs pretreated with hemin, an HO-1 inducer (4 mg kg−1 i.p., 18 h before antigen challenge). The administration of the HO-1 inhibitor zinc-protoporphyrin IX (ZnPP-IX, 50 μmol kg−1, i.p., 6 h before hemin) abolished the increase of both the HO-1 expression and activity. In vitro challenge with the specific antigen of hearts from actively sensitized animals evokes a positive inotropic and chronotropic effect, a coronary constriction followed by dilation and an increase in the amount of histamine in the perfusates. In hearts from hemin-pretreated animals, antigen challenge did not modify the heart rate and the force of contraction; the coronary outflow was significantly increased and a diminution of the release of histamine was observed. The patterns of cardiac anaphylaxis were fully restored in hearts from animals treated with ZnPP-IX 6 h before hemin. In isolated hearts perfused with a Tyrode solution gassed with 100% CO for 5 min and successively reoxygenated, the response to antigen was similar to that observed in hearts from hemin-pretreated animals. Pretreatment with hemin or the exposure to exogenous CO were linked to an increase in cardiac cyclic GMP levels and to a decrease of tissue Ca2+ levels. The study demonstrates that overexpression of HO-1 inhibits cardiac anaphylaxis through the generation of CO which, in turn, decreases the release of histamine through a cyclic GMP- and Ca2+-dependent mechanism. PMID:11739245

  7. An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug-drug and drug-herb interaction by LC-ESI/MS/MS.

    PubMed

    Borkar, Roshan M; Bhandi, Murali Mohan; Dubey, Ajay P; Ganga Reddy, V; Komirishetty, Prashanth; Nandekar, Prajwal P; Sangamwar, Abhay T; Kamal, Ahmed; Banerjee, Sanjay K; Srinivas, R

    2016-10-01

    The aim of the present study was to evaluate the contribution of metabolites to drug-drug interaction and drug-herb interaction using the inhibition of CYP2D6 and CYP3A4 by metoprolol (MET) and its metabolites. The peak concentrations of unbound plasma concentration of MET, α-hydroxy metoprolol (HM), O-desmethyl metoprolol (ODM) and N-desisopropyl metoprolol (DIM) were 90.37 ± 2.69, 33.32 ± 1.92, 16.93 ± 1.70 and 7.96 ± 0.94 ng/mL, respectively. The metabolites identified, HM and ODM, had a ratio of metabolic area under the concentration-time curve (AUC) to parent AUC of ≥0.25 when either total or unbound concentration of metabolite was considered. In vitro CYP2D6 and CYP3A4 inhibition by MET, HM and ODM study revealed that MET, HM and ODM were not inhibitors of CYP3A4-catalyzed midazolam metabolism and CYP2D6-catalyzed dextromethorphan metabolism. However, DIM only met the criteria of >10% of the total drug related material and <25% of the parent using unbound concentrations. If CYP inhibition testing is solely based on metabolite exposure, DIM metabolite would probably not be considered. However, the present study has demonstrated that DIM contributes significantly to in vitro drug-drug interaction. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Norzotepine, a major metabolite of zotepine, exerts atypical antipsychotic-like and antidepressant-like actions through its potent inhibition of norepinephrine reuptake.

    PubMed

    Shobo, M; Kondo, Y; Yamada, H; Mihara, T; Yamamoto, N; Katsuoka, M; Harada, K; Ni, K; Matsuoka, N

    2010-06-01

    The antipsychotic drug zotepine [ZTP; 2-[(8-chlorodibenzo[b,f]thiepin-10-yl)oxy]-N,N-dimethylethan-1-amine] is known to have not only atypical antipsychotic effects but also antidepressive effects in schizophrenia patients. Norzotepine [norZTP; N-desmethylzotepine, 2-[(8-chlorodibenzo[b,f]thiepin-10-yl)oxy]-N-methylethan-1-amine] has been postulated to be a major metabolite of ZTP in humans. Here, we characterized norZTP through several in vitro studies and in animal models of psychosis, depression, and extrapyramidal symptoms (EPS) and compared the pharmacological profiles with those of ZTP. Although both compounds showed similar overall neurotransmitter receptor binding profiles, norZTP showed 7- to 16-fold more potent norepinephrine reuptake inhibition than ZTP. In a pharmacokinetic study, both ZTP and norZTP showed good brain permeability when administered individually in mice, although norZTP was not detected in either plasma or brain after intraperitoneal injection of ZTP. In the methamphetamine-induced hyperlocomotion test in mice, norZTP and ZTP showed similar antipsychotic-like effects at doses above 1 mg/kg i.p. In contrast, unlike ZTP, norZTP did not induce catalepsy up to 10 mg/kg i.p. norZTP significantly antagonized the hypothermia induced by reserpine [(3beta,16beta,17alpha,18beta,20alpha)-11,17-dimethoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]yohimban-16-carboxylic acid methyl ester], suggesting in vivo inhibition of the norepinephrine transporter. In the forced-swim test, norZTP exerted an antidepressant-like effect at the effective doses for its antipsychotic action, whereas ZTP neither antagonized reserpine-induced hypothermia nor showed antidepressant-like effect. These results collectively demonstrate that norZTP exerts more potent inhibitory action than ZTP on norepinephrine transporters both in vitro and in vivo, presumably accounting for its antidepressant-like effect and low EPS propensity. Given that norZTP is the major metabolite observed in

  9. The metabolites of glutamine prevent hydroxyl radical-induced apoptosis through inhibiting mitochondria and calcium ion involved pathways in fish erythrocytes.

    PubMed

    Li, Huatao; Jiang, Weidan; Liu, Yang; Jiang, Jun; Zhang, Yongan; Wu, Pei; Zhao, Juan; Duan, Xudong; Zhou, Xiaoqiu; Feng, Lin

    2016-03-01

    The present study explored the apoptosis pathways in hydroxyl radicals ((∙)OH)-induced carp erythrocytes. Carp erythrocytes were treated with the caspase inhibitors in physiological carp saline (PCS) or Ca(2+)-free PCS in the presence of 40μM FeSO4/20μM H2O2. The results showed that the generation of reactive oxygen species (ROS), the release of cytochrome c and DNA fragmentation were caspase-dependent, and Ca(2+) was involved in calpain activation and phosphatidylserine (PS) exposure in (∙)OH-induced carp erythrocytes. Moreover, the results suggested that caspases were involved in PS exposure, and Ca(2+) was involved in DNA fragmentation in (∙)OH-induced fish erythrocytes. These results demonstrated that there might be two apoptosis pathways in fish erythrocytes, one is the caspase and cytochrome c-dependent apoptosis that is similar to that in mammal nucleated cells, the other is the Ca(2+)-involved apoptosis that was similar to that in mammal non-nucleated erythrocytes. So, fish erythrocytes may be used as a model for studying oxidative stress and apoptosis in mammal cells. Furthermore, the present study investigated the effects of glutamine (Gln)'s metabolites [alanine (Ala), citrulline (Cit), proline (Pro) and their combination (Ala10Pro4Cit1)] on the pathways of apoptosis in fish erythrocytes. The results displayed that Ala, Cit, Pro and Ala10Pro4Cit1 effectively suppressed ROS generation, cytochrome c release, activation of caspase-3, caspase-8 and caspase-9 at the physiological concentrations, prevented Ca(2+) influx, calpain activation, PS exposure, DNA fragmentation and the degradation of the cytoskeleton and oxidation of membrane and hemoglobin (Hb) and increased activity of anti-hydroxyl radical (AHR) in (∙)OH-induced carp erythrocytes. Ala10Pro4Cit1 produced a synergistic effect of inhibited oxidative stress and apoptosis in fish erythrocytes. These results demonstrated that Ala, Cit, Pro and their combination can protect mammal erythrocytes

  10. Glycoalkaloids and metabolites inhibit the growth of human colon (HT29) and liver (HepG2) cancer cells.

    PubMed

    Lee, Kap-Rang; Kozukue, Nobuyuki; Han, Jae-Sook; Park, Joon-Hong; Chang, Eun-Young; Baek, Eun-Jung; Chang, Jong-Sun; Friedman, Mendel

    2004-05-19

    As part of an effort to improve plant-derived foods such as potatoes, eggplants, and tomatoes, the antiproliferative activities against human colon (HT29) and liver (HepG2) cancer cells of a series of structurally related individual compounds were examined using a microculture tetrazolium (MTT) assay. The objective was to assess the roles of the carbohydrate side chain and aglycon part of Solanum glycosides in influencing inhibitory activities of these compounds. Evaluations were carried out with four concentrations each (0.1, 1, 10, and 100 microg/mL) of the the potato trisaccharide glycoalkaloids alpha-chaconine and alpha-solanine; the disaccharides beta(1)-chaconine, beta(2)-chaconine, and beta(2)-solanine; the monosaccharide gamma-chaconine and their common aglycon solanidine; the tetrasaccharide potato glycoalkaloid dehydrocommersonine; the potato aglycon demissidine; the tetrasaccharide tomato glycoalkaloid alpha-tomatine, the trisaccharide beta(1)-tomatine, the disaccharide gamma-tomatine, the monosaccharide delta-tomatine, and their common aglycon tomatidine; the eggplant glycoalkaloids solamargine and solasonine and their common aglycon solasodine; and the nonsteroidal alkaloid jervine. All compounds were active in the assay, with the glycoalkaloids being the most active and the hydrolysis products less so. The effectiveness against the liver cells was greater than against the colon cells. Potencies of alpha-tomatine and alpha-chaconine at a concentration of 1 microg/mL against the liver carcinoma cells were higher than those observed with the anticancer drugs doxorubicin and camptothecin. Because alpha-chaconine, alpha-solanine, and alpha-tomatine also inhibited normal human liver HeLa (Chang) cells, safety considerations should guide the use of these compounds as preventative or therapeutic treatments against carcinomas.

  11. The marine metabolite SZ-685C induces apoptosis in primary human nonfunctioning pituitary adenoma cells by inhibition of the Akt pathway in vitro.

    PubMed

    Wang, Xin; Tan, Ting; Mao, Zhi-Gang; Lei, Ni; Wang, Zong-Ming; Hu, Bin; Chen, Zhi-Yong; She, Zhi-Gang; Zhu, Yong-Hong; Wang, Hai-Jun

    2015-03-01

    Nonfunctioning pituitary adenoma (NFPA) is one of the most common types of pituitary adenoma. The marine anthraquinone derivative SZ-685C has been isolated from the secondary metabolites of the mangrove endophytic fungus Halorosellinia sp. (No. 1403) which is found in the South China Sea. Recent research has shown that SZ-685C possesses anticancer and tumor suppressive effects. The tetrazolium-based colorimetric assay (MTT assay) to investigate the different effect of the marine compound SZ-685C on the proliferation of primary human NFPA cells, rat normal pituitary cells (RPCs) and rat prolactinoma MMQ cell lines. Hoechst 33342 dye/propidium iodide (PI) double staining and fluorescein isothiocyanate-conjugated Annexin V/PI (Annexin V-FITC/PI) apoptosis assays detected an enhanced rate of apoptosis in cells treated with SZ-685C. Enhanced expression levels of caspase 3 and phosphate and tensin homolog (PTEN) were determined by Western blotting. Notably, the protein expression levels of Akt were decreased when the primary human NFPA cells were treated with SZ-685C. Here, we show that SZ-685C induces apoptosis of human NFPA cells through inhibition of the Akt pathway in vitro. The understanding of apoptosis has provided the basis for novel targeted therapies that can induce death in cancer cells or sensitize them to established cytotoxic agents and radiation therapy. PMID:25806467

  12. The Marine Metabolite SZ-685C Induces Apoptosis in Primary Human Nonfunctioning Pituitary Adenoma Cells by Inhibition of the Akt Pathway in Vitro

    PubMed Central

    Wang, Xin; Tan, Ting; Mao, Zhi-Gang; Lei, Ni; Wang, Zong-Ming; Hu, Bin; Chen, Zhi-Yong; She, Zhi-Gang; Zhu, Yong-Hong; Wang, Hai-Jun

    2015-01-01

    Nonfunctioning pituitary adenoma (NFPA) is one of the most common types of pituitary adenoma. The marine anthraquinone derivative SZ-685C has been isolated from the secondary metabolites of the mangrove endophytic fungus Halorosellinia sp. (No. 1403) which is found in the South China Sea. Recent research has shown that SZ-685C possesses anticancer and tumor suppressive effects. The tetrazolium-based colorimetric assay (MTT assay) to investigate the different effect of the marine compound SZ-685C on the proliferation of primary human NFPA cells, rat normal pituitary cells (RPCs) and rat prolactinoma MMQ cell lines. Hoechst 33342 dye/propidium iodide (PI) double staining and fluorescein isothiocyanate-conjugated Annexin V/PI (Annexin V-FITC/PI) apoptosis assays detected an enhanced rate of apoptosis in cells treated with SZ-685C. Enhanced expression levels of caspase 3 and phosphate and tensin homolog (PTEN) were determined by Western blotting. Notably, the protein expression levels of Akt were decreased when the primary human NFPA cells were treated with SZ-685C. Here, we show that SZ-685C induces apoptosis of human NFPA cells through inhibition of the Akt pathway in vitro. The understanding of apoptosis has provided the basis for novel targeted therapies that can induce death in cancer cells or sensitize them to established cytotoxic agents and radiation therapy. PMID:25806467

  13. The marine metabolite SZ-685C induces apoptosis in primary human nonfunctioning pituitary adenoma cells by inhibition of the Akt pathway in vitro.

    PubMed

    Wang, Xin; Tan, Ting; Mao, Zhi-Gang; Lei, Ni; Wang, Zong-Ming; Hu, Bin; Chen, Zhi-Yong; She, Zhi-Gang; Zhu, Yong-Hong; Wang, Hai-Jun

    2015-03-01

    Nonfunctioning pituitary adenoma (NFPA) is one of the most common types of pituitary adenoma. The marine anthraquinone derivative SZ-685C has been isolated from the secondary metabolites of the mangrove endophytic fungus Halorosellinia sp. (No. 1403) which is found in the South China Sea. Recent research has shown that SZ-685C possesses anticancer and tumor suppressive effects. The tetrazolium-based colorimetric assay (MTT assay) to investigate the different effect of the marine compound SZ-685C on the proliferation of primary human NFPA cells, rat normal pituitary cells (RPCs) and rat prolactinoma MMQ cell lines. Hoechst 33342 dye/propidium iodide (PI) double staining and fluorescein isothiocyanate-conjugated Annexin V/PI (Annexin V-FITC/PI) apoptosis assays detected an enhanced rate of apoptosis in cells treated with SZ-685C. Enhanced expression levels of caspase 3 and phosphate and tensin homolog (PTEN) were determined by Western blotting. Notably, the protein expression levels of Akt were decreased when the primary human NFPA cells were treated with SZ-685C. Here, we show that SZ-685C induces apoptosis of human NFPA cells through inhibition of the Akt pathway in vitro. The understanding of apoptosis has provided the basis for novel targeted therapies that can induce death in cancer cells or sensitize them to established cytotoxic agents and radiation therapy.

  14. Resolving the mechanism of bacterial inhibition by plant secondary metabolites employing a combination of whole-cell biosensors.

    PubMed

    Chan, Andrea C; Ager, Duane; Thompson, Ian P

    2013-06-01

    Tightening regulations regarding the use of biocides have stimulated interest in investigating alternatives to current antimicrobial strategies. Plant essential oils and their constituent compounds are promising candidates as novel antimicrobial agents because of their excellent ability in killing microbes while being non-toxic to humans at antimicrobially-active concentrations. Allyl isothiocyanate (AIT), carvacrol, cinnamaldehyde (CNAD), citral, and thymol were investigated for their antibacterial activity against Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The five compounds were screened via disc diffusion assay and broth microdilution method, by which inhibition zone diameters, minimum inhibitory concentrations (MICs), and minimum bactericidal concentrations (MBCs) were determined. AIT and CNAD displayed the greatest inhibitory effects against all species tested, with AIT yielding MICs of 156.25mg/L and MBCs of 156.25 to 312.5mg/L, and CNAD yielding MICs of 78.125 to 156.25mg/L and MBCs of 78.125 to 312.5mg/L. Based on these results, AIT and CNAD were selected for closer examination of their toxic effects. Two complementary bioluminescence-based bacterial biosensors, E. coli HB101_pUCD607_lux and Acinetobacter baylyi ADP1_recA_lux, were employed to examine the dose-response relationships and mechanism of action of AIT and CNAD. This is the first reported study to employ a lux-based biosensor assay coupled with parallel plate count experiments to demonstrate that AIT and CNAD not only damaged cell membranes, but also disrupted cellular metabolism and energy production in bacteria. It is also the first to use genotoxicity-sensing whole-cell bioreporters to demonstrate that neither AIT nor CNAD induced expression of the universal DNA repair gene, recA. This suggests that AIT and CNAD were not genotoxic. As an antimicrobial agent, it is advantageous that the compound be genetically non-damaging so that toxicity towards

  15. Utilization of Dioxygen by Carotenoid Cleavage Oxygenases.

    PubMed

    Sui, Xuewu; Golczak, Marcin; Zhang, Jianye; Kleinberg, Katie A; von Lintig, Johannes; Palczewski, Krzysztof; Kiser, Philip D

    2015-12-18

    Carotenoid cleavage oxygenases (CCOs) are non-heme, Fe(II)-dependent enzymes that participate in biologically important metabolic pathways involving carotenoids and apocarotenoids, including retinoids, stilbenes, and related compounds. CCOs typically catalyze the cleavage of non-aromatic double bonds by dioxygen (O2) to form aldehyde or ketone products. Expressed only in vertebrates, the RPE65 sub-group of CCOs catalyzes a non-canonical reaction consisting of concerted ester cleavage and trans-cis isomerization of all-trans-retinyl esters. It remains unclear whether the former group of CCOs functions as mono- or di-oxygenases. Additionally, a potential role for O2 in catalysis by the RPE65 group of CCOs has not been evaluated to date. Here, we investigated the pattern of oxygen incorporation into apocarotenoid products of Synechocystis apocarotenoid oxygenase. Reactions performed in the presence of (18)O-labeled water and (18)O2 revealed an unambiguous dioxygenase pattern of O2 incorporation into the reaction products. Substitution of Ala for Thr at position 136 of apocarotenoid oxygenase, a site predicted to govern the mono- versus dioxygenase tendency of CCOs, greatly reduced enzymatic activity without altering the dioxygenase labeling pattern. Reevaluation of the oxygen-labeling pattern of the resveratrol-cleaving CCO, NOV2, previously reported to be a monooxygenase, using a purified enzyme sample revealed that it too is a dioxygenase. We also demonstrated that bovine RPE65 is not dependent on O2 for its cleavage/isomerase activity. In conjunction with prior research, the results of this study resolve key issues regarding the utilization of O2 by CCOs and indicate that dioxygenase activity is a feature common among double bond-cleaving CCOs.

  16. Physiological significance of heme oxygenase in hypertension

    PubMed Central

    Cao, Jian; Inoue, Kazuyoshi; Li, Xiaoying; Drummond, George; Abraham, Nader G.

    2009-01-01

    The last decade has witnessed an explosion in the elucidation of the role that the heme oxygenase system plays in human physiology. This system encompasses not only the heme degradative pathway, including heme oxygenase and biliverdin reductase, but also the products of heme degradation, carbon monoxide, iron, and biliverdin/bilirubin. Their role in diabetes, inflammation, heart disease, hypertension, transplantation, and pulmonary disease are areas of burgeoning research. The research has focused not only on heme itself but also on its metabolic products as well as endogenous compounds involved in a vast number of genetic and metabolic processes that are affected when heme metabolism is perturbed. It should be noted, however, that although the use of carbon monoxide and biliverdin/bilirubin as therapeutic agents has been successful, these agents can be toxic at high levels in tissue, e.g., kernicterus. Care must be used to ensure that when these compounds are used as therapeutic agents their deleterious effects are minimized or avoided. On balance, however, the strategies to target heme oxygenase-1 as described in this review offer promising therapeutic approaches to clinicians for the effective management of hypertension and renal function. The approaches detailed may prove to be seminal in the development of a new therapeutic strategy to treat hypertension. PMID:19027871

  17. Dose-limiting inhibition of acetylcholinesterase by ladostigil results from the rapid formation and fast hydrolysis of the drug-enzyme complex formed by its major metabolite, R-MCPAI.

    PubMed

    Moradov, Dorit; Finkin-Groner, Efrat; Bejar, Corina; Sunita, Priyashree; Schorer-Apelbaum, Donna; Barasch, Dinorah; Nemirovski, Alina; Cohen, Marganit; Weinstock, Marta

    2015-03-15

    Ladostigil is a pseudo reversible inhibitor of acetylcholinesterase (AChE) that differs from other carbamates in that the maximal enzyme inhibition obtainable does not exceed 50-55%. This could explain the low incidence of cholinergic adverse effects induced by ladostigil in rats and human subjects. The major metabolite, R-MCPAI is believed to be responsible for AChE inhibition by ladostigil in vivo. Therefore we determined whether the ceiling in AChE inhibition resulted from a limit in the metabolism of ladostigil to R-MCPAI by liver microsomal enzymes, or from the kinetics of enzyme inhibition by R-MCPAI. Ladostigil reduces TNF-α in lipopolysaccharide-activated microglia. In vivo, it may also reduce pro-inflammatory cytokines by inhibiting AChE and increasing the action of ACh on macrophages and splenic lymphocytes. We also assessed the contribution of AChE inhibition in the spleen of LPS-injected mice to the anti-inflammatory effect of ladostigil. As in other species, AChE inhibition by ladostigil in spleen, brain and plasma did not exceed 50-55%. Since levels of R-MCPAI increased with increasing doses of ladostigil we concluded that there was no dose or rate limitation of metabolism. The kinetics of enzyme inhibition by R-MCPAI are characterized by a rapid formation of the drug-enzyme complex and fast hydrolysis which limits the attainable degree of AChE inhibition. Ladostigil and its metabolites (1-100 nM) decreased TNF-α in lipopolysaccharide-activated macrophages. Ladostigil (5 and 10mg/kg) also reduced TNF-α in the spleen after injection of lipopolysaccharide in mice. However, AChE inhibition contributed to the anti-inflammatory effect only at a dose of 10mg/kg.

  18. Berberis aristata Ameliorates Adjuvant-Induced Arthritis by Inhibition of NF-κB and Activating Nuclear Factor-E2-related Factor 2/hem Oxygenase (HO)-1 Signaling Pathway.

    PubMed

    Kumar, Rohit; Nair, Vinod; Gupta, Yogendra Kumar; Singh, Surender; Arunraja, S

    2016-08-01

    The present study was carried out to investigate the anti-arthritic activity of Berberis aristata hydroalcoholic extract (BAHE) in formaldehyde-induced arthritis and adjuvant-induced arthritis (AIA) model. Arthritis was induced by administration of either formaldehyde (2% v/v) or CFA into the subplantar surface of the hind paw of the animal. In formaldehyde-induced arthritis and AIA, treatment of BAHE at doses 50, 100 and 200 mg/kg orally significantly decreased joint inflammation as evidenced by decrease in joint diameter and reduced inflammatory cell infiltration in histopathological examination. BAHE treatment demonstrated dose-dependent improvement in the redox status of synovium (decrease in GSH, MDA, and NO levels and increase in SOD and CAT activities). The beneficial effect of BAHE was substantiated with decreased expression of inflammatory markers such as IL-1β, IL-6, TNF-R1, and VEGF by immunohistochemistry analysis in AIA model. BAHE increased HO-1/Nrf-2 and suppressed NF-κB mRNA and protein expression in adjuvant immunized joint. Additionally, BAHE abrogated degrading enzymes, as there was decreased protein expression of MMP-3 and -9 in AIA. In conclusion, we demonstrated the anti-arthritic activity of Berberis aristata hydroalcoholic extract via the mechanism of inhibition of NF-κB and activation of Nrf-2/HO-1.

  19. Markers of electrophilic stress caused by chemically reactive metabolites in human hepatocytes.

    PubMed

    Takakusa, Hideo; Masumoto, Hiroshi; Mitsuru, Ayako; Okazaki, Osamu; Sudo, Kenichi

    2008-05-01

    The metabolic activation of a drug to an electrophilic reactive metabolite and its covalent binding to cellular macromolecules is considered to be involved in the occurrence of idiosyncratic drug toxicity (IDT). As a cellular defense system against oxidative and electrophilic stress, phase II enzymes are known to be induced through a Kelch-like ECH-associated protein 1/nuclear factor E2-related factor 2/antioxidant response element system. We presumed that it is important for the risk assessment of drug-induced hepatotoxicity and IDTs to observe the biological responses evoked by exposure to reactive metabolites, and then investigated the mRNA induction profiles of phase II enzymes in human hepatocytes after exposure to problematic drugs associated with IDTs, such as ticlopidine, diclofenac, clozapine, and tienilic acid, as well as safe drugs such as levofloxacin and caffeine. According to the results, the problematic drugs exhibited inductive effects on heme oxygenase 1 (HO-1), which contrasted with the safe drugs; therefore, the induction of HO-1 mRNA seems to be correlated with the occurrence of drug toxicity, including IDT caused by electrophilic reactive metabolites. Moreover, glutathione-depletion and cytochrome P450 (P450)-inhibition experiments have shown that the observed HO-1 induction was triggered by the electrophilic reactive metabolites produced from the problematic drugs through P450-mediated metabolic bioactivation. Taken together with our present study, this suggests that HO-1 induction in human hepatocytes would be a good marker of the occurrence of metabolism-based drug-induced hepatotoxicity and IDT caused by the formation of electrophilic reactive metabolites. PMID:18227147

  20. Heme-Oxygenases during Erythropoiesis in K562 and Human Bone Marrow Cells

    PubMed Central

    Alves, Liliane R.; Costa, Elaine S.; Sorgine, Marcos H. F.; Nascimento-Silva, Maria Clara L.; Teodosio, Cristina; Bárcena, Paloma; Castro-Faria-Neto, Hugo C.; Bozza, Patrícia T.; Orfao, Alberto

    2011-01-01

    In mammalian cells, heme can be degraded by heme-oxygenases (HO). Heme-oxygenase 1 (HO-1) is known to be the heme inducible isoform, whereas heme-oxygenase 2 (HO-2) is the constitutive enzyme. Here we investigated the presence of HO during erythroid differentiation in human bone marrow erythroid precursors and K562 cells. HO-1 mRNA and protein expression levels were below limits of detection in K562 cells. Moreover, heme was unable to induce HO-1, at the protein and mRNA profiles. Surprisingly, HO-2 expression was inhibited upon incubation with heme. To evaluate the physiological relevance of these findings, we analyzed HO expression during normal erythropoiesis in human bone marrow. Erythroid precursors were characterized by lack of significant expression of HO-1 and by progressive reduction of HO-2 during differentiation. FLVCR expression, a recently described heme exporter found in erythroid precursors, was also analyzed. Interestingly, the disruption in the HO detoxification system was accompanied by a transient induction of FLVCR. It will be interesting to verify if the inhibition of HO expression, that we found, is preventing a futile cycle of concomitant heme synthesis and catabolism. We believe that a significant feature of erythropoiesis could be the replacement of heme breakdown by heme exportation, as a mechanism to prevent heme toxicity. PMID:21765894

  1. Activation and regulation of ribulose bisphosphate carboxylase-oxygenase in the absence of small subunits.

    PubMed

    Whitman, W B; Martin, M N; Tabita, F R

    1979-10-25

    Ribulose 1,5-bisphosphate carboxylase from Rhodospirillum rubrum requires CO2 and Mg2+ for activation of both CO2, both the carboxylase and oxygenase activities are stimulated by 6-phoshpo-D-gluconate, fructose 1,6-bisphosphate, 2-phosphoglycolate, 3-phosphoglycerate, NADPH, and fructose 6-phosphate. The carboxylase activity is not activated by ribose 5-phosphate. The substrate, ribulose bisphosphate, neither activates nor inhibits the CO2 and Mg2+ activation of this enzyme. Activation by CO2 and Mg2+ is rapid and results in increased susceptibility to active-site-directed protein modification reagents. Because the R. rubrum carboxylase-oxygenase is a dimer of large subunits and contains no small subunits, these results suggest that the effector binding sites of the higher plant enzyme may also be found on the large subunit.

  2. Heme and the endothelium. Effects of nitric oxide on catalytic iron and heme degradation by heme oxygenase.

    PubMed

    Juckett, M; Zheng, Y; Yuan, H; Pastor, T; Antholine, W; Weber, M; Vercellotti, G

    1998-09-01

    We studied the effects of nitric oxide (NO) on the control of excess cellular heme and release of catalytically active iron. Endothelial cells (ECs) exposed to hemin followed by a NO donor have a ferritin content that is 16% that of cells exposed to hemin alone. Hemin-treated ECs experience a 3.5-fold rise in non-heme, catalytic iron 2 h later, but a hemin rechallenge 20 h later results in only a 24% increase. The addition of a NO donor after the first hemin exposure prevents this adaptive response, presumably due to effects on ferritin synthesis. NO donors were found to reduce iron release from hemin, while hemin accumulated in cells. A NO donor, in a dose-dependent fashion, inhibited heme oxygenase activity, measured by bilirubin production. Using low temperature EPR spectroscopy, heme oxygenase inhibition correlated with nitrosylation of free heme in microsomes. Nitrosylation of cellular heme prevented iron release, for while there was heme oxygenase-dependent release of iron in cells incubated with hemin for 24 h, the addition of a NO donor blocked iron release. This indicates that NO readily nitrosylates intracellular free heme and prevents its degradation by heme oxygenase. Nitrosylation of heme was found to reduce sensitization of cells to oxidative injury. PMID:9722574

  3. ARSENITE INDUCTION OF HEME OXYGENASE AS A BIOMARKER

    EPA Science Inventory

    ARSENITE INDUCTION OF HEME OXYGENASE AS A BIOMARKER

    Useful biomarkers of arsenic effects in both experimental animals and humans are needed. Arsenate and arsenite are good inducers of rat hepatic and renal heme oxygenase (HO); monomethylarsonic acid (MMA) and dimethylarsi...

  4. Heme oxygenase-1 regulates mitochondrial quality control in the heart

    PubMed Central

    Hull, Travis D.; Boddu, Ravindra; Guo, Lingling; Tisher, Cornelia C.; Traylor, Amie M.; Patel, Bindiya; Joseph, Reny; Prabhu, Sumanth D.; Suliman, Hagir B.; Piantadosi, Claude A.; Agarwal, Anupam; George, James F.

    2016-01-01

    The cardioprotective inducible enzyme heme oxygenase-1 (HO-1) degrades prooxidant heme into equimolar quantities of carbon monoxide, biliverdin, and iron. We hypothesized that HO-1 mediates cardiac protection, at least in part, by regulating mitochondrial quality control. We treated WT and HO-1 transgenic mice with the known mitochondrial toxin, doxorubicin (DOX). Relative to WT mice, mice globally overexpressing human HO-1 were protected from DOX-induced dilated cardiomyopathy, cardiac cytoarchitectural derangement, and infiltration of CD11b+ mononuclear phagocytes. Cardiac-specific overexpression of HO-1 ameliorated DOX-mediated dilation of the sarcoplasmic reticulum as well as mitochondrial disorganization in the form of mitochondrial fragmentation and increased numbers of damaged mitochondria in autophagic vacuoles. HO-1 overexpression promotes mitochondrial biogenesis by upregulating protein expression of NRF1, PGC1α, and TFAM, which was inhibited in WT animals treated with DOX. Concomitantly, HO-1 overexpression inhibited the upregulation of the mitochondrial fission mediator Fis1 and resulted in increased expression of the fusion mediators, Mfn1 and Mfn2. It also prevented dynamic changes in the levels of key mediators of the mitophagy pathway, PINK1 and parkin. Therefore, these findings suggest that HO-1 has a novel role in protecting the heart from oxidative injury by regulating mitochondrial quality control. PMID:27110594

  5. Heme Oxygenase-1: A Metabolic Nike

    PubMed Central

    Nemeth, Zsuzsanna; Correa-Costa, Matheus; Bulmer, Andrew C.; Otterbein, Leo E.

    2014-01-01

    Abstract Significance: Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. Recent Advances: The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. Critical Issues: CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. Future Directions: In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer. Antioxid. Redox Signal. 20, 1709–1722. PMID:24180257

  6. Nickel induction of microsomal heme oxygenase activity in rodents

    SciTech Connect

    Sunderman, F.W. Jr.; Reid, M.C.; Bibeau, L.M.; Linden, J.V.

    1983-01-01

    Heme oxygenase activity was measured in tissues of rats killed after administration of NiCl/sub 2/ or Ni/sub 3/S/sub 2/. Induction of renal heme oxygenase activity occurred 6 hr after NiCl/sub 2/ injection (0.25 mmol/kg sc), reached a maximum of five to six times the baseline activity at 17 hr, and remained significantly increased at 72 hr. Heme oxygenase activities were also increased in liver, lung, and brain at 17 hr after the NiCl/sub 2/ injection; heme oxygenase activities in spleen and intestinal mucosa were unchanged. The effects of NiCl/sub 2/ on heme oxygenase activities in kidney and liver were dose-related from 0.06 to 0.75 mmol/kg, sc. Three Ni chelators were administered (1 mmol/kg, im) prior to injection of NiCl/sub 2/ (0.25 mmol/kg, sc); d-penicillamine partially prevented Ni induction of renal heme oxygenase activity; triethylenetetramine had no effect; sodium diethyldithiocarbamate enhanced the Ni induction of renal heme oxygenase activity (three times greater than NiCl/sub 2/ alone). Intrarenal injection of Ni/sub 3/S/sub 2/ (10 mg/rat) caused induction of renal heme oxygenase activity at 1 week but not at 2, 3, or 4 weeks; no correlation was observed between induction of renal heme oxygenase activity and erythropoietin-mediated erythrocytosis. Hypoxia (10% O/sub 2/, 12 hr/day, 7 days) did not affect renal heme oxygenase activity. Induction of renal heme oxygenase activity was observed in mice, hamsters, and guinea pigs killed 17 hr after injection of NiCl/sub 2/ (0.25 mmol/kg, sc). These studies established (a) the time course, dose-effect, organ selectivity, and species susceptibility relationships for Ni induction of microsomal heme oxygenase activity, (b) the effects of Ni chelators, and (c) the lack of relationship between induction of renal heme oxygenase activity and the erythrocytosis that develops after intrarenal injection of Ni/sub 3/S/sub 2/.

  7. Clinical pharmacology of lumiracoxib: a selective cyclo-oxygenase-2 inhibitor.

    PubMed

    Rordorf, Christiane M; Choi, Les; Marshall, Paul; Mangold, James B

    2005-01-01

    Lumiracoxib (Prexige) is a selective cyclo-oxygenase (COX)-2 inhibitor developed for the treatment of osteoarthritis, rheumatoid arthritis and acute pain. Lumiracoxib possesses a carboxylic acid group that makes it weakly acidic (acid dissociation constant [pKa] 4.7), distinguishing it from other selective COX-2 inhibitors. Lumiracoxib has good oral bioavailability (74%). It is rapidly absorbed, reaching maximum plasma concentrations 2 hours after dosing, and is highly plasma protein bound. Lumiracoxib has a short elimination half-life from plasma (mean 4 hours) and demonstrates dose-proportional plasma pharmacokinetics with no accumulation during multiple dosing. In patients with rheumatoid arthritis, peak lumiracoxib synovial fluid concentrations occur 3-4 hours later than in plasma and exceed plasma concentrations from 5 hours after dosing to the end of the 24-hour dosing interval. These data suggest that lumiracoxib may be associated with reduced systemic exposure, while still reaching sites where COX-2 inhibition is required for pain relief. Lumiracoxib is metabolised extensively prior to excretion, with only a small amount excreted unchanged in urine or faeces. Lumiracoxib and its metabolites are excreted via renal and faecal routes in approximately equal amounts. The major metabolic pathways identified involve oxidation of the 5-methyl group of lumiracoxib and/or hydroxylation of its dihaloaromatic ring. Major metabolites of lumiracoxib in plasma are the 5-carboxy, 4'-hydroxy and 4'-hydroxy-5-carboxy derivatives, of which only the 4'-hydroxy derivative is active and COX-2 selective. In vitro, the major oxidative pathways are catalysed primarily by cytochrome P450 (CYP) 2C9 with very minor contribution from CYP1A2 and CYP2C19. However, in patients genotyped as poor CYP2C9 metabolisers, exposure to lumiracoxib (area under the plasma concentration-time curve) is not significantly increased compared with control subjects, indicating no requirement for adjustment

  8. Hesperetin and its sulfate and glucuronide metabolites inhibit TNF-α induced human aortic endothelial cell migration and decrease plasminogen activator inhibitor-1 (PAI-1) levels.

    PubMed

    Giménez-Bastida, Juan Antonio; González-Sarrías, Antonio; Vallejo, Fernando; Espín, Juan Carlos; Tomás-Barberán, Francisco A

    2016-01-01

    Epidemiological, clinical and preclinical studies have reported the protection offered by citrus consumption, mainly orange, against cardiovascular diseases, which is primarily mediated by the antiatherogenic and vasculoprotective effects of the flavanone hesperetin-7-O-rutinoside (hesperidin). However, flavanone aglycones or glycosides are not present in the bloodstream but their derived phase-II metabolites could be the actual bioactive molecules. To date, only a few studies have explored the effects of circulating hesperetin-derived metabolites (glucuronides and sulfates) on endothelial cells. Herein, we describe for the first time the effects of hesperetin 3'-O-glucuronide, hesperetin 7-O-glucuronide, hesperetin 3'-O-sulfate, hesperetin 7-O-sulfate and hesperetin on human aortic endothelial cell (HAEC) migration upon pro-inflammatory stimuli as an essential step to angiogenesis. Hesperetin and its derived metabolites, at physiologically relevant concentrations (1-10 μM), significantly attenuated cell migration in the presence of the pro-inflammatory cytokine TNF-α (50 ng mL(-1)), which was accompanied and perhaps mediated by a significant decrease in the levels of the thrombogenic plasminogen activator inhibitor-1 (PAI-1). However, hesperetin metabolites did not counteract the TNF-α-induced production of pro-inflammatory interleukin-6 (IL-6) and IL-8. We also study here for the first time, the metabolism of hesperetin and its derived metabolites by HAEC with and without a pro-inflammatory stimulus. All these results reinforce the concept according to which circulating phase-II hesperetin metabolites are critical molecules contributing to the cardioprotective effects upon consumption of citrus fruits such as orange.

  9. Vitamin D3 analogs and their 24-oxo metabolites equally inhibit clonal proliferation of a variety of cancer cells but have differing molecular effects.

    PubMed

    Campbell, M J; Reddy, G S; Koeffler, H P

    1997-09-01

    The seco-steroid hormone, 1 alpha, 25 dihydroxyvitamin D3 (1 alpha,25(OH)2D3) binds to a specific nuclear receptor that acts as a ligand-inducible transcription factor. The resulting genomic effects include partial arrest in G0/G1 of the cell cycle and induction of differentiation; these effects have been observed in various types of cancer. Recently, we produced enzymatically the natural 24-oxo metabolites of 1 alpha,25(OH)2D3 and two of its potent synthetic analogs (1 alpha,25-(OH)2-16-ene-D3 and 1 alpha,25-(OH)2-20-epi-D3) using a rat kidney perfusion system. We have found that the 24-oxo metabolites of both 1 alpha,25(OH)2D3 and its analogs have either the same or greater antiproliferative activity against various cancer cells as their parental compounds. Notably, two cell lines (DU-145 (prostate cancer) and MDA-MB-436 [breast cancer]) that were extremely resistant to the antiproliferative effects of vitamin D3 analogs displayed greater sensitivity towards the 24-oxo metabolite of the vitamin D3 analog. Similarly, the 24-oxo metabolites had the capacity to induce differentiation and apoptosis and to diminish the proportion of cells in S phase. Most interestingly, while the analog 1 alpha,25(OH)2-20-epi-D3 induced expression of BRCA1 in MCF-7 breast cancer cells; its 24-oxo metabolite dramatically suppressed BRAC1 expression. Thus, we have shown for the first time that the various biological activities produced by the hormone 1 alpha,25(OH)2D3 and some of its analogs may represent a combination of actions by the hormone 1 alpha,25(OH)2D3 and its natural 24-oxo metabolites.

  10. Eicosapentaenoic Acid Inhibits Oxidation of ApoB-containing Lipoprotein Particles of Different Size In Vitro When Administered Alone or in Combination With Atorvastatin Active Metabolite Compared With Other Triglyceride-lowering Agents.

    PubMed

    Mason, R Preston; Sherratt, Samuel C R; Jacob, Robert F

    2016-07-01

    Eicosapentaenoic acid (EPA) is a triglyceride-lowering agent that reduces circulating levels of the apolipoprotein B (apoB)-containing lipoprotein particles small dense low-density lipoprotein (sdLDL), very-low-density lipoprotein (VLDL), and oxidized low-density lipoprotein (LDL). These benefits may result from the direct antioxidant effects of EPA. To investigate this potential mechanism, these particles were isolated from human plasma, preincubated with EPA in the absence or presence of atorvastatin (active) metabolite, and subjected to copper-initiated oxidation. Lipid oxidation was measured as a function of thiobarbituric acid reactive substances formation. EPA inhibited sdLDL (IC50 ∼2.0 μM) and LDL oxidation (IC50 ∼2.5 μM) in a dose-dependent manner. Greater antioxidant potency was observed for EPA in VLDL. EPA inhibition was enhanced when combined with atorvastatin metabolite at low equimolar concentrations. Other triglyceride-lowering agents (fenofibrate, niacin, and gemfibrozil) and vitamin E did not significantly affect sdLDL, LDL, or VLDL oxidation compared with vehicle-treated controls. Docosahexaenoic acid was also found to inhibit oxidation in these particles but over a shorter time period than EPA. These data support recent clinical findings and suggest that EPA has direct antioxidant benefits in various apoB-containing subfractions that are more pronounced than those of other triglyceride-lowering agents and docosahexaenoic acid. PMID:26945158

  11. Mixed function oxygenases and xenobiotic detoxication/toxication systems in bivalve molluscs

    NASA Astrophysics Data System (ADS)

    Moore, M. N.; Livingstone, D. R.; Donkin, P.; Bayne, B. L.; Widdows, J.; Lowe, D. M.

    1980-03-01

    Components of a xenobiotic detoxication/toxication system involving mixed function oxygenases are present in Mytilus edulis. Our paper critically reviews the recent literature on this topic which reported the apparent absence of such a system in bivalve molluscs and attempts to reconcile this viewpoint with our own findings on NADPH neotetrazolium reductase, glucose-6-phosphate dehydrogenase, aldrin epoxidation and other reports of the presence of mixed function oxygenases. New experimental data are presented which indicate that some elements of the detoxication/toxication system in M. edulis can be induced by aromatic hydrocarbons derived from crude oil. This includes a brief review of the results of long-term experiments in which mussels were exposed to low concentrations of the water accommodated fraction of North Sea crude oil (7.7-68 µg 1-1) in which general stress responses such as reduced physiological scope for growth, cytotoxic damage to lysosomal integrity and cellular damage are considered as characteristics of the general stress syndrome induced by the toxic action of the xenobiotics. In addition, induction in the blood cells of microsomal NADPH neotetrazolium reductase (associated with mixed function oxygenases) and the NADPH generating enzyme glucose-6-phosphate dehydrogenase are considered to be specific biological responses to the presence of aromatic hydrocarbons. The consequences of this detoxication/toxication system for Mytilus edulis are discussed in terms of the formation of toxic electrophilic intermediate metabolites which are highly reactive and can combine with DNA, RNA and proteins with subsequent damage to these cellular constituents. Implications for neoplasms associated with the blood cells are also discussed. Finally, in view of the increased use of mussel species in pollutant monitoring programmes, the induction phenomenon which is associated with microsomal enzymes in the blood cells is considered as a possible tool for the

  12. Role of heme Oxygenase-1 in low dose Radioadaptive response

    PubMed Central

    Bao, Lingzhi; Ma, Jie; Chen, Guodong; Hou, Jue; Hei, Tom K.; Yu, K.N.; Han, Wei

    2016-01-01

    Radioadaptive response (RAR) is an important phenomenon induced by low dose radiation. However, the molecular mechanism of RAR is obscure. In this study, we focused on the possible role of heme oxygenase 1 (HO-1) in RAR. Consistent with previous studies, priming dose of X-ray radiation (1–10 cGy) induced significant RAR in normal human skin fibroblasts (AG 1522 cells). Transcription and translation of HO-1 was up-regulated more than two fold by a priming dose of radiation (5 cGy). Zinc protoporphyrin Ⅸ, a specific competitive inhibitor of HO-1, efficiently inhibited RAR whereas hemin, an inducer of HO-1, could mimic priming dose of X-rays to induce RAR. Knocking down of HO-1 by transfection of HO-1 siRNA significantly attenuated RAR. Furthermore, the expression of HO-1 gene was modulated by the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which translocated from cytoplasm to nucleus after priming dose radiation and enhance the antioxidant level of cells. PMID:26966892

  13. Modifying the maker: Oxygenases target ribosome biology

    PubMed Central

    Zhuang, Qinqin; Feng, Tianshu; Coleman, Mathew L

    2015-01-01

    The complexity of the eukaryotic protein synthesis machinery is partly driven by extensive and diverse modifications to associated proteins and RNAs. These modifications can have important roles in regulating translation factor activity and ribosome biogenesis and function. Further investigation of ‘translational modifications’ is warranted considering the growing evidence implicating protein synthesis as a critical point of gene expression control that is commonly deregulated in disease. New evidence suggests that translation is a major new target for oxidative modifications, specifically hydroxylations and demethylations, which generally are catalyzed by a family of emerging oxygenase enzymes that act at the interface of nutrient availability and metabolism. This review summarizes what is currently known about the role or these enzymes in targeting rRNA synthesis, protein translation and associated cellular processes. PMID:26779412

  14. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of MC-26 colon cancer xenografts in balb/c mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is has been hypothesized that methylselenol is a critical selenium (Se) metabolite for anticancer activity in vivo. In this study, we used a protein array which contained 112 different antibodies known to be involved in p53 pathway to investigate the molecular targets of methylselenol in human HC...

  15. Differential Expression of the Demosponge (Suberites domuncula) Carotenoid Oxygenases in Response to Light: Protection Mechanism Against the Self-Produced Toxic Protein (Suberitine)

    PubMed Central

    Müller, Werner E. G.; Wang, Xiaohong; Binder, Michael; von Lintig, Johannes; Wiens, Matthias; Schröder, Heinz C.

    2012-01-01

    The demosponge Suberites domuncula has been described to contain high levels of a proteinaceous toxin, Suberitine, that displays haemolytic activityIn the present study this 7–8 kDa polypeptide has been isolated and was shown to exhibit also cytotoxic effects on cells of the same species. Addition of retinal, a recently identified metabolite of β-carotene that is abundantly present in S. domuncula was found to reduce both the haemolytic and the cell toxic activity of Suberitine at a molar ratio of 1:1. Spectroscopic analyses revealed that the interaction between β-carotene and Suberitine can be ascribed to a reversible energy transfer reaction. The enzyme that synthesises retinal in the sponge system is the β,β-carotene-15,15′-dioxygenase [carotene dioxygenase]. In order to clarify if this enzyme is the only β-carotene-metabolizing enzyme a further oxygenase had been identified and cloned, the (related) carotenoid oxygenase. In contrast to the dioxygenase, the carotenoid oxygenase could not degrade β-carotene or lycopene in Escherichia coli strains that produced these two carotenoids; therefore it had been termed related-carotenoid oxygenase. Exposure of primmorphs to light of different wavelengths from the visible spectrum resulted after 3 days in a strong upregulation of the dioxygenase in those 3D-cell aggregates that had been incubated with β-carotene. The strongest effect is seen with blue light at a maximum around 490 nm. It is concluded that the toxin Suberitine is non-covalently modified by retinal, the cleavage product from β-carotene via the enzyme carotene dioxygenase, a light inducible oxygenase. Hence, this study highlights that in S. domuncula the bioactive metabolite, retinal, has the property to detoxify its homologous toxin. PMID:22363229

  16. Excretion of metabolites of prostacyclin and thromboxane by rats with nephrotoxic nephritis: effects of interleukin-1.

    PubMed Central

    Ward, P. S.; Fuller, R. W.; Ritter, J. M.; Cashman, S. J.; Rees, A. J.; Dollery, C. T.

    1991-01-01

    1. To obtain direct evidence of abnormal eicosanoid biosynthesis in rats injected with anti-glomerular-basement-membrane antibodies (a-GBM), products derived from thromboxane A2 (TXA2) and prostacyclin (PGI2) were measured in 24 h urine collections before and after a-GBM. 2. Administration of a-GBM (9.5 mg) caused albuminuria, decreased creatinine clearance, increased numbers of intra-glomerular neutrophils and increased excretion of TXB2, 2,3-dinor-TXB2 (products of TXA2) and 6-oxo-PGF 1 alpha and 2,3-dinor-6-oxo-PGF 1 alpha (products of PGI2) at 24 h. 3. Interleukin-1 (IL-1 beta; 5 micrograms) alone caused an increase in PGI2 metabolite excretion but had no effect on TXA2 metabolites. It had no effect on creatinine clearance but increased numbers of glomerular neutrophils by approximately 4-5 fold compared to a-GBM. 4. Pretreatment of rats with IL-1 beta before a-GBM synergistically increased albumin excretion but only additively increased eicosanoid excretion. Numbers of intra-glomerular neutrophils and creatinine clearance were unchanged compared to IL-1 beta alone. 5. The cyclo-oxygenase inhibitor, ibuprofen (10 mgkg-1 i.p., twice daily for 4 days) inhibited both serum TXB2 production and urinary prostaglandin excretion. It also caused an almost complete attenuation of albumin excretion. Creatinine clearance and glomerular neutrophils remained unchanged after a-GBM/IL-1 beta. 6. We conclude that the 50% inhibition of thromboxane production induced by ibuprofen does not modify the fall in creatinine clearance of accumulation of neutrophils in the glomerulus caused by the a-GBM. This degree of inhibition of eicosanoid production was associated with a striking decrease in proteinuria, but this may reflect a haemodynamic rather than a disease modifying action. PMID:1933130

  17. The heme oxygenase(s)-phytochrome system of Pseudomonas aeruginosa.

    PubMed

    Wegele, Rosalina; Tasler, Ronja; Zeng, Yuhong; Rivera, Mario; Frankenberg-Dinkel, Nicole

    2004-10-29

    For many pathogenic bacteria like Pseudomonas aeruginosa heme is an essential source of iron. After uptake, the heme molecule is degraded by heme oxygenases to yield iron, carbon monoxide, and biliverdin. The heme oxygenase PigA is only induced under iron-limiting conditions and produces the unusual biliverdin isomers IXbeta and IXdelta. The gene for a second putative heme oxygenase in P. aeruginosa, bphO, occurs in an operon with the gene bphP encoding a bacterial phytochrome. Here we provide biochemical evidence that bphO encodes for a second heme oxygenase in P. aeruginosa. HPLC, (1)H, and (13)C NMR studies indicate that BphO is a "classic" heme oxygenase in that it produces biliverdin IXalpha. The data also suggest that the overall fold of BphO is likely to be the same as that reported for other alpha-hydroxylating heme oxygenases. Recombinant BphO was shown to prefer ferredoxins or ascorbate as a source of reducing equivalents in vitro and the rate-limiting step for the oxidation of heme to biliverdin is the release of product. In eukaryotes, the release of biliverdin is driven by biliverdin reductase, the subsequent enzyme in heme catabolism. Because P. aeruginosa lacks a biliverdin reductase homologue, data are presented indicating an involvement of the bacterial phytochrome BphP in biliverdin release from BphO and possibly from PigA.

  18. Recombinant truncated and microsomal heme oxygenase-1 and -2: differential sensitivity to inhibitors.

    PubMed

    Vukomanovic, Dragic; McLaughlin, Brian; Rahman, Mona N; Vlahakis, Jason Z; Roman, Gheorghe; Dercho, Ryan A; Kinobe, Robert T; Hum, Maaike; Brien, James F; Jia, Zongchao; Szarek, Walter A; Nakatsu, Kanji

    2010-04-01

    Recombinant truncated forms of heme oxygenase-1 and -2 (HO-1 and HO-2) were compared with their crude microsomal counterparts from brain and spleen tissue of adult male rats with respect to their inhibition by azole-based, nonporphyrin HO inhibitors. The drugs tested were an imidazole-alcohol, an imidazole-dioxolane, and a triazole-ketone. Both the recombinant and crude forms of HO-2 were similarly inhibited by the 3 drugs. The crude microsomal spleen form of HO-1 was more susceptible to inhibition than was the truncated recombinant form. This difference is attributed to the extra amino acids in the full-length enzyme. These observations may be relevant in the design of drugs as inhibitors of HO and other membrane proteins. PMID:20555417

  19. Detoxification of Indole by an Indole-Induced Flavoprotein Oxygenase from Acinetobacter baumannii

    PubMed Central

    Lin, Guang-Huey; Chen, Hao-Ping; Shu, Hung-Yu

    2015-01-01

    Indole, a derivative of the amino acid tryptophan, is a toxic signaling molecule, which can inhibit bacterial growth. To overcome indole-induced toxicity, many bacteria have developed enzymatic defense systems to convert indole to non-toxic, water-insoluble indigo. We previously demonstrated that, like other aromatic compound-degrading bacteria, Acinetobacter baumannii can also convert indole to indigo. However, no work has been published investigating this mechanism. Here, we have shown that the growth of wild-type A. baumannii is severely inhibited in the presence of 3.5 mM indole. However, at lower concentrations, growth is stable, implying that the bacteria may be utilizing a survival mechanism to oxidize indole. To this end, we have identified a flavoprotein oxygenase encoded by the iifC gene of A. baumannii. Further, our results suggest that expressing this recombinant oxygenase protein in Escherichia coli can drive indole oxidation to indigo in vitro. Genome analysis shows that the iif operon is exclusively present in the genomes of A. baumannii and Pseudomonas syringae pv. actinidiae. Quantitative PCR and Western blot analysis also indicate that the iif operon is activated by indole through the AraC-like transcriptional regulator IifR. Taken together, these data suggest that this species of bacteria utilizes a novel indole-detoxification mechanism that is modulated by IifC, a protein that appears to be, at least to some extent, regulated by IifR. PMID:26390211

  20. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection

    SciTech Connect

    Meseda, Clement A.; Srinivasan, Kumar; Wise, Jasen; Catalano, Jennifer; Yamada, Kenneth M.; Dhawan, Subhash

    2014-11-07

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection.

  1. Detoxification of Indole by an Indole-Induced Flavoprotein Oxygenase from Acinetobacter baumannii.

    PubMed

    Lin, Guang-Huey; Chen, Hao-Ping; Shu, Hung-Yu

    2015-01-01

    Indole, a derivative of the amino acid tryptophan, is a toxic signaling molecule, which can inhibit bacterial growth. To overcome indole-induced toxicity, many bacteria have developed enzymatic defense systems to convert indole to non-toxic, water-insoluble indigo. We previously demonstrated that, like other aromatic compound-degrading bacteria, Acinetobacter baumannii can also convert indole to indigo. However, no work has been published investigating this mechanism. Here, we have shown that the growth of wild-type A. baumannii is severely inhibited in the presence of 3.5 mM indole. However, at lower concentrations, growth is stable, implying that the bacteria may be utilizing a survival mechanism to oxidize indole. To this end, we have identified a flavoprotein oxygenase encoded by the iifC gene of A. baumannii. Further, our results suggest that expressing this recombinant oxygenase protein in Escherichia coli can drive indole oxidation to indigo in vitro. Genome analysis shows that the iif operon is exclusively present in the genomes of A. baumannii and Pseudomonas syringae pv. actinidiae. Quantitative PCR and Western blot analysis also indicate that the iif operon is activated by indole through the AraC-like transcriptional regulator IifR. Taken together, these data suggest that this species of bacteria utilizes a novel indole-detoxification mechanism that is modulated by IifC, a protein that appears to be, at least to some extent, regulated by IifR. PMID:26390211

  2. Active site of ribulosebisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.; Stringer, C.D.; Milanez, S.; Lee, E.H.

    1985-01-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of ribulosebisphosphate carboxylase/oxygenase and have suggested their essentiality to function. The essential lysines occupy positions 166 and 329 in the Rhodospirillum rubrum enzyme and positions 175 and 334 in the spinach enzyme. Based on the pH-dependencies of inactivations of the two enzymes by trinitrobenzene sulfonate, Lys-166 (R. rubrum enzyme) exhibits a pK/sub a/ of 7.9 and Lys-334 (spinach enzyme) exhibits a pK/sub a/ of 9.0. These low pK/sub a/ values as well as the enhanced nucleophilicities of the lysyl residues argue that both are important to catalysis rather than to substrate binding. Lys-166 may correspond to the essential base that initiates catalysis and that displays a pK/sub a/ of 7.5 in the pH-curve for V/sub max//K/sub m/. Cross-linking experiments with 4,4'-diisothiocyano-2,2'-disulfonate stilbene demonstrate that the two active-site lysines are within 12 A. 50 refs., 7 figs., 1 tab.

  3. Anti-inflammatory effects of Saururus chinensis aerial parts in murine macrophages via induction of heme oxygenase-1

    PubMed Central

    Meng, Xue; Kim, Inhye; Jeong, Yong Joon; Cho, Young Mi

    2016-01-01

    Saururus chinensis (Lour.) Baill. is a perennial plant distributed throughout Northeast Asia and its roots have been widely used as a traditional medicine for hepatitis, asthma, pneumonia, and gonorrhea. This study was designed to investigate the anti-inflammatory activity of an extract of S. chinensis of the aerial parts (rather than the root), and the signaling pathway responsible for this effect in lipopolysaccharide-stimulated murine macrophages. The subfraction 4 (SCF4) from the n-hexane layer of the ethanol extract of the aerial parts of S. chinensis exhibited the highest nitrite-inhibitory activity. SCF4 significantly inhibited the production of nitrite and the expression of pro-inflammatory mediators via heme oxygenase-1 upregulation. SCF4 caused significant phosphorylation of p38 MAPK and Akt, which subsequently induced the nuclear translocation of p-p65 nuclear factor-κB and Nrf2. SCF4 also suppressed the phosphorylation of signal transducers and activators of transcription 1 (p-STAT1). The heme oxygenase-1 inhibitor zinc protoporphyrin attenuated the inhibitory effect of SCF4 on lipopolysaccharide-stimulated nitrite production and expression of inflammatory mediators, tumor necrosis factor alpha, and p-STAT1. We identified sauchinone as the active compound in S. chinensis extract and SCF4. Sauchinone was shown to significantly inhibit nitrite production and inflammatory mediators expression via heme oxygenase-1 upregulation. These results suggest that S. chinensis extract, SCF4, and its active compound, sauchinone, could be used as an anti-inflammatory agent. PMID:26553125

  4. Modulation of haem oxygenase-1 expression by nitric oxide and leukotrienes in zymosan-activated macrophages

    PubMed Central

    Vicente, Ana María; Guillén, María Isabel; Alcaraz, María José

    2001-01-01

    Phagocytosis of unopsonized zymosan by RAW 264.7 macrophages upregulated protein expression of haem oxygenase-1 (HO-1), inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) in a time- and concentration-dependent manner. In the presence of zymosan, exogenous prostaglandin E2 (PGE2) did not exert significant effects on the expression of these three enzymes. In contrast, exogenous leukotriene B4 (LTB4) and LTC4 in the nanomolar range inhibited HO-1 and iNOS expression, as well as nitrite accumulation. The COX inhibitors indomethacin and NS398 weakly inhibited HO-1 expression but had no effect on iNOS and COX-2 expression or nitrite. In contrast, the 5-lipoxygenase (5-LO) inhibitor ZM 230,487 significantly decreased HO-1, iNOS and nitrite, which were not affected by zileuton. Dexamethasone showed an inhibitory effect on HO-1 expression induced by zymosan. ZM 230,487 but not zileuton, inhibited the shift due to nuclear factor-κB (NF-κB), whereas they did not modify activator protein-1 (AP-1) binding. Our results suggest that inhibition of NF-κB binding could mediate the effects of ZM 230,487 on the modulation of HO-1 and iNOS protein expression. NOS inhibition by L-NG-nitroarginine methyl ester (L-NAME) or 1400 W abolished nitrite production and strongly reduced HO-1 expression. These results show an induction of HO-1 protein expression by zymosan phagocytosis in macrophages, with a positive modulatory role for endogenous NO and a negative regulation by exogenous LTs, likely dependent on the reduction of iNOS expression and NO production. PMID:11454666

  5. The toxicity of the N-hydroxy and 6-hydroxy metabolites of 3,4-dichloropropionanilide does not depend on calcium release-activated calcium channel inhibition.

    PubMed

    Lewis, Tricia L; Holásková, Ida; Barnett, John B

    2013-02-01

    Each year ~1 billion kg of herbicides are used worldwide to control the unwanted growth of plants. In the United States, over a quarter of a billion kg of herbicides are used, representing 28% of worldwide use. (Kiely, T., Donaldson, D., and Grube, A. [2004]. Pesticide Industry Sales and Usage. 2000 and 2001 Market Estimates. Available at: http://www.epa.gov/pesticides/pestsales/01pestsales/market_estimates2001.pdf. Accessed October 25, 2012.) Propanil (3,4-dichloropropionanilide [DCPA]) is a commonly used herbicide in the United States, with 2-4 million kg applied annually to 2 million acres of crop land. The immunomodulatory effects of DCPA have been well documented, but limited data are available on the effects of its metabolites. (Salazar, K. D., Ustyugova, I. V., Brundage, K. M., Barnett, J. B., and Schafer, R. [2008]. A review of the immunotoxicity of the pesticide 3,4-dichloropropionanalide. J. Toxicol. Environ. Health B Crit. Rev. 11, 630-645.) In mammals, hepatic enzymes metabolize DCPA, resulting in the production of 3,4-dichloroaniline (DCA). Further biotransformation of DCA leads to the production of 6-hydroxy-3,4-dichloroaniline (6OH-DCA) and N-hydroxy-3,4-dichloroaniline (NOH-DCA). We report, for the first time, the immunotoxic effects of DCPA metabolites on T-cell function. Human Jurkat T cells were exposed to varying concentrations of DCPA or its metabolites and assayed for effects on T-cell function. In addition, fluorine analogs of DCPA and DCA were investigated to determine the relative role of chlorine substituents on T-cell immunotoxicity. Here we report that exposure of Jurkat T cells to DCPA and DCA alters IL-2 secretion, nuclear factor of activated T cells (NFAT) activity, and calcium influx. However, exposure to 6OH-DCA and NOH-DCA reduces IL-2 secretion and NFAT activity but has no effect on calcium flux. When both chlorines in DCPA and DCA were substituted with fluorines all effects were abrogated. Our data indicate that metabolites of

  6. Purification and characterization of heme oxygenase from chick liver. Comparison of the avian and mammalian enzymes.

    PubMed

    Bonkovsky, H L; Healey, J F; Pohl, J

    1990-04-20

    A major inducible form of heme oxygenase (EC 1.14.99.3) was purified from liver microsomes of chicks pretreated with cadmium chloride. The purification involved solubilization of microsomes with Emulgen 913 and sodium cholate, followed by DEAE-Sephacel, carboxymethyl-cellulose (CM-52) and hydroxyapatite chromatography, and FPLC through Superose 6 and 12 columns operating in series. The final product gave a single band on silver-stained SDS/polyacrylamide gels (Mr = 33,000). Optimal conditions for measurement of activity of solubilized heme oxygenase were studied. In a reconstituted system containing purified heme oxygenase, NADPH-cytochrome reductase, biliverdin reductase and NADPH, the Km for free heme was 3.8 +/- 0.5 microM; for heme in the presence of bovine serum albumin (5 mol heme/3 mol albumin) the Km was 5.0 +/- 0.8 microM; and the Km for NADPH was 6.1 +/- 0.4 microM (all values mean +/- SD, n = 3). Oxygen concentration as low as 15 microM, with saturating concentrations of heme and NADPH, did not affect the reaction rate, indicating that the supply of oxygen is not involved in the physiological regulation of activity of the enzyme. The pH optimum of the reaction was 7.4; at 37 degrees C, the apparent Vmax was 580 +/- 44 nmol biliverdin.(mg protein)-1.min-1 and the molecular activity was 19.2 min-1. Biliverdin IXa was the sole biliverdin isomer formed. In the presence of purified biliverdin reductase, biliverdin was converted quantitatively to bilirubin. Addition of catalase to the reconstituted system decreased the breakdown of heme to non-biliverdin products and led to nearly stoichiometric conversion of heme to biliverdin. Activity of the enzyme in the reconstituted system was inhibited by metalloporphyrins in the following order of decreasing potency: tin mesoporphyrin greater than tin protoporphyrin greater than zinc protoporphyrin greater than manganese protoporphyrin greater than cobalt protoporphyrin. Protoporphyrin (3.3 or 6.6 microM) (and several

  7. Mesenchymal Stromal Cells Expressing Heme Oxygenase-1 Reverse Pulmonary Hypertension

    PubMed Central

    Liang, Olin D.; Mitsialis, S. Alex; Chang, Mun Seog; Vergadi, Eleni; Lee, Changjin; Aslam, Muhammad; Fernandez-Gonzalez, Angeles; Liu, Xianlan; Baveja, Rajiv; Kourembanas, Stella

    2012-01-01

    Pulmonary arterial hypertension (PAH) remains a serious disease, and, while current treatments may prolong and improve quality of life, search for novel and effective therapies is warranted. Using genetically-modified mouse lines, we tested the ability of bone marrow-derived stromal cells (MSCs), to treat chronic hypoxia-induced PAH. Recipient mice were exposed for five weeks to normobaric hypoxia (8%–10% O2), MSC preparations were delivered through jugular vein injection and their effect on PAH was assessed after two additional weeks in hypoxia. Donor MSCs derived from wild-type (WT) mice or Heme Oxygenase-1 (HO-1) null mice (Hmox1KO) conferred partial protection from PAH when transplanted into WT or Hmox1KO recipients, whereas treatment with MSCs isolated from transgenic mice harboring a human HO-1 transgene under the control of surfactant protein C promoter (SHO1 line) reversed established disease in WT recipients. SH01-MSC treatment of Hmox1KO animals, which develop right ventricular (RV) infarction under prolonged hypoxia, resulted in normal RV systolic pressure, significant reduction of RV hypertrophy and prevention of RV infarction. Donor MSCs isolated from a bitransgenic mouse line with doxycycline-inducible, lung-specific expression of HO-1 exhibited similar therapeutic efficacy only upon doxycycline treatment of the recipients. In vitro experiments indicate that potential mechanisms of MSC action include modulation of hypoxia-induced lung inflammation and inhibition of smooth muscle cell proliferation. Cumulative, our results demonstrate that MSCs ameliorate chronic hypoxia – induced PAH and their efficacy is highly augmented by lung-specific HO-1 expression in the transplanted cells, suggesting an interplay between HO-1 dependent and HO-1 independent protective pathways. PMID:20957739

  8. Functional imaging: monitoring heme oxygenase-1 gene expression in vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Weisheng; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    The regulation of genetic elements can be monitored in living animals using photoproteins as reporters. Heme oxygenase (HO) is the key catabolic enzyme in the heme degradation pathway. Here, HO expression serves as a model for in vivo functional imaging of transcriptional regulation of a clinically relevant gene. HO enzymatic activity is inhibited by heme analogs, metalloporphyrins, but many members of this family of compounds also activate transcription of the HO-1 promoter. The degree of transcriptional activation by twelve metalloporphyrins, differing at the central metal and porphyrin ring substituents, was evaluated in both NIH 3T3 stable lines and transgenic animals containing HO-1 promoter-luciferase gene fusions. In the correlative cell culture assays, the metalloporphyrins increased transcription form the full length HO promoter fusion to varying degrees, but none increased transcription from a truncated HO-1 promoter. These results suggested that one or both of the two distal enhancer elements located at -4 and -10 Kb upstream from transcriptional start are required for HO-1 induction by heme and its analogs. The full-length HO-1-luc fusion was then evaluated as a transgene in mice. It was possible to monitor the effects of the metalloporphyrins, SnMP and ZnPP, in living animals over time. This spatiotemporal analyses of gene expression in vivo implied that alterations in porphyrin ring substituents and the central metal may affect the extent of gene activation. These data further indicate that using photoprotein reporters, subtle differences in gene expression can be monitored in living animals.

  9. Heme-dependent Metabolite Switching Regulates H2S Synthesis in Response to Endoplasmic Reticulum (ER) Stress.

    PubMed

    Kabil, Omer; Yadav, Vinita; Banerjee, Ruma

    2016-08-01

    Substrate ambiguity and relaxed reaction specificity underlie the diversity of reactions catalyzed by the transsulfuration pathway enzymes, cystathionine β-synthase (CBS) and γ-cystathionase (CSE). These enzymes either commit sulfur metabolism to cysteine synthesis from homocysteine or utilize cysteine and/or homocysteine for synthesis of H2S, a signaling molecule. We demonstrate that a kinetically controlled heme-dependent metabolite switch in CBS regulates these competing reactions where by cystathionine, the product of CBS, inhibits H2S synthesis by the second enzyme, CSE. Under endoplasmic reticulum stress conditions, induction of CSE and up-regulation of the CBS inhibitor, CO, a product of heme oxygenase-1, flip the operating preference of CSE from cystathionine to cysteine, transiently stimulating H2S production. In contrast, genetic deficiency of CBS leads to chronic stimulation of H2S production. This metabolite switch from cystathionine to cysteine and/or homocysteine renders H2S synthesis by CSE responsive to the known modulators of CBS: S-adenosylmethionine, NO, and CO. Used acutely, it regulates H2S synthesis; used chronically, it might contribute to disease pathology. PMID:27365395

  10. Interaction of nitric oxide with human heme oxygenase-1.

    PubMed

    Wang, Jinling; Lu, Shen; Moënne-Loccoz, Pierre; Ortiz de Montellano, Paul R

    2003-01-24

    NO and CO may complement each other as signaling molecules in some physiological situations. We have examined the binding of NO to human heme oxygenase-1 (hHO-1), an enzyme that oxidizes heme to biliverdin, CO, and free iron, to determine whether inhibition of hHO-1 by NO can contribute to the signaling interplay of NO and CO. An Fe(3+)-NO hHO-1-heme complex is formed with NO or the NO donors NOC9 or 2-(N,N-diethylamino)-diazenolate-2-oxide.sodium salt. Resonance Raman spectroscopy shows that ferric hHO-1-heme forms a 6-coordinated, low spin complex with NO. The nu(N-O) vibration of this complex detected by Fourier transform IR is only 4 cm(-1) lower than that of the corresponding metmyoglobin (met-Mb) complex but is broader, suggesting a greater degree of ligand conformational freedom. The Fe(3+)-NO complex of hHO-1 is much more stable than that of met-Mb. Stopped-flow studies indicate that k(on) for formation of the hHO-1-heme Fe(3+)-NO complex is approximately 50-times faster, and k(off) 10 times slower, than for met-Mb, resulting in K(d) = 1.4 microm for NO. NO thus binds 500-fold more tightly to ferric hHO-1-heme than to met-Mb. The hHO-1 mutations E29A, G139A, D140A, S142A, G143A, G143F, and K179A/R183A do not significantly diminish the tight binding of NO, indicating that NO binding is not highly sensitive to mutations of residues that normally stabilize the distal water ligand. As expected from the K(d) value, the enzyme is reversibly inhibited upon exposure to pathologically, and possibly physiologically, relevant concentrations of NO. Inhibition of hHO-1 by NO may contribute to the pleiotropic responses to NO and CO.

  11. Pomegranate Juice Metabolites, Ellagic Acid and Urolithin A, Synergistically Inhibit Androgen-Independent Prostate Cancer Cell Growth via Distinct Effects on Cell Cycle Control and Apoptosis

    PubMed Central

    Vicinanza, Roberto; Henning, Susanne M.; Heber, David

    2013-01-01

    Ellagitannins (ETs) from pomegranate juice (PJ) are bioactive polyphenols with chemopreventive potential against prostate cancer (PCa). ETs are not absorbed intact but are partially hydrolyzed in the gut to ellagic acid (EA). Colonic microflora can convert EA to urolithin A (UA), and EA and UA enter the circulation after PJ consumption. Here, we studied the effects of EA and UA on cell proliferation, cell cycle, and apoptosis in DU-145 and PC-3 androgen-independent PCa cells and whether combinations of EA and UA affected cell proliferation. EA demonstrated greater dose-dependent antiproliferative effects in both cell lines compared to UA. EA induced cell cycle arrest in S phase associated with decreased cyclin B1 and cyclin D1 levels. UA induced a G2/M arrest and increased cyclin B1 and cdc2 phosphorylation at tyrosine-15, suggesting inactivation of the cyclin B1/cdc2 kinase complex. EA induced apoptosis in both cell lines, while UA had a less pronounced proapoptotic effect only in DU-145. Cotreatment with low concentrations of EA and UA dramatically decreased cell proliferation, exhibiting synergism in PC-3 cells evaluated by isobolographic analysis and combination index. These data provide information on pomegranate metabolites for the prevention of PCa recurrence, supporting the role of gut flora-derived metabolites for cancer prevention. PMID:23710216

  12. 3'-hydroxy-3,4,5,4'-tetramethoxystilbene, the metabolite of resveratrol analogue DMU-212, inhibits ovarian cancer cell growth in vitro and in a mice xenograft model.

    PubMed

    Piotrowska-Kempisty, Hanna; Ruciński, Marcin; Borys, Sylwia; Kucińska, Małgorzata; Kaczmarek, Mariusz; Zawierucha, Piotr; Wierzchowski, Marcin; Łażewski, Dawid; Murias, Marek; Jodynis-Liebert, Jadwiga

    2016-01-01

    In screening studies, the cytotoxic activity of four metabolites of resveratrol analogue 3,4,5,4'-tetramethoxystilbene (DMU-212) against A-2780 and SKOV-3 ovarian cancer cells was investigated. The most active metabolite, 3'-hydroxy-3,4,5,4'-tetramethoxystilbene (DMU-214), was chosen for further studies. The cytotoxicity of DMU-214 was shown to be higher than that of the parent compound, DMU-212, in both cell lines tested. Since DMU-212 was supposed to undergo metabolic activation through its conversion to DMU-214, an attempt was made to elucidate the mechanism of its anti-proliferative activity. We found that in SKOV-3 cells lacking p53, DMU-214 induced receptor-mediated apoptosis. In A-2780 cell line with expression of wild-type p53, DMU-214 modulated the expression pattern of p53-target genes driving intrinsic and extrinsic apoptosis pathways, as well as DNA repair and damage prevention. Regardless of the up-regulation of p48, p53R2, sestrins and Gaad45 genes involved in cancer cell DNA repair, we demonstrated the stronger anti-proliferative and pro-apoptotic effects of DMU-214 in A-2780 cells when compared to those in SKOV-3. Hence we verified DMU-214 activity in the xenograft model using SCID mice injected with A-2780 cells. The strong anti-proliferative activity of DMU-214 in the in vivo model allowed to suggest the tested compound as a potential therapeutic in ovarian cancer treatment. PMID:27585955

  13. Substrate Promotes Productive Gas Binding in the α-Ketoglutarate-Dependent Oxygenase FIH.

    PubMed

    Taabazuing, Cornelius Y; Fermann, Justin; Garman, Scott; Knapp, Michael J

    2016-01-19

    The Fe(2+)/α-ketoglutarate (αKG)-dependent oxygenases use molecular oxygen to conduct a wide variety of reactions with important biological implications, such as DNA base excision repair, histone demethylation, and the cellular hypoxia response. These enzymes follow a sequential mechanism in which O2 binds and reacts after the primary substrate binds, making those structural factors that promote productive O2 binding central to their chemistry. A large challenge in this field is to identify strategies that engender productive turnover. Factor inhibiting HIF (FIH) is a Fe(2+)/αKG-dependent oxygenase that forms part of the O2 sensing machinery in human cells by hydroxylating the C-terminal transactivation domain (CTAD) found within the HIF-1α protein. The structure of FIH was determined with the O2 analogue NO bound to Fe, offering the first direct insight into the gas binding geometry in this enzyme. Through a combination of density functional theory calculations, {FeNO}(7) electron paramagnetic resonance spectroscopy, and ultraviolet-visible absorption spectroscopy, we demonstrate that CTAD binding stimulates O2 reactivity by altering the orientation of the bound gas molecule. Although unliganded FIH binds NO with moderate affinity, the bound gas can adopt either of two orientations with similar stability; upon CTAD binding, NO adopts a single preferred orientation that is appropriate for supporting oxidative decarboxylation. Combined with other studies of related enzymes, our data suggest that substrate-induced reorientation of bound O2 is the mechanism utilized by the αKG oxygenases to tightly couple O2 activation to substrate hydroxylation. PMID:26727884

  14. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  15. Protective role of heme oxygenase-1 in Listeria monocytogenes-induced abortion.

    PubMed

    Tachibana, Masato; Hashino, Masanori; Nishida, Takashi; Shimizu, Takashi; Watarai, Masahisa

    2011-01-01

    It is well-known fact that various pathogens, including bacteria, virus, and protozoa, induce abortion in humans and animals. However the mechanisms of infectious abortion are little known. In this study, we demonstrated that Listeria monocytogenes infection in trophoblast giant cells decreased heme oxygenase (HO)-1 and B-cell lymphoma-extra large (Bcl-XL) expression, and that their overexpression inhibited cell death induced by the infection. Furthermore, HO-1 and Bcl-XL expression levels were also decreased by L. monocytogenes in pregnant mice. Treatment with cobalt protoporphyrin, which is known to induce HO-1, inhibited infectious abortion. Taken together, our study indicates that L. monocytogenes infection decreases HO-1 and Bcl-XL expression and induces cell death in placenta, leading to infectious abortion.

  16. Beyond gastric acid reduction: Proton pump inhibitors induce heme oxygenase-1 in gastric and endothelial cells

    SciTech Connect

    Becker, Jan C. . E-mail: beckeja@uni-muenster.de; Grosser, Nina; Waltke, Christian; Schulz, Stephanie; Erdmann, Kati; Domschke, Wolfram; Schroeder, Henning; Pohle, Thorsten

    2006-07-07

    Proton pump inhibitors (PPIs) have been demonstrated to prevent gastric mucosal injury by mechanisms independent of acid inhibition. Here we demonstrate that both omeprazole and lansoprazole protect human gastric epithelial and endothelial cells against oxidative stress. This effect was abrogated in the presence of the heme oxygenase-1 (HO-1) inhibitor ZnBG. Exposure to either PPI resulted in a strong induction of HO-1 expression on mRNA and protein level, and led to an increased activity of this enzyme. Expression of cyclooxygenase isoforms 1 and 2 remained unaffected, and COX-inhibitors did not antagonize HO-1 induction by PPIs. Our results suggest that the antioxidant defense protein HO-1 is a target of PPIs in both endothelial and gastric epithelial cells. HO-1 induction might account for the gastroprotective effects of PPIs independently of acid inhibition, especially in NSAID gastropathy. Moreover, our findings provide additional perspectives for a possible but yet unexplored use of PPIs in vasoprotection.

  17. Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria.

    PubMed

    Lee, Do Gyun; Chu, Kung-Hui

    2013-11-01

    Triclosan is an antimicrobial agent, an endocrine disrupting compound, and an emerging contaminant in the environment. This is the first study investigating triclosan biodegradation potential of four oxygenase-expressing bacteria: Rhodococcus jostii RHA1, Mycobacterium vaccae JOB5, Rhodococcus ruber ENV425, and Burkholderia xenovorans LB400. B. xenovorans LB400 and R. ruber ENV425 were unable to degrade triclosan. Propane-grown M. vaccae JOB5 can completely degrade triclosan (5 mg L(-1)). R. jostii RHA1 grown on biphenyl, propane, and LB medium with dicyclopropylketone (DCPK), an alkane monooxygenase inducer, was able to degrade the added triclosan (5 mg L(-1)) to different extents. Incomplete degradation of triclosan by RHA1 is probably due to triclosan product toxicity. The highest triclosan transformation capacity (Tc, defined as the amount of triclosan degraded/the number of cells inactivated; 5.63×10(-3) ng triclosan/16S rRNA gene copies) was observed for biphenyl-grown RHA1 and the lowest Tc (0.20×10(-3) ng-triclosan/16S rRNA gene copies) was observed for propane-grown RHA1. No triclosan degradation metabolites were detected during triclosan degradation by propane- and LB+DCPK-grown RHA1. When using biphenyl-grown RHA1 for degradation, four chlorinated metabolites (2,4-dichlorophenol, monohydroxy-triclosan, dihydroxy-triclosan, and 2-chlorohydroquinone (a new triclosan metabolite)) were detected. Based on the detected metabolites, a meta-cleavage pathway was proposed for triclosan degradation.

  18. 15-deoxy prostaglandin J2, the nonenzymatic metabolite of prostaglandin D2, induces apoptosis in keratinocytes of human hair follicles: a possible explanation for prostaglandin D2-mediated inhibition of hair growth.

    PubMed

    Joo, Hyun Woo; Kang, Yoo Ri; Kwack, Mi Hee; Sung, Young Kwan

    2016-07-01

    Recent studies have shown that prostaglandin D2 (PGD2) and its nonenzymatic metabolite, 15-deoxy-Δ(12,14)-prostaglandin J2 (15-dPGJ2), inhibit in vitro growth of explanted human hair follicles and inhibit hair growth in mice through the GPR44 (DP2). However, the underlying mechanism is still unclear. In this study, we first investigated the expression of DP2 in human hair follicles and in cultured follicular cells. We found that DP2 is strongly expressed in the outer root sheath (ORS) cells and weakly expressed in the dermal papilla (DP) cells. We observed slight growth stimulation when ORS and DP cells were treated with PGD2. We also observed slight growth stimulation when DP and ORS cells were treated with low concentrations (0.5 and 1 μM) of 15-dPGJ2. However, 5 μM 15-dPGJ2 inhibited the viability and caused apoptosis of both cell types. Exposure of cultured human hair follicles to 15-dPGJ2 resulted in significant apoptosis in follicular keratinocytes. Altogether, our data provide an evidence that 15-dPGJ2 promotes apoptosis in follicular keratinocytes and provide rationale for developing remedies for the prevention and treatment of hair loss based on DP2 antagonism.

  19. Aspirin metabolites are GPR35 agonists.

    PubMed

    Deng, Huayun; Fang, Ye

    2012-07-01

    Aspirin is widely used as an anti-inflammatory, anti-platelet, anti-pyretic, and cancer-preventive agent; however, the molecular mode of action is unlikely due entirely to the inhibition of cyclooxygenases. Here, we report the agonist activity of several aspirin metabolites at GPR35, a poorly characterized orphan G protein-coupled receptor. 2,3,5-Trihydroxybenzoic acid, an aspirin catabolite, was found to be the most potent GPR35 agonist among aspirin metabolites. Salicyluric acid, the main metabolite of aspirin, was also active. These results suggest that the GPR35 agonist activity of certain aspirin metabolites may contribute to the clinical features of aspirin. PMID:22526472

  20. Chromosomal localization of the human heme oxygenase genes: Heme oxygenase-1 (HMOX1) maps to chromosome 22q12 and heme oxygenase-2 (HMOX2) maps to chromosome 16p13. 3

    SciTech Connect

    Kutty, R.K.; Kutty, G.; Rodriguez, I.R.; Chader, G.J.; Wiggert, B. )

    1994-04-01

    Heme oxygenase catalyzes the oxidation of heme to biliverdin, the precursor of the bile pigment bilirubin, and carbon monoxide, a putative neurotransmitter. The authors have employed polymerase chain reaction and fluorescence in situ hybridization to determine the chromosome localization of the genes coding for the two known heme oxygenase isozymes. Heme oxygenase-1 (HMOX1), the inducible form, was localized to human chromosome 22q12, while heme oxygenase-2 (HMOX2), the constitutive form, was localized to chromosome 16p13.3. 14 refs., 3 figs.

  1. Kinetics of mixed function oxygenase induction and retene excretion in retene-exposed rainbow trout (Oncorhynchus mykiss)

    SciTech Connect

    Fragoso, N.M.; Hodson, P.V.; Kozin, I.S.; Brown, R.S.; Parrott, J.L.

    1999-10-01

    The polycyclic aromatic hydrocarbon 7-isopropyl-1-methylphenanthrene (retene) induces mixed function oxygenase (MFO) activity of fish. Bile levels of retene and its metabolite(s) were measured in relation to exposure time, exposure concentration, and induction of MFO activity. Synchronous fluorescence spectrometry provided a rapid means of measuring the amount of retene present in the bile of exposed fish, whereas conventional fluorescence spectrometry was used to quantify the amount of retene metabolites. Based on bile analysis, increased retene exposure resulted in an increased uptake of retene and a curvilinear increase in hepatic MFO activity. Retene was present in the bile within 6 h of initial exposure. However, retene metabolite(s) only appeared in the bile after MFO induction had occurred, 12 h after exposure had commenced, suggesting that MFO activity is required for metabolism. Transfer of fish to clean water after 48 h of exposure resulted in a rapid decrease in the presence of retene and its metabolite(s) in the bile, with a calculated half-life of about 14 h. In vitro additions of retene directly to the ethoxyresorufin O-deethylase assay demonstrated that retene is capable of acting as a competitive inhibitor. Thus, retene contamination of postmitochondrial supernatant (S9 fraction) could result in false-negative results in the MFO assay. The MFO activity in extrahepatic tissues (gills, heart, and kidney) was not significantly induced with retene exposure. Thus, the major site of retene metabolism seems to be in the liver. These results confirm that retene is rapidly taken up, metabolized, and excreted by rainbow trout, and that retene metabolism and excretion are linked to hepatic MFO induction.

  2. Secondary metabolites of the grapevine pathogen Eutypa lata inhibit mitochondrial respiration, based on a model bioassay using the yeast Saccharomyces cerevisiae.

    PubMed

    Kim, Jong H; Mahoney, Noreen; Chan, Kathleen L; Molyneux, Russell J; Campbell, Bruce C

    2004-10-01

    Acetylenic phenols and a chromene isolated from the grapevine fungal pathogen Eutypa lata were examined for mode of toxicity. The compounds included eutypine (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl aldehyde), eutypinol (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl alcohol), eulatachromene, 2- isoprenyl-5-formyl-benzofuran, siccayne, and eulatinol. A bioassay using the yeast Saccharomyces cerevisiae showed that all compounds were either lethal or inhibited growth. A respiratory assay using 2,3,5-triphenyltetrazolium (TTC) indicated that eutypinol and eulatachromene inhibited mitochondrial respiration in wild-type yeast. Bioassays also showed that 2- isoprenyl-5-formyl-benzofuran and siccayne inhibited mitochondrial respiration in the S. cerevisiae deletion mutant vph2Delta, lacking a vacuolar type H (+) ATPase (V-ATPase) assembly protein. Cell growth of tsa1Delta, a deletion mutant of S. cerevisiae lacking a thioredoxin peroxidase (cTPx I), was greatly reduced when grown on media containing eutypinol or eulatachromene and exposed to hydrogen peroxide (H(2)O(2)) as an oxidative stress. This reduction in growth establishes the toxic mode of action of these compounds through inhibition of mitochondrial respiration.

  3. Kidney dysfunction and hypertension: role for cadmium, p450 and heme oxygenases?

    PubMed

    Satarug, Soisungwan; Nishijo, Muneko; Lasker, Jerome M; Edwards, Robert J; Moore, Michael R

    2006-03-01

    Cadmium (Cd) is a metal toxin of continuing worldwide concern. Daily intake of Cd, albeit in small quantities, is associated with a number of adverse health effects which are attributable to distinct pathological changes in a variety of tissues and organs. In the present review, we focus on its renal tubular effects in people who have been exposed environmentally to Cd at levels below the provisional tolerable intake level set for the toxin. We highlight the data linking such low-level Cd intake with tubular injury, altered abundance of cytochromes P450 (CYPs) in the kidney and an expression of a hypertensive phenotype. We provide updated knowledge on renal and vascular effects of the eicosanoids 20-hydroxyeicosatetraenoic acid (20-HETE) and eicosatrienoic acids (EETs), which are biologically active metabolites from arachidonate metabolism mediated by certain CYPs in the kidney. We note the ability of Cd to elicit "oxidative stress" and to alter metal homeostasis notably of zinc which may lead to augmentation of the defense mechanisms involving induction of the antioxidant enzyme heme oxygenase-1 (HO-1) and the metal binding protein metallothionein (MT) in the kidney. We hypothesize that renal Cd accumulation triggers the host responses mediated by HO-1 and MT in an attempt to protect the kidney against injurious oxidative stress and to resist a rise in blood pressure levels. This hypothesis predicts that individuals with less active HO-1 (caused by the HO-1 genetic polymorphisms) are more likely to have renal injury and express a hypertensive phenotype following chronic ingestion of low-level Cd, compared with those having more active HO-1. Future analytical and molecular epidemiologic research should pave the way to the utility of induction of heme oxygenases together with dietary antioxidants in reducing the risk of kidney injury and hypertension in susceptible people.

  4. AN ELISA ASSAY FOR HEME OXYGENASE (HO-1)

    EPA Science Inventory

    An ELISA assay for heme oxygenase (HO-l )

    Abstract

    A double antibody capture ELISA for the HO-l protein has been developed to separately quantitate HO-I protein. The use of 2.5% NP40 detergent greatly assists in freeing HO-l protein from membranes and/or other cel...

  5. ARSENIC INDUCTION OF HEME OXYGENASE AS A BIOMARKER

    EPA Science Inventory


    Useful biomarkers of arsenic effects in both experimental animals and humans are needed. Arsenate and arsenite are good inducers of rat hepatic and renal heme oxygenase (HO); monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) are not. Therefore, HO enzyme induction ...

  6. Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation.

    PubMed Central

    Zakhary, R; Gaine, S P; Dinerman, J L; Ruat, M; Flavahan, N A; Snyder, S H

    1996-01-01

    Heme oxygenase 2 (HO-2), which synthesizes carbon monoxide (CO), has been localized by immunohistochemistry to endothelial cells and adventitial nerves of blood vessels. HO-2 is also localized to neurons in autonomic ganglia, including the petrosal, superior cervical, and nodose ganglia, as well as ganglia in the myenteric plexus of the intestine. Enzyme studies demonstrated that tin protoporphyrin-9 is a selective inhibitor of HO with approximately 10-fold selectivity for HO over endothelial nitric oxide synthase (NOS) and soluble guanylyl cyclase. Inhibition of HO activity by tin protoporphyrin 9 reverses the component of endothelial-derived relaxation of porcine distal pulmonary arteries not reversed by an inhibitor of NOS. Thus, CO, like NO, may have endothelial-derived relaxing activity. The similarity of NOS and HO-2 localizations and functions in blood vessels and the autonomic nervous system implies complementary and possibly coordinated physiologic roles for these two mediators. Images Fig. 1 Fig. 2 Fig. 3 PMID:8570637

  7. Serum iron increases with acute induction of hepatic heme oxygenase-1 in mice.

    PubMed

    Mostert, Volker; Nakayama, Akihiro; Austin, Lori M; Levander, Ximena A; Ferris, Christopher D; Hill, Kristina E; Burk, Raymond F

    2007-01-01

    Heme oxygenase (HO)-1 is induced by oxidative stress and protects against oxidant injury. We examined the effect of rapid induction of hepatic HO-1 on serum iron level. Serum iron was approximately doubled within 6 h when HO-1 was induced by phenobarbital treatment of selenium-deficient mice. Blocking heme synthesis with diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate (DDC) prevented the induction of HO-1 and the rise in serum iron. DDC did not block HO-1 induction by hemin. Inhibition of HO activity by tin protoporphyrin prevented a rise in serum iron that occurred following phorone treatment. These results indicate that heme synthesis or an exogenous source of heme is needed to allow induction of HO-1. Further, they link HO-1 induction with a rise in serum iron, suggesting that the iron resulting from catabolism of heme by HO-1 is released by the liver.

  8. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection.

    PubMed

    Meseda, Clement A; Srinivasan, Kumar; Wise, Jasen; Catalano, Jennifer; Yamada, Kenneth M; Dhawan, Subhash

    2014-11-01

    Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection. PMID:25450361

  9. The methoxychlor metabolite, 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane, inhibits steroidogenesis in rat ovarian granulosa cells in vitro.

    PubMed

    Zachow, Rob; Uzumcu, Mehmet

    2006-11-01

    The exquisitely balanced hormonal mechanisms that control female fertility can be affected by several internal and external factors including pathogens, genetic maladies, and environmental agents. In the latter group are natural and synthetic agents known as endocrine disruptors. One such compound, 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), is the predominant metabolite of the pesticide methoxychlor. The effects of HPTE on ovarian steroidogenesis have not been previously reported and were investigated in the present study. Granulosa cells harvested from immature rats were treated with follicle-stimulating hormone (FSH) or N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (db-cAMP) in the presence or absence of HPTE. After 48h, progesterone (P4) and estradiol-17beta (E2) concentrations were measured in the culture media. Steady-state levels of the mRNAs encoding steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase type 1 (3beta-HSD), and P450 aromatase (P450arom) were examined using real-time PCR. Both FSH- and db-cAMP-stimulated P(4) accumulation were impaired by HPTE. In contrast, FSH-, but not db-cAMP-stimulated, E2 content was suppressed by HPTE. The FSH-dependent increase in the abundance of P450scc, 3beta-HSD, and P450arom mRNAs was blocked by HPTE; however, StAR expression was not altered. Although db-cAMP-dependent P450arom was moderately reduced by HPTE, the levels of db-cAMP-dependent StAR, P450scc, and 3beta-HSD mRNAs were increased in the presence of HPTE. These data collectively show that HPTE can disrupt P4 and E2 production in granulosa cells, with implications for sites of action both preceding and following the generation of cAMP. The steroid-modulatory effects of HPTE in granulosa cells appear to involve the general suppression of the FSH-dependent expression of mRNAs encoding steroid pathway proteins, whereas the disparate effects of HPTE on cAMP-dependent m

  10. MiR-133a regarded as a potential biomarker for benzene toxicity through targeting Caspase-9 to inhibit apoptosis induced by benzene metabolite (1,4-Benzoquinone).

    PubMed

    Chen, Yujiao; Sun, Pengling; Bai, Wenlin; Gao, Ai

    2016-11-15

    Benzene is an environmental and industrial chemical which is widely utilized in various applications. Our previous study showed that miR-133a expression was down-regulated in chronic benzene poisoning workers, but the mechanism of miR-133a in benzene-induced hematotoxicity remains unclear. In this population-based study, benzene-exposed group recruited workers whose concentration of air benzene was 3.50±1.60mg/m(3), and control workers who were exposed to 0.06±0.01mg/m(3) air benzene. By comparison, Caspase-9 and Caspase-3 was up-regulated while miR-133a expression decreased in benzene-exposed workers. Pearson correlation analysis showed that miR-133a was reversely correlated with pro-apoptotic gene Caspase-9 in population-based study. Moreover, multiple linear regressions indicated that miR-133a was positively associated with blood cells count. To explore the underlying mechanism of miR-133a in benzene-induced hematotoxicity, AO/EB staining and TEM ultrastructural analysis were conducted to verify the activation of apoptosis in Human Leukemic U937 Cells induced by benzene metabolites (1,4-Benzoquinone, 1,4-BQ), while the mechanism of miR-133a in 1,4-BQ-induced apoptosis was performed using lentivirus vectors transfection. The results demonstrated that 1,4-BQ evidently induced mitochondria-mediated apoptosis and increased pro-apoptotic genes (Caspase-9 and Caspase-3) expression in a dose-dependent manner. The mechanistic study showed 1,4-BQ decreased miR-133a expression and miR-133a over-expression attenuated 1, 4-BQ-caused upregulation of Caspase-9, Caspase-3 and apoptosis. In conclusion, our research suggested that benzene induced hematotoxicity by decreasing miR-133a and caspase-dependent apoptosis which might contribute to the underlying mechanism of miR-133a in benzene-induced hematotoxicity.

  11. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen.

    PubMed

    Nagarajkumar, M; Bhaskaran, R; Velazhahan, R

    2004-01-01

    Fourteen strains of Pseudomonas fluorescens isolated from rhizosphere soil of rice were tested for their antagonistic effect towards Rhizoctonia solani, the rice sheath blight fungus. Among them, PfMDU2 was the most effective in inhibiting mycelial growth of R. solani in vitro. Production of chitinase, beta-1,3-glucanase, siderophores, salicylic acid (SA) and hydrogen cyanide (HCN) by P. fluorescens strains was evaluated. The highest beta-1,3-glucanase activity, siderophore production, SA production and HCN production were recorded with PfMDU2. A significant relationship between the antagonistic potential of P. fluorescens against R. solani and its level of beta-1,3-glucanase, SA and HCN was observed. PMID:15160609

  12. The reported active metabolite of methoxychlor, 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane, inhibits testosterone formation by cultured Leydig cells from neonatal rats.

    PubMed

    Murono, Eisuke P; Derk, Raymond C

    2005-01-01

    Methoxychlor (MC) is an insecticide that is presently used on agricultural crops, especially after the ban on the use of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) in the United States. Following administration in vivo, MC is converted to 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), which is thought to be the active agent. However, both MC and HPTE have been reported to have weak estrogenic and antiandrogenic activities, and they are thought to exert their potential adverse (endocrine disruptive) effects through the estrogen and androgen receptors, respectively. In a recent study, HPTE was shown to inhibit both basal and hCG-stimulated testosterone production by cultured Leydig cells from immature and adult rats, and these effects were reported to be mediated through the estrogen receptor. Because fetal Leydig cells represent a separate population from adult Leydig cells and many of the reported adverse actions of endocrine disruptors are thought to have their effects during gestational exposure, the present studies examined the effects of HPTE on testosterone formation by cultured fetal Leydig cells from neonatal rats to determine whether these cells are sensitive to HPTE. Our studies demonstrated that HPTE inhibited both basal and hCG-stimulated testosterone formation in a dose-dependent manner. Significant declines in testosterone were observed at about 100nM HPTE, and this effect was detected as early as 1h after exposure. The main effects of HPTE appeared to be localized to the cholesterol side-chain cleavage step which converts cholesterol to pregnenolone. In addition, this effect did not appear to be mediated through the estrogen receptor as a weak estrogen or the androgen receptor as an antiandrogen, which are the currently proposed modes of action of MC and HPTE.

  13. Apo-10'-lycopenoic acid, an enzymatic metabolite of lycopene, induces Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemopreventive effects of lycopene against certain types of cancers have been proposed to be mediated by its oxidative products/metabolites. Lycopene can be cleaved by carotene 9',10'-oxygenase at its 9',10' double bond to form apo-10'-lycopenoids, including apo-10'-lycopenal, -lycopenol and -...

  14. Apo-10'-lycopenoic acid, a lycopene 1 metabolite, increases sirtuin 1 mRNA and protein levels and decreases hepatic fat accumulation in ob/ob mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lycopene has been shown to be beneficial in protecting against high-fat diet-induced fatty liver. The recent demonstration that lycopene can be converted by carotene 99,10’-oxygenase into a biologically active metabolite, ALA, led us to propose that the function of lycopene can be mediated by ALA. I...

  15. NF-kappaB-dependent anti-inflammatory activity of urolithins, gut microbiota ellagic acid-derived metabolites, in human colonic fibroblasts.

    PubMed

    González-Sarrías, Antonio; Larrosa, Mar; Tomás-Barberán, Francisco Abraham; Dolara, Piero; Espín, Juan Carlos

    2010-08-01

    Previous studies have reported the anti-inflammatory properties of pomegranate extracts, suggesting that ellagitannins (ET) and ellagic acid (EA) are the main anti-inflammatory compounds. However, both ET and EA are metabolised in vivo by the gut microbiota to yield urolithins (Uro) which can be found in the gut and in systemic bloodstream. The present study was carried out to evaluate the individual effect of EA and their microbiota-derived metabolites Uro on colon fibroblasts upon IL-1beta treatment as an in vitro inflammation model. Uro-A and Uro-B (10 microm) inhibited PGE2 production (85 and 40 %, respectively) after IL-1beta stimulation, whereas EA did not show any effect. Uro-A, but not Uro-B, down-regulated cyclo-oxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) mRNA expression and protein levels. Both Uro inhibited NF-kappaB translocation to nucleus. Slight but significant effects were found in the activation of mitogen-activated protein kinase (MAPK) pathways. Uro-A lowered c-Jun N-terminal kinase phosphorylation state, and both Uro inhibited p38 activation. No metabolites derived from Uro or EA were found in the cell media upon incubation of EA or Uro with the cells, and only traces of the compounds were found inside the cells. The present results suggest that Uro, mainly Uro-A, are the main compounds that are responsible for the pomegranate anti-inflammatory properties. The mechanism of action implicated seems to be via the inhibition of activation of NF-kappaB and MAPK, down-regulation of COX-2 and mPGES-1 expressions, and consequently,via the reduction of PGE2 production. Taking into account that Uro did not enter the cells, a competitive binding for IL-1beta membrane receptor cannot be discarded.

  16. The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast.

    PubMed

    Roy, Adhiraj; Hashmi, Salman; Li, Zerui; Dement, Angela D; Cho, Kyu Hong; Kim, Jeong-Ho

    2016-03-01

    Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG has inhibitory effect on the growth of cells ranging from microorganisms to higher eukaryotes, but its molecular targets are largely unknown. The yeast cell-surface glucose sensors Rgt2 and Snf3 function as glucose receptors that sense extracellular glucose and generate a signal for induction of expression of genes encoding glucose transporters (HXTs). Here we provide evidence that these glucose sensors are primary targets of MG in yeast. MG inhibits the growth of glucose-fermenting yeast cells by inducing endocytosis and degradation of the glucose sensors. However, the glucose sensors with mutations at their putative ubiquitin-acceptor lysine residues are resistant to MG-induced degradation. These results suggest that the glucose sensors are inactivated through ubiquitin-mediated endocytosis and degraded in the presence of MG. In addition, the inhibitory effect of MG on the glucose sensors is greatly enhanced in cells lacking Glo1, a key component of the MG detoxification system. Thus the stability of these glucose sensors seems to be critically regulated by intracellular MG levels. Taken together, these findings suggest that MG attenuates glycolysis by promoting degradation of the cell-surface glucose sensors and thus identify MG as a potential glycolytic inhibitor.

  17. Walnut polyphenol metabolites, urolithins A and B, inhibit the expression of the prostate-specific antigen and the androgen receptor in prostate cancer cells.

    PubMed

    Sánchez-González, Claudia; Ciudad, Carlos J; Noé, Véronique; Izquierdo-Pulido, Maria

    2014-11-01

    Walnuts have been gathering attention for their health-promoting properties. They are rich in polyphenols, mainly ellagitannins (ETs) that after consumption are hydrolyzed to release ellagic acid (EA). EA is further metabolized by microbiota to form urolithins, such as A and B, which are absorbed. ETs, EA and urolithins have shown to slow the proliferation and growth of different types of cancer cells but the mechanisms remain unclear. We investigate the role of urolithins in the regulatory mechanisms in prostate cancer, specifically those related to the androgen receptor (AR), which have been linked to the development of this type of cancer. In our study, urolithins down-regulated the mRNA and protein levels of both prostate specific antigen (PSA) and AR in LNCaP cells. The luciferase assay performed with a construct containing three androgen response elements (AREs) showed that urolithins inhibit AR-mediated PSA expression at the transcriptional level. Electrophoretic mobility shift assays revealed that urolithins decreased AR binding to its consensus response element. Additionally, urolithins induced apoptosis in LNCaP cells, and this effect correlated with a decrease in Bcl-2 protein levels. In summary, urolithins attenuate the function of the AR by repressing its expression, causing a down-regulation of PSA levels and inducing apoptosis. Our results suggest that a diet rich in ET-containing foods, such as walnuts, could contribute to the prevention of prostate cancer.

  18. Carbon monoxide modulates the response of human basophils to FcepsilonRI stimulation through the heme oxygenase pathway.

    PubMed

    Vannacci, Alfredo; Baronti, Roberto; Zagli, Giovanni; Marzocca, Cosimo; Pierpaoli, Simone; Bani, Daniele; Passani, Maria Beatrice; Mannaioni, Pier Francesco; Masini, Emanuela

    2003-04-01

    We report the effects of exogenous and endogenous carbon monoxide (CO) on the immunological activation of human basophils. Hemin (1-100 microM), a heme oxygenase substrate analogue, significantly increased the formation of bilirubin from partially purified human basophils, thus indicating that these cells express heme oxygenase. This effect was reversed by preincubating the cells for 30 min with Zn-protoporphyrin IX (100 microM), a heme oxygenase inhibitor. Hemin (100 microM) also decreased immunoglobulin G anti-Fcepsilon (anti-IgE)-induced activation of basophils, measured by the expression of a membrane granule-associated protein, identified as cluster differentiation protein 63 (CD63), and by histamine release. These effects were reversed by Zn-protoporphyrin IX (100 microM), by oxyhemoglobin (HbO(2)), a CO scavenger (100 microM), and by 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one (ODQ), an inhibitor of the soluble guanylyl cyclase (100 microM). Exposure of basophils to exogenous CO (10 microM for 30 min) also decreased their activation, while nitrogen (N(2)) was ineffective. HbO(2) and ODQ reversed the inhibition, reversing both membrane protein CD63 expression and histamine release to basal values. Both hemin and exogenous CO significantly raised cGMP levels in basophils and blunted the rise of calcium levels caused by immunological activation. This study suggests that CO increases cGMP formation, which in turn induces a fall in intracellular Ca(2+) concentration, thereby resulting in the inhibition of human basophil activation. PMID:12681441

  19. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    SciTech Connect

    Dong, Chenglong; Zheng, Haining; Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng; Ding, Dafa; Lu, Yibing

    2015-10-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.

  20. Inhibition by nonsteroidal antiinflammatory drugs of luminol-dependent human-granulocyte chemiluminescence and /sup 3/H FMLP binding. Effect of sulindac sulfide, indomethacin metabolite, and optical enantiomers (+) and (-) MK830

    SciTech Connect

    Van Dyke, K.; Peden, D.; Van Dyke, C.; Jones, G.; Castranova, V.; Ma, J.

    1982-03-01

    A system is described to evaluate for nonsteroidal antiinflammatory drugs by means of luminol-dependent human-granulocyte chemiluminescence (CL) is described. The CL is produced using either opsonized zymosan (yeast cells) or the soluble chemotactic peptide f-Met-Leu-Phe as the perturbant of the granulocyte membrane. Using either system, the following drug effects 2 x 10(-5) M were noted: only sulindac sulfide, and not sulindac sulfone or sulindac, displayed marked inhibition of chemiluminescence, following the in vivo data regarding inflammatory effects. The 5-OH indomethacin metabolite was likewise inactive as an inhibitor of CL mirroring in vivo effects. MK(+)410, MK(-)830 and MK835 all showed approximately 50% inhibition of CL, displaying deviation from in vivo data. MK(+)830 markedly stimulated CL, 4-6 times the control (without drug), which is clearly different from its enantiomer, MK(-)830. The reasons for this behavior are unclear. However, receptor binding studies with /sup 3/H FMLP were accomplished in the presence and absence of the various drugs at 2 x 10(-5) M that were effective inhibitors of chemiluminescence (CL). Indomethacin, MK(-)830 and MK(+)410 had equivalent percent control binding and percent control CL. Sulindac sulfide and MK(+)835 both had higher percent control binding than percent control CL, with MK(+)835 displaying apparent increased numbers of available receptors relative to control. MK(+)830, which produces large increases in CL, produced a minor effect on percent control binding. A direct relationship between binding and CL does not exist with each drug. Chemiluminescence is dependent on ion movement and oxidative metabolism and is a secondary event to agonist-receptor occupation.

  1. Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery.

    PubMed

    Moss, Nathan A; Bertin, Matthew J; Kleigrewe, Karin; Leão, Tiago F; Gerwick, Lena; Gerwick, William H

    2016-03-01

    Filamentous marine cyanobacteria produce bioactive natural products with both potential therapeutic value and capacity to be harmful to human health. Genome sequencing has revealed that cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The biosynthetic pathways that encode cyanobacterial natural products are mostly uncharacterized, and lack of cyanobacterial genetic tools has largely prevented their heterologous expression. Hence, a combination of cutting edge and traditional techniques has been required to elucidate their secondary metabolite biosynthetic pathways. Here, we review the discovery and refined biochemical understanding of the olefin synthase and fatty acid ACP reductase/aldehyde deformylating oxygenase pathways to hydrocarbons, and the curacin A, jamaicamide A, lyngbyabellin, columbamide, and a trans-acyltransferase macrolactone pathway encoding phormidolide. We integrate into this discussion the use of genomics, mass spectrometric networking, biochemical characterization, and isolation and structure elucidation techniques.

  2. Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery

    PubMed Central

    Bertin, Matthew J.; Kleigrewe, Karin; Leão, Tiago F.; Gerwick, Lena

    2016-01-01

    Filamentous marine cyanobacteria produce bioactive natural products with both potential therapeutic value and capacity to be harmful to human health. Genome sequencing has revealed that cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The biosynthetic pathways that encode cyanobacterial natural products are mostly uncharacterized, and lack of cyanobacterial genetic tools has largely prevented their heterologous expression. Hence, a combination of cutting edge and traditional techniques has been required to elucidate their secondary metabolite biosynthetic pathways. Here, we review the discovery and refined biochemical understanding of the olefin synthase and fatty acid ACP reductase/aldehyde deformylating oxygenase pathways to hydrocarbons, and the curacin A, jamaicamide A, lyngbyabellin, columbamide, and a trans-acyltransferase macrolactone pathway encoding phormidolide. We integrate into this discussion the use of genomics, mass spectrometric networking, biochemical characterization, and isolation and structure elucidation techniques. PMID:26578313

  3. Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery.

    PubMed

    Moss, Nathan A; Bertin, Matthew J; Kleigrewe, Karin; Leão, Tiago F; Gerwick, Lena; Gerwick, William H

    2016-03-01

    Filamentous marine cyanobacteria produce bioactive natural products with both potential therapeutic value and capacity to be harmful to human health. Genome sequencing has revealed that cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The biosynthetic pathways that encode cyanobacterial natural products are mostly uncharacterized, and lack of cyanobacterial genetic tools has largely prevented their heterologous expression. Hence, a combination of cutting edge and traditional techniques has been required to elucidate their secondary metabolite biosynthetic pathways. Here, we review the discovery and refined biochemical understanding of the olefin synthase and fatty acid ACP reductase/aldehyde deformylating oxygenase pathways to hydrocarbons, and the curacin A, jamaicamide A, lyngbyabellin, columbamide, and a trans-acyltransferase macrolactone pathway encoding phormidolide. We integrate into this discussion the use of genomics, mass spectrometric networking, biochemical characterization, and isolation and structure elucidation techniques. PMID:26578313

  4. Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats.

    PubMed

    Sabaawy, H E; Zhang, F; Nguyen, X; ElHosseiny, A; Nasjletti, A; Schwartzman, M; Dennery, P; Kappas, A; Abraham, N G

    2001-08-01

    Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin, with release of free iron and carbon monoxide. Both heme and carbon monoxide have been implicated in the regulation of vascular tone. A retroviral vector containing human HO-1 cDNA (LSN-HHO-1) was constructed and subjected to purification and concentration of the viral particles to achieve 5x10(9) to 1x10(10) colony-forming units per milliliter. The ability of concentrated infectious viral particles to express human HO-1 (HHO-1) in vivo was tested. A single intracardiac injection of the concentrated infectious viral particles (expressing HHO-1) to 5-day-old spontaneously hypertensive rats resulted in functional expression of the HHO-1 gene and attenuation of the development of hypertension. Rats expressing HHO-1 showed a significant decrease in urinary excretion of a vasoconstrictor arachidonic acid metabolite and a reduction in myogenic responses to increased intraluminal pressure in isolated arterioles. Unexpectedly, HHO-1 chimeric rats showed a simultaneous significant proportionate increase in somatic growth. Thus, delivery of HHO-1 gene by retroviral vector attenuates the development of hypertension and promotes body growth in spontaneously hypertensive rats.

  5. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication

    PubMed Central

    Tseng, Chin-Kai; Lin, Chun-Kuang; Wu, Yu-Hsuan; Chen, Yen-Hsu; Chen, Wei-Chun; Young, Kung-Chia; Lee, Jin-Ching

    2016-01-01

    Dengue virus (DENV) infection and replication induces oxidative stress, which further contributes to the progression and pathogenesis of the DENV infection. Modulation of host antioxidant molecules may be a useful strategy for interfering with DENV replication. In this study, we showed that induction or exogenous overexpression of heme oxygenase-1 (HO-1), an antioxidant enzyme, effectively inhibited DENV replication in DENV-infected Huh-7 cells. This antiviral effect of HO-1 was attenuated by its inhibitor tin protoporphyrin (SnPP), suggesting that HO-1 was an important cellular factor against DENV replication. Biliverdin but not carbon monoxide and ferrous ions, which are products of the HO-1 on heme, mediated the HO-1-induced anti-DENV effect by non-competitively inhibiting DENV protease, with an inhibition constant (Ki) of 8.55 ± 0.38 μM. Moreover, HO-1 induction or its exogenous overexpression, rescued DENV-suppressed antiviral interferon response. Moreover, we showed that HO-1 induction by cobalt protoporphyrin (CoPP) and andrographolide, a natural product, as evidenced by a significant delay in the onset of disease and mortality, and virus load in the infected mice’s brains. These findings clearly revealed that a drug or therapy that induced the HO-1 signal pathway was a promising strategy for treating DENV infection. PMID:27553177

  6. Epigallocatechin activates haem oxygenase-1 expression via protein kinase Cδ and Nrf2

    PubMed Central

    Ogborne, Richard M.; Rushworth, Stuart A.; O’Connell, Maria A.

    2008-01-01

    The Nrf2/anti-oxidant response element (ARE) pathway plays an important role in regulating cellular anti-oxidants, including haem oxygenase-1 (HO-1). Various kinases have been implicated in the pathways leading to Nrf2 activation. Here, we investigated the effect of epigallocatechin (EGC) on ARE-mediated gene expression in human monocytic cells. EGC time and dose dependently increased HO-1 mRNA and protein expression but had minimal effect on expression of other ARE-regulated genes, including NAD(P)H:quinone oxidoreductase 1, glutathione cysteine ligase and ferritin. siRNA knock down of Nrf2 significantly inhibited EGC-induced HO-1 expression. Furthermore, inhibition of PKC by Ro-31-8220 dose dependently decreased EGC-induced HO-1 mRNA expression, whereas MAP kinase and phosphatidylinositol-3-kinase pathway inhibitors had no significant effect. EGC stimulated phosphorylation of PKCαβ and δ in THP-1 cells. PKCδ inhibition significantly decreased EGC-induced HO-1 mRNA expression, whereas PKCα- and β-specific inhibitors had no significant effect. These results demonstrate for the first time that EGC-induced HO-1 expression occurs via PKCδ and Nrf2. PMID:18586007

  7. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication.

    PubMed

    Tseng, Chin-Kai; Lin, Chun-Kuang; Wu, Yu-Hsuan; Chen, Yen-Hsu; Chen, Wei-Chun; Young, Kung-Chia; Lee, Jin-Ching

    2016-01-01

    Dengue virus (DENV) infection and replication induces oxidative stress, which further contributes to the progression and pathogenesis of the DENV infection. Modulation of host antioxidant molecules may be a useful strategy for interfering with DENV replication. In this study, we showed that induction or exogenous overexpression of heme oxygenase-1 (HO-1), an antioxidant enzyme, effectively inhibited DENV replication in DENV-infected Huh-7 cells. This antiviral effect of HO-1 was attenuated by its inhibitor tin protoporphyrin (SnPP), suggesting that HO-1 was an important cellular factor against DENV replication. Biliverdin but not carbon monoxide and ferrous ions, which are products of the HO-1 on heme, mediated the HO-1-induced anti-DENV effect by non-competitively inhibiting DENV protease, with an inhibition constant (Ki) of 8.55 ± 0.38 μM. Moreover, HO-1 induction or its exogenous overexpression, rescued DENV-suppressed antiviral interferon response. Moreover, we showed that HO-1 induction by cobalt protoporphyrin (CoPP) and andrographolide, a natural product, as evidenced by a significant delay in the onset of disease and mortality, and virus load in the infected mice's brains. These findings clearly revealed that a drug or therapy that induced the HO-1 signal pathway was a promising strategy for treating DENV infection. PMID:27553177

  8. Synthesis of Biologically Active Piperidine Metabolites of Clopidogrel: Determination of Structure and Analyte Development.

    PubMed

    Shaw, Scott A; Balasubramanian, Balu; Bonacorsi, Samuel; Cortes, Janet Caceres; Cao, Kevin; Chen, Bang-Chi; Dai, Jun; Decicco, Carl; Goswami, Animesh; Guo, Zhiwei; Hanson, Ronald; Humphreys, W Griffith; Lam, Patrick Y S; Li, Wenying; Mathur, Arvind; Maxwell, Brad D; Michaudel, Quentin; Peng, Li; Pudzianowski, Andrew; Qiu, Feng; Su, Shun; Sun, Dawn; Tymiak, Adrienne A; Vokits, Benjamin P; Wang, Bei; Wexler, Ruth; Wu, Dauh-Rurng; Zhang, Yingru; Zhao, Rulin; Baran, Phil S

    2015-07-17

    Clopidogrel is a prodrug anticoagulant with active metabolites that irreversibly inhibit the platelet surface GPCR P2Y12 and thus inhibit platelet activation. However, gaining an understanding of patient response has been limited due to imprecise understanding of metabolite activity and stereochemistry, and a lack of acceptable analytes for quantifying in vivo metabolite formation. Methods for the production of all bioactive metabolites of clopidogrel, their stereochemical assignment, and the development of stable analytes via three conceptually orthogonal routes are disclosed.

  9. Higher body weight patients on clopidogrel maintenance therapy have lower active metabolite concentrations, lower levels of platelet inhibition, and higher rates of poor responders than low body weight patients.

    PubMed

    Wagner, Henrik; Angiolillo, Dominick J; Ten Berg, Jurrien M; Bergmeijer, Thomas O; Jakubowski, Joseph A; Small, David S; Moser, Brian A; Zhou, Chunmei; Brown, Patricia; James, Stefan; Winters, Kenneth J; Erlinge, David

    2014-01-01

    Body weight is a predictor of clopidogrel response. However, no prospective studies have compared pharmacodynamic (PD) and pharmacokinetic (PK) data based on body weight. We compared PD and PK effects of clopidogrel 75 mg in low body weight (LBW, <60 kg) and higher body weight (HBW, ≥60 kg) patients with stable coronary artery disease. LBW (n = 34, 56.4 ± 3.7 kg) and HBW (n = 38, 84.7 ± 14.9 kg) aspirin-treated patients received clopidogrel 75 mg for 10-14 days. The area under the concentration-time curve of active metabolite (Clop-AM) calculated through the last quantifiable concentration up to 4 h postdose, AUC(0-tlast), was calculated by noncompartmental methods. Light transmission aggregometry (LTA) (maximum platelet aggregation and inhibition of platelet aggregation to 20 μM adenosine diphosphate (ADP), and residual platelet aggregation to 5 μM ADP), VerifyNow(®) P2Y12 reaction units (PRU), and vasodilator-associated stimulated phosphoprotein phosphorylation platelet reactivity index (VASP-PRI) were performed. Mean AUC(0-tlast) was lower in HBW than LBW patients: 12.8 versus 17.9 ng h/mL. HBW patients had higher platelet reactivity as measured by LTA (all p ≤ 0.01), PRU (207 ± 68 vs. 152 ± 57, p < 0.001), and VASP-PRI (56 ± 18 vs. 39 ± 17, p < 0.001). More HBW patients exhibited high on-treatment platelet reactivity (HPR) using PRU (35 vs. 9%) and VASP-PRI (65 vs. 27%). Body weight correlated with PRU and VASP-PRI (both p < 0.001), and inversely with log transformed AUC(0-tlast) (p < 0.001). In conclusion, HBW patients had lower levels of Clop-AM, and higher platelet reactivity and rates of HPR than LBW subjects, contributing to their suboptimal response to clopidogrel. PMID:24043374

  10. Mechanism and Catalytic Diversity of Rieske Non-Heme Iron-Dependent Oxygenases

    PubMed Central

    Barry, Sarah M.; Challis, Gregory L.

    2013-01-01

    Rieske non-heme iron-dependent oxygenases are important enzymes that catalyze a wide variety of reactions in the biodegradation of xenobiotics and the biosynthesis of bioactive natural products. In this perspective article, we summarize recent efforts to elucidate the catalytic mechanisms of Rieske oxygenases and highlight the diverse range of reactions now known to be catalyzed by such enzymes. PMID:24244885

  11. AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    EPA Science Inventory

    AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    Heme oxygenase (HO) occurs in biological tissues as two major isoforms HO-1 and HO-2. HO-1 is inducible by many treatments, particularly oxidative stress-related conditions such as depletion of gl...

  12. Cloning and Expression of cDNA for Rat Heme Oxygenase

    NASA Astrophysics Data System (ADS)

    Shibahara, Shigeki; Muller, Rita; Taguchi, Hayao; Yoshida, Tadashi

    1985-12-01

    Two cDNA clones for rat heme oxygenase have been isolated from a rat spleen cDNA library in λ gt11 by immunological screening using a specific polyclonal antibody. One of these clones has an insert of 1530 nucleotides that contains the entire protein-coding region. To confirm that the isolated cDNA encodes heme oxygenase, we transfected monkey kidney cells (COS-7) with the cDNA carried in a simian virus 40 vector. The heme oxygenase was highly expressed in endoplasmic reticulum of transfected cells. The nucleotide sequence of the cloned cDNA was determined and the primary structure of heme oxygenase was deduced. Heme oxygenase is composed of 289 amino acids and has one hydrophobic segment at its carboxyl terminus, which is probably important for the insertion of heme oxygenase into endoplasmic reticulum. The cloned cDNA was used to analyze the induction of heme oxygenase in rat liver by treatment with CoCl2 or with hemin. RNA blot analysis showed that both CoCl2 and hemin increased the amount of hybridizable mRNA, suggesting that these substances may act at the transcriptional level to increase the amount of heme oxygenase.

  13. Trichoderma secondary metabolites that affect plant metabolism.

    PubMed

    Vinale, Francesco; Sivasithamparam, Krishnapillai; Ghisalberti, Emilio L; Ruocco, Michelina; Wood, Sheridan; Lorito, Matteo

    2012-11-01

    Recently, there have been many exciting new developments relating to the use of Trichoderma spp. as agents for biocontrol of pathogens and as plant growth promoters. Several mechanisms have been proposed to explain the positive effects of these microorganisms on the plant host. One factor that contributes to their beneficial biological activities is related to the wide variety of metabolites that they produce. These metabolites have been found not only to directly inhibit the growth and pathogenic activities of the parasites, but also to increase disease resistance by triggering the system of defence in the plant host. In addition, these metabolites are also capable of enhancing plant growth, which enables the plant to counteract the disease with compensatory vegetative growth by the augmented production of root and shoot systems. This review takes into account the Trichoderma secondary metabolites that affect plant metabolism and that may play an important role in the complex interactions of this biocontrol agent with the plant and pathogens.

  14. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression

    PubMed Central

    Cho, Joon Hyeong; Kwon, Jung Eun; Cho, Youngmi; Kim, Inhye; Kang, Se Chan

    2015-01-01

    Angelica gigas (AG) is effective against various medical conditions such as bacterial infection, inflammation, and cancer. It contains a number of coumarin compounds and the group of interest is the pyranocoumarin, which comprises decursin and decursinol angelate. This group has an effect on controlling inflammation, which is caused by excessive nitric oxide (NO) production. Heme oxygenases (HOs), particularly HO-1, play a role in regulating the production of NO. Thus, this study aimed to investigate the anti-inflammatory effects of AG by measuring HO-1 expression. Treatments with CH2Cl2 layer and Angelica gigas extract (AGE) showed the highest NO inhibition effects. Decursin, decursinol angelate, and nodakenin were isolated from the CH2Cl2 layer of AGE. Decursin also demonstrated the highest anti-oxidative effect among the coumarins. Although decursin had the best NO inhibition and anti-oxidative effects, the effects of AGE treatment far surpassed that of decursin. This is owing to the combination effect of the coumarins present within AGE, which is a solvent extract of AG. The expression of HO-1 is an effective indicator of the anti-inflammatory effects of AG. Based on the results of the coumarin compounds, HO-1 expression was found to be dose dependent and specific to decursin. PMID:26083119

  15. Endogenous heme oxygenase prevents impairment of cerebral vascular functions caused by seizures.

    PubMed

    Carratu, Pierluigi; Pourcyrous, Massroor; Fedinec, Alex; Leffler, Charles W; Parfenova, Helena

    2003-09-01

    In newborn pigs, the mechanism of seizure-induced cerebral hyperemia involves carbon monoxide (CO), the vasodilator product of heme catabolism by heme oxygenase (HO). We hypothesized that seizures cause cerebral vascular dysfunction when HO activity is inhibited. With the use of cranial window techniques, we examined cerebral vascular responses to endothelium-dependent (hypercapnia and bradykinin) and endothelium-independent (isoproterenol and sodium nitroprusside) dilators during the recovery from bicuculline-induced seizures in saline controls and in animals pretreated with a HO inhibitor, tin protoporphyrin (SnPP). SnPP (3 mg/kg iv) blocked dilation to heme and reduced the CO level in cortical periarachnoid cerebrospinal fluid, indicating HO inhibition in the cerebral microcirculation. In saline control piglets, seizures increased the CO level, which correlated with the time-dependent cerebral vasodilation; during the recovery (2 h after seizure induction), responses to all vasodilators were preserved. In SnPP-treated animals, cerebral vasodilation and the CO responses to seizures were greatly reduced, and cerebral vascular reactivity was severely impaired during the recovery. These findings suggest that HO in the cerebral microcirculation is rapidly activated during seizures and provides endogenous protection against seizure-induced vascular injury.

  16. Dynamic ruffling distortion of the heme substrate in non-canonical heme oxygenase enzymes.

    PubMed

    Graves, Amanda B; Horak, Erik H; Liptak, Matthew D

    2016-06-14

    Recent work by several groups has established that MhuD, IsdG, and IsdI are non-canonical heme oxygenases that induce significant out-of-plane ruffling distortions of their heme substrates enroute to mycobilin or staphylobilin formation. However, clear explanations for the observations of "nested" S = ½ VTVH MCD saturation magnetization curves at cryogenic temperatures, and exchange broadened (1)H NMR resonances at physiologically-relevant temperatures have remained elusive. Here, MCD and NMR data have been acquired for F23A and F23W MhuD-heme-CN, in addition to MCD data for IsdI-heme-CN, in order to complete assembly of a library of spectroscopic data for cyanide-inhibited ferric heme with a wide range of ruffling deformations. The spectroscopic data were used to evaluate a number of computational models for cyanide-inhibited ferric heme, which ultimately led to the development of an accurate NEVPT2/CASSCF model. The resulting model has a shallow, double-well potential along the porphyrin ruffling coordinate, which provides clear explanations for the unusual MCD and NMR data. The shallow, double-well potential also implies that MhuD-, IsdG-, and IsdI-bound heme is dynamic, and the functional implications of these dynamics are discussed. PMID:27273757

  17. Heme oxygenase-1-derived bilirubin protects endothelial cells against high glucose-induced damage.

    PubMed

    He, Meihua; Nitti, Mariapaola; Piras, Sabrina; Furfaro, Anna Lisa; Traverso, Nicola; Pronzato, Maria Adelaide; Mann, Giovanni E

    2015-12-01

    Hyperglycemia and diabetes are associated with endothelial cell dysfunction arising from enhanced oxidative injury, leading to the progression of diabetic vascular pathologies. The redox-sensitive transcription factor nuclear factor-E2-related factor 2 (Nrf2) is a master regulator of antioxidant genes, such as heme oxygenase-1 (HO-1), involved in cellular defenses against oxidative stress. We have investigated the pathways involved in high glucose-induced activation of HO-1 in endothelial cells and examined the molecular mechanisms underlying cytoprotection. Elevated d-glucose increased intracellular generation of reactive oxygen species (ROS), leading to nuclear translocation of Nrf2 and HO-1 expression in bovine aortic endothelial cells, with no changes in cell viability. Superoxide scavenging and inhibition of endothelial nitric oxide synthase (eNOS) abrogated upregulation of HO-1 expression by elevated glucose. Inhibition of HO-1 increased the sensitivity of endothelial cells to high glucose-mediated damage, while addition of bilirubin restored cell viability. Our findings establish that exposure of endothelial cells to high glucose leads to activation of endogenous antioxidant defense genes via the Nrf2/ARE pathway. Upregulation of HO-1 provides cytoprotection against high glucose-induced oxidative stress through the antioxidant properties of bilirubin. Modulation of the Nrf2 pathway in the early stages of diabetes may thus protect against sustained damage by hyperglycemia during progression of the disease.

  18. Heme oxygenase-1, a critical arbitrator of cell death pathways in lung injury and disease.

    PubMed

    Morse, Danielle; Lin, Ling; Choi, Augustine M K; Ryter, Stefan W

    2009-07-01

    Increases in cell death by programmed (i.e., apoptosis, autophagy) or nonprogrammed mechanisms (i.e., necrosis) occur during tissue injury and may contribute to the etiology of several pulmonary or vascular disease states. The low-molecular-weight stress protein heme oxygenase-1 (HO-1) confers cytoprotection against cell death in various models of lung and vascular injury by inhibiting apoptosis, inflammation, and cell proliferation. HO-1 serves a vital metabolic function as the rate-limiting step in the heme degradation pathway and in the maintenance of iron homeostasis. The transcriptional induction of HO-1 occurs in response to multiple forms of chemical and physical cellular stress. The cytoprotective functions of HO-1 may be attributed to heme turnover, as well as to beneficial properties of its enzymatic reaction products: biliverdin-IXalpha, iron, and carbon monoxide (CO). Recent studies have demonstrated that HO-1 or CO inhibits stress-induced extrinsic and intrinsic apoptotic pathways in vitro. A variety of signaling molecules have been implicated in the cytoprotection conferred by HO-1/CO, including autophagic proteins, p38 mitogen-activated protein kinase, signal transducer and activator of transcription proteins, nuclear factor-kappaB, phosphatidylinositol 3-kinase/Akt, and others. Enhanced HO-1 expression or the pharmacological application of HO end-products affords protection in preclinical models of tissue injury, including experimental and transplant-associated ischemia/reperfusion injury, promising potential future therapeutic applications.

  19. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression.

    PubMed

    Cho, Joon Hyeong; Kwon, Jung Eun; Cho, Youngmi; Kim, Inhye; Kang, Se Chan

    2015-06-15

    Angelica gigas (AG) is effective against various medical conditions such as bacterial infection, inflammation, and cancer. It contains a number of coumarin compounds and the group of interest is the pyranocoumarin, which comprises decursin and decursinol angelate. This group has an effect on controlling inflammation, which is caused by excessive nitric oxide (NO) production. Heme oxygenases (HOs), particularly HO-1, play a role in regulating the production of NO. Thus, this study aimed to investigate the anti-inflammatory effects of AG by measuring HO-1 expression. Treatments with CH2Cl2 layer and Angelica gigas extract (AGE) showed the highest NO inhibition effects. Decursin, decursinol angelate, and nodakenin were isolated from the CH2Cl2 layer of AGE. Decursin also demonstrated the highest anti-oxidative effect among the coumarins. Although decursin had the best NO inhibition and anti-oxidative effects, the effects of AGE treatment far surpassed that of decursin. This is owing to the combination effect of the coumarins present within AGE, which is a solvent extract of AG. The expression of HO-1 is an effective indicator of the anti-inflammatory effects of AG. Based on the results of the coumarin compounds, HO-1 expression was found to be dose dependent and specific to decursin.

  20. Heme Oxygenase-1 Suppresses Bovine Viral Diarrhoea Virus Replication in vitro.

    PubMed

    Zhang, Chong; Pu, Fengxing; Zhang, Angke; Xu, Lele; Li, Na; Yan, Yunhuan; Gao, Jiming; Liu, Hongliang; Zhang, Gaiping; Goodfellow, Ian G; Zhou, En-Min; Xiao, Shuqi

    2015-10-29

    Viral cycle progression depends upon host-cell processes in infected cells, and this is true for bovine viral diarrhoea virus (BVDV), the causative agent of BVD that is a worldwide threat to the bovine industry. Heme oxygenase-1 (HO-1) is a ubiquitously expressed inducible isoform of the first and rate-limiting enzyme for heme degradation. Recent studies have demonstrated that HO-1 has significant antiviral properties, inhibiting the replication of viruses such as ebola virus, human immunodeficiency virus, hepatitis C virus, and porcine reproductive and respiratory syndrome virus. However, the function of HO-1 in BVDV infection is unclear. In the present study, the relationship between HO-1 and BVDV was investigated. In vitro analysis of HO-1 expression in BVDV-infected MDBK cells demonstrated that a decrease in HO-1 as BVDV replication increased. Increasing HO-1 expression through adenoviral-mediated overexpression or induction with cobalt protoporphyrin (CoPP, a potent HO-1 inducer), pre- and postinfection, effectively inhibited BVDV replication. In contrast, HO-1 siRNA knockdown in BVDV-infected cells increased BVDV replication. Therefore, the data were consistent with HO-1 acting as an anti-viral factor and these findings suggested that induction of HO-1 may be a useful prevention and treatment strategy against BVDV infection.

  1. Heme Oxygenase-1 Suppresses Bovine Viral Diarrhoea Virus Replication in vitro

    PubMed Central

    Zhang, Chong; Pu, Fengxing; Zhang, Angke; Xu, Lele; Li, Na; Yan, Yunhuan; Gao, Jiming; Liu, Hongliang; Zhang, Gaiping; Goodfellow, Ian G.; Zhou, En-Min; Xiao, Shuqi

    2015-01-01

    Viral cycle progression depends upon host-cell processes in infected cells, and this is true for bovine viral diarrhoea virus (BVDV), the causative agent of BVD that is a worldwide threat to the bovine industry. Heme oxygenase-1 (HO-1) is a ubiquitously expressed inducible isoform of the first and rate-limiting enzyme for heme degradation. Recent studies have demonstrated that HO-1 has significant antiviral properties, inhibiting the replication of viruses such as ebola virus, human immunodeficiency virus, hepatitis C virus, and porcine reproductive and respiratory syndrome virus. However, the function of HO-1 in BVDV infection is unclear. In the present study, the relationship between HO-1 and BVDV was investigated. In vitro analysis of HO-1 expression in BVDV-infected MDBK cells demonstrated that a decrease in HO-1 as BVDV replication increased. Increasing HO-1 expression through adenoviral-mediated overexpression or induction with cobalt protoporphyrin (CoPP, a potent HO-1 inducer), pre- and postinfection, effectively inhibited BVDV replication. In contrast, HO-1 siRNA knockdown in BVDV-infected cells increased BVDV replication. Therefore, the data were consistent with HO-1 acting as an anti-viral factor and these findings suggested that induction of HO-1 may be a useful prevention and treatment strategy against BVDV infection. PMID:26510767

  2. Studies on human phenylalanine Mono-oxygenase. I. Restricted expression.

    PubMed

    Crawfurd, M D; Gibbs, D A; Sheppard, D M

    1981-01-01

    Enzyme assays for phenylalanine mono-oxygenase have been performed on a variety of non-hepatic human cell types under varying conditions. The cell types studied were cultured fibroblasts, short-term lymphocyte cultures, long-term lymphoblastoid cultures, cultured amniotic fluid cells, hair roots and placental extracts. The cultured cells were assayed after growth under standard conditions and in the presence of a high concentration of substrate, a low concentration of end-product, added hydrocortisone or dexamethasone and under combinations of these conditions. In no instance was a significant enzyme activity obtained.

  3. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  4. Heme Oxygenase-1 Protects Corexit 9500A-Induced Respiratory Epithelial Injury across Species

    PubMed Central

    Oliva, Octavio M.; Karki, Suman; Surolia, Ranu; Wang, Zheng; Watson, R. Douglas; Thannickal, Victor J.; Powell, Mickie; Watts, Stephen; Kulkarni, Tejaswini; Batra, Hitesh; Bolisetty, Subhashini; Agarwal, Anupam; Antony, Veena B.

    2015-01-01

    The effects of Corexit 9500A (CE) on respiratory epithelial surfaces of terrestrial mammals and marine animals are largely unknown. This study investigated the role of CE-induced heme oxygenase-1 (HO-1), a cytoprotective enzyme with anti-apoptotic and antioxidant activity, in human bronchial airway epithelium and the gills of exposed aquatic animals. We evaluated CE-mediated alterations in human airway epithelial cells, mice lungs and gills from zebrafish and blue crabs. Our results demonstrated that CE induced an increase in gill epithelial edema and human epithelial monolayer permeability, suggesting an acute injury caused by CE exposure. CE induced the expression of HO-1 as well as C-reactive protein (CRP) and NADPH oxidase 4 (NOX4), which are associated with ROS production. Importantly, CE induced caspase-3 activation and subsequent apoptosis of epithelial cells. The expression of the intercellular junctional proteins, such as tight junction proteins occludin, zonula occludens (ZO-1), ZO-2 and adherens junctional proteins E-cadherin and Focal Adhesion Kinase (FAK), were remarkably inhibited by CE, suggesting that these proteins are involved in CE-induced increased permeability and subsequent apoptosis. The cytoskeletal protein F-actin was also disrupted by CE. Treatment with carbon monoxide releasing molecule-2 (CORM-2) significantly inhibited CE-induced ROS production, while the addition of HO-1 inhibitor, significantly increased CE-induced ROS production and apoptosis, suggesting a protective role of HO-1 or its reaction product, CO, in CE-induced apoptosis. Using HO-1 knockout mice, we further demonstrated that HO-1 protected against CE-induced inflammation and cellular apoptosis and corrected CE-mediated inhibition of E-cadherin and FAK. These observations suggest that CE activates CRP and NOX4-mediated ROS production, alters permeability by inhibition of junctional proteins, and leads to caspase-3 dependent apoptosis of epithelial cells, while HO-1 and its

  5. Heme oxygenase-1 protects corexit 9500A-induced respiratory epithelial injury across species.

    PubMed

    Li, Fu Jun; Duggal, Ryan N; Oliva, Octavio M; Karki, Suman; Surolia, Ranu; Wang, Zheng; Watson, R Douglas; Thannickal, Victor J; Powell, Mickie; Watts, Stephen; Kulkarni, Tejaswini; Batra, Hitesh; Bolisetty, Subhashini; Agarwal, Anupam; Antony, Veena B

    2015-01-01

    The effects of Corexit 9500A (CE) on respiratory epithelial surfaces of terrestrial mammals and marine animals are largely unknown. This study investigated the role of CE-induced heme oxygenase-1 (HO-1), a cytoprotective enzyme with anti-apoptotic and antioxidant activity, in human bronchial airway epithelium and the gills of exposed aquatic animals. We evaluated CE-mediated alterations in human airway epithelial cells, mice lungs and gills from zebrafish and blue crabs. Our results demonstrated that CE induced an increase in gill epithelial edema and human epithelial monolayer permeability, suggesting an acute injury caused by CE exposure. CE induced the expression of HO-1 as well as C-reactive protein (CRP) and NADPH oxidase 4 (NOX4), which are associated with ROS production. Importantly, CE induced caspase-3 activation and subsequent apoptosis of epithelial cells. The expression of the intercellular junctional proteins, such as tight junction proteins occludin, zonula occludens (ZO-1), ZO-2 and adherens junctional proteins E-cadherin and Focal Adhesion Kinase (FAK), were remarkably inhibited by CE, suggesting that these proteins are involved in CE-induced increased permeability and subsequent apoptosis. The cytoskeletal protein F-actin was also disrupted by CE. Treatment with carbon monoxide releasing molecule-2 (CORM-2) significantly inhibited CE-induced ROS production, while the addition of HO-1 inhibitor, significantly increased CE-induced ROS production and apoptosis, suggesting a protective role of HO-1 or its reaction product, CO, in CE-induced apoptosis. Using HO-1 knockout mice, we further demonstrated that HO-1 protected against CE-induced inflammation and cellular apoptosis and corrected CE-mediated inhibition of E-cadherin and FAK. These observations suggest that CE activates CRP and NOX4-mediated ROS production, alters permeability by inhibition of junctional proteins, and leads to caspase-3 dependent apoptosis of epithelial cells, while HO-1 and its

  6. The oxygenase Jmjd6--a case study in conflicting assignments.

    PubMed

    Böttger, Angelika; Islam, Md Saiful; Chowdhury, Rasheduzzaman; Schofield, Christopher J; Wolf, Alexander

    2015-06-01

    The Jumonji domain-containing protein 6 (Jmjd6) is a member of the superfamily of non-haem iron(II) and 2-oxoglutarate (2OG)-dependent oxygenases; it plays an important developmental role in higher animals. Jmjd6 was initially assigned a role as the phosphatidylserine receptor responsible for engulfment of apoptotic cells but this now seems unlikely. Jmjd6 has been shown to be a nuclear localized protein with a JmjC domain comprising a distorted double-stranded β-helical structure characteristic of the 2OG-dependent oxygenases. Jmjd6 was subsequently assigned a role in catalysing N-methyl-arginine residue demethylation on the N-terminus of the human histones H3 and H4; however, this function is also subject to conflicting reports. Jmjd6 does catalyse 2OG-dependent C-5 hydroxylation of lysine residues in mRNA splicing-regulatory proteins and histones; there is also accumulating evidence that Jmjd6 plays a role in splicing (potentially in an iron- and oxygen-dependent manner) as well as in other processes regulating gene expression, including transcriptional pause release. Moreover, a link with tumour progression has been suggested. In the present review we look at biochemical, structural and cellular work on Jmjd6, highlighting areas of controversy and consensus.

  7. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death

    PubMed Central

    Kwon, Min-Young; Park, Eunhee

    2015-01-01

    The oncogenic RAS-selective lethal small molecule Erastin triggers a unique iron-dependent form of nonapoptotic cell death termed ferroptosis. Ferroptosis is dependent upon the production of intracellular iron-dependent reactive oxygen species (ROS), but not other metals. However, key regulators remain unknown. The heme oxygenase (HO) is a major intracellular source of iron. In this study, the role of heme oxygenase in Erastin-triggered ferroptotic cancer cell death has been investigated. Zinc protoporphyrin IX (ZnPP), a HO-1 inhibitor, prevented Erastin-triggered ferroptotic cancer cell death. Furthermore, Erastin induced the protein and mRNA levels of HO-1 in HT-1080 fibrosarcoma cells. HO-1+/+ and HO-1−/− fibroblast, HO-1 overexpression, and chycloheximide-treated experiments revealed that the expression of HO-1 has a decisive effects in Erastin-triggered cell death. Hemin and CO-releasing molecules (CORM) promote Erastin-induced ferroptotic cell death, not by biliverdin and bilirubin. In addition, hemin and CORM accelerate the HO-1 expression in the presence of Erastin and increase membranous lipid peroxidation. Thus, HO-1 is an essential enzyme for iron-dependent lipid peroxidation during ferroptotic cell death. PMID:26405158

  8. Phylogenetic analysis reveals the surprising diversity of an oxygenase class.

    PubMed

    Capyk, Jenna K; Eltis, Lindsay D

    2012-03-01

    As metalloenzymes capable of transforming a broad range of substrates with high stereo- and regio-specificity, the multicomponent Rieske oxygenases (ROs) have been studied in bacterial systems for applications in bioremediation and industrial biocatalysis. These studies include genetic and biochemical investigations, determination of enzyme structure, phylogenetic analysis, and enzyme classification. Although RO terminal oxygenase components (RO-Os) share a conserved domain structure, their sequences are highly divergent and present significant challenges for identification and classification. Herein, we present the first global phylogenetic analysis of a broad range of RO-Os from diverse taxonomic groups. We employed objective, structure-based criteria to significantly reduce the inclusion of erroneously aligned sequences in the analysis. Our findings reveal that RO biochemical studies to date have been largely concentrated in an unexpectedly narrow portion of the RO-O sequence landscape. Additionally, our analysis demonstrates the existence two distinct groups of RO-O sequences. Finally, the sequence diversity recognized in this study necessitates a new RO-O classification scheme. We therefore propose a P450-like naming system. Our results reveal a diversity of sequence and potential catalytic functionality that has been wholly unappreciated in the RO literature. This study also demonstrates that many commonly used bioinformatic tools may not be sufficient to analyze the vast amount of data available in current databases. These findings facilitate the expanded exploration of RO catalytic capabilities in both biological and technological contexts and increase the potential for practical exploitation of their activities.

  9. Quantification of Secondary Metabolites.

    PubMed

    2016-01-01

    Plants are a rich source of secondary metabolites that have medicinal and aromatic properties. Secondary metabolites such as alkaloids, iridoids and phenolics generally produced by plants for their defence mechanisms have been implicated in the therapeutic properties of most medicinal plants. Hence, quantification of these metabolites will aid to discover new and effective drugs from plant sources and also to scientifically validate the existing traditional practices. Quantification of large group of phytochemicals such as phenolics and flavonoids is quantified in this context.

  10. Stereochemistry and Mechanism of Undecylprodigiosin Oxidative Carbocyclization to Streptorubin B by the Rieske Oxygenase RedG.

    PubMed

    Withall, David M; Haynes, Stuart W; Challis, Gregory L

    2015-06-24

    The prodiginines are a group of specialized metabolites that share a 4-methoxypyrrolyldipyrromethene core structure. Streptorubin B is a structurally remarkable member of the prodiginine group produced by Streptomyces coelicolor A3(2) and other actinobacteria. It is biosynthesized from undecylprodigiosin by an oxidative carbocyclization catalyzed by the Rieske oxygenase-like enzyme RedG. Undecylprodigiosin derives from the RedH-catalyzed condensation of 2-undecylpyrrole and 4-methoxy-2, 2'-bipyrrole-5-carboxaldehyde (MBC). To probe the mechanism of the RedG-catalyzed reaction, we synthesized 2-(5-pentoxypentyl)-pyrrole, an analogue of 2-undecylpyrrole with an oxygen atom next to the site of C-C bond formation, and fed it, along with synthetic MBC, to Streptomyces albus expressing redH and redG. This resulted in the production of the 6'-oxa analogue of undecylprodigiosin. In addition, a small amount of a derivative of this analogue lacking the n-pentyl group was produced, consistent with a RedG catalytic mechanism involving hydrogen abstraction from the alkyl chain of undecylprodigiosin prior to pyrrole functionalization. To investigate the stereochemistry of the RedG-catalyzed oxidative carbocyclization, [7'-(2)H](7'R)-2-undecylpyrrole and [7'-(2)H](7'S)-2-undecylpyrrole were synthesized and fed separately, along with MBC, to S. albus expressing redH and redG. Analysis of the extent of deuterium incorporation into the streptorubin B produced in these experiments showed that the pro-R hydrogen atom is abstracted from C-7' of undecylprodigiosin and that the reaction proceeds with inversion of configuration at C-7'. This contrasts sharply with oxidative heterocyclization reactions catalyzed by other nonheme iron-dependent oxygenase-like enzymes, such as isopenicillin N synthase and clavaminate synthase, which proceed with retention of configuration at the carbon center undergoing functionalization.

  11. Identification of Interactions between Abscisic Acid and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase.

    PubMed

    Galka, Marek M; Rajagopalan, Nandhakishore; Buhrow, Leann M; Nelson, Ken M; Switala, Jacek; Cutler, Adrian J; Palmer, David R J; Loewen, Peter C; Abrams, Suzanne R; Loewen, Michele C

    2015-01-01

    Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 μM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation. PMID:26197050

  12. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals.

    PubMed

    Lawal, Akeem O; Zhang, Min; Dittmar, Michael; Lulla, Aaron; Araujo, Jesus A

    2015-05-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM.

  13. Identification of Interactions between Abscisic Acid and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase

    PubMed Central

    Galka, Marek M.; Rajagopalan, Nandhakishore; Buhrow, Leann M.; Nelson, Ken M.; Switala, Jacek; Cutler, Adrian J.; Palmer, David R. J.; Loewen, Peter C.; Abrams, Suzanne R.; Loewen, Michele C.

    2015-01-01

    Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 μM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation. PMID:26197050

  14. RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella.

    PubMed

    Fabrick, Jeffrey A; Kanost, Michael R; Baker, James E

    2004-01-01

    Gene silencing through the introduction of double-stranded RNA (RNA interference, RNAi) provides a powerful tool for the elucidation of gene function in many systems, including those where genomics and proteomics are incomplete. The use of RNAi technology for gene silencing in Lepidoptera has lacked significant attention compared to other systems. To demonstrate that RNAi can be utilized in the lepidopteran, Plodia interpunctella, we cloned a cDNA for tryptophan oxygenase, and showed that silencing of tryptophan oxygenase through RNAi during embryonic development resulted in loss of eye-color pigmentation. The complete amino acid sequence of Plodia tryptophan oxygenase can be accessed through NCBI Protein Database.

  15. Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells

    PubMed Central

    Kim, Sokho; Oh, Myung-Hoon; Kim, Bum-Seok; Kim, Won-Il; Cho, Ho-Seong; Park, Byoung-Yong; Park, Chul; Shin, Gee-Wook; Kwon, Jungkee

    2015-01-01

    Background The beneficial effects of ginsenoside species have been well demonstrated in a number of studies. However, the function of ginsenoside Ro (GRo), an oleanane-type saponin, has not been sufficiently investigated. Thus, the aim of the present study was to investigate the anti-inflammatory effects of GRo in vitro using the Raw 264.7 mouse macrophage cell line treated with lipopolysaccharide (LPS), and to clarify the possible mechanism of GRo involving heme oxygenase-1 (HO-1), which itself plays a critical role in self-defense in the presence of inflammatory stress. Methods Raw 264.7 cells were pretreated with GRo (up to 200μM) for 1 h before treatment with 1 μg/mL LPS, and both cell viability and inflammatory markers involving HO-1 were evaluated. Results GRo significantly increased cell viability in a dose dependent manner following treatment with LPS, and decreased levels of reactive oxygen species and nitric oxide. GRo decreased inflammatory cytokines such as nitric oxide synthase and cyclooxygenase-2 induced by LPS. Moreover, GRo increased the expression of HO-1 in a dose dependent manner. Cotreatment of GRo with tin protoporphyrin IX, a selective inhibitor of HO-1, not only inhibited upregulation of HO-1 induced by GRo, but also reversed the anti-inflammatory effect of GRo in LPS treated Raw 264.7 cells. Conclusion GRo induces anti-inflammatory effects following treatment with LPS via upregulation of HO-1. PMID:26869829

  16. Targeting of heme oxygenase-1 as a novel immune regulator of neuroblastoma.

    PubMed

    Fest, Stefan; Soldati, Rocio; Christiansen, Nina M; Zenclussen, Maria L; Kilz, Jana; Berger, Elisa; Starke, Sven; Lode, Holger N; Engel, Christoph; Zenclussen, Ana C; Christiansen, Holger

    2016-04-15

    Heme oxygenase (HO)-1 catalyzes the degradation of cytotoxic heme into biliverdin and blocks antitumor immune responses, thus protecting cancer against host defense. Whether this scenario also applies to neuroblastoma (NB), the most common extracranial solid childhood tumor, is not known. Here, we demonstrate for the first time a prognostic relevance of HO-1 expression in samples from NB patients and show that targeting of HO-1 prevents both cancer resistance against cellular stress and immune escape in the syngeneic NXS2 A/J mouse model of NB. High HO-1 RNA expression in NB tissues emerged as unfavorable prognostic marker, in particular for patients older than 18 months as indicated by univariate as well as multivariate survival probability analyses including disease stage and MYCN status. On the basis of this observation we aimed to target HO-1 by systemic as well as tumor-specific zinc protoporphyrin-mediated HO-1 suppression in a syngeneic immunocompetent NB mouse model. This resulted in 50% reduction of primary tumor growth and a suppression of spontaneous liver metastases. Importantly, HO-1 inhibition abrogated immune cell paralysis affecting CD4 and CD8 T-effector cells. This in turn reverted HO-1-dependent immune escape mechanisms in NB by increasing NB apoptosis and improved DC maturation. In summary, HO-1 emerges as a novel immune regulator in NB and emerges as a promising target for the development of therapeutic approaches.

  17. Heme oxygenase-1 deficiency accompanies neuropathogenesis of HIV-associated neurocognitive disorders

    PubMed Central

    Gill, Alexander J.; Kovacsics, Colleen E.; Cross, Stephanie A.; Vance, Patricia J.; Kolson, Lorraine L.; Jordan-Sciutto, Kelly L.; Gelman, Benjamin B.; Kolson, Dennis L.

    2014-01-01

    Heme oxygenase-1 (HO-1) is an inducible, detoxifying enzyme that is critical for limiting oxidative stress, inflammation, and cellular injury within the CNS and other tissues. Here, we demonstrate a deficiency of HO-1 expression in the brains of HIV-infected individuals. This HO-1 deficiency correlated with cognitive dysfunction, HIV replication in the CNS, and neuroimmune activation. In vitro analysis of HO-1 expression in HIV-infected macrophages, a primary CNS HIV reservoir along with microglia, demonstrated a decrease in HO-1 as HIV replication increased. HO-1 deficiency correlated with increased culture supernatant glutamate and neurotoxicity, suggesting a link among HIV infection, macrophage HO-1 deficiency, and neurodegeneration. HO-1 siRNA knockdown and HO enzymatic inhibition in HIV-infected macrophages increased supernatant glutamate and neurotoxicity. In contrast, increasing HO-1 expression through siRNA derepression or with nonselective pharmacologic inducers, including the CNS-penetrating drug dimethyl fumarate (DMF), decreased supernatant glutamate and neurotoxicity. Furthermore, IFN-γ, which is increased in CNS HIV infection, reduced HO-1 expression in cultured human astrocytes and macrophages. These findings indicate that HO-1 is a protective host factor against HIV-mediated neurodegeneration and suggest that HO-1 deficiency contributes to this degeneration. Furthermore, these results suggest that HO-1 induction in the CNS of HIV-infected patients on antiretroviral therapy could potentially protect against neurodegeneration and associated cognitive dysfunction. PMID:25202977

  18. Malaria impairs resistance to Salmonella through heme- and heme oxygenase-dependent dysfunctional granulocyte mobilization

    PubMed Central

    Cunnington, A. J.; de Souza, J.B.; Walther, R-M.; Riley, E. M.

    2011-01-01

    In sub-Saharan Africa, invasive non-Typhoid Salmonella (NTS) is a common and often fatal complication of Plasmodium falciparum infection. Induction of heme oxygenase-1 (HO-1) mediates tolerance to the cytotoxic effects of heme during malarial hemolysis but might impair resistance to NTS by limiting production of bactericidal reactive oxygen species. We show that co-infection of mice with Plasmodium yoelii 17XNL (Py17XNL) and S. typhimurium causes acute, fatal bacteremia with increased bacterial load; features reproduced by phenylhydrazine hemolysis or hemin administration. S. typhimurium localized predominantly in granulocytes. Py17XNL, phenylhydrazine and hemin caused premature mobilization of granulocytes from bone marrow with a quantitative defect in the oxidative burst. Inhibition of HO by tin protoporphyrin abrogated the impairment of resistance to S. typhimurium by hemolysis. Thus a mechanism of tolerance to one infection, malaria, impairs resistance to another, NTS. Furthermore, HO inhibitors may be useful adjunctive therapy for NTS infection in the context of hemolysis. PMID:22179318

  19. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    PubMed Central

    Carvalho-Costa, P.G.; Branco, L.G.S.; Leite-Panissi, C.R.A.

    2014-01-01

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress. PMID:25387672

  20. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent.

    PubMed

    Carvalho-Costa, P G; Branco, L G S; Leite-Panissi, C R A

    2014-12-01

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3',5'-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress. PMID:25387672

  1. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent.

    PubMed

    Carvalho-Costa, P G; Branco, L G S; Leite-Panissi, C R A

    2014-09-19

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3',5'-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress. PMID:25250589

  2. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis

    SciTech Connect

    Leon, J.; Shulaev, V.; Yalpani, N.

    1995-10-24

    Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicyclic acid with {sup 18}O{sub 2} suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation of benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[{sup 35}S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes. 21 refs., 6 figs., 1 tab.

  3. ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis

    PubMed Central

    Dey, Souvik; Sayers, Carly M.; Verginadis, Ioannis I.; Lehman, Stacey L.; Cheng, Yi; Cerniglia, George J.; Tuttle, Stephen W.; Feldman, Michael D.; Zhang, Paul J.L.; Fuchs, Serge Y.; Diehl, J. Alan; Koumenis, Constantinos

    2015-01-01

    The integrated stress response (ISR) is a critical mediator of cancer cell survival, and targeting the ISR inhibits tumor progression. Here, we have shown that activating transcription factor 4 (ATF4), a master transcriptional effector of the ISR, protects transformed cells against anoikis — a specialized form of apoptosis — following matrix detachment and also contributes to tumor metastatic properties. Upon loss of attachment, ATF4 activated a coordinated program of cytoprotective autophagy and antioxidant responses, including induced expression of the major antioxidant enzyme heme oxygenase 1 (HO-1). HO-1 upregulation was the result of simultaneous activation of ATF4 and the transcription factor NRF2, which converged on the HO1 promoter. Increased levels of HO-1 ameliorated oxidative stress and cell death. ATF4-deficient human fibrosarcoma cells were unable to colonize the lungs in a murine model, and reconstitution of ATF4 or HO-1 expression in ATF4-deficient cells blocked anoikis and rescued tumor lung colonization. HO-1 expression was higher in human primary and metastatic tumors compared with noncancerous tissue. Moreover, HO-1 expression correlated with reduced overall survival of patients with lung adenocarcinoma and glioblastoma. These results establish HO-1 as a mediator of ATF4-dependent anoikis resistance and tumor metastasis and suggest ATF4 and HO-1 as potential targets for therapeutic intervention in solid tumors. PMID:26011642

  4. Human Heme Oxygenase-1 Efficiently Catabolizes Heme in the Absence of Biliverdin Reductase

    PubMed Central

    Huber, Warren J.; Backes, Wayne L.

    2010-01-01

    Heme oxygenase 1 (HO-1) uses molecular oxygen and electrons from NADPH cytochrome P450 reductase to convert heme to CO, ferrous iron, and biliverdin (BV). Enzymatic studies with the purified 30-kDa form of HO-1 routinely use a coupled assay containing biliverdin reductase (BVR), which converts BV to bilirubin (BR). BVR is believed to be required for optimal HO-1 activity. The goal of this study was to determine whether HO-1 activity could be monitored directly by following BV generation or iron release (using the ferrous iron chelator, ferrozine) in the absence of BVR. Using assays for each of the three end products, we found that HO-1 activity was stimulated in the presence of catalase and comparable rates were measured with each assay. Absorbance scans revealed characteristic spectra for BR, BV, and/or the ferrozine-iron complex. The optimal conditions were slightly different for the direct and coupled assays. BSA activated the coupled but inhibited the direct assays, and the assays had different pH optima. By measuring the activity of BVR directly using BV as a substrate, these differences were attributed to different enzymatic properties of BVR and HO-1. Thus, BVR is not needed to measure the activity of HO-1 when catalase is present. In fact, the factors affecting catalysis by HO-1 are better understood using the direct assays because the coupled assay can be influenced by properties of BVR. PMID:20679134

  5. Suppression of inflammatory cell trafficking and alveolar simplification by the heme oxygenase-1 product carbon monoxide

    PubMed Central

    Anyanwu, Anuli C.; Bentley, J. Kelley; Popova, Antonia P.; Malas, Omar; Alghanem, Husam; Goldsmith, Adam M.; Hershenson, Marc B.

    2014-01-01

    Bronchopulmonary dysplasia (BPD), a lung disease of prematurely born infants, is characterized in part by arrested development of pulmonary alveolae. We hypothesized that heme oxygenase (HO-1) and its byproduct carbon monoxide (CO), which are thought to be cytoprotective against redox stress, mitigate lung injury and alveolar simplification in hyperoxia-exposed neonatal mice, a model of BPD. Three-day-old C57BL/6J mice were exposed to air or hyperoxia (FiO2, 75%) in the presence or absence of inhaled CO (250 ppm for 1 h twice daily) for 21 days. Hyperoxic exposure increased mean linear intercept, a measure of alveolar simplification, whereas CO treatment attenuated hypoalveolarization, yielding a normal-appearing lung. Conversely, HO-1-null mice showed exaggerated hyperoxia-induced hypoalveolarization. CO also inhibited hyperoxia-induced pulmonary accumulation of F4/80+, CD11c+, and CD11b+ monocytes and Gr-1+ neutrophils. Furthermore, CO attenuated lung mRNA and protein expression of proinflammatory cytokines, including the monocyte chemoattractant CCL2 in vivo, and decreased hyperoxia-induced type I alveolar epithelial cell CCL2 production in vitro. Hyperoxia-exposed CCL2-null mice, like CO-treated mice, showed attenuated alveolar simplification and lung infiltration of CD11b+ monocytes, consistent with the notion that CO blocks lung epithelial cell cytokine production. We conclude that, in hyperoxia-exposed neonatal mice, inhalation of CO suppresses inflammation and alveolar simplification. PMID:24532288

  6. Aryl hydrocarbon mono-oxygenase activity in human lymphocytes

    SciTech Connect

    Griffin, G.D.; Schuresko, D.D.

    1981-06-01

    Aryl hydrocarbon mono-oxygenase (AHM), an enzyme of key importance in metabolism of xenobiotic chemicals such as polynuclear aromatic hydrocarbons (PNA), is present in human lymphocytes. Studies investing the relation of activity of AHM in human lymphocytes to parameters such as disease state, PNA exposure, in vitro mitogen stimulation, etc. have been summarized in this report. Some studies have demonstrated increased AHM activity in lymphocytes from cigarette smokers (compared to nonsmokers), and in lung cancer patients when compared to appropriate control groups. These observations are confused by extreme variability in human lymphocyte AHM activities, such variability arising from factors such as genetic variation in AHM activity, variation in in vitro culture conditions which affect AHM activity, and the problematical relationship of common AHM assays to actual PNA metabolism taking place in lymphocytes. If some of the foregoing problems can be adequately addressed, lymphocyte AHM activity could hold the promise of being a useful biomarker system for human PNA exposure.

  7. Role of rice heme oxygenase in lateral root formation

    PubMed Central

    Huei Kao, Ching

    2013-01-01

    Lateral roots (LRs) play important roles in increasing the absorptive capacity of roots as well as to anchor the plant in the soil. In rice, exposure to auxin, methyl jasmonate (MJ), apocynin, and CoCl2 has been shown to increase LR formation. This review provides evidence showing a close link between rice heme oxygenase (HO) and LR formation. The effect of auxin and MJ is nitric oxide (NO) dependent, whereas that of apocynin requires H2O2. The effect of CoCl2 on the LR formation could be by some other pathway unrelated to NO and H2O2. This review also highlights future lines of research that should increase our knowledge of HO-involved LR formation in rice. PMID:23887491

  8. The roles of Jumonji-type oxygenases in human disease

    PubMed Central

    Johansson, Catrine; Tumber, Anthony; Che, KaHing; Cain, Peter; Nowak, Radoslaw; Gileadi, Carina; Oppermann, Udo

    2014-01-01

    The iron- and 2-oxoglutarate-dependent oxygenases constitute a phylogenetically conserved class of enzymes that catalyze hydroxylation reactions in humans by acting on various types of substrates, including metabolic intermediates, amino acid residues in different proteins and various types of nucleic acids. The discovery of jumonji (Jmj), the founding member of a class of Jmj-type chromatin-modifying enzymes and transcriptional regulators, has culminated in the discovery of several branches of histone lysine demethylases, with essential functions in regulating the epigenetic landscape of the chromatin environment. This work has now been considerably expanded into other aspects of epigenetic biology and includes the discovery of enzymatic steps required for methyl-cytosine demethylation, as well as modification of RNA and ribosomal proteins. This overview aims to summarize the current knowledge on the human Jmj-type enzymes and their involvement in human pathological processes, including development, cancer, inflammation and metabolic diseases. PMID:24579949

  9. Heme oxygenase-1: the "emerging molecule" has arrived.

    PubMed

    Morse, Danielle; Choi, Augustine M K

    2002-07-01

    Organisms on our planet have evolved in an oxidizing environment that is intrinsically inimical to life, and cells have been forced to devise means of protecting themselves. One of the defenses used most widely in nature is the enzyme heme oxygenase-1 (HO-1). This enzyme performs the seemingly lackluster function of catabolizing heme to generate bilirubin, carbon monoxide, and free iron. Remarkably, however, the activity of this enzyme results in profound changes in cells' abilities to protect themselves against oxidative injury. HO-1 has been shown to have anti-inflammatory, antiapoptotic, and antiproliferative effects, and it is now known to have salutary effects in diseases as diverse as atherosclerosis and sepsis. The mechanism by which HO-1 confers its protective effect is as yet poorly understood, but this area of invetsigation is active and rapidly evolving. This review highlights current information on the function of HO-1 and its relevance to specific pulmonary and cardiovascular diseases.

  10. Novel Insights into the Vasoprotective Role of Heme Oxygenase-1

    PubMed Central

    Marcantoni, Emanuela; Di Francesco, Luigia; Dovizio, Melania; Bruno, Annalisa; Patrignani, Paola

    2012-01-01

    Cardiovascular risk factors contribute to enhanced oxidative stress which leads to endothelial dysfunction. These events trigger platelet activation and their interaction with leukocytes and endothelial cells, thus contributing to the induction of chronic inflammatory processes at the vascular wall and to the development of atherosclerotic lesions and atherothrombosis. In this scenario, endogenous antioxidant pathways are induced to restrain the development of vascular disease. In the present paper, we will discuss the role of heme oxygenase (HO)-1 which is an enzyme of the heme catabolism and cleaves heme to form biliverdin and carbon monoxide (CO). Biliverdin is reduced enzymatically to the potent antioxidant bilirubin. Recent evidence supports the involvement of HO-1 in the antioxidant and antiinflammatory effect of cyclooxygenase(COX)-2-dependent prostacyclin in the vasculature. Moreover, the role of HO-1 in estrogen vasoprotection is emerging. Finally, possible strategies to develop novel therapeutics against cardiovascular disease by targeting the induction of HO-1 will be discussed. PMID:22518279

  11. Role of heme oxygenase-1 in demethylating effects on SKM-1 cells induced by decitabine.

    PubMed

    Gao, R; Ma, D; Wang, P; Sun, J; Wang, J S; Fang, Q

    2015-12-22

    We evaluated the influence of heme oxygenase-1 (HO-1) gene inhibition in myelodysplastic syndrome (MDS) cell line SKM-1 on enhancement of the demethylating effects of decitabine on p15, and explored the possible mechanism. DNMT1 gene expression in SKM-1 cells was silenced by being transfected by a constructed siRNA with liposomes. The proliferation inhibition rates after drug treatment were detected by cell counting kit-8 assay. The apoptotic rates were detected by Annexin V/PI assay with flow cytometry. The expressions of p16, p15, TP73, CDH1, ESR1, and PDLIM4 mRNAs were detected by real-time PCR, and those of HO-1, DNMT1, DNMT3A, DNMT3B, HDAC, and p15 proteins were measured by western blot. The degree of methylation of the p15 gene was analyzed by using methylation-specific PCR (MSP). CCK-8 assay showed that after HO-1 gene expression was inhibited; the proliferation rate of SKM-1 cells treated by decitabine (70.91 ± 0.05%) was significantly higher than that of the control group (53.67 ± 0.05%). Flow cytometry showed that the apoptotic rate of SKM- 1 cells treated by decitabine in combination with HO-1 expression inhibition (44.25 ± 0.05%) exceeded that of the cells treated by this drug alone (37.70 ± 0.05%). MSP showed that inhibiting HO-1 expression significantly increased the degree of methylation of the p15 gene. As suggested by western blot, the degree of methylation of the p15 protein was changed after decitabine treatment when the expression of the HO-1 protein was changed, being associated with the affected DNMT1 expression. Inhibited HO-1 expression attenuated the hypermethylation of CDKN2B by suppressing DNMT1, which was conducive to treatment by cooperating with decitabine. In conclusion, the findings of this study provide valuable experimental evidence for targeted MDS therapy, and a theoretical basis for further studies.

  12. Methylselenol, a selenium metabolite, induces cell cycle arrest in G1 phase and apoptosis via the extracellular-regulated kinase 1/2 pathway and other cancer signaling genes.

    PubMed

    Zeng, Huawei; Wu, Min; Botnen, James H

    2009-09-01

    Methylselenol has been hypothesized to be a critical selenium (Se) metabolite for anticancer activity in vivo, and our previous study demonstrated that submicromolar methylselenol generated by incubating methionase with seleno-l-methionine inhibits the migration and invasive potential of HT1080 tumor cells. However, little is known about the association between cancer signal pathways and methylselenol's inhibition of tumor cell invasion. In this study, we demonstrated that methylselenol exposure inhibited cell growth and we used a cancer signal pathway-specific array containing 15 different signal transduction pathways involved in oncogenesis to study the effect of methylselenol on cellular signaling. Using real-time RT-PCR, we confirmed that cellular mRNA levels of cyclin-dependent kinase inhibitor 1C (CDKN1C), heme oxygenase 1, platelet/endothelial cell adhesion molecule, and PPARgamma genes were upregulated to 2.8- to 5.7-fold of the control. BCL2-related protein A1, hedgehog interacting protein, and p53 target zinc finger protein genes were downregulated to 26-52% of the control, because of methylselenol exposure. These genes are directly related to the regulation of cell cycle and apoptosis. Methylselenol increased apoptotic cells up to 3.4-fold of the control and inhibited the extracellular-regulated kinase 1/2 (ERK1/2) signaling and cellular myelocytomatosis oncogene (c-Myc) expression. Taken together, our studies identify 7 novel methylselenol responsive genes and demonstrate that methylselenol inhibits ERK1/2 pathway activation and c-Myc expression. The regulation of these genes is likely to play a key role in G1 cell cycle arrest and apoptosis, which may contribute to the inhibition of tumor cell invasion.

  13. Retuning Rieske-type oxygenases to expand substrate range.

    PubMed

    Mohammadi, Mahmood; Viger, Jean-François; Kumar, Pravindra; Barriault, Diane; Bolin, Jeffrey T; Sylvestre, Michel

    2011-08-01

    Rieske-type oxygenases are promising biocatalysts for the destruction of persistent pollutants or for the synthesis of fine chemicals. In this work, we explored pathways through which Rieske-type oxygenases evolve to expand their substrate range. BphAE(p4), a variant biphenyl dioxygenase generated from Burkholderia xenovorans LB400 BphAE(LB400) by the double substitution T335A/F336M, and BphAE(RR41), obtained by changing Asn(338), Ile(341), and Leu(409) of BphAE(p4) to Gln(338), Val(341), and Phe(409), metabolize dibenzofuran two and three times faster than BphAE(LB400), respectively. Steady-state kinetic measurements of single- and multiple-substitution mutants of BphAE(LB400) showed that the single T335A and the double N338Q/L409F substitutions contribute significantly to enhanced catalytic activity toward dibenzofuran. Analysis of crystal structures showed that the T335A substitution relieves constraints on a segment lining the catalytic cavity, allowing a significant displacement in response to dibenzofuran binding. The combined N338Q/L409F substitutions alter substrate-induced conformational changes of protein groups involved in subunit assembly and in the chemical steps of the reaction. This suggests a responsive induced fit mechanism that retunes the alignment of protein atoms involved in the chemical steps of the reaction. These enzymes can thus expand their substrate range through mutations that alter the constraints or plasticity of the catalytic cavity to accommodate new substrates or that alter the induced fit mechanism required to achieve proper alignment of reaction-critical atoms or groups.

  14. Heme oxygenase-1 alleviates vascular complications associated with metabolic syndrome: Effect on endothelial dependent relaxation and NO production.

    PubMed

    El-Bassossy, Hany M; Hassan, Nadia; Zakaria, Mohamed N M

    2014-11-01

    Protective effect of Heme oxygenase-1 (HO-1) induction from hypertension was previously reported in a diabetic animal model. Here, the effect of HO-1 induction on vascular complications associated with metabolic syndrome (MetS) was investigated. MetS was induced in rats by fructose drinking for 12weeks while HO-1 was induced by hemin or curcumin administration in the last 6weeks. Then, aortic HO-1 protein expression was assessed, blood pressure (BP) was recorded and serum levels of glucose and insulin were measured. Concentration response curves for phenylephrine (PE), KCl, and acetylcholine (ACh) were obtained in thoracic aortic cross sections. Aortic reactive oxygen species (ROS) and nitric oxide (NO) generation were also studied. Both hemin and curcumin significantly inhibited the elevated systolic and diastolic BP seen in MetS animals. While not affected by MetS, HO-1 expression was significantly increased by hemin and curcumin treatment. HO-1 induction did not affect the exaggerated vasoconstriction response to KCl and PE. However, HO-1 induction prevented the impaired relaxation and NO generation in aorta isolated from MetS animals. In addition, the HO inhibitor, tin protoporphyrin, abolished the hemin protective effect on relaxation and NO generation. HO-1 induction prevented the elevated hyperinsulinemia associated with MetS. Furthermore, HO-1 induction inhibited ROS production in aorta isolated from MetS animals. In conclusion, Heme oxygenase-1 alleviates vascular complications associated in MetS through maintaining endothelial-dependent relaxation and NO generation in addition to improving insulin sensitivity.

  15. Quantification of Secondary Metabolites.

    PubMed

    2016-01-01

    Plants are a rich source of secondary metabolites that have medicinal and aromatic properties. Secondary metabolites such as alkaloids, iridoids and phenolics generally produced by plants for their defence mechanisms have been implicated in the therapeutic properties of most medicinal plants. Hence, quantification of these metabolites will aid to discover new and effective drugs from plant sources and also to scientifically validate the existing traditional practices. Quantification of large group of phytochemicals such as phenolics and flavonoids is quantified in this context. PMID:26939265

  16. Heme oxygenase activity correlates with serum indices of iron homeostasis in healthy nonsmokers

    EPA Science Inventory

    Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirm...

  17. In vitro Activation of heme oxygenase-2 by menadione and its analogs

    PubMed Central

    2014-01-01

    Background Previously, we reported that menadione activated rat, native heme oxygenase-2 (HO-2) and human recombinant heme oxygenase-2 selectively; it did not activate spleen, microsomal heme oxygenase-1. The purpose of this study was to explore some structure–activity relationships of this activation and the idea that redox properties may be an important aspect of menadione efficacy. Methods Heme oxygenase activity was determined in vitro using rat spleen and brain microsomes as the sources of heme oxygenase-1 and −2, respectively, as well as recombinant, human heme oxygenase-2. Results Menadione analogs with bulky aliphatic groups at position-3, namely vitamins K1 and K2, were not able to activate HO-2. In contrast, several compounds with similar bulky but less lipophilic moieties at position-2 (and −3) were able to activate HO-2 many fold; these compounds included polar, rigid, furan-containing naphthoquinones, furan-benzoxazine naphthoquinones, 2-(aminophenylphenyl)-3-piperidin-1-yl naphthoquinones. To explore the idea that redox properties might be involved in menadione efficacy, we tested analogs such as 1,4-dimethoxy-2-methylnaphthalene, pentafluoromenadione, monohalogenated naphthoquinones, α-tetralone and 1,4-naphthoquinone. All of these compounds were inactive except for 1,4-naphthoquinone. Menadione activated full-length recombinant human heme oxygenase-2 (FL-hHO-2) as effectively as rat brain enzyme, but it did not activate rat spleen heme oxygenase. Conclusions These observations are consistent with the idea that naphthoquinones such as menadione bind to a receptor in HO-2 and activate the enzyme through a mechanism that may involve redox properties. PMID:24533775

  18. Downregulation of Heme Oxygenase 1 (HO-1) Activity in Hematopoietic Cells Enhances Their Engraftment After Transplantation.

    PubMed

    Adamiak, Mateusz; Moore, Joseph B; Zhao, John; Abdelbaset-Ismail, Ahmed; Grubczak, Kamil; Rzeszotek, Sylwia; Wysoczynski, Marcin; Ratajczak, Mariusz Z

    2016-01-01

    Heme oxygenase 1 (HO-1) is an inducible stress-response enzyme that not only catalyzes the degradation of heme (e.g., released from erythrocytes) but also has an important function in various physiological and pathophysiological states associated with cellular stress, such as ischemic/reperfusion injury. HO-1 has a well-documented anti-inflammatory potential, and HO-1 has been reported to have a negative effect on adhesion and migration of neutrophils in acute inflammation in a model of peritonitis. This finding is supported by our recent observation that hematopoietic stem progenitor cells (HSPCs) from HO-1 KO mice are easy mobilizers, since they respond better to peripheral blood chemotactic gradients than wild-type littermates. Based on these findings, we hypothesized that transient inhibition of HO-1 by nontoxic small-molecule inhibitors would enhance migration of HSPCs in response to bone marrow chemoattractants and thereby facilitate their homing. To directly address this issue, we generated several human hematopoietic cell lines in which HO-1 was upregulated or downregulated. We also exposed murine and human BM-derived cells to small-molecule activators and inhibitors of HO-1. Our results indicate that HO-1 is an inhibitor of hematopoietic cell migration in response to crucial BM homing chemoattractants such as stromal-derived factor 1 (SDF-1) and sphingosine-1-phosphate (S1P). Most importantly, our in vitro and in vivo animal experiments demonstrate for the first time that transiently inhibiting HO-1 activity in HSPCs by small-molecule inhibitors improves HSPC engraftment. We propose that this simple and inexpensive strategy could be employed in the clinical setting to improve engraftment of HSPCs, particularly in those situations in which the number of HSPCs available for transplant is limited (e.g., when transplanting umbilical cord blood). PMID:27412411

  19. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity

    SciTech Connect

    Huang, Y.-N.; Wu, C.-H.; Lin, T.-C.; Wang, J.-Y.

    2009-11-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.

  20. Heme oxygenase-1 is involved in sodium hydrosulfide-induced lateral root formation in tomato seedlings.

    PubMed

    Fang, Tao; Li, Jiale; Cao, Zeyu; Chen, Meng; Shen, Wei; Huang, Liqin

    2014-06-01

    By using pharmacological and molecular approaches, we discovered the involvement of HO-1 in NaHS-induced lateral root formation in tomato seedlings. Heme oxygenase-1 (HO-1) and hydrogen sulfide (H2S) regulate various responses to abiotic stress and root development, but their involvement in the simultaneous regulation of plant lateral root (LR) formation is poorly understood. In this report, we observed that the exogenously applied H2S donor sodium hydrosulfide (NaHS) and the HO-1 inducer hemin induce LR formation in tomato seedlings by triggering intracellular signaling events involving the induction of tomato HO-1 (SlHO-1), and the modulation of cell cycle regulatory genes, including the up-regulation of SlCDKA;1 and SlCYCA2;1, and simultaneous down-regulation of SlKRP2. The response of NaHS in the induction of LR formation was impaired by the potent inhibition of HO-1, which was further blocked when 50 % saturation of carbon monoxide (CO) aqueous solution, one of the catalytic by-products of HO-1, was added. Further molecular evidence revealed that the NaHS-modulated gene expression of cell cycle regulatory genes was sensitive to the inhibition of HO-1 and reversed by cotreatment with CO. The impairment of LR density and length as well as lateral root primordia number, the decreased tomato HO-1 gene expression and HO activity caused by an H2S scavenger hypotaurine were partially rescued by the addition of NaHS, hemin and CO (in particular). Together, these results revealed that at least in our experimental conditions, HO-1 might be involved in NaHS-induced tomato LR formation. Additionally, the use of NaHS and hemin compounds in crop root organogenesis should be explored.

  1. Galantamine and carbon monoxide protect brain microvascular endothelial cells by heme oxygenase-1 induction

    SciTech Connect

    Nakao, Atsunori; Kaczorowski, David J.; Zuckerbraun, Brian S.; Lei Jing; Faleo, Gaetano; Deguchi, Kentaro; McCurry, Kenneth R.; Billiar, Timothy R.; Kanno, Shinichi

    2008-03-14

    Galantamine, a reversible inhibitor of acetylcholine esterase (AChE), is a novel drug treatment for mild to moderate Alzheimer's disease and vascular dementia. Interestingly, it has been suggested that galantamine treatment is associated with more clinical benefit in patients with mild-to-moderate Alzheimer disease compared to other AChE inhibitors. We hypothesized that the protective effects of galantamine would involve induction of the protective gene, heme oxygenase-1 (HO-1), in addition to enhancement of the cholinergic system. Brain microvascular endothelial cells (mvECs) were isolated from spontaneous hypertensive rats. Galantamine significantly reduced H{sub 2}O{sub 2}-induced cell death of mvECs in association with HO-1 induction. These protective effects were completely reversed by nuclear factor-{kappa}B (NF-{kappa}B) inhibition or HO inhibition. Furthermore, galantamine failed to induce HO-1 in mvECs which lack inducible nitric oxide synthase (iNOS), supplementation of a nitric oxide (NO) donor or iNOS gene transfection on iNOS-deficient mvECs resulted in HO-1 induction with galantamine. These data suggest that the protective effects of galantamine require NF-{kappa}B activation and iNOS expression, in addition to HO-1. Likewise, carbon monoxide (CO), one of the byproducts of HO, up-regulated HO-1 and protected mvECs from oxidative stress in a similar manner. Our data demonstrate that galantamine mediates cytoprotective effects on mvECs through induction HO-1. This pharmacological action of galantamine may, at least in part, account for the superior clinical efficacy of galantamine in vascular dementia and Alzheimer disease.

  2. Enhanced metabolite generation

    DOEpatents

    Chidambaram, Devicharan

    2012-03-27

    The present invention relates to the enhanced production of metabolites by a process whereby a carbon source is oxidized with a fermentative microbe in a compartment having a portal. An electron acceptor is added to the compartment to assist the microbe in the removal of excess electrons. The electron acceptor accepts electrons from the microbe after oxidation of the carbon source. Other transfers of electrons can take place to enhance the production of the metabolite, such as acids, biofuels or brewed beverages.

  3. Cross-talk between two antioxidants, thioredoxin reductase and heme oxygenase-1, and therapeutic implications for multiple myeloma

    PubMed Central

    Raninga, Prahlad V.; Di Trapani, Giovanna; Vuckovic, Slavica; Tonissen, Kathryn F.

    2016-01-01

    Multiple myeloma (MM) is characterized by an accumulation of abnormal clonal plasma cells in the bone marrow. Despite recent advancements in anti-myeloma therapies, MM remains an incurable disease. Antioxidant molecules are upregulated in many cancers, correlating with tumor proliferation, survival, and chemoresistance and therefore, have been suggested as potential therapeutic targets. This study investigated the cross-talk between two antioxidant molecules, thioredoxin reductase (TrxR) and heme oxygenase-1 (HO-1), and their therapeutic implications in MM. We found that although auranofin, a TrxR inhibitor, significantly inhibited TrxR activity by more than 50% at lower concentrations, myeloma cell proliferation was only inhibited at higher concentrations of auranofin. Inhibition of TrxR using lower auranofin concentrations induced HO-1 protein expression in myeloma cells. Using a sub-lethal concentration of auranofin to inhibit TrxR activity in conjunction with HO-1 inhibition significantly decreased myeloma cell growth and induced apoptosis. TrxR was shown to regulate HO-1 via the Nrf2 signaling pathway in a ROS-dependent manner. Increased HO-1 mRNA levels were observed in bortezomib-resistant myeloma cells compared to parent cells and HO-1 inhibition restored the sensitivity to bortezomib in bortezomib-resistant myeloma cells. These findings indicate that concurrent inhibition of HO-1 with either a TrxR inhibitor or with bortezomib would improve therapeutic outcomes in MM patients. Hence, our findings further support the need to target multiple antioxidant systems alone or in combination with other therapeutics to improve therapeutic outcomes in MM patients. PMID:26795735

  4. Ammonia-induced oxidative damage in neurons is prevented by resveratrol and lipoic acid with participation of heme oxygenase 1.

    PubMed

    Bobermin, Larissa Daniele; Wartchow, Krista Minéia; Flores, Marianne Pires; Leite, Marina Concli; Quincozes-Santos, André; Gonçalves, Carlos-Alberto

    2015-07-01

    Ammonia is a metabolite that, at high concentrations, is implicated in neurological disorders, such as hepatic encephalopathy (HE), which is associated with acute or chronic liver failure. Astrocytes are considered the primary target of ammonia toxicity in the central nervous system (CNS) because glutamine synthetase (GS), responsible for ammonia metabolism in CNS, is an astrocytic enzyme. Thus, neuronal dysfunction has been associated as secondary to astrocytic impairment. However, we demonstrated that ammonia can induce direct effects on neuronal cells. The cell viability was decreased by ammonia in SH-SY5Y cells and cerebellar granule neurons. In addition, ammonia induced increased reactive oxygen species (ROS) production and decreased GSH intracellular content, the main antioxidant in CNS. As ammonia neurotoxicity is strongly associated with oxidative stress, we also investigated the potential neuroprotective roles of the antioxidants, resveratrol (RSV) and lipoic acid (LA), against ammonia toxicity in cerebellar granule neurons. RSV and LA were able to prevent the oxidative damage induced by ammonia, maintaining the levels of ROS production and GSH close to basal values. Both antioxidants also decreased ROS production and increased GSH content under basal conditions (in the absence of ammonia). Moreover, we showed that heme oxygenase 1 (HO1), a protein associated with protection against stress conditions, is involved in the beneficial effects of RSV and LA in cerebellar granule neurons. Thus, this study reinforces the neuroprotective effects of RSV and LA. Although more studies in vivo are required, RSV and LA could represent interesting therapeutic strategies for the management of HE.

  5. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    SciTech Connect

    Zhou, Zhao-Hua; Kumari, Namita; Nekhai, Sergei; Clouse, Kathleen A.; Wahl, Larry M.; Yamada, Kenneth M.; Dhawan, Subhash

    2013-06-07

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM.

  6. Heme oxygenase-1 in macrophages controls prostate cancer progression

    PubMed Central

    Nemeth, Zsuzsanna; Li, Mailin; Csizmadia, Eva; Döme, Balazs; Johansson, Martin; Persson, Jenny Liao; Seth, Pankaj; Otterbein, Leo; Wegiel, Barbara

    2015-01-01

    Innate immune cells strongly influence cancer growth and progression via multiple mechanisms including regulation of epithelial to mesenchymal transition (EMT). In this study, we investigated whether expression of the metabolic gene, heme oxygenase-1 (HO-1) in tumor microenvironment imparts significant effects on prostate cancer progression. We showed that HO-1 is expressed in MARCO-positive macrophages in prostate cancer (PCa) xenografts and human prostate cancers. We demonstrated that macrophage specific (LyzM-Cre) conditional deletion of HO-1 suppressed growth of PC3 xenografts in vivo and delayed progression of prostate intraepithelial neoplasia (PIN) in TRAMP mice. However, initiation and progression of cancer xenografts in the presence of macrophages lacking HO-1 resulted in loss of E-cadherin, a known marker of poor prognosis as well as EMT. Application of CO, a product of HO-1 catalysis, increased levels of E-cadherin in the adherens junctions between cancer cells. We further showed that HO-1-driven expression of E-cadherin in cancer cells cultured in the presence of macrophages is dependent on mitochondrial activity of cancer cells. In summary, these data suggest that HO-1-derived CO from tumor-associated macrophages influences, in part, E-cadherin expression and thus tumor initiation and progression. PMID:26418896

  7. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression.

    PubMed

    Azuma, Junya; Wong, Ronald J; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B; Deng, Alicia C; Spin, Joshua M; Stevenson, David K; Dalman, Ronald L; Tsao, Philip S

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease.

  8. Ferroportin expression in haem oxygenase 1-deficient mice.

    PubMed

    Starzyński, Rafał R; Canonne-Hergaux, François; Lenartowicz, Małgorzata; Krzeptowski, Wojciech; Willemetz, Alexandra; Styś, Agnieszka; Bierła, Joanna; Pietrzak, Piotr; Dziaman, Tomasz; Lipiński, Paweł

    2013-01-01

    HO1 (haem oxygenase 1) and Fpn (ferroportin) are key proteins for iron recycling from senescent red blood cells and therefore play a major role in controlling the bioavailability of iron for erythropoiesis. Although important aspects of iron metabolism in HO1-deficient (Hmox1-/-) mice have already been revealed, little is known about the regulation of Fpn expression and its role in HO1 deficiency. In the present study, we characterize the cellular and systemic factors influencing Fpn expression in Hmox1-/- bone marrow-derived macrophages and in the liver and kidney of Hmox1-/- mice. In Hmox1-/- macrophages, Fpn protein was relatively highly expressed under high levels of hepcidin in culture medium. Similarly, despite high hepatic hepcidin expression, Fpn is still detected in Kupffer cells and is also markedly enhanced at the basolateral membrane of the renal tubules of Hmox1-/- mice. Through the activity of highly expressed Fpn, epithelial cells of the renal tubules probably take over the function of impaired system of tissue macrophages in recycling iron accumulated in the kidney. Moreover, although we have found increased expression of FLVCR (feline leukaemia virus subgroup C receptor), a haem exporter, in the kidneys of Hmox1-/- mice, haem level was increased in these organs. Furthermore, we show that iron/haem-mediated toxicity are responsible for renal injury documented in the kidneys of Hmox1-/- mice.

  9. The copper active site of CBM33 polysaccharide oxygenases.

    PubMed

    Hemsworth, Glyn R; Taylor, Edward J; Kim, Robbert Q; Gregory, Rebecca C; Lewis, Sally J; Turkenburg, Johan P; Parkin, Alison; Davies, Gideon J; Walton, Paul H

    2013-04-24

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme's three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  10. Heme oxygenase-1 comes back to endoplasmic reticulum

    SciTech Connect

    Kim, Hong Pyo; Pae, Hyun-Ock; Back, Sung Hun; Chung, Su Wol; Woo, Je Moon; Son, Yong; Chung, Hun-Taeg

    2011-01-07

    Research highlights: {yields} Although multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. {yields} HO-1 expression at ER is induced by a diverse set of conditions that cause ER stressors. {yields} CO may induce HO-1 expression in human ECs by activating Nrf2 through PERK phosphorylation in a positive-feedback manner. {yields} ER-residing HO-1 and its cytoprotective activity against ER stress is discussed. -- Abstract: Originally identified as a rate-limiting enzyme for heme catabolism, heme oxygenase-1 (HO-1) has expanded its roles in anti-inflammation, anti-apoptosis and anti-proliferation for the last decade. Regulation of protein activity by location is well appreciated. Even though multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. In this review we discuss the endoplasmic reticulum (ER)-residing HO-1 and its cytoprotective activity against ER stress.

  11. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression.

    PubMed

    Azuma, Junya; Wong, Ronald J; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B; Deng, Alicia C; Spin, Joshua M; Stevenson, David K; Dalman, Ronald L; Tsao, Philip S

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease. PMID:26894432

  12. Heatstroke Effect on Brain Heme Oxygenase-1 in Rats

    PubMed Central

    Wen, Ya-Ting; Liu, Tsung-Ta; Lin, Yuh-Feng; Chen, Chun-Chi; Kung, Woon-Man; Huang, Chi-Chang; Lin, Tien-Jen; Wang, Yuan-Hung; Wei, Li

    2015-01-01

    Exposure to high environmental temperature leading to increased core body temperature above 40°C and central nervous system abnormalities such as convulsions, delirium, or coma is defined as heat stroke. Studies in humans and animals indicate that the heat shock responses of the host contribute to multiple organ injury and death during heat stroke. Heme oxygenase-1 (HO-1)—a stress-responsive enzyme that catabolizes heme into iron, carbon monoxide, and biliverdin—has an important role in the neuroprotective mechanism against ischemic stroke. Here, we investigated the role of endogenous HO-1 in heat-induced brain damage in rats. RT-PCR results revealed that levels of HO-1 mRNA peaked at 0 h after heat exposure and immunoblot analysis revealed that the maximal protein expression occurred at 1 h post-heat exposure. Subsequently, we detected the HO-1 expression in the cortical brain cells and revealed the neuronal cell morphology. In conclusion, HO-1 is a potent protective molecule against heat-induced brain damage. Manipulation of HO-1 may provide a potential therapeutic approach for heat-related diseases. PMID:26392811

  13. Heme oxygenase-1 as a potential therapeutic target for hepatoprotection.

    PubMed

    Farombi, Ebenezer Olatunde; Surh, Young Joon

    2006-09-30

    Heme oxygenase (HO), the rate limiting enzyme in the breakdown of heme into carbon monoxide (CO), iron and bilirubin, has recently received overwhelming research attention. To date three mammalian HO isozymes have been identified, and the only inducible form is HO-1 while HO-2 and HO-3 are constitutively expressed. Advances in unveiling signal transduction network indicate that a battery of redox-sensitive transcription factors, such as activator protein-1 (AP-1), nuclear factor-kappa B (NF-kappaB) and nuclear factor E2-related factor-2 (Nrf2), and their upstream kinases including mitogen-activated protein kinases play an important regulatory role in HO-1 gene induction. The products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression contributes to protection against liver damage induced by several chemical compounds such as acetaminophen, carbon tetrachloride and heavy metals, suggesting HO-1 induction as an important cellular endeavor for hepatoprotection. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect against chemically-induced liver injury as well as hepatocarcinogenesis. PMID:17002867

  14. Heatstroke Effect on Brain Heme Oxygenase-1 in Rats.

    PubMed

    Wen, Ya-Ting; Liu, Tsung-Ta; Lin, Yuh-Feng; Chen, Chun-Chi; Kung, Woon-Man; Huang, Chi-Chang; Lin, Tien-Jen; Wang, Yuan-Hung; Wei, Li

    2015-01-01

    Exposure to high environmental temperature leading to increased core body temperature above 40°C and central nervous system abnormalities such as convulsions, delirium, or coma is defined as heat stroke. Studies in humans and animals indicate that the heat shock responses of the host contribute to multiple organ injury and death during heat stroke. Heme oxygenase-1 (HO-1)-a stress-responsive enzyme that catabolizes heme into iron, carbon monoxide, and biliverdin-has an important role in the neuroprotective mechanism against ischemic stroke. Here, we investigated the role of endogenous HO-1 in heat-induced brain damage in rats. RT-PCR results revealed that levels of HO-1 mRNA peaked at 0 h after heat exposure and immunoblot analysis revealed that the maximal protein expression occurred at 1 h post-heat exposure. Subsequently, we detected the HO-1 expression in the cortical brain cells and revealed the neuronal cell morphology. In conclusion, HO-1 is a potent protective molecule against heat-induced brain damage. Manipulation of HO-1 may provide a potential therapeutic approach for heat-related diseases. PMID:26392811

  15. Crystal structure studies on sulfur oxygenase reductase from Acidianus tengchongensis

    SciTech Connect

    Li Mei; Chen Zhiwei; Zhang Pingfeng; Pan Xiaowei; Jiang Chengying; An Xiaomin; Liu Shuangjiang; Chang Wenrui

    2008-05-09

    Sulfur oxygenase reductase (SOR) simultaneously catalyzes oxidation and reduction of elemental sulfur to produce sulfite, thiosulfate, and sulfide in the presence of molecular oxygen. In this study, crystal structures of wild type and mutants of SOR from Acidianus tengchongensis (SOR-AT) in two different crystal forms were determined and it was observed that 24 identical SOR monomers form a hollow sphere. Within the icosatetramer sphere, the tetramer and trimer channels were proposed as the paths for the substrate and products, respectively. Moreover, a comparison of SOR-AT with SOR-AA (SOR from Acidianus ambivalens) structures showed that significant differences existed at the active site. Firstly, Cys31 is not persulfurated in SOR-AT structures. Secondly, the iron atom is five-coordinated rather than six-coordinated, since one of the water molecules ligated to the iron atom in the SOR-AA structure is lost. Consequently, the binding sites of substrates and a hypothetical catalytic process of SOR were proposed.

  16. Mexiletine metabolites: a review.

    PubMed

    Catalano, Alessia; Carocci, Alessia; Sinicropi, Maria Stefania

    2015-01-01

    Mexiletine belongs to class IB antiarrhythmic drugs and it is still considered a drug of choice for treating myotonias. However some patients do not respond to mexiletine or have significant side effects limiting its use; thus, alternatives to this drug should be envisaged. Mexiletine is extensive metabolized in humans via phase I and phase II reactions. Only a small fraction (about 10%) of the dose of mexiletine administered is recovered without modifications in urine. Although in the past decades Mex metabolites were reported to be devoid of biological activity, recent studies seem to deny this assertion. Actually, several hydroxylated metabolites showed pharmacological activity similar to that of Mex, thus contributing to its clinical profile. Purpose of this review is to summarize all the studies proposed till now about mexiletine metabolites, regarding structureactivity relationship studies as well as synthetic strategies. Biological and analytical studies will be also reported. PMID:25723511

  17. Evidence for allosterism in ribulose-1,5-bisphosphate carboxylase/oxygenase from comfrey

    SciTech Connect

    Mueller, D.D.; Bolden, T.D.

    1986-05-01

    Evidence has been obtained suggesting that ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is an allosteric enzyme in the sense that it shows cooperative active site binding, cooperative interactions between the activation and active sites and significant binding of some metabolites at a second site. Investigation of the binding of a potent competitive inhibitor. 2-carboxymannitol-1,6-bisphosphate (CMBP) by /sup 31/P-NMR indicated essentially 1:1 binding with the active sites of comfrey RuBisCo. Among the interactions of competitive inhibitors, as measured by difference UV spectroscopy, the binding curves for ortho-phosphate and ribose-5-phosphate were better fitted by a Monod-Wyman-Changeux model than by an independent site model, whereas the binding of CMBP and 2-phosphoglycolate were not. Difference UV methods also were used to study activation by CO/sub 2/ which at pH 7.9 in 10 mM MgCl/sub 2/ showed positive cooperativity with k = 100 +/- 3 ..mu..M (based on pK/sub a/ = 6.4 for the CO/sub 2/-HCO/sub 3//sup -/ equilibrium) and L = 3.5 +/- 0.7. Addition of saturating amounts of CMBP and lowering the MgCl/sub 2/ to 2 mM still gave a sigmoidal curve but it was shifted to higher CO/sub 2/ concentrations (k = 124 +/- 2 ..mu..M and L = 31 +/- 3). In the absence of CMBP the same conditions gave k = 26 +/- 2 ..mu..M for L = 3.5. Conversely, k was 0.96 +/- 0.08 ..mu..M for CMBP in 0.5 mM MgCl/sub 2/ without added NaHCO/sub 3/ but was 21 +/- 0.06 ..mu..M in 10 MgCl/sub 2/ and 2 mM NaHCO/sub 3/, pH 7.3.

  18. Disruption of Renal Tubular Mitochondrial Quality Control by Myo-Inositol Oxygenase in Diabetic Kidney Disease

    PubMed Central

    Zhan, Ming; Usman, Irtaza M.; Sun, Lin

    2015-01-01

    Diabetic kidney disease (DKD) is associated with oxidative stress and mitochondrial injury. Myo-inositol oxygenase (MIOX), a tubular-specific enzyme, modulates redox imbalance and apoptosis in tubular cells in diabetes, but these mechanisms remain unclear. We investigated the role of MIOX in perturbation of mitochondrial quality control, including mitochondrial dynamics and autophagy/mitophagy, under high-glucose (HG) ambience or a diabetic state. HK-2 or LLC-PK1 cells subjected to HG exhibited an upregulation of MIOX accompanied by mitochondrial fragmentation and depolarization, inhibition of autophagy/mitophagy, and altered expression of mitochondrial dynamic and mitophagic proteins. Furthermore, dysfunctional mitochondria accumulated in the cytoplasm, which coincided with increased reactive oxygen species generation, Bax activation, cytochrome C release, and apoptosis. Overexpression of MIOX in LLC-PK1 cells enhanced the effects of HG, whereas MIOX siRNA or d-glucarate, an inhibitor of MIOX, partially reversed these perturbations. Moreover, decreasing the expression of MIOX under HG ambience increased PTEN-induced putative kinase 1 expression and the dependent mitofusin-2–Parkin interaction. In tubules of diabetic mice, increased MIOX expression and mitochondrial fragmentation and defective autophagy were observed. Dietary supplementation of d-glucarate in diabetic mice decreased MIOX expression, attenuated tubular damage, and improved renal functions. Notably, d-glucarate administration also partially attenuated mitochondrial fragmentation, oxidative stress, and apoptosis and restored autophagy/mitophagy in the tubular cells of these mice. These results suggest a novel mechanism linking MIOX to impaired mitochondrial quality control during tubular injury in the pathogenesis of DKD and suggest d-glucarate as a potential therapeutic agent for the amelioration of DKD. PMID:25270067

  19. Heme oxygenase-1 induction and mitochondrial iron sequestration in astroglia exposed to amyloid peptides.

    PubMed

    Ham, D; Schipper, H M

    2000-05-01

    The mechanisms responsible for pathological iron deposition and mitochondrial insufficiency that have been documented in the brains of Alzheimer (AD) patients remain poorly understood. In the present study, we demonstrate that low-micromolar concentrations of amyloid1-40 (A40) and amyloid 1-42 (A42), peptides implicated in the pathogenesis of AD, increase levels of heme oxygenase-1 (HO-1) mRNA and protein in cultured rat astroglia. Furthermore, 6 days of exposure to amyloid augments the sequestration of 55FeCl3-derived iron by astroglial mitochondria without affecting the disposition of this metal in whole-cell and lysosomal compartments. Mitochondrial iron deposition was not observed in the amyloid-treated glia when diferric-transferrin served as the metal donor. We had previously shown that inhibitors of HO-1 and the mitochondrial permeability transition pore (MTP) block the uptake of mitochondrial iron in astrocytes exposed to the pro-oxidant effects of dopamine and several pro-inflammatory cytokines. Similarly, in the current study, amyloid-induced mitochondrial iron trapping was significantly attenuated by co-administration of the HO-1 transcriptional suppressor, dexamethasone (DEX) or the MTP blocker, cyclosporin A (CSA). Thus, the marked enhancement of HO-1 expression previously demonstrated in AD-affected neurons and astroglia may transduce amyloid (oxidative) stress into the abnormal patterns of iron deposition and mitochondrial insufficiency characteristic of this disease. Finally, in experiments employing cytotoxic concentrations of A40, we provide evidence that inhibition of HO-1 transcription and related mitochondrial iron deposition may be an important mechanism by which DEX protects tissues subjected to amyloid stress.

  20. Variation of the oxidation state of verdoheme in the heme oxygenase reaction

    SciTech Connect

    Gohya, Tomohiko; Sato, Michihiko; Zhang Xuhong; Migita, Catharina T.

    2008-11-14

    Heme oxygenase (HO) converts hemin to biliverdin, CO, and iron applying molecular oxygen and electrons. During successive HO reactions, two intermediates, {alpha}-hydroxyhemin and verdoheme, have been generated. Here, oxidation state of the verdoheme-HO complexes is controversial. To clarify this, the heme conversion by soybean and rat HO isoform-1 (GmHO-1 and rHO-1, respectively) was compared both under physiological conditions, with oxygen and NADPH coupled with ferredoxin reductase/ferredoxin for GmHO-1 or with cytochrome P450 reductase for rHO-1, and under a non-physiological condition with hydrogen peroxide. EPR measurements on the hemin-GmHO-1 reaction with oxygen detected a low-spin ferric intermediate, which was undetectable in the rHO-1 reaction, suggesting the verdoheme in the six-coordinate ferric state in GmHO-1. Optical absorption measurements on this reaction indicated that the heme degradation was extremely retarded at verdoheme though this reaction was not inhibited under high-CO concentrations, unlike the rHO-1 reaction. On the contrary, the Gm and rHO-1 reactions with hydrogen peroxide both provided ferric low-spin intermediates though their yields were different. The optical absorption spectra suggested that the ferric and ferrous verdoheme coexisted in reaction mixtures and were slowly converted to the ferric biliverdin complex. Consequently, in the physiological oxygen reactions, the verdoheme is found to be stabilized in the ferric state in GmHO-1 probably guided by protein distal residues and in the ferrous state in rHO-1, whereas in the hydrogen peroxide reactions, hydrogen peroxide or hydroxide coordination stabilizes the ferric state of verdoheme in both HOs.

  1. Thioredoxin reductase regulates the induction of haem oxygenase-1 expression in aortic endothelial cells

    PubMed Central

    Trigona, Wendy L.; Mullarky, Isis K.; Cao, Yuzhang; Sordillo, Lorraine M.

    2005-01-01

    Certain selenoproteins such as GPX-1 (glutathione peroxidase-1) and TrxR1 (thioredoxin reductase-1) possess important antioxidant defence functions in vascular endothelial cells. Reduced selenoprotein activity during dietary selenium (Se) deficiency can result in a compensatory increase of other non-Se-dependent antioxidants, such as HO-1 (haem oxygenase-1) that may help to counteract the damaging effects of oxidant stress. However, the role of individual selenoproteins in regulating vascular-derived protective gene responses such as HO-1 is less understood. Using an oxidant stress model based on Se deficiency in BAECs (bovine aortic endothelial cells), we sought to determine whether TrxR1 activity may contribute to the differential regulation of HO-1 expression as a function of altered redox environment. Se-sufficient BAECs up-regulated HO-1 expression following stimulation with the pro-oxidant, 15-HPETE (15-hydroperoxyeicosatetraenoic acid), and levels of this antioxidant inversely correlated with EC apoptosis. While Se-deficient BAECs exhibited higher basal levels of HO-1, it was not up-regulated upon 15-HPETE treatment, which resulted in significantly higher levels of pro-apoptotic markers. Subsequent results showed that HO-1 induction depended on the activity of TrxR1, as proved with chemical inhibitor studies and direct inhibition with TrxR1 siRNA. Finally, restoring intracellular levels of the reduced substrate Trx (thioredoxin) in Sedeficient BAECs was sufficient to increase HO-1 activation following 15-HPETE stimulation. These data provide evidence for the involvement of the Trx/TrxR system, in the regulation of HO-1 expression in BAECs during pro-oxidant challenge. PMID:16209660

  2. Heme Oxygenase-1 Dysregulates Macrophage Polarization and the Immune Response to Helicobacter pylori

    PubMed Central

    Gobert, Alain P.; Verriere, Thomas; Asim, Mohammad; Barry, Daniel P.; Piazuelo, M. Blanca; de Sablet, Thibaut; Delgado, Alberto G.; Bravo, Luis E.; Correa, Pelayo; Peek, Richard M.; Chaturvedi, Rupesh; Wilson, Keith T.

    2014-01-01

    Helicobacter pylori incites a futile inflammatory response, which is the key feature of its immunopathogenesis. This leads to the ability of this bacterial pathogen to survive in the stomach and cause peptic ulcers and gastric cancer. Myeloid cells recruited to the gastric mucosa during Helicobacter pylori infection have been directly implicated in the modulation of host defense against the bacterium and gastric inflammation. Heme oxygenase-1 (HO-1) is an inducible enzyme that exhibits anti-inflammatory functions. Our aim was to analyze the induction and role of HO-1 in macrophages during H. pylori infection. We now show that phosphorylation of the H. pylori virulence factor cytotoxin associated gene A (CagA) in macrophages results in expression of hmox-1, the gene encoding HO-1, through p38/nuclear factor (erythroid-derived 2)-like 2 signaling. Blocking phagocytosis prevented CagA phosphorylation and HO-1 induction. The expression of HO-1 was also increased in gastric mononuclear cells of human patients and macrophages of mice infected with cagA+ H. pylori strains. Genetic ablation of hmox-1 in H. pylori-infected mice increased histologic gastritis, which was associated with enhanced M1/Th1/Th17 responses, decreased Mreg response, and reduced H. pylori colonization. Gastric macrophages of H. pylori-infected mice and macrophages infected in vitro with this bacterium showed an M1/Mreg mixed polarization type; deletion of hmox-1 or inhibition of HO-1 in macrophages caused an increased M1 and a decreased of Mreg phenotype. These data highlight a mechanism by which H. pylori impairs the immune response and favors its own survival via activation of macrophage HO-1. PMID:25108023

  3. Comparative transcriptional and translational analysis of heme oxygenase expression in response to sulfur mustard.

    PubMed

    Nourani, Mohammad Reza; Mahmoodzadeh Hosseini, Hamideh; Imani Fooladi, Abbas Ali

    2015-01-01

    Sulfur mustard (SM) is a potent alkylating agent which reacts with nucleophilic groups on DNA, RNA and proteins. It is capable of inducing cellular toxicity and oxidative stress via production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The accumulation of high amounts of the reactive species causes harmful effects such as DNA damage, lipid peroxidation, protein oxidation, inflammation and apoptosis. Although SM (also known as mustard gas) and its derivatives are rapidly removed from the body, long-term damages are much more serious than the short-term effects and may be correlated with the subsequent changes occurred on the genome. In order to defend against oxidative properties of this toxic molecule, cells trigger several anti-oxidant pathways through up-regulating the corresponding genes. Enzymes like heme oxygenase-1, superoxide dismutase and glutathione-S-transferase are the examples of such genes. These enzymes produce anti-oxidant substances that are able to scavenge the reactive species, alleviate their noxious effects and protect the cells. Following SM gas exposure, gene transcription (mRNA levels) of these enzymes are ramped up to help detoxify the cells. Yet, some studies have reported that the up-regulated transcription does not necessarily translate into higher protein expression levels. The exact reason why this phenomenon happens is not clear. Creation of mutations in the genome sequence may lead to protein structure changes. Phosphorylation or other post-translational alterations of proteins upon SM exposure are also considered as possible causes. In addition, alterations in some microRNAs responsible for regulating post-translation events may inhibit the expression of the anti-oxidant proteins in the poisoned cells at translational level. PMID:26096165

  4. Reduction of bilirubin by targeting human heme oxygenase-1 through siRNA.

    PubMed

    Xia, Zhen-Wei; Li, Chun-E; Jin, You-Xin; Shi, Yi; Xu, Li-Qing; Zhong, Wen-Wei; Li, Yun-Zhu; Yu, Shan-Chang; Zhang, Zi-Li

    2007-04-01

    Neonatal hyperbilirubinemia is a common clinical condition caused mainly by the increased production and decreased excretion of bilirubin. Current treatment is aimed at reducing the serum levels of bilirubin. Heme oxygenase-1 (HO-1) is a rate-limiting enzyme that generates bilirubin. In this study we intended to suppress HO-1 using the RNA interference technique. Small interfering RNA (siRNA)-A, -B, and -C were designed based on human HO-1 (hHO-1) mRNA sequences. siRNA was transfected into a human hepatic cell line (HL-7702). hHO-1 transcription and protein levels were then determined. In addition, the inhibitory effect of siRNA on hHO-1 was assessed in cells treated with hemin or transfected with an hHO-1 plasmid. siRNA-C showed the most potent suppressive effect on hHO-1. This inhibition is dose and time dependent. Compared with control, both hemin and hHO-1 plasmids up-regulated hHO-1 expression in HL-7702 cells. However, the up-regulation was significantly attenuated by siRNA-C. Furthermore, the decrease in hHO-1 activity was coincident with the suppression of its transcription. Finally, siRNA-C was shown to reduce hHO-1 enzymatic activity and bilirubin levels. Thus, this study provides a novel therapeutic rationale by blocking bilirubin formation via siRNA for preventing and treating neonatal hyperbilirubinemia and bilirubin encephalopathy at an early clinical stage.

  5. Heme oxygenase and the immune system in normal and pathological pregnancies

    PubMed Central

    Ozen, Maide; Zhao, Hui; Lewis, David B.; Wong, Ronald J.; Stevenson, David K.

    2015-01-01

    Normal pregnancy is an immunotolerant state. Many factors, including environmental, socioeconomic, genetic, and immunologic changes by infection and/or other causes of inflammation, may contribute to inter-individual differences resulting in a normal or pathologic pregnancy. In particular, imbalances in the immune system can cause many pregnancy-related diseases, such as infertility, abortions, pre-eclampsia, and preterm labor, which result in maternal/fetal death, prematurity, or small-for-gestational age newborns. New findings imply that myeloid regulatory cells and regulatory T cells (Tregs) may mediate immunotolerance during normal pregnancy. Effector T cells (Teffs) have, in contrast, been implicated to cause adverse pregnancy outcomes. Furthermore, feto-maternal tolerance affects the developing fetus. It has been shown that the Treg/Teff balance affects litter size and adoptive transfer of pregnancy-induced Tregs can prevent fetal rejection in the mouse. Heme oxygenase-1 (HO-1) has a protective role in many conditions through its anti-inflammatory, anti-apoptotic, antioxidative, and anti-proliferative actions. HO-1 is highly expressed in the placenta and plays a role in angiogenesis and placental vascular development and in regulating vascular tone in pregnancy. In addition, HO-1 is a major regulator of immune homeostasis by mediating crosstalk between innate and adaptive immune systems. Moreover, HO-1 can inhibit inflammation-induced phenotypic maturation of immune effector cells and pro-inflammatory cytokine secretion and promote anti-inflammatory cytokine production. HO-1 may also be associated with T-cell activation and can limit immune-based tissue injury by promoting Treg suppression of effector responses. Thus, HO-1 and its byproducts may protect against pregnancy complications by its immunomodulatory effects, and the regulation of HO-1 or its downstream effects has the potential to prevent or treat pregnancy complications and prematurity. PMID

  6. Heme oxygenase and the immune system in normal and pathological pregnancies.

    PubMed

    Ozen, Maide; Zhao, Hui; Lewis, David B; Wong, Ronald J; Stevenson, David K

    2015-01-01

    Normal pregnancy is an immunotolerant state. Many factors, including environmental, socioeconomic, genetic, and immunologic changes by infection and/or other causes of inflammation, may contribute to inter-individual differences resulting in a normal or pathologic pregnancy. In particular, imbalances in the immune system can cause many pregnancy-related diseases, such as infertility, abortions, pre-eclampsia, and preterm labor, which result in maternal/fetal death, prematurity, or small-for-gestational age newborns. New findings imply that myeloid regulatory cells and regulatory T cells (Tregs) may mediate immunotolerance during normal pregnancy. Effector T cells (Teffs) have, in contrast, been implicated to cause adverse pregnancy outcomes. Furthermore, feto-maternal tolerance affects the developing fetus. It has been shown that the Treg/Teff balance affects litter size and adoptive transfer of pregnancy-induced Tregs can prevent fetal rejection in the mouse. Heme oxygenase-1 (HO-1) has a protective role in many conditions through its anti-inflammatory, anti-apoptotic, antioxidative, and anti-proliferative actions. HO-1 is highly expressed in the placenta and plays a role in angiogenesis and placental vascular development and in regulating vascular tone in pregnancy. In addition, HO-1 is a major regulator of immune homeostasis by mediating crosstalk between innate and adaptive immune systems. Moreover, HO-1 can inhibit inflammation-induced phenotypic maturation of immune effector cells and pro-inflammatory cytokine secretion and promote anti-inflammatory cytokine production. HO-1 may also be associated with T-cell activation and can limit immune-based tissue injury by promoting Treg suppression of effector responses. Thus, HO-1 and its byproducts may protect against pregnancy complications by its immunomodulatory effects, and the regulation of HO-1 or its downstream effects has the potential to prevent or treat pregnancy complications and prematurity. PMID

  7. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals

    SciTech Connect

    Lawal, Akeem O.; Zhang, Min; Dittmar, Michael; Lulla, Aaron; Araujo, Jesus A.

    2015-05-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. - Highlights: • We examined the role of HO-1 expression on diesel exhaust particle (DEP) in endothelial cells. • DEPs exert cytotoxic and inflammatory effects on human microvascular endothelial cells (HMECs). • DEPs induce HO-1 expression in HMECs. • HO-1 protects against the oxidative stress induced by DEps. • HO-1 attenuates the proinflammatory effects

  8. Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites.

    PubMed

    Baldwin, Brett R; Nakatsu, Cindy H; Nies, Loring

    2008-02-01

    Monitoring groundwater benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations is the typical method to assess monitored natural attenuation (MNA) and bioremediation as corrective actions at gasoline-contaminated sites. Conclusive demonstration of bioremediation, however, relies on converging lines of chemical and biological evidence to support a decision. In this study, real-time PCR quantification of aromatic oxygenase genes was used to evaluate the feasibility of MNA at two gasoline-impacted sites. Phenol hydroxylase (PHE), ring-hydroxylating toluene monooxygenase (RMO), naphthalene dioxygenase (NAH), toluene monooxygenase (TOL), toluene dioxygenase (TOD), and biphenyl dioxygenase (BPH4) genes were routinely detected in BTEX-impacted wells. Aromatic oxygenase genes were not detected in sentinel wells outside the plume indicating that elevated levels of oxygenase genes corresponded to petroleum hydrocarbon contamination. Total aromatic oxygenase gene copy numbers detected in impacted wells were on the order of 10(6)-10(9)copies L(-1). PHE, RMO, NAH, TOD, and BPH4 gene copies positively correlated to total BTEX concentration. Mann-Kendall analysis of benzene concentrations was used to evaluate the status of the dissolved BTEX plume. The combination of trend analysis of contaminant concentrations with quantification of aromatic oxygenase genes was used to assess the feasibility of MNA as corrective measures at both sites.

  9. Oxidative cyclizations in orthosomycin biosynthesis expand the known chemistry of an oxygenase superfamily

    PubMed Central

    McCulloch, Kathryn M.; McCranie, Emilianne K.; Smith, Jarrod A.; Sarwar, Maruf; Mathieu, Jeannette L.; Gitschlag, Bryan L.; Du, Yu; Bachmann, Brian O.; Iverson, T. M.

    2015-01-01

    Orthosomycins are oligosaccharide antibiotics that include avilamycin, everninomicin, and hygromycin B and are hallmarked by a rigidifying interglycosidic spirocyclic ortho-δ-lactone (orthoester) linkage between at least one pair of carbohydrates. A subset of orthosomycins additionally contain a carbohydrate capped by a methylenedioxy bridge. The orthoester linkage is necessary for antibiotic activity but rarely observed in natural products. Orthoester linkage and methylenedioxy bridge biosynthesis require similar oxidative cyclizations adjacent to a sugar ring. We have identified a conserved group of nonheme iron, α-ketoglutarate–dependent oxygenases likely responsible for this chemistry. High-resolution crystal structures of the EvdO1 and EvdO2 oxygenases of everninomicin biosynthesis, the AviO1 oxygenase of avilamycin biosynthesis, and HygX of hygromycin B biosynthesis show how these enzymes accommodate large substrates, a challenge that requires a variation in metal coordination in HygX. Excitingly, the ternary complex of HygX with cosubstrate α-ketoglutarate and putative product hygromycin B identified an orientation of one glycosidic linkage of hygromycin B consistent with metal-catalyzed hydrogen atom abstraction from substrate. These structural results are complemented by gene disruption of the oxygenases evdO1 and evdMO1 from the everninomicin biosynthetic cluster, which demonstrate that functional oxygenase activity is critical for antibiotic production. Our data therefore support a role for these enzymes in the production of key features of the orthosomycin antibiotics. PMID:26240321

  10. Microinjection of heme oxygenase genes rescues phytochrome-chromophore-deficient mutants of the moss Ceratodon purpureus.

    PubMed

    Brücker, G; Zeidler, M; Kohchi, T; Hartmann, E; Lamparter, T

    2000-03-01

    In protonemal tip cells of the moss Ceratodon purpureus (Hedw.) Brid., phototropism and chlorophyll accumulation are regulated by the photoreceptor phytochrome. The mutant ptr116 lacks both responses as a result of a defect in the biosynthesis of phytochromobilin, the chromophore of phytochrome, at the point of biliverdin formation. The rescue of the phototropic response and of chlorophyll synthesis were tested by injecting different substances into tip cells of ptr116. Microinjection was first optimised with the use of fluorescent dyes and an expression plasmid containing a green fluorescent protein (GFP) gene. Injected phycocyanobilin, which substitutes for phytochromobilin, rescued both the phototropic response and light-induced chlorophyll accumulation in ptr116. The same results were obtained when expression plasmids with heme oxygenase genes of rat (HO-1) and Arabidopsis thaliana (L.) Heynh. (HY1) were injected. Heme oxygenase catalyses the conversion of heme into biliverdin. Whereas HY1 has a plastid target sequence and is presumably transferred to plastids, HO-1 is proposed to be cytosolic. The data show that ptr116 lacks heme oxygenase enzyme activity and indicate that heme oxygenases of various origin are active in Ceratodon bilin synthesis. In addition, it can be inferred from the data that the intracellular localisation of the expressed heme oxygenase is not important since the plastid enzyme can be replaced by a cytosolic one. PMID:10787045

  11. Neuroprotective effects of Argon are mediated via an ERK-1/2 dependent regulation of heme-oxygenase-1 in retinal ganglion cells.

    PubMed

    Ulbrich, Felix; Kaufmann, Kai B; Coburn, Mark; Lagrèze, Wolf Alexander; Roesslein, Martin; Biermann, Julia; Buerkle, Hartmut; Loop, Torsten; Goebel, Ulrich

    2015-08-01

    Retinal ischemia and reperfusion injuries (R-IRI) damage neuronal tissue permanently. Recently, we demonstrated that Argon exerts anti-apoptotic and protective properties. The molecular mechanism remains unclear. We hypothesized that Argon inhalation exert neuroprotective effects in rats retinal ganglion cells (RGC) via an ERK-1/2 dependent regulation of heat-shock proteins. Inhalation of Argon (75 Vol%) was performed after R-IRI on the rats' left eyes for 1 h immediately or with delay. Retinal tissue was harvested after 24 h to analyze mRNA and protein expression of heat-shock proteins -70, -90 and heme-oxygenase-1, mitogen-activated protein kinases (p38, JNK, ERK-1/2) and histological changes. To analyze ERK dependent effects, the ERK inhibitor PD98059 was applicated prior to Argon inhalation. RGC count was analyzed 7 days after injury. Statistics were performed using anova. Argon significantly reduced the R-IRI-affected heat-shock protein expression (p < 0.05). While Argon significantly induced ERK-1/2 expression (p < 0.001), inhibition of ERK-1/2 before Argon inhalation resulted in significantly lower vital RGCs (p < 0.01) and increase in heme-oxygenase-1 (p < 0.05). R-IRI-induced RGC loss was reduced by Argon inhalation (p < 0.001). Immunohistochemistry suggested ERK-1/2 activation in Müller cells. We conclude, that Argon treatment protects R-IRI-induced apoptotic loss of RGC via an ERK-1/2 dependent regulation of heme-oxygenase-1. We proposed the following possible mechanism for Argon-mediated neuroprotection: Argon exerts its protective effects via an induction of an ERK with subsequent suppression of the heat shock response. In conclusion, ischemia and reperfusion injuries and subsequent neuronal apoptosis are attenuated. These novel findings may open up new opportunities for Argon as a therapeutic option, especially since Argon is not toxic.

  12. Induction of heme oxygenase-1 contributes to survival of Mycobacterium abscessus in human macrophages-like THP-1 cells

    PubMed Central

    Abdalla, Maher Y.; Ahmad, Iman M.; Switzer, Barbara; Britigan, Bradley E.

    2015-01-01

    Mycobacterium abscessus (M.abs) is a rapidly growing mycobacterial species that infects macrophages, and is an important pathogen in patients with cystic fibrosis. We studied the early stages of M.abs infection of macrophages, with emphasis on the role of heme-oxygenase-1 (HO-1) in this infection. THP-1 cells were activated using TPA into macrophage-like cells and infected with M.abs for different time points. M.abs infection robustly induced HO-1 expression in the THP-1 cells. Production of HO-1 was p38 MAPK-dependent, as p38 inhibitors suppressed HO-1 induction. Pretreatment with HO-1 inhibitors tin-protoporphyrin (SnPP) significantly inhibited M.abs growth inside macrophages. Furthermore, inhibiting HO-1 using HO-1 siRNA or the HO-1 upstream signaling molecule; Nrf2 using Nrf2 siRNA resulted in similar inhibition of M.abs. In contrast, inducing HO-1 did not increase M.abs intracellular growth above control. Products of HO-1 metabolism of heme are bilirubin, biliverdin, carbon monoxide (CO) and iron. The addition of either bilirubin or biliverdin, but not CO, completely restored the SnPP inhibitory effect and partially that with HO-1 siRNA. To understand the mechanisms, we used Syto-62 labeled M.abs to infect macrophages. Interestingly, HO-1 inhibition promoted M.abs-containing phagosome fusion with lysosomes, which should enhance M.abs killing. M.abs infection enhanced THP-1 ROS production as demonstrated by increased DHE, DCF fluorescence, and EPR signal. HO-1 inhibition further increased ROS production in infected macrophages. Our results indicate that HO-1 induction is important for M.abs growth during the early stages of infection, and that the HO-1 products bilirubin and biliverdin, perhaps through modulation of intracellular ROS levels, may be involved. PMID:25638774

  13. Secondary metabolites from Ganoderma.

    PubMed

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites.

  14. Natural heme oxygenase-1 inducers in hepatobiliary function

    PubMed Central

    Volti, Giovanni Li; Sacerdoti, David; Giacomo, Claudia Di; Barcellona, Maria Luisa; Scacco, Antonio; Murabito, Paolo; Biondi, Antonio; Basile, Francesco; Gazzolo, Diego; Abella, Raul; Frigiola, Alessandro; Galvano, Fabio

    2008-01-01

    Many physiological effects of natural antioxidants, their extracts or their major active components, have been reported in recent decades. Most of these compounds are characterized by a phenolic structure, similar to that of α-tocopherol, and present antioxidant properties that have been demonstrated both in vitro and in vivo. Polyphenols may increase the capacity of endogenous antioxidant defences and modulate the cellular redox state. Changes in the cellular redox state may have wide-ranging consequences for cellular growth and differentiation. The majority of in vitro and in vivo studies conducted so far have attributed the protective effect of bioactive polyphenols to their chemical reactivity toward free radicals and their capacity to prevent the oxidation of important intracellular components. However, in recent years a possible novel aspect in the mode of action of these compounds has been suggested; that is, the ultimate stimulation of the heme oxygenase-1 (HO-1) pathway is likely to account for the established and powerful antioxidant/anti-inflammatory properties of these polyphenols. The products of the HO-catalyzed reaction, particularly carbon monoxide (CO) and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression by means of natural compounds contributes to protection against liver damage in various experimental models. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against various stressors in several pathological conditions. PMID:18985801

  15. Heme Oxygenase-1 Regulates Myeloid Cell Trafficking in AKI.

    PubMed

    Hull, Travis D; Kamal, Ahmed I; Boddu, Ravindra; Bolisetty, Subhashini; Guo, Lingling; Tisher, Cornelia C; Rangarajan, Sunil; Chen, Bo; Curtis, Lisa M; George, James F; Agarwal, Anupam

    2015-09-01

    Renal ischemia-reperfusion injury is mediated by a complex cascade of events, including the immune response, that occur secondary to injury to renal epithelial cells. We tested the hypothesis that heme oxygenase-1 (HO-1) expression, which is protective in ischemia-reperfusion injury, regulates trafficking of myeloid-derived immune cells in the kidney. Age-matched male wild-type (HO-1(+/+)), HO-1-knockout (HO-1(-/-)), and humanized HO-1-overexpressing (HBAC) mice underwent bilateral renal ischemia for 10 minutes. Ischemia-reperfusion injury resulted in significantly worse renal structure and function and increased mortality in HO-1(-/-) mice. In addition, there were more macrophages (CD45(+) CD11b(hi)F4/80(lo)) and neutrophils (CD45(+) CD11b(hi) MHCII(-) Gr-1(hi)) in HO-1(-/-) kidneys than in sham and HO-1(+/+) control kidneys subjected to ischemia-reperfusion. However, ischemic injury resulted in a significant decrease in the intrarenal resident dendritic cell (DC; CD45(+)MHCII(+)CD11b(lo)F4/80(hi)) population in HO-1(-/-) kidneys compared with controls. Syngeneic transplant experiments utilizing green fluorescent protein-positive HO-1(+/+) or HO-1(-/-) donor kidneys and green fluorescent protein-negative HO-1(+/+) recipients confirmed increased migration of the resident DC population from HO-1(-/-) donor kidneys, compared to HO-1(+/+) donor kidneys, to the peripheral lymphoid organs. This effect on renal DC migration was corroborated in myeloid-specific HO-1(-/-) mice subjected to bilateral ischemia. These mice also displayed impaired renal recovery and increased fibrosis at day 7 after injury. These results highlight an important role for HO-1 in orchestrating the trafficking of myeloid cells in AKI, which may represent a key pathway for therapeutic intervention.

  16. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    PubMed

    Yeom, Hye-Jung; Koo, Ok Jae; Yang, Jaeseok; Cho, Bumrae; Hwang, Jong-Ik; Park, Sol Ji; Hurh, Sunghoon; Kim, Hwajung; Lee, Eun Mi; Ro, Han; Kang, Jung Taek; Kim, Su Jin; Won, Jae-Kyung; O'Connell, Philip J; Kim, Hyunil; Surh, Charles D; Lee, Byeong-Chun; Ahn, Curie

    2012-01-01

    Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.

  17. Generation and Characterization of Human Heme Oxygenase-1 Transgenic Pigs

    PubMed Central

    Yang, Jaeseok; Cho, Bumrae; Hwang, Jong-Ik; Park, Sol Ji; Hurh, Sunghoon; Kim, Hwajung; Lee, Eun Mi; Ro, Han; Kang, Jung Taek; Kim, Su Jin; Won, Jae-Kyung; O'Connell, Philip J.; Kim, Hyunil; Surh, Charles D.; Lee, Byeong-Chun; Ahn, Curie

    2012-01-01

    Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation. PMID:23071605

  18. Human heme oxygenase oxidation of 5- and 15-phenylhemes.

    PubMed

    Wang, Jinling; Niemevz, Fernando; Lad, Latesh; Huang, Liusheng; Alvarez, Diego E; Buldain, Graciela; Poulos, Thomas L; de Montellano, Paul R Ortiz

    2004-10-01

    Human heme oxygenase-1 (hHO-1) catalyzes the O2-dependent oxidation of heme to biliverdin, CO, and free iron. Previous work indicated that electrophilic addition of the terminal oxygen of the ferric hydroperoxo complex to the alpha-meso-carbon gives 5-hydroxyheme. Earlier efforts to block this reaction with a 5-methyl substituent failed, as the reaction still gave biliverdin IXalpha. Surprisingly, a 15-methyl substituent caused exclusive cleavage at the gamma-meso-rather than at the normal, unsubstituted alpha-meso-carbon. No CO was formed in these reactions, but the fragment cleaved from the porphyrin eluded identification. We report here that hHO-1 cleaves 5-phenylheme to biliverdin IXalpha and oxidizes 15-phenylheme at the alpha-meso position to give 10-phenylbiliverdin IXalpha. The fragment extruded in the oxidation of 5-phenylheme is benzoic acid, one oxygen of which comes from O2 and the other from water. The 2.29- and 2.11-A crystal structures of the hHO-1 complexes with 1- and 15-phenylheme, respectively, show clear electron density for both the 5- and 15-phenyl rings in both molecules of the asymmetric unit. The overall structure of 15-phenylheme-hHO-1 is similar to that of heme-hHO-1 except for small changes in distal residues 141-150 and in the proximal Lys18 and Lys22. In the 5-phenylheme-hHO-1 structure, the phenyl-substituted heme occupies the same position as heme in the heme-HO-1 complex but the 5-phenyl substituent disrupts the rigid hydrophobic wall of residues Met34, Phe214, and residues 26-42 near the alpha-meso carbon. The results provide independent support for an electrophilic oxidation mechanism and support a role for stereochemical control of the reaction regiospecificity.

  19. Heme oxygenase-1 promotes the persistence of Leishmania chagasi infection

    PubMed Central

    Luz, Nívea F.; Andrade, Bruno B.; Feijó, Daniel F.; Araújo-Santos, Théo; Quintela, Graziele C.; Andrade, Daniela; Abánades, Daniel R.; Melo, Enaldo V.; Silva, Angela M.; Brodyskn, Cláudia I.; Barral-Netto, Manoel; Barral, Aldina; Soares, Rodrigo P.; Almeida, Roque P.; Bozza, Marcelo T.; Borges, Valéria M.

    2012-01-01

    Visceral leishmaniasis (VL) remains a major public health problem worldwide. This disease is highly associated with chronic inflammation and a lack of the cellular immune responses against Leishmania. It is important to identify major factors driving the successful establishment of the Leishmania infection in order to develop better tools for the disease control. Heme oxygenase-1 (HO-1) is a key enzyme triggered by cellular stress, and its role in VL has not been investigated. Herein, we evaluated the role of HO-1 in the infection by Leishmania infantum chagasi, the causative agent of VL cases in Brazil. We found that L. chagasi infection or lipophosphoglycan (LPG) isolated from promastigotes triggered HO-1 production by murine macrophages. Interestingly, cobalt protoporphyrin IX (CoPP), a HO-1 inductor, increased the parasite burden in both mouse and human derived macrophages. Upon L. chagasi infection, macrophages from Hmox1 knockout mice presented significantly lower parasite loads when compared to those from wild type mice. Furthermore, upregulation of HO-1 by CoPP diminished the production of TNF-α and reactive oxygen species by infected murine macrophages and increased Cu/Zn superoxide dismutase expression in human monocytes. Finally, patients with VL presented higher systemic concentrations of HO-1 than healthy individuals and this increase of HO-1 was reduced after antileishmanial treatment, suggesting that HO-1 is associated with disease susceptibility. Our data argue that HO-1 has a critical role in the L. chagasi infection and is strongly associated with the inflammatory imbalance during VL. Manipulation of HO-1 pathways during VL could serve as an adjunctive therapeutic approach. PMID:22461696

  20. Protective role of heme oxygenase-1 in atrial remodeling.

    PubMed

    Yeh, Yung-Hsin; Hsu, Lung-An; Chen, Ying-Hwa; Kuo, Chi-Tai; Chang, Gwo-Jyh; Chen, Wei-Jan

    2016-09-01

    Structural and electrical remodeling in the atrium constitutes the main feature of atrial fibrillation (AF), which is characterized by increased oxidative stress. Heme oxygenase-1 (HO-1) is a potent anti-oxidant system that may provide protection against various oxidative stress-related diseases. The aim of this study is to investigate whether HO-1 has a protective effect on AF-related remodeling. Cultured atrium-derived myocytes (HL-1 cell line) were used to evaluate tachypacing-induced oxidative stress, structural, and electrical remodeling. Transforming growth factor-β (TGF-β) was utilized to assess collagen (a main fibrosis-related protein) expression in atrial fibroblasts. Tachypacing in HL-1 myocytes and treatment of atrial fibroblasts with TGF-β enhanced the expression of HO-1, both of which were mediated by the activation of nuclear factor erythroid-2-related factor 2. Over-expression of HO-1 in HL-1 cells attenuated tachypacing-induced oxidative stress, myofibril degradation, down-regulation of L-type calcium channel, and shortening of action potential duration. Furthermore, HO-1 over-expression in atrial fibroblasts blocked the up-regulation of collagen by TGF-β, implicating a protective role of HO-1 in structural and electrical remodeling in the atrium. In vivo, HO-1(-/-) mice exhibited a higher degree of oxidative stress, myofibril degradation, and collagen deposit in their atria than wild-type mice. Moreover, burst atrial pacing induced a greater susceptibility to AF in HO-1(-/-) mice than in wild-type mice. In conclusion, a negative-feedback regulation of HO-1 in activated atrial myocytes and fibroblasts may provide protection against AF-related remodeling and AF development. PMID:27562817

  1. Discovery and industrial applications of lytic polysaccharide mono-oxygenases.

    PubMed

    Johansen, Katja S

    2016-02-01

    The recent discovery of copper-dependent lytic polysaccharide mono-oxygenases (LPMOs) has opened up a vast area of research covering several fields of application. The biotech company Novozymes A/S holds patents on the use of these enzymes for the conversion of steam-pre-treated plant residues such as straw to free sugars. These patents predate the correct classification of LPMOs and the striking synergistic effect of fungal LPMOs when combined with canonical cellulases was discovered when fractions of fungal secretomes were evaluated in industrially relevant enzyme performance assays. Today, LPMOs are a central component in the Cellic CTec enzyme products which are used in several large-scale plants for the industrial production of lignocellulosic ethanol. LPMOs are characterized by an N-terminal histidine residue which, together with an internal histidine and a tyrosine residue, co-ordinates a single copper atom in a so-called histidine brace. The mechanism by which oxygen binds to the reduced copper atom has been reported and the general mechanism of copper-oxygen-mediated activation of carbon is being investigated in the light of these discoveries. LPMOs are widespread in both the fungal and the bacterial kingdoms, although the range of action of these enzymes remains to be elucidated. However, based on the high abundance of LPMOs expressed by microbes involved in the decomposition of organic matter, the importance of LPMOs in the natural carbon-cycle is predicted to be significant. In addition, it has been suggested that LPMOs play a role in the pathology of infectious diseases such as cholera and to thus be relevant in the field of medicine.

  2. Induction of heme oxygenase in intestinal epithelial cells: studies in Caco-2 cell cultures.

    PubMed

    Cable, J W; Cable, E E; Bonkovsky, H L

    1993-12-01

    Enterally administered, heme is a good source of iron in humans and other animals, but the metabolism of heme by enterocytes has not been fully characterized. Caco-2 cells in culture provide a useful model for studying cells that resemble small intestinal epithelium, both morphologically and functionally. In this paper we show that heme oxygenase, the rate-controlling enzyme of heme catabolism, is present in abundance in Caco-2 cells, and that levels of its mRNA and activity can be increased by exposure of the cells to heme or metal ions (cadmium, cobalt). Caco-2 cells also contain biliverdin reductase activity which, in the basal state, is similar to that of heme oxygenase (approximately 40 pmole of product per mg protein per minute); however, when heme oxygenase is induced, biliverdin reductase may become rate-limiting for bilirubin production.

  3. Crystal Structure of Dicamba Monooxygenase: A Rieske Nonheme Oxygenase that Catalyzes Oxidative Demethylation

    SciTech Connect

    Dumitru, Razvan; Jiang, Wen Zhi; Weeks, Donald P.; Wilson, Mark A.

    2009-08-28

    Dicamba (3,6-dichloro-2-methoxybenzoic acid) is a widely used herbicide that is efficiently degraded by soil microbes. These microbes use a novel Rieske nonheme oxygenase, dicamba monooxygenase (DMO), to catalyze the oxidative demethylation of dicamba to 3,6-dichlorosalicylic acid (DCSA) and formaldehyde. We have determined the crystal structures of DMO in the free state, bound to its substrate dicamba, and bound to the product DCSA at 2.10-1.75 {angstrom} resolution. The structures show that the DMO active site uses a combination of extensive hydrogen bonding and steric interactions to correctly orient chlorinated, ortho-substituted benzoic-acid-like substrates for catalysis. Unlike other Rieske aromatic oxygenases, DMO oxygenates the exocyclic methyl group, rather than the aromatic ring, of its substrate. This first crystal structure of a Rieske demethylase shows that the Rieske oxygenase structural scaffold can be co-opted to perform varied types of reactions on xenobiotic substrates.

  4. RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella

    PubMed Central

    Fabrick, Jeffrey A.; Kanost, Michael R.; Baker, James E.

    2004-01-01

    Gene silencing through the introduction of double-stranded RNA (RNA interference, RNAi) provides a powerful tool for the elucidation of gene function in many systems, including those where genomics and proteomics are incomplete. The use of RNAi technology for gene silencing in Lepidoptera has lacked significant attention compared to other systems. To demonstrate that RNAi can be utilized in the lepidopteran, Plodia interpunctella, we cloned a cDNA for tryptophan oxygenase, and showed that silencing of tryptophan oxygenase through RNAi during embryonic development resulted in loss of eye-color pigmentation. The complete amino acid sequence of Plodia tryptophan oxygenase can be accessed through NCBI Protein Database under NCBI Accession # AY427951. Abbreviation RNAi RNA interference PCR polymerase chain reaction RT-PCR reverse transcription-PCR PMID:15861231

  5. MicroRNA-218 promotes high glucose-induced apoptosis in podocytes by targeting heme oxygenase-1.

    PubMed

    Yang, Haibo; Wang, Qingjun; Li, Sutong

    2016-03-18

    Emerging evidence has demonstrated that microRNAs (miRNAs) play a mediatory role in the pathogenesis of diabetic nephropathy. In this study, we found that miR-218 was upregulated in high glucose (HG) treated podocytes, which are essential components of the glomerular filtration barrier and a major prognostic determinant in diabetic nephropathy. Additionally, up-regulation of miR-218 was accompanied by an increased rate of podocyte death and down-regulation in the level of nephrin, a key marker of podocytes. However, inhibition of miR-218 exerted the opposite effect. In addition, the dual-luciferase reporter assay showed that miR-218 directly targeted the 3'-untranslated region of heme oxygenase-1 (HO-1), and further study confirmed an increase of HO-1 in HG-treated podocytes transfected with anti-miR-218. Knockdown of HO-1 blocked the anti-apoptotic effect of anti-miR-218. Furthermore, inhibition of miR-218 was associated with decreased expression of the known pro-apoptotic molecule p38-mitogen-activated protein kinase (p38-MAPK) activation. Following preconditioning with SB203580, an inhibitor of p38-MAPK, the stimulatory effect of HG on podocyte apoptosis was strikingly ameliorated. These findings suggested that miR-218 accelerated HG-induced podocyte apoptosis through directly down-regulating HO-1 and facilitating p38-MAPK activation. PMID:26876575

  6. Activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) by rubisco activase : effects of some sugar phosphates.

    PubMed

    Lilley, R M; Portis, A R

    1990-09-01

    The activation of purified ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) has been studied in the presence of sugar phosphates, and the effect of rubisco activase on this process determined. During an 11-minute time course at pH 7.7 and 11 micromolar CO(2), the activation of rubisco was strongly inhibited by ribulose-1,5-bisphosphate (4 millimolar), fructose-1,6-bisphosphate (1 millimolar) and ribose 5-phosphate (5 millimolar), but this inhibition was overcome by the addition of rubisco activase and activation then proceeded to a greater extent than spontaneous activation of rubisco. Glycerate 3-phosphate (20 millomolar) slowed the initial rate but not the extent of activation and rubisco activase had no effect on this. The activation of rubisco was shown to be affected by phosphoenolpyruvate (3 millimolar) but not by creatine phosphate (3 millimolar) or ATP (3 millimolar), and the creatine-phosphate/creatine phosphokinase system was used to generate the high ATP/ADP quotients required for rubisco activase to function. ATP was shown to be required for the rubisco activase-dependent rubisco activation in the presence of fructose-1,6-bisphosphate (1 millimolar). It is concluded that rubisco activase has a mixed specificity for some sugar phosphate-bound forms of rubisco, but has low or no activity with others. Some possible bases for these differences among sugar phosphates are discussed but remain to be established.

  7. Inducible heme oxygenase in the kidney: a model for the homeostatic control of hemoglobin catabolism

    PubMed Central

    Pimstone, Neville R.; Engel, Peter; Tenhunen, Raimo; Seitz, Paul T.; Marver, Harvey S.; Schmid, Rudi

    1971-01-01

    We have recently identified and characterized NADPH-dependent microsomal heme oxygenase as the major enzymatic mechanism for the conversion of hemoglobin-heme to bilirubin-IXα in vivo. Enzyme activity is highest in tissues normally involved in red cell breakdown, that is, spleen, liver, and bone marrow, but it usually is negligible in the kidney. However, renal heme oxygenase activity may be transiently increased 30- to 100-fold following hemoglobinemia that exceeded the plasma haptoglobin-binding capacity and consequently resulted in hemoglobinuria. Maximal stimulation of enzyme activity in rats is reached 6-16 hr following a single intravenous injection of 30 mg of hemoglobin per 100 g body weight; activity returns to basal levels after about 48 hr. At peak level, total enzyme activity in the kidneys exceeds that of the spleen or liver. Cyclohexamide, puromycin, or actinomycin D, given just before, or within a few hours after, a single intravenous injection of hemoglobin minimizes or prevents the rise in renal enzyme activity; this suggests that the increase in enzyme activity is dependent on continued synthesis of ribonucleic acid and protein. The apparent biological half-life of renal heme oxygenase is about 6 hr. These observations indicate that functional adaptation of renal heme oxygenase activity reflects enzyme induction either directly or indirectly by the substrate, hemoglobin. Filtered rather than plasma hemoglobin appears to regulate renal heme oxygenase activity. Thus, stabilization of plasma hemoglobin in its tetrameric form with bis (N-maleimidomethyl) ether, which diminishes its glomerular filtration and retards it plasma clearance, results in reduced enzyme stimulation in the kidney, but enhances its activity in the liver. These findings suggest that the enzyme is localized in the tubular epithelial cells rather than in the glomeruli and is activated by luminal hemoglobin. Direct support for this concept was obtained by the demonstration of heme

  8. Bioavailable constituents/metabolites of pomegranate (Punica granatum L) preferentially inhibit COX2 activity ex vivo and IL-1beta-induced PGE2 production in human chondrocytes in vitro

    PubMed Central

    Shukla, Meenakshi; Gupta, Kalpana; Rasheed, Zafar; Khan, Khursheed A; Haqqi, Tariq M

    2008-01-01

    Several recent studies have documented that supplementation with pomegranate fruit extract inhibits inflammatory symptoms in vivo. However, the molecular basis of the observed effects has not been fully revealed. Although previous studies have documented the inhibition of nitric oxide and cyclooxygenase (COX) activity in vitro by plant and fruit extracts added directly into the culture medium but whether concentrations of bioactive compounds sufficient enough to exert such inhibitory effects in vivo can be achieved through oral consumption has not been reported. In the present study we determined the effect of rabbit plasma obtained after ingestion of a polyphenol rich extract of pomegranate fruit (PFE) on COX enzyme activity ex vivo and the IL-1β-induced production of NO and PGE2 in chondrocytes in vitro. Plasma samples collected before and 2 hr after supplementation with PFE were tested. Plasma samples collected after oral ingestion of PFE were found to inhibit the IL-1β-induced PGE2 and NO production in chondrocytes. These same plasma samples also inhibited both COX-1 and COX-2 enzyme activity ex vivo but the effect was more pronounced on the enzyme activity of COX-2 enzyme. Taken together these results provide additional evidence of the bioavailability and bioactivity of compounds present in pomegranate fruit after oral ingestion. Furthermore, these studies suggest that PFE-derived bioavailable compounds may exert an anti-inflammatory effect by inhibiting the inflammatory cytokine-induced production of PGE2 and NO in vivo. PMID:18554383

  9. Microalgal metabolites: a new perspective.

    PubMed

    Shimizu, Y

    1996-01-01

    Occurrence of secondary metabolites in microalgae (protoctista) is discussed with respect to the phylogenic or taxonomic relationships of organisms. Biosynthetic mechanisms of certain metabolites such as paralytic shellfish poisoning toxins and polyether toxins are also discussed, and genetic aspects of the secondary metabolite production as well.

  10. Microalgal metabolites: a new perspective.

    PubMed

    Shimizu, Y

    1996-01-01

    Occurrence of secondary metabolites in microalgae (protoctista) is discussed with respect to the phylogenic or taxonomic relationships of organisms. Biosynthetic mechanisms of certain metabolites such as paralytic shellfish poisoning toxins and polyether toxins are also discussed, and genetic aspects of the secondary metabolite production as well. PMID:8905087

  11. Therapeutic Efficacy of Stem Cells Transplantation in Diabetes: Role of Heme Oxygenase

    PubMed Central

    Raffaele, Marco; Li Volti, Giovanni; Barbagallo, Ignazio A.; Vanella, Luca

    2016-01-01

    The growing data obtained from in vivo studies and clinical trials demonstrated the benefit of adult stem cells transplantation in diabetes; although an important limit is represented by their survival after the transplant. To this regard, recent reports suggest that genetic manipulation of stem cells prior to transplantation can lead to enhanced survival and better engraftment. The following review proposes to stimulate interest in the role of heme oxygenase-1 over-expression on transplantation of stem cells in diabetes, focusing on the clinical potential of heme oxygenase protein and activity to restore tissue damage and/or to improve the immunomodulatory properties of transplanted stem cells. PMID:27547752

  12. A reporter ligand NMR screening method for 2-oxoglutarate oxygenase inhibitors

    PubMed Central

    Leung, Ivanhoe K. H.; Demetriades, Marina; Hardy, Adam P.; Lejeune, Clarisse; Smart, Tristan J.; Szöllössi, Andrea; Kawamura, Akane; Schofield, Christopher J.; Claridge, Timothy D. W.

    2015-01-01

    The human 2-oxoglutarate (2OG) dependent oxygenases belong to a family of structurally related enzymes that play important roles in many biological processes. We report that competition-based NMR methods, using 2OG as a reporter ligand, can be used for quantitative and site-specific screening of ligand binding to 2OG oxygenases. The method was demonstrated using hypoxia inducible factor (HIF) hydroxylases and histone demethylases, and KD values were determined for inhibitors that compete with 2OG at the metal centre. This technique is also useful as a screening or validation tool for inhibitor discovery, as exemplified by work with protein-directed dynamic combinatorial chemistry (DCC). PMID:23234607

  13. 3′-hydroxy-3,4,5,4′-tetramethoxystilbene, the metabolite of resveratrol analogue DMU-212, inhibits ovarian cancer cell growth in vitro and in a mice xenograft model

    PubMed Central

    Piotrowska-Kempisty, Hanna; Ruciński, Marcin; Borys, Sylwia; Kucińska, Małgorzata; Kaczmarek, Mariusz; Zawierucha, Piotr; Wierzchowski, Marcin; Łażewski, Dawid; Murias, Marek; Jodynis-Liebert, Jadwiga

    2016-01-01

    In screening studies, the cytotoxic activity of four metabolites of resveratrol analogue 3,4,5,4′-tetramethoxystilbene (DMU-212) against A-2780 and SKOV-3 ovarian cancer cells was investigated. The most active metabolite, 3′-hydroxy-3,4,5,4′-tetramethoxystilbene (DMU-214), was chosen for further studies. The cytotoxicity of DMU-214 was shown to be higher than that of the parent compound, DMU-212, in both cell lines tested. Since DMU-212 was supposed to undergo metabolic activation through its conversion to DMU-214, an attempt was made to elucidate the mechanism of its anti-proliferative activity. We found that in SKOV-3 cells lacking p53, DMU-214 induced receptor-mediated apoptosis. In A-2780 cell line with expression of wild-type p53, DMU-214 modulated the expression pattern of p53-target genes driving intrinsic and extrinsic apoptosis pathways, as well as DNA repair and damage prevention. Regardless of the up-regulation of p48, p53R2, sestrins and Gaad45 genes involved in cancer cell DNA repair, we demonstrated the stronger anti-proliferative and pro-apoptotic effects of DMU-214 in A-2780 cells when compared to those in SKOV-3. Hence we verified DMU-214 activity in the xenograft model using SCID mice injected with A-2780 cells. The strong anti-proliferative activity of DMU-214 in the in vivo model allowed to suggest the tested compound as a potential therapeutic in ovarian cancer treatment. PMID:27585955

  14. Metabolite Damage and Metabolite Damage Control in Plants.

    PubMed

    Hanson, Andrew D; Henry, Christopher S; Fiehn, Oliver; de Crécy-Lagard, Valérie

    2016-04-29

    It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms. PMID:26667673

  15. L-Ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1

    SciTech Connect

    Huang, Ya-Ni; Wang, Jiz-Yuh; Lee, Ching-Tien; Lin, Chih-Hung; Lai, Chien-Cheng; Wang, Jia-Yi

    2012-12-01

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of L-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measured using the fluorochrome 2′,7′-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. -- Highlights: ► Besides the anti-oxidant effect, Vit. C also induces HO-1 expression in brain cells. ► Vit. C reduces METH neurotoxicity and ROS production by

  16. Electron-transport pathway of the NADH-dependent haem oxygenase system of rat liver microsomal fraction induced by cobalt chloride.

    PubMed Central

    Hino, Y; Minakami, S

    1979-01-01

    The hepatic microsomal haem oxygenase activity of rats treated with CoCl2 was studied kinetically by measuring biliverdin, the immediate product of the reaction. Biliverdin was extracted with diethyl ether/ethanol mixture, and was determined by the difference between A690 and A800. The apparent Km value for NADPH (at 50 microM-haematin) was about 0.2 microM when an NADPH-generating system was used, whereas that for NADH was about 630 microM. Essentially the same Vmax. values were obtained for both the NADH- and NADPH-dependent haem oxygenase reactions. No synergism was observed with NADH and NADPH. The NADH-dependent reaction was competitively inhibited by NADP+, with a Ki of about 10 microM. The inhibitoin of the NADH-dependent reaction by the antibody against rat liver microsomal NADPH-cytochrome c reductase was essentially complete, with a pattern similar to that of the NADPH-dependent reaction. The immunochemical experiment and the comparison of the kinetic values with the reported data on isolated NADH-cytochrome b5 reductase and NADPH--cytochrome c reductase indicated the involvement of the latter enzyme in NADH-dependent haem oxygenation by microsomal fraction in situ. PMID:36076

  17. Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.

    PubMed

    Du, Zhenming; Unno, Masaki; Matsui, Toshitaka; Ikeda-Saito, Masao; La Mar, Gerd N

    2010-10-01

    Proton 2D NMR was used to confirm in solution a highly conserved portion of the molecular structure upon substrate loss for the heme oxygenase from the pathogenic bacterium Corynebacterium diphtheriae, HmuO. The chemical shifts for the conserved portion of the structure are assessed as references for the dipolar shifts needed to determine the orientation of the paramagnetic susceptibility tensor, chi, in paramagnetic substrate complexes of HmuO. It is shown that the chemical shifts for the structurally conserved portion of substrate-free HmuO serve as excellent references for residues with only small to moderate sized dipolar shifts in the cyanide-inhibited substrate complex of HmuO, yielding an orientation of chi that is essentially the same as conventionally obtained from large dipolar shifts based on empirical estimates of the diamagnetic reference. The implications of these diamagnetic chemical shifts for characterizing the hydrogen bonding in the physiologically relevant, resting-state, high-spin aquo complex are discussed. The pattern of labile proton exchange in the distal H-bond network of substrate-free HmuO allowed comparison of changes in dynamic stability of tertiary contacts in the substrate-free and substrate-bound HmuO and with the same complexes of human heme oxygenase.

  18. Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase; pertinence for determining magnetic axes in paramagnetic substrate complexes

    PubMed Central

    Du, Zhenming; Unno, Masaki; Matsui, Toshitaka; Ikeda-Saito, Masao; La Mar, Gerd N.

    2010-01-01

    Proton 2D NMR was used to confirm in solution a highly conserved portion of the molecular structure upon substrate loss for the heme oxygenase from the pathogenic bacterium Corynebacterium diphtheriae, HmuO. The chemical shifts for the conserved portion of the structure are assessed as references for the dipolar shifts needed to determine the orientation of the paramagnetic susceptibility tensor, χ, in paramagnetic substrate complexes of HmuO. It is shown that the chemical shifts for the structurally conserved portion of substrate-free HmuO serve as excellent references for residues with only small to moderate sized dipolar shifts in the cyanide-inhibited substrate complex of HmuO, yielding an orientation of χ that is essentially the same as conventionally obtained from large dipolar shifts based on empirical estimates of the diamagnetic reference. The implications of these diamagnetic chemical shifts for characterizing the hydrogen bonding in the physiologically relevant, resting-state, high-spin aquo complex are discussed. The pattern of labile proton exchange in the distal H-bond network of substrate-free HmuO allowed comparison of changes in dynamic stability of tertiary contacts in the substrate-free and substrate-bound HmuO and with the same complexes of human heme oxygenase. PMID:20655112

  19. AN INTEGRATED PHARMACOKINETIC AND PHARMACODYNAMIC STUDY OF ARSENITE ACTION 2. HEME OXYGENASE INDUCTION IN MICE

    EPA Science Inventory

    Heme oxygenase (HO) is the rate-limiting enzyme in heme degradation and its activity has a significant impact on intracellular heme pools. Rat studies indicate that HO induction is a sensitive, dose-dependent response to arsenite (AsIII) exposure in both liver and kidney. The o...

  20. The Association of d-Ribulose- 1,5-Bisphosphate Carboxylase/Oxygenase with Phosphoribulokinase.

    PubMed

    Sainis, J K; Merriam, K; Harris, G C

    1989-01-01

    When Ribulose- 1,5-bisphosphate carboxylase/oxygenase was purified from spinach leaves (Spinacia oleracea) using precipitation with polyethylene glycol and MgCl(2) followed by DEAE cellulose chromatography, 75% of phosphoribulokinase and 7% of phosphoriboisomerase activities copurified with ribulose- 1,5-bisphosphate carboxylase/oxygenase. This enzyme preparation showed ribose-5-phosphate and ribulose-5-phosphate dependent carboxylase and oxygenase activities which were nearly equivalent to its corresponding ribulose- 1,5-bisphosphate dependent activity. The ribose-5-phosphate and ribulose-5-phosphate dependent reaction rates were stable and linear for much longer time periods than the ribulose- 1,5-bisphosphate dependent rates. When sucrose gradients were used to purify ribulose- 1,5-bisphosphate carboxylase/oxygenase from crude stromal extracts, phosphoribulokinase was found to cosediment with ribulose- 1,5-bisphosphate carboxylase. Under these conditions most of the phosphoriboisomerase activity remained with the slower sedimenting proteins. Ammonium sulfate precipitation resulted in separation of the ribulose- 1,5-bisphosphate carboxylase peak from phosphoribulokinase peak. Crude extracts of peas Pisum sativum and spinach contained 0.725 to 0.730 milligram of phosphoribulokinase per milligram of chlorophyll, respectively, based on an enzyme-linked immunosorbent assay.

  1. Heme oxygenase effect on mesenchymal stem cells action on experimental Alzheimer's disease

    PubMed Central

    Abdel Aziza, MT; Atta, HM; Samer, H; Ahmed, HH; Rashed, LA; Sabry, D; Abdel Raouf, ER; Alkaffas, Marwa Abdul latif

    2013-01-01

    The objective is to evaluate the effect of heme oxygenase-1 (HO-1) enzyme inducer and inhibitor on Mesenchymal Stem Cells (MSCs) in Alzheimer disease. 70 female albino rats were divided equally into 7 groups as follows: group 1: healthy control; group 2: Aluminium chloride induced Alzheimer disease; group 3: induced Alzheimer rats that received intravenous injection of MSCs; group 4: induced Alzheimer rats that received MSCs and HO inducer cobalt protoporphyrin; group 5: induced Alzheimer rats that received MSCs and HO inhibitor zinc protoporphyrin; group 6: induced Alzheimer rats that received HO inducer; group7: induced Alzheimer rats that received HO inhibitor. Brain tissue was collected for HO-1, seladin-1 gene expression by real time polymerase chain reaction, heme oxygenase activity, cholesterol estimation and histopathological examination. MSCs decreased the plaque lesions, heme oxygenase induction with stem cells also decreased plaque lesions however there was hemorrhage in the brain. Both heme oxygenase inducer alone or with stem cells increased seladin-1 expression and decreased cholesterol level. MSCs alone or with HO-1 induction exert a therapeutic effect against the brain lesion in Alzheimer's disease possibly through decreasing the brain cholesterol level and increasing seladin-1 gene expression. PMID:26622218

  2. p-Benzoquinone, a reactive metabolite of benzene, prevents the processing of pre-interleukins-1 alpha and -1 beta to active cytokines by inhibition of the processing enzymes, calpain, and interleukin-1 beta converting enzyme.

    PubMed Central

    Kalf, G F; Renz, J F; Niculescu, R

    1996-01-01

    Chronic exposure of humans of benzene affects hematopoietic stem and progenitor cells and leads to aplastic anemia. The stromal macrophage, a target of benzene toxicity, secretes interleukin-1 (IL-1), which induces the stromal fibroblast to synthesize hematopoietic colony-stimulating factors. In a mouse model, benzene causes an acute marrow hypocellularity that can be prevented by the concomitant administration of IL-1 alpha. The ability of benzene to interfere with the production and secretion of IL-1 alpha was tested. Stromal macrophages from benzene-treated mice were capable of the transcription to the IL-1 alpha gene and the translation of the message but showed an inability to process the 34-kDa pre-IL-1 alpha precursor to the 17-kDa biologically active cytokine. Treatment of normal murine stromal macrophages in culture with hydroquinone (HQ) also showed an inhibition in processing of pre-IL-1 alpha. Hydroquinone is oxidized by a peroxidase-mediated reaction in the stromal macrophage to p-benzoquinone, which interacts with the sulfhydryl (SH) groups of proteins and was shown to completely inhibit the activity of calpain, the SH-dependent protease that cleaves pre-IL-1 alpha. In a similar manner, HQ, via peroxidase oxidation to p-benzoquinone, was capable of preventing the IL-1 beta autocrine stimulation of growth of human B1 myeloid tumor cells by preventing the processing of pre-IL-1 beta to mature cytokine. Benzoquinone was also shown to completely inhibit the ability of the SH-dependent IL-1 beta converting enzyme. Thus benzene-induced bone marrow hypocellularity may result from apoptosis of hematopoietic progenitor cells brought about by lack of essential cytokines and deficient IL-1 alpha production subsequent to the inhibition of calpain by p-benzoquinone and the prevention of pre-IL-1 processing. Images Figure 2. Figure 3. Figure 6. Figure 7. Figure 8. PMID:9118901

  3. p-Benzoquinone, a reactive metabolite of benzene, prevents the processing of pre-interleukins-1{alpha} and -1{beta} to active cytokines by inhibition of the processing enzymes, calpain, and interleukin-1{beta} converting enzyme

    SciTech Connect

    Kalf, G.F.; Renz, J.F.; Niculescu, R.

    1996-12-01

    Chronic exposure of humans to benzene affects hematopoietic stem and progenitor cells and leads to aplastic anemia. The stromal macrophage, a target of benzene toxicity, secretes interieukin-1 (IL-1), which induces the stromal fibroblast to synthesize hematopoietic colony-stimulating factors. In a mouse model, benzene causes an acute marrow hypocellularity that can be prevented by the concomitant administration of IL-1{alpha}. The ability of benzene to interfere with the production and secretion of IL-1{alpha} was tested. Stromal macrophages from benzene-treated mice were capable of the transcription of the IL-1{alpha} gene and the translation of the message but showed an inability to process the 34-kDa pre-IL-1{alpha} precursor to the 17-kDa biologically active cytokine. Treatment of normal murine stromal macrophages in culture with hydroquinone (HQ) also showed an inhibition in processing of pre-IL-1{alpha}. Hydroquinone is oxidized by a peroxidase-mediated reaction in the stromal macrophage to p-benzoquinone, which interacts with the sulfhydryl (SH) groups of proteins and was shown to completely inhibit the activity of calpain, the SH-dependent protease that cleaves pre-IL-1{alpha}. In a similar manner, HQ, via peroxidase oxidation to p-benzoquinone, was capable of preventing the IL-1{beta} autocrine stimulation of growth of human B1 myeloid tumor cells by preventing the processing of pre-IL-1{beta} to mature cytokine. Benzoquinone was also shown to completely inhibit the ability of the SH-dependent IL-1{beta} converting enzyme. Thus benzene-induced bone marrow hypocellularity may result from apoptosis of hematopoietic progenitor cells brought about by lack of essential cylokines and deficient IL-1{alpha} production subsequent to the inhibition of calpain by p-benzoquinone and the prevention of pre-IL-1 processing. 34 refs., 8 figs.

  4. Heme oxygenase-1 deficiency alters erythroblastic island formation, steady-state erythropoiesis and red blood cell lifespan in mice

    PubMed Central

    Fraser, Stuart T.; Midwinter, Robyn G.; Coupland, Lucy A.; Kong, Stephanie; Berger, Birgit S.; Yeo, Jia Hao; Andrade, Osvaldo Cooley; Cromer, Deborah; Suarna, Cacang; Lam, Magda; Maghzal, Ghassan J.; Chong, Beng H.; Parish, Christopher R.; Stocker, Roland

    2015-01-01

    Heme oxygenase-1 is critical for iron recycling during red blood cell turnover, whereas its impact on steady-state erythropoiesis and red blood cell lifespan is not known. We show here that in 8- to 14-week old mice, heme oxygenase-1 deficiency adversely affects steady-state erythropoiesis in the bone marrow. This is manifested by a decrease in Ter-119+-erythroid cells, abnormal adhesion molecule expression on macrophages and erythroid cells, and a greatly diminished ability to form erythroblastic islands. Compared with wild-type animals, red blood cell size and hemoglobin content are decreased, while the number of circulating red blood cells is increased in heme oxygenase-1 deficient mice, overall leading to microcytic anemia. Heme oxygenase-1 deficiency increases oxidative stress in circulating red blood cells and greatly decreases the frequency of macrophages expressing the phosphatidylserine receptor Tim4 in bone marrow, spleen and liver. Heme oxygenase-1 deficiency increases spleen weight and Ter119+-erythroid cells in the spleen, although α4β1-integrin expression by these cells and splenic macrophages positive for vascular cell adhesion molecule 1 are both decreased. Red blood cell lifespan is prolonged in heme oxygenase-1 deficient mice compared with wild-type mice. Our findings suggest that while macrophages and relevant receptors required for red blood cell formation and removal are substantially depleted in heme oxygenase-1 deficient mice, the extent of anemia in these mice may be ameliorated by the prolonged lifespan of their oxidatively stressed erythrocytes. PMID:25682599

  5. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases

    PubMed Central

    Kweon, Ohgew; Kim, Seong-Jae; Baek, Songjoon; Chae, Jong-Chan; Adjei, Michael D; Baek, Dong-Heon; Kim, Young-Chang; Cerniglia, Carl E

    2008-01-01

    Background Rieske non-heme iron aromatic ring-hydroxylating oxygenases (RHOs) are multi-component enzyme systems that are remarkably diverse in bacteria isolated from diverse habitats. Since the first classification in 1990, there has been a need to devise a new classification scheme for these enzymes because many RHOs have been discovered, which do not belong to any group in the previous classification. Here, we present a scheme for classification of RHOs reflecting new sequence information and interactions between RHO enzyme components. Result We have analyzed a total of 130 RHO enzymes in which 25 well-characterized RHO enzymes were used as standards to test our hypothesis for the proposed classification system. From the sequence analysis of electron transport chain (ETC) components of the standard RHOs, we extracted classification keys that reflect not only the phylogenetic affiliation within each component but also relationship among components. Oxygenase components of standard RHOs were phylogenetically classified into 10 groups with the classification keys derived from ETC components. This phylogenetic classification scheme was converted to a new systematic classification consisting of 5 distinct types. The new classification system was statistically examined to justify its stability. Type I represents two-component RHO systems that consist of an oxygenase and an FNRC-type reductase. Type II contains other two-component RHO systems that consist of an oxygenase and an FNRN-type reductase. Type III represents a group of three-component RHO systems that consist of an oxygenase, a [2Fe-2S]-type ferredoxin and an FNRN-type reductase. Type IV represents another three-component systems that consist of oxygenase, [2Fe-2S]-type ferredoxin and GR-type reductase. Type V represents another different three-component systems that consist of an oxygenase, a [3Fe-4S]-type ferredoxin and a GR-type reductase. Conclusion The new classification system provides the following

  6. Inhibition of phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate-caused inflammatory responses in SENCAR mouse skin by black tea polyphenols.

    PubMed

    Katiyar, S K; Mukhtar, H

    1997-10-01

    Over the past 10 years many studies from several laboratories defined anticarcinogenic and anti-inflammatory effects of tea, a widely consumed beverage by the human population. Much of such work has been conducted with green tea or its polyphenolic constituents. Regarding black tea, studies have shown that its water extract affords protection against tumor promotion caused by chemical carcinogens or ultraviolet B radiation in murine skin carcinogenesis models. Several studies have shown that topical application of chemical tumor promoters to murine skin results in the induction of epidermal edema, hyperplasia and ornithine decarboxylase (ODC) and cyclo-oxygenase activities, and interleukin-1 alpha (IL-1alpha) and ODC mRNA expression. In this study, we assessed whether topical application of polyphenols isolated from black tea leaves (hereafter referred to as BTP) mainly consisting of theaflavine gallates and (-)-epigallocatechin-3-gallate, inhibits phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA)-caused induction of these markers of inflammatory responses in murine skin. Topical application of BTP (6 mg in 0.2 ml acetone/animal) 30 min prior to TPA application on to the mouse skin resulted in significant inhibition against TPA-caused induction of epidermal edema (40%, P < 0.01), hyperplasia (57%, P < 0.005), leukocytes infiltration (50%), and induction of epidermal ODC (57%) and pro-inflammatory cytokine IL-1alpha mRNA expression (69%). Pre-application of BTP to that of TPA also resulted in significant inhibition of TPA-caused induction of epidermal ODC (23-73%, P < 0.005-0.0001), and cyclo-oxygenase, in terms of prostaglandins metabolites formation (38-65%, P < 0.01-0.0005), enzyme activities. Our data indicate that the inhibition of TPA-caused changes in these markers of inflammatory responses in murine skin by BTP may be one of the possible mechanisms of chemopreventive effects associated with black tea against tumorigenesis. The results

  7. Endocidal Regulation of Secondary Metabolites in the Producing Organisms.

    PubMed

    Li, Shiyou; Wang, Ping; Yuan, Wei; Su, Zushang; Bullard, Steven H

    2016-01-01

    Secondary metabolites are defined as organic compounds that are not directly involved in the normal growth, development, and reproduction of an organism. They are widely believed to be responsible for interactions between the producing organism and its environment, with the producer avoiding their toxicities. In our experiments, however, none of the randomly selected 44 species representing different groups of plants and insects can avoid autotoxicity by its endogenous metabolites once made available. We coined the term endocides (endogenous biocides) to describe such metabolites that can poison or inhibit the parent via induced biosynthesis or external applications. Dosage-dependent endocides can selectively induce morphological mutations in the parent organism (e.g., shrubbiness/dwarfism, pleiocotyly, abnormal leaf morphogenesis, disturbed phyllotaxis, fasciated stems, and variegation in plants), inhibit its growth, development, and reproduction and cause death than non-closely related species. The propagule, as well as the organism itself contains or produces adequate endocides to kill itself. PMID:27389069

  8. The role of nicotinic acid metabolites in flushing and hepatotoxicity.

    PubMed

    Stern, Ralph H

    2007-07-01

    Flushing and hepatotoxicity are important adverse effects of nicotinic acid. This article reviews the role of metabolism of nicotinic acid in the production of these side effects. The suggestion that nicotinic acid (NUA) formation produces flushing is traced to a correlation of flushing with NUA C(max) (maximal concentration) and the observation that aspirin inhibits NUA formation and flushing. The former does not establish causation and the latter can be explained by inhibition of prostaglandin formation. Recent characterization of the GPR109A receptor that mediates prostaglandin release by Langerhans cells to produce flushing has shown nicotinic acid, not NUA, is responsible. The suggestion that nicotinamide metabolites produce hepatotoxicity is not supported by any data. The mechanism of hepatotoxicity is unknown and a toxic metabolite of nicotinic acid has not been identified. Different nicotinic acid formulations produce different metabolite patterns due to nonlinear pharmacokinetics, but there is no evidence that these differences have any clinical importance. PMID:21291680

  9. Endocidal Regulation of Secondary Metabolites in the Producing Organisms

    PubMed Central

    Li, Shiyou; Wang, Ping; Yuan, Wei; Su, Zushang; Bullard, Steven H.

    2016-01-01

    Secondary metabolites are defined as organic compounds that are not directly involved in the normal growth, development, and reproduction of an organism. They are widely believed to be responsible for interactions between the producing organism and its environment, with the producer avoiding their toxicities. In our experiments, however, none of the randomly selected 44 species representing different groups of plants and insects can avoid autotoxicity by its endogenous metabolites once made available. We coined the term endocides (endogenous biocides) to describe such metabolites that can poison or inhibit the parent via induced biosynthesis or external applications. Dosage-dependent endocides can selectively induce morphological mutations in the parent organism (e.g., shrubbiness/dwarfism, pleiocotyly, abnormal leaf morphogenesis, disturbed phyllotaxis, fasciated stems, and variegation in plants), inhibit its growth, development, and reproduction and cause death than non-closely related species. The propagule, as well as the organism itself contains or produces adequate endocides to kill itself. PMID:27389069

  10. Endoplasmic reticulum stress stimulates heme oxygenase-1 gene expression in vascular smooth muscle. Role in cell survival.

    PubMed

    Liu, Xiao-ming; Peyton, Kelly J; Ensenat, Diana; Wang, Hong; Schafer, Andrew I; Alam, Jawed; Durante, William

    2005-01-14

    Heme oxygenase-1 (HO-1) is a cytoprotective protein that catalyzes the degradation of heme to biliverdin, iron, and carbon monoxide (CO). In the present study, we found that endoplasmic reticulum (ER) stress induced by a variety of experimental agents stimulated a time- and concentration-dependent increase in HO-1 mRNA and protein in vascular smooth muscle cells (SMC). The induction of HO-1 by ER stress was blocked by actinomycin D or cycloheximide and was independent of any changes in HO-1 mRNA stability. Luciferase reporter assays indicated that ER stress stimulated HO-1 promoter activity via the antioxidant response element. Moreover, ER stress induced the nuclear import of Nrf2 and the binding of Nrf2 to the HO-1 antioxidant response element. Interestingly, ER stress stimulated SMC apoptosis, as demonstrated by annexin V binding, caspase-3 activation, and DNA laddering. The induction of apoptosis by ER stress was potentiated by HO inhibition, whereas it was prevented by addition of HO substrate. In addition, exposure of SMC to exogenously administered CO inhibited ER stress-mediated apoptosis, and this was associated with a decrease in the expression of the proapoptotic protein, GADD153. In contrast, the other HO-1 products failed to block apoptosis or GADD153 expression during ER stress. These results demonstrated that ER stress is an inducer of HO-1 gene expression in vascular SMC and that HO-1-derived CO acts in an autocrine fashion to inhibit SMC apoptosis. The capacity of ER stress to stimulate the HO-1/CO system provides a novel mechanism by which this organelle regulates cell survival.

  11. Iron depletion in HCT116 cells diminishes the upregulatory effect of phenethyl isothiocyanate on heme oxygenase-1.

    PubMed

    Bolloskis, Michael P; Carvalho, Fabiana P; Loo, George

    2016-04-15

    Some of the health-promoting properties of cruciferous vegetables are thought to be partly attributed to isothiocyanates. These phytochemicals can upregulate the expression of certain cytoprotective stress genes, but it is unknown if a particular nutrient is involved. Herein, the objective was to ascertain if adequate iron is needed for enabling HCT116 cells to optimally express heme oxygenase-1 (HO-1) when induced by phenethyl isothiocyanate (PEITC). PEITC increased HO-1 expression and also nuclear translocation of Nrf2, which is a transcription factor known to activate the HO-1 gene. However, in HCT116 cells that were made iron-deficient by depleting intracellular iron with deferoxamine (DFO), PEITC was less able to increase HO-1 expression and nuclear translocation of Nrf2. These suppressive effects of DFO were overcome by replenishing the iron-deficient cells with the missing iron. To elucidate these findings, it was found that PEITC-induced HO-1 upregulation can be inhibited with thiol antioxidants (glutathione and N-acetylcysteine). Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin) and a superoxide scavenger (Tiron) each inhibited PEITC-induced HO-1 upregulation. In doing so, diphenyleneiodonium was the most potent and also inhibited nuclear translocation of redox-sensitive Nrf2. Collectively, the results imply that the HO-1 upregulation by PEITC involves an iron-dependent, oxidant signaling pathway. Therefore, it is concluded that ample iron is required to enable PEITC to fully upregulate HO-1 expression in HCT116 cells. As such, it is conceivable that iron-deficient individuals may not reap the full health benefits of eating PEITC-containing cruciferous vegetables that via HO-1 may help protect against multiple chronic diseases. PMID:26945724

  12. Iron depletion in HCT116 cells diminishes the upregulatory effect of phenethyl isothiocyanate on heme oxygenase-1.

    PubMed

    Bolloskis, Michael P; Carvalho, Fabiana P; Loo, George

    2016-04-15

    Some of the health-promoting properties of cruciferous vegetables are thought to be partly attributed to isothiocyanates. These phytochemicals can upregulate the expression of certain cytoprotective stress genes, but it is unknown if a particular nutrient is involved. Herein, the objective was to ascertain if adequate iron is needed for enabling HCT116 cells to optimally express heme oxygenase-1 (HO-1) when induced by phenethyl isothiocyanate (PEITC). PEITC increased HO-1 expression and also nuclear translocation of Nrf2, which is a transcription factor known to activate the HO-1 gene. However, in HCT116 cells that were made iron-deficient by depleting intracellular iron with deferoxamine (DFO), PEITC was less able to increase HO-1 expression and nuclear translocation of Nrf2. These suppressive effects of DFO were overcome by replenishing the iron-deficient cells with the missing iron. To elucidate these findings, it was found that PEITC-induced HO-1 upregulation can be inhibited with thiol antioxidants (glutathione and N-acetylcysteine). Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin) and a superoxide scavenger (Tiron) each inhibited PEITC-induced HO-1 upregulation. In doing so, diphenyleneiodonium was the most potent and also inhibited nuclear translocation of redox-sensitive Nrf2. Collectively, the results imply that the HO-1 upregulation by PEITC involves an iron-dependent, oxidant signaling pathway. Therefore, it is concluded that ample iron is required to enable PEITC to fully upregulate HO-1 expression in HCT116 cells. As such, it is conceivable that iron-deficient individuals may not reap the full health benefits of eating PEITC-containing cruciferous vegetables that via HO-1 may help protect against multiple chronic diseases.

  13. Heme oxygenase-1 protects against Alzheimer's amyloid-β(1-42)-induced toxicity via carbon monoxide production.

    PubMed

    Hettiarachchi, N; Dallas, M; Al-Owais, M; Griffiths, H; Hooper, N; Scragg, J; Boyle, J; Peers, C

    2014-12-11

    Heme oxygenase-1 (HO-1), an inducible enzyme up-regulated in Alzheimer's disease, catabolises heme to biliverdin, Fe2+ and carbon monoxide (CO). CO can protect neurones from oxidative stress-induced apoptosis by inhibiting Kv2.1 channels, which mediates cellular K+ efflux as an early step in the apoptotic cascade. Since apoptosis contributes to the neuronal loss associated with amyloid β peptide (Aβ) toxicity in AD, we investigated the protective effects of HO-1 and CO against Aβ(1-42) toxicity in SH-SY5Y cells, employing cells stably transfected with empty vector or expressing the cellular prion protein, PrP(c), and rat primary hippocampal neurons. Aβ(1-42) (containing protofibrils) caused a concentration-dependent decrease in cell viability, attributable at least in part to induction of apoptosis, with the PrP(c)-expressing cells showing greater susceptibility to Aβ(1-42) toxicity. Pharmacological induction or genetic over-expression of HO-1 significantly ameliorated the effects of Aβ(1-42). The CO-donor CORM-2 protected cells against Aβ(1-42) toxicity in a concentration-dependent manner. Electrophysiological studies revealed no differences in the outward current pre- and post-Aβ(1-42) treatment suggesting that K+ channel activity is unaffected in these cells. Instead, Aβ toxicity was reduced by the L-type Ca2+ channel blocker nifedipine, and by the CaMKKII inhibitor, STO-609. Aβ also activated the downstream kinase, AMP-dependent protein kinase (AMPK). CO prevented this activation of AMPK. Our findings indicate that HO-1 protects against Aβ toxicity via production of CO. Protection does not arise from inhibition of apoptosis-associated K+ efflux, but rather by inhibition of AMPK activation, which has been recently implicated in the toxic effects of Aβ. These data provide a novel, beneficial effect of CO which adds to its growing potential as a therapeutic agent.

  14. Heme oxygenase-1 protects against Alzheimer's amyloid-β1-42-induced toxicity via carbon monoxide production

    PubMed Central

    Hettiarachchi, N; Dallas, M; Al-Owais, M; Griffiths, H; Hooper, N; Scragg, J; Boyle, J; Peers, C

    2014-01-01

    Heme oxygenase-1 (HO-1), an inducible enzyme up-regulated in Alzheimer's disease, catabolises heme to biliverdin, Fe2+ and carbon monoxide (CO). CO can protect neurones from oxidative stress-induced apoptosis by inhibiting Kv2.1 channels, which mediates cellular K+ efflux as an early step in the apoptotic cascade. Since apoptosis contributes to the neuronal loss associated with amyloid β peptide (Aβ) toxicity in AD, we investigated the protective effects of HO-1 and CO against Aβ1-42 toxicity in SH-SY5Y cells, employing cells stably transfected with empty vector or expressing the cellular prion protein, PrPc, and rat primary hippocampal neurons. Aβ1-42 (containing protofibrils) caused a concentration-dependent decrease in cell viability, attributable at least in part to induction of apoptosis, with the PrPc-expressing cells showing greater susceptibility to Aβ1-42 toxicity. Pharmacological induction or genetic over-expression of HO-1 significantly ameliorated the effects of Aβ1-42. The CO-donor CORM-2 protected cells against Aβ1-42 toxicity in a concentration-dependent manner. Electrophysiological studies revealed no differences in the outward current pre- and post-Aβ1-42 treatment suggesting that K+ channel activity is unaffected in these cells. Instead, Aβ toxicity was reduced by the L-type Ca2+ channel blocker nifedipine, and by the CaMKKII inhibitor, STO-609. Aβ also activated the downstream kinase, AMP-dependent protein kinase (AMPK). CO prevented this activation of AMPK. Our findings indicate that HO-1 protects against Aβ toxicity via production of CO. Protection does not arise from inhibition of apoptosis-associated K+ efflux, but rather by inhibition of AMPK activation, which has been recently implicated in the toxic effects of Aβ. These data provide a novel, beneficial effect of CO which adds to its growing potential as a therapeutic agent. PMID:25501830

  15. Locomotor response to L-DOPA in reserpine-treated rats following central inhibition of aromatic L-amino acid decarboxylase: further evidence for non-dopaminergic actions of L-DOPA and its metabolites.

    PubMed

    Alachkar, Amal; Brotchie, Jonathan M; Jones, Owen T

    2010-09-01

    L-DOPA is the most widely used treatment for Parkinson's disease. The anti-parkinsonian and pro-dyskinetic actions of L-DOPA are widely attributed to its conversion, by the enzyme aromatic L-amino acid decarboxylase (AADC), to dopamine. We investigated the hypothesis that exogenous L-DOPA can induce behavioural effects without being converted to dopamine in the reserpine-treated rat-model of Parkinson's disease. A parkinsonian state was induced with reserpine (3 mg/kg s.c.). Eighteen hours later, the rats were administered L-DOPA plus the peripherally acting AADC inhibitor benserazide (25 mg/kg), with or without the centrally acting AADC inhibitor NSD1015 (100 mg/kg). L-DOPA/benserazide alone reversed reserpine-induced akinesia (4158+/-1125 activity counts/6 h, cf vehicle 1327+/-227). Addition of NSD1015 elicited hyperactive behaviour that was approximately 7-fold higher than L-DOPA/benserazide (35755+/-5226, P<0.001). The hyperactivity induced by L-DOPA and NSD1015 was reduced by the alpha(2C) antagonist rauwolscine (1 mg/kg) and the 5-HT(2C) agonist MK212 (5 mg/kg), but not by the D2 dopamine receptor antagonist remoxipride (3 mg/kg) or the D1 dopamine receptor antagonist SCH23390 (1 mg/kg). These data suggest that L-DOPA, or metabolites produced via routes not involving AADC, might be responsible for the generation of at least some L-DOPA actions in reserpine-treated rats. PMID:20542064

  16. Cholesterol-dependent increases in glucosylceramide synthase activity in Niemann-Pick disease type C model cells: Abnormal trafficking of endogenously formed ceramide metabolites by inhibition of the enzyme.

    PubMed

    Hashimoto, Naohiro; Matsumoto, Ikiru; Takahashi, Hiromasa; Ashikawa, Hitomi; Nakamura, Hiroyuki; Murayama, Toshihiko

    2016-11-01

    Sphingolipids such as sphingomyelin and glycosphingolipids (GSLs) derived from glucosylceramide (GlcCer), in addition to cholesterol, accumulate in cells/neurons in Niemann-Pick disease type C (NPC). The activities of acid sphingomyelinase and lysosomal glucocerebrosidase (GCase), which degrade sphingomyelin and GlcCer, respectively, are down-regulated in NPC cells, however, changes in GlcCer synthase activity have not yet been elucidated. We herein demonstrated for the first time that GlcCer synthase activity for the fluorescent ceramide, 4-nitrobenzo-2-oxa-1,3-diazole-labeled C6-ceramide (NBD-ceramide) increased in intact NPC1((-/-)) cells and cell lysates without affecting the protein levels. In NBD-ceramide-labeled NPC1((-/-)) cells, NBD-fluorescence preferentially accumulated in the Golgi complex and vesicular specks in the cytoplasm 40 and 150 min, respectively, after labeling, while a treatment for 48 h with the GlcCer synthase inhibitors, N-butyldeoxynojirimycin (NB-DNJ) and 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, accelerated the appearance of vesicular specks emitting NBD-fluorescence within 40 min. The treatment of NPC1((-/-)) cells with NB-DNJ for 48 h additionally increased the levels of cholesterol, but not those of sphingomyelin. Increases in the activity of GlcCer synthase and formation of vesicular specks emitting NBD-fluorescence in NPC1((-/-)) cells were dependent on cholesterol. LacCer taken up by endocytosis, which accumulated in the Golgi complex in normal cells, accumulated in vesicular specks after 10 and 40 min in NPC1((-/-)) cells, and this response was not accelerated by the NB-DNJ treatment, but was restored by the depletion of cholesterol. The cellular roles for enhanced GlcCer synthesis and increased levels of cholesterol in the trafficking of NBD-ceramide metabolites in NPC1((-/-)) cells have been discussed.

  17. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure.

    PubMed

    Yang, Liming; Quan, Shuo; Nasjletti, Alberto; Laniado-Schwartzman, Michal; Abraham, Nader G

    2004-06-01

    The heme-heme oxygenase (HO) system has been implicated in the regulation of vascular reactivity and blood pressure. This study examines the notion that overexpression of HO decreases pressor responsiveness to angiotensin II (Ang II). Five-day-old Sprague-Dawley rats received an intraleft ventricular injection of approximately 5x10(9) cfu/mL of retroviruses containing human HO-1 sense (LSN-HHO-1), rat HO-1 antisense (LSN-RHO-1-AS), or control retrovirus (LXSN). Three months later, rats were instrumented with femoral arterial and venous catheters for mean arterial pressure (MAP) determination and Ang II administration, respectively. Rats injected with LSN-HHO-1, but not with LXSN, expressed human HO-1 mRNA and protein in several tissues. BP increased with administration of Ang II in rats expressing and not expressing human HO-1. However, the Ang II-induced pressor response (mm Hg) in LSN-HHO-1 rats (16+/-3, 27+/-3, and 38+/-3 at 0.5, 2, and 10 ng) was surpassed (P<0.05) in LXSN rats (23+/-1, 37+/-2, and 52+/-2 at 0.5, 2, and 10 ng). Importantly, treating LSN-HHO-1 rats with the HO inhibitor tin mesoporphyrin (SnMP) enhanced (P<0.05) the Ang II-induced pressor response to a level not different from that observed in LXSN rats. Rats injected with LSN-RHO-1-AS showed a decrease in renal HO-1 protein expression and HO activity relative to control LXSN rats. Administration of Ang II (0.1 to 2 ng) caused small (4 to 5 mm Hg) but significant increases in MAP in rats injected with LSN-RHO-1-AS (P<0.05) compared with rats injected with LXSN. These data demonstrate that overexpression of HO-1 brings about a reduction in pressor responsiveness to Ang II, which is most likely due to increased generation of an HO-1 product, presumably CO, with the ability to inhibit vascular reactivity to constrictor stimuli.

  18. Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity

    SciTech Connect

    Kang, Su Jin; Ryoo, In-geun; Lee, Young Joon; Kwak, Mi-Kyoung

    2012-01-01

    Silver nanoparticles (nano-Ag) have been widely used in various commercial products including textiles, electronic appliances and biomedical products. However, there remains insufficient information on the potential risk of nano-Ag to human health and environment. In the current study, we have investigated the role of NF-E2-related factor 2 (Nrf2) transcription factor in nano-Ag-induced cytotoxicity. When Nrf2 expression was blocked using interring RNA expression in ovarian carcinoma cell line, nano-Ag treatment showed a substantial decrease in cell viability with concomitant increases in apoptosis and DNA damage compared to the control cells. Target gene analysis revealed that the expression of heme oxygenase-1 (HO-1) was highly elevated by nano-Ag in nonspecific shRNA expressing cells, while Nrf2 knockdown cells (NRF2i) did not increase HO-1 expression. The role of HO-1 in cytoprotection against nano-Ag was reinforced by results using pharmacological inducer of HO-1: cobalt protoporphyrin-mediated HO-1 activation in the NRF2i cells prevented nano-Ag-mediated cell death. Similarly, pharmacological or genetic inhibition of HO-1 in nonspecific control cells exacerbated nano-Ag toxicity. As the upstream signaling mechanism, nano-Ag required the phosphoinositide 3-kinase (PI3K) and p38MAPK signaling cascades for HO-1 induction. The treatment with either PI3K inhibitor or p38MAPK inhibitor suppressed HO-1 induction and intensified nano-Ag-induced cell death. Taken together, these results suggest that Nrf2-dependent HO-1 up-regulation plays a protective role in nano-Ag-induced DNA damage and consequent cell death. In addition, nano-Ag-mediated HO-1 induction is associated with the PI3K and p38MAPK signaling pathways. -- Highlights: ► Role of Nrf2 signaling in silver nanoparticle toxicity. ► Silver nanoparticle toxicity is increased by Nrf2 blockade. ► Nrf2-dependent HO-1 induction protects cells from silver nanoparticle toxicity. ► PI3K and p38MAPK cascades are

  19. Length polymorphism in heme oxygenase-1 is associated with arteriovenous fistula patency in hemodialysis patients.

    PubMed

    Lin, C-C; Yang, W-C; Lin, S-J; Chen, T-W; Lee, W-S; Chang, C-F; Lee, P-C; Lee, S-D; Su, T-S; Fann, C S-J; Chung, M-Y

    2006-01-01

    Heme oxygenase-1 (HO-1) is a rate-limiting enzyme in heme degradation, producing carbon monoxide (CO), which carries potent antiproliferative and anti-inflammatory effects in the vascular walls. Transcription of the HO-1 gene is regulated by the length polymorphism of dinucleotide guanosine thymine repeat (GT)(n) in the promoter region, which was measured in this study to determine its association with arteriovenous fistula (AVF) failure in Chinese hemodialysis (HD) patients in Taiwan. L allele means (GT)(n)>or=30 and S allele means (GT)n<30. Therefore, there are two L alleles for L/L genotype, one L and one S allele for L/S genotype, and two S alleles for S/S genotype. Among the 603 HD patients who were enrolled in this study, 178 patients had history of AVF failure, while 425 patients did not. Significant associations were found between AVF failure and the following factors (hazard ratio): longer HD duration (1.004 month), lower pump flow (0.993 ml/min), higher dynamic venous pressure (1.010 mmHg), location of AVF on the right side (1.587 vs left side) and upper arm (2.242 vs forearm), and L/L and L/S genotypes of HO-1 (2.040 vs S/S genotype). The proportion of AVF failure increased from 20.3% in S/S genotype and 31.0% in L/S genotype to 35.4% in L/L genotype (P=0.011). Relative incidences were 1/87.6 (1 episode per 87.6 patient-months), 1/129, and 1/224.9 for HD patients with L/L, L/S, and S/S genotypes, respectively (P<0.002). The unassisted patency of AVF at 5 years decreased significantly from 83.8% (124/148) to 75.1% (223/297) and 69% (109/158) in S/S, L/S, and L/L genotypes, respectively (P<0.0001). In comparison with HD patients with S/S genotype, those with L/L genotype had a higher prevalence of coronary artery disease (29.1 vs 14.2%; P=0.005). A longer length polymorphism with (GT)(n) >or=30 in the HO-1 gene was associated with a higher frequency of access failure and a poorer patency of AVF in HD patients. The longer GT repeat in the HO-1 promoter

  20. Heme Oxygenase-1 Induction Improves Cardiac Function following Myocardial Ischemia by Reducing Oxidative Stress

    PubMed Central

    Issan, Yossi; Kornowski, Ran; Aravot, Dan; Shainberg, Asher; Laniado-Schwartzman, Michal; Sodhi, Komal; Abraham, Nader G.; Hochhauser, Edith

    2014-01-01

    Background Oxidative stress plays a key role in exacerbating diabetes and cardiovascular disease. Heme oxygenase-1 (HO-1), a stress response protein, is cytoprotective, but its role in post myocardial infarction (MI) and diabetes is not fully characterized. We aimed to investigate the protection and the mechanisms of HO-1 induction in cardiomyocytes subjected to hypoxia and in diabetic mice subjected to LAD ligation. Methods In vitro: cultured cardiomyocytes were treated with cobalt-protoporphyrin (CoPP) and tin protoporphyrin (SnPP) prior to hypoxic stress. In vivo: CoPP treated streptozotocin-induced diabetic mice were subjected to LAD ligation for 2/24 h. Cardiac function, histology, biochemical damage markers and signaling pathways were measured. Results HO-1 induction lowered release of lactate dehydrogenase (LDH) and creatine phospho kinase (CK), decreased propidium iodide staining, improved cell morphology and preserved mitochondrial membrane potential in cardiomyocytes. In diabetic mice, Fractional Shortening (FS) was lower than non-diabetic mice (35±1%vs.41±2, respectively p<0.05). CoPP-treated diabetic animals improved cardiac function (43±2% p<0.01), reduced CK, Troponin T levels and infarct size compared to non-treated diabetic mice (P<0.01, P<0.001, P<0.01 respectively). CoPP-enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the decrease in superoxide levels in cardiac tissues and plasma TNFα levels (p<0.05). The increased levels of HO-1 by CoPP treatment after LAD ligation led to a shift of the Bcl-2/bax ratio towards the antiapoptotic process (p<0.05). CoPP significantly increased the expression levels of pAKT and pGSK3β (p<0.05) in cardiomyocytes and in diabetic mice with MI. SnPP abolished CoPP's cardioprotective effects. Conclusions HO-1 induction plays a role in cardioprotection against hypoxic damage in cardiomyocytes and in reducing post ischemic cardiac damage in the diabetic heart as proved by

  1. Aripiprazole increases NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1 in PC12 cells.

    PubMed

    Kaneko, Yoko S; Takayanagi, Takeshi; Nagasaki, Hiroshi; Kodani, Yu; Nakashima, Akira; Mori, Keiji; Suzuki, Atsushi; Itoh, Mitsuyasu; Kondo, Kazunao; Nagatsu, Toshiharu; Ota, Miyuki; Ota, Akira

    2015-06-01

    We previously showed that aripiprazole increases intracellular NADPH and glucose-6-phosphate dehydrogenase mRNA in PC12 cells. Aripiprazole presumably activates a system that concurrently detoxifies reactive oxygen species and replenishes NADPH. Nrf2, a master transcriptional regulator of redox homeostasis genes, also activates the pentose phosphate pathway, including NADPH production. Therefore, our aim was to determine whether aripiprazole activates Nrf2 in PC12 cells. Aripiprazole increased mRNA expression of Nrf2-dependent genes (NAD(P)H-quinone oxidoreductase-1, Nqo1; heme oxygenase-1, HO1; and glutamate-cysteine ligase catalytic subunit) and protein expression of Nqo1 and HO1 in these cells (p < 0.05). To maintain increased Nrf2 activity, it is necessary to inhibit Nrf2 degradation; this is done by causing Nrf2 to dissociate from Keap1 or β-TrCP. However, in aripiprazole-treated cells, the relative amount of Nrf2 anchored to Keap1 or β-TrCP was unaffected and Nrf2 in the nuclear fraction decreased (p < 0.05). Aripiprazole did not affect phosphorylation of Nrf2 at Ser40 and decreased the relative amount of acetylated Nrf2 (p < 0.05). The increase in Nqo1 and HO1 in aripiprazole-treated cells cannot be explained by the canonical Nrf2-degrading pathways. Further experiments are needed to determine the biochemical mechanisms underlying the aripiprazole-induced increase in these enzymes.

  2. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1.

    PubMed

    Farombi, E Olatunde; Shrotriya, Sangeeta; Na, Hye-Kyung; Kim, Sung-Hoon; Surh, Young-Joon

    2008-04-01

    Curcumin (diferuloymethane), a yellow colouring agent present in the rhizome of Curcuma longa Linn (Zingiberaceae), has been reported to possess anti-inflammatory, antioxidant, antimutagenic and anticarcinogenic activities. Curcumin exerts its chemoprotective and chemopreventive effects via multiple mechanisms. It has been reported to induce expression of the antioxidant enzymes in various cell lines. Heme oxygenase-1 (HO-1) is an important antioxidant enzyme that plays a pivotal role in cytoprotection against noxious stimuli of both endogenous and exogenous origin. In the present study, we found that oral administration of curcumin at 200mg/kg dose for four consecutive days not only protected against dimethylnitrosamine (DMN)-induced hepatic injury, but also resulted in more than three-fold induction of HO-1 protein expression as well as activity in rat liver. Inhibition of HO-1 activity by zinc protoporphyrin-IX abrogated the hepatoprotective effect of curcumin against DMN toxicity. NF-E2-related factor 2 (Nrf2) plays a role in the cellular protection against oxidative stress through antioxidant response element (ARE)-directed induction of several phase-2 detoxifying and antioxidant enzymes including HO-1. Curcumin administration resulted in enhanced nuclear translocation and ARE-binding of Nrf2. Taken together, these findings suggest that curcumin protects against DMN-induced hepatotoxicity, at least in part, through ARE-driven induction of HO-1 expression. PMID:18006204

  3. The role of inducible nitric oxide synthase and haem oxygenase 1 in growth and development of dental tissue'.

    PubMed

    Speranza, Lorenza; Pesce, Mirko; Franceschelli, Sara; Mastrangelo, Filiberto; Patruno, Antonia; De Lutiis, Maria Anna; Tetè, Stefano; Felaco, Mario; Grilli, Alfredo

    2012-04-01

    In this study, the activity of the antioxidant enzyme network was assessed spectrophotometrically in samples of dental pulp and dental papilla taken from third-molar gem extracts. The production of nitric oxide by the conversion of l-(2,3,4,5)-[3H] arginine to l-(3H) citrulline, the activity of haem oxygenase 1 (HO-1) through bilirubin synthesis and the expression of inducible nitric oxide synthase (iNOS), HO-1 proteins and messenger RNA by Western blot and reverse-transcribed polymerase chain reaction were also tested. The objective of this study was to evaluate the role of two proteins, iNOS and HO-1, which are upregulated by a condition of oxidative stress present during dental tissue differentiation and development. This is fundamental for guaranteeing proper homeostasis favouring a physiological tissue growth. The results revealed an over-expression of iNOS and HO-1 in the papilla, compared with that in the pulp, mediated by the nuclear factor kappa B transcription factor activated by the reactive oxygen species that acts as scavengers for the superoxide radicals. HO-1, a metabolically active enzyme in the papilla, but not in the pulp, seems to inhibit the iNOS enzyme by a crosstalk between the two proteins. We suggest that the probable mechanism through which this happens is the interaction of HO-1 with haem, a cofactor dimer indispensible for iNOS, and the subsequent suppression of its metabolic activity.

  4. Induction of heme oxygenase-1 with hemin reduces obesity-induced adipose tissue inflammation via adipose macrophage phenotype switching.

    PubMed

    Tu, Thai Hien; Joe, Yeonsoo; Choi, Hye-Seon; Chung, Hun Taeg; Yu, Rina

    2014-01-01

    Adipose macrophages with the anti-inflammatory M2 phenotype protect against obesity-induced inflammation and insulin resistance. Heme oxygenase-1 (HO-1), which elicits antioxidant and anti-inflammatory activity, modulates macrophage phenotypes and thus is implicated in various inflammatory diseases. Here, we demonstrate that the HO-1 inducer, hemin, protects against obesity-induced adipose inflammation by inducing macrophages to switch to the M2 phenotype. HO-1 induction by hemin reduced the production of proinflammatory cytokines (TNF-α and IL-6) from cocultured adipocytes and macrophages by inhibiting the activation of inflammatory signaling molecules (JNK and NF-κB) in both cell types. Hemin enhanced transcript levels of M2 macrophage marker genes (IL-4, Mrc1, and Clec10a) in the cocultures, while reducing transcripts of M1 macrophage markers (CD274 and TNF-α). The protective effects of hemin on adipose inflammation and macrophage phenotype switching were confirmed in mice fed a high-fat diet, and these were associated with PPARγ upregulation and STAT6 activation. These findings suggest that induction of HO-1 with hemin protects against obesity-induced adipose inflammation through M2 macrophage phenotype switching, which is induced by the PPARγ and STAT6 pathway. HO-1 inducers such as hemin may be useful for preventing obesity-induced adipose inflammation.

  5. Pinocembrin attenuates MPP(+)-induced neurotoxicity by the induction of heme oxygenase-1 through ERK1/2 pathway.

    PubMed

    Wang, Hongquan; Wang, Yumin; Zhao, Linan; Cui, Qifu; Wang, Yuehua; Du, Guanhua

    2016-01-26

    Our recent study demonstrated that pinocembrin (PB), the most abundant flavonoid in propolis, has neuroprotective effect against 1-methyl-4-phenylpyridinium (MPP(+))-induced SH-SY5Y neurotoxicity. However, the mechanism as how PB can induce neuroprotection is not known. In the present study, we demonstrate here that PB increased heme oxygenase-1 (HO-1) expression, which conferred protection against MPP(+)-induced cytotoxicity, because the inhibitor of HO-1 zinc protoporphyrin-IX attenuated the neuroprotection of PB. PB induced the phosphorylation of ERK1/2, and its cytoprotective effect was abolished by ERK1/2 inhibitors. Meanwhile, we have shown that MPP(+) induce the expression in a concentration-dependent manner in SH-SY5Y cells, which was further enhanced by PB. Taken together, the results suggest that PB enhances HO-1 expression to suppress MPP(+)-induced oxidative damage via ERK1/2 signaling pathways. These results revealed the mechanisms of PB enhances HO-1 expression, and contribute to shed some light on the mechanisms whereby PB inhibits the MPP(+)-induced neurotoxicity. These data indicated that PB might provide a valuable therapeutic strategy for the treatment of PD. PMID:26655464

  6. [Cardioprotective effect of heme oxygenase-1 induction by hemin on the isolated rat heart during ischemia--reperfusion].

    PubMed

    Kukoba, T V; Moĭbenko, O O; Kotsioruba, A V

    2003-01-01

    The aim of the study was to determine the role of both an inducible isoform of heme oxygenase (HO-1) and products of heme catabolism (carbon monoxide (CO), cardiac bilirubin and Fe2+) in protecting myocardium against post-ischemic myocardial dysfunction. Rat hearts were isolated and perfused according to the Langendorff technique to evaluate the recovery of myocardial function after total ischemia (20 min) and reperfusion (40 min) and production of reactive oxygen forms at a reperfusion phase. Ischemia/reperfusion caused impairment in myocardial function: left ventricular developing pressure (LVDP) was shown to be decreased, while end-diastolic pressure (EDP) and both coronary perfusion pressure and coronary resistance increased. Free oxygen radicals were generated at the reperfusion phase which led to injuries to cardiomyocytes and creatine kinase efflux into perfusate. We have found that upregulation of HO-1 by preliminary (24 h before ischemia) injections of 25 mg/kg hemin (i.p.) resulted in improving the myocardial function due to increasing the enzyme activity and forming the cardial bilirubine, while generation of reactive oxygen forms was inhibited, as well as the contents of creatine kinase reduced. As a result, impairment in cardiomyocytes diminished, and coronary vessels dilated to improve the functional parametres of the heart work.

  7. A steady-state kinetic study of the reaction catalysed by the secondary-amine mono-oxygenase of Pseudomonas aminovorans.

    PubMed Central

    Brook, D F; Large, P J

    1976-01-01

    1. Secondary-amine mono-oxygenase (proposed EC group 1.14.99.-) was partially purified from trimethylamine-grown Pseudomonas aminovorans by (NH4)2SO4 fractionation, gel filtration, hydrophobic chromatography on 5-aminopentylamino-Sepharose, and affinity chromatography on Sepharose-bound NADH. 2. Some problems in the affinity-chromatography step are discussed. 3. A steady-state kinetic analysis varying substrate, oxygen and electron-donor concentrations was performed, which, over the concentration range studied, gave a series of families of approximately parallel double-reciprocal plots. From secondary and tertiary plots, Michaelis constants of 0.160 mM, 0.086 mM and 0.121 mM were obtained for dimethylamine, NADPH and oxygen respectively. 4. Product-inhibition studies supported the postulated Hexa Uni Ping Pong (triple-transfer) reaction mechanism. PMID:962855

  8. Pyrazinone protease inhibitor metabolites from Photorhabdus luminescens.

    PubMed

    Park, Hyun Bong; Crawford, Jason M

    2016-08-01

    Photorhabdus luminescens is a bioluminescent entomopathogenic bacterium that undergoes phenotypic variation and lives in mutualistic association with nematodes of the family Heterorhabditidae. The pair infects and kills insects, and during their coordinated lifecycle, the bacteria produce an assortment of specialized metabolites to regulate its mutualistic and pathogenic roles. As part of our search for new specialized metabolites from the Photorhabdus genus, we examined organic extracts from P. luminescens grown in an amino-acid-rich medium based on the free amino-acid levels found in the circulatory fluid of its common insect prey, the Galleria mellonella larva. Reversed-phase HPLC/UV/MS-guided fractionation of the culture extracts led to the identification of two new pyrazinone metabolites, lumizinones A (1) and B (2), together with two N-acetyl dipeptides (3 and 4). The lumizinones were produced only in the phenotypic variant associated with nematode development and insect pathogenesis. Their chemical structures were elucidated by analysis of 1D and 2D NMR and high-resolution ESI-QTOF-MS spectral data. The absolute configurations of the amino acids in 3 and 4 were determined by Marfey's analysis. Compounds 1-4 were evaluated for their calpain protease inhibitory activity, and lumizinone A (1) showed inhibition with an IC50 (half-maximal inhibitory concentration) value of 3.9 μm. PMID:27353165

  9. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells

    SciTech Connect

    Choi, Solip; Nguyen, Van Thu; Tae, Nara; Lee, Suhyun; Ryoo, Sungwoo; Min, Byung-Sun; Lee, Jeong-Hyung

    2014-11-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE{sub 2}, butyl lucidenateD{sub 2} (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these

  10. Extracts from Epilobium sp. herbs, their components and gut microbiota metabolites of Epilobium ellagitannins, urolithins, inhibit hormone-dependent prostate cancer cells-(LNCaP) proliferation and PSA secretion.

    PubMed

    Stolarczyk, Magdalena; Piwowarski, Jakub P; Granica, Sebastian; Stefańska, Joanna; Naruszewicz, Marek; Kiss, Anna K

    2013-12-01

    Extracts from Epilobium sp. herbs have been traditionally used in the treatment of prostate-associated ailments. Our studies demonstrated that the extracts from Epilobium angustifolium, Epilobium parviflorum and Epilobium hirsutum herbs are potent prostate cancer cells (LNCaP) proliferation inhibitors with IC50 values around 35 µg/ml. The tested extracts reduced prostate specific antigen (PSA) secretion (from 325.6 ± 25.3 ng/ml to ~90 ng/ml) and inhibited arginase activity (from 65.2 ± 1.1 mUnits of urea/mg of protein to ~40 mUnits of urea/mg protein). Selected constituents of extracts (oenothein B, quercetin-3-O-glucuronide, myricetin-3-O-rhamnoside) were proven to be active in relation to LNCaP cells. However, oenothein B was the strongest inhibitor of cells proliferation (IC50  = 7.8 ± 0.8 μM), PSA secretion (IC50  = 21.9 ± 3.2 μM) and arginase activity (IC50 = 19.2 ± 2.0 μM). Additionally, ellagitannins from E. hirustum extract were proven to be transformed by human gut microbiota into urolithins. Urolithin C showed the strongest activity in the inhibition of cell proliferation (IC50  = 35.2 ± 3.7 μM), PSA secretion (reduced PSA secretion to the level of 100.7 ± 31.0 ng/ml) and arginase activity (reduced to the level of 27.9 ± 3.3 mUnits of urea/mg of protein). Results of the work offer an explanation of the activity of Epilobium extracts and support the use of Epilobium preparations in the treatment of prostate diseases. PMID:23436427

  11. Extracts from Epilobium sp. herbs, their components and gut microbiota metabolites of Epilobium ellagitannins, urolithins, inhibit hormone-dependent prostate cancer cells-(LNCaP) proliferation and PSA secretion.

    PubMed

    Stolarczyk, Magdalena; Piwowarski, Jakub P; Granica, Sebastian; Stefańska, Joanna; Naruszewicz, Marek; Kiss, Anna K

    2013-12-01

    Extracts from Epilobium sp. herbs have been traditionally used in the treatment of prostate-associated ailments. Our studies demonstrated that the extracts from Epilobium angustifolium, Epilobium parviflorum and Epilobium hirsutum herbs are potent prostate cancer cells (LNCaP) proliferation inhibitors with IC50 values around 35 µg/ml. The tested extracts reduced prostate specific antigen (PSA) secretion (from 325.6 ± 25.3 ng/ml to ~90 ng/ml) and inhibited arginase activity (from 65.2 ± 1.1 mUnits of urea/mg of protein to ~40 mUnits of urea/mg protein). Selected constituents of extracts (oenothein B, quercetin-3-O-glucuronide, myricetin-3-O-rhamnoside) were proven to be active in relation to LNCaP cells. However, oenothein B was the strongest inhibitor of cells proliferation (IC50  = 7.8 ± 0.8 μM), PSA secretion (IC50  = 21.9 ± 3.2 μM) and arginase activity (IC50 = 19.2 ± 2.0 μM). Additionally, ellagitannins from E. hirustum extract were proven to be transformed by human gut microbiota into urolithins. Urolithin C showed the strongest activity in the inhibition of cell proliferation (IC50  = 35.2 ± 3.7 μM), PSA secretion (reduced PSA secretion to the level of 100.7 ± 31.0 ng/ml) and arginase activity (reduced to the level of 27.9 ± 3.3 mUnits of urea/mg of protein). Results of the work offer an explanation of the activity of Epilobium extracts and support the use of Epilobium preparations in the treatment of prostate diseases.

  12. Toxicity of fluoranthene and its biodegradation metabolites to aquatic organisms.

    PubMed

    Sepic, Ester; Bricelj, Mihael; Leskovsek, Hermina

    2003-08-01

    The toxicity of nine stable products of the biodegradation of fluoranthene with the pure bacterial strain Pasteurella sp. IFA was studied. For their quantification, an improved analytical procedure with two-step liquid-liquid extraction, derivatisation and gas chromatographic-mass spectrometric detection was used. Growth inhibition and immobility tests for fluoranthene and its metabolites were carried out using algae (Scenedesmus subspicatus), bacteria (Pseudomonas putida) and crustaceans (Daphnia magna and Thamnocephalus platyurus). Tests using the alga S. subspicatus revealed that with the exception of 9-hydroxyfluorene, which was only four times less toxic than fluoranthene, all the other metabolites were 37 to approximately 3000 times less toxic than the parent material. P. putida cells were resistant to fluoranthene and its primary metabolites, but were inhibited by low molecular weight intermediates, especially benzoic acid. Fluoranthene was not toxic to T. Platyurus, but was toxic to D. magna. Its primary metabolites (including 9-fluorenone and 9-hydroxyfluorene) were toxic to D. magna, and a low molecular weight metabolite (2-carboxybenzaldehyde) was highly toxic to T. platyurus. PMID:12820993

  13. The "first hit" toward alcohol reinforcement: role of ethanol metabolites.

    PubMed

    Israel, Yedy; Quintanilla, María Elena; Karahanian, Eduardo; Rivera-Meza, Mario; Herrera-Marschitz, Mario

    2015-05-01

    This review analyzes literature that describes the behavioral effects of 2 metabolites of ethanol (EtOH): acetaldehyde and salsolinol (a condensation product of acetaldehyde and dopamine) generated in the brain. These metabolites are self-administered into specific brain areas by animals, showing strong reinforcing effects. A wealth of evidence shows that EtOH, a drug consumed to attain millimolar concentrations, generates brain metabolites that are reinforcing at micromolar and nanomolar concentrations. Salsolinol administration leads to marked increases in voluntary EtOH intake, an effect inhibited by mu-opioid receptor blockers. In animals that have ingested EtOH chronically, the maintenance of alcohol intake is no longer influenced by EtOH metabolites, as intake is taken over by other brain systems. However, after EtOH withdrawal brain acetaldehyde has a major role in promoting binge-like drinking in the condition known as the "alcohol deprivation effect"; a condition seen in animals that have ingested alcohol chronically, are deprived of EtOH for extended periods, and are allowed EtOH re-access. The review also analyzes the behavioral effects of acetate, a metabolite that enters the brain and is responsible for motor incoordination at low doses of EtOH. Also discussed are the paradoxical effects of systemic acetaldehyde. Overall, evidence strongly suggests that brain-generated EtOH metabolites play a major role in the early ("first-hit") development of alcohol reinforcement and in the generation of relapse-like drinking.

  14. Modulation of antimicrobial metabolites production by the fungus Aspergillus parasiticus

    PubMed Central

    Bracarense, Adriana A.P.; Takahashi, Jacqueline A.

    2014-01-01

    Biosynthesis of active secondary metabolites by fungi occurs as a specific response to the different growing environments. Changes in this environment alter the chemical and biological profiles leading to metabolites diversification and consequently to novel pharmacological applications. In this work, it was studied the influence of three parameters (fermentation length, medium composition and aeration) in the biosyntheses of antimicrobial metabolites by the fungus Aspergillus parasiticus in 10 distinct fermentation periods. Metabolism modulation in two culturing media, CYA and YES was evaluated by a 22 full factorial planning (ANOVA) and on a 23 factorial planning, role of aeration, medium composition and carbohydrate concentration were also evaluated. In overall, 120 different extracts were prepared, their HPLC profiles were obtained and the antimicrobial activity against A. flavus, C. albicans, E. coli and S. aureus of all extracts was evaluated by microdilution bioassay. Yield of kojic acid, a fine chemical produced by the fungus A. parasiticus was determined in all extracts. Statistical analyses pointed thirteen conditions able to modulate the production of bioactive metabolites by A. parasiticus. Effect of carbon source in metabolites diversification was significant as shown by the changes in the HPLC profiles of the extracts. Most of the extracts presented inhibition rates higher than that of kojic acid as for the extract obtained after 6 days of fermentation in YES medium under stirring. Kojic acid was not the only metabolite responsible for the activity since some highly active extracts showed to possess low amounts of this compound, as determined by HPLC. PMID:24948950

  15. Heme oxygenase-1 nuclear translocation regulates bortezomib-induced cytotoxicity and mediates genomic instability in myeloma cells

    PubMed Central

    Giallongo, Cesarina; Vanella, Luca; Conticello, Concetta; Romano, Alessandra; Saccone, Salvatore; Godos, Justyna; Di Raimondo, Francesco; Li Volti, Giovanni

    2016-01-01

    Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of clonal plasma cells in the bone marrow leading to bone destruction and bone marrow failure. Several molecular mechanisms underlie chemoresistance among which heme oxygenase-1 (HO-1) could play a major role. The aim of the present research was to evaluate the impact of HO-1 in MM following bortezomib (BTZ) treatment and how HO-1 is implicated in the mechanisms of chemoresistance. MM cells were treated for 24h with BTZ (15 nM), a boronic acid dipeptide inhibitor of the 26S proteasome used in the treatment of patients with MM as first-line therapy. We evaluated cell viability, reactive oxygen species (ROS) formation, endoplasmic reticulum (ER) stress, HO-1 expression and compartmentalization and cellular genetic instability. Results showed that BTZ significantly reduced cell viability in different MM cell lines and induced ER-stress and ROS formation. Concomitantly, we observed a significant overexpression of both HO-1 gene and protein levels. This effect was abolished by concomitant treatment with 4-phenybutirric acid, a molecular chaperone, which is known to reduce ER-stress. Surprisingly, inhibition of HO activity with SnMP (10μM) failed to increase BTZ sensitivity in MM cells whereas inhibition of HO-1 nuclear translocation by E64d, a cysteine protease inhibitor, increased sensitivity to BTZ and decreased genetic instability as measured by cytokinesis-block micronucleus assay. In conclusion, our data suggest that BTZ sensitivity depends on HO-1 nuclear compartmentalization and not on its enzymatic activity and this finding may represent an important tool to overcome BTZ chemoresistance in MM patients. PMID:26930712

  16. Gold nanoparticles induce heme oxygenase-1 expression through Nrf2 activation and Bach1 export in human vascular endothelial cells

    PubMed Central

    Lai, Tsung-Hsuan; Shieh, Jiunn-Min; Tsou, Chih-Jen; Wu, Wen-Bin

    2015-01-01

    It has been reported that increased levels and activity of the heme oxygenase-1 (HO-1) protein ameliorate tissue injuries. In the present study, we investigated the effects and mechanisms of action of gold nanoparticles (AuNPs) on HO-1 protein expression in human vascular endothelial cells (ECs). The AuNPs induced HO-1 protein and mRNA expression in a concentration- and time-dependent manner. The induction was reduced by the thiol-containing antioxidants, including N-acetylcysteine and glutathione, but not by the non-thiol-containing antioxidants and inhibitors that block the enzymes for intracellular reactive oxygen species generation. The AuNPs enhanced Nrf2 protein levels but did not affect Nrf2 mRNA expression. In response to the AuNP treatment, the cytosolic Nrf2 translocated to the nucleus, and, concomitantly, Bach1 exited the nucleus and its tyrosine phosphorylation increased. The chromatin immunoprecipitation assay revealed that the translocated Nrf2 bound to the antioxidant-response element located in the E2 enhancer region of the HO-1 gene promoter and acted as a transcription factor. Although N-acetylcysteine inhibited the AuNP-induced Nrf2 nuclear translocation, the AuNPs did not promote intracellular reactive oxygen species production or endoplasmic reticulum stress in the ECs. Knockdown of Nrf2 expression by RNA interference significantly inhibited AuNP-induced HO-1 expression at the protein and mRNA levels. In summary, AuNPs enhance the levels and nuclear translocation of the Nrf2 protein and Bach1 export/tyrosine phosphorylation, leading to Nrf2 binding to the HO-1 E2 enhancer promoter region to drive HO-1 expression in ECs. This study, together with our parallel findings, demonstrates that AuNPs can act as an HO-1 inducer, which may partially contribute to their anti-inflammatory bioactivity in human vascular ECs. PMID:26445536

  17. Cellular toxicity of nicotinamide metabolites.

    PubMed

    Rutkowski, Bolesław; Rutkowski, Przemysław; Słomińska, Ewa; Smolenski, Ryszard T; Swierczyński, Julian

    2012-01-01

    There are almost 100 different substances called uremic toxins. Nicotinamide derivatives are known as new family of uremic toxins. These uremic compounds play a role in an increased oxidative stress and disturbances in cellular repair processes by inhibiting poly (ADP-ribose) polymerase activity. New members of this family were discovered and described. Their toxic properties were a subject of recent studies. This study evaluated the concentration of 4-pyridone-3-carboxamid-1-β-ribonucleoside-triphosphate (4PYTP) and 4-pyridone-3-carboxamid-1-β-ribonucleoside-monophosphate (4PYMP) in erythrocytes of patients with chronic renal failure. Serum and red blood cells were collected from chronic renal failure patients on conservative treatment, those treated with hemodialysis, and at different times from those who underwent kidney transplantation. Healthy volunteers served as a control group. Nicotinamide metabolites were determined using liquid chromatography with mass spectrometry based on originally discovered and described method. Three novel compounds were described: 4-pyridone-3-carboxamid-1-β-ribonucleoside (4PYR), 4PYMP, and 4PYTP. 4PYR concentration was elevated in the serum, whereas 4PYMP and 4PYTP concentrations were augmented in erythrocytes of dialysis patients. Interestingly, concentrations of these compounds were less elevated during the treatment with erythropoietin-stimulating agents (ESAs). After successful kidney transplantation, concentrations of 4PYR and 4PYMP normalized according to the graft function, whereas that of 4PYTP was still elevated. During the incubation of erythrocytes in the presence of 4PYR, concentration of 4PYMP rose very rapidly while that of 4PYTP increased slowly. Therefore, we hypothesized that 4PYR, as a toxic compound, was actively absorbed by erythrocytes and metabolized to the 4PYMP and 4PYTP, which may interfere with function and life span of these cells. PMID:22200423

  18. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    PubMed

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics.

  19. Chemical and physical characterization of the activation of ribulosebiphosphate carboxylase/oxygenase

    SciTech Connect

    Donnelly, M.I.; Ramakrishnan, V.; Hartman, F.C.

    1983-01-01

    Molecular structure of ribulosebiphosphate carboxylase/oxygenase isolated from Rhodospirillium was compared with the enzyme isolated from Alcaligens eutrophus. Peptides derived from the active center of the bacterial enzyme were highly homologous with those isolated from spinach. Molecular shapes of the carboxylases were estimated using neutron scattering data. These studies suggested that the enzyme as isolated from R. rubrum is a solid prolate ellipsoid or cylinder, while the spinach enzyme resembles a hollow sphere. 1 drawing.

  20. Chemical and Physical Characterization of the Activation of Ribulosebiphosphate Carboxylase/Oxygenase

    DOE R&D Accomplishments Database

    Donnelly, M. I.; Ramakrishnan, V.; Hartman, F. C.

    1983-08-01

    Molecular structure of ribulosebiphosphate carboxylase/oxygenase isolated from Rhodospirillium was compared with the enzyme isolated from Alcaligens eutrophus. Peptides derived from the active center of the bacterial enzyme were highly homologous with those isolated from spinach. Molecular shapes of the carboxylases were estimated using neutron scattering data. These studies suggested that the enzyme as isolated from R. rubrum is a solid prolate ellipsoid or cylinder, while the spinach enzyme resembles a hollow sphere.

  1. Dicamba Monooxygenase: Structural Insights into a Dynamic Rieske Oxygenase that Catalyzes an Exocyclic Monooxygenation

    SciTech Connect

    D'Ordine, Robert L.; Rydel, Timothy J.; Storek, Michael J.; Sturman, Eric J.; Moshiri, Farhad; Bartlett, Ryan K.; Brown, Gregory R.; Eilers, Robert J.; Dart, Crystal; Qi, Youlin; Flasinski, Stanislaw; Franklin, Sonya J.

    2009-09-08

    Dicamba (2-methoxy-3,6-dichlorobenzoic acid) O-demethylase (DMO) is the terminal Rieske oxygenase of a three-component system that includes a ferredoxin and a reductase. It catalyzes the NADH-dependent oxidative demethylation of the broad leaf herbicide dicamba. DMO represents the first crystal structure of a Rieske non-heme iron oxygenase that performs an exocyclic monooxygenation, incorporating O{sub 2} into a side-chain moiety and not a ring system. The structure reveals a 3-fold symmetric trimer ({alpha}{sub 3}) in the crystallographic asymmetric unit with similar arrangement of neighboring inter-subunit Rieske domain and non-heme iron site enabling electron transport consistent with other structurally characterized Rieske oxygenases. While the Rieske domain is similar, differences are observed in the catalytic domain, which is smaller in sequence length than those described previously, yet possessing an active-site cavity of larger volume when compared to oxygenases with larger substrates. Consistent with the amphipathic substrate, the active site is designed to interact with both the carboxylate and aromatic ring with both key polar and hydrophobic interactions observed. DMO structures were solved with and without substrate (dicamba), product (3,6-dichlorosalicylic acid), and either cobalt or iron in the non-heme iron site. The substitution of cobalt for iron revealed an uncommon mode of non-heme iron binding trapped by the non-catalytic Co{sup 2+}, which, we postulate, may be transiently present in the native enzyme during the catalytic cycle. Thus, we present four DMO structures with resolutions ranging from 1.95 to 2.2 {angstrom}, which, in sum, provide a snapshot of a dynamic enzyme where metal binding and substrate binding are coupled to observed structural changes in the non-heme iron and catalytic sites.

  2. Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway.

    PubMed

    Knoot, Cory J; Kovaleva, Elena G; Lipscomb, John D

    2016-09-01

    The diiron cluster-containing oxygenase CmlI catalyzes the conversion of the aromatic amine precursor of chloramphenicol to the nitroaromatic moiety of the active antibiotic. The X-ray crystal structures of the fully active, N-terminally truncated CmlIΔ33 in the chemically reduced Fe(2+)/Fe(2+) state and a cis μ-1,2(η (1):η (1))-peroxo complex are presented. These structures allow comparison with the homologous arylamine oxygenase AurF as well as other types of diiron cluster-containing oxygenases. The structural model of CmlIΔ33 crystallized at pH 6.8 lacks the oxo-bridge apparent from the enzyme optical spectrum in solution at higher pH. In its place, residue E236 forms a μ-1,3(η (1):η (2)) bridge between the irons in both models. This orientation of E236 stabilizes a helical region near the cluster which closes the active site to substrate binding in contrast to the open site found for AurF. A very similar closed structure was observed for the inactive dimanganese form of AurF. The observation of this same structure in different arylamine oxygenases may indicate that there are two structural states that are involved in regulation of the catalytic cycle. Both the structural studies and single crystal optical spectra indicate that the observed cis μ-1,2(η (1):η (1))-peroxo complex differs from the μ-η (1):η (2)-peroxo proposed from spectroscopic studies of a reactive intermediate formed in solution by addition of O2 to diferrous CmlI. It is proposed that the structural changes required to open the active site also drive conversion of the µ-1,2-peroxo species to the reactive form. PMID:27229511

  3. Length Polymorphism in Heme Oxygenase-1 and Risk of CKD among Patients with Coronary Artery Disease

    PubMed Central

    Chen, Yu-Hsin; Kuo, Ko-Lin; Hung, Szu-Chun; Hsu, Chih-Cheng

    2014-01-01

    The length polymorphism of guanosine thymidine dinucleotide repeats in the heme oxygenase-1 gene promoter is associated with cardiovascular events and mortality in high-risk populations. Experimental data suggest that heme oxygenase-1 protects against kidney disease. However, the association between this polymorphism and long-term risk of CKD in high-risk patients is unknown. We analyzed the allelic frequencies of guanosine thymidine dinucleotide repeats in the heme oxygenase-1 gene promoter in 386 patients with coronary artery disease recruited from January 1999 to July 2001 and followed until August 31, 2012. The S allele represents short repeats (<27), and the L allele represents long repeats (≥27). The primary renal end points consisted of sustained serum creatinine doubling and/or ESRD requiring long-term RRT. The secondary end points were major adverse cardiovascular events and mortality. At the end of study, the adjusted hazard ratios (95% confidence intervals) for each L allele in the additive model were 1.99 (1.27 to 3.14; P=0.003) for the renal end points, 1.70 (1.27 to 2.27; P<0.001) for major adverse cardiovascular events, and 1.36 (1.04 to 1.79; P=0.03) for mortality. With cardiac events as time-dependent covariates, the adjusted hazard ratio for each L allele in the additive model was 1.91 (1.20 to 3.06; P=0.01) for the renal end points. In conclusion, a greater number of guanosine thymidine dinucleotide repeats in the heme oxygenase-1 gene promoter is associated with higher risk for CKD, cardiovascular events, and mortality among patients with coronary artery disease. PMID:24762402

  4. Synthesis Of Labeled Metabolites

    DOEpatents

    Martinez, Rodolfo A.; Silks, III, Louis A.; Unkefer, Clifford J.; Atcher, Robert

    2004-03-23

    The present invention is directed to labeled compounds, for example, isotopically enriched mustard gas metabolites including: [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1-[[2-(methylsulfinyl)ethyl]sulfonyl]-2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylsulfinyl)]; and, 2,2'-sulfinylbis([1,2-.sup.13 C.sub.2 ]ethanol of the general formula ##STR1## where Q.sup.1 is selected from the group consisting of sulfide (--S--), sulfone (--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), at least one C* is .sup.13 C, X is selected from the group consisting of hydrogen and deuterium, and Z is selected from the group consisting of hydroxide (--OH), and --Q.sup.2 --R where Q.sup.2 is selected from the group consisting of sulfide (--S--), sulfone(--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), and R is selected from the group consisting of hydrogen, a C.sub.1 to C.sub.4 lower alkyl, and amino acid moieties, with the proviso that when Z is a hydroxide and Q.sup.1 is a sulfide, then at least one X is deuterium.

  5. Rethinking cycad metabolite research.

    PubMed

    Snyder, Laura R; Marler, Thomas E

    2011-01-01

    Cycads are among the most ancient of extant Spermatophytes, and are known for their numerous pharmacologically active compounds. One compound in particular, β-methylamino-L-alanine (BMAA), has been implicated as the cause of amyotrophic lateral sclerosis/Parkinson dementia complex (ALS/PDC) on Guam. Previous studies allege that BMAA is produced exclusively by cyanobacteria, and is transferred to cycads through the symbiotic relationship between these cyanobacteria and the roots of cycads. We recently published data showing that Cycas micronesica seedlings grown without endophytic cyanobacteria do in fact increase in BMAA, invalidating the foundation of the BMAA hypothesis. We use this example to suggest that the frenzy centered on BMAA and other single putative toxins has hindered progress. The long list of cycad-specific compounds may have important roles in signaling or communication, but these possibilities have been neglected during decades of attempts to force single metabolites into a supposed anti-herbivory function. We propose that an unbiased, comprehensive approach may be a more appropriate means of proceeding with cycad biochemistry research. PMID:21509189

  6. Rethinking cycad metabolite research.

    PubMed

    Snyder, Laura R; Marler, Thomas E

    2011-01-01

    Cycads are among the most ancient of extant Spermatophytes, and are known for their numerous pharmacologically active compounds. One compound in particular, β-methylamino-L-alanine (BMAA), has been implicated as the cause of amyotrophic lateral sclerosis/Parkinson dementia complex (ALS/PDC) on Guam. Previous studies allege that BMAA is produced exclusively by cyanobacteria, and is transferred to cycads through the symbiotic relationship between these cyanobacteria and the roots of cycads. We recently published data showing that Cycas micronesica seedlings grown without endophytic cyanobacteria do in fact increase in BMAA, invalidating the foundation of the BMAA hypothesis. We use this example to suggest that the frenzy centered on BMAA and other single putative toxins has hindered progress. The long list of cycad-specific compounds may have important roles in signaling or communication, but these possibilities have been neglected during decades of attempts to force single metabolites into a supposed anti-herbivory function. We propose that an unbiased, comprehensive approach may be a more appropriate means of proceeding with cycad biochemistry research.

  7. Regulation of cyclic electron flow in C₃ plants: differential effects of limiting photosynthesis at ribulose-1,5-bisphosphate carboxylase/oxygenase and glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Livingston, Aaron K; Kanazawa, Atsuko; Cruz, Jeffrey A; Kramer, David M

    2010-11-01

    Cyclic electron flow around photosystem I (CEF1) is thought to augment chloroplast ATP production to meet metabolic needs. Very little is known about the induction and regulation of CEF1. We investigated the effects on CEF1 of antisense suppression of the Calvin-Benson enzymes glyceraldehyde-3-phosphate dehydrogenase (gapR), and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit (SSU), in tobacco (Nicotiana tabacum cv. Wisconsin 38). The gapR, but not ssuR, mutants showed substantial increases in CEF1, demonstrating that specific intermediates, rather than slowing of assimilation, induce CEF1. Both types of mutant showed increases in steady-state transthylakoid proton motive force (pmf) and subsequent activation of the photoprotective q(E) response. With gapR, the increased pmf was caused both by up-regulation of CEF1 and down-regulation of the ATP synthase. In ssuR, the increased pmf was attributed entirely to a decrease in ATP synthase activity, as previously seen in wild-type plants when CO₂ levels were decreased. Comparison of major stromal metabolites in gapR, ssuR and hcef1, a mutant with decreased fructose 1,6-bisphosphatase activity, showed that neither the ATP/ADP ratio, nor major Calvin-Benson cycle intermediates can directly account for the activation of CEF1, suggesting that chloroplast redox status or reactive oxygen species regulate CEF1.

  8. Anti-Inflammatory Effect of Heme Oxygenase-1 Toward Porphyromonas gingivalis Lipopolysaccharide in Macrophages Exposed to Gomisins A, G, and J

    PubMed Central

    Ryu, Eun Yeon; Park, Sun Young; Kim, Sun Gun; Park, Da Jung; Kang, Jum Soon; Kim, Young Hun; Seetharaman, Rajaseker

    2011-01-01

    Abstract Periodontitis, a chronic inflammatory periodontal disease that develops from gingivitis, is caused by periodontal pathogenic bacteria such as Porphyromonas gingivalis. Recent studies have focused on the antioxidant, anti–human immunodeficiency virus, anticarcinogenic, and anti-inflammatory properties of gomisins. However, the anti-inflammatory activities of gomisin plants through heme oxygenase-1 (HO-1) signals remain poorly defined. We found that gomisins' anti-inflammatory activity occurs via the induction of HO-1 expression. Gomisins G and J inhibit the production of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6 and also block nuclear factor-κB activation in Raw264.7 cells stimulated with P. gingivalis lipopolysaccharide. Furthermore, pro-inflammatory cytokine production is inhibited through the induction of HO-1 expression. HO-1 expression is induced by all gomisins, but their anti-inflammatory activity via HO-1 signaling is observed with gomisins G and J, and not A. We found that gomisins G and J extracted from Schisandria chinensis can inhibit the P. gingivalis lipopolysaccharide induced-inflammatory responses in Raw264.7 cells. PMID:22145771

  9. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    PubMed Central

    Kim, Ji-Hee; Park, Ga-Young; Bang, Soo Young; Park, Sun Young; Bae, Soo-Kyung; Kim, YoungHee

    2014-01-01

    Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1) which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS) expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4). CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation. PMID:24839356

  10. Enhanced expression of cyclo-oxygenase isoenzyme 2 (COX-2) in asthmatic airways and its cellular distribution in aspirin-sensitive asthma

    PubMed Central

    Sousa, A.; Pfister, R.; Christie, P. E.; Lane, S. J.; Nasser, S. M.; Schmitz-Schumann, M.; Lee, T. H.

    1997-01-01

    BACKGROUND: There are two isoforms of cyclo-oxygenase (COX), namely COX- 1 and COX-2. COX-1 is constitutively expressed in most tissues and in blood platelets. The metabolites derived from COX-1 are probably involved in cellular housekeeping functions. COX-2 is expressed only following cellular activation by inflammatory stimuli and is thought to be involved in inflammation. METHODS: The expression of COX-1 and COX-2 isoenzymes has been studied in the bronchial mucosa of 10 normal and 18 asthmatic subjects, 11 of whom had aspirin-sensitive asthma (ASA) and seven had non-aspirin-sensitive asthma (NASA) RESULTS: There was a significant fourfold and 14-fold increase, respectively, in the epithelial and submucosal cellular expression of COX-2, but not of COX- 1, in asthmatic patients. There was no significant difference in the total number of cells staining for either COX-1 or COX-2 between subjects with ASA and NASA, but the number and percentage of mast cells that expressed COX-2 was significantly increased sixfold and twofold, respectively, in individuals with ASA. There was a mean fourfold increase in the percentage of COX-2 expressing cells that were mast cells in subjects with ASA and the number of eosinophils expressing COX- 2 was increased 2.5-fold in these subjects. CONCLUSION: COX-2-derived metabolites may play an essential part in the inflammatory processes present in asthmatic airways and development of drugs targeted at this isoenzyme may have therapeutic potential in the treatment of asthma. Mast cells and eosinophils may also have a central role in the pathology of aspirin-sensitive asthma. 


 PMID:9487340

  11. How astrocyte networks may contribute to cerebral metabolite clearance

    PubMed Central

    Asgari, Mahdi; de Zélicourt, Diane; Kurtcuoglu, Vartan

    2015-01-01

    The brain possesses an intricate network of interconnected fluid pathways that are vital to the maintenance of its homeostasis. With diffusion being the main mode of solute transport in cerebral tissue, it is not clear how bulk flow through these pathways is involved in the removal of metabolites. In this computational study, we show that networks of astrocytes may contribute to the passage of solutes between tissue and paravascular spaces (PVS) by serving as low resistance pathways to bulk water flow. The astrocyte networks are connected through aquaporin-4 (AQP4) water channels with a parallel, extracellular route carrying metabolites. Inhibition of the intracellular route by deletion of AQP4 causes a reduction of bulk flow between tissue and PVS, leading to reduced metabolite clearance into the venous PVS or, as observed in animal studies, a reduction of tracer influx from arterial PVS into the brain tissue. PMID:26463008

  12. Anti-inflammatory effect of transduced PEP-1-heme oxygenase-1 in Raw 264.7 cells and a mouse edema model

    SciTech Connect

    Kwon, Soon Won; Sohn, Eun Jeong; Kim, Dae Won; Jeong, Hoon Jae; Kim, Mi Jin; Ahn, Eun Hee; Kim, Young Nam; Dutta, Suman; Kim, Duk-Soo; Park, Jinseu; Eum, Won Sik; Hwang, Hyun Sook; Choi, Soo Young

    2011-07-29

    Highlights: {yields} Recombinant PEP-1 heme oxygenase-1 expression vector was constructed and overexpressed. {yields} We investigated transduction efficiency of PEP-1-HO-1 protein in Raw 264.7 cells. {yields} PEP-1-HO-1 was efficiently transduced into Raw 264.7 cells in a dose and time dependent manner. {yields} PEP-1-HO-1 exerted anti-inflammatory activity in Raw 264.7 cells and in a mice edema model. {yields} PEP-1-HO-1 could be used as a therapeutic drug against inflammatory diseases. -- Abstract: Heme oxygenase-1 (HO-1), which catalyzes the degradation of free heme to biliverdin, carbon monoxide (CO), and free iron (Fe{sup 2+}), is up-regulated by several cellular stress and cell injuries, including inflammation, ischemia and hypoxia. In this study, we examined whether fusion of HO-1 with PEP-1, a protein transduction domain that is able to deliver exogenous molecules to living cells or tissues, would facilitate HO-1 delivery to target cells and tissues, and thereby effectively exert a therapeutically useful response against inflammation. Western blot analysis demonstrated that PEP-1-HO-1 fusion proteins were transduced into Raw 264.7 cells in time- and dose-dependent manners, and were stably maintained in the cells for about 60 h. In addition, fluorescence analysis revealed that only PEP-1-HO-1 fusion proteins were significantly transduced into the cytoplasm of cells, while HO-1 proteins failed to be transduced. In lipopolysaccharide (LPS)-stimulated Raw 264.7 cells and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse edema model, transduced PEP-1-HO-1 fusion proteins effectively inhibited the overexpression of pro-inflammatory mediators and cytokines. Also, histological analysis demonstrated that PEP-1-HO-1 remarkably suppressed ear edema. The results suggest that the PEP-1-HO-1 fusion protein can be used as a therapeutic molecule against reactive oxygen species-related inflammatory diseases.

  13. Heme oxygenase-1 regulates matrix metalloproteinase MMP-1 secretion and chondrocyte cell death via Nox4 NADPH oxidase activity in chondrocytes.

    PubMed

    Rousset, Francis; Nguyen, Minh Vu Chuong; Grange, Laurent; Morel, Françoise; Lardy, Bernard

    2013-01-01

    Interleukin-1β (IL-1β) activates the production of reactive oxygen species (ROS) and secretion of MMPs as well as chondrocyte apoptosis. Those events lead to matrix breakdown and are key features of osteoarthritis (OA). We confirmed that in human C-20/A4 chondrocytes the NADPH oxidase Nox4 is the main source of ROS upon IL-1β stimulation. Since heme molecules are essential for the NADPH oxidase maturation and activity, we therefore investigated the consequences of the modulation of Heme oxygenase-1 (HO-1), the limiting enzyme in heme catabolism, on the IL-1β signaling pathway and more specifically on Nox4 activity. Induction of HO-1 expression decreased dramatically Nox4 activity in C-20/A4 and HEK293 T-REx™ Nox4 cell lines. Unexpectedly, this decrease was not accompanied by any change in the expression, the subcellular localization or the maturation of Nox4. In fact, the inhibition of the heme synthesis by succinylacetone rather than heme catabolism by HO-1, led to a confinement of the Nox4/p22(phox) heterodimer in the endoplasmic reticulum with an absence of redox differential spectrum highlighting an incomplete maturation. Therefore, the downregulation of Nox4 activity by HO-1 induction appeared to be mediated by carbon monoxide (CO) generated from the heme degradation process. Interestingly, either HO-1 or CO caused a significant decrease in the expression of MMP-1 and DNA fragmentation of chondrocytes stimulated by IL-1β. These results all together suggest that a modulation of Nox4 activity via heme oxygenase-1 may represent a promising therapeutic tool in osteoarthritis. PMID:23840483

  14. Heme Oxygenase-1 Regulates Matrix Metalloproteinase MMP-1 Secretion and Chondrocyte Cell Death via Nox4 NADPH Oxidase Activity in Chondrocytes

    PubMed Central

    Rousset, Francis; Nguyen, Minh Vu Chuong; Grange, Laurent; Morel, Françoise; Lardy, Bernard

    2013-01-01

    Interleukin-1β (IL-1β) activates the production of reactive oxygen species (ROS) and secretion of MMPs as well as chondrocyte apoptosis. Those events lead to matrix breakdown and are key features of osteoarthritis (OA). We confirmed that in human C-20/A4 chondrocytes the NADPH oxidase Nox4 is the main source of ROS upon IL-1β stimulation. Since heme molecules are essential for the NADPH oxidase maturation and activity, we therefore investigated the consequences of the modulation of Heme oxygenase-1 (HO-1), the limiting enzyme in heme catabolism, on the IL-1β signaling pathway and more specifically on Nox4 activity. Induction of HO-1 expression decreased dramatically Nox4 activity in C-20/A4 and HEK293 T-REx™ Nox4 cell lines. Unexpectedly, this decrease was not accompanied by any change in the expression, the subcellular localization or the maturation of Nox4. In fact, the inhibition of the heme synthesis by succinylacetone rather than heme catabolism by HO-1, led to a confinement of the Nox4/p22phox heterodimer in the endoplasmic reticulum with an absence of redox differential spectrum highlighting an incomplete maturation. Therefore, the downregulation of Nox4 activity by HO-1 induction appeared to be mediated by carbon monoxide (CO) generated from the heme degradation process. Interestingly, either HO-1 or CO caused a significant decrease in the expression of MMP-1 and DNA fragmentation of chondrocytes stimulated by IL-1β. These results all together suggest that a modulation of Nox4 activity via heme oxygenase-1 may represent a promising therapeutic tool in osteoarthritis. PMID:23840483

  15. Functional antidopaminergic and anticholinergic effects of thioridazine and its metabolites

    SciTech Connect

    Niedzwiecki, D.

    1986-01-01

    The relative potency of thioridazine and two of its clinically active metabolites, mesoridazine and sulforidazine was studied. In each of three separate methods, mesoridazine and sulforidazine exhibited greater potency than did thioridazine. Both metabolites showed greater affinities for striatal DA receptors as estimated by their competition for (/sup 3/H)spiperone binding sites in crude striatal membrane preparations. On a more functional level, both metabolites more potently antagonized the inhibitory effects of either the direct acting DA agonist apomorphine, or of endogenous DA, on the electrically evoked release of radiolabeled DA and ACh from perfused striatal slices. While thioridazine effectively blocked the agonist-induced inhibition at those striatal DA receptors which control DA release, it showed significantly lower potency at the striatal DA receptors which modulate ACh release. Thioridazine exhibited moderate affinity for striatal muscarinic cholinergic receptors. It was only five times less potent than atropine in competing for (/sup 3/H) quinuclidinylbenzilate binding sites in striatal membrane preparations. Unlike dopamine receptors, thioridazine showed greater antimuscarinic potency than did its metabolites. Despite this significant affinity for muscarinic binding sites in striatal homogenates, neither thioridezine nor its metabolites could block the inhibitory effects of the full muscarinic agonist carbachol, on the evoked release of ACh from striatal slices. This lack of effect contrasted with the antagonism of the carbachol-induced inhibition by such classical muscarinic blockers as quinuclindinylbenzilate or atropine. In combination with available pharmacokinetic data, these studies have demonstrated that the metabolites of thioridazine probably contribute to the antidopaminergic effects of this drug within the CNS.

  16. Curcumin-Induced Heme Oxygenase-1 Expression Prevents H2O2-Induced Cell Death in Wild Type and Heme Oxygenase-2 Knockout Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Cremers, Niels A. J.; Lundvig, Ditte M. S.; van Dalen, Stephanie C. M.; Schelbergen, Rik F.; van Lent, Peter L. E. M.; Szarek, Walter A.; Regan, Raymond F.; Carels, Carine E.; Wagener, Frank A. D. T. G.

    2014-01-01

    Mesenchymal stem cell (MSC) administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO) generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO) and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs) from wild type (WT) and HO-2 knockout (KO) mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2) significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy. PMID:25299695

  17. Polycyclic aromatic hydrocarbon metabolites in the bile of a territorial benthic fish, oyster toadfish (Opsanus tau) from the Elizabeth River, Virginia.

    PubMed

    Deshpande, A D; Huggett, R J; Halbrook, R A

    2002-01-01

    Reverse-phase high-performance liquid chromatographic analyses of bile of a territorial benthic fish, oyster toadfish (Opsanus tau), indicated that fish from reference stations in the York and Elizabeth Rivers, Virginia, contained lower concentrations of polycyclic aromatic hydrocarbon (PAH) metabolites than fish from polluted stations. PAH metabolite levels in the bile of fish from mildly polluted stations were 7 to 10 times greater than those from reference stations. PAH metabolite levels in fish from a moderately polluted station and a highly polluted station were, respectively, 20 and 50 times greater than those from reference stations. Differential patterns of five major PAH metabolites in fish from the same station suggested individual variability in metabolic pathways possibly further convoluted by the differential inductions or suppressions of hepatic mixed-function oxygenase isozyme systems under various natural or anthropogenic habitat parameters. PAH metabolite levels in the bile of oyster toadfish correlated well with the gradient of PAH contamination in the Elizabeth River sediments. High levels of biliary PAH metabolites were not detected in muskrats (Ondatra zibethicus) collected along the polluted sections of the Elizabeth River, probably due to their primarily herbivorous nature. Assuming that the hepatobiliary system and the gastrointestinal tract are the major routes of biotransformation and excretion of PAHs in the muskrats, the contaminated diet appears to be a more important routes of exposure of muskrats (and possibly oyster toadfish) to PAHs than the transdermal transfer. Occurrence permitting, we propose oyster toadfish as a useful biological sentinel for early detection of estuarine PAH pollution.

  18. Substrate Specificity of Purified Recombinant Human β-Carotene 15,15′-Oxygenase (BCO1)*

    PubMed Central

    dela Seña, Carlo; Narayanasamy, Sureshbabu; Riedl, Kenneth M.; Curley, Robert W.; Schwartz, Steven J.; Harrison, Earl H.

    2013-01-01

    Humans cannot synthesize vitamin A and thus must obtain it from their diet. β-Carotene 15,15′-oxygenase (BCO1) catalyzes the oxidative cleavage of provitamin A carotenoids at the central 15–15′ double bond to yield retinal (vitamin A). In this work, we quantitatively describe the substrate specificity of purified recombinant human BCO1 in terms of catalytic efficiency values (kcat/Km). The full-length open reading frame of human BCO1 was cloned into the pET-28b expression vector with a C-terminal polyhistidine tag, and the protein was expressed in the Escherichia coli strain BL21-Gold(DE3). The enzyme was purified using cobalt ion affinity chromatography. The purified enzyme preparation catalyzed the oxidative cleavage of β-carotene with a Vmax = 197.2 nmol retinal/mg BCO1 × h, Km = 17.2 μm and catalytic efficiency kcat/Km = 6098 m−1 min−1. The enzyme also catalyzed the oxidative cleavage of α-carotene, β-cryptoxanthin, and β-apo-8′-carotenal to yield retinal. The catalytic efficiency values of these substrates are lower than that of β-carotene. Surprisingly, BCO1 catalyzed the oxidative cleavage of lycopene to yield acycloretinal with a catalytic efficiency similar to that of β-carotene. The shorter β-apocarotenals (β-apo-10′-carotenal, β-apo-12′-carotenal, β-apo-14′-carotenal) do not show Michaelis-Menten behavior under the conditions tested. We did not detect any activity with lutein, zeaxanthin, and 9-cis-β-carotene. Our results show that BCO1 favors full-length provitamin A carotenoids as substrates, with the notable exception of lycopene. Lycopene has previously been reported to be unreactive with BCO1, and our findings warrant a fresh look at acycloretinal and its alcohol and acid forms as metabolites of lycopene in future studies. PMID:24187135

  19. Chlorophyllide a Oxygenase mRNA and Protein Levels Correlate with the Chlorophyll a/b Ratio in Arabidopsis thaliana.

    PubMed

    Harper, Andrea L; von Gesjen, Sigrid E; Linford, Alicia S; Peterson, Michael P; Faircloth, Ruth S; Thissen, Michelle M; Brusslan, Judy A

    2004-02-01

    Plants can change the size of their light harvesting complexes in response to growth at different light intensities. Although these changes are small compared to those observed in algae, their conservation in many plant species suggest they play an important role in photoacclimation. A polyclonal antibody to the C-terminus of the Arabidopsis thaliana chlorophyllide a oxygenase (CAO) protein was used to determine if CAO protein levels change under three conditions which perturb chlorophyll levels. These conditions were: (1) transfer to shaded light intensity; (2) limited chlorophyll synthesis, and (3) during photoinhibition. Transfer of wild-type plants from moderate to shaded light intensity resulted in a slight reduction in the Chl a/b ratio, and increases in both CAO and Lhcb1 mRNA levels as well as CAO protein levels. CAO protein levels were also measured in the cch1 mutant, a P642L missense mutation in the H subunit of Mg-chelatase. This mutant has reduced total Chl levels and an increased Chl a/b ratio when transferred to moderate light intensity. After transfer to moderate light intensity, CAO mRNA levels decreased in the cch1 mutant, and a concomitant decrease in CAO protein levels was also observed. Measurements of tetrapyrrole intermediates suggested that decreased Chl synthesis in the cch1 mutant was not a result of increased feedback inhibition at higher light intensity. When wild-type plants were exposed to photoinhibitory light intensity for 3 h, total Chl levels decreased and both CAO mRNA and CAO protein levels were also reduced. These results indicate that CAO protein levels correlate with CAO mRNA levels, and suggest that changes in Chl b levels in vascular plants, are regulated, in part, at the CAO mRNA level.

  20. Cilostazol attenuates murine hepatic ischemia and reperfusion injury via heme oxygenase-dependent activation of mitochondrial biogenesis.

    PubMed

    Joe, Yeonsoo; Zheng, Min; Kim, Hyo Jeong; Uddin, Md Jamal; Kim, Seul-Ki; Chen, Yingqing; Park, Jeongmin; Cho, Gyeong Jae; Ryter, Stefan W; Chung, Hun Taeg

    2015-07-01

    Hepatic ischemia-reperfusion (I/R) can cause hepatocellular injury associated with the inflammatory response and mitochondrial dysfunction. We studied the protective effects of the phosphodiesterase inhibitor cilostazol in hepatic I/R and the roles of mitochondria and the Nrf2/heme oxygenase-1 (HO-1) system. Wild-type, Hmox1(-/-), or Nrf2(-/-) mice were subjected to hepatic I/R in the absence or presence of cilostazol followed by measurements of liver injury. Primary hepatocytes were subjected to cilostazol with the HO-1 inhibitor ZnPP, or Nrf2-specific siRNA, followed by assessment of mitochondrial biogenesis. Preconditioning with cilostazol prior to hepatic I/R protected against hepatocellular injury and mitochondrial dysfunction. Cilostazol reduced the serum levels of alanine aminotransferase, TNF-α, and liver myeloperoxidase content relative to control I/R-treated mice. In primary hepatocytes, cilostazol increased the expression of HO-1, and markers of mitochondrial biogenesis, PGC-1α, NRF-1, and TFAM, induced the mitochondrial proteins COX III and COX IV and increased mtDNA and mitochondria content. Pretreatment of primary hepatocytes with ZnPP inhibited cilostazol-induced PGC-1α, NRF-1, and TFAM mRNA expression and reduced mtDNA and mitochondria content. Genetic silencing of Nrf2 prevented the induction of HO-1 and mitochondrial biogenesis by cilostazol in HepG2 cells. Cilostazol induced hepatic HO-1 production and mitochondrial biogenesis in wild-type mice, but not in Hmox1(-/-) or Nrf2(-/-) mice, and failed to protect against liver injury in Nrf2(-/-) mice. These results suggest that I/R injury can impair hepatic mitochondrial function, which can be reversed by cilostazol treatment. These results also suggest that cilostazol-induced mitochondrial biogenesis was mediated by an Nrf-2- and HO-1-dependent pathway.

  1. Desipramine Protects Neuronal Cell Death and Induces Heme Oxygenase-1 Expression in Mes23.5 Dopaminergic Neurons

    PubMed Central

    Lin, Hsiao-Yun; Yeh, Wei-Lan; Huang, Bor-Ren; Lin, Chingju; Lai, Chih-Ho; Lin, Ho; Lu, Dah-Yuu

    2012-01-01

    Background Desipramine is known principally as a tricyclic antidepressant drug used to promote recovery of depressed patients. It has also been used in a number of other psychiatric and medical conditions. The present study is the first to investigate the neuroprotective effect of desipramine. Methodology/Principal Findings Mes23.5 dopaminergic cells were used to examine neuroprotective effect of desipramine. Western blot, reverse transcription-PCR, MTT assay, siRNA transfection and electrophoretic mobility shift assay (EMSA) were carried out to assess the effects of desipramine. Desipramine induces endogenous anti-oxidative enzyme, heme oxygenase-1 (HO-1) protein and mRNA expression in concentration- and time-dependent manners. A different type of antidepressant SSRI (selective serotonin reuptake inhibitor), fluoxetine also shows similar effects of desipramine on HO-1 expression. Moreover, desipramine induces HO-1 expression through activation of ERK and JNK signaling pathways. Desipramine also increases NF-E2-related factor-2 (Nrf2) accumulation in the nucleus and enhances Nrf2-DNA binding activity. Moreover, desipramine-mediated increase of HO-1 expression is reduced by transfection with siRNA against Nrf2. On the other hand, pretreatment of desipramine protects neuronal cells against rotenone- and 6-hydroxydopamine (6-OHDA)-induced neuronal death. Furthermore, inhibition of HO-1 activity by a HO-1 pharmacological inhibitor, ZnPP IX, attenuates the neuroprotective effect of desipramine. Otherwise, activation of HO-1 activity by HO-1 activator and inducer protect 6-OHDA-induced neuronal death. Conclusions/Significance These findings suggest that desipramine-increased HO-1 expression is mediated by Nrf2 activation through the ERK and JNK signaling pathways. Our results also suggest that desipramine provides a novel effect of neuroprotection, and neurodegenerative process might play an important role in depression disorder. PMID:23209658

  2. Role of Heme Oxygenase-1 in Postnatal Differentiation of Stem Cells: A Possible Cross-Talk with MicroRNAs

    PubMed Central

    Kozakowska, Magdalena; Szade, Krzysztof

    2014-01-01

    Abstract Significance: Heme oxygenase-1 (HO-1) converts heme to biliverdin, carbon monoxide, and ferrous ions, but its cellular functions are far beyond heme metabolism. HO-1 via heme removal and degradation products acts as a cytoprotective, anti-inflammatory, immunomodulatory, and proangiogenic protein, regulating also a cell cycle. Additionally, HO-1 can translocate to nucleus and regulate transcription factors, so it can also act independently of enzymatic function. Recent Advances: Recently, a body of evidence has emerged indicating a role for HO-1 in postnatal differentiation of stem and progenitor cells. Maturation of satellite cells, skeletal myoblasts, adipocytes, and osteoclasts is inhibited by HO-1, whereas neurogenic differentiation and formation of cardiomyocytes perhaps can be enhanced. Moreover, HO-1 influences a lineage commitment in pluripotent stem cells and maturation of hematopoietic cells. It may play a role in development of osteoblasts, but descriptions of its exact effects are inconsistent. Critical Issues: In this review we discuss a role of HO-1 in cell differentiation, and possible HO-1-dependent signal transduction pathways. Among the potential mediators, we focused on microRNA (miRNA). These small, noncoding RNAs are critical for cell differentiation. Recently we have found that HO-1 not only influences expression of specific miRNAs but also regulates miRNA processing enzymes. Future Directions: It seems that interplay between HO-1 and miRNAs may be important in regulating fates of stem and progenitor cells and needs further intensive studies. Antioxid. Redox Signal. 20, 1827–1850. PMID:24053682

  3. Sequential Upregulation of Superoxide Dismutase 2 and Heme Oxygenase 1 by tert-Butylhydroquinone Protects Mitochondria during Oxidative Stress.

    PubMed

    Sun, Jiahong; Ren, Xuefang; Simpkins, James W

    2015-09-01

    Oxidative stress is linked to mitochondrial dysfunction in aging and neurodegenerative conditions. The transcription factor nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element (ARE) regulates intracellular antioxidative capacity to combat oxidative stress. We examined the effect of tert-butylhydroquinone (tBHQ), an Nrf2-ARE signaling pathway inducer, on mitochondrial function during oxidative challenge in neurons. tBHQ prevented glutamate-induced cytotoxicity in an HT-22 neuronal cell line even with an 8-hour exposure delay. tBHQ blocked glutamate-induced intracellular reactive oxygen species (ROS) and mitochondrial superoxide accumulation. It also protected mitochondrial function under glutamate toxicity, including maintaining mitochondrial membrane potential, mitochondrial Ca(2+) hemostasis, and mitochondrial respiration. Glutamate-activated, mitochondria-mediated apoptosis was inhibited by tBHQ as well. In rat primary cortical neurons, tBHQ protected cells from both glutamate and buthionine sulfoximine toxicity. We found that tBHQ scavenged ROS and induced a rapid upregulation of superoxide dismutase 2 (SOD2) expression and a delayed upregulation of heme oxygenase 1 (HO-1) expression. In HT-22 cells with a knockdown of SOD2 expression, delayed treatment with tBHQ failed to prevent glutamate-induced cell death. Briefly, tBHQ rescues mitochondrial function by sequentially increasing SOD2 and HO-1 expression during glutamate-mediated oxidative stress. This study is the first to demonstrate the role of tBHQ in preserving mitochondrial function during oxidative challenge and provides a clinically relevant argument for using tBHQ against acute neuron-compromising conditions.

  4. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Dahiya, R.; Hughes-Fulford, M.

    1997-01-01

    Prostaglandins are synthesized from arachidonic acid by the enzyme cyclo-oxygenase. There are two isoforms of cyclooxygenases: COX-1 (a constitutive form) and COX-2 (an inducible form). COX-2 has recently been categorized as an immediate-early gene and is associated with cellular growth and differentiation. The purpose of this study was to investigate the effects of exogenous dimethylprostaglandin E2 (dmPGE2) on prostate cancer cell growth. Results of these experiments demonstrate that administration of dmPGE2 to growing PC-3 cells significantly increased cellular proliferation (as measured by the cell number), total DNA content and endogenous PGE2 concentration. DmPGE2 also increased the steady-state mRNA levels of its own inducible synthesizing enzyme, COX-2, as well as cellular growth to levels similar to those seen with fetal calf serum and phorbol ester. The same results were observed in other human cancer cell types, such as the androgen-dependent LNCaP cells, breast cancer MDA-MB-134 cells and human colorectal carcinoma DiFi cells. In PC-3 cells, the dmPGE2 regulation of the COX-2 mRNA levels was both time dependent, with maximum stimulation seen 2 h after addition, and dose dependent on dmPGE2 concentration, with maximum stimulation seen at 5 microg ml(-1). The non-steroidal anti-inflammatory drug flurbiprofen (5 microM), in the presence of exogenous dmPGE2, inhibited the up-regulation of COX-2 mRNA and PC-3 cell growth. Taken together, these data suggest that PGE2 has a specific role in the maintenance of human cancer cell growth and that the activation of COX-2 expression depends primarily upon newly synthesized PGE2, perhaps resulting from changes in local cellular PGE2 concentrations.

  5. Induction of placental heme oxygenase-1 is protective against TNFalpha-induced cytotoxicity and promotes vessel relaxation.

    PubMed Central

    Ahmed, A.; Rahman, M.; Zhang, X.; Acevedo, C. H.; Nijjar, S.; Rushton, I.; Bussolati, B.; St John, J.

    2000-01-01

    BACKGROUND: Pregnancy is characterized by an inflammatory-like process and this may be exacerbated in preeclampsia. The heme oxygenase (HO) enzymes generate carbon monoxide (CO) that induces blood vessel relaxation and biliverdin that acts as an endogenous antioxidant. MATERIALS AND METHODS: We examined the expression and localization of HO-1 and HO-2 in normal and preeclamptic placenta using reverse transcription polymerase chain reaction (RT-PCR), RNase protection assay, immunoblotting and immunohistochemistry. In addition, the effect of HO activation on tumor necrosis factor-alpha (TNFalpha) induced placental damage and on feto-placental circulation was studied. RESULTS: We provide the first evidence for the role of HO as an endogenous placental factor involved with cytoprotection and placental blood vessel relaxation. HO-1 was significantly higher at term, compared with first trimester placentae indicating its role in placental vascular development and regulation. HO-1 predominantly localized in the extravascular connective tissue that forms the perivascular contractile sheath around the developing blood vessels. HO-2 was localized in the capillaries, as well as the villous stroma, with weak staining of trophoblast. Induction of HO-1 caused a significant attenuation of TNFalpha-mediated cellular damage in placental villous explants, as assessed by lactate dehydrogenase leakage (p < 0.01). HO-1 protein was significantly reduced in placentae from pregnancies complicated with preeclampsia, compared with gestationally matched normal pregnancies. This suggests that the impairment of HO-1 activation may compromise the compensatory mechanism and predispose the placenta to cellular injury and subsequent maternal endothelial cell activation. Isometric contractility studies showed that hemin reduced vascular tension by 61% in U46619-preconstricted placental arteries. Hemin-induced vessel relaxation and CO production was inhibited by HO inhibitor, tin protoporphyrin IX

  6. Heme oxygenase 1 plays role of neuron-protection by regulating Nrf2-ARE signaling post intracerebral hemorrhage

    PubMed Central

    Yin, Xiao-Ping; Wu, Dan; Zhou, Jun; Chen, Zhi-Ying; Bao, Bing; Xie, Liang

    2015-01-01

    The NF-E2 related factor 2 (Nrf2) could be activated in intracerebral hemorrhage (ICH), and trigger the expression of ARE regulated heme oxygenase 1 (HO-1) subsequently. This study aims to explore neuroprotection of HO-1 protein in regulating the Nrf2-ARE signaling pathway in ICH. In this study, the femoral artery injection method was used to establish the ICH model. The zinc porphyrin-9 (ZPP-IX) was used to inhibit the HO-1 expression in ICH rats. The ICH rats were randomly divided into 3 groups, ICH group, ZPP-IX (10 mg/kg) + ICH group and DMSO (10 mg/kg) + ICH group. Neurological scores were evaluated for the 3 groups. Double immunofluorescence staining method was employed to observe the co-expression of HO-1, Nrf2, NF-κB and TNF-α and CD11b in glia cells. Western blot and RT-PCR assay were used to detect the total Nrf2, binding Nrf2, HO-1, NF-κB and TNF-α expression. The results indicated that ZPP-IX could aggravate the neurological dyafunstions of ICH rats. The HO-1 level in ZPP-IX group was significantly decreased compared to the ICH group (P < 0.05). The binding-Nrf2 protein was significantly increased in ZPP-IX group compared to ICH group (P < 0.05). The NF-κB and TNF-α level were significantly increased in ZPP-IX group compared to ICH group (P < 0.05). The ZPP-IX significantly inhibited the HO-1 and Nrf2, and enhanced NF-κB and TNF-α co-expressing with the CD11b compared to the ICH group (P < 0.05). In conclusion, HO-1 protein regulates the Nrf2-ARE pathway in ICH model by inhibiting the Nrf2 entering nucleus and activating the NF-κB and TNF-α expression. PMID:26617723

  7. Upregulation of heme oxygenase-1 and p21 confers resistance to apoptosis in human gastric cancer cells.

    PubMed

    Liu, Zhi-Min; Chen, George G; Ng, Enders K W; Leung, Wai-Keung; Sung, Joseph J Y; Chung, S C Sydney

    2004-01-15

    Both heme oxygenase-1 (HO-1) and p21(WAF1/Cip1) (p21) are involved in the pathogenesis of human cancer and their functions are closely associated with apoptosis. However, how these two molecules regulate apoptosis in human gastric cancer is unknown. In this study, we studied how HO-1 and p21 were regulated in two gastric cancer cell lines, MKN-45 with wild p53 and MKN-28 with mutant p53. The cells were treated with hemin and cadmium to induce HO-1. The result showed that HO-1 protein was significantly induced by hemin and cadmium in both cells tested. Following the HO-1 expression, p21 level was also markedly induced. The cells with increased HO-1 and p21 showed obviously resistantance to apoptotic stimuli. The levels of HO-1 and p21 induced were significantly inhibited by p38 mitogen-activated protein kinase (p38 MAPK) inhibitor (SB203580) and extracellular-regulated kinase (ERK) inhibitor (PD098059). Parallel to decreased HO-1 and p21 expression, the kinase inhibitors also significantly attenuated the resistance of the cells to apoptosis. The elevated HO-1 and p21 was further found to be associated with increase activity of the nuclear NF-kappaB and the inhibition of NF-kappaB led to the block of their induction. The elevated HO-1 and p21 were also demonstrated to be related to increased cellular inhibitor of caspase inbitory protein-2 (c-IAP2) and decreased caspapse-3 activity. It was noted that the above changes observed were not different between MKN-45 and MKN-28 cells, suggesting the functions of HO-1 and p21 were irrespective of the status of p53. In conclusion, we demonstrate that the resistance to apoptosis in gastric cancer cells with elevated HO-1 and p21 is independent of p53 status in a p38 MAPK- and ERK-mediated pathway with elevated c-IAP2 and decreased caspase-3 activity and that this pathway is sensitive to the inhibition of NF-kappaB.

  8. Bioactive secondary metabolites from acid mine waste extremophiles.

    PubMed

    Stierle, Andrea A; Stierle, Donald B

    2014-07-01

    The extremophilic microbes of the Berkeley Pit Lake are a valuable source of new and interesting secondary metabolites. It is of particular interest that these acidophilic microbes produce small molecule inhibitors of pathways associated with low pH and high Eh. These same small molecules also inhibit molecular pathways induced by reactive oxygen species (ROS) and inflammation in mammalian cells. Low pH is a hallmark of inflammation and high Eh is one of ROS, so the suitability of this collection as a source of bioactive metabolites is actually quite biorational. Compound isolation was guided by inhibition of caspase-1 and matrix metalloproteinase-3, and active compounds were sent to the National Cancer Institute-Developmental Therapeutics Program and Memorial Sloan Kettering Cancer center for evaluation as either antiproliferative or cytotoxic agents.

  9. Prediction of relative in vivo metabolite exposure from in vitro data using two model drugs: dextromethorphan and omeprazole.

    PubMed

    Lutz, Justin D; Isoherranen, Nina

    2012-01-01

    Metabolites can have pharmacological or toxicological effects, inhibit metabolic enzymes, and be used as probes of drug-drug interactions or specific cytochrome P450 (P450) phenotypes. Thus, better understanding and prediction methods are needed to characterize metabolite exposures in vivo. This study aimed to test whether in vitro data could be used to predict and rationalize in vivo metabolite exposures using two model drugs and P450 probes: dextromethorphan and omeprazole with their primary metabolites dextrorphan, 5-hydroxyomeprazole (5OH-omeprazole), and omeprazole sulfone. Relative metabolite exposures were predicted using metabolite formation and elimination clearances. For dextrorphan, the formation clearances of dextrorphan glucuronide and 3-hydroxymorphinan from dextrorphan in human liver microsomes were used to predict metabolite (dextrorphan) clearance. For 5OH-omeprazole and omeprazole sulfone, the depletion rates of the metabolites in human hepatocytes were used to predict metabolite clearance. Dextrorphan/dextromethorphan in vivo metabolite/parent area under the plasma concentration versus time curve ratio (AUC(m)/AUC(p)) was overpredicted by 2.1-fold, whereas 5OH-omeprazole/omeprazole and omeprazole sulfone/omeprazole were predicted within 0.75- and 1.1-fold, respectively. The effect of inhibition or induction of the metabolite's formation and elimination on the AUC(m)/AUC(p) ratio was simulated. The simulations showed that unless metabolite clearance pathways are characterized, interpretation of the metabolic ratios is exceedingly difficult. This study shows that relative in vivo metabolite exposure can be predicted from in vitro data and characterization of secondary metabolism of probe metabolites is critical for interpretation of phenotypic data.

  10. Secondary metabolites: applications on cultural heritage.

    PubMed

    Sasso, S; Scrano, L; Bonomo, M G; Salzano, G; Bufo, S A

    2013-01-01

    Biological sciences and related bio-technology play a very important role in research projects concerning protection and preservation of cultural heritage for future generations. In this work secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga) ICMP 11096 strain and crude extract of glycoalkaloids from Solanaceae plants, were tested against a panel of microorganisms isolated from calcarenite stones of two historical bridges located in Potenza and in Campomaggiore (Southern Italy). The isolated bacteria belong to Bacillus cereus and Arthrobacter agilis species, while fungi belong to Aspergillus, Penicillium, Coprinellus, Fusarium, Rhizoctonio and Stemphylium genera. Bga broth (unfiltered) and glycoalkaloids extracts were able to inhibit the growth of all bacterial isolates. Bga culture was active against fungal colonies, while Solanaceae extract exerted bio-activity against Fusarium and Rhizoctonia genera.

  11. Effects of non-steroidal anti-inflammatory drugs on cyclo-oxygenase and lipoxygenase activity in whole blood from aspirin-sensitive asthmatics vs healthy donors

    PubMed Central

    Gray, P A; Warner, T D; Vojnovic, I; Del Soldato, P; Parikh, A; Scadding, G K; Mitchell, J A

    2002-01-01

    Cyclo-oxygenase (COX) and lipoxygenase (LO) share a common substrate, arachidonic acid. Aspirin and related drugs inhibit COX activity. In a subset of patients with asthma aspirin induces clinical symptoms associated with increased levels of certain LO products, a phenomenon known as aspirin-sensitive asthma. The pharmacological pathways regulating such responses are not known. Here COX-1 and LO activity were measured respectively by the formation of thromboxane B2 (TXB2) or leukotrienes (LT) C4, D4 and E4 in whole blood stimulated with A23187. COX-2 activity was measured by the formation of prostaglandin E2 (PGE2) in blood stimulated with lipopolysaccharide (LPS) for 18 h. No differences in the levels of COX-1, COX-2 or LO products or the potency of drugs were found in blood from aspirin sensitive vs aspirin tolerant patients. Aspirin, indomethacin and nimesulide inhibited COX-1 activity, without altering LO activity. Indomethacin, nimesulide and the COX-2 selective inhibitor DFP [5,5-dimethyl-3-(2-isopropoxy)-4-(4-methanesulfonylphenyl)-2(5H)-furanone] inhibited COX-2 activity. NO-aspirin, like aspirin inhibited COX-1 activity in blood from both groups. However, NO-aspirin also reduced LO activity in the blood from both patient groups. Sodium salicylate was an ineffective inhibitor of COX-1, COX-2 or LO activity in blood from both aspirin-sensitive and tolerant patients. Thus, when COX activity in the blood of aspirin-sensitive asthmatics is blocked there is no associated increase in LO products. Moreover, NO-aspirin, unlike other NSAIDs tested, inhibited LO activity in the blood from both aspirin sensitive and aspirin tolerant individuals. This suggests that NO-aspirin may be better tolerated than aspirin by aspirin-sensitive asthmatics. PMID:12429575

  12. A stopped-flow kinetic study of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath).

    PubMed Central

    Green, J; Dalton, H

    1989-01-01

    1. The roles of the three protein components of soluble methane mono-oxygenase were investigated by the use of rapid-reaction techniques. The transfer of electrons through the enzyme complex from NADH to methane/O2 was also investigated. 2. Electron transfer from protein C, the reductase component, to protein A, the hydroxylase component, was demonstrated. Protein C was shown to undergo a three-electron--one-electron catalytic cycle. The interaction of protein C with NADH was investigated. Reduction of protein C was shown to be rapid, and a charge-transfer interaction between reduced FAD and NAD+ was observed; this intermediate was also found in static titration experiments. Thus the binding of NADH, the reduction of protein C and the intramolecular transfer of electrons through protein C were shown to be much more rapid than the turnover rate of methane mono-oxygenase. 3. The rate of transfer of electrons from protein C to protein A was shown to be lower than the reduction of protein C but higher than the turnover rate of methane mono-oxygenase. Association of the proteins was not rate-limiting. The amount of protein A present in the system had a small effect on the rate of reduction of protein C, indicating some co-operativity between the two proteins. 4. Protein B was shown to prevent electron transfer between protein C and protein A in the absence of methane. On addition of saturating concentrations of methane electron transfer was restored. With saturating concentrations of methane and O2 the observed rate constant for the conversion of methane into methanol was 0.26 s-1 at 18 degrees C. 5. By the use of [2H4]methane it was demonstrated that C-H-bond breakage is likely to be the rate-limiting step in the conversion of methane into methanol. PMID:2497729

  13. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells

    PubMed Central

    Yama, Kaori; Sato, Keisuke; Abe, Natsuki; Murao, Yu; Tatsunami, Ryosuke; Tampo, Yoshiko

    2014-01-01

    Epalrestat (EPS) is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH) in rat Schwann cells. GSH plays a crucial role in protecting endothelial cells from oxidative stress, thereby preventing vascular diseases. Here we show that EPS increases GSH levels in not only Schwann cells but also endothelial cells. Treatment of bovine aortic endothelial cells (BAECs), an in vitro model of the vascular endothelium, with EPS caused a dramatic increase in intracellular GSH levels. This was concomitant with the up-regulation of glutamate cysteine ligase, an enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Moreover, EPS stimulated the expression of thioredoxin and heme oxygenase-1, which have important redox regulatory functions in endothelial cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates the expression of antioxidant genes. EPS increased nuclear Nrf2 levels in BAECs. Nrf2 knockdown by siRNA suppressed the EPS-induced glutamate cysteine ligase, thioredoxin-1, and heme oxygenase-1 expression. Interestingly, LY294002, an inhibitor of phosphatidylinositol 3-kinase, abolished the EPS-stimulated GSH synthesis, suggesting that the kinase is associated with Nrf2 activation induced by EPS. Furthermore, EPS reduced the cytotoxicity induced by H2O2 and tert-butylhydroperoxide, indicating that EPS plays a role in protecting cells from oxidative stress. Taken together, the results provide evidence that EPS exerts new beneficial effects on endothelial cells by increasing GSH, thioredoxin, and heme oxygenase-1 levels through the activation of Nrf2. We suggest that EPS has the potential to prevent several vascular diseases caused by oxidative stress. PMID:25529839

  14. In vitro cytotoxicity of BTEX metabolites in HeLa cells.

    PubMed

    Shen, Y

    1998-04-01

    Fuel leakage from underground storage tanks is a major source of groundwater contamination. Although the toxicity of regulated compounds such as benzene, toluene, ethylbenzene, and xylene (BTEX) are well recognized, the cytotoxicity of their metabolites has not been studied extensively. In this study, Hela cells, propagated at 37 degrees C in an atmosphere of 5% CO2-95% air, served as a target for evaluation of cytotoxicity of BTEX metabolites 3-methylcatechol, 4-methylcatechol, 4-hydroxybenzoic acid, and 4-hydroxy-3-methoxybenzoic acid. The cells were exposed to different concentrations of the metabolites, which subsequently showed inhibition of cell growth and produced dose-related decreases in cell viability and cell protein content. The BTEX metabolites affected the levels of the polyamines spermidine, spermine, and putrescine, which are known to be important in cell proliferation. The cytotoxic effects for these BTEX metabolites to Hela cells were 3-methylcatechol > 4-methylcatechol > 4-hydroxy-3-methoxybenzoic acid > 4-hydroxybenzoic acid.

  15. Antipyretic and anti-inflammatory effects of asiaticoside in lipopolysaccharide-treated rat through up-regulation of heme oxygenase-1.

    PubMed

    Wan, JingYuan; Gong, Xia; Jiang, Rong; Zhang, Zhuo; Zhang, Li

    2013-08-01

    Asiaticoside (AS), a triterpenoid isolated from Centella asiatica, has been found to exhibit antioxidant and anti-inflammatory activities in several experimental animal models. However, the underlying mechanisms remain elusive. In this study, we provide experimental evidences that AS dose-dependently inhibited lipopolysaccharide (LPS)-induced fever and inflammatory response, including serum tumor necrosis factor (TNF)-α and interleukin (IL)-6 production, liver myeloperoxidase (MPO) activity, brain cyclooxygenase-2 (COX-2) protein expression and prostaglandin E2 (PGE2 ) production. Interestingly, AS increased serum IL-10 level, liver heme oxygenase-1 (HO-1) protein expression and activity. Furthermore, we found that the suppressive effects of AS on LPS-induced fever and inflammation were reversed by pretreatment with ZnPPIX, a HO-1 activity inhibitor. In summary, our results suggest that AS has the antipyretic and anti-inflammatory effects in LPS-treated rat. These effects could be associated with the inhibition of pro-inflammatory mediators, including TNF-α and IL-6 levels, COX-2 expression and PGE2 production, as well as MPO activity, which might be mediated by the up-regulation of HO-1.

  16. Resveratrol Partially Prevents Rotenone-Induced Neurotoxicity in Dopaminergic SH-SY5Y Cells through Induction of Heme Oxygenase-1 Dependent Autophagy

    PubMed Central

    Lin, Tsu-Kung; Chen, Shang-Der; Chuang, Yao-Chung; Lin, Hung-Yu; Huang, Chi-Ren; Chuang, Jiin-Haur; Wang, Pei-Wen; Huang, Sheng-Teng; Tiao, Mao-Meng; Chen, Jin-Bor; Liou, Chia-Wei

    2014-01-01

    Parkinson disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons. Mitochondrial dysfunction, oxidative stress or protein misfolding and aggregation may underlie this process. Autophagy is an intracellular catabolic mechanism responsible for protein degradation and recycling of damaged proteins and cytoplasmic organelles. Autophagic dysfunction may hasten the progression of neuronal degeneration. In this study, resveratrol promoted autophagic flux and protected dopaminergic neurons against rotenone-induced apoptosis. In an in vivo PD model, rotenone induced loss of dopaminergic neurons, increased oxidation of mitochondrial proteins and promoted autophagic vesicle development in brain tissue. The natural phytoalexin resveratrol prevented rotenone-induced neuronal apoptosis in vitro, and this pro-survival effect was abolished by an autophagic inhibitor. Although both rotenone and resveratrol promoted LC3-II accumulation, autophagic flux was inhibited by rotenone and augmented by resveratrol. Further, rotenone reduced heme oxygenase-1 (HO-1) expression, whereas resveratrol increased HO-1 expression. Pharmacological inhibition of HO-1 abolished resveratrol-mediated autophagy and neuroprotection. Notably, the effects of a pharmacological inducer of HO-1 were similar to those of resveratrol, and protected against rotenone-induced cell death in an autophagy-dependent manner, validating the hypothesis of HO-1 dependent autophagy in preventing neuronal death in the in vitro PD model. Collectively, our findings suggest that resveratrol induces HO-1 expression and prevents dopaminergic cell death by regulating autophagic flux; thus protecting against rotenone-induced neuronal apoptosis. PMID:24451142

  17. Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis

    PubMed Central

    Bauer, Andrea; Mylroie, Hayley; Thornton, C. Clare; Calay, Damien; Birdsey, Graeme M.; Kiprianos, Allan P.; Wilson, Garrick K.; Soares, Miguel P.; Yin, Xiaoke; Mayr, Manuel; Randi, Anna M.; Mason, Justin C.

    2016-01-01

    Angiogenesis is an essential physiological process and an important factor in disease pathogenesis. However, its exploitation as a clinical target has achieved limited success and novel molecular targets are required. Although heme oxygenase-1 (HO-1) acts downstream of vascular endothelial growth factor (VEGF) to modulate angiogenesis, knowledge of the mechanisms involved remains limited. We set out identify novel HO-1 targets involved in angiogenesis. HO-1 depletion attenuated VEGF-induced human endothelial cell (EC) proliferation and tube formation. The latter response suggested a role for HO-1 in EC migration, and indeed HO-1 siRNA negatively affected directional migration of EC towards VEGF; a phenotype reversed by HO-1 over-expression. EC from Hmox1−/− mice behaved similarly. Microarray analysis of HO-1-depleted and control EC exposed to VEGF identified cyclins A1 and E1 as HO-1 targets. Migrating HO-1-deficient EC showed increased p27, reduced cyclin A1 and attenuated cyclin-dependent kinase 2 activity. In vivo, cyclin A1 siRNA inhibited VEGF-driven angiogenesis, a response reversed by Ad-HO-1. Proteomics identified structural protein vimentin as an additional VEGF-HO-1 target. HO-1 depletion inhibited VEGF-induced calpain activity and vimentin cleavage, while vimentin silencing attenuated HO-1-driven proliferation. Thus, vimentin and cyclins A1 and E1 represent VEGF-activated HO-1-dependent targets important for VEGF-driven angiogenesis. PMID:27388959

  18. Human heme oxygenase-1 deficiency: a lesson on serendipity in the discovery of the novel disease.

    PubMed

    Koizumi, Shoichi

    2007-04-01

    The first case of human heme oxygenase (HO)-1 deficiency was reported by Yachie et al. at our laboratory in the Department of Pediatrics, Angiogenesis and Vascular Development, Kanazawa University Graduate School of Medical Science, in 1999. In the present paper I would like to review this novel disease. Our studies into HO-1 deficiency were called by us 'Kanazawa version Project X'. From the story of our successful discovery we have learned that serendipity is a very important spiritual factor. Serendipity is the making of fortunate and unexpected discoveries by chance (from its possession by the heroes in the Persian fairy tale The Three Princes of Serendip).

  19. Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-dependent Oxygenases*

    PubMed Central

    Martinez, Salette; Hausinger, Robert P.

    2015-01-01

    Mononuclear non-heme Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases comprise a large family of enzymes that utilize an Fe(IV)-oxo intermediate to initiate diverse oxidative transformations with important biological roles. Here, four of the major types of Fe(II)/2OG-dependent reactions are detailed: hydroxylation, halogenation, ring formation, and desaturation. In addition, an atypical epimerization reaction is described. Studies identifying several key intermediates in catalysis are concisely summarized, and the proposed mechanisms are explained. In addition, a variety of other transformations catalyzed by selected family members are briefly described to further highlight the chemical versatility of these enzymes. PMID:26152721

  20. Adrenal-mediated endogenous metabolites inhibit puberty in female mice.

    PubMed

    Novotny, M; Jemiolo, B; Harvey, S; Wiesler, D; Marchlewska-Koj, A

    1986-02-14

    While assessing a potential role of adrenal glands in the production of the hitherto unidentified puberty-delaying pheromone of female mice, the urinary volatile profiles of normal and adrenalectomized animals were quantitatively compared. Six components, whose concentrations were depressed after adrenalectomy, were identified: 2-heptanone, trans-5-hepten-2-one, trans-4-hepten-2-one, n-pentyl acetate, cis-2-penten-1-yl acetate, and 2,5-dimethylpyrazine. When these laboratory-synthesized chemicals were added (in their natural concentrations) to either previously inactive urine from adrenalectomized females or plain water, the biological activity was fully restored. PMID:3945805

  1. Impairment of neutrophil oxidative burst in children with sickle cell disease is associated with heme oxygenase-1.

    PubMed

    Evans, Ceri; Orf, Katharine; Horvath, Erzsebet; Levin, Michael; De La Fuente, Josu; Chakravorty, Subarna; Cunnington, Aubrey J

    2015-12-01

    Sickle cell disease is a risk factor for invasive bacterial infections, and splenic dysfunction is believed to be the main underlying cause. We have previously shown that the liberation of heme in acute hemolysis can induce heme oxygenase-1 during granulopoiesis, impairing the ability of developing neutrophils to mount a bactericidal oxidative burst, and increasing susceptibility to bacterial infection. We hypothesized that this may also occur with the chronic hemolysis of sickle cell disease, potentially contributing to susceptibility to infections. We found that neutrophil oxidative burst activity was significantly lower in treatment-naïve children with sickle cell disease compared to age-, gender- and ethnicity-matched controls, whilst degranulation was similar. The defect in neutrophil oxidative burst was quantitatively related to both systemic heme oxygenase-1 activity (assessed by carboxyhemoglobin concentration) and neutrophil mobilization. A distinct population of heme oxygenase-1-expressing cells was present in the bone marrow of children with sickle cell disease, but not in healthy children, with a surface marker profile consistent with neutrophil progenitors (CD49d(Hi) CD24(Lo) CD15(Int) CD16(Int) CD11b(+/-)). Incubation of promyelocytic HL-60 cells with the heme oxygenase-1 substrate and inducer, hemin, demonstrated that heme oxygenase-1 induction during neutrophilic differentiation could reduce oxidative burst capacity. These findings indicate that impairment of neutrophil oxidative burst activity in sickle cell disease is associated with hemolysis and heme oxygenase-1 expression. Neutrophil dysfunction might contribute to risk of infection in sickle cell disease, and measurement of neutrophil oxidative burst might be used to identify patients at greatest risk of infection, who might benefit from enhanced prophylaxis.

  2. Modelling the biodegradation kinetics of the herbicide propanil and its metabolite 3,4-dichloroaniline.

    PubMed

    Marques, Ricardo; Oehmen, Adrian; Carvalho, Gilda; Reis, Maria A M

    2015-05-01

    This study models the biodegradation kinetics of two toxic xenobiotic compounds in enriched mixed cultures: a commonly applied herbicide (3,4-dichloropropionanilide or propanil) and its metabolite (3,4-dichloroaniline or DCA). The dependence of the metabolite degradation kinetics on the presence of the parent compound was investigated, as well as the influence of the feeding operation strategy. Model equations were proposed incorporating substrate inhibition of the parent compound and the metabolite during dump feed operation of a sequencing batch reactor (SBR). The kinetic parameters of the biomass were compared to step feed degradation of the SBR. The relationship between propanil and DCA degradation rates with the concentration of each compound was studied. A statistical comparison was carried out between the model predictions and experimental results. Substrate inhibition by both propanil and DCA was prominent during dump feed operation but insignificant during step feed. With both feeding strategies, the metabolite degradation was found to be dependent on the concentration of both the parent compound and the metabolite, suggesting that the DCA degrading enzymatic activity was independent of the detachment of the propionate moiety from the propanil molecule. After incorporating this finding into the model equations, the model was able to describe well the propanil and DCA degradation profiles, with an r (2) correlation >0.95 for each case. A kinetic model was developed for the degradation of the herbicide propanil and its metabolite DCA. An exponential inhibition term was incorporated to describe the substrate inhibition during dump feeding. The kinetics of metabolite degradation was dependent of the sum of the concentrations of metabolite and parent compound, which could also be of relevance to future xenobiotic modelling applications from wastewater.

  3. The Induction of Heme Oxygenase 1 Decreases Painful Diabetic Neuropathy and Enhances the Antinociceptive Effects of Morphine in Diabetic Mice

    PubMed Central

    Castany, Sílvia; Carcolé, Mireia; Leánez, Sergi; Pol, Olga

    2016-01-01

    Painful diabetic neuropathy is a common complication of diabetes mellitus which is poorly controlled by conventional analgesics. This study investigates if treatment with an heme oxygenase 1 (HO-1) inducer, cobalt protoporphyrin IX (CoPP), could modulate the allodynia and hyperalgesia induced by diabetes and enhanced the antinociceptive effects of morphine. In a diabetic mice model induced by the injection of streptozotocin (STZ), we evaluated the antiallodynic and antihyperalgesic effects produced by the intraperitoneal administration of 5 and 10 mg/kg of CoPP at several days after its administration. The antinociceptive actions produced by the systemic administration of morphine alone or combined with CoPP were also evaluated. In addition, the effects of CoPP treatment on the expression of HO-1, the microglial activation marker (CD11b/c), the inducible nitric oxide synthase (NOS2) and μ-opioid receptors (MOR), were also assessed. Our results showed that the administration of 10 mg/kg of CoPP during 5 consecutive days completely blocked the mechanical and thermal hypersensitivity induced by diabetes. These effects are accompanied by the increased spinal cord, dorsal root ganglia and sciatic nerve protein levels of HO-1. In addition, the STZ-induced activation of microglia and overexpression of NOS2 in the spinal cord were inhibited by CoPP treatment. Furthermore, the antinociceptive effects of morphine were enhanced by CoPP treatment and reversed by the administration of an HO-1 inhibitor, tin protoporphyrin IX (SnPP). The spinal cord expression of MOR was also increased by CoPP treatment in diabetic mice. In conclusion, our data provide the first evidence that the induction of HO-1 attenuated STZ-induced painful diabetic neuropathy and enhanced the antinociceptive effects of morphine via inhibition of microglia activation and NOS2 overexpression as well as by increasing the spinal cord levels of MOR. This study proposes the administration of CoPP alone or

  4. Interactions between amphibians' symbiotic bacteria cause the production of emergent anti-fungal metabolites

    PubMed Central

    Loudon, Andrew H.; Holland, Jessica A.; Umile, Thomas P.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; Harris, Reid N.

    2014-01-01

    Amphibians possess beneficial skin bacteria that protect against the disease chytridiomycosis by producing secondary metabolites that inhibit the pathogen Batrachochytrium dendrobatidis (Bd). Metabolite production may be a mechanism of competition between bacterial species that results in host protection as a by-product. We expect that some co-cultures of bacterial species or strains will result in greater Bd inhibition than mono-cultures. To test this, we cultured four bacterial isolates (Bacillus sp., Janthinobacterium sp., Pseudomonas sp. and Chitinophaga arvensicola) from red-backed salamanders (Plethodon cinereus) and cultured isolates both alone and together to collect their cell-free supernatants (CFS). We challenged Bd with CFSs from four bacterial species in varying combinations. This resulted in three experimental treatments: (1) CFSs of single isolates; (2) combined CFSs of two isolates; and (3) CFSs from co-cultures. Pair-wise combinations of four bacterial isolates CFSs were assayed against Bd and revealed additive Bd inhibition in 42.2% of trials, synergistic inhibition in 42.2% and no effect in 16.6% of trials. When bacteria isolates were grown in co-cultures, complete Bd inhibition was generally observed, and synergistic inhibition occurred in four out of six trials. A metabolite profile of the most potent co-culture, Bacillus sp. and Chitinophaga arvensicola, was determined with LC-MS and compared with the profiles of each isolate in mono-culture. Emergent metabolites appearing in the co-culture were inhibitory to Bd, and the most potent inhibitor was identified as tryptophol. Thus mono-cultures of bacteria cultured from red-backed salamanders interacted synergistically and additively to inhibit Bd, and such bacteria produced emergent metabolites when cultured together, with even greater pathogen inhibition. Knowledge of how bacterial species interact to inhibit Bd can be used to select probiotics to provide amphibians with protection against Bd

  5. Inhibition of cellular respiration by endogenously produced carbon monoxide.

    PubMed

    D'Amico, Gabriela; Lam, Francis; Hagen, Thilo; Moncada, Salvador

    2006-06-01

    Endogenously produced nitric oxide (NO) interacts with mitochondrial cytochrome c oxidase, leading to inhibition of cellular respiration. This interaction has been shown to have important physiological and pathophysiological consequences. Exogenous carbon monoxide (CO) is also known to inhibit cytochrome c oxidase in vitro; however, it is not clear whether endogenously produced CO can inhibit cellular respiration and, if so, what the significance of this might be. In this study, we show that exogenous CO inhibits respiration in a moderate but persistent manner in HEK293 cells under ambient (21%) oxygen concentrations (K(i) = 1.44 microM). This effect of CO was increased (K(i) = 0.35 microM) by incubation in hypoxic conditions (1% oxygen). Endogenous CO, generated by HEK293 cells transfected with the inducible isoform of haem oxygenase (haem oxygenase-1; HO-1), also inhibited cellular respiration moderately (by 12%) and this was accompanied by inhibition (23%) of cytochrome c oxidase activity. When the cells were incubated in hypoxic conditions during HO-1 induction, the inhibitory effect of CO on cell respiration was markedly increased to 70%. Furthermore, endogenously produced CO was found to be responsible for the respiratory inhibition that occurs in RAW264.7 cells activated in hypoxic conditions with lipopolysaccharide and interferon-gamma, in the presence of N-(iminoethyl)-L-ornithine to prevent the synthesis of NO. Our results indicate that CO contributes significantly to the respiratory inhibition in activated cells, particularly under hypoxic conditions. Inhibition of cell respiration by endogenous CO through its interaction with cytochrome c oxidase might have an important role in inflammatory and hypoxic conditions.

  6. Interaction of Fe-protoporphyrin IX and heme analogues with purified recombinant heme oxygenase-2, the constitutive isozyme of the brain and testes.

    PubMed

    Rublevskaya, I; Maines, M D

    1994-10-21

    Heme oxygenase-2 (HO-2) is the predominant form of heme oxygenase in the brain and testes. The enzyme is not readily amenable to isolation from mammalian tissues and has not been characterized for its kinetic properties and interaction with metalloporphyrins. Presently a rat HO-2 cDNA (Rotenberg, M.O., and Maines, M. D. (1990) J. Biol. Chem. 265, 7501-7506) was used to generate a construct with a neutral hydrophobicity profile at its COOH terminus for expression of nearly full-length HO-2 protein in Escherichia coli. The procedures used for HO-1 were of no utility in purification of HO-2. A multistep protocol developed for isolation of HO-2 resulted in a homogeneous protein with a specific activity up to 6,500 nmol of bilirubin/mg/h. Based on SDS-polyacrylamide gel electrophoresis and Western blot analyses, the protein had an apparent molecular mass of approximately 34 kDa. HO-2 binds Fe-protoporphyrin (heme) at near molar unity to give a complex with the absorption maximum at 403 nm. The Soret band has a blue shift to 430 nm when heme iron is reduced, with distinct alpha and beta bands at 485 and 550 nm, respectively. The Soret band of the CO complex of ferrous heme.HO-2 is at 420 nm, and alpha and beta bands are at 540 and 572 nm, respectively. The apparent Km for Fe-protoporphyrin is 0.33 microM, with a Vmax of 0.45 nmol of bilirubin/mg/h. Zn-protoporphyrin is a strong mixed inhibitor of enzyme activity, whereas Co-protoporphyrin is a poor competitive inhibitor of activity. When HO-2 was preincubated (10 min at 4 degrees C) with Fe-protoporphyrin, the cobalt complex did not inhibit enzyme activity, whereas the Zn-protoporphyrin effectively inhibited activity. Calorimetric measurements suggest that HO-2/heme interaction involves one type of association producing a single heat absorption peak upon melting of the complex and that the unfolding is not reversible. The association increases the enthalpy of HO-2 (130 kcal/mol versus 184 kcal/mol) and increases the

  7. Enzymic conversion of alpha-oxyprotohaem IX into biliverdin IX alpha by haem oxygenase.

    PubMed Central

    Yoshinaga, T; Sudo, Y; Sano, S

    1990-01-01

    Conversion of four isomers of meso-oxyprotohaem IX into the corresponding biliverdin IX was attempted with a reconstituted haem oxygenase system in the presence of NADPH-cytochrome c reductase and NADPH. Only the alpha-isomer of meso-oxyprotohaem IX was converted effectively into biliverdin IX alpha, which was further reduced to bilirubin IX alpha by biliverdin reductase. Only trace amounts of biliverdins IX beta, IX gamma and IX delta were respectively formed from the incubation mixture of the corresponding oxyprotohaemin IX isomers with the complete haem oxygenase system under the same conditions. In a kinetic study, the Km for alpha-meso-oxyprotohaem IX was 3.6 microM, which was 2-fold higher than that for protohaem IX. The maximum velocity (Vmax.) of the conversion of alpha-meso-oxyprotohaem IX into biliverdin IX alpha was twice as fast as that of protohaem IX. These results demonstrate that alpha-meso-oxyprotohaem IX is an intermediate of haem degradation and it was converted stereospecifically into biliverdin IX alpha via verdohaem IX alpha. PMID:2122884

  8. Crystallization of the extracellular rubber oxygenase RoxA from Xanthomonas sp. strain 35Y

    SciTech Connect

    Hoffmann, Maren; Braaz, Reinhard; Jendrossek, Dieter; Einsle, Oliver

    2008-02-01

    The extracellular rubber-degrading enzyme rubber oxygenase A (RoxA) from Xanthomonas sp. strain 35Y has been crystallized and diffraction data have been collected to high resolution. Rubber oxygenase A (RoxA) from Xanthomonas sp. strain 35Y is an extracellular dioxygenase that is capable of cleaving the double bonds of poly(cis-1,4-isoprene) into short-chain isoprene units with 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD) as the major cleavage product. Crystals of the dihaem c-type cytochrome RoxA were grown by sitting-drop vapour diffusion using polyethylene glycol as a precipitant. RoxA crystallized in space group P2{sub 1}, with unit-cell parameters a = 72.4, b = 97.1, c = 101.1 Å, β = 98.39°, resulting in two monomers per asymmetric unit. Diffraction data were collected to a limiting resolution of 1.8 Å. Despite a protein weight of 74.1 kDa and only two iron sites per monomer, phasing was successfully carried out by multiple-wavelength anomalous dispersion.

  9. Pathway of assembly of ribulosebisphosphate carboxylase/oxygenase from Anabaena 7210 expressed in Escherichia coli

    SciTech Connect

    Gurevitz, M.; Somerville, C.R.; McIntosh, L.

    1985-10-01

    The authors have placed the genes encoding ribulosebisphosphate carboxylase/oxygenase from the Anabaena 7120 operon under transcriptional control of the lac promoter carried on the Escherichia coli plasmid pUC19. The genes encoding both the large and small subunit polypeptides (rbcL and rbcS) are transcribed and translated so that approx. = 0.6% of the soluble protein in E. coli extracts is a fully functional holoenzyme with a sedimentation coefficient of approximately 18S, which contains stoichiometric amounts of the two subunits. However, expression of the large subunit polypeptide vastly exceeds that of the small subunit because the majority of transcripts terminate in the intergenic region between the rbcL and rbcS genes. As a result, excess large subunit is synthesized and accumulates in E. coli as an insoluble and catalytically inactive form. Because small subunit is found only in the high molecular weight soluble form of ribulosebisphosphate carboxylase/oxygenase, the authors propose that the small subunit promotes assembly of the hexadecameric form of the enzyme via heterodimers of large and small subunits.

  10. Survey of microbial oxygenases: Trichloroethylene degradation by propane-oxidizing bacteria

    SciTech Connect

    Wackett, L.P.; Brusseau, G.A.; Householder, S.R.; Hanson, R.S. )

    1989-11-01

    Microorganisms that biosynthesize broad-specificity oxygenases to initiate metabolism of linear and branched-chain alkanes, nitroalkanes, cyclic ketones, alkenoic acids, and chromenes were surveyed for the ability to biodegrade trichloroethylene (TCE). The results indicated that TCE oxidation is not a common property of broad-specificity microbial oxygenases. Bacteria that contained nitropropane dioxygenase, cyclohexanone monooxygenase, cytochrome P-450 monooxygenases, 4-methoxybenzoate monooxygenase, and hexane monooxygenase did not degrade TCE. However, one new unique class of microorganisms removed TCE from incubation mixtures. Five Mycobacterium strains that were grown on propane as the sole source of carbon and energy degraded TCE. Mycobacterium vaccae JOB5 degraded TCE more rapidly and to a greater extent than the four other propane-oxidizing bacteria. At a starting concentration of 20 {mu}M, it removed up to 99% of the TCE in 24 h. M. vaccae JOB5 also biodegraded 1,1-dichloroethylene, trans-1,2-dichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride.

  11. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria.

    PubMed Central

    Wackett, L P; Brusseau, G A; Householder, S R; Hanson, R S

    1989-01-01

    Microorganisms that biosynthesize broad-specificity oxygenases to initiate metabolism of linear and branched-chain alkanes, nitroalkanes, cyclic ketones, alkenoic acids, and chromenes were surveyed for the ability to biodegrade trichloroethylene (TCE). The results indicated that TCE oxidation is not a common property of broad-specificity microbial oxygenases. Bacteria that contained nitropropane dioxygenase, cyclohexanone monooxygenase, cytochrome P-450 monooxygenases, 4-methoxybenzoate monooxygenase, and hexane monooxygenase did not degrade TCE. However, one new unique class of microorganisms removed TCE from incubation mixtures. Five Mycobacterium strains that were grown on propane as the sole source of carbon and energy degraded TCE. Mycobacterium vaccae JOB5 degraded TCE more rapidly and to a greater extent than the four other propane-oxidizing bacteria. At a starting concentration of 20 microM, it removed up to 99% of the TCE in 24 h. M. vaccae JOB5 also biodegraded 1,1-dichloroethylene, trans-1,2-dichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride. PMID:2624467

  12. Deficiency of heme oxygenase-1 impairs renal hemodynamics and exaggerates systemic inflammatory responses to renal ischemia

    PubMed Central

    Tracz, MJ; Juncos, JP; Croatt, AJ; Ackerman, AW; Grande, JP; Knutson, KL; Kane, GC; Terzic, A; Griffin, MD; Nath, KA

    2010-01-01

    Heme oxygenase-1 may exert cytoprotective effects. In this study we examined the sensitivity of heme oxygenase-1 knockout (HO-1−/−) mice to renal ischemia by assessing glomerular filtration rate (GFR) and cytokine expression in the kidney, and inflammatory responses in the systemic circulation and in vital extrarenal organs. Four hours after renal ischemia, the GFR of HO-1−/− mice was much lower than that of wild-type mice in the absence of changes in renal blood flow or cardiac output. Eight hours after renal ischemia, there was a marked induction of interleukin-6 (IL-6) mRNA and its downstream signaling effector, phosphorylated signal transducer and activator of transcription 3 (pSTAT3), in the kidney, lung, and heart in HO-1−/− mice. Systemic levels of IL-6 were markedly and uniquely increased in HO-1−/− mice after ischemia as compared to wild-type mice. The administration of an antibody to IL-6 protected against the renal dysfunction and mortality observed in HO-1−/− mice following ischemia. We suggest that the exaggerated production of IL-6, occurring regionally and systemically following localized renal ischemia, in an HO-1-deficient state may underlie the heightened sensitivity observed in this setting. PMID:17728706

  13. Induction of heme oxygenase: A general response to oxidant stress in cultured mammalian cells

    SciTech Connect

    Applegate, L.A.; Luscher, P.; Tyrrell, R.M. )

    1991-02-01

    Accumulation of heme oxygenase mRNA is strongly stimulated by treatment of cultured human skin fibroblasts with ultraviolet radiation, hydrogen peroxide, or the sulfhydryl reagent sod